Developer Reference for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library for Fortran

Contents

Chapter 1: Developer Reference for Intel® oneAPI Math Kernel Library - Fortran

Getting Help and Support 22
What's New 22
Notational Conventions 22
Overview 23
Performance Enhancements 28
Parallelism 28
OpenMP* Offload 29
OpenMP* Offload for Intel® oneAPI Math Kernel Library 29
BLAS and Sparse BLAS Routines 32
BLAS Routines 32
Naming Conventions for BLAS Routines 32
Fortran 95 Interface Conventions for BLAS Routines 34
Matrix Storage Schemes for BLAS Routines 34
BLAS Level 1 Routines and Functions 35
BLAS Level 2 Routines 58
BLAS Level 3 Routines 108
Sparse BLAS Level 1 Routines 133
Vector Arguments 134
Naming Conventions for Sparse BLAS Routines 134
Routines and Data Types 134
BLAS Level 1 Routines That Can Work With Sparse Vectors 135
?axpyi 135
?doti 136
?dotci 138
?dotui 139
?gthr. 140
?gthrz 141
?roti 142
?sctr 144
Sparse BLAS Level 2 and Level 3 Routines 145
Naming Conventions in Sparse BLAS Level 2 and Level 3. 145
Sparse Matrix Storage Formats for Sparse BLAS Routines 146
Routines and Supported Operations 146
Interface Consideration 148
Sparse BLAS Level 2 and Level 3 Routines 152
Sparse QR Routines 325
mkl_sparse_set_qr_hint 325
mkl_sparse_?_qr 326
mkl_sparse_qr_reorder. 328
mkl_sparse_?_qr_factorize 329
mkl_sparse_?_qr_solve 330
mkl_sparse_?_qr_qmult 332
mkl_sparse_?_qr_rsolve 334
Inspector-executor Sparse BLAS Routines 336
Naming Conventions in Inspector-Executor Sparse BLAS Routines 337
Sparse Matrix Storage Formats for Inspector-executor Sparse BLAS Routines 338
Supported Inspector-executor Sparse BLAS Operations 338
Two-stage Algorithm in Inspector-Executor Sparse BLAS Routines 339
Matrix Manipulation Routines 340
Inspector-Executor Sparse BLAS Analysis Routines 364
Inspector-Executor Sparse BLAS Execution Routines 383
BLAS-like Extensions 433
?axpy_batch 435
?axpy_batch_strided 436
?axpby 437
?gem2vu 439
?gem2vc 441
?gemmt 444
?gemm3m 447
?gemm_batch 450
?gemm_batch_strided 454
?gemm3m_batch_strided 457
?gemm3m_batch 460
?trsm batch 464
?trsm_batch_strided 467
mkl_?imatcopy 470
mkl_?imatcopy_batch 472
mkl_?imatcopy_batch_strided 474
mkl_?omatadd_batch_strided 476
mkl_?omatcopy 478
mkl_?omatcopy_batch 481
mkl_?omatcopy_batch_strided 483
mkl_?omatcopy2 485
mkl_?omatadd 488
?gemm_pack_get_size, gemm_*_pack_get_size 491
?gemm_pack 493
gemm_*_pack 495
?gemm_compute 497
gemm_*_compute 500
?gemm_free 503
gemm_* 504
?gemv_batch_strided 506
?gemv_batch 508
?dgmm_batch_strided 511
?dgmm_batch 513
mkl_jit_create_?gemm 514
mkl_jit_get_?gemm_ptr 517
mkl_jit_destroy 519
LAPACK Routines 519
Naming Conventions for LAPACK Routines 520
Fortran 95 Interface Conventions for LAPACK Routines 520
Intel® MKL Fortran 95 Interfaces for LAPACK Routines vs. Netlib Implementation 522
Matrix Storage Schemes for LAPACK Routines 523
Mathematical Notation for LAPACK Routines 523
Error Analysis 524
LAPACK Linear Equation Routines 525
LAPACK Linear Equation Computational Routines 525
LAPACK Linear Equation Driver Routines 789
LAPACK Least Squares and Eigenvalue Problem Routines 918
LAPACK Least Squares and Eigenvalue Problem Computational Routines 919
LAPACK Least Squares and Eigenvalue Problem Driver Routines 1241
LAPACK Auxiliary Routines 1500
?lacgv 1514
?lacrm 1515
?lacrt 1516
?laesy 1518
?rot. 1519
?spmv 1520
?spr 1522
?syconv 1523
?symv 1525
?syr 1526
i?max1 1528
?sum1 1528
?gbtf2 1529
?gebd2 1530
?gehd2 1532
?gelq2 1534
?gelqt3 1536
?geql2 1537
?geqr2 1538
?geqr2p 1540
?geqrt2 1541
?geqrt3 1543
?gerq2 1545
?gesc2 1547
?getc2 1548
?getf2 1549
?gtts2 1550
?isnan 1552
?laisnan 1552
?labrd 1553
?lacn2 1555
?lacon 1557
?lacpy 1558
?ladiv 1559
?lae2 1560
?laebz 1562
?laed0 1566
?laed1 1568
?laed2 1570
?laed3 1572
?laed4 1574
?laed5 1575
?laed6 1576
?laed7 1577
?laed8 1580
?laed9 1583
?laeda 1585
?laein 1587
?laev2 1589
?laexc 1591
?lag2. 1592
?lags2 1594
?lagtf 1597
?lagtm 1599
?lagts 1600
?lagv2 1602
?lahqr 1604
?lahrd 1606
?lahr2 1610
?laic1 1612
?lakf2 1614
?laln2 1616
?lals0 1618
?lalsa 1621
?lalsd 1624
?lamrg 1627
?lamswlq 1628
?lamtsqr 1630
?laneg 1632
?langb 1633
?lange 1635
?langt 1636
?lanhs 1637
?lansb 1638
?lanhb 1640
?lansp 1641
?lanhp 1643
?lanst/?lanht 1644
?lansy 1645
?lanhe 1646
?lantb 1648
?lantp 1649
?lantr 1651
?lanv2 1653
?lapll 1654
?lapmr 1655
?lapmt 1656
?lapy2 1657
?lapy3 1658
?laqgb 1658
?laqge 1660
?laqhb 1662
?laqp2 1663
?laqps 1665
?laqr0 1667
?laqr1 1670
?laqr2 1671
?laqr3 1675
?laqr4 1678
?laqr5 1681
?laqsb 1684
?laqsp 1686
?laqsy 1687
?laqtr 1689
?laqz0 1692
?lar1v 1697
?lar2v 1699
?laran 1701
?larf. 1701
?larfb 1703
?larfg 1706
?larfgp 1708
?larft. 1709
?larfx 1711
?larfy 1713
?large 1714
?largv 1716
?larnd 1717
?larnv 1718
?laror 1719
?larot 1721
?larra 1725
?larrb 1727
?larrc 1729
?larrd 1730
?larre 1733
?larrf. 1737
?larrj 1739
?larrk 1741
?larrr. 1742
?larrv 1743
?lartg 1746
?lartgp 1748
?lartgs 1749
?lartv 1751
?laruv 1752
?larz 1753
?larzb 1755
?larzt 1757
?las2 1759
?lascl 1761
?lasd0 1762
?lasd1 1764
?lasd2 1766
?lasd3 1769
?lasd4 1772
?lasd5 1773
?lasd6 1774
?lasd7 1778
?lasd8 1782
?lasd9 1784
?lasda 1786
?lasdq 1789
?lasdt 1791
?laset 1792
?lasq1 1793
?lasq2 1794
?lasq3 1796
?lasq4 1797
?lasq5 1799
?lasq6 1800
?lasr 1801
?lasrt 1804
?lassq 1805
?lasv2 1807
?laswlq 1808
?laswp 1810
?lasy2 1811
?lasyf 1813
?lasyf_aa 1815
?lasyf_rook 1817
?lahef 1819
?lahef_aa 1821
?lahef_rook 1822
?latbs 1824
?latm1 1826
?latm2 1828
?latm3 1831
?latm5 1834
?latm6 1838
?latme 1841
?latmr 1845
?latdf 1853
?latps 1855
?latrd 1857
?latrs 1859
?latrz 1863
?latsqr 1865
?lauu2 1867
?lauum 1868
?orbdb1/?unbdb1 1869
?orbdb2/?unbdb2 1872
?orbdb3/?unbdb3 1875
?orbdb4/?unbdb4 1878
?orbdb5/?unbdb5 1882
?orbdb6/?unbdb6 1884
?org21/?ung21 1886
?org2r/?ung2r 1888
?orgl2/?ungl2 1889
?orgr2/?ungr2 1890
?orm21/?unm21 1892
?orm2r/?unm2r 1894
?orml2/?unml2 1896
?ormr2/?unmr2 1898
?ormr3/?unmr3 1900
?pbtf2 1902
?potf2 1904
?ptts2 1905
?rscl. 1906
?syswapr 1907
?heswapr. 1908
?syswapr1 1910
?sygs2/?hegs2 1911
?sytd2/?hetd2 1913
?sytf2 1915
?sytf2_rook 1916
?hetf2 1918
?hetf2_rook 1919
?tgex2 1921
?tgsy2 1923
?trti2. 1927
clag2z 1928
dlag2s 1929
slag2d 1929
zlag2c 1930
?larfp 1931
ila?lc 1932
ila?lr 1933
?gsvj0 1934
?gsvj1 1937
?sfrk 1940
?hfrk 1942
?tfsm 1944
?lansf 1946
?lanhf 1947
?tfttp 1948
?tfttr 1950
?tplqt2 1951
?tpqrt2 1953
?tprfb 1955
?tpttf 1959
?tpttr 1960
?trttf 1961
?trttp 1963
?pstf2 1964
dlat2s 1966
zlat2c 1967
?lacp2 1968
?la_gbamv 1969
?la_gbrcond 1971
?la_gbrcond_c 1973
?la_gbrcond_x 1974
?la_gbrfsx_extended 1976
?la_gbrpvgrw 1982
?la_geamv 1983
?la_gercond 1985
?la_gercond_c 1987
?la_gercond_x 1988
?la_gerfsx_extended 1989
?la_heamv 1995
?la_hercond_c 1997
?la_hercond_x 1998
?la_herfsx_extended 2000
?la_herpvgrw 2006
?la_lin_berr 2007
?la_porcond 2008
?la_porcond_c 2009
?la_porcond_x 2011
?la_porfsx_extended 2012
?la_porpvgrw 2019
?laqhe 2020
?laqhp 2021
?larcm 2023
?la_gerpvgrw 2024
?larscl2 2025
?lascl2 2026
?la_syamv 2027
?la_syrcond 2028
?la_syrcond_c 2030
?la_syrcond_x 2031
?la_syrfsx_extended 2033
?la_syrpvgrw 2039
?la_wwaddw 2040
mkl_?tppack 2041
mkl_?tpunpack 2043
Additional LAPACK Routines 2045
LAPACK Utility Functions and Routines 2046
ilaver 2047
ilaenv 2048
iparmq 2049
ieeeck 2051
?labad 2052
?lamch 2053
?lamc1 2054
?lamc2 2054
?lamc3 2055
?lamc4 2056
?lamc5 2057
chla_transtype 2057
iladiag 2058
ilaprec 2059
ilatrans 2059
ilauplo 2060
xerbla_array 2061
LAPACK Test Functions and Routines 2061
?latms 2061
Additional LAPACK Routines (Included for Compatibility with Netlib LAPACK) 2066
ScaLAPACK Routines 2068
Overview of ScaLAPACK Routines 2068
ScaLAPACK Array Descriptors 2069
Naming Conventions for ScaLAPACK Routines 2071
ScaLAPACK Computational Routines 2072
Systems of Linear Equations: ScaLAPACK Computational Routines2072Matrix Factorization: ScaLAPACK Computational Routines2073
Solving Systems of Linear Equations: ScaLAPACK Computational Routines 2087
Estimating the Condition Number: ScaLAPACK Computational Routines 2104
Refining the Solution and Estimating Its Error: ScaLAPACK Computational Routines 2112
Matrix Inversion: ScaLAPACK Computational Routines 2122
Matrix Equilibration: ScaLAPACK Computational Routines 2127
Orthogonal Factorizations: ScaLAPACK Computational Routines 2131
Symmetric Eigenvalue Problems: ScaLAPACK Computational Routines 2205
Nonsymmetric Eigenvalue Problems: ScaLAPACK Computational Routines 2242
Singular Value Decomposition: ScaLAPACK Driver Routines 2260
Generalized Symmetric-Definite Eigenvalue Problems: ScaLAPACK Computational Routines 2272
ScaLAPACK Driver Routines 2276
p?geevx 2277
p?gesv 2280
p?gesvx 2281
p?gbsv 2287
p?dbsv 2289
p?dtsv 2291
p?posv 2294
p?posvx 2296
p?pbsv 2301
p?ptsv 2303
p?gels 2306
p?syev 2309
p?syevd 2312
p?syevr 2315
p?syevx 2319
p?heev 2325
p?heevd 2328
p?heevr 2331
p?heevx 2336
p?gesvd 2343
p?sygvx 2347
p?hegvx 2354
ScaLAPACK Auxiliary Routines 2362
b?laapp 2367
b?laexc 2369
b?trexc 2370
p?lacgv 2372
p?max1 2373
pilaver 2374
pmpcol 2375
pmpim2 2376
?combamax1 2377
p?sum1 2377
p?dbtrsv 2378
p?dttrsv 2381
p?gebal 2384
p?gebd2 2387
p?gehd2 2391
p?gelq2 2393
p?geql2 2395
p?geqr2 2397
p?gerq2 2399
p?getf2 2402
p?labrd 2403
p?lacon 2407
p?laconsb 2408
p?lacp2 2410
p?lacp3 2411
p?lacpy 2413
p?laevswp 2414
p?lahrd 2416
p?laiect 2419
p?lamve 2420
p?lange 2421
p?lanhs 2423
p?lansy, p?lanhe 2425
p?lantr 2427
p?lapiv 2429
p?lapv2 2431
p?laqge 2433
p?laqr0 2435
p?laqr1 2438
p?laqr2 2441
p?laqr3 2443
p?laqr4 2446
p?laqr5 2449
p?laqsy 2451
p?lared1d 2453
p?lared2d 2454
p?larf 2456
p?larfb 2459
p?larfc 2462
p?larfg 2465
p?larft 2467
p?larz 2469
p?larzb 2472
p?larzc 2476
p?larzt 2478
p?lascl 2482
p?lase2 2484
p?laset 2486
p?lasmsub 2487
p?lasrt 2489
p?lassq 2490
p?laswp 2492
p?latra 2494
p?latrd 2495
p?latrs 2498
p?latrz 2500
p?lauu2 2503
p? lauum 2504
p?lawil 2505
p?org21/p?ung21 2507
p?org2r/p?ung2r 2509
p?orgl2/p?ungl2 2511
p?orgr2/p?ungr2 2513
p?orm21/p?unm21 2515
p?orm2r/p?unm2r 2519
p?orml2/p?unml2 2522
p?ormr2/p?unmr2 2526
p?pbtrsv 2529
p?pttrsv 2533
p?potf2 2536
p?rot 2538
p?rscl 2540
p?sygs2/p?hegs2 2541
p?sytd2/p?hetd2 2543
p?trord 2546
p ?trsen 2550
p?trti2 2555
?lahqr2 2556
?lamsh 2558
?lapst 2560
?laqr6 2560
?lar1va 2564
?laref 2566
?larrb2 2569
?larrd2 2572
?larre2 2575
?larre2a 2579
?larrf2 2584
?larrv2 2586
?lasorte 2591
?lasrt2 2592
?stegr2 2593
?stegr2a 2597
?stegr2b 2600
?stein2 2604
?dbtf2 2606
?dbtrf 2608
?dttrf 2609
?dttrsv 2610
?pttrsv 2611
?steqr2 2613
?trmvt 2614
pilaenv 2617
pilaenvx 2618
pjlaenv 2620
Additional ScaLAPACK Routines 2621
ScaLAPACK Utility Functions and Routines 2622
p?labad 2622
p?lachkieee 2623
p?lamch 2624
p?lasnbt 2625
descinit 2626
numroc 2627
ScaLAPACK Redistribution/Copy Routines 2627
p?gemr2d 2628
p?trmr2d 2630
Sparse Solver Routines 2632
oneMKL PARDISO - Parallel Direct Sparse Solver Interface 2632
pardiso 2639
pardisoinit 2647
pardiso_64 2648
mkl_pardiso_pivot 2649
pardiso_getdiag 2650
pardiso_export 2652
pardiso_handle_store 2654
pardiso_handle_restore 2655
pardiso_handle_delete. 2656
pardiso_handle_store_64 2657
pardiso_handle_restore_64 2657
pardiso_handle_delete_64 2658
oneMKL PARDISO Parameters in Tabular Form 2659
pardiso iparm Parameter 2664
PARDISO_DATA_TYPE 2677
Parallel Direct Sparse Solver for Clusters Interface 2678
cluster_sparse_solver 2680
cluster_sparse_solver_64 2685
cluster_sparse_solver_get_csr_size 2686
cluster_sparse_solver_set_csr_ptrs 2688
cluster_sparse_solver_set_ptr 2690
cluster_sparse_solver_export 2692
cluster_sparse_solver iparm Parameter 2694
Direct Sparse Solver (DSS) Interface Routines 2703
DSS Interface Description 2705
DSS Implementation Details 2705
DSS Routines 2706
Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS) 2719
CG Interface Description 2720
FGMRES Interface Description 2726
RCI ISS Routines 2734
RCI ISS Implementation Details 2748
Preconditioners based on Incomplete LU Factorization Technique 2748
ILUO and ILUT Preconditioners Interface Description 2750
desrilu0 2751
dcsrilut 2754
Sparse Matrix Checker Routines 2757
sparse_matrix_checker 2757
sparse_matrix_checker_init 2759
Extended Eigensolver Routines 2760
The FEAST Algorithm 2761
Extended Eigensolver Functionality 2762
Parallelism in Extended Eigensolver Routines 2763
Achieving Performance With Extended Eigensolver Routines 2763
Extended Eigensolver Interfaces for Eigenvalues within Interval 2764
Extended Eigensolver Naming Conventions 2764
feastinit 2765
Extended Eigensolver Input Parameters 2765
Extended Eigensolver Output Details 2767
Extended Eigensolver RCI Routines 2768
Extended Eigensolver Predefined Interfaces 2773
Extended Eigensolver Interfaces for Extremal Eigenvalues/Singular Values 2790
Extended Eigensolver Interfaces to find largest/smallest eigenvalues 2790
Extended Eigensolver Interfaces to find largest/smallest singular values 2795
mkl_sparse_ee_init 2797
Extended Eigensolver Input Parameters for Extremal Eigenvalue Problem 2798
Vector Mathematical Functions 2799
VM Data Types, Accuracy Modes, and Performance Tips 2800
VM Naming Conventions 2801
VM Function Interfaces 2801
Vector Indexing Methods 2803
VM Error Diagnostics 2804
VM Mathematical Functions 2805
Special Value Notations 2808
Arithmetic Functions 2808
Power and Root Functions 2826
Exponential and Logarithmic Functions 2848
Trigonometric Functions 2864
Hyperbolic Functions 2896
Special Functions 2911
Rounding Functions 2928
VM Pack/Unpack Functions 2941
v?Pack 2941
v?Unpack 2943
VM Service Functions 2944
vmISetMode 2945
vmlgetmode 2947
vmlSetErrStatus 2947
vmlgeterrstatus 2948
vmlclearerrstatus 2949
vmISetErrorCallBack 2949
vmlGetErrorCallBack 2951
vmIClearErrorCallBack 2951
Miscellaneous VM Functions 2952
v?CopySign 2952
v ?NextAfter 2953
v?Fdim 2954
v?Fmax 2955
v?Fmin 2956
v?MaxMag 2958
v?MinMag 2959
Statistical Functions 2961
Random Number Generators. 2961
Random Number Generators Conventions 2962
Basic Generators. 2968
Error Reporting 2971
VS RNG Usage ModelIntel® oneMKL RNG Usage Model 2973
Service Routines 2974
Distribution Generators 2997
Advanced Service Routines 3047
Convolution and Correlation. 3048
Convolution and Correlation Naming Conventions 3049
Convolution and Correlation Data Types 3050
Convolution and Correlation Parameters 3050
Convolution and Correlation Task Status and Error Reporting 3052
Convolution and Correlation Task Constructors 3053
Convolution and Correlation Task Editors 3062
Task Execution Routines. 3067
Convolution and Correlation Task Destructors 3077
Convolution and Correlation Task Copiers 3078
Convolution and Correlation Usage Examples 3079
Convolution and Correlation Mathematical Notation and Definitions 3082
Convolution and Correlation Data Allocation 3083
Summary Statistics 3085
Summary Statistics Naming Conventions 3086
Summary Statistics Data Types 3086
Summary Statistics Parameters 3087
Summary Statistics Task Status and Error Reporting 3087
Summary Statistics Task Constructors 3091
Summary Statistics Task Editors 3093
Summary Statistics Task Computation Routines 3122
Summary Statistics Task Destructor 3126
Summary Statistics Usage Examples 3127
Summary Statistics Mathematical Notation and Definitions 3128
Fourier Transform Functions 3132
FFT Functions 3134
FFT Interface 3134
Computing an FFT 3135
Configuration Settings 3135
FFT Descriptor Manipulation Functions 3149
FFT Descriptor Configuration Functions 3154
FFT Computation Functions 3158
Status Checking Functions 3166
Cluster FFT Functions 3169
Computing Cluster FFT 3170
Distributing Data Among Processes 3170
Cluster FFT Interface 3172
Cluster FFT Descriptor Manipulation Functions 3173
Cluster FFT Computation Functions 3176
Cluster FFT Descriptor Configuration Functions. 3179
Error Codes 3183
PBLAS Routines 3184
PBLAS Routines Overview 3185
PBLAS Routine Naming Conventions 3185
PBLAS Level 1 Routines 3187
p?amax 3187
p?asum 3188
p?axpy 3189
p?copy 3191
p?dot 3192
p?dotc 3193
p?dotu. 3195
p?nrm2 3196
p?scal 3197
p?swap 3198
PBLAS Level 2 Routines 3199
p?gemv 3200
p?agemv 3202
p?ger 3205
p?gerc 3207
p?geru 3208
p?hemv 3210
p?ahemv 3212
p?her 3214
p?her2 3216
p?symv 3218
p?asymv 3220
p?syr 3222
p?syr2 3223
p?trmv 3225
p?atrmv 3227
p?trsv 3230
PBLAS Level 3 Routines 3232
p?geadd 3233
p?tradd 3234
p?gemm 3236
p?hemm 3239
p?herk 3241
p?her2k 3243
p?symm 3245
p?syrk 3247
p?syr2k 3249
p?tran 3252
p?tranu 3253
p?tranc 3255
p?trmm 3256
p?trsm 3258
Partial Differential Equations Support 3261
Trigonometric Transform Routines 3261
Trigonometric Transforms Implemented 3262
Sequence of Invoking TT Routines 3263
Trigonometric Transform Interface Description 3264
T Routines 3265
Common Parameters of the Trigonometric Transforms 3272
Trigonometric Transform Implementation Details 3275
Fast Poisson Solver Routines 3277
Poisson Solver Implementation 3277
Sequence of Invoking Poisson Solver Routines 3283
Fast Poisson Solver Interface Description 3285
Routines for the Cartesian Solver 3286
Routines for the Spherical Solver 3295
Common Parameters for the Poisson Solver 3302
Poisson Solver Implementation Details 3311
Calling PDE Support Routines from Fortran 3317
Nonlinear Optimization Problem Solvers 3318
Nonlinear Solver Organization and Implementation 3318
Nonlinear Solver Routine Naming Conventions 3320
Nonlinear Least Squares Problem without Constraints 3320
?trnlsp_init 3321
?trnlsp_check 3323
?trnlsp_solve 3324
?trnlsp_get 3326
?trnlsp_delete 3327
Nonlinear Least Squares Problem with Linear (Bound) Constraints 3328
?trnlspbc_init 3329
?trnlspbc_check 3331
?trnlspbc_solve. 3333
?trnlspbc_get 3335
?trnlspbc_delete 3336
Jacobian Matrix Calculation Routines 3336
?jacobi_init 3337
?jacobi_solve 3338
?jacobi_delete 3339
?jacobi 3339
? jacobix 3341
Support Functions 3342
Using a Fortran Interface Module for Support Functions 3345
Version Information 3346
mkl_get_version_string 3346
Threading Control 3347
mkl_set_num_threads 3348
mkl_domain_set_num_threads 3349
mkl_set_num_threads_local 3350
mkl_set_dynamic 3351
mkl_get_max_threads 3352
mkl_domain_get_max_threads 3353
mkl_get_dynamic 3354
mkl_set_num_stripes 3355
mkl_get_num_stripes 3356
Error Handling 3357
Error Handling for Linear Algebra Routines 3357
Handling Fatal Errors 3359
Character Equality Testing 3360
Isame 3360
Isamen 3360
Timing 3361
second/dsecnd 3361
mkl_get_cpu_clocks 3362
mkl_get_cpu_frequency 3362
mkl_get_max_cpu_frequency 3363
mkl_get_clocks_frequency 3363
Memory Management 3364
mkl_free_buffers 3364
mkl_thread_free_buffers 3365
mkl_disable_fast_mm 3365
mkl_mem_stat 3366
mkl_peak_mem_usage 3367
mkl_malloc 3368
mkl_calloc 3369
mkl_realloc 3370
mkl_free 3370
mkl_set_memory_limit 3371
Usage Examples for the Memory Functions 3372
Single Dynamic Library Control 3374
mkl_set_interface_layer. 3375
mkl_set_threading_layer 3376
mkl_set_xerbla 3377
mkl_set_progress 3378
mkl_set_pardiso_pivot. 3378
Conditional Numerical Reproducibility Control. 3379
mkl_cbwr_set 3380
mkl_cbwr_get 3381
mkl_cbwr_get_auto_branch 3382
Named Constants for CNR Control 3382
Reproducibility Conditions 3384
Usage Examples for CNR Support Functions 3385
Miscellaneous 3385
mkl_progress 3385
mkl_enable_instructions 3387
mkl_set_env_mode 3389
mkl verbose 3390
mkl verbose_output_file 3391
mkl_set_mpi 3392
mkl_finalize 3393
BLACS Routines 3394
Matrix Shapes 3395
Repeatability and Coherence 3396
BLACS Combine Operations 3399
?gamx2d 3400
?gamn2d 3401
?gsum2d 3403
BLACS Point To Point Communication 3404
?gesd2d 3406
?trsd2d 3407
?gerv2d 3407
?trrv2d 3408
BLACS Broadcast Routines 3408
?gebs2d 3410
?trbs2d 3410
?gebr2d 3411
?trbr2d 3412
BLACS Support Routines 3413
Initialization Routines 3413
Destruction Routines 3419
Informational Routines 3421
Miscellaneous Routines 3423
BLACS Routines Usage Examples 3424
Data Fitting Functions 3433
Data Fitting Function Naming Conventions 3434
Data Fitting Function Data Types 3434
Mathematical Conventions for Data Fitting Functions 3435
Data Fitting Usage Model 3438
Data Fitting Usage Examples 3438
Data Fitting Function Task Status and Error Reporting 3438
Data Fitting Task Creation and Initialization Routines 3440
df?newtaskld 3440
Task Configuration Routines 3442
df?editppspline1d 3443
df?editptr 3450
dfieditval 3451
df?editidxptr 3453
df?queryptr 3454
dfiqueryval 3455
df?queryidxptr 3456
Data Fitting Computational Routines 3457
df?construct1d 3458
df?interpolateld/df?interpolateex1d 3459
df?integrate1d/df?integrateex1d 3465
df?searchcells1d/df?searchcellsex1d 3469
df?interpcallback 3471
df?integrcallback 3472
df?searchcellscallback 3474
Data Fitting Task Destructors 3475
dfdeletetask 3476
Appendix A: Linear Solvers Basics 3476
Sparse Linear Systems. 3476
Matrix Fundamentals 3477
Direct Method 3478
Sparse Matrix Storage Formats 3484
DSS Symmetric Matrix Storage 3485
DSS Nonsymmetric Matrix Storage 3486
DSS Structurally Symmetric Matrix Storage 3486
DSS Distributed Symmetric Matrix Storage 3487
Sparse BLAS CSR Matrix Storage Format. 3488
Sparse BLAS CSC Matrix Storage Format 3490
Sparse BLAS Coordinate Matrix Storage Format 3491
Sparse BLAS Diagonal Matrix Storage Format 3492
Sparse BLAS Skyline Matrix Storage Format 3493
Sparse BLAS BSR Matrix Storage Format 3494
Appendix B: Routine and Function Arguments 3496
Vector Arguments in BLAS 3496
Vector Arguments in Vector Math 3497
Matrix Arguments 3498
Appendix C: Specific Features of Fortran 95 Interfaces for LAPACK Routines 3503
Appendix D: FFTW Interface to Intel® oneAPI Math Kernel Library (oneMKL) 3504
Notational Conventions 3504
FFTW2 Interface to Intel® oneAPI Math Kernel Library (oneMKL) 3504
Wrappers Reference 3504
Calling FFTW2 Interface Wrappers from Fortran 3507
Limitations of the FFTW2 Interface to Intel® oneAPI Math Kernel Library (oneMKL) 3508
Installing FFTW2 Interface Wrappers 3508
FFTW3 Interface to Intel® oneAPI Math Kernel Library (oneMKL) 3510
Using FFTW3 Wrappers 3510
Calling FFTW3 Interface Wrappers from Fortran 3512
Building Your Own Wrapper Library 3512
Building an Application With FFTW3 Interface Wrappers 3513
Running FFTW3 Interface Wrapper Examples 3513
MPI FFTW3 Wrappers 3513
Appendix E: Code Examples 3515
BLAS Code Examples 3515
Fourier Transform Functions Code Examples 3518
FFT Code Examples 3518
Examples for Cluster FFT Functions 3525
Auxiliary Data Transformations 3526
Appendix F: oneMKL Functionality 3527
BLAS Functionality 3528
Transposition Functionality 3528
LAPACK Functionality 3528
DFT Functionality 3530
Sparse BLAS Functionality 3530
Sparse Solvers Functionality 3535
Random Number Generators Functionality 3536
Vector Math Functionality 3537
Data Fitting Functionality 3537
Summary Statistics Functionality 3538
Bibliography 3539
Glossary. 3544
Notices and Disclaimers. 3549

Developer Reference for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library Fortran

For more documentation on this and other products, visit the oneAPI Documentation Library. Intel ${ }^{\circledR}$ Math Kernel Library is now Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).
Documentation for versions of Intel ${ }^{\circledR}$ Math Kernel Library older than 2023.0 is available for download only. See Downloadable Documentation.

What's New
C interface: Developer Reference for Inte ${ }^{\circledR}$ oneAPI Math Kernel Library - C

This publication describes the Fortran interface.

Basic Linear Algebra
Subprograms (BLAS)
Sparse BLAS

Sparse QR

LAPACK

Statistical Functions

Direct and Iterative Sparse Solvers

Vector Mathematics
Functions
Vector Statistics Functions

Fourier Transform Functions

The BLAS routines provide vector, matrix-vector, and matrix-matrix operations.

The Sparse BLAS routines provide basic operations on sparse vectors and matrices.

The Sparse QR Routines provide a multifrontal sparse QR factorization method for solving a sparse system of linear equations.

The LAPACK routines solve systems of linear equations, least square problems, eigenvalue and singular value problems, and Sylvester's equations.

The Statistical Functions provides a set of routines implementing commonly used pseudorandom random number generators (RNG) with continuous distribution.

Among several options for solving sparse linear systems of equations, oneMKL offers a direct sparse solver based on PARDISO*, which is referred to here as Intel MKL PARDISO.

The Vector Mathematics (VM) functions compute core mathematical functions on vector arguments.

The Vector Statistics (VS) functions generate vectors of pseudorandom numbers with different types of statistical distributions and perform convolution and correlation computations.

The Fourier Transform Functions offer several options for computing Fast Fourier Transforms (FFTs).

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Getting Help and Support

Intel provides a support web site that contains a rich repository of self help information, including getting started tips, known product issues, product errata, license information, user forums, and more. Visit the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) support website athttp://www.intel.com/software/products/ support/.

What's New

This Developer Reference documents Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) release for the Fortran interface.

Intel ${ }^{\circledR}$ Math Kernel Library is now Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). Documentation for older versions of Intel ${ }^{\circledR}$ Math Kernel Library is available for download only. For a list of available documentation downloads by product version, see these pages:

- Download Documentation for Intel® Parallel Studio XE
- Download Documentation for Intel ${ }^{\circledR}$ System Studio

The manual has been updated to reflect enhancements to the product, besides improvements and error corrections.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Notational Conventions

This manual uses the following terms to refer to operating systems:

Windows* OS	This term refers to information that is valid on all supported Windows* operating systems.
Linux* OS	This term refers to information that is valid on all supported Linux* operating systems.
macOS*	This term refers to information that is valid on Intel ${ }^{\circledR}$-based systems running the macOS* operating system.

This manual uses the following notational conventions:

- Routine name shorthand (for example, ?ungqr instead of cungqr/zungqr).
- Font conventions used for distinction between the text and the code.

Routine Name Shorthand

For shorthand, names that contain a question mark "?" represent groups of routines with similar functionality. Each group typically consists of routines used with four basic data types: single-precision real, double-precision real, single-precision complex, and double-precision complex. The question mark is used to indicate any or all possible varieties of a function; for example:
?swap \quad Refers to all four data types of the vector-vector ?swap routine:
sswap, dswap, cswap, and zswap.

Font Conventions

The following font conventions are used:

```
UPPERCASE COURIER
lowercase courier
lowercase courier italic
*
```

Data type used in the description of input and output parameters for Fortran interface. For example, CHARACTER*1.

Code examples:
$a(k+i, j)=\operatorname{matrix}(i, j)$
Variables in arguments and parameters description. For example, incx.
Used as a multiplication symbol in code examples and equations and where required by the programming language syntax.

Overview

NOTE

This publication, the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library Developer Reference, was previously known as the Inte』® oneAPI Math Kernel Library Reference Manual.

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) is optimized for performance on Intel processors. oneMKL also runs on non-Intel x86-compatible processors.

NOTE

oneMKL provides limited input validation to minimize the performance overheads. It is your responsibility when using oneMKL to ensure that input data has the required format and does not contain invalid characters. These can cause unexpected behavior of the library. Examples of the inputs that may result in unexpected behavior:

- Not-a-number (NaN) and other special floating point values
- Large inputs may lead to accumulator overflow

As the oneMKL API accepts raw pointers, it is your application's responsibility to validate the buffer sizes before passing them to the library. The library requires subroutine and function parameters to be valid before being passed. While some oneMKL routines do limited checking of parameter errors, your application should check for NULL pointers, for example.

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library includes Fortran routines and functions optimized for Intel ${ }^{\circledR}$ processorbased computers running operating systems that support multiprocessing. In addition to the Fortran interface, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) includes a C-language interface for the Discrete Fourier transform functions, as well as for the Vector Mathematics and Vector Statistics functions. For hardware and software requirements to use Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL), seeIntel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Release Notes.

NOTE

Functions calls at runtime for Intel® oneAPI Math Kernel Library (oneMKL) libraries on the Microsoft Windows* operating system can utilize the function,LoadLibrary (), and related loading functions in static, dynamic, and single dynamic library linking models. These functions attempt to access the loader lock which when used within or at the same time as another Dllmainfunction call, can lead to a deadlock. If possible, avoid making your calls to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) in adllmain function or at the same time as other calls to Dllmain even on separate threads. Refer to Microsoft documentation about DIIMain and Dynamic-Link Library Best Practices for more details.

BLAS Routines

The BLAS routines and functions are divided into the following groups according to the operations they perform:

- BLAS Level 1 Routines perform operations of both addition and reduction on vectors of data. Typical operations include scaling and dot products.
- BLAS Level 2 Routines perform matrix-vector operations, such as matrix-vector multiplication, rank-1 and rank-2 matrix updates, and solution of triangular systems.
- BLAS Level 3 Routines perform matrix-matrix operations, such as matrix-matrix multiplication, rank-k update, and solution of triangular systems.
Starting from release 8.0, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) also supports the Fortran 95 interface to the BLAS routines.
Starting from release 10.1, a number of BLAS-like Extensions are added to enable the user to perform certain data manipulation, including matrix in-place and out-of-place transposition operations combined with simple matrix arithmetic operations.

Sparse BLAS Routines

The Sparse BLAS Level 1 Routines and Functions and Sparse BLAS Level 2 and Level 3 Routinesroutines and functions operate on sparse vectors and matrices. These routines perform vector operations similar to the BLAS Level 1, 2, and 3 routines. The Sparse BLAS routines take advantage of vector and matrix sparsity: they allow you to store only non-zero elements of vectors and matrices. Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) also supports Fortran 95 interface to Sparse BLAS routines.

Sparse QR

Sparse QRin Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) is a set of routines used to solve sparse matrices with real coefficients and general structure. All Sparse QR routines can be divided into three steps: reordering, factorization, and solving. Currently, only CSR format is supported for the input matrix, and Sparse QR operates on the matrix handle used in all SpBLAS IE routines. (For details on how to create a matrix handle, refer tomkl-sparse-create-csr.)

LAPACK Routines

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library fully supports the LAPACK 3.7 set of computational, driver, auxiliary and utility routines.
The original versions of LAPACK from which that part of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) was derived can be obtained fromhttp://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
The LAPACK routines can be divided into the following groups according to the operations they perform:

- Routines for solving systems of linear equations, factoring and inverting matrices, and estimating condition numbers (see LAPACK Routines: Linear Equations).
- Routines for solving least squares problems, eigenvalue and singular value problems, and Sylvester's equations (see LAPACK Routines: Least Squares and Eigenvalue Problems).
- Auxiliary and utility routines used to perform certain subtasks, common low-level computation or related tasks (see LAPACK Auxiliary Routines and LAPACK Utility Functions and Routines).
Starting from release 8.0, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) also supports the Fortran 95 interface to LAPACK computational and driver routines. This interface provides an opportunity for simplified calls of LAPACK routines with fewer required arguments.

ScaLAPACK Routines

The ScaLAPACK package (provided only for Intel ${ }^{\circledR} 64$ architectures; see ScaLAPACK Routines) runs on distributed-memory architectures and includes routines for solving systems of linear equations, solving linear least squares problems, eigenvalue and singular value problems, as well as performing a number of related computational tasks.

The original versions of ScaLAPACK from which that part of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) was derived can be obtained fromhttp://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are L. Blackford, J. Choi, A.Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K.Stanley, D. Walker, and R. Whaley.
The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) version of ScaLAPACK is optimized for Intel ${ }^{\circledR}$ processors and uses MPICH version of MPI as well as Intel MPI.

PBLAS Routines

The PBLAS routines perform operations with distributed vectors and matrices.

- PBLAS Level 1 Routines perform operations of both addition and reduction on vectors of data. Typical operations include scaling and dot products.
- PBLAS Level 2 Routines perform distributed matrix-vector operations, such as matrix-vector multiplication, rank-1 and rank-2 matrix updates, and solution of triangular systems.
- PBLAS Level 3 Routines perform distributed matrix-matrix operations, such as matrix-matrix multiplication, rank- k update, and solution of triangular systems.
Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides the PBLAS routines with interface similar to the interface used in the Netlib PBLAS (part of the ScaLAPACK package, see http://www.netlib.org/scalapack/ html/pblas_qref.html).

Sparse Solver Routines

Direct sparse solver routines in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) (seeSparse Solver Routines) solve symmetric and symmetrically-structured sparse matrices with real or complex coefficients. For symmetric matrices, these Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) subroutines can solve both positivedefinite and indefinite systems. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) includes a solver based on the PARDISO* sparse solver, referred to as Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO, as well as an alternative set of user callable direct sparse solver routines.
If you use the Intel ${ }^{\otimes}$ oneAPI Math Kernel Library (oneMKL) PARDISO sparse solver, please cite:
O.Schenk and K.Gartner. Solving unsymmetric sparse systems of linear equations with PARDISO. J. of Future Generation Computer Systems, 20(3):475-487, 2004.
Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides also an iterative sparse solver (seeSparse Solver Routines) that uses Sparse BLAS level 2 and 3 routines and works with different sparse data formats.

Extended Eigensolver Routines

TheExtended Eigensolver RCI Routines is a set of high-performance numerical routines for solving standard ($A x=\lambda x$) and generalized $(A x=\lambda B x$) eigenvalue problems, where A and B are symmetric or Hermitian. It yields all the eigenvalues and eigenvectors within a given search interval. It is based on the Feast algorithm, an innovative fast and stable numerical algorithm presented in [Polizzi09], which deviates fundamentally from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms [BaiOO]) or other Davidson-Jacobi techniques [Sleijpen96]. The Feast algorithm is inspired by the density-matrix representation and contour integration technique in quantum mechanics.

It is free from orthogonalization procedures. Its main computational tasks consist of solving very few inner independent linear systems with multiple right-hand sides and one reduced eigenvalue problem orders of magnitude smaller than the original one. The Feast algorithm combines simplicity and efficiency and offers
many important capabilities for achieving high performance, robustness, accuracy, and scalability on parallel architectures. This algorithm is expected to significantly augment numerical performance in large-scale modern applications.
Some of the characteristics of the Feast algorithm [Polizzi09] are:

- Converges quickly in 2-3 iterations with very high accuracy
- Naturally captures all eigenvalue multiplicities
- No explicit orthogonalization procedure
- Can reuse the basis of pre-computed subspace as suitable initial guess for performing outer-refinement iterations

This capability can also be used for solving a series of eigenvalue problems that are close one another.

- The number of internal iterations is independent of the size of the system and the number of eigenpairs in the search interval
- The inner linear systems can be solved either iteratively (even with modest relative residual error) or directly

VM Functions

The Vector Mathematics functions (see Vector Mathematical Functions) include a set of highly optimized implementations of certain computationally expensive core mathematical functions (power, trigonometric, exponential, hyperbolic, etc.) that operate on vectors of real and complex numbers.

Application programs that might significantly improve performance with VM include nonlinear programming software, integrals computation, and many others. VM provides interfaces both for Fortran and C languages.

Statistical Functions

Vector Statistics (VS) contains three sets of functions (see Statistical Functions) providing:

- Pseudorandom, quasi-random, and non-deterministic random number generator subroutines implementing basic continuous and discrete distributions. To provide best performance, the VS subroutines use calls to highly optimized Basic Random Number Generators (BRNGs) and a set of vector mathematical functions.
- A wide variety of convolution and correlation operations.
- Initial statistical analysis of raw single and double precision multi-dimensional datasets.

Fourier Transform Functions

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) multidimensional Fast Fourier Transform (FFT) functions with mixed radix support (see Fourier Transform Functions) provide uniformity of discrete Fourier transform computation and combine functionality with ease of use. Both Fortran and C interface specifications are given. There is also a cluster version of FFT functions, which runs on distributed-memory architectures and is provided only for Intel ${ }^{\circledR} 64$ architectures.

The FFT functions provide fast computation via the FFT algorithms for arbitrary lengths. See the Inte/® oneAPI Math Kernel Library (oneMKL) Developer Guide for the specific radices supported.

Partial Differential Equations Support

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides tools for solving Partial Differential Equations (PDE) (seePartial Differential Equations Support). These tools are Trigonometric Transform interface routines and Poisson Solver.
The Trigonometric Transform routines may be helpful to users who implement their own solvers similar to the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Poisson Solver. The users can improve performance of their solvers by using fast sine, cosine, and staggered cosine transforms implemented in the Trigonometric Transform interface.

The Poisson Solver is designed for fast solving of simple Helmholtz, Poisson, and Laplace problems. The Trigonometric Transform interface, which underlies the solver, is based on the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface (refer toFourier Transform Functions), optimized for Intel ${ }^{\circledR}$ processors.

Nonlinear Optimization Problem Solvers

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides Nonlinear Optimization Problem Solver routines (seeNonlinear Optimization Problem Solvers) that can be used to solve nonlinear least squares problems with or without linear (bound) constraints through the Trust-Region (TR) algorithms and compute Jacobi matrix by central differences.

Support Functions

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) support functions (seeSupport Functions) are used to support the operation of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) software and provide basic information on the library and library operation, such as the current library version, timing, setting and measuring of CPU frequency, error handling, and memory allocation.

Starting from release 10.0, the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) support functions provide additional threading control.

Starting from release 10.1, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) selectively supports aProgress Routine feature to track progress of a lengthy computation and/or interrupt the computation using a callback function mechanism. The user application can define a function called mkl_progressthat is regularly called from the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) routine supporting the progress routine feature. SeeProgress Routine in Support Functions for reference. Refer to a specific LAPACK or DSS/PARDISO function description to see whether the function supports this feature or not.

BLACS Routines

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library implements routines from the BLACS (Basic Linear Algebra Communication Subprograms) package (seeBLACS Routines) that are used to support a linear algebra oriented message passing interface that may be implemented efficiently and uniformly across a large range of distributed memory platforms.

The original versions of BLACS from which that part of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) was derived can be obtained from http://www.netlib.org/blacs/index.html. The authors of BLACS are Jack Dongarra and R. Clint Whaley.

Data Fitting Functions

The Data Fitting component includes a set of highly-optimized implementations of algorithms for the following spline-based computations:

- spline construction
- interpolation including computation of derivatives and integration
- search

The algorithms operate on single and double vector-valued functions set in the points of the given partition. You can use Data Fitting algorithms in applications that are based on data approximation. See Data Fitting Functions for more information.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Performance Enhancements

The Intel® oneAPI Math Kernel Library has been optimized by exploiting both processor and system features and capabilities. Special care has been given to those routines that most profit from cache-management techniques. These especially include matrix-matrix operation routines such asdgemm ().

In addition, code optimization techniques have been applied to minimize dependencies of scheduling integer and floating-point units on the results within the processor.
The major optimization techniques used throughout the library include:

- Loop unrolling to minimize loop management costs
- Blocking of data to improve data reuse opportunities
- Copying to reduce chances of data eviction from cache
- Data prefetching to help hide memory latency
- Multiple simultaneous operations (for example, dot products in dgemm) to eliminate stalls due to arithmetic unit pipelines
- Use of hardware features such as the SIMD arithmetic units, where appropriate

These are techniques from which the arithmetic code benefits the most.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Parallelism

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) offers performance gains through parallelism provided by the symmetric multiprocessing performance (SMP) feature. You can obtain improvements from SMP in the following ways:

- One way is based on user-managed threads in the program and further distribution of the operations over the threads based on data decomposition, domain decomposition, control decomposition, or some other parallelizing technique. Each thread can use any of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions (except for the deprecated?lacon LAPACK routine) because the library has been designed to be thread-safe.
- Another method is to use the FFT and BLAS level 3 routines. They have been parallelized and require no alterations of your application to gain the performance enhancements of multiprocessing. Performance using multiple processors on the level 3 BLAS shows excellent scaling. Since the threads are called and managed within the library, the application does not need to be recompiled thread-safe (see also Fortran 95 Interface Conventions in BLAS and Sparse BLAS Routines).
- Yet another method is to use tuned LAPACK routines. Currently these include the single- and double precision flavors of routines for $Q R$ factorization of general matrices, triangular factorization of general and symmetric positive-definite matrices, solving systems of equations with such matrices, as well as solving symmetric eigenvalue problems.

For instructions on setting the number of available processors for the BLAS level 3 and LAPACK routines, see Intel® oneAPI Math Kernel Library (oneMKL) Developer Guide.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

OpenMP* Offload

This section describes how to perform OpenMP offload computations using Intel® oneAPI Math Kernel Library.

OpenMP* Offload for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library

You can use Intel® oneAPI Math Kernel Library (oneMKL) and OpenMP* offload to run standard oneMKL computations on Intel GPUs. You can find the list of oneMKL features that support OpenMP offload in the mkl_omp_offload.f90 interface module file which includes:

- All Level 1, 2, and 3 BLAS functions, supporting both synchronous and asynchronous execution
- BLAS-like extensions: ?axpby, ?axpy_batch_strided, ?gemv_batch_strided, ?dgmm_batch_strided, gemm_s8u8s32, ?gemm_batch_strided, ?trsm_batch_strided, ?gemmt, mkl_?omatcopy_batch_strided, mkl_?imatcopy_batch_strided, and mkl_? omatadd_batch_-̄strided, suppōrting synchronous ānd asynchronous execution
- LAPACK, including LAPACK-like extensions
- All computations on the Intel GPU (supports both synchronous and asynchronous execution):
- ?getrf_batch_strided
- ?getrfñ_batch_strided
- ?getri
- ?getri_oop_batch_strided
- ?getrs
- ?getrs_batch_strided
- ?getrsnp_batch_strided
- ?gels_batch_strided
- ?potrf
- ?potri
- ?potrs
- ?trtri
- ?trtrs
- Hybrid; some computations on the Intel GPU (supports synchronous execution):
- ?geqrf
- ?getrf (all computations on the CPU for $\mathrm{n}<=256$)
- mkl_? getrfnp (all computations on the CPU for $\mathrm{n}<=512$)
- ?ormqr, ?unmqr
- Interface support only; all computations on the CPU (supports synchronous execution):
- ?gebrd
- ?gesvd
- ?orgqr, ?ungqr
- ?steqr
- ?syev, ?heev
- ?syevd, ?heevd
- ?syevx, ?heevx
- ?sygvd, ?hegvd
- ?sygvx, ?hegvx
- ?sytrd, ?hetrd
- FFTs through both DFTI and FFTW3 interfaces in one, two, and three dimensions.
- For COMPLEX_STORAGE, only the DFTI_COMPLEX_COMPLEX format is currently supported on CPU and GPU devices.
- Both synchronous and asynchronous computations are supported.
- For R2C/C2R transforms on the GPU, only DFTI_CONJUGATE_EVEN_STORAGE=DFTI_COMPLEX_COMPLEX is supported (implying DFTI_PACKED_FORMAT=DFTI_CCE_FORMAT).
- 2D and 3D FFTs are supported using rank-2/rank-3 Fortran arrays for input and output only through Fortran OpenMP offload interface.
- NOTEINCONSISTENT_CONFIGURATION errors at compute time indicate an invalid descriptor or invalid data pointer. Double check your data mapping if you encounter such errors.
- Arbitrary strides and batch distances are not supported for multi-dimensional R2C transforms offloaded to the GPU. Considering the first dimension of the data, every element must be separated from its two nearest peers (along another dimension and/or in another batch) by a constant distance. For example, to compute a batched, two-dimensional R2C FFT of size [N1, N2] with input strides [0, 1, S2] (column-major layout with unit elementary stride and no offset), INPUT_DISTANCE must be equal to $\mathrm{N} 2 *$ S2 so that every element is separated from its nearest first-dimension counterpart(s) by a distance S2 (in this example), even across batches.
- Transforms on GPU devices may overwrite FFT-irrelevant, padding entries in the output data.
- Vector Statistics
- Random number generators

NOTE

All distributions are supported. See https://www.intel.com/content/www/us/en/docs/onemkl/ developer-reference-fortran/current/distribution-generators.html

Basic random number generators:

- VSL_BRNG_MCG31
- VSL_BRNG_MCG59
- VSL_BRNG_PHILOX4X32X10
- VSL_BRNG_MRG32K3A
- VSL_BRNG_MT19937
- VSL_BRNG_MT2203
- VSL_BRNG_SOBOL
- Summary statistics

Supports the vsl?SSCompute routine for the following estimates:

- VSL_SS_MEAN
- VSL_SS_SUM
- VSL_SS_2R_MOM
- VSL_SS_2R_SUM
- VSL_SS_3R_MOM
- VSL_SS_3R_SUM
- VSL_SS_4R_MOM
- VSL_SS_4R_SUM
- VSL_SS_2C_MOM
- VSL_SS_2C_SUM
- VSL_SS_3C_MOM
- VSL_SS_3C_SUM
- VSL_SS_4C_MOM
- VSL_SS_4C_SUM
- VSL_SS_KURTOSIS
- VSL_SS_SKEWNESS
- VSL_SS_MIN
- VSL_SS_MAX
- VSL_SS_VARIATION

Supported methods:

- VSL_SS_METHOD_FAST
- VSL_SS_METHOD_FAST_USER_MEAN

The OpenMP offload feature from Intel® oneAPI Math Kernel Library (oneMKL) allows you to run oneMKL computations on Intel GPUs through the standard oneMKL APIs within an omp target variant dispatch section. For example, the standard CBLAS API for single precision real data type matrix multiply is:

```
subroutine sgemm ( transa, transb, m, n, k, alpha, a, lda, &
    &b, ldb, beta, c, ldc ) BIND(C)
    character*1,intent(in) :: transa, transb
    integer,intent(in) :: m, n, k, lda, ldb, ldc
    real,intent(in) :: alpha, beta
    real,intent(in) :: a( lda, * ), b( ldb, * )
    real,intent(inout) :: c( ldc, * )
```

 end subroutine sgemm
 If sgemm is called outside of an omp target variant dispatch section or if offload is disabled, then the CPU implementation is dispatched. If the same function is called within an omp target variant dispatch section and offload is possible then the GPU implementation is dispatched. By default the execution of the oneMKL function within a dispatch variant construct is synchronous, the nowait clause can be used on the dispatch variant construct to specify that asynchronous execution is desired. In that case, synchronization needs to be handled by the application using standard OpenMP synchronization functionality, for example the omp taskwait construct.
In order to offload to a device, arguments to the oneMKL function must be mapped to the device memory if they represent a return value (marked with intent (out) or intent (inout) in the subroutine declaration) or if they point to an array of data (such as a matrix or vector, even if it is an input array). Users must map these arguments to the device using the omp target data construct before calling the oneMKL routine, and in addition must use the use_device_ptr clause in the omp target variant dispatch construct to specify variables that have been mapped to device memory.

In Fortran, the OpenMP Offload interfaces have stricter type checking than the standard Fortran interfaces for the same functions. For BLAS functions and BLAS-like extensions, you can bypass this stricter type checking by changing the module that is loaded. For example, in the example below, include use
onemkl_blas_omp_offload_lp64_no_array_check instead of use onemkl_blas_omp_offload_lp64.

Example

Examples for using the OpenMP offload for oneMKL are located in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) installation directory, under:

```
examples/f_offload
include "mkl_omp_offload.f90"
program sgemm_example
use onemkl_blas_omp_offload_lp64
use common_blas
character*1 :: transa = 'N', transb = 'N'
integer :: i, j, m = 5, n = 3, k = 10
integer :: lda, ldb, ldc
real :: alpha = 1.0, beta = 1.0
real,allocatable :: a(:,:), b(:,:), c(:,:)
! initialize leading dimension and allocate and initialize arrays
lda = m
allocate(a(lda,k))
...
! initialize matrices
call sinit_matrix(transa, m, k, lda, a)
da, a)
```

```
! Calling sgemm on the CPU using standard oneMKL Fortran interface
call sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
! map the a, b and c matrices on the device memory
! $omp target data map (a,b,c)
! Calling sgemm on the GPU using standard oneMKL Fortran interface within a variant dispatch
construct
! Use the use_device_ptr clause to specify that a, b and c are device memory
!$omp target variant dispatch use_device_ptr(a,b,c)
call sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
!$omp end target variant dispatch
!$omp end target data
! Free memory
deallocate(a)
stop
end program
```


BLAS and Sparse BLAS Routines

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL)implements the BLAS and Sparse BLAS routines, and BLAS-like extensions. The routine descriptions are arranged in several sections:

- BLAS Level 1 Routines (vector-vector operations)
- BLAS Level 2 Routines (matrix-vector operations)
- BLAS Level 3 Routines (matrix-matrix operations)
- Sparse BLAS Level 1 Routines (vector-vector operations).
- Sparse BLAS Level 2 and Level 3 Routines (matrix-vector and matrix-matrix operations)
- BLAS-like Extensions

The question mark in the group name corresponds to different character codes indicating the data type (s, d, c, and z or their combination); see Routine Naming Conventions.
When BLAS or Sparse BLAS routines encounter an error, they call the error reporting routine xerbla.

BLAS Routines

Naming Conventions for BLAS Routines

BLAS routine names have the following structure:

```
<character> <name> <mod>
```

The <character> field indicates the data type:

s	real, single precision
c	complex, single precision
d	real, double precision
z	complex, double precision

Some routines and functions can have combined character codes, such as sc or dz.

For example, the function scasum uses a complex input array and returns a real value.
The <name> field, in BLAS level 1, indicates the operation type. For example, the BLAS level 1 routines ? dot, ?rot, ? swap compute a vector dot product, vector rotation, and vector swap, respectively. In BLAS level 2 and 3, <name> reflects the matrix argument type:

ge	general matrix
gb	general band matrix
sy	symmetric matrix
sp	symmetric matrix (packed storage)
sb	symmetric band matrix
he	Hermitian matrix
hp	Hermitian matrix (packed storage)
hb	Hermitian band matrix
tr	triangular matrix
tp	triangular matrix (packed storage)
tb	triangular band matrix.

The <mod> field, if present, provides additional details of the operation. BLAS level 1 names can have the following characters in the <mod> field:

c	conjugated vector
u	unconjugated vector
g	Givens rotation construction
m	modified Givens rotation
$m g$	modified Givens rotation construction

BLAS level 2 names can have the following characters in the $<$ mod> field:

mv	matrix-vector product
sv	solving a system of linear equations with a single unknown vector
r	rank-1 update of a matrix
r2	rank-2 update of a matrix.

BLAS level 3 names can have the following characters in the $<\bmod >$ field:

mm	matrix-matrix product
sm	solving a system of linear equations with multiple unknown vectors
rk	rank- k update of a matrix
r 2 k	rank- $2 k$ update of a matrix.

The examples below illustrate how to interpret BLAS routine names:

ddot	$\langle d\rangle\langle$ dot \rangle : real and double precision, vector-vector dot product
cdotc	$\langle c\rangle\langle$ dot $\rangle\langle c\rangle$: complex and single precision, vector-vector dot product,
	conjugated

cdotu	<c> <dot> <u>: complex and single precision, vector-vector dot product, unconjugated
scasum	<sc> <asum>: real and single-precision output, complex and single-precision input, sum of magnitudes of vector elements
sgemv	<s> <ge> <mv> : real and single precision, general matrix, matrix-vector product
ztrmm	<z> <tr> <mm>: complex and double precision, triangular matrix, matrix-matrix product

Sparse BLAS level 1 naming conventions are similar to those of BLAS level 1. For more information, see Naming Conventions.

Fortran 95 Interface Conventions for BLAS Routines

The Fortran 95 interface to BLAS and Sparse BLAS Level 1 routines is implemented through wrappers that call respective FORTRAN 77 routines. This interface uses features of Fortran 95 such as assumed-shape arrays and optional arguments to provide simplified calls to BLAS and Sparse BLAS Level 1 routines with fewer parameters.
For BLAS, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) offers two types of Fortran 95 interfaces:

- using mkl blas.fi only through include 'mkl.fi' statement. Such interfaces allow you to make use of the original BLAS routines with all their arguments
- using blas.fgo that includes improved interfaces. This file is used to generate the module files blas $95 . \bmod$ and $f 95$ precision.mod. For details, see Fortran 95 interfaces and wrappers to LAPACK and BLAS. The module files are used to process the FORTRAN use clauses referencing the BLAS interface: use blas95 and use f95_precision.
The main conventions used in Fortran 95 interface are as follows:
- The names of parameters used in Fortran 95 interface are typically the same as those used for the respective generic (FORTRAN 77) interface. In rare cases formal argument names may be different.
- Some input parameters such as array dimensions are not required in Fortran 95 and are skipped from the calling sequence. Array dimensions are reconstructed from the user data that must exactly follow the required array shape.
- A parameter can be skipped if its value is completely defined by the presence or absence of another parameter in the calling sequence, and the restored value is the only meaningful value for the skipped parameter.
- Parameters specifying the increment values incx and incy are skipped. In most cases their values are equal to 1 . In Fortran 95 an increment with different value can be directly established in the corresponding parameter.
- Some generic parameters are declared as optional in Fortran 95 interface and may or may not be present in the calling sequence. A parameter can be declared optional if it satisfies one of the following conditions:

1. It can take only a few possible values. The default value of such parameter typically is the first value in the list; all exceptions to this rule are explicitly stated in the routine description.
2. It has a natural default value.

Optional parameters are given in square brackets in Fortran 95 call syntax.
The particular rules used for reconstructing the values of omitted optional parameters are specific for each routine and are detailed in the respective "Fortran 95 Notes" subsection at the end of routine specification section. If this subsection is omitted, the Fortran 95 interface for the given routine does not differ from the corresponding FORTRAN 77 interface.
Note that this interface is not implemented in the current version of Sparse BLAS Level 2 and Level 3 routines.

Matrix Storage Schemes for BLAS Routines

Matrix arguments of BLAS routines can use the following storage schemes:

- Full storage: a matrix A is stored in a two-dimensional array a, with the matrix element $A_{i j}$ stored in the array element $a(i, j)$.
- Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more compactly: the upper or lower triangle of the matrix is packed by columns in a one-dimensional array.
- Band storage: a band matrix is stored compactly in a two-dimensional array: columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.
For more information on matrix storage schemes, see Matrix Arguments in the Appendix "Routine and Function Arguments".

BLAS Level 1 Routines and Functions

BLAS Level 1 includes routines and functions, which perform vector-vector operations. The following table lists the BLAS Level 1 routine and function groups and the data types associated with them.
BLAS Level 1 Routine and Function Groups and Their Data Types

Routine or Function Group	Data Types	Description
? asum	$s, d, s c, d z$	Sum of vector magnitudes (functions)
? axpy	s, d, c, z	Scalar-vector product (routines)
? copy	s, d, c, z	Copy vector (routines)
? dot	s, d	Dot product (functions)
?sdot	sd, d	Dot product with double precision (functions)
? dotc	c, z	Dot product conjugated (functions)
? dotu	C, z	Dot product unconjugated (functions)
? nrm 2	$s, d, s c, d z$	Vector 2-norm (Euclidean norm) (functions)
?rot	s, d, c, z, cs, zd	Plane rotation of points (routines)
?rotg	s, d, c, z	Generate Givens rotation of points (routines)
?rotm	s, d	Modified Givens plane rotation of points (routines)
?rotmg	s, d	Generate modified Givens plane rotation of points (routines)
?scal	s, d, c, z, cs, zd	Vector-scalar product (routines)
? swap	s, d, c, z	Vector-vector swap (routines)
i?amax	s, d, c, z	Index of the maximum absolute value element of a vector (functions)
i?amin	s, d, c, z	Index of the minimum absolute value element of a vector (functions)
?cabs1	s, d	Auxiliary functions, compute the absolute value of a complex number of single or double precision

[^0]
Syntax

```
res = sasum(n, x, incx)
res = scasum(n, x, incx)
res = dasum(n, x, incx)
res = dzasum(n, x, incx)
res = asum(x)
```


Include Files

- mkl.fi, blas.f90

Description

The ?asum routine computes the sum of the magnitudes of elements of a real vector, or the sum of magnitudes of the real and imaginary parts of elements of a complex vector:

$$
\begin{aligned}
\text { res } & =\left|\operatorname{Re} x_{1}\right|+\left|\operatorname{Im} x_{1}\right|+\left|\operatorname{Re} x_{2}\right|+\operatorname{Im} x_{2}\left|+\ldots+\left|\operatorname{Re} x_{n}\right|+\left|\operatorname{Im} x_{n}\right|\right. \\
\text { result } & =\sum_{i=1}^{n}\left(\left|\operatorname{Re}\left(X_{i}\right)\right|+\left|\operatorname{Im}\left(X_{i}\right)\right|\right.
\end{aligned}
$$

where x is a vector with n elements.

Input Parameters

n

X
incx

Output Parameters

res

INTEGER. Specifies the number of elements in vector x.
REAL for sasum
DOUBLE PRECISION for dasum
COMPLEX for scasum
DOUBLE COMPLEX for dzasum
Array, size at least $(1+(n-1) * a b s(i n c x))$.
INTEGER. Specifies the increment for indexing vector x.
REAL for sasum
DOUBLE PRECISION for dasum
REAL for scasum
DOUBLE PRECISION for dzasum

Contains the sum of magnitudes of real and imaginary parts of all elements of the vector.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine asum interface are the following:
x
Holds the array of size n.
?axpy
Computes a vector-scalar product and adds the result to a vector.

Syntax

```
call saxpy(n, a, x, incx, y, incy)
call daxpy(n, a, x, incx, y, incy)
call caxpy(n, a, x, incx, y, incy)
call zaxpy(n, a, x, incx, y, incy)
call axpy(x, y [,a])
```


Include Files

- mkl.fi, blas.f90

Description

The ?axpy routines perform a vector-vector operation defined as

```
y:= a*x + y
```

where:
a is a scalar
x and y are vectors each with a number of elements that equals n.
Input Parameters

```
n INTEGER. Specifies the number of elements in vectors x and y.
a REAL for saxpy
    DOUBLE PRECISION for daxpy
    COMPLEX for caxpy
    DOUBLE COMPLEX for zaxpy
    Specifies the scalar a.
x
incx
y
    REAL for saxpy
    DOUBLE PRECISION for daxpy
    COMPLEX for caxpy
    DOUBLE COMPLEX for zaxpy
    Array, size at least (1 + (n-1)*abs(incx)).
    INTEGER. Specifies the increment for the elements of x.
    REAL for saxpy
```

DOUBLE PRECISION for daxpy
COMPLEX for caxpy
DOUBLE COMPLEX for zaxpy
Array, size at least $(1+(n-1) * a b s(i n c y))$.
incy INTEGER. Specifies the increment for the elements of y.

Output Parameters

y
Contains the updated vector y.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine axpy interface are the following:

x	Holds the array of size n.
y	Holds the array of size n.
a	The default value is 1.

?copy
Copies a vector to another vector.
Syntax

```
call scopy(n, x, incx, y, incy)
call dcopy(n, x, incx, y, incy)
call ccopy(n, x, incx, y, incy)
call zcopy(n, x, incx, y, incy)
call copy(x, y)
```

Include Files

- mkl.fi, blas.f90

Description

The ?copy routines perform a vector-vector operation defined as

$$
y=x
$$

where x and y are vectors.

Input Parameters

n
INTEGER. Specifies the number of elements in vectors x and y.
REAL for scopy

```
    DOUBLE PRECISION for dcopy
    COMPLEX for ccopy
DOUBLE COMPLEX for zcopy
Array, size at least (1 + (n-1)*abs(incx)).
incx INTEGER. Specifies the increment for the elements of x.
y REAL for scopy
DOUBLE PRECISION for dcopy
COMPLEX for ccopy
DOUBLE COMPLEX for zcopy
Array, size at least (1 + (n-1)*abs(incy)).
INTEGER. Specifies the increment for the elements of }y\mathrm{ .
```


Output Parameters

y
Contains a copy of the vector x if n is positive. Otherwise, parameters are unaltered.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine copy interface are the following:

x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.

?copy_batch
Computes a group of vector copies.

Syntax

```
call scopy_batch(n_array, x_array, incx_array, y_array, incy_array, group_count,
group_size_array)
call dcopy_batch(n_array, x_array, incx_array, y_array, incy_array, group_count,
group_size_array)
call ccopy_batch(n_array, x_array, incx_array, y_array, incy_array, group_count,
group_size_array)
call zcopy_batch(n_array, x_array, incx_array, y_array, incy_array, group_count,
group_size_array)
```


Description

The ?copy_batch routines perform a series of vector copies. They are similar to their ?copy routine counterparts, but the ?copy_batch routines perform vector operations with groups of vectors. Each groups contains vectors with the same parameters (size, incrmenet), but the parameters can vary between groups.

The operation is defined as follows:

```
idx = 0
for i = 0 ... group_count - 1
    n, incx, incy and group_size at position i in n_array, incx_array, incy_array and
group_size_array
    for j = 0 ... group_size - 1
        x and y are vectors of size n at position idx in x_array and y_array
        y := x
        idx := idx + 1
    end for
end for
```

The number of entries in x_array and y_array is total_batch_count, which is the sum of all the group_size entries.

Input Parameters

n_array
x_array
incx_array
y_array
incy_array
group_count
group_size_array

INTEGER. Array of size group_count. For the group i, n_i = n_array[i] is the number of elements in the vectors x and y.

INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture
INTEGER*4 for IA-32 architecture
Array of size total_batch_count of pointers used to store x vectors. The array allocated for the x vectors of the group i must be of size at least (1

+ (n_i - 1)*abs(incx_i)).
INTEGER. Array of size group_count. For the group i, incx_i = incx_array[i] is the distance between consecutive entries in a vector x .

INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture
INTEGER*4 for IA-32 architecture
Array of size total_batch_count of pointers used to store y vectors. The array allocated for the y vectors of the group i must be of size at least (1 + (n_i - 1)*abs(incy_i)).

INTEGER. Array of size group_count. For the group i, incy_i = incy_array[i] is the distance between consecutive entries in a vector y.

INTEGER. Number of groups. Must be at least 0 .
INTEGER. Array of size group_count. The element group_size_array[i] is the number of vector in the group i. Each element in group_size_array must be at least 0 .

Output Parameters

y_array Array of pointers holding the total_batch_count copied vectors y.
?copy_batch_strided
Computes a group of vector copies.

Syntax

```
call scopy_batch_strided(n, x, incx, stridex, y, incy, stridey, batch_size)
call dcopy_batch_strided(n, x, incx, stridex, y, incy, stridey, batch_size)
```

```
call ccopy_batch_strided(n, x, incx, stridex, y, incy, stridey, batch_size)
call zcopy_batch_strided(n, x, incx, stridex, y, incy, stridey, batch_size)
```


Description

The ?copy_batch_strided routines perform a series of vector copies. They are similar to their ?copy routine counterparts, but the ?copy_batch_strided routines perform vector operations with a group of vectors.

All vectors x (respectively, y) have the same parameters (size, increment) and are stored at constant distance stridex (respectively, stridey) from each other. The operation is defined as follows:

```
for i = 0 ... batch_size - 1
    X and Y are vectors at offset i * stridex and i * stridey in x and y
    Y = X
end for
```


Input Parameters

n	INTEGER. Number of elements in vectors x and y.
x	REAL for scopy_batch_strided
	DOUBLE PRECISION for dcopy_batch_strided
	COMPLEX for ccopy_batch_strided
	DOUBLE COMPLEX for zcopy_batch_strided
	Array of size at least stridex*batch_size holding the input x vectors.
incx	
	INTEGER. Specifies the increment between two consecutive elements of a
single vector x.	

Output Parameters

Array holding the batch_size copied vectors y.
?dot
Computes a vector-vector dot product.
Syntax

```
res = sdot(n, x, incx, y, incy)
res = ddot(n, x, incx, y, incy)
res = dot (x, y)
```

Include Files

- mkl.fi, blas.f90

Description

The ? dot routines perform a vector-vector reduction operation defined as

$$
\text { res }=\sum_{i=1}^{n} \mathrm{x}_{i} * Y_{i r}
$$

where x_{i} and y_{i} are elements of vectors x and y.

Input Parameters

n

X
incs

Y
indy

Output Parameters

res

INTEGER. Specifies the number of elements in vectors x and y.
REAL for sot
DOUBLE PRECISION for dot
Array, size at least ($1+(n-1) * a b s(i n c x))$.
INTEGER. Specifies the increment for the elements of x.
REAL for sot
DOUBLE PRECISION for dot
Array, size at least ($1+(n-1)$ *abs (incy)) .
INTEGER. Specifies the increment for the elements of y.

REAL for sot
DOUBLE PRECISION for dot
Contains the result of the dot product of x and y, if n is positive. Otherwise, res contains 0 .

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine dot interface are the following:

x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.

?sdot

Computes a vector-vector dot product with double precision.

Syntax

```
res = sdsdot(n, sb, sx, incx, sy, incy)
res = dsdot(n, sx, incx, sy, incy)
res = sdot(sx, sy)
res = sdot(sx, sy, sb)
```


Include Files

- mkl.fi, blas.f90

Description

The ?sdot routines compute the inner product of two vectors with double precision. Both routines use double precision accumulation of the intermediate results, but the sdsdot routine outputs the final result in single precision, whereas the dsdot routine outputs the double precision result. The function sdsdot also adds scalar value $s b$ to the inner product.

Input Parameters

n	INTEGER. Specifies the number of elements in the input vectors $s x$ and $s y$.
$s b$	REAL. Single precision scalar to be added to inner product (for the function sdsdot only).
sx, sy	REAL.
	Arrays, size at least (1+(n-1)*abs(incx)) and (1+(n-1)*abs(incy)), respectively. Contain the input single precision vectors.
incx	INTEGER. Specifies the increment for the elements of $s x$.
incy	INTEGER. Specifies the increment for the elements of sy.

Output Parameters

res
REAL for sdsdot
DOUBLE PRECISION for dsdot

Contains the result of the dot product of $s x$ and $s y$ (with $s b$ added for sdsdot), if n is positive. Otherwise, res contains $s b$ for sdsdot and 0 for dsdot.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine sdot interface are the following:
$\begin{array}{ll}s x & \text { Holds the vector with the number of elements } n . \\ \text { sy } & \text { Holds the vector with the number of elements } n \text {. }\end{array}$

NOTE

Note that scalar parameter $s b$ is declared as a required parameter in Fortran 95 interface for the function sdot to distinguish between function flavors that output final result in different precision.

?dotc

Computes a dot product of a conjugated vector with another vector.

Syntax

```
res = cdotc(n, x, incx, y, incy)
res = zdotc(n, x, incx, y, incy)
res = dotc (x, y)
```

Include Files

- mkl.fi,blas.f90

Description

The ?dotc routines perform a vector-vector operation defined as:

$$
\operatorname{res}=\sum_{i-1}^{n} \operatorname{conjg}\left(x_{i}\right) * Y_{i r}
$$

where x_{i} and y_{i} are elements of vectors x and y.
Input Parameters
n
x

INTEGER. Specifies the number of elements in vectors x and y.
COMPLEX for cdotc
DOUBLE COMPLEX for zdotc

Array, size at least $(1+(n-1) * a b s(i n c x))$.

```
incx INTEGER. Specifies the increment for the elements of x.
y COMPLEX for cdotc
```

DOUBLE COMPLEX for $z \operatorname{dotc}$
Array, size at least $(1+(n-1) * a b s(i n c y))$.

INTEGER. Specifies the increment for the elements of y.

Output Parameters

res
COMPLEX for cdotc
DOUBLE COMPLEX for zdotc
Contains the result of the dot product of the conjugated x and unconjugated y, if n is positive. Otherwise, it contains 0 .

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine dotc interface are the following:

x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.

?dotu
Computes a complex vector-vector dot product.
Syntax

```
res = cdotu(n, x, incx, y, incy)
res = zdotu(n, x, incx, y, incy)
res = dotu(x, y)
```


Include Files

- mkl.fi, blas.f90

Description

The ?dotu routines perform a vector-vector reduction operation defined as

$$
\operatorname{res}=\sum_{i-1}^{\pi} X_{i}+Y_{i r}
$$

where x_{i} and y_{i} are elements of complex vectors x and y.

Input Parameters

```
n
x
incx
Y
```

incy

Output Parameters

INTEGER. Specifies the number of elements in vectors x and y.
COMPLEX for cdotu
DOUBLE COMPLEX for zdotu
Array, size at least $(1+(n-1) * a b s(i n c x))$.
INTEGER. Specifies the increment for the elements of x.
COMPLEX for cdotu
DOUBLE COMPLEX for zdotu
Array, size at least $(1+(n-1) * a b s(i n c y))$.
INTEGER. Specifies the increment for the elements of y.
res
COMPLEX for cdotu
DOUBLE COMPLEX for zdotu
Contains the result of the dot product of x and y, if n is positive. Otherwise, it contains 0 .

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine dotu interface are the following:
$\begin{array}{ll}x & \text { Holds the vector with the number of elements } n . \\ y & \text { Holds the vector with the number of elements } n .\end{array}$
?nrm2
Computes the Euclidean norm of a vector.

Syntax

```
res = snrm2(n, x, incx)
res = dnrm2(n, x, incx)
res = scnrm2(n, x, incx)
res = dznrm2(n, x, incx)
res = nrm2(x)
```

Include Files

- mkl.fi,blas.f90

Description

The ?nrm2 routines perform a vector reduction operation defined as

```
res = ||x||,
```

where:
x is a vector,
res is a value containing the Euclidean norm of the elements of x.

Input Parameters

n	INTEGER. Specifies the number of elements in vector x.
x	REAL for snrm2
	DOUBLE PRECISION for dnrm2
	COMPLEX for scnrm2
	DOUBLE COMPLEX for dznrm2
incx	Array, size at least $(1+(n-1)$ *abs (incx) $)$.
	INTEGER. Specifies the increment for the elements of x.

Output Parameters

```
res REAL for snrm2
    DOUBLE PRECISION for dnrm2
    REAL for scnrm2
    DOUBLE PRECISION for dznrm2
    Contains the Euclidean norm of the vector x.
```


BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine nrm2 interface are the following:
X
Holds the vector with the number of elements n.
?rot
Performs rotation of points in the plane.

Syntax

```
call srot(n, x, incx, y, incy, c, s)
call drot(n, x, incx, y, incy, c, s)
call crot(n, x, incx, y, incy, c, s)
call zrot(n, x, incx, y, incy, c, s)
call csrot(n, x, incx, y, incy, c, s)
call zdrot(n, x, incx, y, incy, c, s)
call rot(x, y, c, s)
```


Description

Given two complex vectors x and y, each vector element of these vectors is replaced as follows:

```
xi = c*xi + s*yi
yi = c*yi - s*xi
```

If s is a complex type, each vector element is replaced as follows:

```
xi = c*xi + s*yi
yi = c*yi - conj(s)*xi
```


Input Parameters

n
X
incx

Y
incy
C

S

INTEGER. Specifies the number of elements in vectors x and y.
REAL for srot
DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot
Array, size at least $(1+(n-1) * a b s(i n c x))$.
INTEGER. Specifies the increment for the elements of x.
REAL for srot
DOUBLE PRECISION for drot
COMPLEX for csrot
DOUBLE COMPLEX for zdrot
Array, size at least $(1+(n-1) * a b s(i n c y))$.
INTEGER. Specifies the increment for the elements of y.
REAL for srot
DOUBLE PRECISION for drot
REAL for csrot
DOUBLE PRECISION for zdrot
A scalar.
REAL for srot
DOUBLE PRECISION for drot
COMPLEX for crot
DOUBLE COMPLEX for zrot
REAL for csrot
DOUBLE PRECISION for zdrot
A scalar.

Output Parameters

x

Each element is replaced by $c^{\star} x+s^{\star} y$.

Each element is replaced by $c^{\star} y-s^{\star} x$, or by $c^{\star} y-c o n j(s){ }^{*} x$ if s is a complex type.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine rot interface are the following:

x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.

?rotg
Computes the parameters for a Givens rotation.

Syntax

```
call srotg(a,b, c, s)
call drotg(a, b, c, s)
call crotg(a, b, c, s)
call zrotg(a, b, c, s)
call rotg(a, b, c, s)
```


Include Files

- mkl.fi, blas.f90

Description

Given the Cartesian coordinates (a, b) of a point, these routines return the parameters c, s, r, and z associated with the Givens rotation. The parameters c and s define a unitary matrix such that:

The parameter z is defined such that if $|a|>|b|, z$ is s; otherwise if c is not $0 z$ is $1 / c$; otherwise z is 1 . See a more accurate LAPACK version ?lartg.

Input Parameters

a
b

Output Parameters

a
b

C

S

```
REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg
```

Provides the x-coordinate of the point p.

REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg
Provides the y-coordinate of the point p .

Contains the parameter r associated with the Givens rotation.
Contains the parameter z associated with the Givens rotation.
REAL for srotg
DOUBLE PRECISION for drotg
REAL for crotg
DOUBLE PRECISION for zrotg
Contains the parameter cassociated with the Givens rotation.
REAL for srotg
DOUBLE PRECISION for drotg
COMPLEX for crotg
DOUBLE COMPLEX for zrotg
Contains the parameter s associated with the Givens rotation.
?rotm
Performs modified Givens rotation of points in the plane.

Syntax

```
call srotm(n, x, incx, y, incy, param)
call drotm(n, x, incx, y, incy, param)
call rotm(x, y, param)
```

Include Files

- mkl.fi, blas.f90

Description

Given two vectors x and y, each vector element of these vectors is replaced as follows:
$\left[\begin{array}{c}x_{i} \\ y_{i}\end{array}\right]=H\left[\begin{array}{c}x_{i} \\ y_{i}\end{array}\right]$
for $i=1$ to n, where H is a modified Givens transformation matrix whose values are stored in the param(2) through param(5) array. See discussion on the param argument.

Input Parameters

n
X

Y
incy
param

INTEGER. Specifies the number of elements in vectors x and y.
REAL for srotm
DOUBLE PRECISION for drotm
Array, size at least $(1+(n-1) * a b s(i n c x))$.
INTEGER. Specifies the increment for the elements of x.
REAL for srotm
DOUBLE PRECISION for drotm
Array, size at least $(1+(n-1) * a b s(i n c y))$.
INTEGER. Specifies the increment for the elements of y.
REAL for srotm
DOUBLE PRECISION for drotm
Array, size 5.
The elements of the param array are:
param(1) contains a switch, flag. param(2-5) contain h_{11}, h_{21}, h_{12}, and h_{22}, respectively, the components of the array H.
Depending on the values of flag, the components of H are set as follows:

$$
\begin{aligned}
& \text { flag }=-1.0: H=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right] \\
& \text { flag }=0.0: H=\left[\begin{array}{ll}
1.0 & h_{12} \\
h_{21} & 1.0
\end{array}\right] \\
& \text { flag }=1.0: H=\left[\begin{array}{ll}
h_{11} & 1.0 \\
-1.0 & h_{22}
\end{array}\right] \\
& \text { flag }=-2.0: H=\left[\begin{array}{ll}
1.0 & 0.0 \\
0.0 & 1.0
\end{array}\right]
\end{aligned}
$$

In the last three cases, the matrix entries of $1.0,-1.0$, and 0.0 are assumed based on the value of flag and are not required to be set in the param vector.

Output Parameters

x
Each element $x(i)$ is replaced by $h_{11}{ }^{*} x(i)+h_{12} * y(i)$.
Each element $y(i)$ is replaced by $h_{21}{ }^{*} x(i)+h_{22}{ }^{*} y(i)$.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine rotm interface are the following:

x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.

?rotmg
Computes the parameters for a modified Givens
rotation.

Syntax

```
call srotmg(d1, d2, x1, y1, param)
call drotmg(d1, d2, xI, yl, param)
call rotmg(d1, d2, x1, y1, param)
```

Include Files

- mkl.fi,blas.f90

Description

Given Cartesian coordinates ($x 1, y 1$) of an input vector, these routines compute the components of a modified Givens transformation matrix H that zeros the y-component of the resulting vector:
$\left[\begin{array}{c}x 1 \\ 0\end{array}\right]=H\left[\begin{array}{l}x 1 \sqrt{d 1} \\ y 1 \sqrt{d 2}\end{array}\right]$

Input Parameters

d1
d2
x1

REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the scaling factor for the x-coordinate of the input vector.
REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the scaling factor for the y-coordinate of the input vector.
REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the x-coordinate of the input vector.

REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the y-coordinate of the input vector.

Output Parameters

REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the first diagonal element of the updated matrix.
REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the second diagonal element of the updated matrix.
REAL for srotmg
DOUBLE PRECISION for drotmg
Provides the x-coordinate of the rotated vector before scaling.
REAL for srotmg
DOUBLE PRECISION for drotmg
Array, size 5.
The elements of the param array are:
param(1) contains a switch, flag. the other array elements param(2-5) contain the components of the array $H: h_{11}, h_{21}, h_{12}$, and h_{22}, respectively. Depending on the values of flag, the components of H are set as follows:

$$
\begin{aligned}
& \text { flag }=-1.0: H=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right] \\
& \text { flag }=0.0: H=\left[\begin{array}{ll}
1.0 & h_{12} \\
h_{21} & 1.0
\end{array}\right] \\
& \text { flag }=1.0: H=\left[\begin{array}{ll}
h_{11} & 1.0 \\
-1.0 & h_{22}
\end{array}\right] \\
& \text { flag }=-2.0: H=\left[\begin{array}{ll}
1.0 & 0.0 \\
0.0 & 1.0
\end{array}\right]
\end{aligned}
$$

In the last three cases, the matrix entries of $1.0,-1.0$, and 0.0 are assumed based on the value of flag and are not required to be set in the param vector.
?scal
Computes the product of a vector by a scalar.

Syntax

```
call sscal(n, a, x, incx)
call dscal(n, a, x, incx)
```

```
call cscal(n, a, x, incx)
call zscal(n, a, x, incx)
call csscal(n, a, x, incx)
call zdscal(n, a, x, incx)
call scal(x, a)
```


Include Files

- mkl.fi,blas.f90

Description

The ?scal routines perform a vector operation defined as

$$
x=a^{\star} x
$$

where:
a is a scalar, x is an n-element vector.

Input Parameters

n
a

X
incx

INTEGER. Specifies the number of elements in vector x.
REAL for sscal and csscal
DOUBLE PRECISION for dscal and zdscal
COMPLEX for cscal
DOUBLE COMPLEX for zscal
Specifies the scalar a.
REAL for sscal
DOUBLE PRECISION for dscal
COMPLEX for cscal and csscal
DOUBLE COMPLEX for zscal and zdscal
Array, size at least $(1+(n-1) * a b s(i n c x))$.
INTEGER. Specifies the increment for the elements of x.

Output Parameters

X
Updated vector x .

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine scal interface are the following:
Holds the vector with the number of elements n.

?swap

Swaps a vector with another vector.

Syntax

```
call sswap(n, x, incx, y, incy)
call dswap(n, x, incx, y, incy)
call cswap(n, x, incx, y, incy)
call zswap(n, x, incx, y, incy)
call swap (x, y)
```

Include Files

- mkl.fi, blas.f90

Description

Given two vectors x and y, the ?swap routines return vectors y and x swapped, each replacing the other.

Input Parameters

```
n INTEGER. Specifies the number of elements in vectors }x\mathrm{ and }y\mathrm{ .
x REAL for sswap
    DOUBLE PRECISION for dswap
    COMPLEX for cswap
    DOUBLE COMPLEX for zswap
    Array, size at least (1 + (n-1)*abs (incx)).
    INTEGER. Specifies the increment for the elements of x.
    REAL for sswap
        DOUBLE PRECISION for dswap
        COMPLEX for cswap
        DOUBLE COMPLEX for zswap
        Array, size at least (1 + (n-1)*abs (incy)).
        INTEGER. Specifies the increment for the elements of }y\mathrm{ .
```


Output Parameters

x
Contains the resultant vector x, that is, the input vector y.

Y
Contains the resultant vector y, that is, the input vector x.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine swap interface are the following:

X
y

i?amax

Finds the index of the element with maximum absolute value.

Syntax

```
index = isamax(n, x, incx)
index = idamax(n, x, incx)
index = icamax(n, x, incx)
index = izamax(n, x, incx)
index = iamax(x)
```


Include Files

- mkl.fi, blas.f90

Description

Given a vector x, the i ? amax functions return the position of the vector element $x(i)$ that has the largest absolute value for real flavors, or the largest sum $|\operatorname{Re}(x[i])|+|\operatorname{Im}(x[i])|$ for complex flavors.

If either n or incx are not positive, the routine returns 0 .
If more than one vector element is found with the same largest absolute value, the index of the first one encountered is returned.
If the vector contains NaN values, then the routine returns the index of the first NaN.

Input Parameters

n
x
incx

Output Parameters

index
INTEGER. Contains the position of vector element that has the largest absolute value such that x (index) has the largest absolute value.

BLAS 95 Interface Notes

Functions and routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the function iamax interface are the following:
x
Holds the vector with the number of elements n.

i?amin

Finds the index of the element with the smallest absolute value.

Syntax

```
index = isamin(n, x, incx)
index = idamin(n, x, incx)
index = icamin(n, x, incx)
index = izamin(n, x, incx)
index = iamin(x)
```


Include Files

- mkl.fi, blas.f90

Description

Given a vector x, the i?amin functions return the position of the vector element $x[i]$ that has the smallest absolute value for real flavors, or the smallest sum $|\operatorname{Re}(x[i])|+|\operatorname{Im}(x[i])|$ for complex flavors.

If either n or incx are not positive, the routine returns 0 .
If more than one vector element is found with the same smallest absolute value, the index of the first one encountered is returned.
If the vector contains NaN values, then the routine returns the index of the first NaN .

Input Parameters

n
x
INTEGER. On entry, n specifies the number of elements in vector x.
REAL for isamin
DOUBLE PRECISION for idamin
COMPLEX for icamin
DOUBLE COMPLEX for izamin
Array, size at least $(1+(n-1) * a b s(i n c x))$.
INTEGER. Specifies the increment for the elements of x.

Output Parameters

index
INTEGER. Indicates the position of vector element with the smallest absolute value such that x (index) has the smallest absolute value.

BLAS 95 Interface Notes

Functions and routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the function iamin interface are the following:
$x \quad$ Holds the vector with the number of elements n.
?cabs1
Computes absolute value of complex number.

Syntax

```
res = scabs1(z)
res = dcabs1(z)
res = cabs1(z)
```


Include Files

- mkl.fi, blas.f90

Description

The ?cabs1 is an auxiliary routine for a few BLAS Level 1 routines. This routine performs an operation defined as

```
res=|\operatorname{Re}(z)|+|\operatorname{Im}(z)|,
```

where z is a scalar, and res is a value containing the absolute value of a complex number z.
Input Parameters

```
z
COMPLEX scalar for scabs1.
DOUBLE COMPLEX scalar for dcabs1.
```


Output Parameters

```
res
```

REAL for scabs1.
DOUBLE PRECISION for dcabs1.

Contains the absolute value of a complex number z.

BLAS Level 2 Routines

This section describes BLAS Level 2 routines, which perform matrix-vector operations. The following table lists the BLAS Level 2 routine groups and the data types associated with them.

BLAS Level 2 Routine Groups and Their Data Types

Routine Groups	Data Types	Description
$?$ gbmv	s, d, c, z	Matrix-vector product using a general band matrix
? gemv	s, d, c, z	Matrix-vector product using a general matrix

Routine Groups	Data Types	Description
? ger	s, d	Rank-1 update of a general matrix
? gerc	c, z	Rank-1 update of a conjugated general matrix
? geru	c, z	Rank-1 update of a general matrix, unconjugated
? hibmv	C, z	Matrix-vector product using a Hermitian band matrix
? hemv	c, z	Matrix-vector product using a Hermitian matrix
?her	c, z	Rank-1 update of a Hermitian matrix
?her2	C, z	Rank-2 update of a Hermitian matrix
? hpmv	c, z	Matrix-vector product using a Hermitian packed matrix
?hpr	c, z	Rank-1 update of a Hermitian packed matrix
?hpr2	C, z	Rank-2 update of a Hermitian packed matrix
? sbmv	s, d	Matrix-vector product using symmetric band matrix
? spmv	s, d	Matrix-vector product using a symmetric packed matrix
?spr	s, d	Rank-1 update of a symmetric packed matrix
?spr2	s, d	Rank-2 update of a symmetric packed matrix
?symv	s, d	Matrix-vector product using a symmetric matrix
?syr	s, d	Rank-1 update of a symmetric matrix
?syr2	s, d	Rank-2 update of a symmetric matrix
? t.bmv	s, d, c, z	Matrix-vector product using a triangular band matrix
?tbsv	s, d, c, z	Solution of a linear system of equations with a triangular band matrix
? tpmv	s, d, c, z	Matrix-vector product using a triangular packed matrix
?tpsv	s, d, c, z	Solution of a linear system of equations with a triangular packed matrix
? trmv	s, d, c, z	Matrix-vector product using a triangular matrix
?trsv	s, d, c, z	Solution of a linear system of equations with a triangular matrix

?gbmv
 Computes a matrix-vector product with a general band matrix.

Syntax

```
call sgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)
call dgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)
call cgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)
call zgbmv(trans, m, n, kl, ku, alpha, a, lda, x, incx, beta, y, incy)
```

```
call gbmv(a, x, y [,kl] [,m] [,alpha] [,beta] [,trans])
```

Include Files

- mkl.fi, blas.f90

Description

The ? gbmv routines perform a matrix-vector operation defined as

```
y := alpha*A*x + beta*y,
```

or
$y:=a l p h a * A^{\prime *} x+b e t a * y$,
or
$y:=a l p h a{ }^{*} \operatorname{conjg}\left(A^{\prime}\right) * x+b e t a * y$,
where:
alpha and beta are scalars,
x and y are vectors,
A is an m-by- n band matrix, with $k l$ sub-diagonals and $k u$ super-diagonals.

Input Parameters

trans
m
n
a

CHARACTER*1. Specifies the operation:
If trans= 'N' or 'n', then $y:=a l p h a \star A^{\star} x+b e t a \star y$
If trans= 'T' or 't', then $y:=a l p h a * A ' * x+b e t a * y$
If trans= 'C' or 'c', then $y:=a l p h a{ }^{*} \operatorname{conjg}\left(A^{\prime}\right){ }^{*} x+$ beta* y
INTEGER. Specifies the number of rows of the matrix A.
The value of m must be at least zero.
INTEGER. Specifies the number of columns of the matrix A.
The value of n must be at least zero.
INTEGER. Specifies the number of sub-diagonals of the matrix A.
The value of $k l$ must satisfy $0 \leq k l$.
INTEGER. Specifies the number of super-diagonals of the matrix A. The value of $k u$ must satisfy $0 \leq k u$.

REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv
Specifies the scalar alpha.
REAL for sgbmv
DOUBLE PRECISION for dgbmv

COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv
Array, size (lda, n).
Before entry, the leading $(k I+k u+1)$ by n part of the array a must contain the matrix of coefficients. This matrix must be supplied column-bycolumn, with the leading diagonal of the matrix in row $(k u+1)$ of the array, the first super-diagonal starting at position 2 in row $k u$, the first subdiagonal starting at position 1 in row $(k u+2)$, and so on. Elements in the array a that do not correspond to elements in the band matrix (such as the top left $k u$ by $k u$ triangle) are not referenced.

The following program segment transfers a band matrix from conventional full matrix storage (matrix) to band storage (a):

Ida
x
incx
beta
y

```
do 20, j = 1, n
    k = ku + 1 - j
    do 10, i = max(1, j-ku), min(m, j+kl)
        a(k+i, j) = matrix(i,j)
        continue
continue
```

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least $(k l+k u+1)$.

REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv
Array, size at least (1 + (n - 1)*abs(incx)) when trans= 'N' or 'n', and at least $(1+(m-1) * a b s(i n c x))$ otherwise. Before entry, the array x must contain the vector x.

INTEGER. Specifies the increment for the elements of x. incx must not be zero.

REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv
Specifies the scalar beta. When beta is equal to zero, then y need not be set on input.

REAL for sgbmv
DOUBLE PRECISION for dgbmv
COMPLEX for cgbmv
DOUBLE COMPLEX for zgbmv

Array, size at least (1 + (m-1)*abs (incy)) when trans= 'N' or 'n' and at least $(1+(n-1) * a b s(i n c y))$ otherwise. Before entry, the incremented array y must contain the vector y.

INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

Output Parameters

y
Buffer holding the updated vector y.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine gbmv interface are the following:

a	Holds the array a of size $(k l+k u+1, n)$. Contains a banded matrix $m * n$ with $k l$ lower diagonal and $k u$ upper diagonal.
x	Holds the vector with the number of elements $r x$, where $r x=n$ if trans $=$ ' N ', rx $=m$ otherwise.
Y	Holds the vector with the number of elements ry, where $r y=m$ if trans $=$ ' N ', ry $=\mathrm{n}$ otherwise.
trans	Must be 'N', 'C', or 'T'.
	The default value is ' N '.
kl	If omitted, assumed $k l=k u$, that is, the number of lower diagonals equals the number of the upper diagonals.
ku	Restored as $k u=/ d a-k l-1$, where $/ d a$ is the leading dimension of matrix A.
m	If omitted, assumed $m=n$, that is, a square matrix.
alpha	The default value is 1 .
beta	The default value is 0 .

?gemv
Computes a matrix-vector product using a general
matrix.
Syntax

```
call sgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call zgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call scgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call dzgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call gemv(a, x, y [,alpha][,beta] [,trans])
```


Include Files

- mkl.fi,blas.f90

Description

The ? gemv routines perform a matrix-vector operation defined as:
$y:=a l p h a^{\star} A^{\star} x+b e t a * y$,
or
$y:=a l p h a * A^{\prime *} x+b e t a * y$,
or
$y:=a l p h a * \operatorname{conjg}\left(A^{\prime}\right) * x+b e t a * y$,
where:
alpha and beta are scalars,
x and y are vectors,
A is an m-by- n matrix.

Input Parameters

trans CHARACTER*1 Specifies the operation:
if trans $=$ 'N' or 'n', then $y:=a l p h a \star A \star x+b e t a * y$;
if trans= 'T' or 't', then $y:=a l p h a * A ' * x+b e t a * y ;$
if trans $=$ ' C' or 'c', then $y:=a l p h a * \operatorname{conjg}(A '){ }^{*} x+b e t a * y$.
INTEGER. Specifies the number of rows of the matrix A. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix A. The value of n must be at least zero.
alpha REAL for sgemv
DOUBLE PRECISION for dgemv
COMPLEX for cgemv, scgemv
DOUBLE COMPLEX for zgemv, dzgemv
Specifies the scalar alpha.
REAL for sgemv, scgemv
DOUBLE PRECISION for dgemv, dzgemv
COMPLEX for cgemv
DOUBLE COMPLEX for zgemv
Array, size (lda, n).
Before entry, the leading m-by-n part of the array a must contain the matrix of coefficients.

lda	INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program.
	The value of Ida must be at least max ($1, m$.
x	REAL for sgemv
	DOUBLE PRECISION for dgemv
	COMPLEX for cgemv, scgemv
	DOUBLE COMPLEX for zgemv, dzgemv
	Array, size at least ($1+(n-1)$ *abs (incx)) when trans= 'N' or 'n' and at least $(1+(m-1) * a b s(i n c x))$ otherwise. Before entry, the incremented array x must contain the vector x.
incx	INTEGER. Specifies the increment for the elements of x.
	The value of incx must not be zero.
beta	REAL for sgemv
	DOUBLE PRECISION for dgemv
	COMPLEX for cgemv, scgemv
	DOUBLE COMPLEX for zgemv, dzgemv
	Specifies the scalar beta. When beta is set to zero, then y need not be set on input.
Y	REAL for sgemv
	DOUBLE PRECISION for dgemv
	COMPLEX for cgemv, scgemv
	DOUBLE COMPLEX for zgemv, dzgemv
	Array, size at least (1 + (m-1)*abs (incy)) when trans= 'N' or 'n' and at least $(1+(n-1) * a b s(i n c y))$ otherwise. Before entry with nonzero beta, the incremented array y must contain the vector y.
incy	INTEGER. Specifies the increment for the elements of y.
	The value of incy must not be zero.

Output Parameters

y
Updated vector y.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine gemv interface are the following:

```
a
x Holds the vector with the number of elements rx where rx = n if trans =
    'N', rx = motherwise.
```

y	Holds the vector with the number of elements $r y$ where $r y=m$ if trans =
	'N', ry $=n$ otherwise.
trans	Must be 'N', 'C', or 'T'.
	The default value is ' N '.
alpha	The default value is 1.
beta	The default value is 0.

?ger

Performs a rank-1 update of a general matrix.

Syntax

```
call sger(m, n, alpha, x, incx, y, incy, a, lda)
call dger(m, n, alpha, x, incx, y, incy, a, lda)
call ger(a, x, y [,alpha])
```


Include Files

- mkl.fi,blas.f90

Description

The ?ger routines perform a matrix-vector operation defined as

```
A := alpha* x* y'+ A,
```

where:
alpha is a scalar,
x is an m-element vector,
y is an n-element vector,
A is an m-by- n general matrix.

Input Parameters

m
INTEGER. Specifies the number of rows of the matrix A.
The value of m must be at least zero.
INTEGER. Specifies the number of columns of the matrix A.
The value of n must be at least zero.
REAL for sger
DOUBLE PRECISION for dger
Specifies the scalar alpha.

X
REAL for sger
DOUBLE PRECISION for dger

	Array, size at least ($1+(m-1) * a b s($ incx $))$. Before entry, the incremented array x must contain the m-element vector x.
incx	INTEGER. Specifies the increment for the elements of x.
	The value of incx must not be zero.
y	REAL for sger
	DOUBLE PRECISION for dger
	Array, size at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.
incy	integer. Specifies the increment for the elements of y.
	The value of incy must not be zero.
a	REAL for sger
	DOUBLE PRECISION for dger
	Array, size (lda, n).
	Before entry, the leading m-by-n part of the array a must contain the matrix of coefficients.
1da	INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program.
	The value of $/$ da must be at least max $(1, m)$.

Output Parameters

a
Overwritten by the updated matrix.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine ger interface are the following:

a	Holds the matrix A of size (m, n).
x	Holds the vector with the number of elements m.
y	Holds the vector with the number of elements n.
alpha	The default value is 1.

```
?gerc
Performs a rank-1 update (conjugated) of a general
matrix.
```


Syntax

```
call cgerc(m, n, alpha, x, incx, y, incy, a, lda)
```

call cgerc(m, n, alpha, x, incx, y, incy, a, lda)
call zgerc(m, n, alpha, x, incx, y, incy, a, lda)
call zgerc(m, n, alpha, x, incx, y, incy, a, lda)
call gerc(a, x, y [,alpha])

```
call gerc(a, x, y [,alpha])
```


Include Files

- mkl.fi,blas.f90

Description

The ?gerc routines perform a matrix-vector operation defined as

```
A := alpha* **conjg(y') + A,
```

where:
alpha is a scalar,
x is an m-element vector,
y is an n-element vector,
A is an m-by- n matrix.

Input Parameters

m	INTEGER. Specifies the number of rows of the matrix A.
	The value of m must be at least zero.
n	INTEGER. Specifies the number of columns of the matrix A.
	The value of n must be at least zero.
alpha	COMPLEX for cgerc
	DOUBLE COMPLEX for zgerc
	Specifies the scalar alpha.
x	COMPLEX for cgerc
	DOUBLE COMPLEX for zgerc
	Array, size at least $(1+(m-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the m-element vector x.
incx	INTEGER. Specifies the increment for the elements of x.
	The value of incx must not be zero.
Y	COMPLEX for cgerc
	DOUBLE COMPLEX for zgerc

Array, size at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.
a
COMPLEX for cgerc
DOUBLE COMPLEX for zgerc
Array, size (lda, n).
Before entry, the leading m-by-n part of the array a must contain the matrix of coefficients.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program.

The value of Ida must be at least max $(1, m)$.

Output Parameters

a
Overwritten by the updated matrix.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine gerc interface are the following:

a	Holds the matrix A of size (m, n).
x	Holds the vector with the number of elements m.
y	Holds the vector with the number of elements n.
alpha	The default value is 1.

?geru
Performs a rank-1 update (unconjugated) of a general
matrix.
Syntax

```
call cgeru(m, n, alpha, x, incx, y, incy, a, lda)
call zgeru(m, n, alpha, x, incx, y, incy, a, lda)
call geru(a, x, y [,alpha])
```


Include Files

- mkl.fi,blas.f90

Description

The ?geru routines perform a matrix-vector operation defined as

```
A := alpha*** y ' + A,
```

where:
alpha is a scalar,
x is an m-element vector,
y is an n-element vector,
A is an m-by- n matrix.
Input Parameters
m
INTEGER. Specifies the number of rows of the matrix A.

The value of m must be at least zero.
n
alpha

X
incx

Y
a

Ida

INTEGER. Specifies the number of columns of the matrix A.
The value of n must be at least zero.
COMPLEX for cgeru
DOUBLE COMPLEX for zgeru
Specifies the scalar alpha.
COMPLEX for cgeru
DOUBLE COMPLEX for zgeru
Array, size at least $(1+(m-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the m-element vector x.

INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.
COMPLEX for cgeru
DOUBLE COMPLEX for zgeru
Array, size at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.
COMPLEX for cgeru
DOUBLE COMPLEX for zgeru
Array, size (lda, n).
Before entry, the leading m-by- n part of the array a must contain the matrix of coefficients.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub) program.

The value of Ida must be at least max $(1, m)$.

Output Parameters

a
Overwritten by the updated matrix.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine geru interface are the following:
a
X

Y

Holds the matrix A of size (m, n).
Holds the vector with the number of elements m.
Holds the vector with the number of elements n.

```
alpha The default value is 1.
```

?hbmv
Computes a matrix-vector product using a Hermitian
band matrix.
Syntax

```
call chibmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)
call zhbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)
call hbmv(a, x, y [,uplo][,alpha] [,beta])
```


Include Files

- mkl.fi, blas.f90

Description

The ?hbmv routines perform a matrix-vector operation defined as $y:=a l p h a * A * x+b e t a * y$, where:
alpha and beta are scalars,
x and y are n-element vectors,
A is an n-by- n Hermitian band matrix, with k super-diagonals.

Input Parameters

uplo
n
k
alpha
a

CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian band matrix A is used:
If uplo = 'U' or 'u', then the upper triangular part of the matrix A is used.
If uplo = 'L' or 'l', then the low triangular part of the matrix A is used.
INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.

INTEGER. For uplo = 'U' or 'u'Specifies the number of super-diagonals of the matrix A.

For uplo = 'L' or 'l': Specifies the number of sub-diagonals of the matrix A.

The value of k must satisfy $0 \leq k$.
COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv
Specifies the scalar alpha.
COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv
Array, size (lda, n).

Before entry with uplo = 'U' or 'u', the leading $(k+1)$ by n part of the array a must contain the upper triangular band part of the Hermitian matrix. The matrix must be supplied column-by-column, with the leading diagonal of the matrix in row $(k+1)$ of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array a is not referenced.

The following program segment transfers the upper triangular part of a Hermitian band matrix from conventional full matrix storage (matrix) to band storage (a):

```
do 20, j = 1, n
    m=k + 1 - j
    do 10, i = max( 1, j - k ), j
        a( m + i, j ) = matrix( i, j )
    continue
continue
```

Before entry with uplo $=$ 'L' or 'l', the leading $(k+1)$ by n part of the array a must contain the lower triangular band part of the Hermitian matrix, supplied column-by-column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2 , and so on. The bottom right k by k triangle of the array a is not referenced.

The following program segment transfers the lower triangular part of a Hermitian band matrix from conventional full matrix storage (matrix) to band storage (a):

```
do 20, j = 1, n
    m = 1 - j
    do 10, i = j, min( n, j + k )
        a( m + i, j ) = matrix( i, j )
10 continue
```

20 continue

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least $(k+1)$.

COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv
Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the vector x.

INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.
COMPLEX for chbmv
DOUBLE COMPLEX for zhbmv
Specifies the scalar beta.
COMPLEX for ch.bmv
DOUBLE COMPLEX for zhbmv

Array, size at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the vector y.
incy INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

Output Parameters

y

Overwritten by the updated vector y.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine hbmv interface are the following:

a	Holds the array a of size $(k+1, n)$.
x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.
uplo	Must be 'U' or ' L '. The default value is 'U'.
alpha	The default value is 1.

?hemv
Computes a matrix-vector product using a Hermitian matrix.

Syntax

```
call chemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call zhemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call hemv(a, x, y [,uplo][,alpha] [,beta])
```

Include Files

- mkl.fi, blas.f90

Description

The ?hemv routines perform a matrix-vector operation defined as

```
y := alpha* A*}x+beta*y
```

where:
alpha and beta are scalars,
x and y are n-element vectors,
A is an n-by- n Hermitian matrix.

Input Parameters

uplo
n
x
incx
beta
y
incy

CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is used.
If uplo = 'U' or 'u', then the upper triangular of the array a is used.
If uplo = 'L' or 'l', then the low triangular of the array a is used.
INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.

COMPLEX for chemv
DOUBLE COMPLEX for zhemv
Specifies the scalar alpha.
COMPLEX for chemv
DOUBLE COMPLEX for zhemv
Array, size (lda, n).
Before entry with uplo = 'U' or 'u', the leading n-by- n upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of a is not referenced. Before entry with uplo = 'L' or 'l', the leading n-by- n lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of a is not referenced.
The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, n)$.

COMPLEX for chemv
DOUBLE COMPLEX for zhemv
Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.
COMPLEX for chemv
DOUBLE COMPLEX for zhemv
Specifies the scalar beta. When beta is supplied as zero then y need not be set on input.

COMPLEX for chemv
DOUBLE COMPLEX for zhemv
Array, size at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y.

The value of incy must not be zero.

Output Parameters

y
Overwritten by the updated vector y.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine hemv interface are the following:

a	Holds the matrix A of size (n, n).
x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.
uplo	Must be 'U' or 'L'. The default value is 'U'.
alpha	The default value is 1.
beta	The default value is 0.

?her
Performs a rank-1 update of a Hermitian matrix.

Syntax

```
call cher(uplo, n, alpha, x, incx, a, lda)
call zher(uplo, n, alpha, x, incx, a, lda)
call her(a, x [,uplo] [, alpha])
```


Include Files

- mkl.fi, blas.f90

Description

The ?her routines perform a matrix-vector operation defined as

```
A := alpha* x*conjg(x') + A,
```

where:
alpha is a real scalar,
x is an n-element vector,
A is an n-by- n Hermitian matrix.
Input Parameters
uplo
CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is used.

If uplo = 'U' or 'u', then the upper triangular of the array a is used.
n
alpha

X

Output Parameters

a
With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated matrix.

If alpha is zero, matrix A is unchanged; otherwise, the imaginary parts of the diagonal elements are set to zero.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine her interface are the following:
a
Holds the matrix A of size (n, n).

x	Holds the vector with the number of elements n.
uplo	Must be 'U' or 'L'. The default value is 'U'.
alpha	The default value is 1.

?her2

Performs a rank-2 update of a Hermitian matrix.

Syntax

```
call cher2(uplo, n, alpha, x, incx, y, incy, a, lda)
call zher2(uplo, n, alpha, x, incx, y, incy, a, lda)
call her2(a, x, y [,uplo][,alpha])
```

Include Files

- mkl.fi, blas.f90

Description

The ?her2 routines perform a matrix-vector operation defined as

```
A := alpha *x*conjg(y') + conjg(alpha)*y *conjg(x') + A,
```

where:
alpha is scalar,
x and y are n-element vectors,
A is an n-by- n Hermitian matrix.

Input Parameters

uplo
n
alpha
x
incx

CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is used.
If uplo = 'U' or 'u', then the upper triangular of the array a is used.
If uplo = 'L' or 'l', then the low triangular of the array a is used.
INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.

COMPLEX for cher2
DOUBLE COMPLEX for zher2
Specifies the scalar alpha.
COMPLEX for cher2
DOUBLE COMPLEX for zher2
Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x.

The value of incx must not be zero.
y
a
da

COMPLEX for cher2
DOUBLE COMPLEX for zher2
Array, size at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

COMPLEX for cher2
DOUBLE COMPLEX for zher2
Array, size (lda, n).
Before entry with uplo = 'U' or 'u', the leading n-by- n upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of a is not referenced.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, n)$.

Output Parameters

a
With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated matrix.

If alpha is zero, matrix A is unchanged; otherwise, the imaginary parts of the diagonal elements are set to zero.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine her2 interface are the following:

a	Holds the matrix A of size (n, n).
x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.
alpha	Must be 'U' or 'L'. The default value is 'U'.
Une default value is 1.	

```
?hpmv
Computes a matrix-vector product using a Hermitian
packed matrix.
```


Syntax

```
call chpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
```

call chpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
call zhpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
call zhpmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
call hpmv(ap, x, y [,uplo][,alpha] [,beta])

```
call hpmv(ap, x, y [,uplo][,alpha] [,beta])
```

Include Files

- mkl.fi, blas.f90

Description

The ?hpmv routines perform a matrix-vector operation defined as

```
y := alpha* A*}x+b,beta*y
```

where:
alpha and beta are scalars, x and y are n-element vectors, A is an n-by- n Hermitian matrix, supplied in packed form.

Input Parameters

```
uplo
n
alpha
ap
CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = 'U' or 'u', then the upper triangular part of the matrix \(A\) is supplied in the packed array ap.
If uplo = 'L' or 'l', then the low triangular part of the matrix \(A\) is supplied in the packed array ap.
INTEGER. Specifies the order of the matrix \(A\). The value of \(n\) must be at least zero.
COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv
Specifies the scalar alpha.
COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv
Array, size at least \(\left(\left(n^{*}(n+1)\right) / 2\right)\).
Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, column-bycolumn, so that \(a p(1)\) contains \(A_{1,1}, a p(2)\) and \(a p(3)\) contain \(A_{1,2}\) and \(A_{2,2}\) respectively, and so on. Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, column-by-column, so that ap(1) contains \(A_{1,1}\), ap (2) and ap (3) contain \(A_{2,1}\) and \(A_{3,1}\) respectively, and so on.
```

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

COMPLEX for chpmv
DOUBLE PRECISION COMPLEX for zhpmv
Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.

COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv
Specifies the scalar beta.
When beta is equal to zero then y need not be set on input.
COMPLEX for chpmv
DOUBLE COMPLEX for zhpmv
Array, size at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

Output Parameters

y
Overwritten by the updated vector y.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine hpmv interface are the following:

ap	Holds the array ap of size $\left(n^{*}(n+1) / 2\right)$.
x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.
uplo	Must be 'U' or 'L'. The default value is ' U^{\prime} '.
beta	The default value is 1.
	The default value is 0.

?hpr
Performs a rank-1 update of a Hermitian packed
matrix.

Syntax

```
call chpr(uplo, n, alpha, x, incx, ap)
```

```
call zhpr(uplo, n, alpha, x, incx, ap)
call hpr(ap, x [,uplo] [, alpha])
```


Include Files

- mkl.fi,blas.f90

Description

The ?hpr routines perform a matrix-vector operation defined as

```
A := alpha* x*conjg(x') + A,
```

where:
alpha is a real scalar,
x is an n-element vector,
A is an n-by- n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array ap.
If uplo = 'U' or 'u', the upper triangular part of the matrix A is supplied in the packed array ap.
If uplo = 'L' or 'l', the low triangular part of the matrix A is supplied in the packed array ap.

INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.

REAL for chpr
DOUBLE PRECISION for zhpr
Specifies the scalar alpha.

X
incx
ap
COMPLEX for chpr
DOUBLE COMPLEX for zhpr
Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. incx must not be zero.

COMPLEX for chpr
DOUBLE COMPLEX for zhpr
Array, size at least $\left(\left(n^{*}(n+1)\right) / 2\right)$.
Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, column-bycolumn, so that $a p(1)$ contains $A_{1,1}, a p(2)$ and $a p(3)$ contain $A_{1,2}$ and $A_{2,2}$ respectively, and so on.

Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, column-bycolumn, so that $a p(1)$ contains $A_{1,1}, a p(2)$ and $a p(3)$ contain $A_{2,1}$ and $A_{3,1}$ respectively, and so on.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

Output Parameters

ap
With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.
If alpha is zero, matrix A is unchanged; otherwise, the imaginary parts of the diagonal elements are set to zero.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine hpr interface are the following:

ap	Holds the array ap of size $(n *(n+1) / 2)$.
x	Holds the vector with the number of elements n.
uplo	Must be 'U' or 'L'. The default value is ' U '.
alpha	The default value is 1.

?hpr2
 Performs a rank-2 update of a Hermitian packed

matrix.

Syntax

```
call chpr2(uplo, n, alpha, x, incx, y, incy, ap)
call zhpr2(uplo, n, alpha, x, incx, y, incy, ap)
call hpr2(ap, x, y [,uplo][,alpha])
```

Include Files

- mkl.fi,blas.f90

Description

The ?hpr2 routines perform a matrix-vector operation defined as

```
A := alpha* \mp@subsup{x}{}{*}\operatorname{conjg(y') + conjg(alpha)* y*conjg(x') + A,},
```

where:
alpha is a scalar,
x and y are n-element vectors,
A is an n-by- n Hermitian matrix, supplied in packed form.

Input Parameters

> uplo
n
alpha

X
incx

Y
incy
$a p$

CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array ap.
If uplo = 'U' or 'u', then the upper triangular part of the matrix A is supplied in the packed array ap.
If uplo = 'L' or 'l', then the low triangular part of the matrix A is supplied in the packed array ap.

INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.

COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2
Specifies the scalar alpha.
COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2
Array, dimension at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.
COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2
Array, size at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.
COMPLEX for chpr2
DOUBLE COMPLEX for zhpr2
Array, size at least $\left(\left(n^{\star}(n+1)\right) / 2\right)$.
Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the Hermitian matrix packed sequentially, column-bycolumn, so that ap (1) contains $A_{1,1}, a p(2)$ and $a p(3)$ contain $A_{1,2}$ and $A_{2,2}$ respectively, and so on.
Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the Hermitian matrix packed sequentially, column-bycolumn, so that $a p(1)$ contains $A_{1,1}, a p(2)$ and $a p(3)$ contain $A_{2,1}$ and $A_{3,1}$ respectively, and so on.
The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

Output Parameters

$a p$
With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.
If alpha is zero, matrix A is unchanged; otherwise, the imaginary parts of the diagonal elements need are set to zero.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine hpr2 interface are the following:

ap	Holds the array $a p$ of size $\left(n^{*}(n+1) / 2\right)$.
x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.
alpha	Must be 'U' or 'L'. The default value is 'U'.
Une default value is 1.	

?sbmv
Computes a matrix-vector product with a symmetric band matrix.

Syntax

```
call ssbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)
call dsbmv(uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)
call sbmv(a, x, y [,uplo][,alpha] [,beta])
```

Include Files

- mkl.fi, blas.f90

Description

The ?sbmv routines perform a matrix-vector operation defined as
$y:=$ alpha* $A^{\star} x+b^{\prime} \operatorname{beta}^{\star} y$,
where:
alpha and beta are scalars, x and y are n-element vectors,
A is an n-by- n symmetric band matrix, with k super-diagonals.

Input Parameters

uplo
n
k
alpha
a

CHARACTER*1. Specifies whether the upper or lower triangular part of the band matrix A is used:
if uplo = 'U' or 'u' - upper triangular part;
if uplo = 'L' or 'l' - low triangular part.
INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.

INTEGER. Specifies the number of super-diagonals of the matrix A.
The value of k must satisfy $0 \leq k$.
REAL for ssbmv
DOUBLE PRECISION for dsbmv
Specifies the scalar alpha.
REAL for ssbmv
DOUBLE PRECISION for dsbmv
Array, size (lda, n). Before entry with uplo = 'U' or 'u', the leading (k $+1)$ by n part of the array a must contain the upper triangular band part of the symmetric matrix, supplied column-by-column, with the leading diagonal of the matrix in row $(k+1)$ of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array a is not referenced.

The following program segment transfers the upper triangular part of a symmetric band matrix from conventional full matrix storage (matrix) to band storage (a):

```
do 20, j = 1, n
    m=k + 1 - j
    do 10, i = max( 1, j - k ), j
        a( m + i, j ) = matrix( i, j )
    continue
continue
```

Before entry with uplo $=$ 'L' or 'l', the leading $(k+1)$ by n part of the array a must contain the lower triangular band part of the symmetric matrix, supplied column-by-column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array a is not referenced.
The following program segment transfers the lower triangular part of a symmetric band matrix from conventional full matrix storage (matrix) to band storage (a):

```
do 20, j = 1, n
    m = 1 - j
    do 10, i = j, min( n, j + k )
        a( m + i, j ) = matrix( i, j )
    continue
continue
```

```
Ida
x
incx
beta
Y
incy
INTEGER. Specifies the leading dimension of \(a\) as declared in the calling (sub)program. The value of Ida must be at least \((k+1)\).
REAL for ssbmv
DOUBLE PRECISION for dsbmv
Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the vector \(x\).
INTEGER. Specifies the increment for the elements of \(x\).
The value of incx must not be zero.
REAL for ssbmv
DOUBLE PRECISION for dsbmv
Specifies the scalar beta.
REAL for ss.bmv
DOUBLE PRECISION for dsbmv
Array, size at least \((1+(n-1) * a b s(i n c y))\). Before entry, the incremented array \(y\) must contain the vector \(y\).
INTEGER. Specifies the increment for the elements of \(y\).
The value of incy must not be zero.
```


Output Parameters

y
Overwritten by the updated vector y.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine sbmv interface are the following:

a	Holds the array a of size $(k+1, n)$.
x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.
uplo	Must be 'U' or 'L'. The default value is 'U'.
beta	The default value is 1.

?spmv
Computes a matrix-vector product with a symmetric
packed matrix.
Syntax

```
call sspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
```

```
call dspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
call spmv(ap, x, y [,uplo][,alpha] [,beta])
```


Include Files

- mkl.fi, blas.f90

Description

The ?spmv routines perform a matrix-vector operation defined as

```
y := alpha*A*}x+beta*y
```

where:
alpha and beta are scalars, x and y are n-element vectors, A is an n-by- n symmetric matrix, supplied in packed form.

Input Parameters

```
uplo
```

n

CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array ap.

If uplo = 'U' or 'u', then the upper triangular part of the matrix A is supplied in the packed array ap.

If uplo = 'L' or 'l', then the low triangular part of the matrix A is supplied in the packed array ap.

INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.

REAL for sspmv
DOUBLE PRECISION for dspmv
Specifies the scalar alpha.
REAL for sspmv
DOUBLE PRECISION for dspmv
Array, size at least $((n *(n+1)) / 2)$.
Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(1,2)$ and $a(2,2)$ respectively, and so on. Before entry with uplo = 'L' or ' 1 ', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-by-column, so that ap(1) contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2,1)$ and $a(3,1)$ respectively, and so on.

REAL for sspmv
DOUBLE PRECISION for dspmv

Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x. The value of incx must not be zero.
beta
y
incy

REAL for sspmv
DOUBLE PRECISION for dspmv
Specifies the scalar beta.
When beta is supplied as zero, then y need not be set on input.
REAL for sspmv
DOUBLE PRECISION for dspmv
Array, size at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

Output Parameters

y
Overwritten by the updated vector y.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine spmv interface are the following:

ap	Holds the array ap of size $\left(n^{*}(n+1) / 2\right)$.
x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.
alpha	Must be 'U' or 'L'. The default value is ' U '.
beta	The default value is 1.
	The default value is 0.

?spr
Performs a rank-1 update of a symmetric packed matrix.

Syntax

```
call sspr(uplo, n, alpha, x, incx, ap)
call dspr(uplo, n, alpha, x, incx, ap)
call spr(ap, x [,uplo] [, alpha])
```


Include Files

- mkl.fi, blas.f90

Description

The ?spr routines perform a matrix-vector operation defined as

```
a:= alpha* x* x'+ A,
```

where:
alpha is a real scalar,
x is an n-element vector,
A is an n-by- n symmetric matrix, supplied in packed form.

Input Parameters

uplo
n

X
incx
$a p$

CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array ap.

If uplo = 'U' or 'u', then the upper triangular part of the matrix A is supplied in the packed array ap.
If uplo = 'L' or 'l', then the low triangular part of the matrix A is supplied in the packed array ap.

INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.

REAL for sspr
DOUBLE PRECISION for dspr
Specifies the scalar alpha.
REAL for sspr
DOUBLE PRECISION for dspr
Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.
REAL for sspr
DOUBLE PRECISION for dspr
Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that ap (1) contains $A_{1,1}, a p(2)$ and $a p(3)$ contain $A_{1,2}$ and $A_{2,2}$ respectively, and so on.
Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that ap (1) contains $A_{1,1}, a p(2)$ and $a p(3)$ contain $A_{2,1}$ and $A_{3,1}$ respectively, and so on.

Output Parameters

$a p$
With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
With uplo = 'L'or 'l', overwritten by the lower triangular part of the updated matrix.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine spr interface are the following:

ap	Holds the array ap of size $\left(n^{*}(n+1) / 2\right)$.
x	Holds the vector with the number of elements n.
alpha	Must be ' U^{\prime} or ' L '. The default value is ' U^{\prime}.
	The default value is 1.

```
?spr2
Computes a rank-2 update of a symmetric packed
matrix.
Syntax
```

```
call sspr2(uplo, n, alpha, x, incx, y, incy, ap)
```

call sspr2(uplo, n, alpha, x, incx, y, incy, ap)
call dspr2(uplo, n, alpha, x, incx, y, incy, ap)
call dspr2(uplo, n, alpha, x, incx, y, incy, ap)
call spr2(ap, x, y [,uplo][,alpha])

```
call spr2(ap, x, y [,uplo][,alpha])
```


Include Files

- mkl.fi, blas.f90

Description

The ?spr2 routines perform a matrix-vector operation defined as

```
A:= alpha*** 年+ alpha* }\mp@subsup{Y}{}{*}\mp@subsup{X}{}{\prime}+A
```

where:
alpha is a scalar,
x and y are n-element vectors,
A is an n-by- n symmetric matrix, supplied in packed form.
Input Parameters
uplo
CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array $a p$.

If uplo = 'U' or 'u', then the upper triangular part of the matrix A is supplied in the packed array ap.

	If uplo = 'L' or 'l', then the low triangular part of the matrix A is supplied in the packed array ap.
n	INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.
alpha	REAL for sspr2
	DOUBLE PRECISION for dspr2
	Specifies the scalar alpha.
x	REAL for sspr2
	DOUBLE PRECISION for dspr2
	Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.
incx	INTEGER. Specifies the increment for the elements of x.
	The value of incx must not be zero.
Y	REAL for sspr2
	DOUBLE PRECISION for dspr2
	Array, size at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.
incy	INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.
$a p$	REAL for sspr2
	DOUBLE PRECISION for dspr2
	Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that ap(1) contains $A_{1,1}, a p(2)$ and $a p(3)$ contain $A_{1,2}$ and $A_{2,2}$ respectively, and so on.
	Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that ap(1) contains $A_{1,1}, a p(2)$ and ap(3) contain $A_{2,1}$ and $A_{3,1}$ respectively, and so on.

Output Parameters

ap
With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine spr2 interface are the following:

Holds the array ap of size $\left(n^{*}(n+1) / 2\right)$.
Holds the vector with the number of elements n.
Holds the vector with the number of elements n.
Must be 'U' or 'L'. The default value is 'U'.
The default value is 1 .
?symv
Computes a matrix-vector product for a symmetric matrix.

Syntax

```
call ssymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call dsymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call symv(a, x, y [,uplo][,alpha] [,beta])
```

Include Files

- mkl.fi, blas.f90

Description

The ?symv routines perform a matrix-vector operation defined as

```
y := alpha* A*}x+beta* y
```

where:
alpha and beta are scalars,
x and y are n-element vectors,
A is an n-by- n symmetric matrix.

Input Parameters

n
alpha
a

CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is used.

If uplo = 'U' or 'u', then the upper triangular part of the array a is used.
If uplo = 'L' or 'l', then the low triangular part of the array a is used.
INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.

REAL for ssymv
DOUBLE PRECISION for dsymv
Specifies the scalar alpha.
REAL for ssymv
DOUBLE PRECISION for dsymv
Array, size (lda, n).

Ida
x
incx
beta

Y
incy

Before entry with uplo = 'U' or 'u', the leading n-by- n upper triangular part of the array a must contain the upper triangular part of the symmetric matrix A and the strictly lower triangular part of a is not referenced. Before entry with uplo = 'L' or 'l', the leading n-by- n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix A and the strictly upper triangular part of a is not referenced.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, n)$.

REAL for ssymv
DOUBLE PRECISION for dsymv
Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.
REAL for ssymv
DOUBLE PRECISION for dsymv
Specifies the scalar beta.
When beta is supplied as zero, then y need not be set on input.
REAL for ssymv
DOUBLE PRECISION for dsymv
Array, size at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero.

Output Parameters

y
Overwritten by the updated vector y.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine symv interface are the following:

a	Holds the matrix A of size (n, n).
x	Holds the vector with the number of elements n.
y	Holds the vector with the number of elements n.
uplo	Must be 'U' or 'L'. The default value is 'U'.
beta	The default value is 1.

```
?syr
Performs a rank-1 update of a symmetric matrix.
```


Syntax

```
call ssyr(uplo, n, alpha, x, incx, a, lda)
call dsyr(uplo, n, alpha, x, incx, a, lda)
call syr(a, x [,uplo] [, alpha])
```

Include Files

- mkl.fi, blas.f90

Description

The ?syr routines perform a matrix-vector operation defined as

```
A := alpha*\mp@subsup{x}{}{*}\mp@subsup{x}{}{\prime}+A,
```

where:
alpha is a real scalar,
x is an n-element vector,
A is an n-by- n symmetric matrix.

Input Parameters

uplo
n

X
incx
a

CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is used.
If uplo = 'U' or 'u', then the upper triangular part of the array a is used.
If uplo = 'L' or 'l', then the low triangular part of the array a is used.
INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.

REAL for ssyr
DOUBLE PRECISION for dsyr
Specifies the scalar alpha.
REAL for ssyr
DOUBLE PRECISION for dsyr
Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.
REAL for ssyr
DOUBLE PRECISION for dsyr
Array, size (lda, n).

Before entry with uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a must contain the upper triangular part of the symmetric matrix A and the strictly lower triangular part of a is not referenced.

Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix A and the strictly upper triangular part of a is not referenced.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, n)$.

Output Parameters

a
With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated matrix.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine syr interface are the following:

a	Holds the matrix A of size (n, n).
x	Holds the vector with the number of elements n.
uplo	Must be ' U ' or ' L '. The default value is ' U '.
alpha	The default value is 1.

?syr2
Performs a rank-2 update of a symmetric matrix.

Syntax

```
call ssyr2(uplo, n, alpha, x, incx, y, incy, a, lda)
call dsyr2(uplo, n, alpha, x, incx, y, incy, a, lda)
call syr2(a, x, y [,uplo][,alpha])
```


Include Files

- mkl.fi, blas.f90

Description

The ?syr2 routines perform a matrix-vector operation defined as

$$
A:=a l p h a^{\star} x^{\star} y^{\prime}+a l p h a^{\star} y^{\star} x^{\prime}+A,
$$

where:

```
alpha is scalar,
```

x and y are n-element vectors,
A is an n-by- n symmetric matrix.

Input Parameters

uplo
n
alpha

X
incx

Y
incy
a

Ida

CHARACTER*1. Specifies whether the upper or lower triangular part of the array a is used.
If uplo = 'U' or 'u', then the upper triangular part of the array a is used.
If uplo = 'L' or 'l', then the low triangular part of the array a is used.
INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.

REAL for ssyr2
DOUBLE PRECISION for dsyr2
Specifies the scalar alpha.
REAL for ssyr2
DOUBLE PRECISION for dsyr2
Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the n-element vector x.

INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.
REAL for ssyr2
DOUBLE PRECISION for dsyr2
Array, size at least $(1+(n-1) * a b s(i n c y))$. Before entry, the incremented array y must contain the n-element vector y.

INTEGER. Specifies the increment for the elements of y. The value of incy must not be zero.

REAL for ssyr2
DOUBLE PRECISION for dsyr2
Array, size (lda, n).
Before entry with uplo = 'U' or 'u', the leading n-by- n upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of a is not referenced.
Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of a is not referenced.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, n)$.

Output Parameters

With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated matrix.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine syr2 interface are the following:

a	Holds the matrix A of size (n, n).
x	Holds the vector x of length n.
y	Holds the vector y of length n.
ulpha	Must be ' U ' or ' L '. The default value is ' U '.
alphe	The default value is 1.

?tbmv
 Computes a matrix-vector product using a triangular band matrix.

Syntax

```
call stbmv(uplo, trans, diag, n, k, a, lda, x, incx)
call dt.bmv(uplo, trans, diag, n, k, a, lda, x, incx)
call ct.bmv(uplo, trans, diag, n, k, a, lda, x, incx)
call zt.bmv(uplo, trans, diag, n, k, a, lda, x, incx)
call t.bmv(a, x [,uplo] [, trans] [,diag])
```

Include Files

- mkl.fi, blas.f90

Description

The ? t.bmv routines perform one of the matrix-vector operations defined as
$x:=A^{*} x$, or $x:=A^{\prime}{ }^{*} x$, or $x:=\operatorname{conjg}\left(A^{\prime}\right){ }^{*} x$,
where:
x is an n-element vector,
A is an n-by- n unit, or non-unit, upper or lower triangular band matrix, with $(k+1)$ diagonals.

Input Parameters

uplo
CHARACTER*1. Specifies whether the matrix A is an upper or lower triangular matrix:

```
uplo = 'U' or 'u'
if uplo = 'L' or 'l', then the matrix is low triangular.
```

trans

CHARACTER*1. Specifies the operation:
if trans= 'N' or ' n ', then $x:=A^{*} x$;
if trans= 'T' or 't', then $x:=A^{\prime *} x^{\prime}$;
if trans= 'C' or 'c', then $x:=$ conjg(A')*x.
CHARACTER*1. Specifies whether the matrix A is unit triangular:
if uplo = 'U' or 'u' then the matrix is unit triangular;
if diag = 'N' or 'n', then the matrix is not unit triangular.
INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.

INTEGER. On entry with uplo = 'U' or 'u' specifies the number of superdiagonals of the matrix A. On entry with uplo = 'L' or 'l', k specifies the number of sub-diagonals of the matrix a.

The value of k must satisfy $0 \leq k$.
REAL for stbmv
DOUBLE PRECISION for dtbmv
COMPLEX for ctbmv
DOUBLE COMPLEX for ztbmv
Array, size (lda, n).
Before entry with uplo $=$ 'U' or 'u', the leading $(k+1)$ by n part of the array a must contain the upper triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row $(k+1)$ of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array a is not referenced. The following program segment transfers an upper triangular band matrix from conventional full matrix storage (matrix) to band storage (a):

```
do 20, j = 1, n
    m = k + 1 - j
    do 10, i = max( 1, j - k ), j
            a( m + i, j ) = matrix( i, j )
        continue
continue
```

Before entry with uplo = 'L' or 'l', the leading $(k+1)$ by n part of the array a must contain the lower triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2 , and so on. The bottom right k by k triangle of the array a is not referenced. The following program segment transfers a lower triangular band matrix from conventional full matrix storage (matrix) to band storage (a):

```
do 20, j \(=1, n\)
    \(m=1-j\)
    do 10, \(i=j, \min (n, j+k)\)
```

	```a( m + i, j ) = matrix( i, j ) continue continue```
	Note that when uplo = 'U' or 'u', the elements of the array a corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.
Ida	INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub)program. The value of Ida must be at least $(k+1)$.
$x$	REAL for stbmv
	DOUBLE PRECISION for dtbmv
	COMPLEX for ctbmv
	DOUBLE COMPLEX for ztbmv
	Array, size at least (1 + (n-1)*abs (incx)). Before entry, the incremented array $x$ must contain the $n$-element vector $x$.
incx	INTEGER. Specifies the increment for the elements of $x$.
	The value of incx must not be zero.

## Output Parameters

X
Overwritten with the transformed vector $x$.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine tbmv interface are the following:

a	Holds the array $a$ of size $(k+1, n)$.
$x$	Holds the vector with the number of elements $n$.
uplo	Must be 'U' or 'L'. The default value is 'U'.
trans	Must be 'N', 'C', or 'T'.
	The default value is 'N'.
diag	Must be 'N' or 'U'. The default value is 'N'.

?tbsv
Solves a system of linear equations whose coefficients are in a triangular band matrix.

## Syntax

```
call stbsv(uplo, trans, diag, n, k, a, lda, x, incx)
call dtbsv(uplo, trans, diag, n, k, a, lda, x, incx)
call ctbsv(uplo, trans, diag, n, k, a, lda, x, incx)
call ztbsv(uplo, trans, diag, n, k, a, lda, x, incx)
```

```
call tbsv(a, x [,uplo] [, trans] [,diag])
```

Include Files

- mkl.fi, blas.f90


## Description

The ? tbsv routines solve one of the following systems of equations:
$A^{*} x=b$, or $A^{\prime *} x=b$, or $\operatorname{conjg}\left(A^{\prime}\right)^{*} x=b$, where:
$b$ and $x$ are $n$-element vectors,
$A$ is an $n$-by-n unit, or non-unit, upper or lower triangular band matrix, with $(k+1)$ diagonals.
The routine does not test for singularity or near-singularity.
Such tests must be performed before calling this routine.
Input Parameters
uplo
trans
diag
$n$
k
a

CHARACTER*1. Specifies whether the matrix $A$ is an upper or lower triangular matrix:
if uplo = 'U' or 'u' the matrix is upper triangular;
if uplo = 'L' or 'l', the matrix is low triangular.
CHARACTER*1. Specifies the system of equations:
if trans= 'N' or 'n', then $A^{\star} X=b$;
if trans $=$ 'T' or 't', then $A$ ' $*_{x}=b$;
if trans= 'C' or 'c', then conjg(A')*x $=b$.
CHARACTER*1. Specifies whether the matrix $A$ is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag $=$ ' $N$ ' or ' $n$ ', then the matrix is not unit triangular.
INTEGER. Specifies the order of the matrix $A$. The value of $n$ must be at least zero.

INTEGER. On entry with uplo = 'U' or 'u', $k$ specifies the number of super-diagonals of the matrix $A$. On entry with uplo = 'L' or 'l', $k$ specifies the number of sub-diagonals of the matrix $A$.

The value of $k$ must satisfy $0 \leq k$.
REAL for stbsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv
Array, size (lda, n).

Before entry with uplo = 'U' or 'u', the leading $(k+1)$ by $n$ part of the array a must contain the upper triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row ( $k+1$ ) of the array, the first super-diagonal starting at position 2 in row $k$, and so on. The top left $k$ by $k$ triangle of the array $a$ is not referenced.

The following program segment transfers an upper triangular band matrix from conventional full matrix storage (matrix) to band storage (a):

```
do 20, j = 1, n
 m=k + 1 - j
 do 10, i = max(1, j - k), j
 a(m + i, j) = matrix(i, j)
 continue
continue
```

Before entry with uplo $=$ 'L' or 'l', the leading $(k+1)$ by $n$ part of the array a must contain the lower triangular band part of the matrix of coefficients, supplied column-by-column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2 , and so on. The bottom right $k$ by $k$ triangle of the array $a$ is not referenced.

The following program segment transfers a lower triangular band matrix from conventional full matrix storage (matrix) to band storage (a):

```
do 20, j = 1, n
 m = 1 - j
 do 10, i = j, min(n, j + k)
 a(m + i, j) = matrix(i, j)
10 continue
20 continue
```

When diag = 'U' or 'u', the elements of the array a corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity.

INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub)program. The value of Ida must be at least $(k+1)$.

REAL for stbsv
DOUBLE PRECISION for dtbsv
COMPLEX for ctbsv
DOUBLE COMPLEX for ztbsv
Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array $x$ must contain the $n$-element right-hand side vector $b$.

INTEGER. Specifies the increment for the elements of $x$.
The value of incx must not be zero.

## Output Parameters

X
Overwritten with the solution vector $x$.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine tbsv interface are the following:

a	Holds the array a of size $(k+1, n)$.
$x$	Holds the vector with the number of elements $n$.
uplo	Must be 'U' or 'L'. The default value is 'U'.
trans	Must be 'N', 'C', or 'T'.
	The default value is 'N'.
diag	Must be 'N' or 'U'. The default value is 'N'.

## ?tpmv <br> Computes a matrix-vector product using a triangular packed matrix.

## Syntax

```
call stpmv(uplo, trans, diag, n, ap, x, incx)
call dtpmv(uplo, trans, diag, n, ap, x, incx)
call ctpmv(uplo, trans, diag, n, ap, x, incx)
call ztpmv(uplo, trans, diag, n, ap, x, incx)
call tpmv(ap, x [,uplo] [, trans] [,diag])
```

Include Files

- mkl.fi, blas.f90


## Description

The ?tpmv routines perform one of the matrix-vector operations defined as
$x:=A^{*} x$, or $x:=A^{\prime}{ }^{x}$, or $x:=\operatorname{conjg}\left(A^{\prime}\right){ }^{*} x$,
where:
$x$ is an $n$-element vector,
$A$ is an $n$-by- $n$ unit, or non-unit, upper or lower triangular matrix, supplied in packed form.

## Input Parameters

uplo
trans

CHARACTER*1. Specifies whether the matrix $A$ is upper or lower triangular: uplo = 'U' or 'u' if uplo = 'L' or 'l', then the matrix is low triangular.

CHARACTER*1. Specifies the operation:
if trans= 'N' or 'n', then $x:=A^{*} x$;

```
 if trans= 'T' or 't', then x := A'*x;
 if trans= 'C' or 'c', then x := conjg(A')*x.
 CHARACTER* 1. Specifies whether the matrix A is unit triangular:
 if diag = 'U' or 'u' then the matrix is unit triangular;
 if diag = 'N' or 'n', then the matrix is not unit triangular.
 INTEGER. Specifies the order of the matrix A. The value of n must be at
 least zero.
 REAL for stpmv
 DOUBLE PRECISION for dtpmv
 COMPLEX for ctpmv
 DOUBLE COMPLEX for ztpmv
 Array, size at least ((n* (n+1))/2).
 Before entry with uplo = 'U' or 'u', the array ap must contain the upper
 triangular matrix packed sequentially, column-by-column, so that ap(1)
 contains a(1,1), ap(2) and ap(3) contain a(1,2) and a(2,2)
 respectively, and so on. Before entry with uplo = 'L' or 'l', the array ap
 must contain the lower triangular matrix packed sequentially, column-by-
 column, so thatap(1) contains a(1,1), ap(2) and ap(3) contain a(2,1)
 and a(3,1) respectively, and so on. When diag = 'U' or 'u', the
 diagonal elements of a are not referenced, but are assumed to be unity.
REAL for stpmv
DOUBLE PRECISION for dtpmv
COMPLEX for ctpmv
DOUBLE COMPLEX for ztpmv
Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).
INTEGER. Specifies the increment for the elements of \(x\).
The value of incx must not be zero.
```


## Output Parameters

Overwritten with the transformed vector $x$.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine tpmv interface are the following:

ap	Holds the array $a p$ of size $\left(n^{*}(n+1) / 2\right)$.
$x$	Holds the vector with the number of elements $n$.

```
uplo
trans
diag
Must be 'U' or 'L'. The default value is 'U'.
Must be 'N', 'C', or 'T'.
The default value is 'N'.
Must be 'N' or 'U'. The default value is 'N'.
```


## ?tpsv

Solves a system of linear equations whose coefficients are in a triangular packed matrix.

## Syntax

```
call stpsv(uplo, trans, diag, n, ap, x, incx)
call dtpsv(uplo, trans, diag, n, ap, x, incx)
call ctpsv(uplo, trans, diag, n, ap, x, incx)
call ztpsv(uplo, trans, diag, n, ap, x, incx)
call tpsv(ap, x [,uplo] [, trans] [,diag])
```

Include Files

- mkl.fi, blas.f90


## Description

The ?tpsv routines solve one of the following systems of equations
$A^{*} x=b$, or $A^{\prime}{ }^{*} x=b$, or conjg( $\left.A^{\prime}\right){ }^{*} x_{x}=b$,
where:
$b$ and $x$ are $n$-element vectors,
$A$ is an $n$-by- $n$ unit, or non-unit, upper or lower triangular matrix, supplied in packed form.
This routine does not test for singularity or near-singularity.
Such tests must be performed before calling this routine.

## Input Parameters

uplo
trans
diag

CHARACTER*1. Specifies whether the matrix $A$ is upper or lower triangular:
uplo = 'U' or 'u'
if uplo = 'L' or 'l', then the matrix is low triangular.
CHARACTER*1. Specifies the system of equations:
if trans= 'N' or 'n', then $A^{\star} x=b$;
if trans= 'T' or 't', then $A$ '* $x=b$;
if trans= 'C' or 'C', then conjg(A')* $x=b$.
CHARACTER*1. Specifies whether the matrix $A$ is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
$n$
ap

X
incx
if diag $=$ ' $N$ ' or ' n ', then the matrix is not unit triangular.
INTEGER. Specifies the order of the matrix $A$. The value of $n$ must be at least zero.

REAL for stpsv
DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv
DOUBLE COMPLEX for ztpsv
Array, size at least $\left(\left(n^{*}(n+1)\right) / 2\right)$.
Before entry with uplo = 'U' or 'u', the array ap must contain the upper triangular part of the triangular matrix packed sequentially, column-bycolumn, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(1$, 2 ) and a(2, 2) respectively, and so on.
Before entry with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the triangular matrix packed sequentially, column-bycolumn, so that $a p(1)$ contains $a(1,1), a p(2)$ and $a p(3)$ contain $a(2$, $1)$ and $a(3,1)$ respectively, and so on.
When diag = 'U' or 'u', the diagonal elements of a are not referenced, but are assumed to be unity.

REAL for stpsv
DOUBLE PRECISION for dtpsv
COMPLEX for ctpsv
DOUBLE COMPLEX for ztpsv
Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array $x$ must contain the $n$-element right-hand side vector $b$. INTEGER. Specifies the increment for the elements of $x$. The value of incx must not be zero.

## Output Parameters

x
Overwritten with the solution vector $x$.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine tpsv interface are the following:

ap	Holds the array ap of size $\left(n^{*}(n+1) / 2\right)$.
$x$	Holds the vector with the number of elements $n$.
uplo	Must be 'U' or 'L'. The default value is ' U '.
trans	Must be 'N', 'C' or 'T'.

The default value is ' N '.
diag
Must be 'N' or 'U'. The default value is 'N'.
?trmv
Computes a matrix-vector product using a triangular matrix.

Syntax

```
call strmv(uplo, trans, diag, n, a, lda, x, incx)
call dtrmv(uplo, trans, diag, n, a, lda, x, incx)
call ctrmv(uplo, trans, diag, n, a, lda, x, incx)
call ztrmv(uplo, trans, diag, n, a, lda, x, incx)
call trmv(a, x [,uplo] [, trans] [,diag])
```

Include Files

- mkl.fi,blas.f90


## Description

The ?trmv routines perform one of the following matrix-vector operations defined as
$x:=A^{*} x$, or $x:=A^{\prime}{ }^{x}$, or $x:=\operatorname{conjg}\left(A^{\prime}\right){ }^{*} x$,
where:
$x$ is an $n$-element vector,
$A$ is an $n$-by- $n$ unit, or non-unit, upper or lower triangular matrix.

## Input Parameters

uplo
trans
diag
$n$
a

CHARACTER*1. Specifies whether the matrix $A$ is upper or lower triangular:
uplo = 'U' or 'u'
if uplo = 'L' or 'l', then the matrix is low triangular.
CHARACTER*1. Specifies the operation:
if trans= ' $N$ ' or ' $n$ ', then $x:=A^{\star} x$;
if trans= 'T' or 't', then $x:=A^{\prime *} x$;
if trans= 'C' or 'c', then $x:=\operatorname{conjg}\left(A^{\prime}\right){ }^{*} x$.
CHARACTER*1. Specifies whether the matrix $A$ is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag $=$ ' $N$ ' or ' $n$ ', then the matrix is not unit triangular.
INTEGER. Specifies the order of the matrix $A$. The value of $n$ must be at least zero.

REAL for strmv
DOUBLE PRECISION for dtrmv

	COMPLEX for ctrmv
	DOUBLE COMPLEX for ztrmv
	Array, size (lda, n). Before entry with uplo = 'U' or 'u', the leading $n$ -by- $n$ upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of $a$ is not referenced. Before entry with uplo = 'L' or 'l', the leading $n$-by- $n$ lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of $a$ is not referenced.
	When diag = 'U' or 'u', the diagonal elements of a are not referenced either, but are assumed to be unity.
Ida	INTEGER. Specifies the leading dimension of a declared in the calling (sub)program. The value of Ida must be at least max $(1, n)$.
$x$	REAL for strmv
	DOUBLE PRECISION for dtrmv
	COMPLEX for ctrmv
	DOUBLE COMPLEX for ztrmv
	Array, size at least (1 + (n - 1)*abs (incx)). Before entry, the incremented array $x$ must contain the $n$-element vector $x$.
incx	INTEGER. Specifies the increment for the elements of $x$.
	The value of incx must not be zero.

## Output Parameters

x
Overwritten with the transformed vector $x$.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine trmv interface are the following:


## Syntax

```
call strsv(uplo, trans, diag, n, a, lda, x, incx)
call dtrsv(uplo, trans, diag, n, a, lda, x, incx)
call ctrsv(uplo, trans, diag, n, a, lda, x, incx)
call ztrsv(uplo, trans, diag, n, a, lda, x, incx)
call trsv(a, x [,uplo] [, trans] [,diag])
```


## Include Files

- mkl.fi, blas.f90


## Description

The ?trsv routines solve one of the systems of equations:

```
A*}x=b,or A'*X = b, or conjg(A')*x = b
```

where:
$b$ and $x$ are $n$-element vectors,
$A$ is an $n$-by- $n$ unit, or non-unit, upper or lower triangular matrix.
The routine does not test for singularity or near-singularity.
Such tests must be performed before calling this routine.

## Input Parameters

```
uplo
trans
diag
a
 CHARACTER*1. Specifies whether the matrix A is upper or lower triangular:
 uplo = 'U' or 'u'
 if uplo = 'L' or 'l', then the matrix is low triangular.
 CHARACTER* 1. Specifies the systems of equations:
 if trans= 'N' or 'n', then A*X = b;
 if trans= 'T' or 't', then A'*x = b;
 if trans= 'C' or 'c', then oconjg(A')*x = b.
 CHARACTER*1. Specifies whether the matrix A is unit triangular:
 if diag = 'U' or 'u' then the matrix is unit triangular;
 if diag = 'N' or 'n', then the matrix is not unit triangular.
 INTEGER. Specifies the order of the matrix A. The value of n must be at
 least zero.
REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv
```

Ida
$x$
incx

Array, size (lda, n). Before entry with uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of $a$ is not referenced. Before entry with uplo = 'L' or 'l', the leading $n$-by- $n$ lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of $a$ is not referenced.

When diag = 'U' or 'u', the diagonal elements of a are not referenced either, but are assumed to be unity.

INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub) program. The value of $I d a$ must be at least max $(1, n)$.

REAL for strsv
DOUBLE PRECISION for dtrsv
COMPLEX for ctrsv
DOUBLE COMPLEX for ztrsv
Array, size at least $(1+(n-1) * a b s(i n c x))$. Before entry, the incremented array $x$ must contain the $n$-element right-hand side vector $b$.

INTEGER. Specifies the increment for the elements of $x$.
The value of incx must not be zero.

## Output Parameters

X
Overwritten with the solution vector $x$.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine trsv interface are the following:

a	Holds the matrix a of size $(n, n)$.
$x$	Holds the vector with the number of elements $n$.
uplo	Must be 'U' or 'L'. The default value is 'U'.
trans	Must be 'N', 'C', or 'T'.
	The default value is 'N'.
diag	Must be 'N' or 'U'. The default value is 'N'.

## BLAS Level 3 Routines

BLAS Level 3 routines perform matrix-matrix operations. The following table lists the BLAS Level 3 routine groups and the data types associated with them.
BLAS Level 3 Routine Groups and Their Data Types

Routine Group	Data Types	Description
$? g e \mathrm{~mm}$	$\mathrm{~s}, \mathrm{~d}, \mathrm{c}, \mathrm{z}$	Computes a matrix-matrix product with general matrices.


Routine Group	Data Types	Description
?hemm	c, z	Computes a matrix-matrix product where one input matrix   is Hermitian.
?herk	c, z	Performs a Hermitian rank-k update.
?her2k	c, z	Performs a Hermitian rank-2k update.   ?symm
s, d, c, z	Computes a matrix-matrix product where one input matrix   is symetric.	
?syr2k	s, d, c, z	Performs a symmetric rank-k update.
?trmm	s, d, c, z	Computes a matrix-matrix product where one input matrix   is triangular.
?trsm	S, d, c, z	Solves a triangular matrix equation.

## Symmetric Multiprocessing Version of Intel ${ }^{\circledR}$ MKL

Many applications spend considerable time executing BLAS routines. This time can be scaled by the number of processors available on the system through using the symmetric multiprocessing (SMP) feature built into the Intel ${ }^{\circledR}$ oneMKL. The performance enhancements based on the parallel use of the processors are available without any programming effort on your part.

To enhance performance, the library uses the following methods:

- The BLAS functions are blocked where possible to restructure the code in a way that increases the localization of data reference, enhances cache memory use, and reduces the dependency on the memory bus.
- The code is distributed across the processors to maximize parallelism.


## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

```
?gemm
Computes a matrix-matrix product with general
matrices.
```


## Syntax

```
call sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call scgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call dzgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call gemm(a, b, c [,transa][,transb] [,alpha][,beta])
```


## Include Files

- mkl.fi,blas.f90


## Description

The ?gemm routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, with general matrices. The operation is defined as

```
C := alpha*op (A)*op (B) + beta*C
```

where:

```
op (X) is one of op (X) = X, or op (X) = X , or op (X) = X 'H,
alpha and beta are scalars,
A,B and C are matrices:
op (A) is an m-by-k matrix,
op (B) is a k-by-n matrix,
```

$C$ is an $m$-by- $n$ matrix.
See also:

- ?gemm3m, BLAS-like extension routines, that use matrix multiplication for similar matrix-matrix operations


## Input Parameters

transa
transb
m
n
k
alpha

CHARACTER*1. Specifies the form of op ( $A$ ) used in the matrix multiplication:

- if transa $=$ 'N' or 'n', then op $(A)=A$;
- if transa $=$ 'T' or 't', then op $(A)=A^{T}$;
- if transa $=$ ' C' or 'C', then op $(A)=A^{\mathrm{H}}$.

CHARACTER*1. Specifies the form of op $(B)$ used in the matrix multiplication:

- if transb $=$ ' $N$ ' or ' $n$ ', then op $(B)=B$;
- if transb $=$ 'T' or 't', then op $(B)=B^{T}$;
- if transb $={ }^{\prime} C$ ' or ' $C$ ', then op $(B)=B^{H}$.

INTEGER. Specifies the number of rows of the matrix op (A) and of the matrix $C$. The value of $m$ must be at least zero.

INTEGER. Specifies the number of columns of the matrix op ( $B$ ) and the number of columns of the matrix $C$. The value of $n$ must be at least zero.

INTEGER. Specifies the number of columns of the matrix op ( $A$ ) and the number of rows of the matrix op ( $B$ ). The value of $k$ must be at least zero.

REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm, scgemm
DOUBLE COMPLEX for zgemm, dzgemm
Specifies the scalar alpha.
a

REAL for sgemm, scgemm
DOUBLE PRECISION for dgemm, dzgemm
COMPLEX for cgemm
DOUBLE COMPLEX for zgemm
Array, size lda by ka, where $k a$ is $k$ when transa $=$ ' $N$ ' or ' $n$ ', and is $m$ otherwise. Before entry with transa $=$ ' $N$ ' or ' $n$ ', the leading $m$-by- $k$ part of the array a must contain the matrix $A$, otherwise the leading $k$-by-m part of the array a must contain the matrix $A$.

INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub)program.
When transa $=$ ' $N$ ' or ' $n$ ', then lda must be at least max $(1, m)$, otherwise lda must be at least max $(1, k)$.

REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm, scgemm
DOUBLE COMPLEX for zgemm, dzgemm
Array, size $l d b$ by $k b$, where $k b$ is $n$ when transa $=$ ' $N$ ' or ' $n$ ', and is $k$ otherwise. Before entry with transa $=$ ' $N$ ' or ' $n$ ', the leading $k$-by-n part of the array $b$ must contain the matrix $B$, otherwise the leading $n-b y-k$ part of the array $b$ must contain the matrix $B$.

INTEGER. Specifies the leading dimension of $b$ as declared in the calling (sub)program.
When transb $=$ ' $N$ ' or ' $n$ ' , then $1 d b$ must be at least max $(1, k)$, otherwise $1 d b$ must be at least $\max (1, n)$.

REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm, scgemm
DOUBLE COMPLEX for zgemm, dzgemm
Specifies the scalar beta. When beta is equal to zero, then $c$ need not be set on input.

REAL for sgemm
DOUBLE PRECISION for dgemm
COMPLEX for cgemm, scgemm
DOUBLE COMPLEX for zgemm, dzgemm
Array, size $l d c$ by $n$. Before entry, the leading $m$-by- $n$ part of the array $c$ must contain the matrix $C$, except when beta is equal to zero, in which case $c$ need not be set on entry.

INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program.

The value of $I d c$ must be at least max $(1, m)$.

## Output Parameters

c
Overwritten by the $m$-by- $n$ matrix (alpha*op $(A) * o p(B)+$ beta* $C$ ).

## Example

For examples of routine usage, see these code examples in the Intel ${ }^{\oplus}$ oneAPI Math Kernel Library (oneMKL) installation directory:

- sgemm: examples \blas $\sin$ ource\sgemmx.f
- dgemm: examples $\backslash \mathrm{blas} \backslash$ source\dgemmx.f
- cgemm: examples $\backslash \mathrm{blas} \backslash$ source\cgemmx.f
- zgemm: examples $\backslash \mathrm{blas} \backslash$ source $\backslash \mathrm{zgemmx}$.f


## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine gemm interface are the following:

a	Holds the matrix $A$ of size ( $m a, k a$ ) where
	$k a=k$ if transa='N',
	$k a=m$ otherwise,
	$m a=m$ if transa=' ${ }^{\prime}$ ',
	ma $=k$ otherwise.
b	Holds the matrix $B$ of size ( $m b, k b$ ) where
	$k b=n$ if transb $={ }^{\prime} N^{\prime}$ ',
	$k b=k$ otherwise,
	$m b=k$ if transb $={ }^{\prime} N^{\prime}$ ',
	$m b=n$ otherwise.
C	Holds the matrix $C$ of size ( $m, n$ ).
transa	Must be 'N', 'C', or 'T'.
	The default value is ' N '.
transb	Must be 'N', 'C', or 'T'.
	The default value is ' N '.
alpha	The default value is 1.
beta	The default value is 0 .
?hemm	
Computes a matrix-matrix product where one input matrix is Hermitian.	

## Syntax

```
call chemm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
call zhemm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
call hemm(a, b, c [,side][,uplo] [,alpha][,beta])
```

Include Files

- mkl.fi,blas.f90


## Description

The ?hemm routines compute a scalar-matrix-matrix product using a Hermitian matrix $A$ and a general matrix $B$ and add the result to a scalar-matrix product using a general matrix $C$. The operation is defined as

```
C := alpha\starA\star B + beta*C
```

or

```
C:= alpha* B*A + beta*}
```

where:
alpha and beta are scalars,
$A$ is a Hermitian matrix,
$B$ and $C$ are m-by-n matrices.

## Input Parameters

side
uplo
m
n
alpha
a

CHARACTER*1. Specifies whether the Hermitian matrix $A$ appears on the left or right in the operation as follows:
if side $=$ 'L' or 'l', then $C:=$ alpha*A* $B+$ beta* $C$;
if side $=$ 'R' or 'r', then $C:=a l p h a \star B^{\star} A+$ beta* $C$.
CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian matrix $A$ is used:

If uplo = 'U' or 'u', then the upper triangular part of the Hermitian matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangular part of the Hermitian matrix $A$ is used.

INTEGER. Specifies the number of rows of the matrix $C$.
The value of $m$ must be at least zero.
INTEGER. Specifies the number of columns of the matrix $C$.
The value of $n$ must be at least zero.
COMPLEX for chemm
DOUBLE COMPLEX for zhemm
Specifies the scalar alpha.
COMPLEX for chemm

DOUBLE COMPLEX for zhemm
Array, size (lda, ka), where $k a$ is $m$ when side $=$ 'L' or 'l' and is $n$ otherwise. Before entry with side = 'L' or 'l', the $m$-by-m part of the array a must contain the Hermitian matrix, such that when uplo = 'U' or 'u', the leading $m$-by- $m$ upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of $a$ is not referenced, and when uplo $=$ 'L' or 'l', the leading $m$-by- $m$ lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix, and the strictly upper triangular part of $a$ is not referenced.

Before entry with side $=$ ' R ' or 'r', the $n$-by-n part of the array a must contain the Hermitian matrix, such that when uplo = 'U' or 'u', the leading $n$-by- $n$ upper triangular part of the array a must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of $a$ is not referenced, and when uplo = 'L' or 'l', the leading $n$-by- $n$ lower triangular part of the array a must contain the lower triangular part of the Hermitian matrix, and the strictly upper triangular part of $a$ is not referenced. The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.

INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub) program. When side $=$ 'L' or 'l' then Ida must be at least max(1, $m$ ), otherwise Ida must be at least max $(1, n)$.
b

1 db
beta

C
ldc

COMPLEX for chemm
DOUBLE COMPLEX for zhemm
Array, size $/ d b$ by $n$.
The leading $m$-by- $n$ part of the array $b$ must contain the matrix $B$.
INTEGER. Specifies the leading dimension of $b$ as declared in the calling (sub)program. $1 d b$ must be at least $\max (1, m)$

COMPLEX for chemm
DOUBLE COMPLEX for zhemm
Specifies the scalar beta.
When beta is supplied as zero, then $c$ need not be set on input.
COMPLEX for chemm
DOUBLE COMPLEX for zhemm
Array, size $(c, n)$. Before entry, the leading $m$-by- $n$ part of the array $c$ must contain the matrix $C$, except when beta is zero, in which case $c$ need not be set on entry.

INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program. Idc must be at least max ( $1, m$ )

## Output Parameters

Overwritten by the $m$-by- $n$ updated matrix.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine hemm interface are the following:

a	Holds the matrix $A$ of size ( $k, k$ ) where
	$k=m$ if side = 'L',
	$k=n$ otherwise.
b	Holds the matrix $B$ of size ( $m, n$ ) .
c	Holds the matrix $C$ of size ( $m, n$ ).
side	Must be 'L' or 'R'. The default value is 'L'.
uplo	Must be 'U' or 'L'. The default value is 'U'.
alpha	The default value is 1.
beta	The default value is 0 .

## ?herk

Performs a Hermitian rank-k update.

## Syntax

```
call cherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call zherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call herk(a, c [,uplo] [, trans] [,alpha][,beta])
```


## Include Files

- mkl.fi,blas.f90


## Description

The ?herk routines perform a rank-k matrix-matrix operation using a general matrix $A$ and a Hermitian matrix $C$. The operation is defined as:

```
 C := alpha\star A\star A H}+\quad\mathrm{ beta* C,
```

or

```
C := alpha\star AH*A + beta*C,
```

where:
alpha and beta are real scalars,
$C$ is an $n$-by- $n$ Hermitian matrix,
$A$ is an $n$-by- $k$ matrix in the first case and a $k$-by- $n$ matrix in the second case.

## Input Parameters

uplo
trans
n
k
a
lda
beta
c

CHARACTER*1. Specifies whether the upper or lower triangular part of the array $c$ is used.
If uplo = 'U' or 'u' , then the upper triangular part of the array $c$ is used.
If uplo = 'L' or 'l', then the low triangular part of the array $c$ is used.
CHARACTER*1. Specifies the operation:
if trans= 'N' or 'n', then $C:=a l p h a \star A \star A^{H}+b e t a \star C$;
if trans= 'C' or 'c', then $C:=a l p h a \star A^{H} \star A+$ beta* $C$.
INTEGER. Specifies the order of the matrix $C$. The value of $n$ must be at least zero.

INTEGER. Withtrans= ' $N$ ' or ' $n$ ', $k$ specifies the number of columns of the matrix $A$, and with trans $=$ ' $C$ ' or 'c', $k$ specifies the number of rows of the matrix $A$.

The value of $k$ must be at least zero.
REAL for cherk
DOUBLE PRECISION for zherk
Specifies the scalar alpha.
COMPLEX for cherk
DOUBLE COMPLEX for zherk
Array, size (lda, ka), where $k a$ is $k$ when trans= 'N' or 'n', and is $n$ otherwise. Before entry with trans= 'N' or 'n', the leading $n$-by- $k$ part of the array $a$ must contain the matrix $a$, otherwise the leading $k$-by-n part of the array a must contain the matrix $A$.

INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub)program. When trans= 'N' or 'n', then lda must be at least max ( 1 , $n)$, otherwise Ida must be at least max $(1, k)$.

REAL for cherk
DOUBLE PRECISION for zherk
Specifies the scalar beta.
COMPLEX for cherk
DOUBLE COMPLEX for zherk
Array, size Idc by $n$.
Before entry with uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array $c$ must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of $c$ is not referenced.
Before entry with uplo = 'L' or 'l', the leading $n$-by- $n$ lower triangular part of the array $c$ must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of $c$ is not referenced.

The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.

INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program. The value of $I d c$ must be at least max $(1, n)$.

## Output Parameters

c
With uplo = 'U' or 'u', the upper triangular part of the array $c$ is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array $c$ is overwritten by the lower triangular part of the updated matrix.
The imaginary parts of the diagonal elements are set to zero.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine herk interface are the following:
a
Holds the matrix $A$ of size ( $m a, k a$ ) where

$$
\begin{aligned}
& k a=k \text { if trans }='^{\prime} \mathrm{N}^{\prime}, \\
& k a=n \text { otherwise } \\
& m a=n \text { if trans }='^{\prime} \mathrm{N}^{\prime} \\
& m a=k \text { otherwise. }
\end{aligned}
$$

c	Holds the matrix $C$ of size $(n, n)$.
uplo	Must be ' $U$ ' or ' $L$ '. The default value is ' $U$ '.
trans	Must be ' $N$ ' or ' $C^{\prime}$ '. The default value is ' $N$ '.
alpha	The default value is 1.
beta	The default value is 0.

## ?her2k

Performs a Hermitian rank-2k update.

## Syntax

```
call cher2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call zher2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call her2k(a, b, c [,uplo][,trans] [,alpha][,beta])
```

Include Files

- mkl.fi, blas.f90

Description

The ?her 2 k routines perform a rank-2k matrix-matrix operation using general matrices $A$ and $B$ and a Hermitian matrix $C$. The operation is defined as

```
C := alpha* A* B
```

or

where:
alpha is a scalar and beta is a real scalar.
$C$ is an $n$-by- $n$ Hermitian matrix.
$A$ and $B$ are $n$-by- $k$ matrices in the first case and $k$-by- $n$ matrices in the second case.

## Input Parameters

uplo
trans
$n$
k
alpha
a
lda
beta

CHARACTER*1. Specifies whether the upper or lower triangular part of the array $c$ is used.
If uplo = 'U' or 'u', then the upper triangular of the array $c$ is used.
If uplo = 'L' or 'l', then the low triangular of the array $c$ is used.
CHARACTER*1. Specifies the operation:
iftrans= 'N' or 'n', then $C:=a l p h a \star A \star B^{\mathrm{H}}+\operatorname{alpha\star } B^{\star} A^{\mathrm{H}}+$ beta* $C$;
if trans= 'C' or 'C', then $C:=a l p h a * A^{H} * B+a l p h a * B^{H} A+$ beta* $C$.
INTEGER. Specifies the order of the matrix $C$. The value of $n$ must be at least zero.

INTEGER. With trans= 'N' or 'n' specifies the number of columns of the matrix $A$, and with trans $=$ ' $C$ ' or 'c', $k$ specifies the number of rows of the matrix $A$.

The value of $k$ must be at least equal to zero.
COMPLEX for cher 2 k
DOUBLE COMPLEX for zher $2 k$
Specifies the scalar alpha.
COMPLEX for cher 2 k
DOUBLE COMPLEX for zher 2 k
Array, size (lda, ka), where $k a$ is $k$ when trans $=N^{\prime} N^{\prime}$ or ' $n$ ', and is $n$ otherwise. Before entry with trans= 'N' or 'n', the leading $n$-by- $k$ part of the array a must contain the matrix $A$, otherwise the leading $k$-by- $n$ part of the array a must contain the matrix $A$.

INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub)program.
When trans= 'N' or 'n'trans= 'N' or 'n', then Ida must be at least $\max (1, n)$, otherwise Ida must be at least max $(1, k)$.

REAL for cher $2 k$
DOUBLE PRECISION for zher2k

Specifies the scalar beta.
b

1 db

C
ldc

COMPLEX for cher 2 k
DOUBLE COMPLEX for zher2k
Array, size ( $1 d b, k b$ ), where $k b$ is $k$ when trans= ' $N$ ' or ' $n$ ', and is $n$ otherwise. Before entry with trans= 'N' or ' $n$ ', the leading $n$-by- $k$ part of the array $b$ must contain the matrix $B$, otherwise the leading $k$-by-n part of the array $b$ must contain the matrix $B$.

INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub)program.
When trans= 'N' or 'n', then $/ d b$ must be at least max $(1, n)$, otherwise $l d b$ must be at least max $(1, k)$.

COMPLEX for cher2k
DOUBLE COMPLEX for zher 2 k
Array, size Idc by $n$.
Before entry withuplo = 'U' or 'u', the leading n-by-n upper triangular part of the array $c$ must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular part of $c$ is not referenced.

Before entry with uplo = 'L' or 'l', the leading $n$-by- $n$ lower triangular part of the array $c$ must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part of $c$ is not referenced.

The imaginary parts of the diagonal elements need not be set, they are assumed to be zero.

INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program. The value of $I d c$ must be at least max $(1, n)$.

## Output Parameters

c
With uplo = 'U' or 'u', the upper triangular part of the array $c$ is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array $c$ is overwritten by the lower triangular part of the updated matrix.
The imaginary parts of the diagonal elements are set to zero.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine her 2 k interface are the following:
a
Holds the matrix $A$ of size ( $m a, k a$ ) where
$k a=k$ if trans $=' N '$,
$k a=n$ otherwise,
ma $=n$ if trans $=$ ' $N$ ',

```
ma = k otherwise.
b
Holds the matrix B of size (mb,kb) where
```

```
kb = k if trans = 'N',
```

kb = k if trans = 'N',

```
kb = k if trans = 'N',
kb = n otherwise,
kb = n otherwise,
kb = n otherwise,
mb = n if trans = 'N',
mb = n if trans = 'N',
mb = n if trans = 'N',
mb = k otherwise.
mb = k otherwise.
mb = k otherwise.
uplo
trans
alpha
```

C
beta

```
ma \(=k\) Otherwise.
b
Holds the matrix \(C\) of size \((n, n)\).
Must be 'U' or 'L'. The default value is 'U'.
Must be 'N' or 'C'. The default value is 'N'.
The default value is 1 .
The default value is 0 .
```


## ?symm

Computes a matrix-matrix product where one input
matrix is symmetric.

## Syntax

```
call ssymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
call dsymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
call csymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
call zsymm(side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)
call symm(a, b, c [,side][,uplo] [,alpha][,beta])
```


## Include Files

- mkl.fi,blas.f90


## Description

The ?symm routines compute a scalar-matrix-matrix product with one symmetric matrix and add the result to a scalar-matrix product. The operation is defined as

```
 C := alpha*A*B + beta*C,
```

or

```
C := alpha* B\starA + beta* C,
```

where:
alpha and beta are scalars,
$A$ is a symmetric matrix,
$B$ and $C$ are $m$-by- $n$ matrices.

## Input Parameters

side
uplo
m
n
a

CHARACTER*1. Specifies whether the symmetric matrix $A$ appears on the left or right in the operation:

```
if side = 'L' or 'l', then C := alpha\starA\starB + beta*C;
if side = 'R' or 'r', then C := alpha* B\starA + beta*C.
```

CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric matrix $A$ is used:
if uplo = 'U' or 'u', then the upper triangular part is used;
if uplo = 'L' or 'l', then the lower triangular part is used.
INTEGER. Specifies the number of rows of the matrix $C$.
The value of $m$ must be at least zero.
INTEGER. Specifies the number of columns of the matrix $C$.
The value of $n$ must be at least zero.
REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Specifies the scalar alpha.
REAL for ssymm
DOUBLE PRECISION for dsymm
COMPLEX for csymm
DOUBLE COMPLEX for zsymm
Array, size (lda, ka), where $k a$ is $m$ when side $=$ ' $L$ ' or 'l' and is $n$ otherwise.
Before entry with side = 'L' or 'l', the $m$-by- $m$ part of the array a must contain the symmetric matrix, such that when uplo = 'U' or 'u', the leading $m$-by- $m$ upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of $a$ is not referenced, and when side $=$ ' L' or 'l', the leading $m$-by-m lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of $a$ is not referenced.
Before entry with side $=$ ' R ' or 'r', the $n$-by-n part of the array a must contain the symmetric matrix, such that when uplo = 'U' or 'u'e array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of $a$ is not referenced, and when side $=$ ' L' or ' 1 ', the leading $n$-by- $n$ lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of $a$ is not referenced.

Ida	INTEGER. Specifies the leading dimension of a declared in the calling (sub) program. When side $=$ 'L' or 'l' then Ida must be at least max (1, $m)$, otherwise Ida must be at least max $(1, n)$.
b	REAL for ssymm
	DOUBLE PRECISION for dsymm
	COMPLEX for csymm
	DOUBLE COMPLEX for zsymm
	Array, size $/ d b$ by $n$.
	The leading $m$-by-n part of the array $b$ must contain the matrix $B$.
1 db	INTEGER. Specifies the leading dimension of $b$ as declared in the calling (sub)program. Idb must be at least max (1, m)
beta	REAL for ssymm
	DOUBLE PRECISION for dsymm
	COMPLEX for csymm
	DOUBLE COMPLEX for zsymm
	Specifies the scalar beta.
	When beta is set to zero, then $c$ need not be set on input.
C	REAL for ssymm
	DOUBLE PRECISION for dsymm
	COMPLEX for csymm
	DOUBLE COMPLEX for zsymm
	Array, size $(c, n)$. Before entry, the leading $m$-by- $n$ part of the array $c$ must contain the matrix $C$, except when beta is zero, in which case $c$ need not be set on entry.
$1 d c$	INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program. Idc must be at least max (1, m)

## Output Parameters

c
Overwritten by the m-by-n updated matrix.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine symm interface are the following:

```
a Holds the matrix A of size (}k,k\mathrm{) where
\[
\begin{aligned}
& k=m \text { if } s i d e=' L ', \\
& k=n \text { otherwise. }
\end{aligned}
\]
```

b	Holds the matrix $B$ of size $(m, n)$.
c	Holds the matrix $C$ of size $(m, n)$.
side	Must be 'L' or 'R'. The default value is ' $L$ '.
uplo	Must be ' $U$ ' or ' $L$ '. The default value is ' $U$ '.
alpha	The default value is 1.
beta	The default value is 0.

?syrk
Performs a symmetric rank-k update.
Syntax

```
call ssyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call dsyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call csyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call zsyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
call syrk(a, c [,uplo] [, trans] [,alpha][,beta])
```


## Include Files

- mkl.fi,blas.f90


## Description

The ?syrk routines perform a rank-k matrix-matrix operation for a symmetric matrix $C$ using a general matrix $A$. The operation is defined as:

```
C := alpha*A*A' + beta*C,
```

or

```
C := alpha*A'*A + beta*C,
```

where:
alpha and beta are scalars,
$C$ is an $n$-by- $n$ symmetric matrix,
$A$ is an $n$-by- $k$ matrix in the first case and a $k$-by- $n$ matrix in the second case.

## Input Parameters

uplo
trans

CHARACTER*1. Specifies whether the upper or lower triangular part of the array $c$ is used.

If uplo = 'U' or 'u', then the upper triangular part of the array $c$ is used.

If uplo = 'L' or 'l', then the low triangular part of the array $c$ is used.
CHARACTER*1. Specifies the operation:
if trans= 'N' or 'n', then $C:=a l p h a \star A \star A '+b e t a \star C$;
if trans= 'T' or 't', then $C:=a l p h a * A ' * A+b e t a * C$;
if trans $=$ ' C' or 'c', then $C:=a l p h a \star A ' * A+b e t a \star C$.
INTEGER. Specifies the order of the matrix $C$. The value of $n$ must be at least zero.

INTEGER. On entry with trans= 'N' or ' $n$ ', $k$ specifies the number of columns of the matrix $a$, and on entry with trans= 'T', 't', 'C', or 'c', $k$ specifies the number of rows of the matrix $a$.
The value of $k$ must be at least zero.
REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk
Specifies the scalar alpha.
REAL for ssyrk
DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk
Array, size (lda, ka), where $k a$ is $k$ when trans $=N^{\prime} N^{\prime}$ or ' $n$ ', and is $n$ otherwise. Before entry with trans= 'N' or ' $n$ ', the leading $n$-by- $k$ part of the array a must contain the matrix $A$, otherwise the leading $k$-by- $n$ part of the array a must contain the matrix $A$.
Array, size (lda, ka), where $k a$ is $k$ when trans= 'N' or 'n', and is $n$ otherwise. Before entry with trans= 'N' or 'n', the leading $n$-by- $k$ part of the array $a$ must contain the matrix $a$, otherwise the leading $k$-by-n part of the array a must contain the matrix $A$.

INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub) program. When trans= 'N' or 'n', then Ida must be at least max (1, $n$ ), otherwise Ida must be at least $\max (1, k)$.

```
REAL for ssyrk
```

```
DOUBLE PRECISION for dsyrk
```

COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk
Specifies the scalar beta.

```
REAL for ssyrk
```

DOUBLE PRECISION for dsyrk
COMPLEX for csyrk
DOUBLE COMPLEX for zsyrk

Array, size ( $I d c, n$ ). Before entry with uplo = 'U' or 'u', the leading $n$ -by-n upper triangular part of the array $c$ must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of $c$ is not referenced.

Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array $c$ must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of $c$ is not referenced.
ldc
INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program. The value of $I d c$ must be at least max $(1, n)$.

## Output Parameters

c
With uplo = 'U' or 'u', the upper triangular part of the array $c$ is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array $c$ is overwritten by the lower triangular part of the updated matrix.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine syrk interface are the following:

a	Holds the matrix $A$ of size $(m a, k a)$ where
	$k a=k$ if transa='N',
	$k a=n$ otherwise,
	$m a=n$ if transa ${ }^{\prime} N^{\prime}$,
	$m a=k$ otherwise.
C	
Holds the matrix $C$ of size $(n, n)$.	
uplo	Must be 'U' or 'L'. The default value is 'U'.
trans	Must be 'N', 'C', or 'T'.
	The default value is 'N'.
alpha	The default value is 1.
beta	The default value is 0.

?syr2k
Performs a symmetric rank-2k update.

## Syntax

```
call ssyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call dsyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call csyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call zsyr2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
```

```
call syr2k(a, b, c [,uplo][,trans] [,alpha][,beta])
```


## Include Files

- mkl.fi, blas.f90


## Description

The ?syr 2 k routines perform a rank-2k matrix-matrix operation for a symmetric matrix $C$ using general matrices $A$ and $B$ The operation is defined as:

```
C := alpha\star A\star B' + alpha\star B\star A' + beta\star C,
```

or

```
C:= alpha*A'*B + alpha* B'*A + beta*C,
```

where:
alpha and beta are scalars,
$C$ is an $n$-by- $n$ symmetric matrix,
$A$ and $B$ are $n$-by- $k$ matrices in the first case, and $k$-by- $n$ matrices in the second case.
Input Parameters
uplo
trans
n
k
alpha
a

CHARACTER*1. Specifies whether the upper or lower triangular part of the array $c$ is used.

If uplo = 'U' or 'u' , then the upper triangular part of the array $c$ is used.

If uplo = 'L' or 'l' , then the low triangular part of the array $c$ is used.
CHARACTER*1. Specifies the operation:
if trans= 'N' or 'n', then $C:=a l p h a \star A \star B^{\prime}+a l p h a \star B^{\star} A$ ' + beta* $C$;
if trans $=$ 'T' or 't', then $C:=a l p h a \star A ' * B+a l p h a * B ' * A+b e t a * C$;
if trans= 'C' or 'c', then $C:=a l p h a \star A ' \star B+a l p h a \star B ' * A+b e t a \star C$.
INTEGER. Specifies the order of the matrix $C$. The value of $n$ must be at least zero.

INTEGER. On entry with trans= 'N' or 'n', $k$ specifies the number of columns of the matrices $A$ and $B$, and on entry with trans= 'T' or 't' or ' $C$ ' or ' c', $k$ specifies the number of rows of the matrices $A$ and $B$. The value of $k$ must be at least zero.

REAL for ssyr $2 k$
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr $2 k$
DOUBLE COMPLEX for zsyr $2 k$
Specifies the scalar alpha.
REAL for ssyr $2 k$
DOUBLE PRECISION for dsyr2k

COMPLEX for csyr $2 k$
DOUBLE COMPLEX for zsyr $2 k$
Array, size (lda, ka), where $k a$ is $k$ when trans= ' $N$ ' or 'n', and is $n$ otherwise. Before entry with trans= 'N' or 'n', the leading $n$-by- $k$ part of the array a must contain the matrix $A$, otherwise the leading $k$-by-n part of the array a must contain the matrix $A$.

INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub)program.
When trans= 'N' or 'n'trans= 'N' or 'n', then Ida must be at least $\max (1, n)$, otherwise Ida must be at least max $(1, k)$.

REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr2k
DOUBLE COMPLEX for zsyr2k
Array, size ( $1 d b, k b$ ), where $k b$ is $k$ when trans= 'N' or 'n', and is $n$ otherwise. Before entry with trans= 'N' or ' $n$ ', the leading $n$-by- $k$ part of the array $b$ must contain the matrix $B$, otherwise the leading $k$-by- $n$ part of the array $b$ must contain the matrix $B$.

INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub)program.
When trans= 'N' or ' $n$ ', then $I d b$ must be at least max $(1, n)$, otherwise $l d b$ must be at least max $(1, k)$.

REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr 2 k
DOUBLE COMPLEX for zsyr2k
Specifies the scalar beta.
REAL for ssyr2k
DOUBLE PRECISION for dsyr2k
COMPLEX for csyr 2 k
DOUBLE COMPLEX for zsyr2k
Array, size ( $I d c, n$ ). Before entry with uplo = 'U' or 'u', the leading $n$ -by-n upper triangular part of the array $c$ must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of $c$ is not referenced.

Before entry with uplo = 'L' or 'l', the leading $n$-by- $n$ lower triangular part of the array $c$ must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of $c$ is not referenced.

INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program. The value of $I d c$ must be at least max $(1, n)$.

## Output Parameters

C
With uplo = 'U' or 'u', the upper triangular part of the array $c$ is overwritten by the upper triangular part of the updated matrix.

With uplo = 'L' or 'l', the lower triangular part of the array $c$ is overwritten by the lower triangular part of the updated matrix.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine syr2k interface are the following:

a	Holds the matrix $A$ of size ( $m a, k a$ ) where
	$k a=k$ if trans $=$ 'N',
	$k a=n$ otherwise,
	$m a=n$ if trans $={ }^{\prime} \mathrm{N}$ ',
	ma $=\mathrm{k}$ otherwise.
b	Holds the matrix $B$ of size ( $m b, k b$ ) where
	$k b=k$ if trans $={ }^{\prime} \mathrm{N}^{\prime}$ ',
	$k b=n$ otherwise,
	$m b=n$ if trans $={ }^{\prime} \mathrm{N}$ ',
	$m b=k$ otherwise .
c	Holds the matrix $C$ of size ( $n, n$ ).
uplo	Must be 'U' or 'L'. The default value is 'U'.
trans	Must be 'N', 'C', or 'T'.
	The default value is ' N '.
alpha	The default value is 1 .
beta	The default value is 0 .

## ?trmm

Computes a matrix-matrix product where one input matrix is triangular.

## Syntax

```
call strmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call dtrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call ctrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call ztrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call trmm(a, b [,side] [, uplo] [,transa][,diag] [,alpha])
```


## Include Files

- mkl.fi,blas.f90


## Description

The ?trmm routines compute a scalar-matrix-matrix product with one triangular matrix. The operation is defined as

```
B := alpha*op (A)*B
```

or

```
B := alpha*B*op(A)
```

where:
alpha is a scalar,
$B$ is an $m$-by- $n$ matrix,
$A$ is a unit, or non-unit, upper or lower triangular matrix $\mathrm{op}(A)$ is one of op $(A)=A$, or op $(A)=A^{\prime}, \operatorname{or} o p(A)=\operatorname{conjg}\left(A^{\prime}\right)$.

## Input Parameters

side	CHARACTER*1. Specifies whether op (A) appears on the left or right of $B$ in the operation:
	if side = 'L' or 'l', then $B:=$ alpha*op $(A) * B$;
	if side $=$ 'R' or 'r', then $B:=a l p h a * B^{*}$ op ( $A$ ).
uplo	CHARACTER*1. Specifies whether the matrix $A$ is upper or lower triangular.
	uplo = 'U' or 'u'
	if uplo = 'L' or 'l', then the matrix is low triangular.
transa	CHARACTER*1. Specifies the form of op ( $A$ ) used in the matrix multiplication:
	if transa= 'N' or 'n', then op (A) = A;
	if transa= 'T' or 't', then op $(A)=A '$;
	if transa= 'C' or 'c', then op $(A)=\operatorname{conjg}\left(A^{\prime}\right)$.
diag	CHARACTER*1. Specifies whether the matrix $A$ is unit triangular:
	if diag = 'U' or 'u' then the matrix is unit triangular;
	if diag = 'N' or ' n ', then the matrix is not unit triangular.
m	INTEGER. Specifies the number of rows of $B$. The value of $m$ must be at least zero.
$n$	INTEGER. Specifies the number of columns of $B$. The value of $n$ must be at least zero.
alpha	REAL for strmm
	DOUBLE PRECISION for dtrmm

a
$b$

1 db

COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm
Specifies the scalar alpha.
When alpha is zero, then $a$ is not referenced and $b$ need not be set before entry.

REAL for strmm
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm
Array, size Ida by $k$, where $k$ is $m$ when side $=$ 'L'side or 'l' and is $n$ when side = 'R' or 'r'. Before entry with uplo = 'U' or 'u', the leading $k$ by $k$ upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of $a$ is not referenced.
Before entry with uplo = 'L' or 'l', the leading $k$ by $k$ lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of $a$ is not referenced.
When diag = 'U' or 'u', the diagonal elements of $a$ are not referenced either, but are assumed to be unity.

Integer. Specifies the leading dimension of $a$ as declared in the calling (sub) program. Whenside $=$ ' L ' or ' 1 ', then Ida must be at least max ( 1 , $m$ ), when side $=$ ' $R$ ' or ' $r$ ', then Ida must be at least max $(1, n)$.

REAL for strmm
DOUBLE PRECISION for dtrmm
COMPLEX for ctrmm
DOUBLE COMPLEX for ztrmm
Array, size $l d b$ by $n$. Before entry, the leading $m$-by- $n$ part of the array $b$ must contain the matrix $B$.

Integer. Specifies the leading dimension of $b$ as declared in the calling (sub)program. $l d b$ must be at least max $(1, m)$

## Output Parameters

Overwritten by the transformed matrix.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine trmm interface are the following:

[^1]$k=n$ otherwise.
b
side
uplo
transa
diag
alpha

Holds the matrix $B$ of size $(m, n)$.
Must be 'L' or 'R'. The default value is 'L'.
Must be 'U' or 'L'. The default value is 'U'.
Must be 'N', 'C', or 'T'.
The default value is ' N '.
Must be 'N' or 'U'. The default value is 'N'.
The default value is 1 .
?trsm
Solves a triangular matrix equation.

## Syntax

```
call strsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call dtrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call ctrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call ztrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
call trsm(a, b [,side] [, uplo] [,transa][,diag] [,alpha])
```

Include Files

- mkl.fi, blas.f90


## Description

The ?trsm routines solve one of the following matrix equations:

```
op(A)*X = alpha*B,
```

or

```
X*op(A) = alpha*B,
```

where:
alpha is a scalar,
$X$ and $B$ are $m$-by- $n$ matrices,
$A$ is a unit, or non-unit, upper or lower triangular matrix, and
op $(A)$ is one of op $(A)=A$, or op $(A)=A^{\prime}, \operatorname{orop}(A)=\operatorname{conjg}\left(A^{\prime}\right)$.
The matrix $B$ is overwritten by the solution matrix $X$.
Input Parameters
side
CHARACTER*1. Specifies whether op ( $A$ ) appears on the left or right of $X$ in the equation:
if side $=$ 'L' or 'l', then op $(A) * X=$ alpha*B;
a
if side $=$ 'R' or 'r', then $X^{*} o p(A)=a l p h a \star B$.
CHARACTER*1. Specifies whether the matrix $A$ is upper or lower triangular.

```
uplo = 'U' or 'u'
```

if uplo = 'L' or 'l', then the matrix is low triangular.
CHARACTER*1. Specifies the form of op ( $A$ ) used in the matrix multiplication:
if transa= 'N' or 'n', then op $(A)=A$;
if transa= 'T' or 't' ;
if transa= 'C' or 'C', then op $(A)=\operatorname{conjg}(A ')$.
CHARACTER*1. Specifies whether the matrix $A$ is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag = 'N' or ' n ', then the matrix is not unit triangular.
INTEGER. Specifies the number of rows of $B$. The value of $m$ must be at least zero.

INTEGER. Specifies the number of columns of $B$. The value of $n$ must be at least zero.

REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm
Specifies the scalar alpha.
When alpha is zero, then $a$ is not referenced and $b$ need not be set before entry.

REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm
Array, size (lda, $k$ ), where $k$ is $m$ when side $=$ 'L' or ' $l$ ' and is $n$ when side $=$ 'R' or 'r'. Before entry with uplo = 'U' or 'u', the leading $k$ by $k$ upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of $a$ is not referenced.

Before entry with uplo = 'L' or 'l' lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of $a$ is not referenced.

When diag = 'U' or 'u' , the diagonal elements of a are not referenced either, but are assumed to be unity.
lda
b

1 db

INTEGER. Specifies the leading dimension of $a$ as declared in the calling (sub)program. When side $=$ 'L' or 'l' , then Ida must be at least $\max (1, m)$, when side $=$ ' $\mathrm{R}^{\prime}$ or ' $r$ ', then Ida must be at least max ( 1 , n).

REAL for strsm
DOUBLE PRECISION for dtrsm
COMPLEX for ctrsm
DOUBLE COMPLEX for ztrsm
Array, size $I d b$ by $n$. Before entry, the leading $m$-by- $n$ part of the array $b$ must contain the matrix $B$.

INTEGER. Specifies the leading dimension of $b$ as declared in the calling (sub)program. Idb must be at least max $(1, m)$.

## Output Parameters

b

## Overwritten by the solution matrix $X$.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine trsm interface are the following:

a	Holds the matrix $A$ of size $(k, k)$ where $k=m$ if side $=$ 'L', $k=n$ otherwise.
b	Holds the matrix $B$ of size ( $m, n$ ).
side	Must be 'L' or 'R'. The default value is 'L'.
uplo	Must be 'U' or 'L'. The default value is 'U'.
transa	Must be 'N', 'C', or 'T'.
	The default value is ' N '.
diag	Must be 'N' or 'U'. The default value is 'N'.
alpha	The default value is 1 .

## Sparse BLAS Level 1 Routines

This section describes Sparse BLAS Level 1, an extension of BLAS Level 1 included in the Intel® oneAPI Math Kernel Library beginning with the Intel® oneAPI Math Kernel Library (oneMKL) release 2.1. Sparse BLAS Level 1 is a group of routines and functions that perform a number of common vector operations on sparse vectors stored in compressed form.

Sparse vectors are those in which the majority of elements are zeros. Sparse BLAS routines and functions are specially implemented to take advantage of vector sparsity. This allows you to achieve large savings in computer time and memory. If $n z$ is the number of non-zero vector elements, the computer time taken by Sparse BLAS operations will be $O(n z)$.

## Vector Arguments

Compressed sparse vectors. Let $a$ be a vector stored in an array, and assume that the only non-zero elements of $a$ are the following:

$$
a\left(k_{1}\right), a\left(k_{2}\right), a\left(k_{3}\right) \cdot \cdot a\left(k_{n z}\right)
$$

where $n z$ is the total number of non-zero elements in $a$.
In Sparse BLAS, this vector can be represented in compressed form by two arrays, $x$ (values) and ind $x$ (indices). Each array has $n z$ elements:


```
indx(1)=k 盾, indx(2)=\mp@subsup{k}{2}{\prime}, . . . indx (nz)= knz
```

Thus, a sparse vector is fully determined by the triple ( $n z, x, i n d x$ ). If you pass a negative or zero value of $n z$ to Sparse BLAS, the subroutines do not modify any arrays or variables.
Full-storage vectors. Sparse BLAS routines can also use a vector argument fully stored in a single array (a full-storage vector). If $y$ is a full-storage vector, its elements must be stored contiguously: the first element in $y(1)$, the second in $y(2)$, and so on. This corresponds to an increment incy $=1$ in BLAS Level 1 . No increment value for full-storage vectors is passed as an argument to Sparse BLAS routines or functions.

## Naming Conventions for Sparse BLAS Routines

Similar to BLAS, the names of Sparse BLAS subprograms have prefixes that determine the data type involved: $s$ and $d$ for single- and double-precision real; $c$ and $z$ for single- and double-precision complex respectively.
If a Sparse BLAS routine is an extension of a "dense" one, the subprogram name is formed by appending the suffix $i$ (standing for indexed) to the name of the corresponding "dense" subprogram. For example, the Sparse BLAS routine saxpyi corresponds to the BLAS routine saxpy, and the Sparse BLAS function cdotci corresponds to the BLAS function cdotc.

## Routines and Data Types

Routines and data types supported in the Intel® oneAPI Math Kernel Library (oneMKL) implementation of Sparse BLAS are listed inTable "Sparse BLAS Routines and Their Data Types".
Sparse BLAS Routines and Their Data Types

Routine/   Function	Data Types	Description
?axpyi	s, d, c, z	Scalar-vector product plus vector (routines)
?doti	s, d	Dot product (functions)
?dotci	c, z	Complex dot product conjugated (functions)   ?dotui
C, z	Complex dot product unconjugated (functions)   Gathering a full-storage sparse vector into compressed   form $n z, x$, indx (routines)	
?gthrz	s, d, c, z	Gathering a full-storage sparse vector into compressed   form and assigning zeros to gathered elements in the full-   storage vector (routines)
?roti	s, d	Givens rotation (routines)
?sctr	Scattering a vector from compressed form to full-storage   form (routines)	

## BLAS Level 1 Routines That Can Work With Sparse Vectors

The following BLAS Level 1 routines will give correct results when you pass to them a compressed-form array $x$ (with the increment incx=1):

?asum	sum of absolute values of vector elements
?copy	copying a vector
?nrm2	Euclidean norm of a vector
?scal	scaling a vector
i?amax	index of the element with the largest absolute value for real flavors, or the   largest sum $\|\operatorname{Re}(x(i))\|+\|\operatorname{Im}(x(i))\|$ for complex flavors.
i?amin	index of the element with the smallest absolute value for real flavors, or the   smallest sum $\|\operatorname{Re}(x(i))\|+\|\operatorname{Im}(x(i))\|$ for complex flavors.

The result $i$ returned by i?amax and i?amin should be interpreted as index in the compressed-form array, so that the largest (smallest) value is $x(i)$; the corresponding index in full-storage array is indx(i).

You can also call ?rotg to compute the parameters of Givens rotation and then pass these parameters to the Sparse BLAS routines ?roti.

## ?axpyi

Adds a scalar multiple of compressed sparse vector to a full-storage vector.

Syntax

```
call saxpyi(nz, a, x, indx, y)
call daxpyi(nz, a, x, indx, y)
call caxpyi(nz, a, x, indx, y)
call zaxpyi(nz, a, x, indx, y)
call axpyi(x, indx, y [, a])
```

Include Files

- mkl.fi, blas.f90


## Description

The ?axpyi routines perform a vector-vector operation defined as

$$
y:=a^{*} x+y
$$

where:
a is a scalar,
$x$ is a sparse vector stored in compressed form,
$y$ is a vector in full storage form.
The ?axpyi routines reference or modify only the elements of $y$ whose indices are listed in the array indx.
The values in indx must be distinct.

## Input Parameters

$n z$
a

X
indx
y

INTEGER. The number of elements in $x$ and indx.
REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Specifies the scalar $a$.
REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, size at least $n z$.
INTEGER. Specifies the indices for the elements of $x$.
Array, size at least $n z$.
REAL for saxpyi
DOUBLE PRECISION for daxpyi
COMPLEX for caxpyi
DOUBLE COMPLEX for zaxpyi
Array, size at least max (indx(i)).

## Output Parameters

Y
Contains the updated vector $y$.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine axpyi interface are the following:

$x$	Holds the vector with the number of elements $n z$.
$i n d x$	Holds the vector with the number of elements $n z$.
$y$	Holds the vector with the number of elements $n z$.
$a$	The default value is 1.

## ?doti

Computes the dot product of a compressed sparse real vector by a full-storage real vector.

## Syntax

```
res = sdoti(nz, x, indx, y)
res = ddoti(nz, x, indx, y)
res = doti(x, indx, y)
```

Include Files

- mkl.fi, blas.f90


## Description

The ?doti routines return the dot product of $x$ and $y$ defined as

```
res = x(1)*y(indx(1)) + x(2)*y(indx(2)) +...+ x(nz)*y(indx(nz))
```

where the triple ( $n z, x$, indx) defines a sparse real vector stored in compressed form, and $y$ is a real vector in full storage form. The functions reference only the elements of $y$ whose indices are listed in the array indx. The values in indx must be distinct.

## Input Parameters

$n z$	Integer. The number of elements in $x$ and indx.
$x$	REAL for sdoti
	DOUBLE PRECISION for ddoti
	Array, size at least $n z$.
indx	Integer. Specifies the indices for the elements of $x$.
	Array, size at least $n z$.
Y	REAL for sdoti
	DOUBLE PRECISION for ddoti
	Array, size at least max(indx(i)).

## Output Parameters

```
res
```

REAL for sdoti
DOUBLE PRECISION for ddoti

Contains the dot product of $x$ and $y$, if $n z$ is positive. Otherwise, res contains 0 .

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine doti interface are the following:

$x$	Holds the vector with the number of elements $n z$.
indx	Holds the vector with the number of elements $n z$.

y
Holds the vector with the number of elements $n z$.

```
?dotci
Computes the conjugated dot product of a
compressed sparse complex vector with a full-storage
complex vector.
```


## Syntax

```
res = cdotci(nz, x, indx, y)
```

res = cdotci(nz, x, indx, y )
res = zdotci(nzz, x, indx, y)
res = zdotci(nzz, x, indx, y)
res = dotci(x, indx, y)

```
res = dotci(x, indx, y)
```


## Include Files

- mkl.fi, blas.f90


## Description

The ? dotci routines return the dot product of $x$ and $y$ defined as

```
conjg(x(1))*y(indx(1)) + ... + conjg(x(nz))*y(indx(nz))
```

where the triple ( $n z, x, i n d x$ ) defines a sparse complex vector stored in compressed form, and $y$ is a real vector in full storage form. The functions reference only the elements of $y$ whose indices are listed in the array indx. The values in indx must be distinct.

## Input Parameters

```
nz INTEGER. The number of elements in }x\mathrm{ and indx.
x COMPLEX for cdotci
 DOUBLE COMPLEX for zdotci
 Array, size at least nz.
 INTEGER. Specifies the indices for the elements of x.
 Array, size at least nz.
 COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
```

Array, size at least max(indx(i)).

## Output Parameters

res
COMPLEX for cdotci
DOUBLE COMPLEX for zdotci
Contains the conjugated dot product of $x$ and $y$, if $n z$ is positive. Otherwise, it contains 0 .

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine dotci interface are the following:
$x$
indx $\quad$ Holds the vector with the number of elements ( $n z$ ).
$y \quad$ Holds the vector with the number of elements ( $n z$ ).

## ?dotui

Computes the dot product of a compressed sparse
complex vector by a full-storage complex vector.

## Syntax

```
res = cdotui(nz, x, indx, y)
res = zdotui(nzz, x, indx, y)
res = dotui(x, indx, y)
```

Include Files

- mkl.fi, blas.f90


## Description

The ? dotui routines return the dot product of $x$ and $y$ defined as

```
res = x(1)*y(indx(1)) + x(2)*y(indx(2)) + . . + x x(nz)*y(indx(nz))
```

where the triple ( $n z, x$, indx) defines a sparse complex vector stored in compressed form, and $y$ is a real vector in full storage form. The functions reference only the elements of $y$ whose indices are listed in the array indx. The values in indx must be distinct.

## Input Parameters

INTEGER. The number of elements in $x$ and ind $x$.
COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, size at least $n z$.
indx $\quad$ INTEGER. Specifies the indices for the elements of $x$.
Array, size at least $n z$.
y COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Array, size at least max(indx(i)).

## Output Parameters

res
COMPLEX for cdotui
DOUBLE COMPLEX for zdotui
Contains the dot product of $x$ and $y$, if $n z$ is positive. Otherwise, res contains 0 .

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine dotui interface are the following:

$x$	Holds the vector with the number of elements $n z$.
$i n d x$	Holds the vector with the number of elements $n z$.
$y$	Holds the vector with the number of elements $n z$.

## ?gthr

Gathers a full-storage sparse vector's elements into compressed form.

## Syntax

```
call sgthr(nz, y, x, indx)
call dgthr(nz, y, x, indx)
call cgthr(nz, y, x, indx)
call zgthr(nz, y, x, indx)
res = gthr(x, indx, y)
```

Include Files

- mkl.fi,blas.f90


## Description

The ?gthr routines gather the specified elements of a full-storage sparse vector $y$ into compressed form( $n z$, $x$, indx). The routines reference only the elements of $y$ whose indices are listed in the array indx:

```
x(i) = y(indx(i)), for i=1,2,... ,nz.
```


## Input Parameters

```
nz INTEGER. The number of elements of y to be gathered.
indx
y REAL for sgthr
DOUBLE PRECISION for dgthr
```

COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, size at least max(indx(i)).

## Output Parameters

$x$
REAL for sgthr
DOUBLE PRECISION for dgthr
COMPLEX for cgthr
DOUBLE COMPLEX for zgthr
Array, size at least $n z$.
Contains the vector converted to the compressed form.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine $g$ thr interface are the following:

$x$	Holds the vector with the number of elements $n z$.
indx	Holds the vector with the number of elements $n z$.
$y$	Holds the vector with the number of elements $n z$.

```
?gthrz
Gathers a sparse vector's elements into compressed
form, replacing them by zeros.
Syntax
```

```
call sgthrz(nz, y, x, indx)
```

call sgthrz(nz, y, x, indx )
call dgthrz(nz, y, x, indx )
call dgthrz(nz, y, x, indx )
call cgthrz(nz, y, x, indx )
call cgthrz(nz, y, x, indx )
call zgthrz(nz, y, x, indx )
call zgthrz(nz, y, x, indx )
res = gthrz(x, indx, y)

```
res = gthrz(x, indx, y)
```

Include Files

- mkl.fi, blas.f90


## Description

The ?gthrz routines gather the elements with indices specified by the array indx from a full-storage vector $y$ into compressed form ( $n z, x$, indx) and overwrite the gathered elements of $y$ by zeros. Other elements of $y$ are not referenced or modified (see also ?gthr).

## Input Parameters

```
nz
indx
Y
 INTEGER. The number of elements of }y\mathrm{ to be gathered.
 INTEGER. Specifies indices of elements to be gathered.
 Array, size at least nz.
 REAL for sgthrz
 DOUBLE PRECISION for dgthrz
 COMPLEX for cgthrz
DOUBLE COMPLEX for zgthrz
```

    Array, size at least max(indx(i)).
    
## Output Parameters

$x$
REAL for sgthrz
DOUBLE PRECISION for dgthrz
COMPLEX for cgthrz
DOUBLE COMPLEX for zgthrz
Array, size at least $n z$.
Contains the vector converted to the compressed form.

Y
The updated vector $y$.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine gthrz interface are the following:

$x$	Holds the vector with the number of elements $n z$.
$i n d x$	Holds the vector with the number of elements $n z$.
$y$	Holds the vector with the number of elements $n z$.

## ?roti

Applies Givens rotation to sparse vectors one of which is in compressed form.

## Syntax

```
call sroti(nz, x, indx, y, c, s)
call droti(nz, x, indx, y, c, s)
call roti(x, indx, y, c, s)
```

Include Files

- mkl.fi, blas.f90


## Description

The ?roti routines apply the Givens rotation to elements of two real vectors, $x$ (in compressed form $n z, x$, indx) and $y$ (in full storage form):

```
x(i) = c*x(i) + s*y(indx(i))
y(indx(i)) = c*y(indx(i))- s*x(i)
```

The routines reference only the elements of $y$ whose indices are listed in the array indx. The values in indx must be distinct.

## Input Parameters

```
nz
X
indx
Y
C
S
 INTEGER. The number of elements in x and indx.
 REAL for sroti
 DOUBLE PRECISION for droti
 Array, size at least nz.
 INTEGER. Specifies the indices for the elements of x.
 Array, size at least nz.
 REAL for sroti
 DOUBLE PRECISION for droti
 Array, size at least max(indx(i)).
 REAL for sroti
 DOUBLE PRECISION for droti.
 A scalar.
 REAL for sroti
 DOUBLE PRECISION for droti.
A scalar.
```


## Output Parameters

$x$ and $y$
The updated arrays.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine roti interface are the following:

$x$	Holds the vector with the number of elements $n z$.
indx	Holds the vector with the number of elements $n z$.
$y$	Holds the vector with the number of elements $n z$.

## ?sctr <br> Converts compressed sparse vectors into full storage form.

## Syntax

```
call ssctr(nz, x, indx, y)
call dsctr(nz, x, indx, y)
call csctr(nz, x, indx, y)
call zsctr(nz, x, indx, y)
call sctr(x, indx, y)
```


## Include Files

- mkl.fi,blas.f90


## Description

The ?sctr routines scatter the elements of the compressed sparse vector ( $n z, x$, indx) to a full-storage vector $y$. The routines modify only the elements of $y$ whose indices are listed in the array indx:
$y(i n d x(i))=x(i)$, for $i=1,2, \ldots, n z$.

## Input Parameters

$n z$
indx

X

INTEGER. The number of elements of $x$ to be scattered.
INTEGER. Specifies indices of elements to be scattered.
Array, size at least $n z$.
REAL for ssctr
DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, size at least $n z$.
Contains the vector to be converted to full-storage form.

## Output Parameters

y

REAL for ssctr
DOUBLE PRECISION for dsctr
COMPLEX for csctr
DOUBLE COMPLEX for zsctr
Array, size at least max(indx(i)).
Contains the vector $y$ with updated elements.

## BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine sctr interface are the following:

$x$	Holds the vector with the number of elements $n z$.
indx	Holds the vector with the number of elements $n z$.
$y$	Holds the vector with the number of elements $n z$.

## Sparse BLAS Level 2 and Level 3 Routines

NOTE The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines are deprecated. Use the corresponding routine from the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface as indicated in the description for each routine.

This section describes Sparse BLAS Level 2 and Level 3 routines included in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). Sparse BLAS Level 2 is a group of routines and functions that perform operations between a sparse matrix and dense vectors. Sparse BLAS Level 3 is a group of routines and functions that perform operations between a sparse matrix and dense matrices.
The terms and concepts required to understand the use of the Intel® oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines are discussed in theLinear Solvers Basics appendix.

The Sparse BLAS routines can be useful to implement iterative methods for solving large sparse systems of equations or eigenvalue problems. For example, these routines can be considered as building blocks for Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS).
Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides Sparse BLAS Level 2 and Level 3 routines with typical (or conventional) interface similar to the interface used in the NIST* Sparse BLAS library [Rem05].
Some software packages and libraries (the PARDISO* Solverused in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL),Sparskit 2 [Saad94], the Compaq* Extended Math Library (CXML)[CXML01]) use different (early) variation of the compressed sparse row (CSR) format and support only Level 2 operations with simplified interfaces. Intel® oneAPI Math Kernel Library (oneMKL) provides an additional set of Sparse BLAS Level 2 routines with similar simplified interfaces. Each of these routines operates only on a matrix of the fixed type.

The routines described in this section support both one-based indexing and zero-based indexing of the input data (see details in the section One-based and Zero-based Indexing).

## Naming Conventions in Sparse BLAS Level 2 and Level 3

Each Sparse BLAS Level 2 and Level 3 routine has a six- or eight-character base name preceded by the prefix mkl_or mkl_cspblas_.
The routines with typical (conventional) interface have six-character base names in accordance with the template:

```
mkl_<character > <data> <operation>()
```

The routines with simplified interfaces have eight-character base names in accordance with the templates:

```
mkl_<character > <data> <mtype> <operation>()
```

for routines with one-based indexing; and

```
mkl_cspblas_<character> <data><mtype><operation>()
```

for routines with zero-based indexing.

The <character> field indicates the data type:

```
s real, single precision
c complex, single precision
d real, double precision
z complex, double precision
```

The <data> field indicates the sparse matrix storage format (see section Sparse Matrix Storage Formats):

coo	coordinate format
csr	compressed sparse row format and its variations
csc	compressed sparse column format and its variations
dia	diagonal format
sky	skyline storage format
bsr	block sparse row format and its variations

The <operation> field indicates the type of operation:
mv matrix-vector product (Level 2)
$\mathrm{mm} \quad$ matrix-matrix product (Level 3)
sv solving a single triangular system (Level 2)
sm solving triangular systems with multiple right-hand sides (Level 3)
The field <mtype> indicates the matrix type:

ge	sparse representation of a general matrix
sy	sparse representation of the upper or lower triangle of a symmetric matrix
tr	sparse representation of a triangular matrix

## Sparse Matrix Storage Formats for Sparse BLAS Routines

The current version of Intel® oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines support the following point entry [Duff86] storage formats for sparse matrices:

- compressed sparse row format (CSR) and its variations;
- compressed sparse column format (CSC);
- coordinate format;
- diagonal format;
- skyline storage format;
and one block entry storage format:
- block sparse row format (BSR) and its variations.

For more information see "Sparse Matrix Storage Formats" in the Appendix"Linear Solvers Basics".
Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides auxiliary routines -matrix converters - that convert sparse matrix from one storage format to another.

## Routines and Supported Operations

This section describes operations supported by the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines. The following notations are used here:

```
A is a sparse matrix;
B and C are dense matrices;
D is a diagonal scaling matrix;
x and y are dense vectors;
alpha and beta are scalars;
\(o p(A)\) is one of the possible operations:
\(o p(A)=A ;\)
op \((A)=A^{\mathrm{T}}\) - transpose of \(A\);
op \((A)=A^{\mathrm{H}}\) - conjugated transpose of \(A\).
inv (op (A)) denotes the inverse of op (A).
```

The Intel® ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines support the following operations:

- computing the vector product between a sparse matrix and a dense vector:

```
Y := alpha*op (A)*x + beta* y
```

- solving a single triangular system:

```
y := alpha*inv(op (A))*x
```

- computing a product between sparse matrix and dense matrix:

```
C := alpha*op (A)*B + beta*C
```

- solving a sparse triangular system with multiple right-hand sides:

```
C := alpha*inv(op (A))*B
```

Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides an additional set of the Sparse BLAS Level 2 routines withsimplified interfaces. Each of these routines operates on a matrix of the fixed type. The following operations are supported:

- computing the vector product between a sparse matrix and a dense vector (for general and symmetric matrices):

```
y := op (A)*x
```

- solving a single triangular system (for triangular matrices):

```
y := inv(op (A))*x
```

Matrix type is indicated by the field <mtype> in the routine name (see section Naming Conventions in Sparse BLAS Level 2 and Level 3).

## NOTE

The routines with simplified interfaces support only four sparse matrix storage formats, specifically:
CSR format in the 3-array variation accepted in the direct sparse solvers and in the CXML;
diagonal format accepted in the CXML;
coordinate format;
BSR format in the 3-array variation.

Note that routines with both typical (conventional) and simplified interfaces use the same computational kernels that work with certain internal data structures.

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines do not support inplace operations.

Complete list of all routines is given in the "Sparse BLAS Level 2 and Level 3 Routines".

## Interface Consideration

## One-Based and Zero-Based Indexing

The Intel ${ }^{\otimes}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines support one-based and zero-based indexing of data arrays.
Routines with typical interfaces support zero-based indexing for the following sparse data storage formats: CSR, CSC, BSR, and COO. Routines with simplified interfaces support zero based indexing for the following sparse data storage formats: CSR, BSR, and COO. See the complete list of Sparse BLAS Level 2 and Level 3 Routines.
The one-based indexing uses the convention of starting array indices at 1 . The zero-based indexing uses the convention of starting array indices at 0 . For example, indices of the 5 -element array x can be presented in case of one-based indexing as follows:
Element index: $12 \begin{array}{llll}1 & 3 & 4\end{array}$
Element value: $1.0 \quad 5.0 \quad 7.0 \quad 8.0 \quad 9.0$
and in case of zero-based indexing as follows:
Element index: $\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$
Element value: $1.0 \quad 5.07 .08 .0 \quad 9.0$
The detailed descriptions of the one-based and zero-based variants of the sparse data storage formats are given in the "Sparse Matrix Storage Formats" in the Appendix "Linear Solvers Basics".

Most parameters of the routines are identical for both one-based and zero-based indexing, but some of them have certain differences. The following table lists all these differences.

Parameter	One-based Indexing	Zero-based Indexing
val	Array containing non-zero elements of the matrix $A$, its length is pntre $(\mathrm{m})$ pntrb(1).	Array containing non-zero elements of the matrix $A$, its length is pntre (m-1) pntrb (0).
pntrb	Array of length $m$. This array contains row indices, such that pntrb (i) pntrb(1)+1 is the first index of row in the arrays val and indx	Array of length $m$. This array contains row indices, such that pntrb(i) - pntrb(0) is the first index of row $i$ in the arrays val and indx.
pntre	Array of length $m$. This array contains row indices, such that pntre(I) - pntrb(1) is the last index of row $i$ in the arrays val and indx.	Array of length $m$. This array contains row indices, such that pntre (i) pntrb (0)-1 is the last index of row i in the arrays val and indx.
ia	Array of length $m+1$, containing indices of elements in the array $a$, such that ia(i) is the index in the array $a$ of the first non-zero element from the row i. The value of the last element ia(m+1) is equal to the number of non-zeros plus one.	Array of length $m+1$, containing indices of elements in the array $a$, such that ia(i) is the index in the array $a$ of the first non-zero element from the row i. The value of the last element $\mathrm{ia}(\mathrm{m})$ is equal to the number of non-zeros.
$1 d b$	Specifies the leading dimension of $b$ as declared in the calling (sub)program.	Specifies the second dimension of $b$ as declared in the calling (sub)program.


Parameter	One-based Indexing	Zero-based Indexing
$l d c$	Specifies the leading dimension of $c$ as   declared in the calling (sub) program.	Specifies the second dimension of $c$ as   declared in the calling (sub) program.

## Differences Between Intel MKL and NIST* Interfaces

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 3 routines have the following conventional interfaces:
mkl_xyyymm(transa, $m, n, k, \quad a l p h a, ~ m a t d e s c r a, ~ a r g(A), b, l d b, b e t a, ~ c, ~ l d c)$, for matrixmatrix product;
$m k l$ xyyysm(transa, $m$, $n, ~ a l p h a, ~ m a t d e s c r a, ~ a r g(A), b, l d b, c, \quad l d c)$, for triangular solvers with multiple right-hand sides.
Here x denotes data type, and yyy - sparse matrix data structure (storage format).
The analogous NIST* Sparse BLAS (NSB) library routines have the following interfaces:
xyyymm (transa, m, $n, k$, alpha, descra, $\arg (A), b, l d b, b e t a, c, l d c$, work, lwork), for matrix-matrix product;
xyyysm(transa, m, $n$, unitd, dv, alpha, descra, arg(A), b, ldb, beta, $c, I d c, ~ w o r k$, lwork), for triangular solvers with multiple right-hand sides.

Some similar arguments are used in both libraries. The argument transa indicates what operation is performed and is slightly different in the NSB library (see Table "Parameter transa"). The arguments $m$ and $k$ are the number of rows and column in the matrix $A$, respectively, $n$ is the number of columns in the matrix $C$. The arguments alpha and beta are scalar alpha and beta respectively (betais not used in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) triangular solvers.) The argumentsb and $c$ are rectangular arrays with the leading dimension $I d b$ and $I d c$, respectively. $\arg (A)$ denotes the list of arguments that describe the sparse representation of $A$.

Parameter transa

	MKL interface	NSB interface	Operation
data type	CHARACTER*1	INTEGER	
value	N or n	0	op $(A)=A$
	T or t	1	op $(A)=A^{T}$
	C or c	2	op $(A)=A^{T}$ or op $(A)=$  

## Parameter matdescra

The parameter matdescra describes the relevant characteristic of the matrix $A$. This manual describes matdescraas an array of six elements in line with the NIST* implementation. However, only the first four elements of the array are used in the current versions of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines. Elementsmatdescra(5) and matdescra(6) are reserved for future use. Note that whether matdescrais described in your application as an array of length 6 or 4 is of no importance because the array is declared as a pointer in the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) routines. To learn more about declaration of thematdescraarray, see the Sparse BLAS examples located in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) installation directory:examples/spblasf/ for Fortran. The table below lists elements of the parameter matdescra, their Fortran values, and their meanings. The parameter matdescra corresponds to the argument descra from NSB library.

Possible Values of the Parameter matdescra (descra)

	MKL interface		NSB   interface
	one-based   indexing	zero-based   indexing	
data type	CHARACTER	Char	INTEGER

In some cases possible element values of the parameter matdescra depend on the values of other elements. The Table "Possible Combinations of Element Values of the Parameter matdescra" lists all possible combinations of element values for both multiplication routines and triangular solvers.
Possible Combinations of Element Values of the Parameter matdescra

Routines	matdescra(1)	matdescra(2)	matdescra(3)	matdescra(4)
Multiplication   Routines	G	ignored	ignored	F (default) or C
	S or H	N (default)	(default)	(default) or C
	S or H	L (default)	U	F (default) or C
	S or H	U	N (default)	F (default) or C C
	S or H	U	U	F (default) or C
	A	U (default)	ignored	F (default) or C


Routines	matdescra(1)	matdescra(2)	matdescra(3)	matdescra(4)
Multiplication	T	L	U	F (default) or C
Routines and				
Triangular Solvers		L	N	F (default) or C
	T	U	U	F (default) or C
	T	ignored	N (default) or C	
	T	ignored	U	F (default) or C
	D			
	D (default) or C			

For a matrix in the skyline format with the main diagonal declared to be a unit, diagonal elements must be stored in the sparse representation even if they are zero. In all other formats, diagonal elements can be stored (if needed) in the sparse representation if they are not zero.

## Operations with Partial Matrices

One of the distinctive feature of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines is a possibility to perform operations only on partial matrices composed of certain parts (triangles and the main diagonal) of the input sparse matrix. It can be done by setting properly first three elements of the parametermatdescra.

An arbitrary sparse matrix $A$ can be decomposed as

$$
A=L+D+U
$$

where $L$ is the strict lower triangle of $A, U$ is the strict upper triangle of $A, D$ is the main diagonal.
Table "Output Matrices for Multiplication Routines" shows correspondence between the output matrices and values of the parameter matdescra for the sparse matrix $A$ for multiplication routines.

## Output Matrices for Multiplication Routines

matdescra(1)	matdescra(2)	matdescra(3)	Output Matrix
G	ignored	ignored	alpha*op (A)* $\mathrm{X}+\mathrm{beta}$ ( $y$
			alpha*op $(A) * B+$ beta* $C$
S or H	L	N	alpha*op (L+D+L')*x + beta* $y$
			alpha*op $\left(L+D+L^{\prime}\right) * B+$ beta* $C$
S or H	L	U	alpha*op(L+I+L')*x + beta*y
			alpha*op (L+I+L')*B + beta* $C$
S or H	U	N	alpha*op $\left(U^{\prime}+D+U\right) * x+$ beta* $y$
			alpha*op( $\left.U^{\prime}+D+U\right) * B+$ beta* $C$
S or H	U	U	alpha*op $\left(U^{\prime}+I+U\right) * x+$ beta* $y$
			alpha*op $\left(U^{\prime}+I+U\right) * B+$ beta* $C$
T	L	U	alpha*op $(L+I) * x+$ beta* $y$
			alpha*op $(L+I) * B+$ beta* $C$
T	L	N	alpha*op $(L+D) * x+b e t a * y$
			alpha*op $(L+D) * B+$ beta* $C$
T	U	U	alpha*op $(U+I) * x+$ beta* $y$


matdescra(1)	matdescra(2)	matdescra(3)	Output Matrix
T	U	N	alpha*op $(U+I) * B+$ beta* $C$
			alpha*op $(U+D) *_{x}+$ beta* $y$
			alpha*op $(U+D) * B+$ beta* $C$
A	L	ignored	alpha*op (L-L')* ${ }^{\text {a }}+$ beta* $y$
			alpha*op(L-L')*B + beta* $C$
A	U	ignored	alpha*op (U-U')*x + beta* ${ }^{\text {a }}$
			alpha*op(U-U')*B + beta*C
D	ignored	N	alpha* ${ }^{\star}{ }^{\text {x }}+$ beta* $y$
			alpha*D*B + beta*C
D	ignored	U	alpha* ${ }^{\text {a }}$ beta* ${ }^{\text {a }}$
			alpha*B + beta*C

Table "Output Matrices for Triangular Solvers" shows correspondence between the output matrices and values of the parameter matdescra for the sparse matrix $A$ for triangular solvers.

Output Matrices for Triangular Solvers

matdescra(1)	matdescra(2)	matdescra(3)	Output Matrix
T	L	N	alpha*inv (op (L))*x
			alpha*inv(op(L))*B
T	L	U	alpha*inv (op (L))*x
			alpha*inv(op(L))*B
T	U	N	alpha*inv (op(U))*x
			alpha*inv(op(U))*B
T	U	U	alpha*inv (op (U) ) *x
			alpha*inv(op(U))*B
D	ignored	N	alpha*inv (D) **
			alpha*inv(D)*B
D	ignored	U	alpha* ${ }_{\text {x }}$
			alpha*B

Sparse BLAS Level 2 and Level 3 Routines.

NOTE The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3 routines are deprecated. Use the corresponding routine from the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface as indicated in the description for each routine.

Table "Sparse BLAS Level 2 and Level 3 Routines" lists the sparse BLAS Level 2 and Level 3 routines described in more detail later in this section.
Sparse BLAS Level 2 and Level 3 Routines
Routine/Function $\quad$ Description

## Simplified interface, one-based indexing

mkl_?csrgemv
mkl_?bsrgemv
mkl_?coogemv
mkl_?diagemv
mkl_?csrsymv
mkl_?bsrsymv
mkl_?coosymv
mkl_?diasymv
mkl_?csrtrsv
mkl_?bsrtrsv
mkl_?cootrsv
mkl ?diatrsv

Computes matrix - vector product of a sparse general matrix in the CSR format (3-array variation)

Computes matrix - vector product of a sparse general matrix in the BSR format (3-array variation).

Computes matrix - vector product of a sparse general matrix in the coordinate format.

Computes matrix - vector product of a sparse general matrix in the diagonal format.

Computes matrix - vector product of a sparse symmetrical matrix in the CSR format (3-array variation)

Computes matrix - vector product of a sparse symmetrical matrix in the BSR format (3-array variation).

Computes matrix - vector product of a sparse symmetrical matrix in the coordinate format.

Computes matrix - vector product of a sparse symmetrical matrix in the diagonal format.

Triangular solvers with simplified interface for a sparse matrix in the CSR format (3-array variation).

Triangular solver with simplified interface for a sparse matrix in the BSR format (3-array variation).

Triangular solvers with simplified interface for a sparse matrix in the coordinate format.

Triangular solvers with simplified interface for a sparse matrix in the diagonal format.

## Simplified interface, zero-based indexing

mkl_cspblas_?csrgemv
mkl_cspblas_?bsrgemv
mkl_cspblas_?coogemv
mkl_cspblas_?csrsymv
mkl_cspblas_?bsrsymv

Computes matrix - vector product of a sparse general matrix in the CSR format (3-array variation) with zero-based indexing.

Computes matrix - vector product of a sparse general matrix in the BSR format (3-array variation)with zero-based indexing.

Computes matrix - vector product of a sparse general matrix in the coordinate format with zero-based indexing.

Computes matrix - vector product of a sparse symmetrical matrix in the CSR format (3-array variation) with zero-based indexing

Computes matrix - vector product of a sparse symmetrical matrix in the BSR format (3-array variation) with zero-based indexing.

Routine/Function	Description
mkl_cspblas_?coosymv	Computes matrix - vector product of a sparse symmetrical matrix in the coordinate format with zero-based indexing.
mkl_cspblas_?csrtrsv	Triangular solvers with simplified interface for a sparse matrix in the CSR format (3-array variation) with zero-based indexing.
mkl_cspblas_?bsrtrsv	Triangular solver with simplified interface for a sparse matrix in the BSR format (3-array variation) with zero-based indexing.
mkl_cspblas_?cootrsv	Triangular solver with simplified interface for a sparse matrix in the coordinate format with zero-based indexing.

Typical (conventional) interface, one-based and zero-based indexing

```
mkl_?csrmv
mkl_?bsrmv
mkl_?cscmv
mkl_?coomv
mkl_?csrsv
mkl_?bsrsv
mkl_?CSCSV
mkl_?coosv
mkl_?csrmm
mkl_?bsrmm
mkl_?cscmm
mkl_?coomm
mkl_?csrsm
mkl_?bsrsm
mkl_?cscsm
```

Computes matrix - vector product of a sparse matrix in the CSR format.

Computes matrix - vector product of a sparse matrix in the BSR format.

Computes matrix - vector product for a sparse matrix in the CSC format.

Computes matrix - vector product for a sparse matrix in the coordinate format.

Solves a system of linear equations for a sparse matrix in the CSR format.

Solves a system of linear equations for a sparse matrix in the BSR format.

Solves a system of linear equations for a sparse matrix in the CSC format.

Solves a system of linear equations for a sparse matrix in the coordinate format.

Computes matrix - matrix product of a sparse matrix in the CSR format

Computes matrix - matrix product of a sparse matrix in the BSR format.
Computes matrix - matrix product of a sparse matrix in the CSC format

Computes matrix - matrix product of a sparse matrix in the coordinate format.

Solves a system of linear matrix equations for a sparse matrix in the CSR format.

Solves a system of linear matrix equations for a sparse matrix in the BSR format.

Solves a system of linear matrix equations for a sparse matrix in the CSC format.

## Routine/Function

## Description

mkl_?coosm
Solves a system of linear matrix equations for a sparse matrix in the coordinate format.

## Typical (conventional) interface, one-based indexing

```
mkl_?diamv
mkl ?skymv
mkl_?diasv
mkl_?skysv
mkl_?diamm
mkl_?skymm
mkl_?diasm
mkl_?skysm
```


## Auxiliary routines

Matrix converters
mkl_?dnscsr
mkl_?csrcoo
mkl_?csrbsr
mkl_?csrcsc
mkl_?csrdia
mkl_?csrsky

Operations on sparse matrices

```
mkl_?csradd
```

mkl_?csrmultcsr

Computes matrix - vector product of a sparse matrix in the diagonal format.

Computes matrix - vector product for a sparse matrix in the skyline storage format.

Solves a system of linear equations for a sparse matrix in the diagonal format.

Solves a system of linear equations for a sparse matrix in the skyline format.

Computes matrix - matrix product of a sparse matrix in the diagonal format.

Computes matrix - matrix product of a sparse matrix in the skyline storage format.

Solves a system of linear matrix equations for a sparse matrix in the diagonal format.

Solves a system of linear matrix equations for a sparse matrix in the skyline storage format.

Converts a sparse matrix in uncompressed representation to CSR format (3-array variation) and vice versa.

Converts a sparse matrix in CSR format (3-array variation) to coordinate format and vice versa.

Converts a sparse matrix in CSR format to BSR format (3array variations) and vice versa.

Converts a sparse matrix in CSR format to CSC format and vice versa (3-array variations).

Converts a sparse matrix in CSR format (3-array variation) to diagonal format and vice versa.

Converts a sparse matrix in CSR format (3-array variation) to sky line format and vice versa.

Computes the sum of two sparse matrices stored in the CSR format (3-array variation) with one-based indexing.

Computes the product of two sparse matrices stored in the CSR format (3-array variation) with one-based indexing.

Routine/Function	Description
$m k l_{-}$?csrmultd	Computes product of two sparse matrices stored in the CSR   format (3-array variation) with one-based indexing. The result   is stored in the dense matrix.

```
mkl_?csrgemv
Computes matrix - vector product of a sparse general
matrix stored in the CSR format (3-array variation)
with one-based indexing (deprecated).
```


## Syntax

```
call mkl_scsrgemv(transa, m, a, ia, ja, x, y)
call mkl_dcsrgemv(transa, m, a, ia, ja, x, y)
call mkl_ccsrgemv(transa, m, a, ia, ja, x, y)
call mkl_zcsrgemv(transa, m, a, ia, ja, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?csrgemv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} X
$$

or

$$
y:=A^{T} * X
$$

where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ sparse square matrix in the CSR format (3-array variation), $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
m

CHARACTER*1. Specifies the operation.
If transa $=$ ' $N$ ' or 'n', then as $y:=A^{\star} x$
If transa $=$ 'T' or 't' or 'C' or 'c', then $y:=A^{T} \star x$,
INTEGER. Number of rows of the matrix $A$.
a

X

REAL for mkl_scsrgemv.
DOUBLE PRECISION for mkl_dcsrgemv.
COMPLEX for mkl_ccsrgemv.
DOUBLE COMPLEX for mkl_zcsrgemv.
Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length $m+1$, containing indices of elements in the array $a$, such that $i a(i)$ is the index in the array $a$ of the first non-zero element from the row $i$. The value of the last element $i a(m+1)$ is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.

Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

REAL for mkl_scsrgemv.
DOUBLE PRECISION for mkl_dcsrgemv.
COMPLEX for mkl_ccsrgemv.
DOUBLE COMPLEX for mkl_zcsrgemv.
Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y
REAL for mkl_scsrgemv.
DOUBLE PRECISION for mkl_dcsrgemv.
COMPLEX for mkl_ccsrgemv.
DOUBLE COMPLEX for mkl_zcsrgemv.
Array, size at least $m$.
On exit, the array $y$ must contain the vector $y$.

## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_scsrgemv(transa, m, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
```

```
SUBROUTINE mkl_dcsrgemv(transa, m, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_ccsrgemv(transa, m, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
SUBROUTINE mkl_zCSrgemv(transa, m, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
mkl_?bsrgemv
Computes matrix - vector product of a sparse general
matrix stored in the BSR format (3-array variation)
with one-based indexing (deprecated).
```


## Syntax

```
call mkl_sbsrgemv(transa, m, lb, a, ia, ja, x, y)
call mkl_dbsrgemv(transa, m, lb, a, ia, ja, x, y)
call mkl_cbsrgemv(transa, m, lb, a, ia, ja, x, y)
call mkl_zbsrgemv(transa, m, lb, a, ia, ja, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?bsrgemv routine performs a matrix-vector operation defined as

$$
y:=A^{*} X
$$

or

$$
y:=A^{T} * x,
$$

where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ block sparse square matrix in the BSR format (3-array variation), $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

CHARACTER*1. Specifies the operation.
If transa $=$ 'N' or 'n', then the matrix-vector product is computed as $y:=A^{*} X$

If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as $y:=A^{T *}{ }_{x}$,

INTEGER. Number of block rows of the matrix $A$.
INTEGER. Size of the block in the matrix $A$.
REAL for mkl_sbsrgemv.
DOUBLE PRECISION for mkl_dbsrgemv.
COMPLEX for mkl_cbsrgemv.
DOUBLE COMPLEX for mkl_zbsrgemv.
Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 b \star l b$. Refer to values array description in BSR Format for more details.

INTEGER. Array of length $(m+1)$, containing indices of block in the array $a$, such that $i a(i)$ is the index in the array $a$ of the first non-zero element from the row $i$. The value of the last element ia $(m+1)$ is equal to the number of non-zero blocks plus one. Refer to rowIndex array description in BSR Format for more details.

INTEGER. Array containing the column indices for each non-zero block in the matrix $A$.

Its length is equal to the number of non-zero blocks of the matrix $A$. Refer to columns array description in BSR Format for more details.

REAL for mkl_sbsrgemv.
DOUBLE PRECISION for mkl_dbsrgemv.
COMPLEX for mkl_cbsrgemv.
DOUBLE COMPLEX for mkl_zbsrgemv.
Array, size ( $m^{\star}$ lb).
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y

```
REAL for mkl_sbsrgemv.
DOUBLE PRECISION for mkl_dbsrgemv.
COMPLEX for mkl_cbsrgemv.
DOUBLE COMPLEX for mkl_zbsrgemv.
```

Array, size at least ( $m^{\star} l b$ ).
On exit, the array $y$ must contain the vector $y$.

## Interfaces

FORTRAN 77:
SUBROUTINE mkl_sbsrgemv(transa, m, lb, a, ia, ja, x, y) CHARACTER*1 transa

INTEGER m, lb
INTEGER ia(*), ja(*)
REAL $a(*), x(*), y(*)$

SUBROUTINE mkl_dbsrgemv(transa, m, lb, a, ia, ja, x, y)
CHARACTER*1 transa
INTEGER m, lb
INTEGER ia(*), ja(*)
DOUBLE PRECISION $a(*), x(*), y(*)$

SUBROUTINE mkl_cbsrgemv(transa, m, lb, a, ia, ja, x, y)
CHARACTER*1 transa
INTEGER m, lb
INTEGER ia(*), ja(*)
COMPLEX $a(*), x(*), y(*)$

SUBROUTINE mkl_zbsrgemv(transa, m, lb, a, ia, ja, x, y)
CHARACTER*1 transa
INTEGER m, lb
INTEGER ia(*), ja(*)
DOUBLE COMPLEX $a(*), x(*), y(*)$
mkl_?coogemv
Computes matrix-vector product of a sparse general matrix stored in the coordinate format with one-based indexing (deprecated).

## Syntax

```
call mkl_scoogemv(transa, m, val, rowind, colind, nnz, x, y)
call mkl_dcoogemv(transa, m, val, rowind, colind, nnz, x, y)
call mkl_ccoogemv(transa, m, val, rowind, colind, nnz, x, y)
call mkl_zcoogemv(transa, m, val, rowind, colind, nnz, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?coogemv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} X
$$

or

$$
y:=A^{T}{ }_{x} x,
$$

where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ sparse square matrix in the coordinate format, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

CHARACTER*1. Specifies the operation.
If transa $=$ 'N' or 'n', then the matrix-vector product is computed as $y:=A^{\star} x$

If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as $y:=A^{T} * x$,

INTEGER. Number of rows of the matrix $A$.
REAL for mkl_scoogemv.
DOUBLE PRECISION for mkl_dcoogemv.
COMPLEX for mkl_ccoogemv.
DOUBLE COMPLEX for mkl_zcoogemv.
Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.
rowind
colind
$n n z$
x

Refer to values array description in Coordinate Format for more details. INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.

Refer to rows array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the column indices for each nonzero element of the matrix $A$. Refer to columns array description in Coordinate Format for more details.

INTEGER. Specifies the number of non-zero element of the matrix $A$.
Refer to $n n z$ description in Coordinate Format for more details.
REAL for mkl_scoogemv.
DOUBLE PRECISION for mkl_dcoogemv.
COMPLEX for mkl_ccoogemv.
DOUBLE COMPLEX for mkl_zcoogemv.
Array, size is $m$.
One entry, the array $x$ must contain the vector $x$.

## Output Parameters

y
REAL for mkl_scoogemv.
DOUBLE PRECISION for mkl_dcoogemv.
COMPLEX for mkl_ccoogemv.
DOUBLE COMPLEX for mkl_zcoogemv.
Array, size at least $m$.
On exit, the array $y$ must contain the vector $y$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_scoogemv(transa, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 transa
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 REAL val(*), x(*), y(*)
SUBROUTINE mkl_dcoogemv(transa, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 transa
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 DOUBLE PRECISION val(*), x(*), y(*)
```

```
SUBROUTINE mkl_ccoogemv(transa, m, val, rowind, colind, nnz, x, y)
CHARACTER*1 transa
INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 COMPLEX val(*), x(*), y(*)
SUBROUTINE mkl_zcoogemv(transa, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 transa
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 DOUBLE COMPLEX val(*), x(*), y(*)
```

mkl_?diagemv
Computes matrix - vector product of a sparse general
matrix stored in the diagonal format with one-based
indexing (deprecated).

## Syntax

```
call mkl_sdiagemv(transa, m, val, lval, idiag, ndiag, x, y)
call mkl_ddiagemv(transa, m, val, lval, idiag, ndiag, x, y)
call mkl_cdiagemv(transa, m, val, lval, idiag, ndiag, x, y)
call mkl_zdiagemv(transa, m, val, lval, idiag, ndiag, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?diagemv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} x
$$

or

$$
y:=A^{T} * x,
$$

where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ sparse square matrix in the diagonal storage format, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
m
val

Ival
idiag
ndiag

X

CHARACTER*1. Specifies the operation.
If transa $=$ 'N' or 'n', then $y:=A^{*} x$
If transa $=$ 'T' or 't' or 'C' or 'c', then $y:=A^{T} \star x$,
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_sdiagemv.
DOUBLE PRECISION for mkl_ddiagemv.
COMPLEX for mkl_ccsrgemv.
DOUBLE COMPLEX for mkl_zdiagemv.
Two-dimensional array of size $l_{\text {val }}{ }^{n}$ ndiag, contains non-zero diagonals of the matrix $A$. Refer to values array description in Diagonal Storage Scheme for more details.

INTEGER. Leading dimension of vallval $\geq m$. Refer to lval description in Diagonal Storage Scheme for more details.

INTEGER. Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix $A$.
Refer to distance array description in Diagonal Storage Scheme for more details.

INTEGER. Specifies the number of non-zero diagonals of the matrix $A$.
REAL for mkl_sdiagemv.
DOUBLE PRECISION for mkl_ddiagemv.
COMPLEX for mkl_ccsrgemv.
DOUBLE COMPLEX for mkl_zdiagemv.
Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

## y

REAL for mkl_sdiagemv.
DOUBLE PRECISION for mkl_ddiagemv.
COMPLEX for mkl_ccsrgemv.
DOUBLE COMPLEX for mkl_zdiagemv.
Array, size at least $m$.
On exit, the array y must contain the vector $y$.

## Interfaces

## FORTRAN 77:



## mkl_?csrsymv

Computes matrix - vector product of a sparse symmetrical matrix stored in the CSR format (3-array variation) with one-based indexing (deprecated).

## Syntax

```
call mkl_scsrsymv(uplo, m, a, ia, ja, x, y)
call mkl_dcsrsymv(uplo, m, a, ia, ja, x, y)
call mkl_ccsrsymv(uplo, m, a, ia, ja, x, y)
call mkl_zcsrsymv(uplo, m, a, ia, ja, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?csrsymv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} x
$$

where:
$x$ and $y$ are vectors,
$A$ is an upper or lower triangle of the symmetrical sparse matrix in the CSR format (3-array variation).

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_scsrsymv.
DOUBLE PRECISION for mkl_dcsrsymv.
COMPLEX for mkl_ccsrsymv.
DOUBLE COMPLEX for mkl_zcsrsymv.
Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length $m+1$, containing indices of elements in the array a, such that ia(i) is the index in the array a of the first non-zero element from the row $i$. The value of the last element $i a(m+1)$ is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.
Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

REAL for mkl_scsrsymv.

DOUBLE PRECISION for mkl_dcsrsymv.
COMPLEX for mkl_ccsrsymv.
DOUBLE COMPLEX for mkl_zcsrsymv.
Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y
REAL for mkl_scsrsymv.
DOUBLE PRECISION for mkl_dcsrsymv.
COMPLEX for mkl_ccsrsymv.
DOUBLE COMPLEX for mkl_zcsrsymv.
Array, size at least $m$.
On exit, the array $y$ must contain the vector $y$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_scsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
SUBROUTINE mkl_dcsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_ccsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
```

```
SUBROUTINE mkl_zCSrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
```

mkl_?bsrsymv
Computes matrix-vector product of a sparse
symmetrical matrix stored in the BSR format (3-array
variation) with one-based indexing (deprecated).

## Syntax

```
call mkl_sbsrsymv(uplo, m, lb, a, ia, ja, x, y)
call mkl_dbsrsymv(uplo, m, lb, a, ia, ja, x, y)
call mkl_cbsrsymv(uplo, m, lb, a, ia, ja, x, y)
call mkl_zbsrsymv(uplo, m, lb, a, ia, ja, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?bsrsymv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} X
$$

where:
$x$ and $y$ are vectors,
$A$ is an upper or lower triangle of the symmetrical sparse matrix in the BSR format (3-array variation).

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
uplo
CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is considered.

If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.

If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
INTEGER. Number of block rows of the matrix $A$.
INTEGER. Size of the block in the matrix $A$.
REAL for mkl_sbsrsymv.
DOUBLE PRECISION for mkl_dbsrsymv.
COMPLEX for mkl_cbsrsymv.
DOUBLE COMPLEX for mkl_zcsrgemv.
Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 b * 1 b$. Refer to values array description in BSR Format for more details.

INTEGER. Array of length $(m+1)$, containing indices of block in the array $a$, such that ia(i) is the index in the array $a$ of the first non-zero element from the row $i$. The value of the last element $i a(m+1)$ is equal to the number of non-zero blocks plus one. Refer to rowIndex array description in BSR Format for more details.

INTEGER. Array containing the column indices for each non-zero block in the matrix $A$.

Its length is equal to the number of non-zero blocks of the matrix $A$. Refer to columns array description in BSR Format for more details.

REAL for mkl_sbsrsymv.
DOUBLE PRECISION for mkl_dbsrsymv.
COMPLEX for mkl_cbsrsymv.
DOUBLE COMPLEX for mkl_zcsrgemv.
Array, size ( $m^{\star} l b$ ).
On entry, the array $x$ must contain the vector $x$.
y
REAL for mkl_sbsrsymv.
DOUBLE PRECISION for mkl_dbsrsymv.
COMPLEX for mkl_cbsrsymv.
DOUBLE COMPLEX for mkl_zcsrgemv.
Array, size at least ( $m^{\star} l b$ ).
On exit, the array $y$ must contain the vector $y$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sbsrsymv(uplo, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
SUBROUTINE mkl_dbsrsymv(uplo, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_cbsrsymv(uplo, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
SUBROUTINE mkl_zbsrsymv(uplo, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
```

mkl_?coosymv
Computes matrix - vector product of a sparse
symmetrical matrix stored in the coordinate format
with one-based indexing (deprecated).

## Syntax

```
call mkl_scoosymv(uplo, m, val, rowind, colind, nnz, x, y)
call mkl_dcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
call mkl_ccoosymv(uplo, m, val, rowind, colind, nnz, x, y)
call mkl_zcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
```

Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?coosymv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} x
$$

where:
$x$ and $y$ are vectors,
$A$ is an upper or lower triangle of the symmetrical sparse matrix in the coordinate format.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

uplo	CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.
	If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
	If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
m	INTEGER. Number of rows of the matrix $A$.
val	REAL for mkl_scoosymv.
	DOUBLE PRECISION for mkl_dcoosymv.
	COMPLEX for mkl_ccoosymv.
	DOUBLE COMPLEX for mkl_zcoosymv.
	Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.
	Refer to values array description in Coordinate Format for more details.
rowind	INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.
	Refer to rows array description in Coordinate Format for more details.
colind	INTEGER. Array of length $n n z$, contains the column indices for each nonzero element of the matrix $A$. Refer to columns array description in Coordinate Format for more details.
nnz	INTEGER. Specifies the number of non-zero element of the matrix $A$.
	Refer to $n n z$ description in Coordinate Format for more details.
$x$	REAL for mkl_scoosymv.
	DOUBLE PRECISION for mkl_dcoosymv.

COMPLEX for mkl_ccoosymv.
DOUBLE COMPLEX for mkl_zcoosymv.
Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y
REAL for mkl_scoosymv.
DOUBLE PRECISION for mkl_dcoosymv.
COMPLEX for mkl_ccoosymv.
DOUBLE COMPLEX for mkl_zcoosymv.
Array, size at least $m$.
On exit, the array $y$ must contain the vector $y$.

## Interfaces

## FORTRAN 77:

SUBROUTINE mkl_scoosymv(uplo, m, val, rowind, colind, nnz, x, y)
CHARACTER*1 uplo
INTEGER m, nnz
INTEGER rowind(*), colind(*)
REAL $\operatorname{val}(*), x(*), y(*)$
SUBROUTINE mkl_dcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
CHARACTER*1 uplo
INTEGER m, nnz
INTEGER rowind(*), colind(*)
DOUBLE PRECISION val(*), $x(*), y(*)$
SUBROUTINE mkl_cdcoosymv (uplo, m, val, rowind, colind, nnz, x, y)
CHARACTER*1 uplo
INTEGER m, nnz
INTEGER rowind(*), colind(*)
COMPLEX val(*), $\mathrm{x}(*), \mathrm{y}(*)$
SUBROUTINE mkl_zcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
CHARACTER*1 uplo
INTEGER m, nnz
INTEGER rowind(*), colind(*)
DOUBLE COMPLEX val(*), x(*), y(*)
mkl_?diasymv
Computes matrix - vector product of a sparse
symmetrical matrix stored in the diagonal format with one-based indexing (deprecated).

## Syntax

```
call mkl_sdiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
call mkl_ddiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
call mkl_cdiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
call mkl_zdiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?diasymv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} x
$$

where:
$x$ and $y$ are vectors,
$A$ is an upper or lower triangle of the symmetrical sparse matrix.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
m
val

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.

If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_sdiasymv.
DOUBLE PRECISION for mkl_ddiasymv.
COMPLEX for mkl_cdiasymv.
DOUBLE COMPLEX for mkl_zdiasymv.

```
Ival
idiag
ndiag
X
INTEGER. Leading dimension of val, lval \(\geq m\). Refer to lval description in Diagonal Storage Scheme for more details.
INTEGER. Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix \(A\).
Refer to distance array description in Diagonal Storage Scheme for more details.
INTEGER. Specifies the number of non-zero diagonals of the matrix \(A\).
REAL for mkl_sdiasymv.
DOUBLE PRECISION for mkl_ddiasymv.
COMPLEX for mkl_cdiasymv.
DOUBLE COMPLEX for mkl_zdiasymv.
```

Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix $A$. Refer to values array description in Diagonal Storage Scheme for more details.

Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y
REAL for mkl_sdiasymv.
DOUBLE PRECISION for mkl_ddiasymv.
COMPLEX for mkl_cdiasymv.
DOUBLE COMPLEX for mkl_zdiasymv.
Array, size at least $m$.
On exit, the array $y$ must contain the vector $y$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sdiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 uplo
 INTEGER m, lval, ndiag
 INTEGER idiag(*)
 REAL val(lval,*), x(*), y(*)
SUBROUTINE mkl_ddiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 uplo
 INTEGER m, lval, ndiag
 INTEGER idiag(*)
 DOUBLE PRECISION val(lval,*), x(*), y(*)
```

```
SUBROUTINE mkl_cdiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 uplo
 INTEGER m, lval, ndiag
 INTEGER idiag(*)
 COMPLEX val(lval,*), x(*), y(*)
SUBROUTINE mkl_zdiasymv(uplo, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 uplo
 INTEGER m, lval, ndiag
 INTEGER idiag(*)
 DOUBLE COMPLEX val(lval,*), x(*), y(*)
```

mkl_?csrtrsv
Triangular solvers with simplified interface for a sparse
matrix in the CSR format (3-array variation) with one-
based indexing (deprecated).

## Syntax

```
call mkl_scsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
call mkl_dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
call mkl_ccsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
call mkl_zcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?csrtrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the CSR format (3 array variation):

```
A*}Y=
```

or

$$
A^{\mathrm{T}} * y=x,
$$

where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.

If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
CHARACTER*1. Specifies the system of linear equations.
If transa $=$ ' $N$ ' or ' $n$ ', then $A^{\star} y=x$
If transa $=$ 'T' or 't' or 'C' or 'C', then $A^{T *} y=x$,
CHARACTER*1. Specifies whether $A$ is unit triangular.
If diag = 'U' or 'u', then $A$ is a unit triangular.
If diag = 'N' or 'n', then $A$ is not unit triangular.
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_scsrtrmv.
DOUBLE PRECISION for mkl_dcsrtrmv.
COMPLEX for mkl_ccsrtrmv.
DOUBLE COMPLEX for mkl_zcsrtrmv.
Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.

## NOTE

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).
No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

INTEGER. Array of length $m+1$, containing indices of elements in the array $a$, such that $i a(i)$ is the index in the array $a$ of the first non-zero element from the row $i$. The value of the last element $i a(m+1)$ is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.

Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

## NOTE

Column indices must be sorted in increasing order for each row.
$x$
REAL for mkl_scsrtrmv.
DOUBLE PRECISION for mkl_dcsrtrmv.
COMPLEX for mkl_ccsrtrmv.
DOUBLE COMPLEX for mkl_zcsrtrmv.
Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y
REAL for mkl_scsrtrmv.
DOUBLE PRECISION for mkl_dcsrtrmv.
COMPLEX for mkl_ccsrtrmv.
DOUBLE COMPLEX for mkl_zcsrtrmv.
Array, size at least $m$.
Contains the vector $y$.

## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_scsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
SUBROUTINE mkl_dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_ccsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
```

```
SUBROUTINE mkl_zcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
```

```
mkl_?bsrtrsv
```

Triangular solver with simplified interface for a sparse
matrix stored in the BSR format (3-array variation)
with one-based indexing (deprecated).

## Syntax

```
call mkl_sbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
call mkl_dbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
call mkl_cbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
call mkl_zbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?bsrtrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the BSR format (3-array variation) :

$$
y:=A^{\star} X
$$

or

$$
y:=A^{T} \star_{X},
$$

where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
uplo CHARACTER*1. Specifies the upper or low triangle of the matrix $A$ is used.

If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used. If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.

CHARACTER*1. Specifies the operation.
If transa $=$ ' $N$ ' or ' $n$ ', then the matrix-vector product is computed as $y:=A^{*} x$
If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as $y:=A^{T}{ }^{\mathrm{t}} x$.

CHARACTER*1. Specifies whether $A$ is a unit triangular matrix.
If diag = 'U' or 'u', then $A$ is a unit triangular.
If diag $=$ ' $N$ ' or ' n ', then $A$ is not a unit triangular.
INTEGER. Number of block rows of the matrix $A$.
INTEGER. Size of the block in the matrix $A$.
REAL for mkl_sbsrtrsv.
DOUBLE PRECISION for mkl_dbsrtrsv.
COMPLEX for mkl_cbsrtrsv.
DOUBLE COMPLEX for mkl_zbsrtrsv.
Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 b^{*} 1 b$. Refer to values array description in BSR Format for more details.

## NOTE

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

INTEGER. Array of length $(m+1)$, containing indices of block in the array $a$, such that $i a(I)$ is the index in the array $a$ of the first non-zero element from the row $I$. The value of the last element $\operatorname{ia}(m+1)$ is equal to the number of non-zero blocks plus one. Refer to rowIndex array description in BSR Format for more details.

INTEGER.
Array containing the column indices for each non-zero block in the matrix $A$.
Its length is equal to the number of non-zero blocks of the matrix $A$. Refer to columns array description in BSR Format for more details.

REAL for mkl_sbsrtrsv.
DOUBLE PRECISION for mkl_dbsrtrsv.
COMPLEX for mkl_cbsrtrsv.
DOUBLE COMPLEX for mkl_zbsrtrsv.

Array, size ( $m^{\star} 1 b$ ).
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y

```
REAL for mkl_sbsrtrsv.
DOUBLE PRECISION for mkl_dbsrtrsv.
COMPLEX for mkl_cbsrtrsv.
DOUBLE COMPLEX for mkl_zbsrtrsv.
```

Array, size at least ( $m^{\star} l b$ ).
On exit, the array $y$ must contain the vector $y$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
SUBROUTINE mkl_dbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_cbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
SUBROUTINE mkl_zbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
```


## mkl_?cootrsv

Triangular solvers with simplified interface for a sparse matrix in the coordinate format with one-based indexing (deprecated).

## Syntax

```
call mkl_scootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
call mkl_dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
call mkl_ccootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
call mkl_zcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?cootrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the coordinate format:

```
A*}y=
```

or

$$
A^{\mathrm{T}} \star y=x,
$$

where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
uplo
transa
diag

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is considered.
If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
CHARACTER*1. Specifies the system of linear equations.
If transa $=$ ' $N$ ' or 'n', then $A^{*} y=x$
If transa $=$ ' $T$ ' or 't' or 'C' or 'c', then $A^{T} * y=x$,
CHARACTER*1. Specifies whether $A$ is unit triangular.

Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y

```
REAL for mkl_scootrsv.
DOUBLE PRECISION for mkl_dcootrsv.
COMPLEX for mkl_ccootrsv.
DOUBLE COMPLEX for mkl_zcootrsv.
```

Array, size at least $m$.
Contains the vector $y$.

## Interfaces

## FORTRAN 77:



## mkl_?diatrsv

Triangular solvers with simplified interface for a sparse matrix in the diagonal format with one-based indexing (deprecated).

## Syntax

```
call mkl_sdiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)
call mkl_ddiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)
call mkl_cdiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)
call mkl_zdiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_? diatrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the diagonal format:

$$
A^{\star} y=x
$$

or

$$
A^{\mathrm{T} \star} y=x
$$

where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
m
val

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.

If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
CHARACTER*1. Specifies the system of linear equations.
If transa $=$ ' $N$ ' or ' n ', then $A^{*} y=x$
If transa $=$ 'T' or 't' or 'C' or 'c', then $A^{T} * y=x$,
CHARACTER*1. Specifies whether $A$ is unit triangular.
If diag = 'U' or 'u', then $A$ is unit triangular.
If diag $=$ ' $N$ ' or ' n ', then $A$ is not unit triangular.
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_sdiatrsv.
DOUBLE PRECISION for mkl_ddiatrsv.
COMPLEX for mkl_cdiatrsv.
DOUBLE COMPLEX for mkl_zdiatrsv.
Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix $A$. Refer to values array description in Diagonal Storage Scheme for more details.

Ival
idiag

X

INTEGER. Leading dimension of val, lval $\geq m$. Refer to lval description in Diagonal Storage Scheme for more details.

INTEGER. Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix $A$.

## NOTE

All elements of this array must be sorted in increasing order.

Refer to distance array description in Diagonal Storage Scheme for more details.

INTEGER. Specifies the number of non-zero diagonals of the matrix $A$.
REAL for mkl_sdiatrsv.
DOUBLE PRECISION for mkl_ddiatrsv.
COMPLEX for mkl_cdiatrsv.
DOUBLE COMPLEX for mkl_zdiatrsv.
Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y
REAL for mkl_sdiatrsv.
DOUBLE PRECISION for mkl_ddiatrsv.
COMPLEX for mkl_cdiatrsv.
DOUBLE COMPLEX for mkl_zdiatrsv.
Array, size at least $m$.
Contains the vector $y$.

## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_sdiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, lval, ndiag
 INTEGER indiag(*)
 REAL val(lval,*), x(*), y(*)
```

```
SUBROUTINE mkl_ddiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, lval, ndiag
 INTEGER indiag(*)
 DOUBLE PRECISION val(lval,*), x(*), y(*)
SUBROUTINE mkl_cdiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, lval, ndiag
 INTEGER indiag(*)
 COMPLEX val(lval,*), x(*), y(*)
SUBROUTINE mkl_zdiatrsv(uplo, transa, diag, m, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, lval, ndiag
 INTEGER indiag(*)
 DOUBLE COMPLEX val(lval,*), x(*), y(*)
```

mkl_cspblas_?csrgemv
Computes matrix - vector product of a sparse general
matrix stored in the CSR format (3-array variation)
with zero-based indexing (deprecated).

## Syntax

```
call mkl_cspblas_scsrgemv(transa, m, a, ia, ja, x, y)
call mkl_cspblas_dcsrgemv(transa, m, a, ia, ja, x, y)
call mkl_cspblas_ccsrgemv(transa, m, a, ia, ja, x, y)
call mkl_cspblas_zcsrgemv(transa, m, a, ia, ja, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_cspblas_?csrgemv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} X
$$

or

$$
y:=A^{T} * X,
$$

where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ sparse square matrix in the CSR format (3-array variation) with zero-based indexing, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

CHARACTER*1. Specifies the operation.
If transa $=$ ' $N$ ' or ' $n$ ', then the matrix-vector product is computed as $y:=A^{*} X$
If transa $=$ 'T' or 't' or 'C' or 'C', then the matrix-vector product is computed as $y:=A^{T}{ }^{*}{ }_{x}$,

INTEGER. Number of rows of the matrix $A$.
REAL for mkl_cspblas_scsrgemv.
DOUBLE PRECISION for mkl_cspblas_dcsrgemv.
COMPLEX for mkl_cspblas_ccsrgemv.
DOUBLE COMPLEX for mkl_cspblas_zcsrgemv.
Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length $m+1$, containing indices of elements in the array $a$, such that $\mathrm{ia}(I)$ is the index in the array $a$ of the first non-zero element from the row $I$. The value of the last element $i a(m)$ is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.
Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

REAL for mkl_cspblas_scsrgemv.
DOUBLE PRECISION for mkl_cspblas_dcsrgemv.
COMPLEX for mkl_cspblas_ccsrgemv.
DOUBLE COMPLEX for mkl_cspblas_zcsrgemv.
Array, size is $m$.
One entry, the array $x$ must contain the vector $x$.

## Output Parameters

y

```
REAL for mkl_cspblas_scsrgemv.
DOUBLE PRECISION for mkl_cspblas_dcsrgemv.
COMPLEX for mkl_cspblas_ccsrgemv.
DOUBLE COMPLEX for mkl_cspblas_zcsrgemv.
```

Array, size at least $m$.
On exit, the array $y$ must contain the vector $y$.

## Interfaces

FORTRAN 77:
SUBROUTINE mkl_csp.blas_scsrgemv(transa, m, a, ia, ja, x, y) CHARACTER*1 transa

INTEGER m
INTEGER ia(*), ja(*)
REAL $\quad a(*), x(*), y(*)$
SUBROUTINE mkl_cspblas_dcsrgemv(transa, m, a, ia, ja, x, y)
CHARACTER*1 transa
INTEGER m
INTEGER ia(*), ja(*)
DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_csp.blas_ccsrgemv(transa, m, a, ia, ja, x, y)
CHARACTER*1 transa
INTEGER m
INTEGER ia(*), ja(*)
COMPLEX $\quad a(*), x(*), y(*)$
SUBROUTINE mkl_cspblas_zcsrgemv(transa, m, a, ia, ja, x, y)
CHARACTER*1 transa
INTEGER m
INTEGER ia(*), ja(*)
DOUBLE COMPLEX $\quad a(*), x(*), y(*)$
mkl_cspblas_?bsrgemv
Computes matrix - vector product of a sparse general matrix stored in the BSR format (3-array variation)
with zero-based indexing (deprecated).

## Syntax

```
call mkl_cspblas_sbsrgemv(transa, m, lb, a, ia, ja, x, y)
call mkl_cspblas_dbsrgemv(transa, m, lb, a, ia, ja, x, y)
call mkl_cspblas_cbsrgemv(transa, m, lb, a, ia, ja, x, y)
call mkl_cspblas_zbsrgemv(transa, m, lb, a, ia, ja, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_cspblas_?bsrgemv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} X
$$

or

$$
y:=A^{T} x_{x},
$$

where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ block sparse square matrix in the BSR format (3-array variation) with zero-based indexing, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

CHARACTER*1. Specifies the operation.
If transa $=$ ' $N$ ' or ' $n$ ', then the matrix-vector product is computed as $y:=A^{*} x$

If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as $y:=A^{T} * x$,

INTEGER. Number of block rows of the matrix $A$.
INTEGER. Size of the block in the matrix $A$.
REAL for mkl_cspblas_sbsrgemv.
DOUBLE PRECISION for mkl_cspblas_dbsrgemv.
COMPLEX for mkl_cspblas_cbsrgemv.
DOUBLE COMPLEX for mkl_cspblas_zbsrgemv.

Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 b \star I b$. Refer to values array description in BSR Format for more details.

INTEGER. Array of length $(m+1)$, containing indices of block in the array $a$, such that $i a(i)$ is the index in the array $a$ of the first non-zero element from the row $i$. The value of the last element $i a(m+1)$ is equal to the number of non-zero blocks. Refer to rowIndex array description in BSR Format for more details.

INTEGER. Array containing the column indices for each non-zero block in the matrix $A$.
Its length is equal to the number of non-zero blocks of the matrix $A$. Refer to columns array description in BSR Format for more details.

> REAL for mkl_cspblas_sbsrgemv.

DOUBLE PRECISION for mkl_cspblas_dbsrgemv.
COMPLEX for mkl_cspblas_cbsrgemv.
DOUBLE COMPLEX for mkl_cspblas_zbsrgemv.
Array, size ( $m^{\star} l b$ ).
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y
REAL for mkl_cspblas_sbsrgemv.
DOUBLE PRECISION for mkl_cspblas_dbsrgemv.
COMPLEX for mkl_cspblas_cbsrgemv.
DOUBLE COMPLEX for mkl_cspblas_zbsrgemv.
Array, size at least ( $m^{\star}$ lb) .
On exit, the array $y$ must contain the vector $y$.

## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_cspblas_sbsrgemv(transa, m, lb, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
```

```
SUBROUTINE mkl_cspblas_dbsrgemv(transa, m, lb, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_cbsrgemv(transa, m, lb, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_zbsrgemv(transa, m, lb, a, ia, ja, x, y)
 CHARACTER*1 transa
 INTEGER m, lb
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
```


## mkl_cspblas_?coogemv

Computes matrix - vector product of a sparse general matrix stored in the coordinate format with zerobased indexing (deprecated).

## Syntax

```
call mkl_cspblas_scoogemv(transa, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_dcoogemv(transa, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_ccoogemv(transa, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_zcoogemv(transa, m, val, rowind, colind, nnz, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_cspblas_dcoogemv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} x
$$

or

$$
y:=A^{\mathrm{T}} \star_{x},
$$

where:
$x$ and $y$ are vectors,
$A$ is an $m$-by- $m$ sparse square matrix in the coordinate format with zero-based indexing, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
m
val
rowind
colind
$n n z$

X

CHARACTER*1. Specifies the operation.
If transa $=$ 'N' or 'n', then the matrix-vector product is computed as $y:=A^{*} x$

If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as $y:=A^{T} *_{x}$.

INTEGER. Number of rows of the matrix $A$.
REAL for mkl_cspblas_scoogemv.
DOUBLE PRECISION for mkl_cspblas_dcoogemv.
COMPLEX for mkl_cspblas_ccoogemv.
DOUBLE COMPLEX for mkl_cspblas_zcoogemv.
Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.

Refer to values array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.

Refer to rows array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the column indices for each nonzero element of the matrix $A$. Refer to columns array description in Coordinate Format for more details.

INTEGER. Specifies the number of non-zero element of the matrix $A$.
Refer to $n n z$ description in Coordinate Format for more details.
REAL for mkl_cspblas_scoogemv.
DOUBLE PRECISION for mkl_cspblas_dcoogemv.
COMPLEX for mkl_cspblas_ccoogemv.
DOUBLE COMPLEX for mkl_cspblas_zcoogemv.
Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y
REAL for mkl_cspblas_scoogemv.
DOUBLE PRECISION for mkl_cspblas_dcoogemv.
COMPLEX for mkl_cspblas_ccoogemv.
DOUBLE COMPLEX for mkl_cspblas_zcoogemv.
Array, size at least $m$.
On exit, the array $y$ must contain the vector $y$.

## Interfaces

FORTRAN 77:

mkl_cspblas_?csrsymv
Computes matrix-vector product of a sparse
symmetrical matrix stored in the CSR format (3-array
variation) with zero-based indexing (deprecated).

## Syntax

```
call mkl_cspblas_scsrsymv(uplo, m, a, ia, ja, x, y)
call mkl_cspblas_dcsrsymv(uplo, m, a, ia, ja, x, y)
call mkl_cspblas_ccsrsymv(uplo, m, a, ia, ja, x, y)
call mkl_cspblas_zcsrsymv(uplo, m, a, ia, ja, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_cspblas_?csrsymv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} X
$$

where:

```
x and y are vectors,
```

$A$ is an upper or lower triangle of the symmetrical sparse matrix in the CSR format (3-array variation) with zero-based indexing.

## NOTE

This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
uplo
m
a

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_cspblas_scsrsymv.
DOUBLE PRECISION for mkl_cspblas_dcsrsymv.
COMPLEX for mkl_cspblas_ccsrsymv.
DOUBLE COMPLEX for mkl_cspblas_zcsrsymv.
Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.
ia
$x$

INTEGER. Array of length $m+1$, containing indices of elements in the array $a$, such that ia(i) is the index in the array a of the first non-zero element from the row $i$. The value of the last element $i a(m+1)$ is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.

Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

REAL for mkl_cspblas_scsrsymv.
DOUBLE PRECISION for mkl_cspblas_dcsrsymv.
COMPLEX for mkl_cspblas_ccsrsymv.
DOUBLE COMPLEX for mkl_cspblas_zcsrsymv.
Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y

```
REAL for mkl_cspblas_scsrsymv.
DOUBLE PRECISION for mkl_cspblas_dcsrsymv.
COMPLEX for mkl_cspblas_ccsrsymv.
DOUBLE COMPLEX for mkl_cspblas_zcsrsymv.
```

Array, size at least $m$.
On exit, the array $y$ must contain the vector $y$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_cspblas_scsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 REAL a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_dcsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE PRECISION a(*), x(*), y(*)
```

```
SUBROUTINE mkl_cspblas_ccsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 COMPLEX a(*), x(*), y(*)
SUBROUTINE mkl_cspblas_zcsrsymv(uplo, m, a, ia, ja, x, y)
 CHARACTER*1 uplo
 INTEGER m
 INTEGER ia(*), ja(*)
 DOUBLE COMPLEX a(*), x(*), y(*)
```

mkl_cspblas_?bsrsymv
Computes matrix-vector product of a sparse
symmetrical matrix stored in the BSR format (3-arrays
variation) with zero-based indexing (deprecated).

## Syntax

```
call mkl_cspblas_sbsrsymv(uplo, m, lb, a, ia, ja, x, y)
call mkl_cspblas_dbsrsymv(uplo, m, lb, a, ia, ja, x, y)
call mkl_cspblas_cbsrsymv(uplo, m, lb, a, ia, ja, x, y)
call mkl_cspblas_zbsrsymv(uplo, m, lb, a, ia, ja, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_cspblas_?bsrsymv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} x
$$

where:
$x$ and $y$ are vectors,
$A$ is an upper or lower triangle of the symmetrical sparse matrix in the BSR format (3-array variation) with zero-based indexing.

## NOTE

This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
uplo
m

X

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.

If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
INTEGER. Number of block rows of the matrix $A$.
INTEGER. Size of the block in the matrix $A$.
REAL for mkl_cspblas_sbsrsymv.
DOUBLE PRECISION for mkl_cspblas_dbsrsymv.
COMPLEX for mkl_cspblas_cbsrsymv.
DOUBLE COMPLEX for mkl_cspblas_zbsrsymv.
Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 b \star 1 b$. Refer to values array description in BSR Format for more details.

INTEGER. Array of length $(m+1)$, containing indices of block in the array $a$, such that $i a(i)$ is the index in the array $a$ of the first non-zero element from the row $i$. The value of the last element $i a(m+1)$ is equal to the number of non-zero blocks plus one. Refer to rowIndex array description in BSR Format for more details.

INTEGER. Array containing the column indices for each non-zero block in the matrix $A$.

Its length is equal to the number of non-zero blocks of the matrix $A$. Refer to columns array description in BSR Format for more details.

REAL for mkl_cspblas_sbsrsymv.
DOUBLE PRECISION for mkl_cspblas_dbsrsymv.
COMPLEX for mkl_cspblas_cbsrsymv.
DOUBLE COMPLEX for mkl_cspblas_zbsrsymv.
Array, size ( $m^{*}$ lb).
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y

REAL for mkl_cspblas_sbsrsymv.
DOUBLE PRECISION for mkl_cspblas_dbsrsymv.
COMPLEX for mkl_cspblas_cbsrsymv.
DOUBLE COMPLEX for mkl_cspblas_zbsrsymv.

Array, size at least ( $m^{\star}$ lb) .
On exit, the array $y$ must contain the vector $y$.

## Interfaces

FORTRAN 77:
SUBROUTINE mkl_csp.blas_sbsrsymv(uplo, m, lb, a, ia, ja, x, y)
CHARACTER*1 uplo
INTEGER m, lb
INTEGER ia(*), ja(*)
REAL $\quad a(*), x(*), y(*)$

```
SUBROUTINE mkl_cspblas_dbsrsymv(uplo, m, lb, a, ia, ja, x, y)
```

    CHARACTER*1 uplo
    INTEGER m, lb
    INTEGER ia(*), ja(*)
    DOUBLE PRECISION a(*), \(x(*), y(*)\)
    SUBROUTINE mkl_csp.blas_cbsrsymv(uplo, m, lb, a, ia, ja, x, y)
CHARACTER*1 uplo
INTEGER m, lb
INTEGER ia(*), ja(*)
COMPLEX $a(*), x(*), y(*)$
SUBROUTINE mkl_cspblas_zbsrsymv(uplo, m, lb, a, ia, ja, x, y)
CHARACTER*1 uplo
INTEGER m, lb
INTEGER ia(*), ja(*)
DOUBLE COMPLEX $a(*), x(*), y(*)$
mkl_cspblas_?coosymv
Computes matrix - vector product of a sparse symmetrical matrix stored in the coordinate format with zero-based indexing (deprecated).

## Syntax

```
call mkl_cspblas_scoosymv(uplo, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_dcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_ccoosymv(uplo, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_zcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_cspblas_?coosymv routine performs a matrix-vector operation defined as

$$
y:=A^{\star} X
$$

where:
$x$ and $y$ are vectors,
$A$ is an upper or lower triangle of the symmetrical sparse matrix in the coordinate format with zero-based indexing.

## NOTE

This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
uplo
m
val

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.

If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_cspblas_scoosymv.
DOUBLE PRECISION for mkl_cspblas_dcoosymv.
COMPLEX for mkl_cspblas_ccoosymv.
DOUBLE COMPLEX for mkl_cspblas_zcoosymv.
Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.

Refer to values array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.

Refer to rows array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the column indices for each nonzero element of the matrix $A$. Refer to columns array description in Coordinate Format for more details.

INTEGER. Specifies the number of non-zero element of the matrix $A$.

Refer to $n n z$ description in Coordinate Format for more details.
REAL for mkl_cspblas_scoosymv.
DOUBLE PRECISION for mkl_cspblas_dcoosymv.
COMPLEX for mkl_cspblas_ccoosymv.
DOUBLE COMPLEX for mkl_cspblas_zcoosymv.
Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y

```
REAL for mkl_cspblas_scoosymv.
DOUBLE PRECISION for mkl_cspblas_dcoosymv.
COMPLEX for mkl_cspblas_ccoosymv.
DOUBLE COMPLEX for mkl_cspblas_zcoosymv.
```


## Array, size at least $m$.

On exit, the array y must contain the vector $y$.

## Interfaces

## FORTRAN 77:



```
SUBROUTINE mkl_cspblas_zcoosymv(uplo, m, val, rowind, colind, nnz, x, y)
CHARACTER*1 uplo
INTEGER m, nnz
INTEGER rowind(*), colind(*)
DOUBLE COMPLEX val(*), x(*), y(*)
```

mkl_cspblas_?csrtrsv
Triangular solvers with simplified interface for a sparse matrix in the CSR format (3-array variation) with zero-based indexing (deprecated).

## Syntax

```
call mkl_cspblas_scsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
call mkl_cspblas_dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
call mkl_cspblas_ccsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
call mkl_cspblas_zcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_cspblas_?csrtrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the CSR format (3-array variation) with zero-based indexing:

```
A*}y=
```

or

$$
A^{T} * y=x,
$$

where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
uplo
CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is used.

If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used. If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.

CHARACTER*1. Specifies the system of linear equations.
If transa $=$ ' $N$ ' or ' $n$ ', then $A^{\star} y=x$
If transa $=$ ' $T$ ' or 't' or 'C' or 'C', then $A^{T} \star y=x$,
CHARACTER*1. Specifies whether matrix $A$ is unit triangular.
If diag = 'U' or 'u', then $A$ is unit triangular.
If diag = 'N' or ' n ', then $A$ is not unit triangular.
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_cspblas_scsrtrsv.
DOUBLE PRECISION for mkl_cspblas_dcsrtrsv.
COMPLEX for mkl_cspblas_ccsrtrsv.
DOUBLE COMPLEX for mkl_cspblas_zcsrtrsv.
Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.

## NOTE

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

INTEGER. Array of length $m+1$, containing indices of elements in the array $a$, such that ia(i) is the index in the array $a$ of the first non-zero element from the row $i$. The value of the last element ia(m) is equal to the number of non-zeros. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.

Its length is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

## NOTE

Column indices must be sorted in increasing order for each row.

REAL for mkl_cspblas_scsrtrsv.
DOUBLE PRECISION for mkl_cspblas_dcsrtrsv.
COMPLEX for mkl_cspblas_ccsrtrsv.

DOUBLE COMPLEX for mkl_cspblas_zcsrtrsv.
Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

Y
REAL for mkl_cspblas_scsrtrsv.
DOUBLE PRECISION for mkl_cspblas_dcsrtrsv.
COMPLEX for mkl_cspblas_ccsrtrsv.
DOUBLE COMPLEX for mkl_cspblas_zcsrtrsv.
Array, size at least $m$.
Contains the vector $y$.

## Interfaces

## FORTRAN 77:

SUBROUTINE mkl_cspblas_scsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y) CHARACTER*1 uplo, transa, diag

INTEGER m
INTEGER ia(*), ja(*)
REAL $\quad a(*), x(*), y(*)$

SUBROUTINE mkl_cspblas_dcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
CHARACTER*1 uplo, transa, diag
INTEGER m
INTEGER ia(*), ja(*)
DOUBLE PRECISION $a(*), x(*), y(*)$

SUBROUTINE mkl_cspblas_ccsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
CHARACTER*1 uplo, transa, diag
INTEGER m
INTEGER ia(*), ja(*)
COMPLEX $a(*), x(*), y(*)$

SUBROUTINE mkl_cspblas_zcsrtrsv(uplo, transa, diag, m, a, ia, ja, x, y)
CHARACTER*1 uplo, transa, diag
INTEGER m
INTEGER ia(*), ja(*)
DOUBLE COMPLEX $a(*), x(*), y(*)$
mkl_cspblas_?bsrtrsv
Triangular solver with simplified interface for a sparse
matrix stored in the BSR format (3-array variation)
with zero-based indexing (deprecated).

## Syntax

```
call mkl_cspblas_sbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
call mkl_cspblas_dbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
call mkl_cspblas_cbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
call mkl_cspblas_zbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_cspblas_?bsrtrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the BSR format (3-array variation) with zero-based indexing:

$$
y:=A^{\star} x
$$

or

$$
y:=A^{T} * x
$$

where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
uplo
transa

CHARACTER*1. Specifies the upper or low triangle of the matrix $A$ is used.
If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
CHARACTER*1. Specifies the operation.
If transa $=$ ' $N$ ' or ' $n$ ', then the matrix-vector product is computed as $y:=A^{\star} X$

If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as $y:=A^{T} *_{x}$.

## Output Parameters

y

```
REAL for mkl_cspblas_sbsrtrsv.
DOUBLE PRECISION formkl_cspblas_dbsrtrsv.
COMPLEX formkl_cspblas_cbsrtrsv.
```

DOUBLE COMPLEX for mkl_cspblas_zbsrtrsv.
Array, size at least ( $m^{\star}$ lb) .
On exit, the array y must contain the vector $y$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_cspblas_sbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
```

    CHARACTER*1 uplo, transa, diag
    INTEGER m, lb
    INTEGER ia(*), ja(*)
    REAL \(a(*), x(*), y(*)\)
    SUBROUTINE mkl_cspblas_dbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, $x, y)$
CHARACTER*1 uplo, transa, diag
INTEGER m, lb
INTEGER ia(*), ja(*)
DOUBLE PRECISION $a(*), x(*), y(*)$
SUBROUTINE mkl_cspblas_cbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, $x, y)$
CHARACTER*1 uplo, transa, diag
INTEGER m, lb
INTEGER ia(*), ja(*)
COMPLEX $a(*), x(*), y(*)$
SUBROUTINE mkl_cspblas_zbsrtrsv(uplo, transa, diag, m, lb, a, ia, ja, x, y)
CHARACTER*1 uplo, transa, diag
INTEGER m, lb
INTEGER ia(*), ja(*)
DOUBLE COMPLEX $a(*), x(*), y(*)$
mkl_cspblas_?cootrsv
Triangular solvers with simplified interface for a sparse
matrix in the coordinate format with zero-based
indexing (deprecated).

## Syntax

```
call mkl_cspblas_scootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_ccootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
call mkl_cspblas_zcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_cspblas_? cootrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the coordinate format with zero-based indexing:

```
A*}y=
```

or

$$
A^{T} \star y=x,
$$

where:
$x$ and $y$ are vectors,
$A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only zero-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
uplo
transa
diag
m
val

CHARACTER*1. Specifies whether the upper or low triangle of the matrix $A$ is considered.

If uplo = 'U' or 'u', then the upper triangle of the matrix $A$ is used.
If uplo = 'L' or 'l', then the low triangle of the matrix $A$ is used.
CHARACTER*1. Specifies the system of linear equations.
If transa $=$ 'N' or 'n', then $A^{*} y=x$
If transa $=$ 'T' or 't' or 'C' or 'C', then $A^{T *} y=x$,
CHARACTER*1. Specifies whether $A$ is unit triangular.
If diag = 'U' or 'u', then $A$ is unit triangular.
If diag $=$ ' $N$ ' or 'n', then $A$ is not unit triangular.
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_cspblas_scootrsv.
DOUBLE PRECISION for mkl_cspblas_dcootrsv.
COMPLEX for mkl_cspblas_ccootrsv.
DOUBLE COMPLEX for mkl_cspblas_zcootrsv.
rowind
colind
$n n z$

X

Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.

Refer to values array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.
Refer to rows array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the column indices for each nonzero element of the matrix $A$. Refer to columns array description in Coordinate Format for more details.

INTEGER. Specifies the number of non-zero element of the matrix $A$.
Refer to $n n z$ description in Coordinate Format for more details.
REAL for mkl_cspblas_scootrsv.
DOUBLE PRECISION for mkl_cspblas_dcootrsv.
COMPLEX for mkl_cspblas_ccootrsv.
DOUBLE COMPLEX for mkl_cspblas_zcootrsv.
Array, size is $m$.
On entry, the array $x$ must contain the vector $x$.

## Output Parameters

y
REAL for mkl_cspblas_scootrsv.
DOUBLE PRECISION for mkl_cspblas_dcootrsv.
COMPLEX for mkl_cspblas_ccootrsv.
DOUBLE COMPLEX for mkl_cspblas_zcootrsv.
Array, size at least $m$.
Contains the vector $y$.

## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_cspblas_scootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 REAL val(*), x(*), y(*)
```

```
SUBROUTINE mkl_cspblas_dcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 DOUBLE PRECISION val(*), x(*), y(*)
SUBROUTINE mkl_cspblas_ccootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 COMPLEX val(*), x(*), y(*)
SUBROUTINE mkl_cspblas_zcootrsv(uplo, transa, diag, m, val, rowind, colind, nnz, x, y)
 CHARACTER*1 uplo, transa, diag
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 DOUBLE COMPLEX val(*), x(*), y(*)
```

mkl_?csrmv
Computes matrix - vector product of a sparse matrix
stored in the CSR format (deprecated).

## Syntax

```
call mkl_scsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_dcsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_ccsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_zcsrmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
```

Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?csrmv routine performs a matrix-vector operation defined as

```
y := alpha*A*}x+beta*
```

or

```
y := alpha* AT* X + beta* y,
```

where:
alpha and beta are scalars,
$x$ and $y$ are vectors,
$A$ is an $m$-by- $k$ sparse matrix in the CSR format, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports a CSR format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
m
k
alpha
matdescra
val
indx

CHARACTER*1. Specifies the operation.
If transa $=$ 'N' or 'n', then $y:=a l p h a * A * x+b e t a * y$
If transa $=$ 'T' or 't' or 'C' or 'c', then $y:=a l p h a \star A^{T} * x+b e t a \star y$,
INTEGER. Number of rows of the matrix $A$.
INTEGER. Number of columns of the matrix $A$.
REAL for mkl_scsrmv.
DOUBLE PRECISION for mkl_dcsrmv.
COMPLEX for mkl_ccsrmv.
DOUBLE COMPLEX for mkl_zcsrmv.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

REAL for mkl_scsrmv.
DOUBLE PRECISION for mkl_dcsrmv.
COMPLEX for mkl_ccsrmv.
DOUBLE COMPLEX for mkl_zcsrmv.
Array containing non-zero elements of the matrix $A$.
For one-based indexing its length is pntre(m) - pntrb(1).
For zero-based indexing its length is pntre(m-1) - pntrb(0).
Refer to values array description in CSR Format for more details.
INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.
Its length is equal to length of the val array.
Refer to columns array description in CSR Format for more details.
pntrb

Y

## Output Parameters

Y

INTEGER. Array of length $m$.
For one-based indexing this array contains row indices, such that pntrb (i) - pntrb(1) + 1 is the first index of row $i$ in the arrays val and indx.

For zero-based indexing this array contains row indices, such that pntrb(i) - pntrb(0) is the first index of row $i$ in the arrays val and indx.

Refer to pointerb array description in CSR Format for more details.
INTEGER. Array of length $m$.
For one-based indexing this array contains row indices, such that pntre(i) - pntrb(1) is the last index of row $i$ in the arrays val and indx.

For zero-based indexing this array contains row indices, such that pntre(i) - pntrb(0)-1 is the last index of row $i$ in the arrays val and indx.

Refer to pointerE array description in CSR Format for more details.
REAL for mkl_scsrmv.
DOUBLE PRECISION for mkl_dcsrmv.
COMPLEX for mkl_ccsrmv.
DOUBLE COMPLEX for mkl_zcsrmv.
Array, size at least $k$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $m$ otherwise. On entry, the array $x$ must contain the vector $x$.

REAL for mkl_scsrmv.
DOUBLE PRECISION for mkl_dcsrmv.
COMPLEX for mkl_ccsrmv.
DOUBLE COMPLEX for mkl_zcsrmv.
Specifies the scalar beta.
REAL for mkl_scsrmv.
DOUBLE PRECISION for mkl_dcsrmv.
COMPLEX for mkl_ccsrmv.
DOUBLE COMPLEX for mkl_zcsrmv.
Array, size at least $m$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $k$ otherwise. On entry, the array $y$ must contain the vector $y$.

Overwritten by the updated vector $y$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_scsrmv(transa, m, k, alpha, matdescra, val, indx,
 pntrb, pntre, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL alpha, beta
 REAL val(*), x(*), y(*)
SUBROUTINE mkl_dcsrmv(transa, m, k, alpha, matdescra, val, indx,
pntrb, pntre, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE PRECISION alpha, beta
 DOUBLE PRECISION val(*), x(*), y(*)
SUBROUTINE mkl_ccsrmv(transa, m, k, alpha, matdescra, val, indx,
pntrb, pntre, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k
 INTEGER indx(*), pntrb(m), pntre(m)
 COMPLEX alpha, beta
 COMPLEX val(*), x(*), y(*)
SUBROUTINE mkl_zcsrmv(transa, m, k, alpha, matdescra, val, indx,
pntrb, pntre, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE COMPLEX alpha, beta
 DOUBLE COMPLEX val (*), x(*), y(*)
```

```
mkl_?bsrmv
Computes matrix - vector product of a sparse matrix
stored in the BSR format (deprecated).
```


## Syntax

```
call mkl_sbsrmv(transa, m, k, lb, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_dbsrmv(transa, m, k, lb, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_cbsrmv(transa, m, k, lb, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_zbsrmv(transa, m, k, lb, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?bsrmv routine performs a matrix-vector operation defined as

```
y := alpha\starA\star}x+beta* y
```

or

$$
y:=a l p h a^{\star} A^{T} * x+b e t a^{\star} y,
$$

where:
alpha and beta are scalars,
$x$ and $y$ are vectors,
$A$ is an $m$-by- $k$ block sparse matrix in the BSR format, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports a BSR format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
transa
m
k
CHARACTER*1. Specifies the operation.
If transa \(=\) ' \(N\) ' or ' \(n\) ', then the matrix-vector product is computed as \(y:=\) alpha*A*x + beta* \(y\)
If transa \(=\) ' \(T\) ' or ' \(t\) ' or ' \(C\) ' or ' \(C\) ', then the matrix-vector product is computed as \(y:=a l p h a * A^{T *} x+b e t a \star y\),
INTEGER. Number of block rows of the matrix \(A\).
INTEGER. Number of block columns of the matrix \(A\).
```

1.6	INTEGER. Size of the block in the matrix $A$.
alpha	REAL for mkl_sbsrmv.
	DOUBLE PRECISION for mkl_dbsrmv.
	COMPLEX for mkl_cbsrmv.
	DOUBLE COMPLEX for mkl_zbsrmv.
	Specifies the scalar alpha.
matdescra	CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".
val	REAL for mkl_sbsrmv.
	DOUBLE PRECISION for mkl_dbsrmv.
	COMPLEX for mkl_cbsrmv.
	DOUBLE COMPLEX for mkl_zbsrmv.
	Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 b^{\star} 1 b$.
	Refer to values array description in BSR Format for more details.
indx	INTEGER. Array containing the column indices for each non-zero block in the matrix $A$.
	Its length is equal to the number of non-zero blocks in the matrix $A$.
	Refer to columns array description in BSR Format for more details.
pntrb	INTEGER. Array of length m.
	For one-based indexing: this array contains row indices, such that pntrb(i) - pntrb(1) +1 is the first index of block row $i$ in the array indx.
	For zero-based indexing: this array contains row indices, such that pntrb(i) - pntrb(0) is the first index of block row $i$ in the array indx
	Refer to pointerB array description in BSR Format for more details.
pntre	INTEGER. Array of length m.
	For one-based indexing this array contains row indices, such that pntre(i) - pntrb (1) is the last index of block row $i$ in the array indx.
	For zero-based indexing this array contains row indices, such that pntre(i) - pntrb(0) - 1 is the last index of block row $i$ in the array indx.
	Refer to pointerE array description in BSR Format for more details.
$x$	REAL for mkl_sbsrmv.
	DOUBLE PRECISION for mkl_dbsrmv.

```
COMPLEX for mkl cbsrmv.
DOUBLE COMPLEX for mkl_zbsrmv.
Array, size at least (}\mp@subsup{k}{}{\star}lb) if transa = 'N' or 'n', and at least (m\star lb
otherwise. On entry, the array x must contain the vector x.
REAL for mkl_sbsrmv.
DOUBLE PRECISION for mkl_dbsrmv.
COMPLEX for mkl_cbsrmv.
DOUBLE COMPLEX for mkl_zbsrmv.
Specifies the scalar beta.
REAL for mkl_sbsrmv.
DOUBLE PRECISION for mkl_dbsrmv.
COMPLEX for mkl_cbsrmv.
DOUBLE COMPLEX for mkl_zbsrmv.
Array, size at least (m* lb) if transa = 'N' or 'n', and at least (k* lb)
otherwise. On entry, the array y must contain the vector }y\mathrm{ .
```


## Output Parameters

Y
Overwritten by the updated vector $y$.
Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sbsrmv(transa, m, k, lb, alpha, matdescra, val, indx,
 pntrb, pntre, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, lb
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL alpha, beta
 REAL val(*), x(*), y(*)
```



## mkl_?cscmv

Computes matrix-vector product for a sparse matrix in the CSC format (deprecated).

## Syntax

```
call mkl_scscmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_dcscmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_ccscmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
call mkl_zcscmv(transa, m, k, alpha, matdescra, val, indx, pntrb, pntre, x, beta, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The $\mathrm{mkl} l_{-}$?cscmv routine performs a matrix-vector operation defined as

```
y := alpha*A*}x+beta* Y
```

or

```
y := alpha\star AT*
```

where:
alpha and beta are scalars,
$x$ and $y$ are vectors,
$A$ is an $m$-by- $k$ sparse matrix in compressed sparse column (CSC) format, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports CSC format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
transa CHARACTER*1. Specifies the operation.
 If transa = 'N' or 'n', then y := alpha*A*x + beta*y
 If transa = 'T' or 't' or 'C' or 'c', then y := alpha* AT*x + beta*y,
 INTEGER. Number of rows of the matrix A.
 INTEGER. Number of columns of the matrix A.
 REAL for mkl_scscmv.
 DOUBLE PRECISION for mkl_dcscmv.
 COMPLEX for mkl_ccscmv.
 DOUBLE COMPLEX for mkl_zcscmv.
 Specifies the scalar alpha.
 CHARACTER. Array of six elements, specifies properties of the matrix used
 for operation. Only first four array elements are used, their possible values
 are given in Table "Possible Values of the Parameter matdescra (descra)".
 Possible combinations of element values of this parameter are given in
 Table "Possible Combinations of Element Values of the Parameter
 matdescra".
 REAL for mkl_scscmv.
DOUBLE PRECISION for mkl_dcscmv.
COMPLEX for mkl_ccscmv.
```

Y

DOUBLE COMPLEX for mkl_zcscmv.
Array containing non-zero elements of the matrix $A$.
For one-based indexing its length is pntre (k) - pntrb(1).
For zero-based indexing its length is pntre(m-1) - pntrb(0).
Refer to values array description in CSC Format for more details.
INTEGER. Array containing the row indices for each non-zero element of the matrix $A$.

Its length is equal to length of the val array.
Refer to rows array description in CSC Format for more details.
INTEGER. Array of length $k$.
For one-based indexing this array contains column indices, such that pntrb(i) - pntrb(1) +1 is the first index of column $i$ in the arrays val and indx.

For zero-based indexing this array contains column indices, such that pntrb(i) - pntrb(0) is the first index of column $i$ in the arrays val and indx.

Refer to pointerb array description in CSC Format for more details.
INTEGER. Array of length $k$.
For one-based indexing this array contains column indices, such that pntre(i) - pntrb(1) is the last index of column $i$ in the arrays val and indx.

For zero-based indexing this array contains column indices, such that pntre(i) - pntrb(1) - 1 is the last index of column $i$ in the arrays val and indx.

Refer to pointerE array description in CSC Format for more details.
REAL for mkl_scscmv.
DOUBLE PRECISION for mkl_dcscmv.
COMPLEX for mkl_ccscmv.
DOUBLE COMPLEX for mkl_zcscmv.
Array, size at least $k$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $m$ otherwise. On entry, the array $x$ must contain the vector $x$.

REAL for mkl_scscmv.
DOUBLE PRECISION for mkl_dcscmv.
COMPLEX for mkl_ccscmv.
DOUBLE COMPLEX for mkl_zCscmv.
Specifies the scalar beta.
REAL for mkl_scscmv.
DOUBLE PRECISION for mkl_dcscmv.

COMPLEX for mkl_ccscmv.
DOUBLE COMPLEX for mkl_zcscmv.
Array, size at least $m$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $k$ otherwise. On entry, the array $y$ must contain the vector $y$.

## Output Parameters

y
Overwritten by the updated vector $y$.

Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_scscmv(transa, m, k, alpha, matdescra, val, indx,
 pntrb, pntre, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL alpha, beta
 REAL val(*), x(*), y(*)
SUBROUTINE mkl_dcscmv(transa, m, k, alpha, matdescra, val, indx,
pntrb, pntre, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE PRECISION alpha, beta
 DOUBLE PRECISION val(*), x(*), y(*)
SUBROUTINE mkl_ccscmv(transa, m, k, alpha, matdescra, val, indx,
pntrb, pntre, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 COMPLEX alpha, beta
 COMPLEX val(*), x(*), y(*)
```

```
SUBROUTINE mkl_zcscmv(transa, m, k, alpha, matdescra, val, indx,
pntrb, pntre, x, beta, y)
CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE COMPLEX alpha, beta
 DOUBLE COMPLEX val(*), x(*), y(*)
```

mkl_?coomv
Computes matrix - vector product for a sparse matrix
in the coordinate format (deprecated).

## Syntax

```
call mkl_scoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz, x, beta, y)
call mkl_dcoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz, x, beta, y)
call mkl_ccoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz, x, beta, y)
call mkl_zcoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz, x, beta, y)
```

Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?coomv routine performs a matrix-vector operation defined as

$$
y:=\text { alpha* } A^{\star} x+\text { beta* } y
$$

or

$$
y:=\text { alpha* } A^{T} \star X+\text { beta* } y
$$

where:
alpha and beta are scalars,
$x$ and $y$ are vectors,
$A$ is an $m$-by- $k$ sparse matrix in compressed coordinate format, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports a coordinate format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
m
k
alpha
matdescra
val
rowind
colind
$n \cap z$

X

CHARACTER*1. Specifies the operation.
If transa $=$ 'N' or 'n', then $y:=a l p h a \star A * x+b e t a * y$
If transa $=$ 'T' or 't' or 'C' or 'c', then $y:=a l p h a \star A^{T} * x+b e t a \star y$,
INTEGER. Number of rows of the matrix $A$.
INTEGER. Number of columns of the matrix $A$.
REAL for mkl_scoomv.
DOUBLE PRECISION for mkl_dcoomv.
COMPLEX for mkl_ccoomv.
DOUBLE COMPLEX for mkl_zcoomv.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

REAL for mkl_scoomv.
DOUBLE PRECISION for mkl_dcoomv.
COMPLEX for mkl_ccoomv.
DOUBLE COMPLEX for mkl_zcoomv.
Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.

Refer to values array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.

Refer to rows array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the column indices for each nonzero element of the matrix $A$.

Refer to columns array description in Coordinate Format for more details.
INTEGER. Specifies the number of non-zero element of the matrix $A$.
Refer to $n n z$ description in Coordinate Format for more details.
REAL for mkl_scoomv.
DOUBLE PRECISION for mkl_dcoomv.
COMPLEX for mkl_ccoomv.

DOUBLE COMPLEX for mkl_zcoomv.
Array, size at least $k$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $m$ otherwise. On entry, the array $x$ must contain the vector $x$.
beta
y
REAL for mkl_scoomv.
DOUBLE PRECISION for mkl_dcoomv.
COMPLEX for mkl_ccoomv.
DOUBLE COMPLEX for mkl_zcoomv.
Specifies the scalar beta.
REAL for mkl_scoomv.
DOUBLE PRECISION for mkl_dcoomv.
COMPLEX for mkl_ccoomv.
DOUBLE COMPLEX for mkl_zcoomv.
Array, size at least $m$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $k$ otherwise. On entry, the array $y$ must contain the vector $y$.

## Output Parameters

Y
Overwritten by the updated vector $y$.
Interfaces

## FORTRAN 77:



```
SUBROUTINE mkl_ccoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, nnz
 INTEGER rowind(*), colind(*)
 COMPLEX alpha, beta
 COMPLEX val(*), x(*), y(*)
SUBROUTINE mkl_zcoomv(transa, m, k, alpha, matdescra, val, rowind, colind, nnz, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, nnz
 INTEGER rowind(*), colind(*)
 DOUBLE COMPLEX alpha, beta
 DOUBLE COMPLEX val(*), x(*), y(*)
```

mkl_?csrsv
Solves a system of linear equations for a sparse matrix in the CSR format (deprecated).

## Syntax

```
call mkl_scsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_dcsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_ccsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_zcsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?csrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the CSR format:

```
y := alpha*inv(A)*x
```

or

$$
y:=\text { alpha*inv }\left(A^{T}\right) \star_{X},
$$

where:
alpha is scalar, $x$ and $y$ are vectors, $A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports a CSR format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
m
alpha
matdescra
val
indx

CHARACTER*1. Specifies the system of linear equations.
If transa $=$ 'N' or 'n', then $y:=a l p h a * i n v(A) *_{x}$
If transa $=$ 'T' or 't' or 'C' or 'C', then $y:=\operatorname{alpha*inv}\left(A^{T}\right) * x$, INTEGER. Number of columns of the matrix $A$.

REAL for mkl_scsrsv.
DOUBLE PRECISION for mkl_dcsrsv.
COMPLEX for mkl_ccsrsv.
DOUBLE COMPLEX for mkl_zcsrsv.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)".
Possible combinations of element values of this parameter are given in
Table "Possible Combinations of Element Values of the Parameter
matdescra".
REAL for mkl_scsrsv.
DOUBLE PRECISION for mkl_dcsrsv.
COMPLEX for mkl_ccsrsv.
DOUBLE COMPLEX for mkl_zcsrsv.
Array containing non-zero elements of the matrix $A$.
For one-based indexing its length is pntre(m) - pntrb(1).
For zero-based indexing its length is pntre(m-1) - pntrb(0).
Refer to values array description in CSR Format for more details.

## NOTE

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.

Its length is equal to length of the val array.
Refer to columns array description in CSR Format for more details.

## NOTE

Column indices must be sorted in increasing order for each row.
pntrb
pntre

X

Y

INTEGER. Array of length $m$.
For one-based indexing this array contains row indices, such that pntrb (i) - pntrb(1) + 1 is the first index of row $i$ in the arrays val and indx.

For zero-based indexing this array contains row indices, such that pntrb(i) - pntrb(0) is the first index of row $i$ in the arrays val and indx.

Refer to pointerb array description in CSR Format for more details.
INTEGER. Array of length $m$.
For one-based indexing this array contains row indices, such that pntre(i) - pntrb(1) is the last index of row $i$ in the arrays val and indx.

For zero-based indexing this array contains row indices, such that pntre(i) - pntrb(0) - 1 is the last index of row $i$ in the arrays val and indx.
Refer to pointerE array description in CSR Format for more details.
REAL for mkl_scsrsv.
DOUBLE PRECISION for mkl_dcsrsv.
COMPLEX for mkl_ccsrsv.
DOUBLE COMPLEX for mkl_zcsrsv.
Array, size at least $m$.
On entry, the array $x$ must contain the vector $x$. The elements are accessed with unit increment.

REAL for mkl_scsrsv.
DOUBLE PRECISION for mkl_dcsrsv.
COMPLEX for mkl_ccsrsv.
DOUBLE COMPLEX for mkl_zcsrsv.
Array, size at least $m$.
On entry, the array $y$ must contain the vector $y$. The elements are accessed with unit increment.

## Output Parameters

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_scsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL alpha
 REAL val(*)
 REAL x(*), y(*)
SUBROUTINE mkl_dcsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE PRECISION alpha
 DOUBLE PRECISION val(*)
 DOUBLE PRECISION x(*), y(*)
SUBROUTINE mkl_ccsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m
 INTEGER indx(*), pntrb(m), pntre(m)
 COMPLEX alpha
 COMPLEX val(*)
 COMPLEX X(*), Y(*)
SUBROUTINE mkl_zcsrsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m
INTEGER indx(*), pntrb(m), pntre(m)
DOUBLE COMPLEX alpha
DOUBLE COMPLEX val(*)
DOUBLE COMPLEX x(*), y(*)
```

mkl_?bsrsv
Solves a system of linear equations for a sparse matrix in the BSR format (deprecated).

## Syntax

```
call mkl_sbsrsv(transa, m, lb, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_dbsrsv(transa, m, lb, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_cbsrsv(transa, m, lb, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_zbsrsv(transa, m, lb, alpha, matdescra, val, indx, pntrb, pntre, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?bsrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the BSR format:

$$
y:=\text { alpha*inv }(A) * x
$$

or

$$
y:=\text { alpha*inv }\left(A^{T}\right) * x,
$$

where:
alpha is scalar, $x$ and $y$ are vectors, $A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports a BSR format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
CHARACTER*1. Specifies the operation.
If transa $=$ 'N' or 'n', then $y:=a l p h a * i n v(A) * x$
If transa $=$ 'T' or 't' or 'C' or 'C', then $\left.y:=\operatorname{alpha*inv(~} A^{T}\right) * x$, INTEGER. Number of block columns of the matrix $A$.

INTEGER. Size of the block in the matrix $A$.
REAL for mkl_sbsrsv.
DOUBLE PRECISION for mkl_dbsrsv.

```
COMPLEX for mkl_cbsrsv.
DOUBLE COMPLEX for mkl_zbsrsv.
```

Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

REAL for mkl_sbsrsv.
DOUBLE PRECISION for mkl_dbsrsv.
COMPLEX for mkl_cbsrsv.
DOUBLE COMPLEX for mkl_zbsrsv.
Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 b^{\star} I b$.

Refer to the values array description in BSR Format for more details.

## NOTE

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).
No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

INTEGER. Array containing the column indices for each non-zero block in the matrix $A$.

Its length is equal to the number of non-zero blocks in the matrix $A$.
Refer to the columns array description in BSR Format for more details.
INTEGER. Array of length $m$.
For one-based indexing: this array contains row indices, such that pntrb(i) - pntrb(1) +1 is the first index of block row $i$ in the array indx.

For zero-based indexing: this array contains row indices, such that pntrb(i) - pntrb(0) is the first index of block row $i$ in the array indx.

Refer to pointerB array description in BSR Format for more details.
INTEGER. Array of length $m$.
For one-based indexing this array contains row indices, such that pntre (i) - pntrb(1) is the last index of block row $i$ in the array indx.

For zero-based indexing this array contains row indices, such that pntre(i) - pntrb(0) - 1 is the last index of block row $i$ in the array indx.

Refer to pointerE array description in BSR Format for more details.
x
y

REAL for mkl_sbsrsv.
DOUBLE PRECISION for mkl_dbsrsv.
COMPLEX for mkl_cbsrsv.
DOUBLE COMPLEX for mkl_zbsrsv.
Array, size at least ( $m^{\star} l b$ ).
On entry, the array $x$ must contain the vector $x$. The elements are accessed with unit increment.

REAL for mkl_sbsrsv.
DOUBLE PRECISION for mkl_dbsrsv.
COMPLEX for mkl_cbsrsv.
DOUBLE COMPLEX for mkl_zbsrsv.
Array, size at least ( $m^{\star} l b$ ).
On entry, the array $y$ must contain the vector $y$. The elements are accessed with unit increment.

## Output Parameters

y
Contains solution vector $x$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sbsrsv(transa, m, lb, alpha, matdescra, val, indx, pntrb, pntre, x, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, lb
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL alpha
 REAL val(*)
 REAL x(*), y(*)
```



## mkl_?cscsv

Solves a system of linear equations for a sparse
matrix in the CSC format (deprecated).

## Syntax

```
call mkl_scscsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_dcscsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_ccscsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
call mkl_zcscsv(transa, m, alpha, matdescra, val, indx, pntrb, pntre, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?cscsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the CSC format:

```
y := alpha*inv(A)*x
```

or

```
y := alpha*inv(AT)* x,
```

where:
alpha is scalar, $x$ and $y$ are vectors, $A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports a CSC format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

transa	CHARACTER*1. Specifies the operation.
	If transa $=$ 'N' or 'n', then $y:=a l p h a * i n v(A) * ~ X ~$
	If transa= 'T' or 't' or 'C' or 'c', then $y$ : = alpha*inv ( $A^{T}$ ) * $x$,
m	INTEGER. Number of columns of the matrix $A$.
alpha	REAL for mkl_scscsv.
	DOUBLE PRECISION for mkl_dcscsv.
	COMPLEX for mkl_ccscsv.
	DOUBLE COMPLEX for mkl_zcscsv.
	Specifies the scalar alpha.
matdescra	CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)".
	Possible combinations of element values of this parameter are given in
	Table "Possible Combinations of Element Values of the Parameter matdescra".
val	REAL for mkl_scscsv.
	DOUBLE PRECISION for mkl_dcscsv.
	COMPLEX for mkl_ccscsv.
	DOUBLE COMPLEX for mkl_zCSCSV.

Array containing non-zero elements of the matrix $A$.
For one-based indexing its length is pntre(m) - pntrb(1).
For zero-based indexing its length is pntre(m-1) - pntrb(0).
Refer to values array description in CSC Format for more details.

## NOTE

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.
indx
pntrb
pntre

X matrix $A$.

Its length is equal to length of the val array.
Refer to columns array description in CSC Format for more details.

## NOTE

Row indices must be sorted in increasing order for each column.

INTEGER. Array of length $m$.
For one-based indexing this array contains column indices, such that pntrb(i) - pntrb(1) +1 is the first index of column $i$ in the arrays val and indx.

For zero-based indexing this array contains column indices, such that pntrb(i) - pntrb(0) is the first index of column $i$ in the arrays val and indx.

Refer to pointerb array description in CSC Format for more details.
INTEGER. Array of length $m$.
For one-based indexing this array contains column indices, such that pntre(i) - pntrb(1) is the last index of column $i$ in the arrays val and indx.
For zero-based indexing this array contains column indices, such that pntre(i) - pntrb(1) - 1 is the last index of column $i$ in the arrays val and indx.
Refer to pointerE array description in CSC Format for more details.
REAL for mkl_scscsv.
DOUBLE PRECISION for mkl_dcScSv.
COMPLEX for mkl_ccscsv.
DOUBLE COMPLEX for mkl_zcscsv.
Array, size at least $m$.

On entry, the array $x$ must contain the vector $x$. The elements are accessed with unit increment.
y
REAL for mkl_scscsv.
DOUBLE PRECISION for mkl_dcscsv.
COMPLEX for mkl_cCscsv.
DOUBLE COMPLEX for mkl_zcscsv.
Array, size at least $m$.
On entry, the array y must contain the vector $y$. The elements are accessed with unit increment.

## Output Parameters

y
Contains the solution vector $x$.

## Interfaces

## FORTRAN 77:



mkl_?coosv
Solves a system of linear equations for a sparse matrix in the coordinate format (deprecated).

## Syntax

```
call mkl_scoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, x, y)
call mkl_dcoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, x, y)
call mkl_ccoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, x, y)
call mkl_zcoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, x, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_? coosv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the coordinate format:

```
y := alpha*inv(A)*x
```

or

```
y := alpha*inv (A ')}\mp@subsup{}{*}{*}
```

where:
alpha is scalar, $x$ and $y$ are vectors, $A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports a coordinate format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
m
alpha
matdescra
val
rowind
colind

CHARACTER*1. Specifies the system of linear equations.
If transa $=$ 'N' or 'n', then $y:=a l p h a * i n v(A) * x$
If transa $=$ ' $T$ ' or 't' or 'C' or 'c', then $y:=\operatorname{alpha*inv}\left(A^{T}\right) * x$, INTEGER. Number of rows of the matrix $A$.

REAL for mkl_scoosv.
DOUBLE PRECISION for mkl_dcoosv.
COMPLEX for mkl_ccoosv.
DOUBLE COMPLEX for mkl_zcoosv.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)".
Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter
matdescra".
REAL for mkl_scoosv.
DOUBLE PRECISION for mkl_dcoosv.
COMPLEX for mkl_ccoosv.
DOUBLE COMPLEX for mkl_zcoosv.
Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.

Refer to values array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.

Refer to rows array description in Coordinate Format for more details.
INTEGER. Array of length $n n z$, contains the column indices for each nonzero element of the matrix $A$.

Refer to columns array description in Coordinate Format for more details.
$x$

Y

INTEGER. Specifies the number of non-zero element of the matrix $A$.
Refer to $n n z$ description in Coordinate Format for more details.
REAL for mkl_scoosv.
DOUBLE PRECISION for mkl_dcoosv.
COMPLEX for mkl_ccoosv.
DOUBLE COMPLEX for mkl_zcoosv.
Array, size at least $m$.
On entry, the array $x$ must contain the vector $x$. The elements are accessed with unit increment.

REAL for mkl_scoosv.
DOUBLE PRECISION for mkl_dcoosv.
COMPLEX for mkl_ccoosv.
DOUBLE COMPLEX for mkl_zcoosv.
Array, size at least $m$.
On entry, the array $y$ must contain the vector $y$. The elements are accessed with unit increment.

## Output Parameters

y
Contains solution vector $x$.

## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_scoosv(transa, m, alpha, matdescra, val, rowind, colind, nnz, x, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, nnz
 INTEGER rowind(*), colind(*)
 REAL alpha
 REAL val(*)
 REAL x(*), y(*)
```



## mkl_?csrmm

Computes matrix - matrix product of a sparse matrix stored in the CSR format (deprecated).

## Syntax

```
call mkl_scsrmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
call mkl_dcsrmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
call mkl_ccsrmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
call mkl_zcsrmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?csrmm routine performs a matrix-matrix operation defined as

$$
C:=\text { alpha* } A^{\star} B+b^{*} a^{\star} C
$$

or

$$
C:=\text { alpha* } A^{\mathbb{T}} \star B+\text { beta* } C
$$

or

```
C := alpha* AH*B + beta*C,
```

where:
alpha and beta are scalars,
$B$ and $C$ are dense matrices, $A$ is an $m$-by- $k$ sparse matrix in compressed sparse row (CSR) format, $A^{\top}$ is the transpose of $A$, and $A^{\mathrm{H}}$ is the conjugate transpose of $A$.

## NOTE

This routine supports a CSR format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

transa	CHARACTER*1. Specifies the operation.
	If transa $=$ 'N' or 'n', then $C:=a l p h a * A \star B+$ beta* $C$,
	If transa $=$ 'T' or 't', then $C:=a l p h a * A^{T *} B+$ beta* $C$,
	If transa $=$ 'C' or 'c', then $C$ : = alpha* $A^{\mathrm{H}} \mathrm{C}+$ beta* $C$.
m	INTEGER. Number of rows of the matrix $A$.
$n$	INTEGER. Number of columns of the matrix $C$.
k	INTEGER. Number of columns of the matrix $A$.
alpha	REAL for mkl_scsrmm.
	DOUBLE PRECISION for mkl_dcsrmm.
	COMPLEX for mkl_ccsrmm.
	DOUBLE COMPLEX for mkl_zcsrmm.
	Specifies the scalar alpha.

```
matdescra
```

val
indx
pntrb
pntre
b

CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

REAL for mkl_scsrmm.
DOUBLE PRECISION for mkl_dcsrmm.
COMPLEX for mkl_ccsrmm.
DOUBLE COMPLEX for mkl_zcsrmm.
Array containing non-zero elements of the matrix $A$.
For one-based indexing its length is pntre(m) - pntrb(1).
For zero-based indexing its length is pntre(-1) - pntrb(0).
Refer to values array description in CSR Format for more details.
INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.

Its length is equal to length of the val array.
Refer to columns array description in CSR Format for more details.
INTEGER. Array of length $m$.
For one-based indexing this array contains row indices, such that pntrb (I) - pntrb(1) + 1 is the first index of row $I$ in the arrays val and indx.

For zero-based indexing this array contains row indices, such that pntrb(I) - pntrb(0) is the first index of row $I$ in the arrays val and indx.

Refer to pointerb array description in CSR Format for more details.
INTEGER. Array of length $m$.
For one-based indexing this array contains row indices, such that pntre (I) - pntrb(1) is the last index of row $I$ in the arrays val and indx.

For zero-based indexing this array contains row indices, such that pntre(I) - pntrb(0) - 1 is the last index of row $I$ in the arrays val and indx.

Refer to pointerE array description in CSR Format for more details.
REAL for mkl_scsrmm.
DOUBLE PRECISION for mkl_dcsrmm.
COMPLEX for mkl_ccsrmm.
DOUBLE COMPLEX for mkl_zcsrmm.
Array, size $l d b$ by at least $n$ for non-transposed matrix $A$ and at least $m$ for transposed for one-based indexing, and (at least $k$ for non-transposed matrix $A$ and at least $m$ for transposed, $1 d b$ ) for zero-based indexing.

```
Idb
beta
C
ldc
INTEGER. Specifies the leading dimension of \(b\) for one-based indexing, and the second dimension of \(b\) for zero-based indexing, as declared in the calling (sub)program.
REAL for mkl_scsrmm.
DOUBLE PRECISION for mkl_dcsrmm.
COMPLEX for mkl_ccsrmm.
DOUBLE COMPLEX for mkl_zcsrmm.
Specifies the scalar beta.
REAL for mkl_scsrmm.
DOUBLE PRECISION for mkl_dcsrmm.
COMPLEX for mkl_ccsrmm.
DOUBLE COMPLEX for mkl_zcsrmm.
Array, size \(l d c\) by \(n\) for one-based indexing, and (\(m, ~ I d c\)) for zero-based indexing.
On entry, the leading \(m\)-by-n part of the array \(c\) must contain the matrix \(C\), otherwise the leading \(k\)-by-n part of the array \(c\) must contain the matrix \(C\).
INTEGER. Specifies the leading dimension of c for one-based indexing, and the second dimension of \(c\) for zero-based indexing, as declared in the calling (sub)program.
```

On entry with transa='N' or 'n', the leading $k-b y-n$ part of the array $b$ must contain the matrix $B$, otherwise the leading $m$-by- $n$ part of the array $b$ must contain the matrix $B$.

## Output Parameters

c
Overwritten by the matrix (alpha*A*B+beta*C), (alpha* $A^{T}{ }^{*} B+$ beta*C), or (alpha* $A^{\mathrm{H}} \mathrm{A} B+$ beta* $C$ ).

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_dcsrmm(transa, m, n, k, alpha, matdescra, val, indx,
 pntrb, pntre, b, ldb, beta, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, k, ldb, ldc
 INTEGER indx(*), pntrb (m), pntre(m)
 REAL alpha, beta
 REAL val(*), b(ldb,*), c(ldc,*)
```

OUUTINE mkl_dcsrmm(transa, m, n , $\mathrm{k}, \mathrm{alpha}$, matdescra, val, indx,
pntrb, pntre, b, ldb, beta, $\mathrm{c}, \mathrm{ldc}$ )
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER $m, n, k, ~ l d b, ~ l d c ~$
INTEGER indx(*), pntrb(m), pntre(m)
DOUBLE PRECISION alpha, beta
DOUBLE PRECISION val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_dcsrmm(transa, m, n , $\mathrm{k}, \mathrm{alpha}, \mathrm{matdescra}, \mathrm{val}, \mathrm{indx}$,
pntrb, pntre, b, ldb, beta, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER $m, n, k, ~ l d b, ~ l d c ~$
INTEGER indx (*), pntrb (m), pntre(m)
COMPLEX alpha, beta
COMPLEX val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_dcsrmm(transa, m, n , k , alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, beta, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER $m, n, k, ~ l d b, ~ l d c ~$
INTEGER indx (*), pntrb (m), pntre(m)
DOUBLE COMPLEX alpha, beta
DOUBLE COMPLEX val (*), b(ldb,*), c(ldc,*)

## mkl_?bsrmm

Computes matrix - matrix product of a sparse matrix stored in the BSR format (deprecated).

## Syntax

```
call mkl_sbsrmm(transa, m, n, k, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
call mkl_dbsrmm(transa, m, n, k, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
call mkl_cbsrmm(transa, m, n, k, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
call mkl_zbsrmm(transa, m, n, k, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?bsrmm routine performs a matrix-matrix operation defined as

$$
C:=\text { alpha* } A^{\star} B+b^{*} a^{\star} C
$$

or

$$
C:=\text { alpha* } A^{\mathrm{T}} \star B+\text { beta }^{\star} C
$$

or

```
C := alpha* AH*B + beta*C,
```

where:
alpha and beta are scalars,
$B$ and $C$ are dense matrices, $A$ is an $m$-by- $k$ sparse matrix in block sparse row (BSR) format, $A^{\top}$ is the transpose of $A$, and $A^{\mathrm{H}}$ is the conjugate transpose of $A$.

## NOTE

This routine supports a BSR format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

transa	CHARACTER*1. Specifies the operation.
	If transa $=$ ' $N$ ' or 'n', then the matrix-matrix product is computed as $C$ : = alpha*A*B + beta* $C$
	If transa $=$ 'T' or 't', then the matrix-vector product is computed as $C:=$ alpha* $A^{T} \star B+$ beta* $C$
	If transa $=$ ' C ' or 'c', then the matrix-vector product is computed as $C:=$ alpha夫 $A^{\mathrm{H}} \star B+\operatorname{beta}^{\star} C$,
m	INTEGER. Number of block rows of the matrix $A$.
$n$	INTEGER. Number of columns of the matrix $C$.
k	INTEGER. Number of block columns of the matrix $A$.
1.6	INTEGER. Size of the block in the matrix $A$.
alpha	REAL for mkl_sbsrmm.
	DOUBLE PRECISION for mkl_dbsrmm.
	COMPLEX for mkl_cbsrmm.

DOUBLE COMPLEX for mkl_zbsrmm.
Specifies the scalar alpha.
matdescra
val
indx
pntrb
pntre
b

CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

REAL for mkl_sbsrmm.
DOUBLE PRECISION for mkl_dbsrmm.
COMPLEX for mkl_cbsrmm.
DOUBLE COMPLEX for mkl_zbsrmm.
Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 b^{\star} 1 b$. Refer to the values array description in BSR Format for more details.

INTEGER. Array containing the column indices for each non-zero block in the matrix $A$.
Its length is equal to the number of non-zero blocks in the matrix $A$. Refer to the columns array description in BSR Format for more details.

INTEGER. Array of length $m$.
For one-based indexing: this array contains row indices, such that pntrb(I) - pntrb(1) +1 is the first index of block row $I$ in the array indx.

For zero-based indexing: this array contains row indices, such that pntrb(I) - pntrb(0) is the first index of block row $I$ in the array indx.
Refer to pointerB array description in BSR Format for more details.
INTEGER. Array of length $m$.
For one-based indexing this array contains row indices, such that pntre(I) - pntrb(1) is the last index of block row $I$ in the array indx.

For zero-based indexing this array contains row indices, such that pntre(I) - pntrb(0) - 1 is the last index of block row $I$ in the array indx.

Refer to pointerE array description in BSR Format for more details.
REAL for mkl_sbsrmm.
DOUBLE PRECISION for mkl_dbsrmm.
COMPLEX for mkl_cbsrmm.
DOUBLE COMPLEX for mkl_zbsrmm.
Array, size $l d b$ by at least $n$ for non-transposed matrix $A$ and at least $m$ for transposed for one-based indexing, and (at least $k$ for non-transposed matrix $A$ and at least $m$ for transposed, $1 d b$ ) for zero-based indexing.
$1 d b$
beta
C

## ldc

## Output Parameters

c
Overwritten by the matrix (alpha^A^B+beta*C) or (alpha* $A^{T}{ }^{*} B+$ beta* $C$ ) or (alpha* $A^{\mathrm{H}} * B+$ beta* $C$ ).

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sbsrmm(transa, m, n, k, lb, alpha, matdescra, val,
 indx, pntrb, pntre, b, ldb, beta, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, k, ld, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL alpha, beta
 REAL val(*), b(ldb,*), c(ldc,*)
```

SUBROUTINE mkl dbsrmm(transa, m, $n$, $k$, lb, alpha, matdescra, val,
indx, pntrb, pntre, b, ldb, beta, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER $m, n, k, l d, l d b, l d c$
INTEGER indx(*), pntrb(m), pntre(m)
DOUBLE PRECISION alpha, beta
DOUBLE PRECISION val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_cbsrmm(transa, m, n , k, lb, alpha, matdescra, val,
indx, pntrb, pntre, b, ldb, beta, $\mathrm{c}, \mathrm{ldc}$ )
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER $m, n, k, l d, ~ l d b, ~ l d c ~$
INTEGER indx (*), pntrb (m), pntre (m)
COMPLEX alpha, beta
COMPLEX val (*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_zbsrmm(transa, m, $n, k, l b, ~ a l p h a, ~ m a t d e s c r a, ~ v a l, ~$
indx, pntrb, pntre, b, ldb, beta, $\mathrm{c}, \mathrm{ldc}$ )
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER $m, n, k, l d, l d b, ~ l d c$
INTEGER indx (*), pntrb (m), pntre(m)
DOUBLE COMPLEX alpha, beta
DOUBLE COMPLEX val (*), b(ldb,*), c(ldc,*)

## mkl_?cscmm

Computes matrix-matrix product of a sparse matrix stored in the CSC format (deprecated).

## Syntax

```
call mkl_scscmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
call mkl_dcscmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
call mkl_ccscmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
call mkl_zcscmm(transa, m, n, k, alpha, matdescra, val, indx, pntrb, pntre, b, ldb,
beta, c, ldc)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?cscmm routine performs a matrix-matrix operation defined as

$$
C:=\text { alpha* } A \star B+\text { beta* } C
$$

or

$$
C:=\text { alpha* } A^{T} * B+\text { beta* } C,
$$

or

```
C := alpha* A}\mp@subsup{A}{}{\textrm{H}}B+\mathrm{ beta* C,
```

where:
alpha and beta are scalars,
$B$ and $C$ are dense matrices, $A$ is an $m$-by- $k$ sparse matrix in compressed sparse column (CSC) format, $A^{\top}$ is the transpose of $A$, and $A^{\mathrm{H}}$ is the conjugate transpose of $A$.

## NOTE

This routine supports CSC format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
transa
m
n
k
alpha
 CHARACTER*1. Specifies the operation.
 If transa = 'N' or'n', then C := alpha*A* B + beta*C
 If transa = 'T' or't', then C := alpha* AT* B + beta*C,
 If transa ='C' or 'c', then C := alpha* A H* B + beta*C
 INTEGER. Number of rows of the matrix A.
 INTEGER. Number of columns of the matrix C.
 INTEGER. Number of columns of the matrix A.
 REAL for mkl_scscmm.
 DOUBLE PRECISION for mkl_dcscmm.
 COMPLEX for mkl_ccscmm.
DOUBLE COMPLEX for mkl_zcscmm.
Specifies the scalar alpha.
```

b

CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

REAL for mkl_scscmm.
DOUBLE PRECISION for mkl_dcscmm.
COMPLEX for mkl_ccscmm.
DOUBLE COMPLEX for mkl_zcscmm.
Array containing non-zero elements of the matrix $A$.
For one-based indexing its length is pntrb( $k$ ) - pntrb(1).
For zero-based indexing its length is pntre(m-1) - pntrb(0).
Refer to values array description in CSC Format for more details.
INTEGER. Array containing the row indices for each non-zero element of the matrix $A$.

Its length is equal to length of the val array.
Refer to rows array description in CSC Format for more details.
INTEGER. Array of length $k$.
For one-based indexing this array contains column indices, such that pntrb(i) - pntrb(1) +1 is the first index of column $i$ in the arrays val and indx.

For zero-based indexing this array contains column indices, such that pntrb(i) - pntrb(0) is the first index of column $i$ in the arrays val and indx.

Refer to pointerb array description in CSC Format for more details.
INTEGER. Array of length $k$.
For one-based indexing this array contains column indices, such that pntre(i) - pntrb(1) is the last index of column $i$ in the arrays val and indx.
For zero-based indexing this array contains column indices, such that pntre(i) - pntrb(1) - 1 is the last index of column $i$ in the arrays val and indx.

Refer to pointerE array description in CSC Format for more details.
REAL for mkl_scscmm.
DOUBLE PRECISION for mkl_dcscmm.
COMPLEX for mkl_ccscmm.
DOUBLE COMPLEX for mkl_zcscmm.

1 db

Array, size $l d b$ by at least $n$ for non-transposed matrix $A$ and at least $m$ for transposed for one-based indexing, and (at least $k$ for non-transposed matrix $A$ and at least $m$ for transposed, $I d b$ ) for zero-based indexing.

On entry with transa $=$ ' $N$ ' or ' $n$ ', the leading $k$-by-n part of the array $b$ must contain the matrix $B$, otherwise the leading $m$-by-n part of the array $b$ must contain the matrix $B$.

INTEGER. Specifies the leading dimension of $b$ for one-based indexing, and the second dimension of $b$ for zero-based indexing, as declared in the calling (sub)program.

REAL*8. Specifies the scalar beta.
REAL for mkl_scscmm.
DOUBLE PRECISION for mkl_dcscmm.
COMPLEX for mkl_ccscmm.
DOUBLE COMPLEX for mkl_zcscmm.
Array, size $l d c$ by $n$ for one-based indexing, and ( $m, ~ l d c$ ) for zero-based indexing.

On entry, the leading m-by-n part of the array $c$ must contain the matrix $C$, otherwise the leading $k$-by-n part of the array $c$ must contain the matrix $C$.

INTEGER. Specifies the leading dimension of $c$ for one-based indexing, and the second dimension of $c$ for zero-based indexing, as declared in the calling (sub)program.

## Output Parameters

c
Overwritten by the matrix (alpha* $A \star B+$ beta* $C$ ) or (alpha* $A^{T *} B+$ beta*C) or (alpha* $A^{H} * B+$ beta* $C$ ).

## Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_scscmm(transa, m, n, k, alpha, matdescra, val, indx,
 pntrb, pntre, b, ldb, beta, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, k, ldb, ldc
 INTEGER indx(*), pntrb(k), pntre(k)
 REAL alpha, beta
 REAL val(*), b(ldb,*), c(ldc,*)
```



## mkl_?coomm

Computes matrix-matrix product of a sparse matrix stored in the coordinate format (deprecated).

## Syntax

```
call mkl_scoomm(transa, m, n, k, alpha, matdescra, val, rowind, colind, nnz, b, ldb,
beta, c, Idc)
call mkl_dcoomm(transa, m, n, k, alpha, matdescra, val, rowind, colind, nnz, b, ldb,
beta, c, ldc)
call mkl_ccoomm(transa, m, n, k, alpha, matdescra, val, rowind, colind, nnz, b, ldb,
beta, c, ldc)
call mkl_zcoomm(transa, m, n, k, alpha, matdescra, val, rowind, colind, nnz, b, ldb,
beta, c, ldc)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?coomm routine performs a matrix-matrix operation defined as

$$
C:=\text { alpha* } A^{\star} B+b^{*} a^{\star} C
$$

or

$$
C:=\text { alpha* } A^{T} * B+\text { beta* } C,
$$

or

```
C := alpha*A }\mp@subsup{A}{}{\textrm{H}}B+\mathrm{ beta* C,
```

where:
alpha and beta are scalars,
$B$ and $C$ are dense matrices, $A$ is an $m$-by- $k$ sparse matrix in the coordinate format, $A^{\top}$ is the transpose of $A$, and $A^{\mathrm{H}}$ is the conjugate transpose of $A$.

## NOTE

This routine supports a coordinate format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
transa
m
n
k
alpha
 CHARACTER*1. Specifies the operation.
 If transa = 'N' or 'n', then C := alpha*A*B + beta*C
 If transa = 'T' or't', then C := alpha* AT* B + beta* C,
 If transa = 'C' or 'c', then C := alpha* A** B + beta*C.
 INTEGER. Number of rows of the matrix A.
 INTEGER. Number of columns of the matrix C.
 INTEGER. Number of columns of the matrix A.
REAL for mkl_scoomm.
DOUBLE PRECISION for mkl_dcoomm.
COMPLEX for mkl_ccoomm.
DOUBLE COMPLEX for mkl_zcoomm.
Specifies the scalar alpha.
```

matdescra	CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".
val	REAL for mkl_scoomm.
	DOUBLE PRECISION for mkl_dcoomm.
	COMPLEX for mkl_ccoomm.
	DOUBLE COMPLEX for mkl_zcoomm.
	Array of length $n n z$, contains non-zero elements of the matrix $A$ in the arbitrary order.
	Refer to values array description in Coordinate Format for more details.
rowind	INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.
	Refer to rows array description in Coordinate Format for more details.
colind	INTEGER. Array of length $n n z$, contains the column indices for each nonzero element of the matrix $A$.
	Refer to columns array description in Coordinate Format for more details.
$n n z$	INTEGER. Specifies the number of non-zero element of the matrix $A$.
	Refer to $n n z$ description in Coordinate Format for more details.
$b$	REAL for mkl_scoomm.
	DOUBLE PRECISION for mkl_dcoomm.
	COMPLEX for mkl_ccoomm.
	DOUBLE COMPLEX for mkl_zcoomm.
	Array, size $l d b$ by at least $n$ for non-transposed matrix $A$ and at least $m$ for transposed for one-based indexing, and (at least $k$ for non-transposed matrix $A$ and at least $m$ for transposed, $l d b$ ) for zero-based indexing.
	On entry with transa $=$ ' $N$ ' or ' $n$ ', the leading $k$-by- $n$ part of the array $b$ must contain the matrix $B$, otherwise the leading $m$-by-n part of the array $b$ must contain the matrix $B$.
1 db	INTEGER. Specifies the leading dimension of $b$ for one-based indexing, and the second dimension of $b$ for zero-based indexing, as declared in the calling (sub)program.
beta	REAL for mkl_scoomm.
	DOUBLE PRECISION for mkl_dcoomm.
	COMPLEX for mkl_ccoomm.
	DOUBLE COMPLEX for mkl_zcoomm.
	Specifies the scalar beta.

c
REAL for mkl_scoomm.
DOUBLE PRECISION for mkl_dcoomm.
COMPLEX for mkl_ccoomm.
DOUBLE COMPLEX for mkl_zcoomm.
Array, size $l d c$ by $n$ for one-based indexing, and ( $m, ~ l d c$ ) for zero-based indexing.
On entry, the leading $m$-by-n part of the array $c$ must contain the matrix $C$, otherwise the leading $k$-by-n part of the array $c$ must contain the matrix $C$.

INTEGER. Specifies the leading dimension of $c$ for one-based indexing, and the second dimension of $c$ for zero-based indexing, as declared in the calling (sub)program.

## Output Parameters

c
Overwritten by the matrix (alpha* $A^{\star} B+$ beta* $\left.C\right),\left(a l p h a * A^{T}{ }^{*} B+\right.$ beta* $C$ ), or (alpha夫 $A^{\mathrm{H}} \star B+$ beta* $C$ ).

## Interfaces

## FORTRAN 77:

SUBROUTINE mkl_scoomm(transa, m, n, k, alpha, matdescra, val,
rowind, colind, nnz, b, ldb, beta, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, $\mathrm{n}, \mathrm{k}, \mathrm{ldb}, \mathrm{ldc}, \mathrm{nnz}$
INTEGER rowind(*), colind(*)
REAL alpha, beta
REAL val (*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_dcoomm(transa, m, n, k, alpha, matdescra, val,
rowind, colind, nnz, b, ldb, beta, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, $\mathrm{n}, \mathrm{k}, \mathrm{ldb}$, ldc, nnz
INTEGER rowind(*), colind(*)
DOUBLE PRECISION alpha, beta
DOUBLE PRECISION val(*), b(ldb,*), c(ldc,*)

```
SUBROUTINE mkl_ccoomm(transa, m, n, k, alpha, matdescra, val,
rowind, colind, nnz, b, ldb, beta, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
 INTEGER m, n, k, ldb, ldc, nnz
 INTEGER rowind(*), colind(*)
 COMPLEX alpha, beta
 COMPLEX val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_zcoomm(transa, m, n, k, alpha, matdescra, val,
rowind, colind, nnz, b, ldb, beta, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, k, ldb, ldc, nnz
 INTEGER rowind(*), colind(*)
 DOUBLE COMPLEX alpha, beta
 DOUBLE COMPLEX val(*), b(ldb,*), c(ldc,*)
```

mkl_?csrsm
Solves a system of linear matrix equations for a
sparse matrix in the CSR format (deprecated).

## Syntax

```
call mkl_scsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c, ldc)
call mkl_dcsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c, ldc)
call mkl_ccsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c, ldc)
call mkl_zcsrsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c, ldc)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?csrsm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the CSR format:

```
C := alpha*inv(A)*B
```

or
$C:=$ alpha*inv $\left(A^{T}\right) * B$,
where:
alpha is scalar, $B$ and $C$ are dense matrices, $A$ is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports a CSR format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
m
$n$
alpha
matdescra
val

CHARACTER*1. Specifies the system of linear equations.
If transa $=$ 'N' or 'n', then $C:=a l p h a * i n v(A) * B$
If transa $=$ 'T' or 't' or 'C' or 'C', then $C:=a l p h a * i n v\left(A^{T}\right) \star B$,
INTEGER. Number of columns of the matrix $A$.
INTEGER. Number of columns of the matrix $C$.
REAL for mkl_scsrsm.
DOUBLE PRECISION for mkl_dcsrsm.
COMPLEX for mkl_ccsrsm.
DOUBLE COMPLEX for mkl_zcsrsm.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

REAL for mkl_scsrsm.
DOUBLE PRECISION for mkl_dcsrsm.
COMPLEX for mkl_ccsrsm.
DOUBLE COMPLEX for mkl_zcsrsm.
Array containing non-zero elements of the matrix $A$.
For one-based indexing its length is pntre(m) - pntrb(1).
For zero-based indexing its length is pntre(m-1) - pntrb(0).
Refer to values array description in CSR Format for more details.

## NOTE

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.

Its length is equal to length of the val array.
Refer to columns array description in CSR Format for more details.

## NOTE

Column indices must be sorted in increasing order for each row.

INTEGER. Array of length $m$.
For one-based indexing this array contains row indices, such that pntrb (i) - pntrb(1) + 1 is the first index of row $i$ in the arrays val and indx.

For zero-based indexing this array contains row indices, such that pntrb(i) - pntrb(0) is the first index of row $i$ in the arrays val and indx.

Refer to pointerb array description in CSR Format for more details.
INTEGER. Array of length $m$.
For one-based indexing this array contains row indices, such that pntre (i) - pntrb(1) is the last index of row $i$ in the arrays val and indx.

For zero-based indexing this array contains row indices, such that pntre(i) - pntrb(0) - 1 is the last index of row $i$ in the arrays val and indx.

Refer to pointerE array description in CSR Format for more details.
REAL for mkl_scsrsm.
DOUBLE PRECISION for mkl_dcsrsm.
COMPLEX for mkl_ccsrsm.
DOUBLE COMPLEX for mkl_zcsrsm.
Array, size ( $1 \mathrm{db}, \mathrm{n}$ ) for one-based indexing, and ( $m, ~ l \mathrm{db}$ ) for zero-based indexing.
On entry the leading $m-b y-n$ part of the array $b$ must contain the matrix $B$.
INTEGER. Specifies the leading dimension of $b$ for one-based indexing, and the second dimension of $b$ for zero-based indexing, as declared in the calling (sub)program.

INTEGER. Specifies the leading dimension of $c$ for one-based indexing, and the second dimension of $c$ for zero-based indexing, as declared in the calling (sub)program.

## Output Parameters

## c

REAL* 8.
Array, size $l d c$ by $n$ for one-based indexing, and ( $m, ~ l d c$ ) for zero-based indexing.

The leading $m$-by-n part of the array $c$ contains the output matrix $C$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_scsrsm(transa, m, n, alpha, matdescra, val, indx,
 pntrb, pntre, b, ldb, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 REAL alpha
 REAL val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_dcsrsm(transa, m, n, alpha, matdescra, val, indx,
 pntrb, pntre, b, ldb, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE PRECISION alpha
 DOUBLE PRECISION val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_ccsrsm(transa, m, n, alpha, matdescra, val, indx,
 pntrb, pntre, b, ldb, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 COMPLEX alpha
 COMPLEX val(*), b(ldb,*), c(ldc,*)
```

```
SUBROUTINE mkl_zcsrsm(transa, m, n, alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE COMPLEX alpha
 DOUBLE COMPLEX val(*), b(ldb,*), c(ldc,*)
```

```
mkl_?cscsm
```

Solves a system of linear matrix equations for a
sparse matrix in the CSC format (deprecated).

## Syntax

```
call mkl_scscsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c, ldc)
call mkl_dcscsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c, ldc)
call mkl_ccscsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c, ldc)
call mkl_zcscsm(transa, m, n, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c, ldc)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_? cscsm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the CSC format:

```
 C := alpha*inv (A)*B
```

or

where:
alpha is scalar, $B$ and $C$ are dense matrices, $A$ is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports a CSC format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
transa CHARACTER*1. Specifies the system of equations.
 If transa = 'N' or 'n', then C := alpha*inv (A)*B
 If transa = 'T' or 't' or 'C' or 'C', then C := alpha*inv (}\mp@subsup{A}{}{T})*B\mathrm{ *,
 INTEGER. Number of columns of the matrix A.
INTEGER. Number of columns of the matrix C.
REAL formkl_scscsm.
DOUBLE PRECISION for mkl_dcscsm.
COMPLEX for mkl_ccscsm.
DOUBLE COMPLEX for mkl_zcscsm.
Specifies the scalar alpha.
 CHARACTER. Array of six elements, specifies properties of the matrix used
 for operation. Only first four array elements are used, their possible values
 are given in Table "Possible Values of the Parameter matdescra (descra)".
 Possible combinations of element values of this parameter are given in
 Table "Possible Combinations of Element Values of the Parameter
 matdescra".
REAL for mkl_scscsm.
DOUBLE PRECISION for mkl_dcscsm.
COMPLEX for mkl_ccscsm.
DOUBLE COMPLEX for mkl_zcscsm.
```

Array containing non-zero elements of the matrix $A$.
For one-based indexing its length is pntre(k) - pntrb(1).
For zero-based indexing its length is pntre(m-1) - pntrb(0).
Refer to values array description in CSC Format for more details.

## NOTE

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

INTEGER. Array containing the row indices for each non-zero element of the matrix $A$. Its length is equal to length of the val array.

Refer to rows array description in CSC Format for more details.

## NOTE

Row indices must be sorted in increasing order for each column.

For one-based indexing this array contains column indices, such that pntrb (I) - pntrb(1) +1 is the first index of column $I$ in the arrays val and indx.

For zero-based indexing this array contains column indices, such that pntrb(I) - pntrb(0) is the first index of column $I$ in the arrays val and indx.

Refer to pointerb array description in CSC Format for more details.
INTEGER. Array of length $m$.
For one-based indexing this array contains column indices, such that pntre (I) - pntrb(1) is the last index of column $I$ in the arrays val and indx.

For zero-based indexing this array contains column indices, such that pntre(I) - pntrb(1)-1 is the last index of column $I$ in the arrays val and indx.

Refer to pointerE array description in CSC Format for more details.
REAL for mkl_scscsm.
DOUBLE PRECISION for mkl_dcscsm.
COMPLEX for mkl_ccscsm.
DOUBLE COMPLEX for mkl_zcscsm.
Array, size $l d b$ by $n$ for one-based indexing, and ( $m, ~ l d b$ ) for zero-based indexing.

On entry the leading $m$-by- $n$ part of the array $b$ must contain the matrix $B$.
INTEGER. Specifies the leading dimension of $b$ for one-based indexing, and the second dimension of $b$ for zero-based indexing, as declared in the calling (sub)program.

INTEGER. Specifies the leading dimension of $c$ for one-based indexing, and the second dimension of $c$ for zero-based indexing, as declared in the calling (sub)program.

Output Parameters
c
REAL for mkl_scscsm.
DOUBLE PRECISION for mkl_dcscsm.
COMPLEX for mkl_ccscsm.
DOUBLE COMPLEX for mkl_zcscsm.
Array, size $l d c$ by $n$ for one-based indexing, and ( $m, ~ l d c$ ) for zero-based indexing.

The leading $m$-by-n part of the array $c$ contains the output matrix $C$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_scscsm(transa, m, n, alpha, matdescra, val, indx,
 pntrb, pntre, b, ldb, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc
 INTEGER indx(*), pntrb (m), pntre(m)
 REAL alpha
 REAL val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_dcscsm(transa, m, n, alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE PRECISION alpha
 DOUBLE PRECISION val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_ccscsm(transa, m, n, alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 COMPLEX alpha
 COMPLEX val(*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_zcscsm(transa, m, n, alpha, matdescra, val, indx,
pntrb, pntre, b, ldb, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc
 INTEGER indx(*), pntrb(m), pntre(m)
 DOUBLE COMPLEX alpha
 DOUBLE COMPLEX val(*), b(ldb,*), c(ldc,*)
```

mkl_?coosm
Solves a system of linear matrix equations for a sparse matrix in the coordinate format (deprecated).

## Syntax

```
call mkl_scoosm(transa, m, n, alpha, matdescra, val, rowind, colind, nnz, b, ldb, c,
ldc)
call mkl_dcoosm(transa, m, n, alpha, matdescra, val, rowind, colind, nnz, b, ldb, c,
ldc)
call mkl_ccoosm(transa, m, n, alpha, matdescra, val, rowind, colind, nnz, b, ldb, c,
ldc)
call mkl_zcoosm(transa, m, n, alpha, matdescra, val, rowind, colind, nnz, b, ldb, c,
ldc)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_? coosm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the coordinate format:

$$
C:=a l p h a * i n v(A) * B
$$

or

```
C := alpha*inv (AT})*B
```

where:
alpha is scalar, $B$ and $C$ are dense matrices, $A$ is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports a coordinate format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

If transa $=$ ' $N$ ' or 'n', then the matrix-matrix product is computed as $C$ := alpha*inv $(A) * B$

If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as $C:=$ alpha*inv $\left(A^{T}\right) * B$,

m	Integer. Number of rows of the matrix $A$.
$n$	INTEGER. Number of columns of the matrix $C$.
alpha	REAL for mkl_scoosm.
	DOUBLE PRECISION for mkl_dcoosm.
	COMPLEX for mkl_ccoosm.
	DOUBLE COMPLEX for mkl_zcoosm.
	Specifies the scalar alpha.
matdescra	CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)".
	Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter
	matdescra".
val	REAL for mkl_scoosm.
	DOUBLE PRECISION for mkl_dcoosm.
	COMPLEX for mkl_ccoosm.
	DOUBLE COMPLEX for mkl_zcoosm.
	Array of length nnz, contains non-zero elements of the matrix $A$ in the arbitrary order.
	Refer to values array description in Coordinate Format for more details.
rowind	INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.
	Refer to rows array description in Coordinate Format for more details.
colind	integer. Array of length $n n z$, contains the column indices for each nonzero element of the matrix $A$.
	Refer to columns array description in Coordinate Format for more details.
$n n z$	INTEGER. Specifies the number of non-zero element of the matrix $A$.
	Refer to $n n z$ description in Coordinate Format for more details.
b	REAL for mkl_scoosm.
	DOUBLE PRECISION for mkl_dcoosm.
	COMPLEX for mkl_ccoosm.
	DOUBLE COMPLEX for mkl_zcoosm.

Array, size $l d b$ by $n$ for one-based indexing, and ( $m, l d b$ ) for zero-based indexing.
Before entry the leading $m$-by- $n$ part of the array $b$ must contain the matrix $B$.

INTEGER. Specifies the leading dimension of $b$ for one-based indexing, and the second dimension of $b$ for zero-based indexing, as declared in the calling (sub)program.

INTEGER. Specifies the leading dimension of c for one-based indexing, and the second dimension of $c$ for zero-based indexing, as declared in the calling (sub)program.

## Output Parameters

c
REAL for mkl_scoosm.
DOUBLE PRECISION for mkl_dcoosm.
COMPLEX for mkl_ccoosm.
DOUBLE COMPLEX for mkl_zcoosm.
Array, size $l d c$ by $n$ for one-based indexing, and ( $m, ~ l d c$ ) for zero-based indexing.

The leading $m-b y-n$ part of the array $c$ contains the output matrix $C$.

## Interfaces

## FORTRAN 77:




## mkl_?bsrsm

Solves a system of linear matrix equations for a sparse matrix in the BSR format (deprecated).

## Syntax

```
call mkl_scsrsm(transa, m, n, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c,
ldc)
call mkl_dcsrsm(transa, m, n, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c,
ldc)
call mkl_ccsrsm(transa, m, n, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c,
ldc)
call mkl_zcsrsm(transa, m, n, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c,
Idc)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?bsrsm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the BSR format:

$$
C:=\text { alpha*inv }(A) * B
$$

or
$C:=a l p h a * \operatorname{inv}\left(A^{T}\right) * B$,
where:
alpha is scalar, $B$ and $C$ are dense matrices, $A$ is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports a BSR format both with one-based indexing and zero-based indexing.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

CHARACTER*1. Specifies the operation.
If transa $=$ 'N' or 'n', then the matrix-matrix product is computed as $C:=a l p h a * i n v(A) * B$.

If transa $=$ 'T' or 't' or 'C' or 'c', then the matrix-vector product is computed as $C:=a l p h a \star \operatorname{inv}\left(A^{T}\right) * B$.

INTEGER. Number of block columns of the matrix $A$.
INTEGER. Number of columns of the matrix $C$.
INTEGER. Size of the block in the matrix $A$.
REAL for mkl_sbsrsm.
DOUBLE PRECISION for mkl_dbsrsm.
COMPLEX for mkl_cbsrsm.
DOUBLE COMPLEX for mkl_zbsrsm.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

REAL for mkl_sbsrsm.
DOUBLE PRECISION for mkl_dbsrsm.
COMPLEX for mkl_cbsrsm.
DOUBLE COMPLEX for mkl_zbsrsm.
Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $1 b \star I b$. Refer to the values array description in BSR Format for more details.

## NOTE

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.
indx

## Output Parameters <br> Output Parameters

C

INTEGER. Array containing the column indices for each non-zero element of the matrix $A$.

Its length is equal to the number of non-zero blocks in the matrix $A$.
Refer to the columns array description in BSR Format for more details.
INTEGER. Array of length $m$.
For one-based indexing: this array contains row indices, such that pntrb(i) - pntrb(1) +1 is the first index of block row $i$ in the array indx.

For zero-based indexing: this array contains row indices, such that pntrb(i) - pntrb(0) is the first index of block row $i$ in the array indx.
Refer to pointerB array description in BSR Format for more details.
INTEGER. Array of length $m$.
For one-based indexing this array contains row indices, such that pntre(i)

- pntrb(1) is the last index of block row $i$ in the array indx.

For zero-based indexing this array contains row indices, such that pntre(i) - pntrb(0) - 1 is the last index of block row $i$ in the array indx.

Refer to pointerE array description in BSR Format for more details.
REAL for mkl_sbsrsm.
DOUBLE PRECISION for mkl_dbsrsm.
COMPLEX for mkl_cbsrsm.
DOUBLE COMPLEX for mkl_zbsrsm.
Array, size (ldb, $n$ ) for one-based indexing, size ( $m, l d b$ ) for zero-based indexing.
On entry the leading $m-b y-n$ part of the array $b$ must contain the matrix $B$.
INTEGER. Specifies the leading dimension (in blocks) of $b$ as declared in the calling (sub)program.

INTEGER. Specifies the leading dimension (in blocks) of $c$ as declared in the calling (sub)program.

REAL for mkl_sbsrsm.
DOUBLE PRECISION for mkl_dbsrsm.

```
COMPLEX formkl cbsrsm.
DOUBLE COMPLEX for mkl_zbsrsm.
Array, size (ldc, n) for one-based indexing, size (m, ldc) for zero-based indexing.
The leading \(m-b y-n\) part of the array \(c\) contains the output matrix \(C\).
```


## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sbsrsm(transa, m, n, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c,
```

ldc)

CHARACTER*1	transa
CHARACTER	matdescra (*)
INTEGER	$m, n, l b, l d b, ~ l d c$
INTEGER	indx (*), pntrb (m), pntre (m)
REAL	alpha
REAL	val (*), b(ldb,*), c(ldc,*)

SUBROUTINE mkl_dbsrsm(transa, m, $n, ~ l b, ~ a l p h a, ~ m a t d e s c r a, ~ v a l, ~ i n d x, ~ p n t r b, ~ p n t r e, ~ b, ~ l d b, ~ c, ~$
ldc)

CHARACTER*1	transa
CHARACTER	matdescra (*)
INTEGER	$m, n, l b, l d b, ~ l d c$
INTEGER	indx (*), pntrb (m), pntre (m)
DOUBLE PRECISION	alpha
DOUBLE PRECISION	val (*), $b(l d b, *), ~ c(l d c, *)$

SUBROUTINE mkl_cbsrsm(transa, m, n, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c,
ldc)

CHARACTER*1	transa
CHARACTER	matdescra (*)
INTEGER	$m, n, l b, l d b, l d c$
INTEGER	indx $(*)$, pntrb $(m)$, pntre $(m)$
COMPLEX	alpha
COMPLEX	val $(*), \mathrm{b}(l \mathrm{db}, *), \mathrm{c}(l \mathrm{dc}, *)$

```
SUBROUTINE mkl_zbsrsm(transa, m, n, lb, alpha, matdescra, val, indx, pntrb, pntre, b, ldb, c,
ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER \(m, n, l b, l d b, l d c\)
INTEGER indx(*), pntrb(m), pntre(m)
\begin{tabular}{ll}
DOUBLE COMPLEX & alpha \\
DOUBLE COMPLEX & \(\operatorname{val}(*), \mathrm{b}(l \mathrm{db}, *), \mathrm{c}(l \mathrm{dc}, *)\)
\end{tabular}
```

mkl_?diamv
Computes matrix - vector product for a sparse matrix in the diagonal format with one-based indexing (deprecated).

## Syntax

```
call mkl_sdiamv(transa, m, k, alpha, matdescra, val, lval, idiag, ndiag, x, beta, y)
call mkl_ddiamv(transa, m, k, alpha, matdescra, val, lval, idiag, ndiag, x, beta, y)
call mkl_cdiamv(transa, m, k, alpha, matdescra, val, lval, idiag, ndiag, x, beta, y)
call mkl_zdiamv(transa, m, k, alpha, matdescra, val, lval, idiag, ndiag, x, beta, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The $\mathrm{mkl} l_{\text {? }}$ ? diamv routine performs a matrix-vector operation defined as

$$
y:=\text { alpha* } A^{\star} x+\text { beta* } y
$$

or

$$
y:=a l p h a^{\star} A^{T} \star x+b e t a^{\star} y,
$$

where:
alpha and beta are scalars, $x$ and $y$ are vectors,
$A$ is an $m$-by- $k$ sparse matrix stored in the diagonal format, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
m
k
alpha
matdescra
val

Ival
idiag
ndiag

X

CHARACTER*1. Specifies the operation.
If transa $=$ 'N' or 'n', then $y:=a l p h a \star A^{*} x+b e t a * y$,
If transa $=$ 'T' or 't' or 'C' or 'c', then $y:=a l p h a \star A^{T} * x+b e t a \star y$.
INTEGER. Number of rows of the matrix $A$.
INTEGER. Number of columns of the matrix $A$.
REAL for mkl_sdiamv.
DOUBLE PRECISION for mkl_ddiamv.
COMPLEX for mkl_cdiamv.
DOUBLE COMPLEX for mkl_zdiamv.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

REAL for mkl_sdiamv.
DOUBLE PRECISION for mkl_ddiamv.
COMPLEX for mkl_cdiamv.
DOUBLE COMPLEX for mkl_zdiamv.
Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix $A$. Refer to values array description in Diagonal Storage Scheme for more details.

INTEGER. Leading dimension of val, lval $\geq m$. Refer to lval description in Diagonal Storage Scheme for more details.

INTEGER. Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix $A$.

Refer to distance array description in Diagonal Storage Scheme for more details.

INTEGER. Specifies the number of non-zero diagonals of the matrix $A$.
REAL for mkl_sdiamv.
DOUBLE PRECISION for mkl_ddiamv.
COMPLEX for mkl_cdiamv.
DOUBLE COMPLEX for mkl_zdiamv.

Array, size at least $k$ if transa $=$ ' $N$ ' or ' $n$ ', and at least $m$ otherwise. On entry, the array $x$ must contain the vector $x$.

REAL for mkl_sdiamv.
DOUBLE PRECISION for mkl_ddiamv.
COMPLEX for mkl_cdiamv.
DOUBLE COMPLEX for mkl_zdiamv.
Specifies the scalar beta.
y
REAL for mkl_sdiamv.
DOUBLE PRECISION for mkl_ddiamv.
COMPLEX for mkl_cdiamv.
DOUBLE COMPLEX for mkl_zdiamv.
Array, size at least $m$ if transa $=$ ' $N$ ' or ' $n$ ', and at least $k$ otherwise. On entry, the array y must contain the vector $y$.

## Output Parameters

y
Overwritten by the updated vector $y$.

## Interfaces

## FORTRAN 77:



```
SUBROUTINE mkl_cdiamv(transa, m, k, alpha, matdescra, val, lval, idiag,
ndiag, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, lval, ndiag
 INTEGER idiag(*)
 COMPLEX alpha, beta
 COMPLEX val(lval,*), x(*), y(*)
SUBROUTINE mkl_zdiamv(transa, m, k, alpha, matdescra, val, lval, idiag,
ndiag, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k, lval, ndiag
 INTEGER idiag(*)
 DOUBLE COMPLEX alpha, beta
 DOUBLE COMPLEX val(lval,*), x(*), y(*)
```

mkl_?skymv
Computes matrix - vector product for a sparse matrix
in the skyline storage format with one-based indexing
(deprecated).

## Syntax

```
call mkl_sskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)
call mkl_dskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)
call mkl_cskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)
call mkl_zskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_mvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?skymv routine performs a matrix-vector operation defined as

```
y := alpha*A*}x+beta*
```

or

```
y := alpha* AT* X + beta* y,
```

where:
alpha and beta are scalars,
$x$ and $y$ are vectors,
$A$ is an $m$-by- $k$ sparse matrix stored using the skyline storage scheme, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
transa
m
k
alpha
matdescra
```

REAL for mkl_sskymv.
DOUBLE PRECISION for mkl_dskymv.
COMPLEX for mkl_cskymv.
DOUBLE COMPLEX for mkl_zskymv.
Array containing the set of elements of the matrix $A$ in the skyline profile form.

If matdescrsa(2) = 'L', then val contains elements from the low triangle of the matrix $A$.

If matdescrsa(2) = 'U', then val contains elements from the upper triangle of the matrix $A$.

Refer to values array description in Skyline Storage Scheme for more details.

INTEGER. Array of length $(m+1)$ for lower triangle, and $(k+1)$ for upper triangle.

It contains the indices specifying in the val the positions of the first element in each row (column) of the matrix $A$. Refer to pointers array description in Skyline Storage Scheme for more details.

REAL for mkl_sskymv.
DOUBLE PRECISION for mkl_dskymv.
COMPLEX for mkl_cskymv.
DOUBLE COMPLEX for mkl_zskymv.
Array, size at least $k$ if transa $=$ ' $N$ ' or ' $n$ ' and at least $m$ otherwise. On entry, the array $x$ must contain the vector $x$.

REAL for mkl_sskymv.
DOUBLE PRECISION for mkl_dskymv.
COMPLEX for mkl_cskymv.
DOUBLE COMPLEX for mkl_zskymv.
Specifies the scalar beta.
y

## Output Parameters

y
Overwritten by the updated vector $y$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k
 INTEGER pntr(*)
 REAL alpha, beta
 REAL val(*), x(*), y(*)
SUBROUTINE mkl_dskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k
 INTEGER pntr(*)
 DOUBLE PRECISION alpha, beta
 DOUBLE PRECISION val(*), x(*), y(*)
SUBROUTINE mkl_cdskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, k
 INTEGER pntr(*)
 COMPLEX alpha, beta
 COMPLEX val(*), x(*), y(*)
SUBROUTINE mkl_zskymv(transa, m, k, alpha, matdescra, val, pntr, x, beta, y)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, k
INTEGER pntr(*)
DOUBLE COMPLEX alpha, beta
DOUBLE COMPLEX val(*), x(*), y(*)
```


## mkl_?diasv

Solves a system of linear equations for a sparse matrix in the diagonal format with one-based indexing (deprecated).

## Syntax

```
call mkl_sdiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)
call mkl_ddiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)
call mkl_cdiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)
call mkl_zdiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)
```

Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?diasv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the diagonal format:

```
y := alpha*inv (A)*x
```

or

$$
y:=a l p h a \star \operatorname{inv}\left(A^{T}\right) \star x
$$

where:
alpha is scalar, $x$ and $y$ are vectors, $A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
CHARACTER*1. Specifies the system of linear equations.
If transa $=$ ' $N$ ' or 'n', then $y:=a l p h a * i n v(A) *_{x}$
If transa $=$ 'T' or 't' or 'C' or 'c', then $y:=\operatorname{alpha*inv}\left(A^{T}\right){ }^{\star} x$,
INTEGER. Number of rows of the matrix $A$.
REAL for mkl_sdiasv.
DOUBLE PRECISION for mkl_ddiasv.
COMPLEX for mkl_cdiasv.
DOUBLE COMPLEX for mkl_zdiasv.
Specifies the scalar alpha.

```
matdescra
val
lval
idiag
```

ndiag
$x$
y

## Output Parameters

## y

## Contains solution vector $x$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sdiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, lval, ndiag
 INTEGER indiag(*)
 REAL alpha
 REAL val(lval,*), x(*), y(*)
SUBROUTINE mkl_ddiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, lval, ndiag
 INTEGER indiag(*)
 DOUBLE PRECISION alpha
 DOUBLE PRECISION val(lval,*), x(*), y(*)
SUBROUTINE mkl_cdiasv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, lval, ndiag
 INTEGER indiag(*)
 COMPLEX alpha
 COMPLEX val(lval,*), x(*), y(*)
SUBROUTINE mkl_zdiaSv(transa, m, alpha, matdescra, val, lval, idiag, ndiag, x, y)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, lval, ndiag
 INTEGER indiag(*)
 DOUBLE COMPLEX alpha
 DOUBLE COMPLEX val(lval,*), x(*), y(*)
```


## mkl_?skysv

Solves a system of linear equations for a sparse matrix in the skyline format with one-based indexing (deprecated).

## Syntax

```
call mkl_sskysv(transa, m, alpha, matdescra, val, pntr, x, y)
call mkl_dskysv(transa, m, alpha, matdescra, val, pntr, x, y)
call mkl_cskysv(transa, m, alpha, matdescra, val, pntr, x, y)
call mkl_zskysv(transa, m, alpha, matdescra, val, pntr, x, y)
```


## Include Files

```
- mkl.fi
```


## Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?skysv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the skyline storage format:

```
y := alpha*inv(A)*x
```

or

```
y := alpha*inv (AT)**,
```

where:
alpha is scalar, $x$ and $y$ are vectors, $A$ is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
transa CHARACTER*1. Specifies the system of linear equations.
If transa = 'N' or 'n', then y := alpha*inv(A)* }\mp@subsup{X}{}{\prime
If transa = 'T' or 't' or 'C' or 'C', then y := alpha*inv ((A')* x,
INTEGER. Number of rows of the matrix A.
REAL formkl_sskysv.
DOUBLE PRECISION for mkl_dskysv.
COMPLEX formkl_cskysv.
DOUBLE COMPLEX formkl_zskysv.
```

Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

## NOTE

General matrices (matdescra(1)='G') is not supported.

REAL for mkl_sskysv.
DOUBLE PRECISION for mkl_dskysv.
COMPLEX for mkl_cskysv.
DOUBLE COMPLEX for mkl_zskysv.
Array containing the set of elements of the matrix $A$ in the skyline profile form.

If matdescra(2) = 'L', then val contains elements from the low triangle of the matrix $A$.

If matdescra(2)='U', then val contains elements from the upper triangle of the matrix $A$.

Refer to values array description in Skyline Storage Scheme for more details.

INTEGER. Array of length $(m+1)$ for lower triangle, and $(k+1)$ for upper triangle.
It contains the indices specifying in the val the positions of the first element in each row (column) of the matrix $A$. Refer to pointers array description in Skyline Storage Scheme for more details.

REAL for mkl_sskysv.
DOUBLE PRECISION for mkl_dskysv.
COMPLEX for mkl_cskysv.
DOUBLE COMPLEX for mkl_zskysv.
Array, size at least $m$.
On entry, the array $x$ must contain the vector $x$. The elements are accessed with unit increment.

REAL for mkl_sskysv.
DOUBLE PRECISION for mkl_dskysv.
COMPLEX for mkl_cskysv.
DOUBLE COMPLEX for mkl_zskysv.
Array, size at least $m$.

On entry, the array $y$ must contain the vector $y$. The elements are accessed with unit increment.

## Output Parameters

y
Contains solution vector $x$.

Interfaces

## FORTRAN 77:



```
SUBROUTINE mkl_zskysv(transa, m, alpha, matdescra, val, pntr, x, y)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m
INTEGER pntr(*)
DOUBLE COMPLEX alpha
DOUBLE COMPLEX val(*), x(*), y(*)
```

mkl_?diamm
Computes matrix-matrix product of a sparse matrix stored in the diagonal format with one-based indexing (deprecated).

## Syntax

```
call mkl_sdiamm(transa, m, n, k, alpha, matdescra, val, lval, idiag, ndiag, b, ldb,
beta, c, ldc)
call mkl_ddiamm(transa, m, n, k, alpha, matdescra, val, lval, idiag, ndiag, b, ldb,
beta, c, ldc)
call mkl_cdiamm(transa, m, n, k, alpha, matdescra, val, lval, idiag, ndiag, b, ldb,
beta, c, ldc)
call mkl_zdiamm(transa, m, n, k, alpha, matdescra, val, lval, idiag, ndiag, b, ldb,
beta, c, Idc)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?diamm routine performs a matrix-matrix operation defined as

```
C := alpha*A*B + beta*C
```

or

```
C := alpha\star AT* B + beta* C,
```

or

```
C := alpha* A}\mp@subsup{A}{}{\textrm{H}}B+\mp@subsup{b}{B}{\prime}\mp@subsup{\operatorname{ba*}}{}{*}C
```

where:
alpha and beta are scalars,
$B$ and $C$ are dense matrices, $A$ is an $m$-by- $k$ sparse matrix in the diagonal format, $A^{\top}$ is the transpose of $A$, and $A^{\mathrm{H}}$ is the conjugate transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

transa	CHARACTER*1. Specifies the operation.
	If transa $=$ 'N' or 'n', then $C:=a l p h a \star A \star B+$ beta* $C$,
	If transa $=$ 'T' or 't', then $C:=a l p h a * A^{T} * B+$ beta* $C$,
	If transa $=$ 'C' or 'c', then $C$ : = alpha* $A^{\mathrm{H}} \mathrm{C}^{\prime}+$ beta* $C$.
m	INTEGER. Number of rows of the matrix $A$.
$n$	INTEGER. Number of columns of the matrix $C$.
k	INTEGER. Number of columns of the matrix $A$.
alpha	REAL for mkl_sdiamm.
	DOUBLE PRECISION for mkl_ddiamm.
	COMPLEX for mkl_cdiamm.
	DOUBLE COMPLEX for mkl_zdiamm.
	Specifies the scalar alpha.
matdescra	CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)".
	Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".
val	REAL for mkl_sdiamm.
	DOUBLE PRECISION for mkl_ddiamm.
	COMPLEX for mkl_cdiamm.
	DOUBLE COMPLEX for mkl_zdiamm.
	Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix $A$. Refer to values array description in Diagonal Storage Scheme for more details.
lval	INTEGER. Leading dimension of val, lval $\geq m$. Refer to lval description in Diagonal Storage Scheme for more details.
idiag	INTEGER. Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix $A$.
	Refer to distance array description in Diagonal Storage Scheme for more details.
ndiag	INTEGER. Specifies the number of non-zero diagonals of the matrix $A$.

b
c
ldc

REAL for mkl_sdiamm.
DOUBLE PRECISION for mkl_ddiamm.
COMPLEX for mkl_cdiamm.
DOUBLE COMPLEX for mkl_zdiamm.
Array, size (ldb, n).
On entry with transa $=$ 'N' or 'n', the leading $k$-by-n part of the array $b$ must contain the matrix $B$, otherwise the leading $m$-by- $n$ part of the array $b$ must contain the matrix $B$.

INTEGER. Specifies the leading dimension of $b$ as declared in the calling (sub)program.

REAL for mkl_sdiamm.
DOUBLE PRECISION for mkl_ddiamm.
COMPLEX for mkl_cdiamm.
DOUBLE COMPLEX for mkl_zdiamm.
Specifies the scalar beta.
REAL for mkl_sdiamm.
DOUBLE PRECISION for mkl_ddiamm.
COMPLEX for mkl_cdiamm.
DOUBLE COMPLEX for mkl_zdiamm.
Array, size ldc by $n$.
On entry, the leading $m$-by-n part of the array $c$ must contain the matrix $C$, otherwise the leading $k$-by-n part of the array $c$ must contain the matrix $C$.

INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program.

## Output Parameters

## c

Overwritten by the matrix (alpha*A*B + beta*C), (alpha*A ${ }^{T} * B+$ beta* $C$ ), or (alpha* $A^{H}{ }^{*} B+$ beta* $C$ ).

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sdiamm(transa, m, n, k, alpha, matdescra, val, lval,
 idiag, ndiag, b, ldb, beta, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, k, ldb, ldc, lval, ndiag
 INTEGER idiag(*)
 REAL alpha, beta
 REAL val(lval,*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_ddiamm(transa, m, n, k, alpha, matdescra, val, lval,
 idiag, ndiag, b, ldb, beta, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, k, ldb, ldc, lval, ndiag
 INTEGER idiag(*)
 DOUBLE PRECISION alpha, beta
 DOUBLE PRECISION val(lval,*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_cdiamm(transa, m, n, k, alpha, matdescra, val, lval,
idiag, ndiag, b, ldb, beta, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, k, ldb, ldc, lval, ndiag
 INTEGER idiag(*)
 COMPLEX alpha, beta
 COMPLEX val(lval,*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_zdiamm(transa, m, n, k, alpha, matdescra, val, lval,
idiag, ndiag, b, ldb, beta, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, k, ldb, ldc, lval, ndiag
INTEGER idiag(*)
DOUBLE COMPLEX alpha, beta
DOUBLE COMPLEX val(lval,*), b(ldb,*), c(ldc,*)
```

```
mkl_?skymm
Computes matrix-matrix product of a sparse matrix
stored using the skyline storage scheme with one-
based indexing (deprecated).
```


## Syntax

```
call mkl_sskymm(transa, m, n, k, alpha, matdescra, val, pntr, b, ldb, beta, c, ldc)
call mkl_dskymm(transa, m, n, k, alpha, matdescra, val, pntr, b, ldb, beta, c, ldc)
call mkl_cskymm(transa, m, n, k, alpha, matdescra, val, pntr, b, ldb, beta, c, ldc)
call mkl_zskymm(transa, m, n, k, alpha, matdescra, val, pntr, b, ldb, beta, c, ldc)
```

Include Files

- mkl.fi


## Description

This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?skymm routine performs a matrix-matrix operation defined as

```
C := alpha* A* B + beta*}
```

or

```
C := alpha* AT* B + beta*C,
```

or

```
C := alpha\star A}\mp@subsup{A}{}{H}B+\mathrm{ beta* C,
```

where:
alpha and beta are scalars,
$B$ and $C$ are dense matrices, $A$ is an $m$-by- $k$ sparse matrix in the skyline storage format, $A^{\top}$ is the transpose of $A$, and $A^{\mathrm{H}}$ is the conjugate transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
transa
CHARACTER*1. Specifies the operation.

```
If transa = 'N' or 'n', then C := alpha\starA*B + beta*C,
If transa = 'T' or't', then C := alpha* AT*B + beta*C,
If transa = 'C' or 'c', then C := alpha* A** B + beta*C.
```

$m$
$n$
$k$
alpha
b

```
INTEGER. Number of rows of the matrix }A\mathrm{ .
INTEGER. Number of columns of the matrix C.
INTEGER. Number of columns of the matrix A.
REAL formkl_sskymm.
DOUBLE PRECISION for mkl_dskymm.
COMPLEX formkl_cskymm.
DOUBLE COMPLEX for mkl_zskymm.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".
```


## NOTE

General matrices (matdescra (1)='G') is not supported.

REAL for mkl_sskymm.
DOUBLE PRECISION for mkl_dskymm.
COMPLEX for mkl_cskymm.
DOUBLE COMPLEX for mkl_zskymm.
Array containing the set of elements of the matrix $A$ in the skyline profile form.

If matdescrsa(2) $=$ 'L', then val contains elements from the low triangle of the matrix $A$.

If matdescrsa(2) = 'U', then val contains elements from the upper triangle of the matrix $A$.

Refer to values array description in Skyline Storage Scheme for more details.

INTEGER. Array of length $(m+1)$ for lower triangle, and $(k+1)$ for upper triangle.

It contains the indices specifying the positions of the first element of the matrix $A$ in each row (for the lower triangle) or column (for upper triangle) in the val array. Refer to pointers array description in Skyline Storage Scheme for more details.

REAL for mkl_sskymm.
DOUBLE PRECISION for mkl_dskymm.
COMPLEX for mkl_cskymm.
DOUBLE COMPLEX for mkl_zskymm.

Array, size ( $1 \mathrm{db}, \mathrm{n}$ ).
On entry with transa $=$ 'N' or 'n', the leading $k$-by-n part of the array $b$ must contain the matrix $B$, otherwise the leading $m$-by-n part of the array $b$ must contain the matrix $B$.

INTEGER. Specifies the leading dimension of $b$ as declared in the calling (sub)program.

REAL for mkl_sskymm.
DOUBLE PRECISION for mkl_dskymm.
COMPLEX for mkl_cskymm.
DOUBLE COMPLEX for mkl_zskymm.
Specifies the scalar beta.
REAL for mkl_sskymm.
DOUBLE PRECISION for mkl_dskymm.
COMPLEX for mkl_cskymm.
DOUBLE COMPLEX for mkl_zskymm.
Array, size $1 d c$ by $n$.
On entry, the leading $m-b y-n$ part of the array $c$ must contain the matrix $C$, otherwise the leading $k$-by- $n$ part of the array $c$ must contain the matrix $C$.

INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program.

## Output Parameters

c
Overwritten by the matrix (alpha*A*B + beta*C), (alpha* $A^{T} \star_{B}+$ beta*C), or (alpha* $A^{\mathrm{H}} \mathrm{A} B+$ beta* $C$ ).

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sskymm(transa, m, n, k, alpha, matdescra, val, pntr, b,
 ldb, beta, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, k, ldb, ldc
 INTEGER pntr(*)
 REAL alpha, beta
 REAL val(*), b(ldb,*), c(ldc,*)
```



## mkl_?diasm

Solves a system of linear matrix equations for a
sparse matrix in the diagonal format with one-based
indexing (deprecated).

## Syntax

```
call mkl_sdiasm(transa, m, n, alpha, matdescra, val, lval, idiag, ndiag, b, ldb, c, ldc)
call mkl_ddiasm(transa, m, n, alpha, matdescra, val, lval, idiag, ndiag, b, ldb, c, ldc)
call mkl_cdiasm(transa, m, n, alpha, matdescra, val, lval, idiag, ndiag, b, ldb, c, ldc)
call mkl_zdiasm(transa, m, n, alpha, matdescra, val, lval, idiag, ndiag, b, ldb, c, ldc)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_? diasm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the diagonal format:

$$
C:=\text { alpha*inv }(A) * B
$$

or

```
C := alpha*inv (}\mp@subsup{A}{}{T}\mathrm{) *B,
```

where:
alpha is scalar, $B$ and $C$ are dense matrices, $A$ is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

CHARACTER*1. Specifies the system of linear equations.
If transa $=$ 'N' or 'n', then $C:=a l p h a * i n v(A) * B$,
If transa $=$ 'T' or 't' or 'C' or 'C', then $C:=a l p h a \star i n v\left(A^{T}\right) \star B$.
INTEGER. Number of rows of the matrix $A$.
INTEGER. Number of columns of the matrix $C$.
REAL for mkl_sdiasm.
DOUBLE PRECISION for mkl_ddiasm.
COMPLEX for mkl_cdiasm.
DOUBLE COMPLEX for mkl_zdiasm.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

REAL for mkl_sdiasm.

	DOUBLE PRECISION for mkl_ddiasm.
	COMPLEX for mkl_cdiasm.
	DOUBLE COMPLEX for mkl_zdiasm.
	Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix $A$. Refer to values array description in Diagonal Storage Scheme for more details.
Ival	INTEGER. Leading dimension of val, lval $\geq m$. Refer to lval description in Diagonal Storage Scheme for more details.
idiag	INTEGER. Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix $A$.
	NOTE   All elements of this array must be sorted in increasing order.
	Refer to distance array description in Diagonal Storage Scheme for more details.
ndiag	INTEGER. Specifies the number of non-zero diagonals of the matrix $A$.
$b$	REAL for mkl_sdiasm.
	DOUBLE PRECISION for mkl_ddiasm.
	COMPLEX for mkl_cdiasm.
	DOUBLE COMPLEX for mkl_zdiasm.
	Array, size (ldb, n).
	On entry the leading m-by-n part of the array $b$ must contain the matrix $B$.
1 db	INTEGER. Specifies the leading dimension of $b$ as declared in the calling (sub)program.
$1 d c$	INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program.

## Output Parameters

c
REAL for mkl_sdiasm.
DOUBLE PRECISION for mkl_ddiasm.
COMPLEX for mkl_cdiasm.
DOUBLE COMPLEX for mkl_zdiasm.
Array, size ldc by $n$.
The leading $m-b y-n$ part of the array $c$ contains the matrix $C$.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sdiasm(transa, m, n, alpha, matdescra, val, lval, idiag,
ndiag, b, ldb, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc, lval, ndiag
 INTEGER idiag(*)
 REAL alpha
 REAL val(lval,*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_ddiasm(transa, m, n, alpha, matdescra, val, lval, idiag,
ndiag, b, ldb, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc, lval, ndiag
 INTEGER idiag(*)
 DOUBLE PRECISION alpha
 DOUBLE PRECISION val(lval,*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_cdiasm(transa, m, n, alpha, matdescra, val, lval, idiag,
ndiag, b, ldb, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc, lval, ndiag
 INTEGER idiag(*)
 COMPLEX alpha
 COMPLEX val(lval,*), b(ldb,*), c(ldc,*)
SUBROUTINE mkl_zdiasm(transa, m, n, alpha, matdescra, val, lval, idiag,
ndiag, b, ldb, c, ldc)
 CHARACTER*1 transa
 CHARACTER matdescra(*)
 INTEGER m, n, ldb, ldc, lval, ndiag
 INTEGER idiag(*)
 DOUBLE COMPLEX alpha
 DOUBLE COMPLEX val(lval,*), b(ldb,*), c(ldc,*)
```

```
mkl_?skysm
Solves a system of linear matrix equations for a
sparse matrix stored using the skyline storage scheme
with one-based indexing (deprecated).
```


## Syntax

```
call mkl_sskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c, ldc)
call mkl_dskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c, ldc)
call mkl_cskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c, ldc)
call mkl_zskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c, ldc)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?skysm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the skyline storage format:

```
C := alpha*inv (A)*B
```

or

```
C := alpha*inv (AT})*B
```

where:
alpha is scalar, $B$ and $C$ are dense matrices, $A$ is a sparse upper or lower triangular matrix with unit or nonunit main diagonal, $A^{\top}$ is the transpose of $A$.

## NOTE

This routine supports only one-based indexing of the input arrays.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
transa CHARACTER*1. Specifies the system of linear equations.
 If transa = 'N' or 'n', then C := alpha*inv(A)*B,
 If transa = 'T' or 't' or 'C' or 'C', then C := alpha*inv (}\mp@subsup{A}{}{T}\mathrm{)* *,
 INTEGER. Number of rows of the matrix A.
 INTEGER. Number of columns of the matrix C.
 REAL formkl_sskysm.
```

DOUBLE PRECISION for mkl_dskysm.
COMPLEX for mkl_cskysm.
DOUBLE COMPLEX for mkl_zskysm.
Specifies the scalar alpha.
CHARACTER. Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table "Possible Values of the Parameter matdescra (descra)". Possible combinations of element values of this parameter are given in Table "Possible Combinations of Element Values of the Parameter matdescra".

## NOTE

General matrices (matdescra(1)='G') is not supported.

REAL for mkl_sskysm.
DOUBLE PRECISION for mkl_dskysm.
COMPLEX for mkl_cskysm.
DOUBLE COMPLEX for mkl_zskysm.
Array containing the set of elements of the matrix $A$ in the skyline profile form.

If matdescrsa(2) = 'L', then val contains elements from the low triangle of the matrix $A$.

If matdescrsa(2) = 'U', then val contains elements from the upper triangle of the matrix $A$.

Refer to values array description in Skyline Storage Scheme for more details.

INTEGER. Array of length $(m+1)$ for lower triangle, and $(n+1)$ for upper triangle.

It contains the indices specifying the positions of the first element of the matrix $A$ in each row (for the lower triangle) or column (for upper triangle) in the val array. Refer to pointers array description in Skyline Storage Scheme for more details.

REAL for mkl_sskysm.
DOUBLE PRECISION for mkl_dskysm.
COMPLEX for mkl_cskysm.
DOUBLE COMPLEX for mkl_zskysm.
Array, size (ldb, n).
On entry the leading $m$-by-n part of the array $b$ must contain the matrix $B$.
INTEGER. Specifies the leading dimension of $b$ as declared in the calling (sub)program.

INTEGER. Specifies the leading dimension of $c$ as declared in the calling (sub)program.

## Output Parameters

c
REAL for mkl_sskysm. DOUBLE PRECISION for mkl_dskysm.

COMPLEX for mkl_cskysm.
DOUBLE COMPLEX for mkl_zskysm.
Array, size ldc by $n$.
The leading $m$-by- $n$ part of the array $c$ contains the matrix $C$.

## Interfaces

## FORTRAN 77:



```
SUBROUTINE mkl_zskysm(transa, m, n, alpha, matdescra, val, pntr, b, ldb, c, ldc)
CHARACTER*1 transa
CHARACTER matdescra(*)
INTEGER m, n, ldb, ldc
INTEGER pntr(*)
DOUBLE COMPLEX alpha
DOUBLE COMPLEX val(*), b(ldb,*), c(ldc,*)
```

mkl_?dnscsr
Convert a sparse matrix in uncompressed representation to the CSR format and vice versa (deprecated).

## Syntax

```
call mkl_sdnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
call mkl_ddnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
call mkl_cdnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
call mkl_zdnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated. Use the matrix manipulation routinesfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

This routine converts a sparse matrix $A$ between formats: stored as a rectangular array (dense representation) and stored using compressed sparse row (CSR) format (3-array variation).

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

## job <br> INTEGER

Array, contains the following conversion parameters:

- job(1): Conversion type.
- If $j \circ b(1)=0$, the rectangular matrix $A$ is converted to the CSR format;
- if job(1)=1, the rectangular matrix $A$ is restored from the CSR format.
- job(2): index base for the rectangular matrix $A$.
- If $j \circ b(2)=0$, zero-based indexing for the rectangular matrix $A$ is used;
- if job (2)=1, one-based indexing for the rectangular matrix $A$ is used.
- job(3): Index base for the matrix in CSR format.
- If job(3) =0, zero-based indexing for the matrix in CSR format is used;
- if job(3)=1, one-based indexing for the matrix in CSR format is used.
- job (4): Portion of matrix.
- If job(4)=0, adns is a lower triangular part of matrix $A$;
- If $j \circ b(4)=1$, adns is an upper triangular part of matrix $A$;
- If $j o b(4)=2$, adns is a whole matrix $A$.
- job (5) =nzmax: maximum number of the non-zero elements allowed if $j o b(1)=0$.
- job(6) : job indicator for conversion to CSR format.
- If $j o b(6)=0$, only array ia is generated for the output storage.
- If job (6)>0, arrays acsr, ia, ja are generated for the output storage.

INTEGER. Number of rows of the matrix $A$.
INTEGER. Number of columns of the matrix $A$.
(input/output)
REAL for mkl_sdnscsr.
DOUBLE PRECISION for mkl_ddnscsr.
COMPLEX for mkl_cdnscsr.
DOUBLE COMPLEX for mkl_zdnscsr.
If the conversion type is from uncompressed to CSR, on input adns contains an uncompressed (dense) representation of matrix $A$.

INTEGER. Specifies the leading dimension of adns as declared in the calling (sub)program.

For zero-based indexing of $A$, lda must be at least max $(1, n)$.
For one-based indexing of $A$, Ida must be at least max $(1, m)$.
(input/output)
REAL for mkl_sdnscsr.
DOUBLE PRECISION for mkl_ddnscsr.
COMPLEX for mkl_cdnscsr.
DOUBLE COMPLEX for mkl_zdnscsr.
If conversion type is from CSR to uncompressed, on input acsr contains the non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. If conversion type is from CSR to uncompressed, on input ja contains the column indices for each non-zero element of the matrix $A$.

Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array of length $m+1$.
If conversion type is from CSR to uncompressed, on input ia contains indices of elements in the array acsr, such that ia(i) is the index in the array acsr of the first non-zero element from the row $i$.
The value of $\mathrm{ia}^{(m+1)}$ is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

## Output Parameters

adns
acsr, ja, ia
info

If conversion type is from CSR to uncompressed, on output adns contains the uncompressed (dense) representation of matrix $A$.

If conversion type is from uncompressed to CSR, on output acsr, ja, and ia contain the compressed sparse row (CSR) format (3-array variation) of matrix $A$ (see Sparse Matrix Storage Formats for a description of the storage format).

INTEGER. Integer info indicator only for restoring the matrix $A$ from the CSR format.
If info $=0$, the execution is successful.
If info=i, the routine is interrupted processing the $i$-th row because there is no space in the arrays acsr and ja according to the value nzmax.

## Interfaces

## FORTRAN 77:

```
SUBROUTINE mkl_sdnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
\begin{tabular}{ll}
INTEGER & job(8) \\
INTEGER & \(m, n\), lda, info \\
INTEGER & ja(*), ia(m+1) \\
REAL & adns(*), acsr(*)
\end{tabular}
SUBROUTINE mkl_ddnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
 INTEGER job(8)
 INTEGER m, n, lda, info
 INTEGER ja(*), ia(m+1)
 DOUBLE PRECISION adns(*), acsr(*)
```

```
SUBROUTINE mkl_cdnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
\begin{tabular}{ll}
INTEGER & job(8) \\
INTEGER & \(m, n\), lda, info \\
INTEGER & ja(*), ia(m+1) \\
COMPLEX & adns(*), acsr (*)
\end{tabular}
SUBROUTINE mkl_zdnscsr(job, m, n, adns, lda, acsr, ja, ia, info)
 INTEGER job(8)
 INTEGER m, n, lda, info
 INTEGER ja(*), ia(m+1)
 DOUBLE COMPLEX adns(*), acsr(*)
```

mkl_?csrcoo
Converts a sparse matrix in the CSR format to the coordinate format and vice versa (deprecated).

## Syntax

```
call mkl_scsrcoo(job, n, acsr, ja, ia, nnz, acoo, rowind, colind, info)
call mkl_dcsrcoo(job, n, acsr, ja, ia, nnz, acoo, rowind, colind, info)
call mkl_ccsrcoo(job, n, acsr, ja, ia, nnz, acoo, rowind, colind, info)
call mkl_zcsrcoo(job, n, acsr, ja, ia, nnz, acoo, rowind, colind, info)
```

Include Files

- mkl.fi


## Description

This routine is deprecated. Use the matrix manipulation routinesfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

This routine converts a sparse matrix $A$ stored in the compressed sparse row (CSR) format (3-array variation) to coordinate format and vice versa.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

## INTEGER

Array, contains the following conversion parameters:

```
job(1)
```

If job(1) $=0$, the matrix in the CSR format is converted to the coordinate format;
if $\operatorname{job}(1)=1$, the matrix in the coordinate format is converted to the CSR format.
if $\operatorname{job}(1)=2$, the matrix in the coordinate format is converted to the CSR format, and the column indices in CSR representation are sorted in the increasing order within each row.
job(2)
If job(2)=0, zero-based indexing for the matrix in CSR format is used;
if $j o b(2)=1$, one-based indexing for the matrix in CSR format is used.
job(3)
If $j o b(3)=0$, zero-based indexing for the matrix in coordinate format is used;
if $j o b(3)=1$, one-based indexing for the matrix in coordinate format is used.
job(5)
job (5) =nzmax - maximum number of the non-zero elements allowed if job(1) $=0$.
job(6) - job indicator.
For conversion to the coordinate format:
If job(6) =1, only array rowind is filled in for the output storage.
If job(6) $=2$, arrays rowind, colind are filled in for the output storage.
If job(6)=3, all arrays rowind, colind, acoo are filled in for the output storage.
For conversion to the CSR format:
If job(6)=0, all arrays acsr, ja, ia are filled in for the output storage.
If job(6)=1, only array ia is filled in for the output storage.
If $j o b(6)=2$, then it is assumed that the routine already has been called with the $j \circ b(6)=1$, and the user allocated the required space for storing the output arrays acsr and ja.

INTEGER. Dimension of the matrix $A$.
INTEGER. Specifies the number of non-zero elements of the matrix $A$ for job(1) $\neq 0$.

Refer to $n n z$ description in Coordinate Format for more details.
(input/output)
REAL for mkl_scsrcoo.
DOUBLE PRECISION for mkl_dcsrcoo.
COMPLEX for mkl_ccsrcoo.
DOUBLE COMPLEX for mkl_zcsrcoo.

Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output) INTEGER. Array containing the column indices for each nonzero element of the matrix $A$.
Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array of length $n+1$, containing indices of elements in the array acsr, such that ia(i) is the index in the array acsr of the first non-zero element from the row $i$. The value of the last element ia $(n+1)$ is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
(input/output)
REAL for mkl_scsrcoo.
DOUBLE PRECISION for mkl_dcsrcoo.
COMPLEX for mkl_ccsrcoo.
DOUBLE COMPLEX for mkl_zcsrcoo.
Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array of length $n n z$, contains the row indices for each non-zero element of the matrix $A$.
Refer to rows array description in Coordinate Format for more details.
(input/output)INTEGER. Array of length $n n z$, contains the column indices for each non-zero element of the matrix $A$. Refer to columns array description in Coordinate Format for more details.

## Output Parameters

$n n z$
info
Returns the number of converted elements of the matrix $A$ for $j o b(1)=0$. INTEGER. Integer info indicator only for converting the matrix $A$ from the CSR format.

If info=0, the execution is successful.
If infole the routine is interrupted because there is no space in the arrays acoo, rowind, colind according to the value nzmax.

## Interfaces

## FORTRAN 77:



## mkl_?csrbsr

Converts a square sparse matrix in the CSR format to the BSR format and vice versa (deprecated).

## Syntax

```
call mkl_scsrbsr(job, m, mblk, ldabsr, acsr, ja, ia, absr, jab, iab, info)
call mkl_dcsrbsr(job, m, mblk, ldabsr, acsr, ja, ia, absr, jab, iab, info)
call mkl_ccsrbsr(job, m, mblk, ldabsr, acsr, ja, ia, absr, jab, iab, info)
call mkl_zcsrbsr(job, m, mblk, ldabsr, acsr, ja, ia, absr, jab, iab, info)
```

Include Files

- mkl.fi

Description

This routine is deprecated. Use the matrix manipulation routinesfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
This routine converts a square sparse matrix $A$ stored in the compressed sparse row (CSR) format (3-array variation) to the block sparse row (BSR) format and vice versa.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

job	INTEGER
	Array, contains the following conversion parameters:
	job(1)
	If job (1) $=0$, the matrix in the CSR format is converted to the BSR format;
	if $j \circ b(1)=1$, the matrix in the BSR format is converted to the CSR format.
	job(2)
	If job(2) =0, zero-based indexing for the matrix in CSR format is used;
	if job(2)=1, one-based indexing for the matrix in CSR format is used.
	job(3)
	If job(3) =0, zero-based indexing for the matrix in the BSR format is used;
	if job (3) =1, one-based indexing for the matrix in the BSR format is used.
	job(4) is only used for conversion to CSR format. By default, the converter
	saves the blocks without checking whether an element is zero or not. If job (4) $=1$, then the converter only saves non-zero elements in blocks.
	job(6) - job indicator.
	For conversion to the BSR format:
	If job (6) $=0$, only arrays jab, iab are generated for the output storage.
	If $j o b(6)>0$, all output arrays absr, jab, and iab are filled in for the output storage.
	If job(6)=-1, iab (1) returns the number of non-zero blocks.
	For conversion to the CSR format:
	If job (6) =0, only arrays ja, ia are generated for the output storage.
m	INTEGER. Actual row dimension of the matrix $A$ for convert to the BSR format; block row dimension of the matrix $A$ for convert to the CSR format.
$m b 1 k$	INTEGER. Size of the block in the matrix $A$.
Idabsr	INTEGER. Leading dimension of the array absr as declared in the calling program. ldabsr must be greater than or equal to mblk*mblk.
acsr	(input/output)
	REAL for mkl_scsrbsr.
	DOUBLE PRECISION for mkl_dcsrbsr.

COMPLEX for mkl_ccsrbsr.
DOUBLE COMPLEX for mkl_zcsrbsr.
Array containing non-zero elements of the matrix $A$. Its length is equal to the number of non-zero elements in the matrix $A$. Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array containing the column indices for each nonzero element of the matrix $A$.

Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array of length $m+1$, containing indices of elements in the array acsr, such that $\mathrm{ia}(I)$ is the index in the array acsr of the first non-zero element from the row $I$. The value of the last elementia $(m+1)$ is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
(input/output)
REAL for mkl_scsrbsr.
DOUBLE PRECISION for mkl_dcsrbsr.
COMPLEX for mkl_ccsrbsr.
DOUBLE COMPLEX for mkl_zcsrbsr.
Array containing elements of non-zero blocks of the matrix $A$. Its length is equal to the number of non-zero blocks in the matrix $A$ multiplied by $m b l k^{\star} m b l k$. Refer to values array description in BSR Format for more details.
(input/output)INTEGER. Array containing the column indices for each nonzero block of the matrix $A$.

Its length is equal to the number of non-zero blocks of the matrix $A$. Refer to columns array description in BSR Format for more details.
(input/output)INTEGER. Array of length $(m+1)$, containing indices of blocks in the array absr, such that iab(i) is the index in the array absr of the first non-zero element from the $i$-th row. The value of the last elementiab $(m+1)$ is equal to the number of non-zero blocks plus one. Refer to rowIndex array description in BSR Format for more details.

## Output Parameters

info
INTEGER. Integer info indicator only for converting the matrix $A$ from the CSR format.

If info $=0$, the execution is successful.
If info=1, it means that mblk is equal to 0 .
If info $=2$, it means that $l$ dabsr is less than $m b l k^{\star} m b l k$ and there is no space for all blocks.

## Interfaces

## FORTRAN 77:



## mkl_?csrcsc

Converts a square sparse matrix in the CSR format to the CSC format and vice versa (deprecated).

## Syntax

```
call mkl_scsrcsc(job, m, acsr, ja, ia, acsc, jal, ial, info)
call mkl_dcsrcsc(job, m, acsr, ja, ia, acsc, jal, ial, info)
call mkl_ccsrcsc(job, m, acsr, ja, ia, acsc, jal, ial, info)
call mkl_zcsrcsc(job, m, acsr, ja, ia, acsc, jal, ial, info)
```


## Include Files

- mkl.fi

Description

This routine is deprecated. Use the matrix manipulation routinesfrom the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
This routine converts a square sparse matrix $A$ stored in the compressed sparse row (CSR) format (3-array variation) to the compressed sparse column (CSC) format and vice versa.

## Input Parameters

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

```
job
m
acsr

INTEGER
Array, contains the following conversion parameters:
job(1)
If job (1) \(=0\), the matrix in the CSR format is converted to the CSC format;
if \(j o b(1)=1\), the matrix in the CSC format is converted to the CSR format.
job(2)
If job(2)=0, zero-based indexing for the matrix in CSR format is used;
if \(j \circ b(2)=1\), one-based indexing for the matrix in CSR format is used.
job(3)
If job(3) \(=0\), zero-based indexing for the matrix in the CSC format is used;
if \(j o b(3)=1\), one-based indexing for the matrix in the CSC format is used.
job(6) - job indicator.
For conversion to the CSC format:
If job(6)=0, only arrays ja1, ial are filled in for the output storage.
If \(j \circ b(6) \neq 0\), all output arrays acsc, ja1, and ial are filled in for the output storage.

For conversion to the CSR format:
If \(j \circ b(6)=0\), only arrays \(j a\), ia are filled in for the output storage.
If \(j o b(6) \neq 0\), all output arrays acsr, \(j a\), and \(i\) a are filled in for the output storage.

INTEGER. Dimension of the square matrix \(A\).
(input/output)
REAL for mkl_scsrcsc.
DOUBLE PRECISION for mkl_dcsrcsc.
COMPLEX for mkl_ccsrcsc.
DOUBLE COMPLEX for mkl_zcsrcsc.
Array containing non-zero elements of the square matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array containing the column indices for each nonzero element of the matrix \(A\).

Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array of length \(m+1\), containing indices of elements in the array acsr, such that \(i a(i)\) is the index in the array acsr of the first non-zero element from the row \(i\). The value of the last elementia \((m+1)\) is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
(input/output)
REAL for mkl_scsrcsc.
DOUBLE PRECISION for mkl_dcsrcsc.
COMPLEX for mkl_ccsrcsc.
DOUBLE COMPLEX for mkl_zcsrcsc.
Array containing non-zero elements of the square matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array containing the row indices for each non-zero element of the matrix \(A\).

Its length is equal to the length of the array acsc. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array of length \(m+1\), containing indices of elements in the array acsc, such that ial(i) is the index in the array acsc of the first non-zero element from the column \(i\). The value of the last element ial \((m+1)\) is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

\section*{Output Parameters}
```

info

```

INTEGER. This parameter is not used now.

\section*{FORTRAN 77:}
```

SUBROUTINE mkl_scsrcsc(job, m, acsr, ja, ia, acsc, ja1, ia1, info)
INTEGER job(8)
INTEGER m, info
INTEGER ja(*), ia(m+1), ja1(*), ia1(m+1)
REAL acsr(*), acsc(*)

```
mkl_?csrdia
Converts a sparse matrix in the CSR format to the diagonal format and vice versa (deprecated).

\section*{Syntax}
```

call mkl_scsrdia(job, m, acsr, ja, ia, adia, ndiag, distance, idiag, acsr_rem, ja_rem,
ia_rem, info)
call mkl_dcsrdia(job, m, acsr, ja, ia, adia, ndiag, distance, idiag, acsr_rem, ja_rem,
ia_rem, info)
call mkl_ccsrdia(job, m, acsr, ja, ia, adia, ndiag, distance, idiag, acsr_rem, ja_rem,
ia_rem, info)
call mkl_zcsrdia(job, m, acsr, ja, ia, adia, ndiag, distance, idiag, acsr_rem, ja_rem,
ia_rem, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

This routine is deprecated. Use the matrix manipulation routinesfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

This routine converts a sparse matrix \(A\) stored in the compressed sparse row (CSR) format (3-array variation) to the diagonal format and vice versa.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

\section*{INTEGER}

Array, contains the following conversion parameters:
job(1)
If job (1) \(=0\), the matrix in the CSR format is converted to the diagonal format;
if \(\operatorname{job}(1)=1\), the matrix in the diagonal format is converted to the CSR format.
job(2)
If job(2) =0, zero-based indexing for the matrix in CSR format is used;
if \(j \circ b(2)=1\), one-based indexing for the matrix in CSR format is used.
job(3)
If job(3) \(=0\), zero-based indexing for the matrix in the diagonal format is used;
if \(\operatorname{job}(3)=1\), one-based indexing for the matrix in the diagonal format is used.
job(6) - job indicator.
For conversion to the diagonal format:
If job (6) \(=0\), diagonals are not selected internally, and acsr_rem, ja_rem,
ia_rem are not filled in for the output storage.
If job(6) \(=1\), diagonals are not selected internally, and acsr_rem, ja_rem,
ia_rem are filled in for the output storage.
If job (6) =10, diagonals are selected internally, and acsr_rem, ja_rem,
ia_rem are not filled in for the output storage.
If job(6) =11, diagonals are selected internally, and csr_rem, ja_rem,
ia_rem are filled in for the output storage.
For conversion to the CSR format:
If job(6) =0, each entry in the array adia is checked whether it is zero.
Zero entries are not included in the array acsr.
If \(j o b(6) \neq 0\), each entry in the array adia is not checked whether it is zero.
INTEGER. Dimension of the matrix \(A\).
(input/output)
REAL for mkl_scsrdia.
DOUBLE PRECISION for mkl_dcsrdia.
COMPLEX for mkl_ccsrdia.
DOUBLE COMPLEX for mkl_zcsrdia.

\section*{Output Parameters}

Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array containing the column indices for each nonzero element of the matrix \(A\).

Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array of length \(m+1\), containing indices of elements in the array acsr, such that \(i a(i)\) is the index in the array acsr of the first non-zero element from the row \(i\). The value of the last elementia \((m+1)\) is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
(input/output)
REAL for mkl_scsrdia.
DOUBLE PRECISION for mkl_dcsrdia.
COMPLEX for mkl_ccsrdia.
DOUBLE COMPLEX for mkl_zcsrdia.
Array of size (ndiag x idiag) containing diagonals of the matrix \(A\).
The key point of the storage is that each element in the array adia retains the row number of the original matrix. To achieve this diagonals in the lower triangular part of the matrix are padded from the top, and those in the upper triangular part are padded from the bottom.

INTEGER.
Specifies the leading dimension of the array adia as declared in the calling (sub) program, must be at least max (\(1, m\)).

INTEGER.
Array of length idiag, containing the distances between the main diagonal and each non-zero diagonal to be extracted. The distance is positive if the diagonal is above the main diagonal, and negative if the diagonal is below the main diagonal. The main diagonal has a distance equal to zero.

INTEGER.
Number of diagonals to be extracted. For conversion to diagonal format on return this parameter may be modified.

Remainder of the matrix in the CSR format if it is needed for conversion to the diagonal format.

INTEGER. This parameter is not used now.

\section*{Interfaces}

\section*{FORTRAN 77:}

\section*{mkl_?csrsky}

Converts a sparse matrix in CSR format to the skyline format and vice versa (deprecated).

\section*{Syntax}
```

call mkl_scsrsky(job, m, acsr, ja, ia, asky, pointers, info)
call mkl_dcsrsky(job, m, acsr, ja, ia, asky, pointers, info)
call mkl_ccsrsky(job, m, acsr, ja, ia, asky, pointers, info)
call mkl_zcsrsky(job, m, acsr, ja, ia, asky, pointers, info)

```

\section*{Include Files}
- mkl.fi

Description

This routine is deprecated. Use the matrix manipulation routinesfrom the Intel® oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

This routine converts a sparse matrix \(A\) stored in the compressed sparse row (CSR) format (3-array variation) to the skyline format and vice versa.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

\section*{job}

INTEGER
Array, contains the following conversion parameters:
job(1)
If \(j o b(1)=0\), the matrix in the CSR format is converted to the skyline format;
if job(1)=1, the matrix in the skyline format is converted to the CSR format.
job(2)
If job(2) \(=0\), zero-based indexing for the matrix in CSR format is used;
if \(j o b(2)=1\), one-based indexing for the matrix in CSR format is used.
job(3)
If job(3) \(=0\), zero-based indexing for the matrix in the skyline format is used;
if \(j o b(3)=1\), one-based indexing for the matrix in the skyline format is used.
job(4)
For conversion to the skyline format:
If job (4) =0, the upper part of the matrix \(A\) in the CSR format is converted.
If job (4) =1, the lower part of the matrix \(A\) in the CSR format is converted.
For conversion to the CSR format:
If job (4) \(=0\), the matrix is converted to the upper part of the matrix \(A\) in the CSR format.

If job (4) =1, the matrix is converted to the lower part of the matrix \(A\) in the CSR format.
job(5)
job(5) =nzmax - maximum number of the non-zero elements of the matrix \(A\) if job(1) \(=0\).
job(6) - job indicator.
Only for conversion to the skyline format:
If job(6)=0, only arrays pointers is filled in for the output storage.
If \(j o b(6)=1\), all output arrays asky and pointers are filled in for the output storage.

INTEGER. Dimension of the matrix \(A\).
(input/output)
REAL for mkl_scsrsky.
DOUBLE PRECISION for mkl_dcsrsky.
COMPLEX for mkl_ccsrsky.
DOUBLE COMPLEX for mkl_zcsrsky.
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array containing the column indices for each nonzero element of the matrix \(A\).

Its length is equal to the length of the array acsr. Refer to columns array description in Sparse Matrix Storage Formats for more details.
(input/output)INTEGER. Array of length \(m+1\), containing indices of elements in the array acsr, such that \(i a(i)\) is the index in the array acsr of the first non-zero element from the row \(i\). The value of the last elementia \((m+1)\) is equal to the number of non-zeros plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
(input/output)
REAL for mkl_scsrsky.
DOUBLE PRECISION for mkl_dcsrsky.
COMPLEX for mkl_ccsrsky.
DOUBLE COMPLEX for mkl_zcsrsky.
Array, for a lower triangular part of \(A\) it contains the set of elements from each row starting from the first none-zero element to and including the diagonal element. For an upper triangular matrix it contains the set of elements from each column of the matrix starting with the first non-zero element down to and including the diagonal element. Encountered zero elements are included in the sets. Refer to values array description in Skyline Storage Format for more details.
(input/output)INTEGER.
Array with dimension \((m+1)\), where \(m\) is number of rows for lower triangle (columns for upper triangle), pointers(i) - pointers(1) + 1 gives the index of element in the array asky that is first non-zero element in row
(column)i. The value of pointers(\(m+1\)) is set to nnz + pointers(1), where \(n n z\) is the number of elements in the array asky. Refer to pointers array description in Skyline Storage Format for more details

\section*{Output Parameters}
info
INTEGER. Integer info indicator only for converting the matrix \(A\) from the CSR format.

If info=0, the execution is successful.
If info=1, the routine is interrupted because there is no space in the array asky according to the value nzmax.

\section*{Interfaces}

\section*{FORTRAN 77:}
```

SUBROUTINE mkl_scsrsky(job, m, acsr, ja, ia, asky, pointers, info)
INTEGER job(8)
INTEGER m, info
INTEGER ja(*), ia(m+1), pointers(m+1)
REAL acsr(*), asky(*)
SUBROUTINE mkl_dcsrsky(job, m, acsr, ja, ia, asky, pointers, info)
INTEGER job(8)
INTEGER m, info
INTEGER ja(*), ia(m+1), pointers(m+1)
DOUBLE PRECISION acsr(*), asky(*)
SUBROUTINE mkl_ccsrsky(job, m, acsr, ja, ia, asky, pointers, info)
INTEGER job(8)
INTEGER m, info
INTEGER ja(*), ia(m+1), pointers(m+1)
COMPLEX acsr(*), asky(*)
SUBROUTINE mkl_zcsrsky(job, m, acsr, ja, ia, asky, pointers, info)
INTEGER job(8)
INTEGER m, info
INTEGER ja(*), ia(m+1), pointers(m+1)
DOUBLE COMPLEX acsr(*), asky(*)

```
mkl_?csradd
Computes the sum of two matrices stored in the CSR format (3-array variation) with one-based indexing (deprecated).

\section*{Syntax}
```

call mkl_scsradd(trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic,
nzmax, info)
call mkl_dcsradd(trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic,
nzmax, info)
call mkl_ccsradd(trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic,
nzmax, info)
call mkl_zcsradd(trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic,
nzmax, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_addfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?csradd routine performs a matrix-matrix operation defined as
```

C := A+beta*op (B)

```
where:
\(A, B, C\) are the sparse matrices in the CSR format (3-array variation).
op \((B)\) is one of op \((B)=B\), or op \((B)=B^{T}\), or op \((B)=B^{H}\)

\section*{beta is a scalar.}

The routine works correctly if and only if the column indices in sparse matrix representations of matrices \(A\) and \(B\) are arranged in the increasing order for each row. If not, use the parameter sort (see below) to reorder column indices and the corresponding elements of the input matrices.

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
trans
CHARACTER*1. Specifies the operation.
\[
\begin{aligned}
& \text { If trans }=\text { 'N' or 'n', then } C:=A+\text { beta^ } B \\
& \text { If trans }=\text { 'T' or 't', then } C:=A+\text { beta^ } B^{T} \\
& \text { If trans }='^{\prime} C^{\prime} \text { or 'C', then } C:=A+\text { beta^ } B^{H} .
\end{aligned}
\]

INTEGER.
If request \(=0\), the routine performs addition. The memory for the output arrays ic, jc, c must be allocated beforehand.

If request \(=1\), the routine only computes the values of the array ic of length \(m+1\). The memory for the ic array must be allocated beforehand. On exit the value ic \((m+1)-1\) is the actual number of the elements in the arrays \(c\) and \(j c\).

If request=2, after the routine is called previously with the parameter request \(=1\) and after the output arrays \(j c\) and \(c\) are allocated in the calling program with length at least \(i c(m+1)-1\), the routine performs addition.

INTEGER. Specifies the type of reordering. If this parameter is not set (default), the routine does not perform reordering.
If sort \(=1\), the routine arranges the column indices \(j\) a for each row in the increasing order and reorders the corresponding values of the matrix \(A\) in the array \(a\).
If sort=2, the routine arranges the column indices \(j b\) for each row in the increasing order and reorders the corresponding values of the matrix \(B\) in the array \(b\).
If sort \(=3\), the routine performs reordering for both input matrices \(A\) and \(B\).
InTEGER. Number of rows of the matrix \(A\).
integer. Number of columns of the matrix \(A\).
REAL for mkl_scsradd.
DOUBLE PRECISION for mkl_dcsradd.
COMPLEX for mkl_ccsradd.
DOUBLE COMPLEX for mkl_zcsradd.
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.

Integer. Array containing the column indices for each non-zero element of the matrix \(A\). For each row the column indices must be arranged in the increasing order.
The length of this array is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

Integer. Array of length \(m+1\), containing indices of elements in the array \(a\), such that \(i a(i)\) is the index in the array \(a\) of the first non-zero element from the row \(i\). The value of the last element \(i a(m+1)\) is equal to the number of non-zero elements of the matrix \(A\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

REAL for mkl_scsradd.
DOUBLE PRECISION for mkl_dcsradd.
b

\section*{Output Parameters}

COMPLEX for mkl_ccsradd.
DOUBLE COMPLEX for mkl_zcsradd.
Specifies the scalar beta.
REAL for mkl_scsradd.
DOUBLE PRECISION for mkl_dcsradd.
COMPLEX for mkl_ccsradd.
DOUBLE COMPLEX for mkl_zcsradd.
Array containing non-zero elements of the matrix \(B\). Its length is equal to the number of non-zero elements in the matrix \(B\). Refer to values array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix \(B\). For each row the column indices must be arranged in the increasing order.
The length of this array is equal to the length of the array b. Refer to columns array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length \(m+1\) when trans \(={ }^{\prime} N\) ' or ' \(n\) ', or \(n+1\) otherwise.

This array contains indices of elements in the array \(b\), such that \(i b(i)\) is the index in the array \(b\) of the first non-zero element from the row \(i\). The value of the last element \(i b(m+1)\) or \(i b(n+1)\) is equal to the number of non-zero elements of the matrix \(B\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.
INTEGER. The length of the arrays \(c\) and \(j c\).
This parameter is used only if request=0. The routine stops calculation if the number of elements in the result matrix \(C\) exceeds the specified value of nzmax.

REAL for mkl_scsradd.
DOUBLE PRECISION for mkl_dcsradd.
COMPLEX for mkl_ccsradd.
DOUBLE COMPLEX for mkl_zcsradd.
Array containing non-zero elements of the result matrix \(C\). Its length is equal to the number of non-zero elements in the matrix \(C\). Refer to values array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix \(C\).

The length of this array is equal to the length of the array c. Refer to columns array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length \(m+1\), containing indices of elements in the array \(c\), such that \(i c(i)\) is the index in the array \(c\) of the first non-zero element from the row \(i\). The value of the last element \(i c(m+1)\) is equal to the number of non-zero elements of the matrix \(C\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=I>0\), the routine stops calculation in the \(I\)-th row of the matrix \(C\) because number of elements in \(C\) exceeds nzmax.

If info=-1, the routine calculates only the size of the arrays \(c\) and \(j c\) and returns this value plus 1 as the last element of the array ic.

\section*{Interfaces}

\section*{FORTRAN 77:}
```

SUBROUTINE mkl_scsradd( trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic,
nzmax, info)
CHARACTER trans
INTEGER request, sort, m, n, nzmax, info
INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
REAL a(*), b(*), c(*), beta
SUBROUTINE mkl_dcsradd( trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic,
nzmax, info)
CHARACTER trans
INTEGER request, sort, m, n, nzmax, info
INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
DOUBLE PRECISION a(*), b(*), c(*), beta
SUBROUTINE mkl_ccsradd( trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic,
nzmax, info)
CHARACTER trans
INTEGER request, sort, m, n, nzmax, info
INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
COMPLEX a(*), b(*), c(*), beta
SUBROUTINE mkl_zcsradd( trans, request, sort, m, n, a, ja, ia, beta, b, jb, ib, c, jc, ic,
nzmax, info)
CHARACTER trans
INTEGER request, sort, m, n, nzmax, info
INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
DOUBLE COMPLEX a(*), b(*), c(*), beta

```
mkl_?csrmultcsr
Computes product of two sparse matrices stored in the CSR format (3-array variation) with one-based indexing (deprecated).

\section*{Syntax}
```

call mkl_scsrmultcsr(trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic,
nzmax, info)
call mkl_dcsrmultcsr(trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic,
nzmax, info)
call mkl_ccsrmultcsr(trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic,
nzmax, info)
call mkl_zcsrmultcsr(trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic,
nzmax, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

This routine is deprecated. Use mkl_sparse_spmmfrom the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?csrmultcsr routine performs a matrix-matrix operation defined as
\[
C:=o p(A) \star B
\]
where:
\(A, B, C\) are the sparse matrices in the CSR format (3-array variation);
op \((A)\) is one of op \((A)=A\), or op \((A)=A^{\mathrm{T}}\), or op \((A)=A^{\mathrm{H}}\).
You can use the parameter sort to perform or not perform reordering of non-zero entries in input and output sparse matrices. The purpose of reordering is to rearrange non-zero entries in compressed sparse row matrix so that column indices in compressed sparse representation are sorted in the increasing order for each row.

The following table shows correspondence between the value of the parameter sort and the type of reordering performed by this routine for each sparse matrix involved:
\begin{tabular}{|c|c|c|c|}
\hline Value of the parameter sort & Reordering of \(\boldsymbol{A}\) (arrays a, ja, ia) & Reordering of \(\boldsymbol{B}\) (arrays
\[
b, j a, i b)
\] & Reordering of \(\boldsymbol{C}\) (arrays
\[
\left.c, j c_{r} i c\right)
\] \\
\hline 1 & yes & no & yes \\
\hline 2 & no & yes & yes \\
\hline 3 & yes & yes & yes \\
\hline 4 & yes & no & no \\
\hline 5 & no & yes & no \\
\hline 6 & yes & yes & no \\
\hline 7 & no & no & no \\
\hline arbitrary value not equal to \(1,2, \ldots, 7\) & no & no & yes \\
\hline
\end{tabular}

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
trans
request
sort
m
n

CHARACTER*1. Specifies the operation.
If trans \(=\) 'N' or 'n', then \(C:=A * B\)
If trans \(=\) ' \(T\) ' or ' \(t\) ' or ' \(C\) ' or ' \(C\) ', then \(C:=A^{T} \star B\).
INTEGER.
If request=0, the routine performs multiplication, the memory for the output arrays ic, jc, c must be allocated beforehand.

If request=1, the routine computes only values of the array ic of length \(m\) +1 , the memory for this array must be allocated beforehand. On exit the value \(i c(m+1)-1\) is the actual number of the elements in the arrays \(c\) and \(j c\).

If request=2, the routine has been called previously with the parameter request=1, the output arrays \(j c\) and \(c\) are allocated in the calling program and they are of the length ic \((m+1)-1\) at least.

INTEGER. Specifies whether the routine performs reordering of non-zeros entries in input and/or output sparse matrices (see table above).

INTEGER. Number of rows of the matrix \(A\).
INTEGER. Number of columns of the matrix \(A\).
INTEGER. Number of columns of the matrix \(B\).
REAL for mkl_scsrmultcsr.
DOUBLE PRECISION for mkl_dcsrmultcsr.
COMPLEX for mkl_ccsrmultcsr.
DOUBLE COMPLEX for mkl_zcsrmultcsr.
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix \(A\). For each row the column indices must be arranged in the increasing order.
The length of this array is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length \(m+1\).
\(b\)

This array contains indices of elements in the array \(a\), such that \(i a(i)\) is the index in the array a of the first non-zero element from the row \(i\). The value of the last element \(i a(m+1)\) is equal to the number of non-zero elements of the matrix \(A\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

REAL for mkl_scsrmultcsr.
DOUBLE PRECISION for mkl_dcsrmultcsr.
COMPLEX for mkl_ccsrmultcsr.
DOUBLE COMPLEX for mkl_zcsrmultcsr.
Array containing non-zero elements of the matrix \(B\). Its length is equal to the number of non-zero elements in the matrix \(B\). Refer to values array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix \(B\). For each row the column indices must be arranged in the increasing order.
The length of this array is equal to the length of the array b. Refer to columns array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length \(n+1\) when trans \(=\) 'N' or 'n', or \(m+1\) otherwise.
This array contains indices of elements in the array \(b\), such that \(i b(i)\) is the index in the array \(b\) of the first non-zero element from the row \(i\). The value of the last element \(i b(n+1)\) or \(i b(m+1)\) is equal to the number of non-zero elements of the matrix \(B\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

INTEGER. The length of the arrays \(c\) and \(j c\).
This parameter is used only if request=0. The routine stops calculation if the number of elements in the result matrix \(C\) exceeds the specified value of nzmax.

\section*{Output Parameters}
```

C
jC

```

REAL for mkl_scsrmultcsr.
DOUBLE PRECISION for mkl_dcsrmultcsr.
COMPLEX for mkl_ccsrmultcsr.
DOUBLE COMPLEX for mkl zcsrmultcsr.
Array containing non-zero elements of the result matrix \(C\). Its length is equal to the number of non-zero elements in the matrix \(C\). Refer to values array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix \(C\).
ic
info

The length of this array is equal to the length of the array c. Refer to columns array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length \(m+1\) when trans \(=\) ' \(N\) ' or 'n', or \(n+1\) otherwise.

This array contains indices of elements in the array \(c\), such that \(i c(i)\) is the index in the array \(c\) of the first non-zero element from the row \(i\). The value of the last element ic \((m+1)\) or \(i c(n+1)\) is equal to the number of non-zero elements of the matrix \(C\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

INTEGER.
If info=0, the execution is successful.
If info \(=I>0\), the routine stops calculation in the \(I\)-th row of the matrix \(C\) because number of elements in \(C\) exceeds nzmax.

If info=-1, the routine calculates only the size of the arrays \(c\) and \(j c\) and returns this value plus 1 as the last element of the array ic.

\section*{Interfaces}

\section*{FORTRAN 77:}
```

SUBROUTINE mkl_scsrmultcsr( trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic,
nzmax, info)
CHARACTER*1 trans
INTEGER request, sort, m, n, k, nzmax, info
INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
REAL a(*), b(*), c(*)

```
SUBROUTINE mkl_dcsrmultcsr (trans, request, sort, m, \(n, k, a, j a, i a, b, j b, i b, ~ c, ~ j c, i c\),
nzmax, info)
 CHARACTER*1 trans
 INTEGER request, sort, \(m, n, k, n z m a x, ~ i n f o\)
 INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
 DOUBLE PRECISION \(\mathrm{a}(*), \mathrm{b}(*), \mathrm{c}(*)\)
SUBROUTINE mkl_ccsrmultcsr(trans, request, sort, m, \(n, k, a, j a, i a, b, j b, i b, ~ c, j c, i c\),
nzmax, info)
 CHARACTER*1 trans
 INTEGER request, sort, m, n, k, nzmax, info
 INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
 COMPLEX \(\quad a(*), b(*), c(*)\)
```

SUBROUTINE mkl_zcsrmultcsr( trans, request, sort, m, n, k, a, ja, ia, b, jb, ib, c, jc, ic,
nzmax, info)

```
 CHARACTER*1 trans
 INTEGER request, sort, \(m, n, k, n z m a x\), info
 INTEGER ja(*), jb(*), jc(*), ia(*), ib(*), ic(*)
 DOUBLE COMPLEX \(a(*), b(*), c(*)\)

\section*{mkl_?csrmultd}

Computes product of two sparse matrices stored in the CSR format (3-array variation) with one-based indexing. The result is stored in the dense matrix (deprecated).

\section*{Syntax}
```

call mkl_scsrmultd(trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
call mkl_dcsrmultd(trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
call mkl_ccsrmultd(trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
call mkl_zcsrmultd(trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

This routine is deprecated. Use mkl_sparse_?_spmmdfrom the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.
The mkl_?csrmultd routine performs a matrix-matrix operation defined as
\[
C:=o p(A) * B
\]
where:
\(A, B\) are the sparse matrices in the CSR format (3-array variation), \(C\) is dense matrix; op \((A)\) is one of op \((A)=A\), or op \((A)=A^{T}\), or op \((A)=A^{H}\).

The routine works correctly if and only if the column indices in sparse matrix representations of matrices \(A\) and \(B\) are arranged in the increasing order for each row.

\section*{NOTE}

This routine supports only one-based indexing of the input arrays.

\section*{Input Parameters}

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.
trans
CHARACTER*1. Specifies the operation.

If trans \(=\) ' \(N\) ' or ' n ', then \(C:=A^{\star} B\) If trans \(=\) 'T' or 't' or 'C' or 'c', then \(C:=A^{T} * B\).

INTEGER. Number of rows of the matrix \(A\).
INTEGER. Number of columns of the matrix \(A\).
INTEGER. Number of columns of the matrix \(B\).
REAL for mkl_scsrmultd.
DOUBLE PRECISION for mkl_dcsrmultd.
COMPLEX for mkl_ccsrmultd.
DOUBLE COMPLEX for mkl_zcsrmultd.
Array containing non-zero elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to values array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix \(A\). For each row the column indices must be arranged in the increasing order.
The length of this array is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length \(m+1\) when trans \(={ }^{\prime} N\) ' or 'n', or \(n+1\) otherwise.
This array contains indices of elements in the array \(a\), such that \(i a(i)\) is the index in the array \(a\) of the first non-zero element from the row \(i\). The value of the last element \(i a(m+1)\) or \(i a(n+1)\) is equal to the number of non-zero elements of the matrix \(A\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

REAL for mkl_scsrmultd.
DOUBLE PRECISION for mkl_dcsrmultd.
COMPLEX for mkl_ccsrmultd.
DOUBLE COMPLEX for mkl_zcsrmultd.
Array containing non-zero elements of the matrix \(B\). Its length is equal to the number of non-zero elements in the matrix \(B\). Refer to values array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array containing the column indices for each non-zero element of the matrix \(B\). For each row the column indices must be arranged in the increasing order.
The length of this array is equal to the length of the array b. Refer to columns array description in Sparse Matrix Storage Formats for more details.

INTEGER. Array of length \(m+1\).

This array contains indices of elements in the array \(b\), such that \(i b(i)\) is the index in the array \(b\) of the first non-zero element from the row \(i\). The value of the last element \(i b(m+1)\) is equal to the number of non-zero elements of the matrix \(B\) plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

\section*{Output Parameters}
c
```

REAL for mkl_scsrmultd.
DOUBLE PRECISION for mkl_dcsrmultd.
COMPLEX for mkl_ccsrmultd.
DOUBLE COMPLEX for mkl_zcsrmultd.

```

Array containing non-zero elements of the result matrix \(C\).
Idc
INTEGER. Specifies the leading dimension of the dense matrix \(C\) as declared in the calling (sub)program. Must be at least max \((m, 1)\) when trans \(=\) 'N' or 'n', or max \((1, n)\) otherwise.

\section*{Interfaces}

FORTRAN 77:
```

SUBROUTINE mkl_scsrmultd( trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
CHARACTER*1 trans
INTEGER m, n, k, ldc
INTEGER ja(*), jb(*), ia(*), ib(*)
REAL a(*), b(*), c(ldc, *)
SUBROUTINE mkl_dcsrmultd( trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
CHARACTER*1 trans
INTEGER m, n, k, ldc
INTEGER ja(*), jb(*), ia(*), ib(*)
DOUBLE PRECISION a(*), b(*), c(ldc, *)
SUBROUTINE mkl_ccsrmultd( trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
CHARACTER*1 trans
INTEGER m, n, k, ldc
INTEGER ja(*), jb(*), ia(*), ib(*)
COMPLEX a(*), b(*), c(ldc, *)

```
```

SUBROUTINE mkl_zCsrmultd( trans, m, n, k, a, ja, ia, b, jb, ib, c, ldc)
CHARACTER*1 trans
INTEGER m, n, k, ldc
INTEGER ja(*), jb(*), ia(*), ib(*)
DOUBLE COMPLEX a(*), b (*), c(ldc, *)

```

\section*{Sparse QR Routines}

Sparse \(Q R\) routines and their data types
\begin{tabular}{|l|l|l|}
\hline Routine or function group & Data types & Description \\
\hline mkl_sparse_set_qr_hint & & Enables a pivot strategy for an ill-conditioned matrix. \\
\hline mkl_sparse_?_qr & s,d & \begin{tabular}{l}
Calculates the solution of a sparse system of linear equations \\
using QR factorization.
\end{tabular} \\
\hline mkl_sparse_qr_reorder & & Performs reordering and symbolic analysis of the matrix \(A\). \\
\hline mkl_sparse_?_qr_factorize & s,d & Performs numerical factorization of the matrix \(A\). \\
\hline mkl_sparse_?_qr_solve & s,d & \begin{tabular}{l}
Solves the system \(A^{*} x=b\) \\
\(A\).
\end{tabular} \\
\hline mkl_sparse_?_qr_qmult & s,d factorization of the matrix \\
\hline mkl_sparse_?_qr_rsolve & s,d & Performs \(x:=Q^{\wedge}(-1) * b\). \\
\hline
\end{tabular}

NOTE The underdetermined systems of equations are not supported. The number of columns should be less or equal to the number or rows.

For more information about the workflow of sparse QR functionality, refer to oneMKL Sparse QR solver. Multifrontal Sparse QR Factorization Method for Solving a Sparse System of Linear Equations.
mkl_sparse_set_qr_hint
Define the pivot strategy for further calls of mkl_sparse_?_qr.

\section*{Syntax}
```

stat = mkl_sparse_set_qr_hint ( A, hint )

```

Include Files
- mkl_sparse_qr.f90

\section*{Description}

You can use this routine to enable a pivot strategy in the case of an ill-conditioned matrix.

\section*{Input Parameters}
```

A
SPARSE_MATRIX_T
Handle containing a sparse matrix in an internal data structure.
hint
C_INT

```
 Value specifying whether to use pivoting.

> NOTE The only value currently supported is SPARSE_QR_WITH_PIVOTS, which enables the use of a pivot strategy for an ill-conditioned matrix.

\section*{Output Parameters}
stat
INTEGER
Value indicating whether the operation was successful, and if not, why:
\begin{tabular}{|l|l|}
\hline SPARSE_STATUS_SUCCESS & The operation was successful. \\
\hline SPARSE_STATUS_NOT_INITIALIZED & \begin{tabular}{l}
The routine encountered an empty \\
handle or matrix array.
\end{tabular} \\
\hline SPARSE_STATUS_ALLOC_FAILED & Internal memory allocation failed. \\
\hline SPARSE_STATUS_INVALID_VALUE & \begin{tabular}{l}
The input parameters contain an invalid \\
value.
\end{tabular} \\
\hline SPARSE_STATUS_EXECUTION_FAILED & Execution failed. \\
\hline SPARSE_STATUS_INTERNAL_ERROR & \begin{tabular}{l}
An error in algorithm implementation \\
occurred.
\end{tabular} \\
\hline SPARSE_STATUS_NOT_SUPPORTED & \begin{tabular}{l}
The requested operation is not \\
supported.
\end{tabular} \\
\hline
\end{tabular}
mkl_sparse_?_qr
Computes the QR decomposition for the matrix of a
sparse linear system and calculates the solution.
Syntax
```

stat = mkl_sparse_d_qr (operation, A, descr, layout, *columns, x, *ldx, b, ldb)
stat = mkl_sparse_s_qr (operation, A, descr, layout, x, columns, ldx, b, ldb)

```

Include Files
- mkl_sparse_qr.f90

\section*{Description}

The mkl_sparse_?_qr routine computes the \(Q R\) decomposition for the matrix of a sparse linear system \(A^{*} x\) \(=b\), so that \(A=Q^{*} R\) where \(Q\) is the orthogonal matrix and \(R\) is upper triangular, and calculates the solution.

\section*{NOTE}

Currently, mkl_sparse_?_qr supports only square and overdetermined systems. For underdetermined systems you can manually transpose the system matrix and use QR decomposition for \(A^{T}\) to get the minimum-norm solution for the original underdetermined system.

NOTE Currently, mkl_sparse_?_qr supports only CSR format for the input matrix, nontranspose operation, and single right-hand side.

\section*{Input Parameters}
operation

A
descr
type
layout

X
columns
\(I d x\)
b

C_INT
Specifies the operation to perform.
NOTE Currently, the only suppored value is
SPARSE_OPERATION_NON_TRANSPOSE (non-transpose case; that is, \(A^{*} X\) \(=b\) is solved).

SPARSE_MATRIX_T
Handle containing a sparse matrix in an internal data structure.
MATRIX_DESCR
Structure specifying sparse matrix properties. Only the parameters listed here are currently supported.

Specifies the type of sparse matrix.

NOTE Currently, the only supported value is SPARSE_MATRIX_TYPE_GENERAL (the matrix is processed as-is).

C_INT
Describes the storage scheme for the dense matrix:
\begin{tabular}{|l|l|}
\hline SPARSE_LAYOUT_COLUMN_MAJOR & \begin{tabular}{l}
Storage of elements uses column-major \\
layout.
\end{tabular} \\
\hline SPARSE_LAYOUT_ROW_MAJOR & Storage of elements uses row-major layout. \\
\hline
\end{tabular}

C_FLOAT for mkl_sparse_s_qr; C_DOUBLE for mkl_sparse_d_qr
Array with a size of at least rows* cols:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows \\
(number of \\
rows in \(x\)
\end{tabular} & ldx & Number of columns in A \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
x)
\end{tabular} & columns & \(1 d x\) \\
\hline
\end{tabular}

C_INT
Number of columns in matrix \(b\).
C_INT
Specifies the leading dimension of matrix \(x\).
C_FLOAT for mkl_sparse_s_qr; C_DOUBLE for mkl_sparse_d_qr

Array with a size of at least rows* cols:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout_ = \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows (number of \\
rows in b)
\end{tabular} & ldb & Number of columns in A \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
b)
\end{tabular} & Columns & 1 db \\
\hline
\end{tabular}

1 db
C_INT
Specifies the leading dimension of matrix \(b\).

\section*{Output Parameters}

X
C_FLOAT for mkl_sparse_s_qr; C_DOUBLE for mkl_sparse_d_qr
Overwritten by the updated matrix \(y\).
INTEGER
Value indicating whether the operation was successful, and if not, why:
\begin{tabular}{|l|l|}
\hline SPARSE_STATUS_SUCCESS & The operation was successful. \\
\hline SPARSE_STATUS_NOT_INITIALIZED & \begin{tabular}{l}
The routine encountered an empty \\
handle or matrix array.
\end{tabular} \\
\hline SPARSE_STATUS_ALLOC_FAILED & Internal memory allocation failed. \\
\hline SPARSE_STATUS_INVALID_VALUE & \begin{tabular}{l}
The input parameters contain an invalid \\
value.
\end{tabular} \\
\hline SPARSE_STATUS_EXECUTION_FAILED & Execution failed. \\
\hline SPARSE_STATUS_INTERNAL_ERROR & \begin{tabular}{l}
An error in algorithm implementation \\
occurred.
\end{tabular} \\
\hline SPARSE_STATUS_NOT_SUPPORTED & \begin{tabular}{l}
The requested operation is not \\
supported.
\end{tabular} \\
\hline
\end{tabular}
mkl_sparse_qr_reorder
Reordering step of SPARSE QR solver.

\section*{Syntax}
```

stat = mkl_sparse_qr_reorder ( A, descr )

```

Include Files
- mkl_sparse_qr.f90

\section*{Description}

The mkl_sparse_qr_reorder routine performs ordering and symbolic analysis of matrix \(A\).

NOTE Currently, mkl_sparse_qr_reorder supports only general structure and CSR format for the input matrix.

\section*{Input Parameters}

\section*{A \\ SPARSE_MATRIX_T}

Handle containing a sparse matrix in an internal data structure.
descr
MATRIX_DESCR
Structure specifying sparse matrix properties. Only the parameters listed here are currently supported.

\section*{Output Parameters}

\section*{stat}

INTEGER
Value indicating whether the operation was successful, and if not, why:
\begin{tabular}{|l|l|}
\hline SPARSE_STATUS_SUCCESS & The operation was successful. \\
\hline SPARSE_STATUS_NOT_INITIALIZED & \begin{tabular}{l}
The routine encountered an empty \\
handle or matrix array.
\end{tabular} \\
\hline SPARSE_STATUS_ALLOC_FAILED & Internal memory allocation failed. \\
\hline SPARSE_STATUS_INVALID_VALUE & \begin{tabular}{l}
The input parameters contain an invalid \\
value.
\end{tabular} \\
\hline SPARSE_STATUS_EXECUTION_FAILED & Execution failed. \\
\hline SPARSE_STATUS_INTERNAL_ERROR & \begin{tabular}{l}
An error in algorithm implementation \\
occurred.
\end{tabular} \\
\hline SPARSE_STATUS_NOT_SUPPORTED & \begin{tabular}{l}
The requested operation is not \\
supported.
\end{tabular} \\
\hline
\end{tabular}
mkl_sparse_?_qr_factorize
Factorization step of the SPARSE QR solver.

\section*{Syntax}
```

stat = mkl_sparse_d_qr_factorize (A, alt_values)
stat = mkl_sparse_s_qr_factorize (A, alt_values)

```

\section*{Include Files}
- mkl_sparse_qr.f90

\section*{Description}

The mkl_sparse_?_qr_factorize routine performs numerical factorization of matrix \(A\). Prior to calling this routine, the mkl_sparse_?_qr_reorder routine must be called for the matrix handle \(A\). For more information about the workflow of sparse QR functionality, refer to oneMKL Sparse QR solver. Multifrontal Sparse QR Factorization Method for Solving a Sparse System of Linear Equations.

NOTE Currently, mkl_sparse_?_qr_factorize supports only CSR format for the input matrix.

\section*{Input Parameters}
A
SPARSE_MATRIX_T

Handle containing a sparse matrix in an internal data structure.
alt_values
```

C_FLOAT formkl_sparse_s_qr_factorize; C_DOUBLE for
mkl_sparse_d_qr_factorize

```

Array with alternative values. Must be the size of the non-zeroes in the initial input matrix. When passed to the routine, these values will be used during the factorization step instead of the values stored in handle \(A\).

\section*{Output Parameters}

\section*{stat}

\section*{INTEGER}

Value indicating whether the operation was successful, and if not, why:
\begin{tabular}{|l|l|}
\hline SPARSE_STATUS_SUCCESS & The operation was successful. \\
\hline SPARSE_STATUS_NOT_INITIALIZED & \begin{tabular}{l}
The routine encountered an empty \\
handle or matrix array.
\end{tabular} \\
\hline SPARSE_STATUS_ALLOC_FAILED & Internal memory allocation failed. \\
\hline SPARSE_STATUS_INVALID_VALUE & \begin{tabular}{l}
The input parameters contain an invalid \\
value.
\end{tabular} \\
\hline SPARSE_STATUS_EXECUTION_FAILED & Execution failed. \\
\hline SPARSE_STATUS_INTERNAL_ERROR & \begin{tabular}{l}
An error in algorithm implementation \\
occurred.
\end{tabular} \\
\hline SPARSE_STATUS_NOT_SUPPORTED & \begin{tabular}{l}
The requested operation is not \\
supported.
\end{tabular} \\
\hline
\end{tabular}
mkl_sparse_?_qr_solve
Solving step of the SPARSE QR solver.

\section*{Syntax}
```

stat = mkl_sparse_d_qr_solve (operation, A, alt_values, layout, x, columns, ldx, b, ldb)
stat = mkl_sparse_s_qr_solve (operation, A, alt_values, layout, x, columns, ldx, b, ldb)

```

Include Files
- mkl_sparse_qr.f90

\section*{Description}

The mkl_sparse_?_qr_solve routine computes the solution of sparse systems of linear equations \(A^{*} x=\) \(b\). Prior to calling this routine, the mkl_sparse_?_qr_factorize routine must be called for the matrix handle \(A\). For more information about the workflow of sparse QR functionality, refer to oneMKL Sparse QR solver. Multifrontal Sparse QR Factorization Method for Solving a Sparse System of Linear Equations.

\section*{NOTE}

Currently, mkl_sparse_?_qr_solve supports only CSR format for the input matrix, nontranspose operation, and single right-hand side.
Alternative values are not supported and must be set to NULL.

\section*{Input Parameters}
operation

A
alt_values
layout

C_INT
Specifies the operation to perform.
NOTE Currently, the only supported value is SPARSE_OPERATION_NON_TRANSPOSE (non-transpose case; that is, \(A^{*} x\) \(=b\) is solved).

SPARSE_MATRIX_T
Handle containing a sparse matrix in an internal data structure.
C_FLOAT for mkl_sparse_s_qr_solve; C_DOUBLE for mkl_sparse_d_qr_solve Reserved for future use.

C_INT
Describes the storage scheme for the dense matrix:
\begin{tabular}{|l|l|}
\hline SPARSE_LAYOUT_COLUMN_MAJOR & \begin{tabular}{l}
Storage of elements uses column-major \\
layout.
\end{tabular} \\
\hline SPARSE_LAYOUT_ROW_MAJOR & Storage of elements uses row-major layout. \\
\hline
\end{tabular}

C_FLOAT for mkl_sparse_s_qr; C_DOUBLE for mkl_sparse_d_qr
Array with a size of at least rows*cols:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout_ = \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows (number of \\
rows in \(x\)
\end{tabular} & ldx & Number of columns in A \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
x)
\end{tabular} & Columns & ldx \\
\hline
\end{tabular}
columns
\(1 d x\)
b

C_INT
Number of columns in matrix \(b\).
C_INT
Specifies the leading dimension of matrix \(x\).
C_FLOAT for mkl_sparse_s_qr; C_DOUBLE for mkl_sparse_d_qr
Array with a size of at least rows* cols:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows (number of \\
rows in b)
\end{tabular} & ldb & Number of columns in A \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
b)
\end{tabular} & columns & ldb \\
\hline
\end{tabular}

1 db
C_INT
Specifies the leading dimension of matrix \(b\).

\section*{Output Parameters}
\begin{tabular}{ll}
x & C_FLOAT for mkl_sparse_s_qr; C_DOUBLE for mkl_sparse_d_qr \\
Stat & Contains the solution of system \(A^{*} x=b\). \\
& INTEGER \\
& Value indicating whether the operation was successful, and if not, why: \\
& \begin{tabular}{ll|l|}
\hline SPARSE_STATUS_SUCCESS & The operation was successful. \\
\hline SPARSE_STATUS_NOT_INITIALIZED & \begin{tabular}{l}
The routine encountered an empty \\
handle or matrix array.
\end{tabular} \\
\hline & SPARSE_STATUS_ALLOC_FAILED & Internal memory allocation failed. \\
\hline SPARSE_STATUS_INVALID_VALUE & \begin{tabular}{l}
The input parameters contain an invalid \\
value.
\end{tabular} \\
\hline & SPARSE_STATUS_EXECUTION_FAILED & Execution failed. \\
\hline SPARSE_STATUS_INTERNAL_ERROR & \begin{tabular}{l}
An error in algorithm implementation \\
occurred.
\end{tabular} \\
\hline SPARSE_STATUS_NOT_SUPPORTED & \begin{tabular}{l}
The requested operation is not \\
supported.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
mkl_sparse_?_qr_qmult
First stage of the solving step of the SPARSE QR solver.

\section*{Syntax}
```

stat = mkl_sparse_d_qr_qmult (operation, A, layout, x, columns, ldx, b, ldb)
stat = mkl_sparse_s_qr_qmult (operation, A, layout, x, columns, ldx, b, ldb)

```

Include Files
- mkl_sparse_qr.f90

\section*{Description}

The mkl_sparse_?_qr_qmult routine computes multiplication of inversed matrix \(Q\) and right-hand side matrix \(b\). This routine can be used to perform the solving step in two separate calls as alternative to a single call of mkl_sparse_?_qr_solve.

NOTE Currently, mkl_sparse_?_qr_qmult supports only CSR format for the input matrix, non-transpose operation, and single right-hand side.

\section*{Input Parameters}
operation C_INT
Specifies the operation to perform.
NOTE Currently, the only supported value is
SPARSE_OPERATION_NON_TRANSPOSE (non-transpose case; that is, \(A^{*} X\) \(=b\) is solved).

A
layout

X
C_FLOAT for mkl_sparse_s_qr; C_DOUBLE for mkl_sparse_d_qr
Array with a size of at least rows* cols:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout_ = \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows \\
(number of \\
rows in \(x\)
\end{tabular} & ldx & Number of columns in A \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
x)
\end{tabular} & columns & \(1 d x\) \\
\hline
\end{tabular}

Idx
b
C_INT

Number of columns in matrix \(b\).
C_INT
Specifies the leading dimension of matrix \(x\).
C_FLOAT for mkl_sparse_s_qr; C_DOUBLE for mkl_sparse_d_qr
Array with a size of at least rows* cols:
\begin{tabular}{|l|l|l|}
\hline & layout = & layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR & SPARSE_LAYOUT_ROW_MAJOR \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|}
\begin{tabular}{l}
rows \\
(number of \\
rows in b)
\end{tabular} & ldb & Number of columns in \(A\) \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
b)
\end{tabular} & columns & ldb \\
\hline
\end{tabular}
\begin{tabular}{l}
C_INT \\
Specifies the leading dimension of matrix \(b\).
\end{tabular}

\section*{Output Parameters}
x
C_FLOAT for mkl_sparse_s_qr; C_DOUBLE for mkl_sparse_d_qr
Overwritten by the updated matrix \(x=Q^{-1 * b}\).
INTEGER
Value indicating whether the operation was successful, and if not, why:
\begin{tabular}{|l|l|}
\hline SPARSE_STATUS_SUCCESS & The operation was successful. \\
\hline SPARSE_STATUS_NOT_INITIALIZED & \begin{tabular}{l}
The routine encountered an empty \\
handle or matrix array.
\end{tabular} \\
\hline SPARSE_STATUS_ALLOC_FAILED & Internal memory allocation failed. \\
\hline SPARSE_STATUS_INVALID_VALUE & \begin{tabular}{l}
The input parameters contain an invalid \\
value.
\end{tabular} \\
\hline SPARSE_STATUS_EXECUTION_FAILED & Execution failed. \\
\hline SPARSE_STATUS_INTERNAL_ERROR & \begin{tabular}{l}
An error in algorithm implementation \\
occurred.
\end{tabular} \\
\hline SPARSE_STATUS_NOT_SUPPORTED & \begin{tabular}{l}
The requested operation is not \\
supported.
\end{tabular} \\
\hline
\end{tabular}
mkl_sparse_?_qr_rsolve
Second stage of the solving step of the SPARSE QR
solver.

\section*{Syntax}
```

stat = mkl_sparse_d_qr_rsolve (operation, A, layout, x, columns, ldx, b, ldb)
stat = mkl_sparse_s_qr_rsolve (operation, A, layout, x, columns, ldx, b, ldb)

```

\section*{Include Files}
- mkl_sparse_qr.f90

\section*{Description}

The mkl_sparse_?_qr_rsolve routine computes the solution of \(A^{*} x=b\).

NOTE Currently, mkl_sparse_?_qr_rsolve supports only CSR format for the input matrix, non-transpose operation, and single right-hand side.

\section*{Input Parameters}
operation C_INT
Specifies the operation to perform.
NOTE Currently, the only supported value is
SPARSE_OPERATION_NON_TRANSPOSE (non-transpose case; that is, \(A^{*} X\) \(=b\) is solved).

A
layout

X
C_FLOAT for mkl_sparse_s_qr; C_DOUBLE for mkl_sparse_d_qr
Array with a size of at least rows* cols:
\begin{tabular}{|l|l|l|}
\hline & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
layout = \\
SPARSE_LAYOUT_ROW_MAJOR
\end{tabular} \\
\hline \begin{tabular}{l}
rows \\
(number of \\
rows in \(x\)
\end{tabular} & ldx & Number of columns in A \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
x)
\end{tabular} & columns & ldx \\
\hline
\end{tabular}

Idx
b
C_INT

Number of columns in matrix \(b\).
C_INT
Specifies the leading dimension of matrix \(x\).
C_FLOAT for mkl_sparse_s_qr; C_DOUBLE for mkl_sparse_d_qr
Array with a size of at least rows* cols:
\begin{tabular}{|l|l|l|}
\hline & layout = & layout = \\
SPARSE_LAYOUT_COLUMN_MAJOR & SPARSE_LAYOUT_ROW_MAJOR \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\begin{tabular}{l}
rows \\
(number of \\
rows in b)
\end{tabular} & \(I d b\) & Number of columns in \(A\) \\
\hline \begin{tabular}{l}
cols \\
(number of \\
columns in \\
\(b)\)
\end{tabular} & columns & \(1 d b\) \\
\hline
\end{tabular}
\(1 d b\)
C_INT
Specifies the leading dimension of matrix \(b\).

\section*{Output Parameters}
x
C_FLOAT for mkl_sparse_s_qr; C_DOUBLE for mkl_sparse_d_qr
Contains the solution of the triangular system \(R^{*} x=b\).
INTEGER

Value indicating whether the operation was successful, and if not, why:
\begin{tabular}{|l|l|}
\hline SPARSE_STATUS_SUCCESS & The operation was successful. \\
\hline SPARSE_STATUS_NOT_INITIALIZED & \begin{tabular}{l}
The routine encountered an empty \\
handle or matrix array.
\end{tabular} \\
\hline SPARSE_STATUS_ALLOC_FAILED & Internal memory allocation failed. \\
\hline SPARSE_STATUS_INVALID_VALUE & \begin{tabular}{l}
The input parameters contain an invalid \\
value.
\end{tabular} \\
\hline SPARSE_STATUS_EXECUTION_FAILED & Execution failed. \\
\hline SPARSE_STATUS_INTERNAL_ERROR & \begin{tabular}{l}
An error in algorithm implementation \\
occurred.
\end{tabular} \\
\hline SPARSE_STATUS_NOT_SUPPORTED & \begin{tabular}{l}
The requested operation is not \\
supported.
\end{tabular} \\
\hline
\end{tabular}

\section*{Inspector-executor Sparse BLAS Routines}

The inspector-executor API for Sparse BLAS divides operations into two stages: analysis and execution. During the initial analysis stage, the API inspects the matrix sparsity pattern and applies matrix structure changes. In the execution stage, subsequent routine calls reuse this information in order to improve performance.
The inspector-executor API supports key Sparse BLAS operations for iterative sparse solvers:
- Sparse matrix-vector multiplication
- Sparse matrix-matrix multiplication with a sparse or dense result
- Solution of triangular systems
- Sparse matrix addition

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Naming Conventions in Inspector-Executor Sparse BLAS Routines}

The Inspector-Executor Sparse BLAS API routine names use the following convention:
```

mkl_sparse_[<character>_]<operation> [_<format>]

```

The <character> field indicates the data type:
\(s \quad\) real, single precision
C complex, single precision
d real, double precision
z complex, double precision
The data type is included in the name only if the function accepts dense matrix or scalar floating point parameters.
The <operation> field indicates the type of operation:
\begin{tabular}{ll}
create & create matrix handle \\
copy & create a copy of matrix handle \\
convert & convert matrix between sparse formats \\
export & \begin{tabular}{l}
export matrix from internal representation to CSR or BSR format \\
frees memory allocated for matrix handle
\end{tabular} \\
destroy & \begin{tabular}{l}
set_<op>_hint \\
opovide information about number of upcoming compute operations and \\
symgs, or memory
\end{tabular} \\
optimize & \begin{tabular}{l}
analyze the matrix using hints and store optimization information in matrix \\
handle
\end{tabular} \\
mv & \begin{tabular}{l}
compute sparse matrix-vector product
\end{tabular} \\
compute sparse matrix by dense matrix product (batch mv)
\end{tabular}
\begin{tabular}{ll}
syrk & \begin{tabular}{l}
compute the product of sparse matrix with its transposed matrix and store the \\
result as a sparse matrix
\end{tabular} \\
syrkd & \begin{tabular}{l}
compute the product of sparse matrix with its transposed matrix and store the \\
result as a dense matrix
\end{tabular} \\
order & perform ordering of column indexes of the matrix in CSR format \\
dotmv & compute a sparse matrix-vector product with dot product
\end{tabular}

The <format> field indicates the sparse matrix storage format:
\begin{tabular}{ll}
coo & coordinate format \\
bsr & \begin{tabular}{l}
block sparse row format plus variations. Fill out either rows_start and rows_end \\
(for 4-arrays representation) or rowIndex array (for 3-array BSR/CSR).
\end{tabular} \\
csr & \begin{tabular}{l}
compressed sparse row format plus variations. Fill out either rows_start and \\
rows_end (for 4-arrays representation) or rowIndex array (for 3-array BSR/ \\
CSR).
\end{tabular} \\
csc & \begin{tabular}{l}
compressed sparse column format plus variations. Fill out either cols_start \\
and cols_end (for 4-arrays representation) or col Index array (for 3 array \\
CSC).
\end{tabular}
\end{tabular}

The format is included in the function name only if the function parameters include an explicit sparse matrix in one of the conventional sparse matrix formats.

\section*{Sparse Matrix Storage Formats for Inspector-executor Sparse BLAS Routines}

Inspector-executor Sparse BLAS routines support four conventional sparse matrix storage formats:
- compressed sparse row format (CSR) plus variations
- compressed sparse column format (CSC) plus variations
- coordinate format (COO)
- block sparse row format (BSR) plus variations

Computational routines operate on a matrix handle that stores a matrix in CSR or BSR formats. Other formats should be converted to CSR or BSR format before calling any computational routines. For more information see Sparse Matrix Storage Formats.

\section*{Supported Inspector-executor Sparse BLAS Operations}

The Inspector-executor Sparse BLAS API can perform several operations involving sparse matrices. These notations are used in the description of the operations:
- \(A, G, V\) are sparse matrices
- \(B\) and \(C\) are dense matrices
- \(x\) and \(y\) are dense vectors
- alpha and beta are scalars
\(o p(A)\) represents a possible transposition of matrix \(A\)
```

op (A) = A
op (A) = AT}-\mathrm{ transpose of }
op (A) = A A
$o p(A)^{-1}$ denotes the inverse of op $(A)$.

```

The Inspector-executor Sparse BLAS routines support the following operations:
- computing the vector product between a sparse matrix and a dense vector:
```

y := alpha*op (A)*x + beta*}

```
- solving a single triangular system:
```

y := alpha*inv(op(A))*x

```
- computing a product between a sparse matrix and a dense matrix:
\(C:=\) alpha*op \((A) * B+b^{*} \operatorname{ba}^{*} C\)
- computing a product between sparse matrices with a sparse result:
\(V:=a l p h a^{*} o p(A) * o p(G)\)
- computing a product between sparse matrices with a dense result:
\(C\) := alpha*op (A)*op (G)
- computing a sum of sparse matrices with a sparse result:
\(V\) := alpha*op(A) + G
- solving a sparse triangular system with multiple right-hand sides:
\(C:=a l p h a^{*} \operatorname{inv}(o p(A)) * B\)

\section*{Two-stage Algorithm in Inspector-Executor Sparse BLAS Routines}

You can use a two-stage algorithm in Inspector-executor Sparse BLAS routines which produce a sparse matrix. The applicable routines are:
- mkl_sparse_sp2m (BSR/CSR/CSC formats)
- mkl_sparse_sypr (CSR format)

The two-stage algorithm allows you to split computations into stages. The main purpose of the splitting is to provide an estimate for the memory required for the output prior to allocating the largest part of the memory (for the indices and values of the non-zero elements). Additionally, the two-stage approach extends the functionality and allows more complex usage models.

NOTE The multistage approach currently does not allow you to allocate memory for the output matrix outside oneMKL.

In the two-stage algorithm:
1. The first stage allocates data which is necessary for the memory estimation (arrays rows_start/ rows_end or cols_start/cols_end depending on the format, (see Sparse Matrix Storage Formats) and computes the number of entries or the full structure of the matrix.

NOTE The format of the output is decided internally but can be checked using the export functionality mkl_sparse_? export_<format>.
2. The second stage allocates data and computes column or row indices (depending on the format) of non-zero elements and/or values of the output matrix.
Specifying the stage for execution is supported through the sparse_request_t parameter in the API with the following options:
Values for sparse_request_t parameter
\begin{tabular}{|ll|}
\hline Value & Description \\
\hline SPARSE_STAGE_NNZ_COUN & \begin{tabular}{l}
Allocates and computes only the rows_start/rows_end (CSR/BSR format) or \\
\(T\)
\end{tabular} \\
\begin{tabular}{l}
cols_start/cols_end (CSC format) arrays for the output matrix. After this \\
stage, by calling mkl_sparse_? export_<format>, you can obtain the
\end{tabular} \\
\begin{tabular}{ll}
number of non-zeros in the output matrix and calculate the amount of \\
memory required for the output matrix.
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|}
\hline Value & Description \\
\hline SPARSE_STAGE_FINALIZE_ MULT_NO_VAL & Allocates and computes row/column indices provided that rows_start/ rows_end or cols_start/cols_end have already been computed in a prior call with the request SPARSE_STAGE_NNZ_COUNT. The values of the output matrix are not computed. \\
\hline SPARSE_STAGE_FINALIZE_ MULT & \begin{tabular}{l}
Depending on the state of the output matrix \(C\) on entry to the routine, this stage does one of the following: \\
- Allocates and computes row/column indices and values of nonzero elements, if only rows_start/rows_end or cols_start/cols_end are present \\
- allocates and computes values of nonzero elements, if rows_start/ rows_end or cols_start/cols_end and row/column indices of non-zero elements are present
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { SPARSE_STAGE_FULL_MULT } \\
& \text { _NO_VAL }
\end{aligned}
\] & Allocates and computes the output matrix structure in a single step. The values of the output matrix are not computed. \\
\hline SPARSE_STAGE_FULL_MULT & Allocates and computes the entire output matrix (structure and values) in a single step. \\
\hline
\end{tabular}

The example below shows how you can use the two-stage approach for estimating the memory requirements for the output matrix in CSR format:

\section*{First stage (sparse_request_t = SPARSE_STAGE_NNZ_COUNT)}
1. The routine mkl_sparse_sp2m is called with the request parameter SPARSE_STAGE_NNZ_COUNT.
2. The arrays rows_start and rows_end are exported using the mkl_sparse_x_export_csr routine.
3. These arrays are used to calculate the number of non-zeros (\(n n z\)) of the resulting output matrix.

Note that by the end of the first stage, the arrays associated with column indices and values of the output matrix have not been allocated or computed yet.
```

sparse_matrix_t csrC = NULL;
status = mkl_sparse_sp2m (opA, descrA, csrA, opB, descrB, csrB, SPARSE_STAGE_NNZ_COUNT, \&csrC);
/* optional calculation of nnz in the output matrix for getting a memory estimate */
status = mkl_sparse_?_export_csr (csrC, \&indexing, \&nrows, \&ncols, \&rows_start, \&rows_end,
\&col_indx, \&values);
MKL_INT nnz = rows_end[nrows-1] - rows_start[0];

```

\section*{Second stage (sparse_request_t = SPARSE_STAGE_FINALIZE_MULT)}

This stage allocates and computes the remaining output arrays (associated with column indices and values of output matrix entries) and completes the matrix-matrix multiplication.
```

status = mkl_sparse_sp2m (opA, descrA, csrA, opB, descrB, csrB, SPARSE_STAGE_FINALIZE_MULT,
\&csrC);

```

When the two-stage approach is not needed, you can perform both stages in a single call:
Single stage operation (sparse_request_t = SPARSE_STAGE_FULL_MULT)
```

status = mkl_sparse_sp2m (opA, descrA, csrA, opB, descrB, csrB, SPARSE_STAGE_FULL_MULT, \&csrC);

```

\section*{Matrix Manipulation Routines}

The Matrix Manipulation Routines table lists the matrix manipulation routines and the data types associated with them.

Matrix Manipulation Routines and Their Data Types
\begin{tabular}{lll}
\begin{tabular}{l}
Routine or \\
Function Group
\end{tabular} & Data Types & Description \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline mkl_sparse_? _create_csr & \(s, d, c, z\) & Creates a handle for a CSR-format matrix. \\
\hline mkl_sparse_? _create_csc & \(s, d, c, z\) & Creates a handle for a CSC format matrix. \\
\hline mkl_sparse_? _create_coo & \(s, d, c, z\) & Creates a handle for a matrix in COO format. \\
\hline mkl_sparse_? _create_bsr & s, d, c, z & Creates a handle for a matrix in BSR format. \\
\hline mkl_sparse_copy & NA & Creates a copy of a matrix handle. \\
\hline mkl_sparse_destro y & NA & Frees memory allocated for matrix handle. \\
\hline mkl_sparse_conve rt_csr & NA & Converts internal matrix representation to CSR format. \\
\hline mkl_sparse_conve rt_bsr & NA & Converts internal matrix representation to BSR format or changes BSR block size. \\
\hline mkl_sparse_? _export_csr & \(s, d, c, z\) & Exports CSR matrix from internal representation. \\
\hline mkl_sparse_? _export_csc & \(s, d, c, z\) & Exports CSC matrix from internal representation. \\
\hline mkl_sparse_? _export_bsr & \(s, d, c, z\) & Exports BSR matrix from internal representation. \\
\hline mkl_sparse_? _set_value & \(s, d, c, z\) & Changes a single value of matrix in internal representation. \\
\hline mkl_sparse_? _update_values & \(s, d, c, z\) & Changes all or selected matrix values in internal representation. \\
\hline mkl_sparse_order & NA & Performs ordering of column indexes of the matrix in CSR format. \\
\hline
\end{tabular}
mkl_sparse_?_create_csr
Creates a handle for a CSR-format matrix.

\section*{Syntax}
```

stat = mkl_sparse_s_create_csr (A, indexing, rows, cols, rows_start, rows_end, col_indx,
values)
stat = mkl_sparse_d_create_csr (A, indexing, rows, cols, rows_start, rows_end, col_indx,
values)
stat = mkl_sparse_c_create_csr (A, indexing, rows, cols, rows_start, rows_end, col_indx,
values)
stat = mkl_sparse_z_create_csr (A, indexing, rows, cols, rows_start, rows_end, col_indx,
values)

```

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_?_create_csr routine creates a handle for an \(m\)-by- \(k\) matrix \(A\) in CSR format.

\section*{NOTE}

The input arrays provided are left unchanged except for the call to mkl_sparse_order, which performs ordering of column indexes of the matrix. To avoid any changes to the input data, use mkl_sparse_copy.

\section*{Input Parameters}
indexing
sparse_index_base_t.
Indicates how input arrays are indexed.
\begin{tabular}{ll}
SPARSE_INDEX_BASE_ZER \\
0 & 0.
\end{tabular} \begin{tabular}{l}
Zero-based (C-style) indexing: indices start at \\
SPARSE_INDEX_BASE_ONE
\end{tabular} \begin{tabular}{l}
One-based (Fortran-style) indexing: indices \\
start at 1.
\end{tabular}

C_INT.
Number of rows of matrix \(A\).
C_INT.
Number of columns of matrix \(A\).
C_INT.
Array of length at least rows. This array contains row indices, such that rows_start(i) - indexing is the first index of row \(i\) in the arrays values and col_indx. The value of indexing is 0 for zero-based indexing and 1 for one-based indexing.
Refer to pointerB array description in CSR Format for more details.
C_INT.
Array of at least length rows. This array contains row indices, such that rows_end(i) - indexing - 1 is the last index of row \(i\) in the arrays values and col_indx. The value of indexing is 0 for zero-based indexing and 1 for one-based indexing.
Refer to pointerE array description in CSR Format for more details.
C_INT.
For one-based indexing, array containing the column indices plus one for each non-zero element of the matrix \(A\). For zero-based indexing, array containing the column indices for each non-zero element of the matrix \(A\). Its length is at least rows_end(rows - 1) - indexing.

The value of indexing is 0 for zero-based indexing and 1 for one-based indexing.

C_FLOAT for mkl_sparse_s_create_csr
C_DOUBLE for mkl_sparse_d_create_csr
C_FLOAT_COMPLEX for mkl_sparse_c_create_csr
C_DOUBLE_COMPLEX for mkl_sparse_z_create_csr
Array containing non-zero elements of the matrix \(A\). Its length is equal to length of the col_indx array.

Refer to values array description in CSR Format for more details.

\section*{Output Parameters}

A
SPARSE_MATRIX_T.
Handle containing internal data for subsequent Inspector-executor Sparse BLAS operations.

INTEGER
Value indicating whether the operation was successful or not, and why:
\begin{tabular}{ll}
SPARSE_STATUS_SUCCESS & The operation was successful. \\
SPARSE_STATUS_NOT_INI & \begin{tabular}{l}
The routine encountered an empty handle or \\
matrix array. \\
TIALIZED
\end{tabular} \\
\begin{tabular}{ll}
SPARSE_STATUS_ALLOC_F & Internal memory allocation failed. \\
AILED & \\
SPARSE_STATUS_INVALID & The input parameters contain an invalid value. \\
_VALUE & \\
SPARSE_STATUS_EXECUTI & Execution failed. \\
ON_FAILED & \\
SPARSE_STATUS_INTERNA & An error in algorithm implementation occurred. \\
L_ERROR & \\
SPARSE_STATUS_NOT_SUP & The requested operation is not supported. \\
PORTED
\end{tabular}
\end{tabular}
mkl_sparse_?_create_csc
Creates a handle for a CSC format matrix.

\section*{Syntax}
```

stat = mkl_sparse_s_create_csc (A, indexing, rows, cols, cols_start, cols_end, row_indx,
values)
stat = mkl_sparse_d_create_csc (A, indexing, rows, cols, cols_start, cols_end, row_indx,
values)stat = mkl_sparse_c_create_csc (A, indexing, rows, cols, cols_start, cols_end,
row_indx, values)stat = mkl_sparse_z_create_csc (A, indexing, rows, cols, cols_start,
cols_end, row_indx, values)

```

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_?_create_csc routine creates a handle for an \(m\)-by- \(k\) matrix \(A\) in CSC format.

\section*{NOTE}

The input arrays provided are left unchanged except for the call to mkl_sparse_order, which performs ordering of column indexes of the matrix. To avoid any changes to the input data, use mkl_sparse_copy.

\section*{Input Parameters}
indexing sparse_index_base_t.
Indicates how input arrays are indexed.
\begin{tabular}{ll}
\begin{tabular}{l}
SPARSE_INDEX_BASE_ZER \\
O
\end{tabular} & \begin{tabular}{l}
Zero-based (C-style) indexing: indices start at \\
0.
\end{tabular} \\
SPARSE_INDEX_BASE_ONE
\end{tabular} \begin{tabular}{l}
One-based (Fortran-style) indexing: indices \\
start at 1.
\end{tabular}

Number of rows of the matrix \(A\).
C_INT.
Number of columns of the matrix \(A\).
C_INT.
Array of length at least \(m\). This array contains col indices, such that cols_start(i) - ind is the first index of col \(i\) in the arrays values and row_indx. ind takes 0 for zero-based indexing and 1 for one-based indexing.

Refer to pointerB array description in CSC Format for more details.
C_INT.
Array of at least length \(m\). This array contains col indices, such that cols_end(i) - ind - 1 is the last index of col \(i\) in the arrays values and row_indx. ind takes 0 for zero-based indexing and 1 for one-based indexing.

Refer to pointere array description in CSC Format for more details.
C_INT.
For one-based indexing, array containing the row indices plus one for each non-zero element of the matrix \(A\). For zero-based indexing, array containing the row indices for each non-zero element of the matrix \(A\). Its length is at least cols_end(cols - 1) - ind. ind takes 0 for zero-based indexing and 1 for one-based indexing.
values
```

C_FLOAT formkl_sparse_s_create_CsC
C_DOUBLE for mkl_sparse_d_create_csc
C_FLOAT_COMPLEX formkl_sparse_c_create_cSC

```
```

C_DOUBLE_COMPLEX formkl_sparse_z_create_cSc

```

Array containing non-zero elements of the matrix \(A\). Its length is equal to length of the row_indx array.

Refer to values array description in CSC Format for more details.

\section*{Output Parameters}

A
SPARSE_MATRIX_T.
Handle containing internal data.
INTEGER
Value indicating whether the operation was successful or not, and why:
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_?_create_coo
Creates a handle for a matrix in COO format.

\section*{Syntax}
```

stat = mkl_sparse_s_create_coo (A, indexing, rows, cols, nnz, row_indx, col_indx,
values)
stat = mkl_sparse_d_create_coo (A, indexing, rows, cols, nnz, row_indx, col_indx,
values)
stat = mkl_sparse_c_create_coo (A, indexing, rows, cols, nnz, row_indx, col_indx,
values)
stat = mkl_sparse_z_create_coo (A, indexing, rows, cols, nnz, row_indx, col_indx,
values)

```

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_?_create_coo routine creates a handle for an \(m\)-by- \(k\) matrix \(A\) in COO format.

\section*{NOTE}

The input arrays provided are left unchanged except for the call to mkl_sparse_order, which performs ordering of column indexes of the matrix. To avoid any changes to the input data, use mkl_sparse_copy.

\section*{Input Parameters}
indexing
rows
cols
\(n n z\)
row_indx
col_indx
values
```

sparse_index_base_t.

```

Indicates how input arrays are indexed.
```

SPARSE_INDEX_BASE_ZER Zero-based (C-style) indexing: indices start at
O
SPARSE_INDEX_BASE_ONE One-based (Fortran-style) indexing: indices
start at 1.

```
C_INT.

Number of rows of matrix \(A\).
C_INT.
Number of columns of matrix \(A\).
C_INT.
Specifies the number of non-zero elements of the matrix \(A\).
Refer to \(n n z\) description in Coordinate Format for more details.
C_INT.
Array of length \(n n z\), containing the row indices for each non-zero element of matrix \(A\).
Refer to rows array description in Coordinate Format for more details.
C_INT.
Array of length \(n n z\), containing the column indices for each non-zero element of matrix \(A\).

Refer to columns array description in Coordinate Format for more details.
C_FLOAT for mkl_sparse_s_create_coo
C_DOUBLE for mkl_sparse_d_create_coo
C_FLOAT_COMPLEX for mkl_sparse_c_create_coo
C_DOUBLE_COMPLEX for mkl_sparse_z_create_coo
Array of length \(n n z\), containing the non-zero elements of matrix \(A\) in arbitrary order.
Refer to values array description in Coordinate Format for more details.
Output Parameters
A

SPARSE_MATRIX_T.

Handle containing internal data.
stat
```

INTEGER

```

Value indicating whether the operation was successful or not, and why:
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_?_create_bsr
Creates a handle for a matrix in BSR format.

\section*{Syntax}
```

stat = mkl_sparse_s_create_bsr (A, indexing, block_layout, rows, cols, block_size,
rows_start, rows_end, col_indx, values)
stat = mkl_sparse_d_create_bsr (A, indexing, block_layout, rows, cols, block_size,
rows_start, rows_end, col_indx, values)
stat = mkl_sparse_c_create_bsr (A, indexing, block_layout, rows, cols, block_size,
rows_start, rows_end, col_indx, values)
stat = mkl_sparse_z_create_bsr (A, indexing, block_layout, rows, cols, block_size,
rows_start, rows_end, col_indx, values)

```

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_?_create_bsr routine creates a handle for an m-by-k matrix \(A\) in BSR format.

\section*{NOTE}

The input arrays provided are left unchanged except for the call to mkl_sparse_order, which performs ordering of column indexes of the matrix. To avoid any changes to the input data, use mkl_sparse_copy.

\section*{Input Parameters}
indexing
```

sparse_index_base_t.

```
```

block_layout

```
rows
cols
block_size
rows_start
rows_end
col_indx
values

Indicates how input arrays are indexed.
```

SPARSE_INDEX_BASE_ZER Zero-based (C-style) indexing: indices start at
O
SPARSE_INDEX_BASE_ONE One-based (Fortran-style) indexing: indices
start at 1.
sparse_index_base_t.
Specifies layout of blocks:

```
 SPARSE_LAYOUT_ROW_MAJ Storage of elements of blocks uses row major
or
SPARSE_LAYOUT_COLUMN_ Storage of elements of blocks uses column
MAJOR
C_INT.

Number of block rows of matrix \(A\).
C_INT.
Number of block columns of matrix \(A\).
C_INT.
Size of blocks in matrix \(A\).
C_INT.
Array of length \(m\). This array contains row indices, such that rows_start(i) - ind is the first index of block row \(i\) in the arrays values and col_indx. ind takes 0 for zero-based indexing and 1 for one-based indexing.
Refer to pointerB array description in CSR Format for more details.
C_INT.
Array of length \(m\). This array contains row indices, such that rows_end(i) - ind- 1 is the last index of block row \(i\) in the arrays values and col_indx. ind takes 0 for zero-based indexing and 1 for one-based indexing.
Refer to pointerE array description in CSR Format for more details.
C_INT.
For one-based indexing, array containing the column indices plus one for each non-zero block of the matrix \(A\). For zero-based indexing, array containing the column indices for each non-zero block of the matrix \(A\). Its length is rows_end(rows - 1) - ind. ind takes 0 for zero-based indexing and 1 for one-based indexing.
```

C_FLOAT formkl_sparse_s_create_bsr
C_DOUBLE formkl_sparse_d_create_bsr
C_FLOAT_COMPLEX formkl_sparse_c_create_bsr
C_DOUBLE_COMPLEX formkl_sparse_z_create_bsr

```

Array containing non-zero elements of the matrix \(A\). Its length is equal to length of the col_indx array multiplied by block_size*block_size.

Refer to the values array description in BSR Format for more details.

\section*{Output Parameters}
```

A
stat
SPARSE_MATRIX_T.
Handle containing internal data.
INTEGER
Value indicating whether the operation was successful or not, and why:
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED - - matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_copy
Creates a copy of a matrix handle.

\section*{Syntax}
```

stat = mkl_sparse_copy (source, descr, dest)

```

Include Files
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_copy routine creates a copy of a matrix handle.

\section*{NOTE}

Currently, the mkl_sparse_copy routine does not support the descriptor argument and creates an exact (deep) copy of the input matrix.

Input Parameters
source
SPARSE_MATRIX_T.

\section*{Output Parameters}
```

dest

```
stat
```

SPARSE_MATRIX_T formkl_sparse_copy

```

Handle containing internal data.
```

INTEGER

```

Value indicating whether the operation was successful or not, and why:
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or TIALIZED matrix array.
```

SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_destroy
Frees memory allocated for matrix handle.
Syntax
stat \(=m k l \_s p a r s e \_d e s t r o y ~(A)\)

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_destroy routine frees memory allocated for matrix handle.

\section*{NOTE}

You must free memory allocated for matrices after completing use of them. The mkl_sparse_destroy routine provides a utility to do so.

\section*{Input Parameters}

A
SPARSE_MATRIX_T.
Handle containing internal data.

\section*{Output Parameters}
stat

\section*{INTEGER}

Value indicating whether the operation was successful or not, and why:
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or TIALIZED - - matrix array.

SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
```

SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_convert_csr Converts internal matrix representation to CSR format.

\section*{Syntax}
```

stat = mkl_sparse_convert_csr (source, operation, dest)

```

Include Files
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_convert_csr routine converts internal matrix representation to CSR format.
When the source matrix is in COO format, the routine performs a sum reduction on duplicate elements.

\section*{Input Parameters}
source SPARSE_MATRIX_T.
Handle containing internal data.
operation
C_INT.
Specifies operation op () on input matrix.
```

SPARSE_OPERATION_NON_ Non-transpose, op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose,op(A) = AT
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = AH
UGATE_TRANSPOSE

```

\section*{Output Parameters}
```

dest
stat
SPARSE_MATRIX_T.
Handle containing internal data.
INTEGER
Value indicating whether the operation was successful or not, and why:
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED matrix array.

```
```

SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_convert_bsr
Converts internal matrix representation to BSR format or changes BSR block size.

Syntax
```

stat = mkl_sparse_convert_bsr (source, block_size, block_layout, operation, dest)

```

Include Files
- mkl_spblas.f90

Description
Themkl_sparse_convert_bsr routine converts internal matrix representation to BSR format or changes BSR block size.
When the source matrix is in COO format, the routine performs a sum reduction on duplicate elements.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline source & SPARSE_MATRIX_T. \\
\hline & Handle containing internal data. \\
\hline block_size & C_INT. \\
\hline & Size of the block in the output structure. \\
\hline block_layout & sparse_index_base_t. \\
\hline & Specifies layout of blocks: \\
\hline & SPARSE_LAYOUT_ROW_MAJ Storage of elements of blocks uses row major or layout. \\
\hline & \[
\begin{aligned}
& \text { SPARSE_LAYOUT_COLUMN__ Storage of elements of blocks uses column } \\
& \text { MAJOR }
\end{aligned}
\] \\
\hline operation & C_INT. \\
\hline & Specifies operation op () on input matrix. \\
\hline & SPARSE_OPERATION_NON_ Non-transpose, op \((A)=A\).
TRANSPOSE \\
\hline
\end{tabular}
```

SPARSE_OPERATION_TRAN Transpose,op(A) = AT
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = A A.
UGATE_TRANSPOSE

```

\section*{Output Parameters}
```

dest

```
stat
SPARSE_MATRIX_T.
Handle containing internal data.
INTEGER

Value indicating whether the operation was successful or not, and why:
```

SPARSE_STATUS_SUCCES The operation was successful.
S
SPARSE_STATUS_NOT_IN The routine encountered an empty handle or
ITIALIZED - - matrix array.
SPARSE_STATUS_ALLOC_ Internal memory allocation failed.
FAILED
SPARSE_STATUS_INVALI The input parameters contain an invalid
D_VALUE - value.
SPARSE_STATUS_EXECUT Execution failed.
ION_FAILED
SPARSE_STATUS_INTERN An error in algorithm implementation
AL_ERRO
SPARSE_STATUS_NOT_SU The requested operation is not supported.
PPORTED

```
mkl_sparse_?_export_csr
Exports CSR matrix from internal representation.

\section*{Syntax}
```

stat = mkl_sparse_s_export_csr (source, indexing, rows, cols, rows_start, rows_end,
col_indx, values)
stat = mkl_sparse_d_export_csr (source, indexing, rows, cols, rows_start, rows_end,
col_indx, values)
stat = mkl_sparse_c_export_csr (source, indexing, rows, cols, rows_start, rows_end,
col_indx, values)
stat = mkl_sparse_z_export_csr (source, indexing, rows, cols, rows_start, rows_end,
col_indx, values)

```

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

If the matrix specified by the source handle is in CSR format, the mkl_sparse_?_export_csr routine exports an \(m\)-by- \(k\) matrix \(A\) in CSR format matrix from the internal representation. The routine returns pointers to the internal representation and does not allocate additional memory.

If the matrix is not already in CSR format, the routine returns SPARSE_STATUS_INVALID_VALUE.

\section*{Input Parameters}
```

source

```

SPARSE_MATRIX_T.
Handle containing internal data.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{indexing} & sparse_index_base_t. \\
\hline & Indicates how input arrays are indexed. \\
\hline & SPARSE_INDEX_BASE_ZER Zero-based (C-style) indexing: indices start at 0. \\
\hline & SPARSE_INDEX_BASE_ONE One-based (Fortran-style) indexing: indices start at 1. \\
\hline \multirow[t]{2}{*}{rows} & C_INT. \\
\hline & Number of rows of the matrix source. \\
\hline \multirow[t]{2}{*}{cols} & C_INT. \\
\hline & Number of columns of the matrix source. \\
\hline \multirow[t]{3}{*}{rows_start} & C_INT. \\
\hline & Pointer to array of length \(m\). This array contains row indices, such that rows_start(i) - ind is the first index of row \(i\) in the arrays values and col_indx. ind takes 0 for zero-based indexing and 1 for one-based indexing. \\
\hline & Refer to pointerB array description in CSR Format for more details. \\
\hline \multirow[t]{3}{*}{rows_end} & C_INT. \\
\hline & Pointer to array of length \(m\). This array contains row indices, such that rows_end(i) - ind-1 is the last index of row \(i\) in the arrays values and col_indx. ind takes 0 for zero-based indexing and 1 for one-based indexing. \\
\hline & Refer to pointerE array description in CSR Format for more details. \\
\hline \multirow[t]{2}{*}{col_indx} & C_INT. \\
\hline & For one-based indexing, pointer to array containing the column indices plus one for each non-zero element of the matrix source. For zero-based indexing, pointer to array containing the column indices for each non-zero element of the matrix source. Its length is rows_end (rows - 1) - ind. ind takes 0 for zero-based indexing and 1 for one-based indexing. \\
\hline values & C_FLOAT for mkl_sparse_s_export_csr \\
\hline
\end{tabular}
```

C_DOUBLE for mkl_sparse_d_export_csr
C_FLOAT_COMPLEX formkl_sparse_c_export_csr
C_DOUBLE_COMPLEX formkl_sparse_z_export_csr

```

Pointer to array containing non-zero elements of the matrix \(A\). Its length is equal to length of the col_indx array.

Refer to values array description in CSR Format for more details.

\section*{Output Parameters}
```

stat

```

\section*{INTEGER}

Value indicating whether the operation was successful or not, and why:
\begin{tabular}{ll}
SPARSE_STATUS_SUCCESS & The operation was successful. \\
SPARSE_STATUS_NOT_INI & The routine encountered an empty handle or \\
matrix array. \\
TIALIZED & \\
SPARSE_STATUS_ALLOC_F & Internal memory allocation failed. \\
AILED & \\
SPARSE_STATUS_INVALID & The input parameters contain an invalid value. \\
_VALUE \\
SPARSE_STATUS_EXECUTI Execution failed. \\
ON_FAILED & \\
SPARSE_STATUS_INTERNA & An error in algorithm implementation occurred. \\
L_ERROR \\
SPARSE_STATUS_NOT_SUP & The requested operation is not supported. \\
PORTED
\end{tabular}
mkl_sparse_?_export_csc
Exports CSC matrix from internal representation.

\section*{Syntax}
```

stat = mkl_sparse_s_export_csc (source, indexing, rows, cols, cols_start, cols_end,
row_indx, values)
stat = mkl_sparse_d_export_csc (source, indexing, rows, cols, cols_start, cols_end,
row_indx, values)
stat = mkl_sparse_c_export_csc (source, indexing, rows, cols, cols_start, cols_end,
row_indx, values)
stat = mkl_sparse_z_export_csc (source, indexing, rows, cols, cols_start, cols_end,
row_indx, values)

```

Include Files
- mkl_spblas.f90

\section*{Description}

If the matrix specified by the source handle is in CSC format, the mkl_sparse_? export_csc routine exports an \(m\)-by- \(k\) matrix \(A\) in CSC format matrix from the internal representation. The routine returns pointers to the internal representation and does not allocate additional memory.

If the matrix is not already in CSC format, the routine returns SPARSE_STATUS_INVALID_VALUE.

\section*{Input Parameters}
```

source

```

SPARSE_MATRIX_T.
Handle containing internal data.

\section*{Output Parameters}
indexing
rows
cols
cols_start
cols end
row_indx
values
```

sparse_index_base_t.

```

Indicates how input arrays are indexed.
```

SPARSE_INDEX_BASE_ZER Zero-based (C-style) indexing: indices start at
O
SPARSE_INDEX_BASE_ONE One-based (Fortran-style) indexing: indices start at 1.

```

C_INT.
Number of rows of the matrix source.

C_INT.
Number of columns of the matrix source.

C_INT.
Array of length \(m\). This array contains column indices, such that cols_start(i) - cols_start(1) is the first index of column \(i\) in the arrays values and row_indx.

Refer to pointerb array description in csc Format for more details.
C_INT.
Pointer to array of length \(m\). This array contains row indices, such that cols_end(i) - cols_start(1) - 1 is the last index of column \(i\) in the arrays values and row_indx.

Refer to pointerE array description in csc Format for more details.
C_INT.
For one-based indexing, pointer to array containing the row indices plus one for each non-zero element of the matrix source. For zero-based indexing, pointer to array containing the row indices for each non-zero element of the matrix source. Its length is cols_end(cols - 1) - cols_start(1).

C_FLOAT for mkl_sparse_s_export_csc
C_DOUBLE for mkl_sparse_d_export_csc
C_FLOAT_COMPLEX for mkl_sparse_c_export_csc
C_DOUBLE_COMPLEX for mkl_sparse_z_export_csc
Pointer to array containing non-zero elements of the matrix \(A\). Its length is equal to length of the row_indx array.

Refer to values array description in csc Format for more details.

\section*{Output Parameters}
```

stat

```

INTEGER
Value indicating whether the operation was successful or not, and why:
\begin{tabular}{ll}
SPARSE_STATUS_SUCCESS & The operation was successful. \\
SPARSE_STATUS_NOT_INI & The routine encountered an empty handle or \\
TIALIZED & matrix array. \\
SPARSE_STATUS_ALLOC_F & Internal memory allocation failed. \\
AILED & \\
SPARSE_STATUS_INVALID & The input parameters contain an invalid value. \\
_VALUE & \\
SPARSE_STATUS_EXECUTI & Execution failed. \\
ON_FAILED & \\
SPARSE_STATUS_INTERNA & An error in algorithm implementation occurred. \\
L_ERROR & \\
SPARSE_STATUS_NOT_SUP & The requested operation is not supported. \\
PORTED
\end{tabular}
mkl_sparse_?_export_bsr
Exports BSR matrix from internal representation.

\section*{Syntax}
```

stat = mkl_sparse_s_export_bsr (source, indexing, block_layout, rows, cols, block_size,
rows_start, rows_end, col_indx, values)
stat = mkl_sparse_d_export_bsr (source, indexing, block_layout, rows, cols, block_size,
rows_start, rows_end, col_indx, values)
stat = mkl_sparse_c_export_bsr (source, indexing, block_layout, rows, cols, block_size,
rows_start, rows_end, col_indx, values)
stat = mkl_sparse_z_export_bsr (source, indexing, block_layout, rows, cols, block_size,
rows_start, rows_end, col_indx, values)

```

Include Files
- mkl_spblas.f90

\section*{Description}

If the matrix specified by the source handle is in BSR format, the mkl_sparse_?_export_bsr routine exports an (block_size * rows)-by-(block_size \(*\) cols) matrix \(A\) in BSR format from the internal representation. The routine returns pointers to the internal representation and does not allocate additional memory.

If the matrix is not already in BSR format, the routine returns SPARSE_STATUS_INVALID_VALUE.

\section*{Input Parameters}
source
SPARSE_MATRIX_T.
Handle containing internal data.

\section*{Output Parameters}
\begin{tabular}{ll}
indexing & sparse_index_base_t. \\
& Indicates how input arrays are indexed. \\
& SPARSE_INDEX_BASE_ZER Zero-based (C-style) indexing: indices start at \\
& O \\
& SPARSE_INDEX_BASE_ONE One-based (Fortran-style) indexing: indices \\
block_layout start at 1.
\end{tabular}
```

C_FLOAT_COMPLEX formkl_sparse_c_export_bsr
C_DOUBLE_COMPLEX formkl_sparse_z_export_bsr

```

Pointer to array containing non-zero elements of matrix source. Its length is equal to length of the col_indx array multiplied by
```

block_size*block_size.

```

Refer to the values array description in BSR Format for more details.

\section*{Output Parameters}
```

stat

```

\section*{INTEGER}

Value indicating whether the operation was successful or not, and why:
\begin{tabular}{ll}
SPARSE_STATUS_SUCCESS & The operation was successful. \\
SPARSE_STATUS_NOT_INI & The routine encountered an empty handle or \\
TIALIZED & matrix array. \\
SPARSE_STATUS_ALLOC_F & Internal memory allocation failed. \\
AILED & \\
SPARSE_STATUS_INVALID & The input parameters contain an invalid value. \\
-VALUE & \\
SPARSE_STATUS_EXECUTI & Execution failed. \\
ON_FAILED & \\
SPARSE_STATUS_INTERNA & An error in algorithm implementation occurred. \\
L_ERROR & \\
SPARSE_STATUS_NOT_SUP & The requested operation is not supported. \\
PORTED
\end{tabular}
mkl_sparse_?_set_value Changes a single value of matrix in internal representation.

\section*{Syntax}
```

stat = mkl_sparse_s_set_value (A , row, col, value);
stat = mkl_sparse_d_set_value (A, row, col, value );
stat = mkl_sparse_c_set_value (A , row, col, value);
stat = mkl_sparse_z_set_value (A , row, col, value);

```

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

Use the mkl_sparse_?_set_value routine to change a single value of a matrix in the internal Inspectorexecutor Sparse BLAS format. The value should already be presented in a matrix structure.

\section*{Input Parameters}

A
```

SPARSE_MATRIX_T.

```

Specifies handle containing internal data.
C_INT.
Indicates row of matrix in which to set value.
C_INT .
Indicates column of matrix in which to set value.
value
C_FLOAT for mkl_sparse_s_create_csr
C_DOUBLE for mkl_sparse_d_create_csr
C_FLOAT_COMPLEX for mkl_sparse_c_create_csr
C_DOUBLE_COMPLEX for mkl_sparse_z_create_csr
Indicates value

\section*{Output Parameters}
```

A
stat

```

Handle containing modified internal data.
INTEGER.
Value indicating whether the operation was successful or not, and why:
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or TIALIZED matrix array.

SPARSE_STATUS_INVALID The input parameters contain an invalid value. _VALUE
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred. L_ERROR
mkl_sparse_?_update_values
Changes all or selected matrix values in internal representation.

\section*{Syntax}

\section*{NOTE}

This routine is supported for sparse matrices in BSR format only.
```

status = mkl_sparse_s_update_values (A, values, indx, indy, values)
status = mkl_sparse_d_update_values (A, values, indx, indy, values)
status = mkl_sparse_c_update_values (A, values, indx, indy, values)
status = mkl_sparse_z_update_values (A, values, indx, indy, values)

```

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

Use the mkl_sparse_?_update_values routine to change all or selected values of a matrix in the internal Inspector-Executor Sparse BLAS format.
The values to be updated should already be present in the matrix structure.
- To change selected values, you must provide an array values (with new values) and also the corresponding row and column indices for each value via indx and indy arrays as well as the overall number of changed elements nvalues.
So that, for example, to change \(A(0,0)\) to 1 and \(A(0,1)\) to 2 , pass the following input parameters: nvalues \(=2\), ind \(=\{0,0\}\), indy \(=\{0,1\}\) and values \(=\{1,2\}\).
- To change all the values in the matrix, provide the values array and explicitly set nvalues to 0 or the actual number of non zero elements. There is no need to supply indx and indy arrays.

\section*{Input Parameters}

A
SPARSE_MATRIX_T.
Specifies handle containing internal data.
nvalues
indx
indy
values
C_FLOAT for mkl_sparse_s_update_values
C_DOUBLE for mkl_sparse_d_update_values
C_FLOAT_COMPLEX for mkl_sparse_c_update_values
C_DOUBLE_COMPLEX for mkl_sparse_z_update_values
New values.

\section*{Output Parameters}
```

A
status

```

SPARSE_MATRIX_T.
Handle containing modified internal data.
INTEGER
```

Value indicating whether the operation was successful or not, and why. SPARSE_STATUS_SUCCESS The operation was successful. SPARSE_STATUS_NOT_INI The routine encountered an empty handle or TIALIZED matrix array. SPARSE_STATUS_ALLOC_F Internal memory allocation failed. AILED SPARSE_STATUS_INVALID The input parameters contain an invalid value. _VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred. L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported. PORTED

```
mkl_sparse_order
Performs ordering of column indexes of the matrix in CSR format

\section*{Syntax}
stat \(=m k l \_s p a r s e \_o r d e r(\operatorname{csr} A)\)
Include Files
- mkl_spblas.f90

\section*{Description}

Use the mkl_sparse_order routine to perform ordering of column indexes of the matrix in CSR format.

\section*{Input Parameters}
```

CSrA SPARSE_MATRIX_T.

```
 CSR data

\section*{Output Parameters}
\(\csc A\)
stat

Handle containing modified internal data.
INTEGER.
Value indicating whether the operation was successful or not, and why:
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or TIALIZED

SPARSE_STATUS_INVALID The input parameters contain an invalid value. _VALUE

SPARSE_STATUS_INTERNA An error in algorithm implementation occurred. L_ERROR

\section*{Inspector-Executor Sparse BLAS Analysis Routines}

Analysis Routines and Their Data Types
\begin{tabular}{|c|c|}
\hline Routine or Function Group & Description \\
\hline mkl_sparse_set_lu_smoot her_hint & Provides and estimate of the number and type of upcoming calls to LU smoother functionality. \\
\hline mkl_sparse_set_mv_hint & Provides estimate of number and type of upcoming matrix-vector operations. \\
\hline mkl_sparse_set_sv_hint & Provides estimate of number and type of upcoming triangular system solver operations. \\
\hline mkl_sparse_set_mm_hint & Provides estimate of number and type of upcoming matrix-matrix multiplication operations. \\
\hline mkl_sparse_set_sm_hint & Provides estimate of number and type of upcoming triangular matrix solve with multiple right hand sides operations. \\
\hline mkl_sparse_set_dotmv_h int & Sets estimate of the number and type of upcoming matrix-vector operations. \\
\hline mkl_sparse_set_symgs_h int & Sets estimate of number and type of upcoming mkl_sparse_?_symgs operations. \\
\hline mkl_sparse_set_sorv_hin t & Sets estimate of number and type of upcoming mkl_sparse_?_symgs operations. \\
\hline mkl_sparse_set_memory _hint & Provides memory requirements for performance optimization purposes. \\
\hline mkl_sparse_optimize & Analyzes matrix structure and performs optimizations using the hints provided in the handle. \\
\hline
\end{tabular}

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201
mkl_sparse_set_lu_smoother_hint
Provides an estimate of the number and type of upcoming calls to LU smoother functionality.

\section*{Syntax}
```

status = mkl_sparse_set_lu_smoother_hint (A, operation, descr, expected_calls)

```

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_set_lu_smoother_hint function provides subsequent Inspector-Executor Sparse BLAS calls an estimate of the number of upcoming calls to the lu_smoother routine that ultimately may influence the optimizations applied and specifies whether or not to perform an operation on the matrix.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
operation
descr

C_INT .
Specifies the operation \(o p()\) on input matrix.
```

SPARSE_OPERATION_NON_ Non-transpose,op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose,op (A) = A
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = A }\mp@subsup{A}{}{H}\mathrm{ .
UGATE_TRANSPOSE
MATRIX_DESCR .

```

Structure specifying sparse matrix properties.
sparse_matrix_type_ttype - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested
MMETRIC
SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested
RMITIAN triangle is processed).
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULAR - triangle is processed).
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL
are processed).
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only the
OCK_TRIANGULAR \(\bar{R}\) requested triangle is processed). Applies to BSR
 format only.
SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal
OCK_DIAGONAL - blocks are processed). Applies to BSR format
 only.
sparse_fill_mode_tmode - Specifies the triangular matrix part for
symmetric, Hermitian, triangular, and block-triangular matrices:
```

expected_calls

```

A
status

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R

SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
sparse_diag_type_tdiag - Specifies the diagonal type for non-general matrices:

SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one. SPARSE_DIAG_UNIT Diagonal elements are equal to one.

C_INT.
Number of expected calls to execution routine.
SPARSE_MATRIX_T.
Handle containing internal data.
INTEGER
Value indicating whether the operation was successful or not, and why.
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or TIALIZED - matrix array.

SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED
mkl_sparse_set_mv_hint
Provides estimate of number and type of upcoming
matrix-vector operations.

\section*{Syntax}
stat \(=m k l \_\)sparse_set_mv_hint \((A\), operation, descr, expected_calls)

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

Use the mkl_sparse_set_mv_hint routine to provide the Inspector-executor Sparse BLAS API an estimate of the number of upcoming matrix-vector multiplication operations for performance optimization, and specify whether or not to perform an operation on the matrix.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
operation
descr

C_INT.
Specifies operation op () on input matrix.
SPARSE_OPERATION_NON_ Non-transpose, op \((A)=A\). TRANSPOSE
SPARSE_OPERATION_TRAN Transpose, op \((A)=A^{T}\). SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose, op \((A)=A^{H}\). UGATE_TRANSPOSE

MATRIX_DESCR.
Descriptor specifying sparse matrix properties.
type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is. NERAL

SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested \(\operatorname{MMETRIC} \bar{C} \quad-\quad\) triangle is processed).

SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN \(\quad\) triangle is processed).

SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested IANGULAR triangle is processed).

SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements AGONAL

SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested OCK_TRIANGULAR triangle is processed). Applies to BSR format only.

SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIAGONAL blocks are processed). Applies to BSR format only.
mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:
SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed.
\(R\)
SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed.
\(R\)
diag - Specifies diagonal type for non-general matrices:
```

SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
C_INT.
Number of expected calls to execution routine.

```

\section*{Output Parameters}

A
SPARSE_MATRIX_T.
Handle containing internal data.
stat
INTEGER
Value indicating whether the operation was successful or not, and why:
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED
mkl_sparse_set_sv_hint
Provides estimate of number and type of upcoming
triangular system solver operations.
Syntax
stat \(=m k l \_s p a r s e \_s e t \_s v \_h i n t(A\), operation, descr, expected_calls)
Include Files
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_set_sv_hint routine provides an estimate of the number of upcoming triangular system solver operations and type of these operations for performance optimization.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

\section*{Product and Performance Information}

Notice revision \#20201201

\section*{Input Parameters}
operation
descr
```

C_INT.
Specifies operation op() on input matrix.
SPARSE_OPERATION_NON_ Non-transpose, op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose,op(A) = AT
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = A .
UGATE_TRANSPOSE

```
MATRIX_DESCR.

Descriptor specifying sparse matrix properties.
type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested MMETRIC triangle is processed).

SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN - \(\quad\) triangle is processed).

SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested IANGULAR - - triangle is processed).

SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements AGONAL are processed).

SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested OCK_TRIANGULAR \(\bar{R} \quad\) triangle is processed). Applies to BSR format only.

SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIĀGONAL - blocks are processed). Applies to BSR format only.
mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R
SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
diag - Specifies diagonal type for non-general matrices:
SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
```

expected_calls

```

\section*{Output Parameters}

A
stat
C_INT.
Number of expected calls to execution routine.

SPARSE_MATRIX_T.
Handle containing internal data.

\section*{INTEGER}

Value indicating whether the operation was successful or not, and why:
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_set_mm_hint
Provides estimate of number and type of upcoming matrix-matrix multiplication operations.

\section*{Syntax}
```

stat = mkl_sparse_set_mm_hint (A, operation, descr, layout, dense_matrix_size,
expected_calls)

```

Include Files
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_set_mm_hint routine provides an estimate of the number of upcoming matrix-matrix multiplication operations and type of these operations for performance optimization purposes.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
\begin{tabular}{ll}
operation & C_INT. \\
& Specifies operation op () on input matrix. \\
& SPARSE_OPERATION_NON_ Non-transpose, op (A) \(=\) A.
\end{tabular}
```

SPARSE_LAYOUT_COLUMN_ Storage of elements uses column major layout.
MAJOR
SPARSE_LAYOUT_ROW_MAJ Storage of elements uses row major layout.
OR
C_INT.
Number of columns in dense matrix.
C_INT.
Number of expected calls to execution routine.

```
dense_matrix_size
expected_calls

\section*{Output Parameters}

A
SPARSE_MATRIX_T.
Handle containing internal data.
INTEGER
Value indicating whether the operation was successful or not, and why:
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_set_sm_hint
Provides estimate of number and type of upcoming
triangular matrix solve with multiple right hand sides
operations.

\section*{Syntax}
```

stat = mkl_sparse_set_sm_hint (A, operation, descr, layout, dense_matrix_size,
expected_calls)

```

Include Files
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_set_sm_hint routine provides an estimate of the number of upcoming triangular matrix solve with multiple right hand sides operations and type of these operations for performance optimization purposes.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
operation
descr
```

C_INT.
Specifies operation op () on input matrix.
SPARSE_OPERATION_NON_ Non-transpose,op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose,op (A) = AT
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = A H
UGATE_TRANSPOSE
MATRIX_DESCR.
Descriptor specifying sparse matrix properties.
type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested
MMETRI\overline{C}}\quad-\quad-\quad\mathrm{ triangle is processed).
SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested
RMITIAN - - triangle is processed).
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULAR
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL
are processed).
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested
OCK_TRIANGULAR - triangle is processed). Applies to BSR format
only.
SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal
OCK_DIAGGONAL - blocks are processed). Applies to BSR format
only.

```
mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:

mkl_sparse_set_dotmv_hint
Sets estimate of the number and type of upcoming
matrix-vector operations.

\section*{Syntax}
```

stat = mkl_sparse_set_dotmv_hint (A, operation, descr, layout, expected_calls)

```

Include Files
- mkl_spblas.f90

\section*{Description}

Use the mkl_sparse_set_dotmv_hint routine to provide the Inspector-executor Sparse BLAS API an estimate of the number of upcoming matrix-vector multiplication operations for performance optimization, and specify whether or not to perform an operation on the matrix.

\section*{Input Parameters}
operation
descr

C_INT.
Specifies the operation performed on matrix \(A\).
If operation \(=\) SPARSE_OPERATION_NON_TRANSPOSE, op \((A)=A\).
If operation \(=\) SPARSE_OPERATION_TRANSPOSE, op \((A)=A^{T}\).
If operation \(=\) SPARSE_OPERATION_CONJUGATE_TRANSPOSE, op \((A)=A^{H}\).
MATRIX_DESCR.
Descriptor specifying sparse matrix properties.
type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested \(\operatorname{MMETRIC} \quad-\quad-\quad\) triangle is processed).

SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN \(-\quad\) - triangle is processed).

SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested IANGULAR

SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements AGONAL

SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested OCK_TRIANGULAR - triangle is processed). Applies to BSR format only.

SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIAGGNAL - blocks are processed). Applies to BSR format only.
mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:
```

    SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed.
    R
    SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed.
    R
    diag - Specifies diagonal type for non-general matrices:
    SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
    SPARSE_DIAG_UNIT Diagonal elements are equal to one.
    C_INT.
    Expected number of calls to the execution routine.
    ```

\section*{Output Parameters}

A
```

SPARSE_MATRIX_T.

```

Handle containing internal data.
INTEGER
Value indicating whether the operation was successful or not, and why:
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or TIALIZED - matrix array.

SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value. _VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported. PORTED
mkl_sparse_set_symgs_hint
Syntax
Sets estimate of number and type of upcoming mkl_sparse_?_symgs operations.
stat =mkl_sparse_set_symgs_hint (A, operation, descr, layout, dense_matrix_size, expected_calls)

Include Files
- mkl_spblas.f90

\section*{Description}

Use the mkl_sparse_set_symgs_hint routine to provide the Inspector-executor Sparse BLAS API an estimate of the number of upcoming symmetric Gauss-Zeidel preconditioner operations for performance optimization, and specify whether or not to perform an operation on the matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{operation} & C_INT. \\
\hline & Specifies the operation performed on matrix \(A\). \\
\hline & If operation \(=\) SPARSE_OPERATION_NON_TRANSPOSE, op \((A)=A\). \\
\hline & If operation \(=\) SPARSE_OPERATION_TRANSPOSE, op \((A)=A^{T}\). \\
\hline & If operation = SPARSE_OPERATION_CONJUGATE_TRANSPOSE, op \((A)=A^{\mathrm{H}}\). \\
\hline \multirow[t]{17}{*}{descr} & MATRIX_DESCR. \\
\hline & Descriptor specifying sparse matrix properties. \\
\hline & type - Specifies the type of a sparse matrix: \\
\hline & SPARSE_MATRIX_TYPE_GE The matrix is processed as is. \\
\hline & NERAL \\
\hline & \[
\begin{aligned}
& \text { SPARSE_MATRIX_TYPE_SY } \begin{array}{l}
\text { The matrix is symmetric (only the requested } \\
\text { MMETRIC } \\
\text { triangle is processed). }
\end{array} .
\end{aligned}
\] \\
\hline & SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN triangle is processed). \\
\hline & SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested IANGULAR triangle is processed). \\
\hline & \[
\begin{aligned}
& \text { SPARSE_MATRIX_TYPE_DI } \\
& \text { AGONAL }
\end{aligned} \begin{aligned}
& \text { The matrix is diagonal (only diagonal elements } \\
& \text { are processed). }
\end{aligned}
\] \\
\hline & SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested OCK_TRIANGULAR triangle is processed). Applies to BSR format only. \\
\hline & SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIAGONAL blocks are processed). Applies to BSR format only. \\
\hline & mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices: \\
\hline & SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R \\
\hline & SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R \\
\hline & diag - Specifies diagonal type for non-general matrices: \\
\hline & SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one. \\
\hline & SPARSE_DIAG_UNIT Diagonal elements are equal to one. \\
\hline diag & C_INT. \\
\hline
\end{tabular}
mode
type
expected_calls

Specifies diagonal type for non-general matrices
C_INT.
Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices.

C_INT.
Specifies the type of a sparse matrix.
C_INT.
Estimate of the number to the execution routine.

\section*{Output Parameters}

A
SPARSE_MATRIX_T.
Handle containing internal data.
INTEGER
Value indicating whether the operation was successful or not, and why:
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or TIALIZED - - matrix array.

SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported. PORTED
mkl_sparse_set_sorv_hint
Sets an estimate of the number and type of upcoming
mkl_sparse_?_sorv operations.

\section*{Syntax}
```

stat = sparse_status_t mkl_sparse_set_sorv_hint(type, A, descr, expected_calls)

```

Include Files
- mkl_spblas.f90

\section*{Description}

Use the mkl_sparse_set_sorv_hint routine to provide the Inspector-Executor Sparse BLAS API an estimate of the number of upcoming forward/backward sweeps or symmetric SOR preconditioner operations for performance optimization.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
type
descr

SPARSE_MATRIX_T.
Specifies the operation performed by the SORV preconditioner.
SPARSE_SOR_FORWARD Performs forward sweep as defined by:
\[
(\omega * L+D) * x^{\wedge} 1=(D-\omega * D-\omega * U) * x^{\wedge} 0+\omega * b
\]

SPARSE_SOR_BACKWARD
Performs backward sweep as defined by:
\[
(\omega * U+D) * x^{\wedge} 1=(D-\omega * D-\omega * L) * x^{\wedge} 0+\omega * b
\]

SPARSE_SOR_SYMMETRIC Preconditioner matrix could be expressed as:
\[
\frac{\omega}{2-\omega}\left(\frac{1}{\omega} D+L\right) D^{-1}\left(\frac{1}{\omega} D+L\right)^{T}
\]

MATRIX_DESCR.
Structure specifying sparse matrix properties.
SPARSE_MATRIX_T type Specifies the type of a sparse matrix:
- SPARSE_MATRIX_TYPE_GENERAL

The matrix is processed as-is.
- SPARSE_MATRIX_TYPE_SYMMETRIC

The matrix is symmetric (only the requested triangle is processed).
- SPARSE_MATRIX_TYPE_HERMITIAN

The matrix is Hermitian (only the requested triangle is processed).
- SPARSE_MATRIX_TYPE_TRIANGULAR

The matrix is triangular (only the requested triangle is processed).
- SPARSE_MATRIX_TYPE_DIAGONAL

The matrix is diagonal (only diagonal elements are processed).
- SPARSE_MATRIX_TYPE_BLOCK_TRIANGULAR

The matrix is block-triangular (only requested triangle is processed). Applies to BSR format only.
- SPARSE_MATRIX_TYPE_BLOCK_DIAGONAL

The matrix is block-diagonal (only diagonal blocks are processed). Applies to BSR format only.

C_INT mode
\(\begin{aligned} & \text { Specifies the triangular matrix part for } \\ & \text { symmetric, Hermitian, triangular, and block- } \\ & \text { triangular matrices: }\end{aligned}\)
- SPARSE_FILL_MODE_LOWER

The lower triangular matrix part is processed.
- SPARSE_FILL_MODE_UPPER

The upper triangular matrix part is processed.

SPARSE_MATRIX_TYPE_D Specifies diagonal type for non-general IAGONAL diag matrices:
- SPARSE_DIAG_NON_UNIT

Diagonal elements might not be equal to one.
- SPARSE_DIAG_UNIT

Diagonal elements are equal to one.

A
```

expected_calls

```

\section*{Output Parameters}

\section*{A}
stat

SPARSE_MATRIX_T.
Handle containing internal data.
INTEGER.
Estimate of the number of calls to the execution routine.
```

SPARSE_MATRIX_T.

```

Handle containing internal data.

\section*{INTEGER}

Value indicating whether the operation was successful or not, and why:
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE

```
```

SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_set_memory_hint
Provides memory requirements for performance optimization purposes.

Syntax
```

stat = mkl_sparse_set_memory_hint (A, policy)

```

Include Files
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_set_memory_hint routine allocates additional memory for further performance optimization purposes.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
```

policy

```

C_INT.
Specify memory utilization policy for optimization routine using these types:
SPARSE_MEMORY_NONE Routine can allocate memory only for auxiliary structures (such as for workload balancing); the amount of memory is proportional to vector size.

SPARSE_MEMORY_AGGRESS Default.
IVE

Routine can allocate memory up to the size of matrix \(A\) for converting into the appropriate sparse format.

\section*{Output Parameters}

A
SPARSE_MATRIX_T.
Handle containing internal data.
INTEGER
Value indicating whether the operation was successful or not, and why:
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_optimize
Analyzes matrix structure and performs optimizations using the hints provided in the handle.

Syntax
```

stat = mkl_sparse_optimize (A)

```

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_optimize routine analyzes matrix structure and performs optimizations using the hints provided in the handle. Generally, specifying a higher number of expected operations allows for more aggressive and time consuming optimizations.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}

A
SPARSE_MATRIX_T.
Handle containing internal data.

\section*{Output Parameters}

INTEGER
Value indicating whether the operation was successful or not, and why:
SPARSE_STATUS_SUCCESS The operation was successful.
```

SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED
SPARSE_STATUS_ALLOC_F
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```

\section*{Inspector-Executor Sparse BLAS Execution Routines}

\section*{Execution Routines and Their Data Types}
\begin{tabular}{lll}
\begin{tabular}{l}
Routine or \\
Function Group
\end{tabular} & Data Types & Description \\
\begin{tabular}{l}
mkl_sparse_? \\
lu_smoother
\end{tabular} & s, d, c, z & \begin{tabular}{l}
Computes an action of a preconditioner which corresponds \\
to the approximate matrix decomposition A \(\approx\) (L+D)*E*(U \\
+D) for the system Ax \(=\) b
\end{tabular} \\
mkl_sparse_?_mv & S, d, c, z & \begin{tabular}{l}
Computes a sparse matrix-vector product. \\
Solves a system of linear equations for a square sparse
\end{tabular} \\
matrix.
\end{tabular}
\begin{tabular}{lll}
\hline \begin{tabular}{l}
Routine or \\
Function Group
\end{tabular} & Data Types & Description \\
\hline \begin{tabular}{l}
mkl_sparse_? \\
_symgs
\end{tabular} & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & \begin{tabular}{l}
Computes an action of a symmetric Gauss-Seidel \\
preconditioner.
\end{tabular} \\
\begin{tabular}{l}
mkl_sparse_? \\
_symgs_mv
\end{tabular} & \(\mathrm{s}, \mathrm{d}, \mathrm{c}, \mathrm{z}\) & \begin{tabular}{l}
Computes an action of a symmetric Gauss-Seidel \\
preconditioner followed by a matrix-vector multiplication \\
at the end.
\end{tabular} \\
\begin{tabular}{l}
mkl_sparse_? \\
_syrkd
\end{tabular} & s, d, c, z & \begin{tabular}{l}
Computes the product of sparse matrix with its transpose \\
(or conjugate transpose) and stores the result as a dense \\
matrix.
\end{tabular} \\
mkl_sparse_syrk & s, d, c, z & \begin{tabular}{l}
Computes the product of a sparse matrix with its \\
transpose (or conjugate transpose) and stores the result \\
in a newly allocated sparse matrix.
\end{tabular} \\
mkl_sparse_? & s, d, c, z & \begin{tabular}{l}
Computes a sparse matrix-vector product followed by a \\
dot product.
\end{tabular} \\
\hline dotmv
\end{tabular}
mkl_sparse_?_lu_smoother Computes an action of a preconditioner which corresponds to the approximate matrix decomposition \(A \approx(L+D) \times E \times(U+D)\) for the system \(A x=b\) (see description below).

\section*{Syntax}
```

status = mkl_sparse_s_lu_smoother (op, A, indx, descr, diag, approx_diag_inverse, x, b)
status = mkl_sparse_d_lu_smoother (op, A, indx, descr, diag, approx_diag_inverse, x, b)
status = mkl_sparse_c_lu_smoother (op, A, indx, descr, diag, approx_diag_inverse, x, b)
status = mkl_sparse_z_lu_smoother (op, A, indx, descr, diag, approx_diag_inverse, x, b)

```

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

This routine computes an update for an iterative solution \(x\) of the system \(A x=b\) by means of applying one iteration of an approximate preconditioner which is based on the following approximation:
\(A \sim(L+D) * E *(U+D)\), where \(E\) is an approximate inverse of the diagonal (using exact inverse will result in Gauss-Seidel preconditioner), \(L\) and \(U\) are lower/upper triangular parts of \(A, D\) is the diagonal (block diagonal in case of BSR format) of \(A\).

The mkl_sparse_?_lu_smoother routine performs these operations:
```

r = b - A*x /* 1. Computes the residual */
(L + D)*E*(U + D)*dx = r /* 2. Finds the update dx by solving the system */
y = x + dx /* 3. Performs an update */

```

This is also equal to the Symmetric Gauss-Seidel operation in the case of a CSR format and \(1 \times 1\) diagonal blocks:
```

(L + D)* *^1 = b - U*x /* Lower solve for intermediate x^1 */
(U + D)*X = b - L**^1 /* Upper solve */

```

\section*{NOTE}

This routine is supported only for non-transpose operation, real data types, and CSR/BSR sparse formats. In a BSR format, both diagonal values and approximate diagonal inverse arrays should be passed explicitly. For CSR format, diagonal values should be passed explicitly.

\section*{Input Parameters}
operation

A
descr

C_INT .
Specifies the operation performed on matrix \(A\).

\section*{NOTE}

Transpose and conjugate transpose (SPARSE_OPERATION_TRANSPOSE and SPARSE_OPERATION_CONJUGATE_TRANSPOSE) are not supported.
\[
\text { Non-transpose, op }(A)=A
\]

SPARSE_MATRIX_T.
Handle which contains the sparse matrix \(A\).
MATRIX_DESCR.
Structure specifying sparse matrix properties.
sparse_matrix_type_ttype - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested MMETRIC triangle is processed).

SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN - triangle is processed).

SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested IANGULAR \(\quad\) triangle is processed).

SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements AGONAL are processed).

SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only the OCK_TRIANGULAR - requested triangle is processed). Applies to BSR format only.

SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIAGGONAL - blocks are processed). Applies to BSR format only.
sparse_fill_mode_tmode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R

SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
sparse_diag_type_tdiag - Specifies the diagonal type for non-general matrices:

SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.

\section*{NOTE}

Only SPARSE_MATRIX_TYPE_GENERAL is supported.
diag
approx_diag_inverse

X
b

C_FLOAT for mkl_sparse_s_lu_smoother
C_DOUBLE for mkl_sparse_d_lu_smoother
C_FLOAT_COMPLEX for mkl_sparse_c_lu_smoother
C_DOUBLE_COMPLEX for mkl_sparse_z_lu_smoother
Array of size at least \(m\), where \(m\) is the number of rows (or nrows * block_size * block_size in case of BSR format) of matrix \(A\).

The array diag must contain the diagonal values of matrix \(A\).
```

C_FLOAT formkl_sparse_s__lu_smoother
C_DOUBLE for mkl_sparse_d_lu_smoother
C_FLOAT_COMPLEX formkl_sparse_c_lu_smoother
C_DOUBLE_COMPLEX formkl_sparse_z_lu_smoother

```

Array of size at least \(m\), where \(m\) is the number of rows (or the number of rows * block_size * block_size in case of BSR format) of matrix \(A\).

The array approx_diag_inverse will be used as \(E\), approximate inverse of the diagonal of the matrix \(A\).

C_FLOAT for mkl_sparse_s_lu_smoother
C_DOUBLE for mkl_sparse_d_lu_smoother
C_FLOAT_COMPLEX for mkl_sparse_c_lu_smoother
C_DOUBLE_COMPLEX for mkl_sparse_z_lu_smoother
Array of size at least \(k\), where \(k\) is the number of columns (or columns * block_size in case of BSR format) of matrix \(A\).

On entry, the array \(x\) must contain the input vector.
```

C_FLOAT formkl_sparse_s_lu_smoother
C_DOUBLE formkl_sparse_d_lu_smoother
C_FLOAT_COMPLEX formkl_sparse_c_lu_smoother
C_DOUBLE_COMPLEX formkl_sparse_z_lu_smoother

```

Array of size at least \(m\), where \(m\) is the number of rows (or rows * block_size in case of BSR format) of matrix \(A\). The array \(b\) must contain the values of the right-hand side of the system.

\section*{Output Parameters}

\author{
X
}

C_FLOAT for mkl_sparse_s_lu_smoother
C_DOUBLE for mkl_sparse_d_lu_smoother
C_FLOAT_COMPLEX for mkl_sparse_c_lu_smoother
C_DOUBLE_COMPLEX for mkl_sparse_z_lu_smoother
Overwritten by the computed vector \(y\).
INTEGER
Value indicating whether the operation was successful or not, and why.
\begin{tabular}{ll}
SPARSE_STATUS_SUCCESS & The operation was successful. \\
SPARSE_STATUS_NOT_INI & The routine encountered an empty handle or \\
TIALIZED & \\
matrix array. \\
SPARSE_STATUS_ALLOC_F & Internal memory allocation failed. \\
AILED & \\
SPARSE_STATUS_INVALID & The input parameters contain an invalid value. \\
-VALUE & \\
SPARSE_STATUS_EXECUTI & Execution failed. \\
ON_FAILED & \\
SPARSE_STATUS_INTERNA & An error in algorithm implementation occurred. \\
L_ERROR & \\
SPARSE_STATUS_NOT_SUP & The requested operation is not supported. \\
PORTED
\end{tabular}
mkl_sparse_?_mv
Computes a sparse matrix- vector product.

\section*{Syntax}
```

stat = mkl_sparse_s_mv (operation, alpha, A, descr, x, beta, y)
stat = mkl_sparse_d_mv (operation, alpha, A, descr, x, beta, y)
stat = mkl_sparse_c_mv (operation, alpha, A, descr, x, beta, y)
stat = mkl_sparse_z_mv (operation, alpha, A, descr, x, beta, y)

```

Include Files
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_?_mv routine computes a sparse matrix-dense vector product defined as
\[
y:=a l p h a^{*} o p(A)^{*} x+b^{*} a^{\star} y
\]
where:
alpha and beta are scalars, \(x\) and \(y\) are vectors, and \(A\) is a sparse matrix handle of a matrix with \(m\) rows and \(k\) columns, and op is a matrix modifier for matrix \(A\).

Input Parameters
\begin{tabular}{|c|c|}
\hline \multirow[t]{8}{*}{operation} & C_INT. \\
\hline & Specifies operation op () on input matrix. \\
\hline & SPARSE_OPERATION_NON_ Non-transpose, op \((A)=A\). \\
\hline & TRANSPOSE \\
\hline & SPARSE_OPERATION_TRAN Transpose, op (\(A\)) = \(A^{\text {T }}\). \\
\hline & SPOSE \\
\hline & SPARSE_OPERATION_CONJ Conjugate transpose, op \((A)=A^{\text {H }}\). \\
\hline & UGATE_TRANSPOSE \\
\hline \multirow[t]{5}{*}{alpha} & C_FLOAT for mkl_sparse_s_mv \\
\hline & C_DOUBLE for mkl_sparse_d_mv \\
\hline & C_FLOAT_COMPLEX for mkl_sparse_c_mv \\
\hline & C_DOUBLE_COMPLEX for mkl_sparse_z_mv \\
\hline & Specifies the scalar alpha. \\
\hline \multirow[t]{2}{*}{A} & SPARSE_MATRIX_T. \\
\hline & Handle which contains the input matrix \(A\). \\
\hline \multirow[t]{13}{*}{descr} & MATRIX_DESCR. \\
\hline & Descriptor specifying sparse matrix properties. \\
\hline & type - Specifies the type of a sparse matrix: \\
\hline & SPARSE_MATRIX_TYPE_GE The matrix is processed as is. \\
\hline & NERAL \\
\hline & SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested MMETRIC triangle is processed). \\
\hline & M \\
\hline & SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN triangle is processed). \\
\hline & SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested IANGULAR triangle is processed). \\
\hline & SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements AGONAL are processed). \\
\hline & SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested OCK_TRIANGULAR - triangle is processed). Applies to BSR format only. \\
\hline & SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIAGONAL blocks are processed). Applies to BSR format only. \\
\hline & mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices: \\
\hline
\end{tabular}

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R

SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
diag - Specifies diagonal type for non-general matrices:
SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one. SPARSE_DIAG_UNIT Diagonal elements are equal to one.

C_FLOAT for mkl_sparse_s_mv
C_DOUBLE for mkl_sparse_d_mv
C_FLOAT_COMPLEX for mkl_sparse_c_mv
C_DOUBLE_COMPLEX for mkl_sparse_z_mv
Array of size equal to the number of columns, \(k\) of \(A\) if operation \(=\) SPARSE_OPERATION_NON_TRANSPOSE and at least the number of rows, \(m\), of \(A\) otherwise. On entry, the array must contain the vector \(x\).

C_FLOAT for mkl_sparse_s_mv
C_DOUBLE for mkl_sparse_d_mv
C_FLOAT_COMPLEX for mkl_sparse_c_mv
C_DOUBLE_COMPLEX for mkl_sparse_z_mv
Specifies the scalar beta.
C_FLOAT for mkl_sparse_s_mv
C_DOUBLE for mkl_sparse_d_mv
C_FLOAT_COMPLEX for mkl_sparse_c_mv
C_DOUBLE_COMPLEX for mkl_sparse_z_mv

\section*{Array with size at least \(m\) if}
operation=SPARSE_OPERATION_NON_TRANSPOSE and at least \(k\) otherwise. On entry, the array \(y\) must contain the vector \(y\). Array of size equal to the number of rows, \(m\) of \(A\) if operation \(=\)
SPARSE_OPERATION_NON_TRANSPOSE and at least the number of columns, \(k\), of \(A\) otherwise. On entry, the array \(y\) must contain the vector \(y\).

\section*{Output Parameters}
y
C_FLOAT for mkl_sparse_s_mv
C_DOUBLE for mkl_sparse_d_mv
C_FLOAT_COMPLEX for mkl_sparse_c_mv
C_DOUBLE_COMPLEX for mkl_sparse_z_mv
Overwritten by the updated vector \(y\).
INTEGER
Value indicating whether the operation was successful or not, and why:
```

SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED

```
mkl_sparse_?_trsv
Solves a system of linear equations for a triangular sparse matrix.

\section*{Syntax}
```

stat = mkl_sparse_s_trsv (operation, alpha, A, descr, x, y)
stat = mkl_sparse_d_trsv (operation, alpha, A, descr, x, y)
stat = mkl_sparse_c_trsv (operation, alpha, A, descr, x, y)
stat = mkl_sparse_z_trsv (operation, alpha, A, descr, x, y)

```

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_?_trsv routine solves a system of linear equations for a matrix:
```

op(A)*y = alpha * x

```
where \(A\) is a triangular sparse matrix, op is a matrix modifier for matrix \(A\), alpha is a scalar, and \(x\) and \(y\) are vectors.

\section*{NOTE}

For sparse matrices in the BSR format, the supported combinations of (indexing,block_layout) are:
- (SPARSE_INDEX_BASE_ZERO, SPARSE_LAYOUT_ROW_MAJOR)
- (SPARSE_INDEX_BASE_ONE, SPARSE_LAYOUT_COLUMN_MAJOR)

\section*{Input Parameters}
operation
C_INT.
Specifies operation op () on input matrix.
```

SPARSE_OPERATION_NON_ Non-transpose,op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose, op (A) = AT
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = A
UGATE_TRANSPOSE
C_FLOAT for mkl_sparse_s_trsv
C_DOUBLE for mkl_sparse_d_trsv
C_FLOAT_COMPLEX for mkl_sparse_c_trsv
C_DOUBLE_COMPLEX for mkl_sparse_z_trsv
Specifies the scalar alpha.

```
```

SPARSE_MATRIX_T.

```
```

SPARSE_MATRIX_T.

```
alpha

A
descr

Handle which contains the input matrix \(A\).
MATRIX_DESCR.
Descriptor specifying sparse matrix properties.
type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested MMETRIC - - triangle is processed).

SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN - - triangle is processed).

SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested IANGULAR - triangle is processed).

SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements AGONAL - are processed).

SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested OCK_TRIANGULAR - triangle is processed). Applies to BSR format only.

SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIAGGONAL - blocks are processed). Applies to BSR format only.
mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:
```

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed.
R
SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed.
R
diag - Specifies diagonal type for non-general matrices:

```

X
\begin{tabular}{ll}
SPARSE_DIAG_NON_UNIT & Diagonal elements might not be equal to one. \\
SPARSE_DIAG_UNIT & Diagonal elements are equal to one. \\
C_FLOAT for mkl_sparse_s_trsv \\
C_DOUBLE for mkl_sparse_d_trsv \\
C_FLOAT_COMPLEX for mkl_sparse_c_trsv \\
C_DOUBLE_COMPLEX formkl_sparse_z_trsv
\end{tabular}

Array of size at least \(m\), where \(m\) is the number of rows of matrix \(A\). On entry, the array must contain the vector \(x\).

\section*{Output Parameters}
y
```

C_FLOAT for mkl_sparse_s_trsv
C_DOUBLE formkl_sparse_d_trsv
C_FLOAT_COMPLEX formkl_sparse_c_trsv
C_DOUBLE_COMPLEX formkl_sparse_z_trsv

```

Array of size at least \(m\) containing the solution to the system of linear equations.

INTEGER
Value indicating whether the operation was successful or not, and why:
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or TIALIZED - - matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported. PORTED
mkl_sparse_?_mm
Computes the product of a sparse matrix and a dense matrix and stores the result as a dense matrix.

\section*{Syntax}
```

stat = mkl_sparse_s_mm (operation, alpha, A, descr, layout, B, columns, ldb, beta, C,
ldc)
stat = mkl_sparse_d_mm (operation, alpha, A, descr, layout, B, columns, ldb, beta, C,
ldc)

```
```

stat = mkl_sparse_c_mm (operation, alpha, A, descr, layout, B, columns, ldb, beta, C,
ldc)
stat = mkl_sparse_z_mm (operation, alpha, A, descr, layout, B, columns, ldb, beta, C,
ldc)

```

\section*{Include Files}
- mkl_spblas.f90

\section*{Description}

The mkl_sparse_?_mm routine performs a matrix-matrix operation:
```

C := alpha*op(A)*B + beta*C

```
where alpha and beta are scalars, \(A\) is a sparse matrix, op is a matrix modifier for matrix \(A\), and \(B\) and \(C\) are dense matrices.

The mkl_sparse_? mm and mkl_sparse_?_trsm routines support these configurations:
\begin{tabular}{|lll|}
\hline & \begin{tabular}{l}
Column-major dense matrix: \\
layout \(=\) \\
SPARSE_LAYOUT_COLUMN_MAJOR
\end{tabular} & \begin{tabular}{l}
Row-major dense matrix: layout \\
O-based sparse matrix: \\
SPARSE_INDEX_BASE_ZERO
\end{tabular} \\
& CSR & All formats \\
& \begin{tabular}{l}
BSR: general non-transposed \\
matrix multiplication only
\end{tabular} & \\
\begin{tabular}{ll}
1-based sparse matrix: \\
SPARSE_INDEX_BASE_ONE
\end{tabular} & All formats & CSR
\end{tabular}

\section*{NOTE}

For sparse matrices in the BSR format, the supported combinations of (indexing,block_layout) are:
- (SPARSE_INDEX_BASE_ZERO, SPARSE_LAYOUT_ROW_MAJOR)
- (SPARSE_INDEX_BASE_ONE, SPARSE_LAYOUT_COLUMN_MAJOR)

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{operation} & C_INT. \\
\hline & Specifies operation op () on input matrix. \\
\hline & SPARSE_OPERATION_NON_ Non-transpose, op \((A)=A\). TRANSPOSE \\
\hline & SPARSE_OPERATION_TRAN Transpose, op \((A)=A^{T}\). SPOSE \\
\hline & SPARSE_OPERATION_CONJ Conjugate transpose, op \((A)=A^{\mathrm{H}}\). UGATE_TRANSPOSE \\
\hline alpha & C_FLOAT for mkl_sparse_s_mm \\
\hline & C_DOUBLE for mkl_sparse_d_mm \\
\hline
\end{tabular}
```

C_FLOAT_COMPLEX for mkl_sparse_c_mm
C_DOUBLE_COMPLEX for mkl_sparse_z_mm
Specifies the scalar alpha.

```
```

SPARSE_MATRIX_T.

```
SPARSE_MATRIX_T.
Handle which contains the sparse matrix \(A\).
```

A
descr
layout

```
MATRIX_DESCR.
```

Descriptor specifying sparse matrix properties.
type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested $\operatorname{MMETRIC} \quad-\quad$ - triangle is processed).

SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN $\quad$ - $\quad$ triangle is processed).

SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested IANGULAR triangle is processed).

SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements AGONAL - - are processed).

SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested OCK_TRIANGULAR - triangle is processed). Applies to BSR format only.

SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIAGONAL - blocks are processed). Applies to BSR format only.
mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R

SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
diag-Specifies diagonal type for non-general matrices:
SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
C_INT.
Describes the storage scheme for the dense matrix:

```
SPARSE_LAYOUT_COLUMN_ Storage of elements uses column major layout.
MAJOR
SPARSE_LAYOUT_ROW_MAJ Storage of elements uses row major layout.
OR
```

B
columns

1 db
beta

C

C_FLOAT for mkl_sparse_s_mm
C_DOUBLE for mkl_sparse_d_mm
C_FLOAT_COMPLEX for mkl_sparse_c_mm
C_DOUBLE_COMPLEX for mkl_sparse_z_mm
Array of size at least rows*cols.

| rows (number of rows in $B$ ) | $\begin{aligned} & \text { layout }= \\ & \text { SPARSE_LAYOUT_COLU } \\ & \text { MN_MAJOR } \end{aligned}$ | $\begin{aligned} & \text { layout }= \\ & \text { SPARSE_LAYOUT_ROW_MA } \\ & \text { JOR } \end{aligned}$ |
| :---: | :---: | :---: |
|  | 1 db | If $\mathrm{op}(A)=A$, number of columns in $A$ |
|  |  | If op $(A)=A^{T}$, number of rows in $A$ |
| cols (number of columns in B) | columns | 1 db |

C_INT.
Number of columns of matrix $C$.
C_INT.
Specifies the leading dimension of matrix $B$.
C_FLOAT for mkl_sparse_s_mm
C_DOUBLE for mkl_sparse_d_mm
C_FLOAT_COMPLEX for mkl_sparse_c_mm
C_DOUBLE_COMPLEX for mkl_sparse_z_mm
Specifies the scalar beta
C_FLOAT for mkl_sparse_s_mm
C_DOUBLE for mkl_sparse_d_mm
C_FLOAT_COMPLEX for mkl_sparse_c_mm
C_DOUBLE_COMPLEX for mkl_sparse_z_mm
Array of size at least rows*cols, where

| rows (number of rows in C) | ```layout = SPARSE LAYOUT COLU MN_MAJOR``` | layout = <br> SPARSE_LAYOUT_ROW_MA JOR |
| :---: | :---: | :---: |
|  | $1 d c$ | If op $(A)=A$, number of rows in $A$ |
|  |  | If $o p(A)=A^{T}$, number of columns in $A$ |
| cols (number of columns in C) | columns | $1 d \mathrm{c}$ |

## $I d c \quad$ Specifies the leading dimension of matrix $C$.

## Output Parameters

| C | C_FLOAT for mkl_sparse_s_mm |
| :---: | :---: |
|  | C_DOUBLE for mkl_sparse_d_mm |
|  | C_FLOAT_COMPLEX for mkl_sparse_c_mm |
|  | C_DOUBLE_COMPLEX for mkl_sparse_z_mm |
|  | Overwritten by the updated matrix $C$. |
| stat | INTEGER |
|  | Value indicating whether the operation was successful or not, and why: |
|  | SPARSE_STATUS_SUCCESS The operation was successful. |
|  | SPARSE_STATUS_NOT_INI The routine encountered an empty handle or tIALIZED matrix array. |
|  | SPARSE_STATUS_ALLOC_F Internal memory allocation failed. AILED |
|  | SPARSE_STATUS_INVALID The input parameters contain an invalid value. _VALUE |
|  | SPARSE_STATUS_EXECUTI Execution failed. ON FAILED |
|  | SPARSE_STATUS_INTERNA An error in algorithm implementation occurred. L_ERROR |
|  | SPARSE_STATUS_NOT_SUP The requested operation is not supported. PORTED |

mkl_sparse_?_trsm
Solves a system of linear equations with multiple right hand sides for a triangular sparse matrix.

## Syntax

```
stat = mkl_sparse_s_trsm (operation, alpha, A, descr, layout, x, columns, ldx, y, ldy)
stat = mkl_sparse_d_trsm (operation, alpha, A, descr, layout, x, columns, ldx, y, ldy)
stat = mkl_sparse_c_trsm (operation, alpha, A, descr, layout, x, columns, ldx, y, ldy)
stat = mkl_sparse_z_trsm (operation, alpha, A, descr, layout, x, columns, ldx, y, ldy)
```


## Include Files

- mkl_spblas.f90


## Description

The mkl_sparse_?_trsm routine solves a system of linear equations with multiple right hand sides for a triangular sparse matrix:

$$
Y:=a l p h a^{*} \operatorname{inv}(o p(A)) * X
$$

where:
alpha is a scalar, $X$ and $Y$ are dense matrices, $A$ is a sparse matrix, and op is a matrix modifier for matrix $A$. The mkl_sparse_?_mm and mkl_sparse_?_trsm routines support these configurations:

|  | Column-major dense matrix: <br> layout $=$ <br> SPARSE_LAYOUT_COLUMN_MAJOR | Row-major dense matrix: layout <br> = SPARSE_LAYOUT_ROW_MAJOR |
| :--- | :--- | :--- |
| O-based sparse matrix: <br> SPARSE_INDEX_BASE_ZERO | CSR <br> BSR: general non-transposed <br> matrix multiplication only | All formats |
|  | All formats | CSR |
| 1-based sparse matrix: <br> SPARSE_INDEX_BASE_ONE |  | BSR: general non-transposed <br> matrix multiplication only |

## NOTE

For sparse matrices in the BSR format, the supported combinations of (indexing,block_layout) are:

- (SPARSE_INDEX_BASE_ZERO, SPARSE_LAYOUT_ROW_MAJOR )
- (SPARSE_INDEX_BASE_ONE, SPARSE_LAYOUT_COLUMN_MAJOR )


## Input Parameters

operation
alpha

A
descr

C_INT.
Specifies operation op () on input matrix.

```
SPARSE_OPERATION_NON_ Non-transpose, op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose,op (A) = AT}
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = A .
UGATE_TRANSPOSE
```

C_FLOAT for mkl_sparse_s_trsm
C_DOUBLE for mkl_sparse_d_trsm
C_FLOAT_COMPLEX for mkl_sparse_c_trsm
C_DOUBLE_COMPLEX for mkl_sparse_z_trsm
Specifies the scalar alpha.
SPARSE_MATRIX_T.
Handle which contains the sparse matrix $A$.
MATRIX_DESCR.
Descriptor specifying sparse matrix properties.
type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL

```
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested
MMETRIC - - triangle is processed).
SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested
RMITIANN - - triangle is processed).
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULARR - - triangle is processed).
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL - - are processed).
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested
OCK_TRIANGULAR - - triangle is processed). Applies to BSR format
 only.
SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal
OCK_DIAGONAL blocks are processed). Applies to BSR format
 only.
mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:
SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R
SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
diag - Specifies diagonal type for non-general matrices:
SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
C_INT.
Describes the storage scheme for the dense matrix:
```

| $\begin{aligned} & \text { SPARSE_LAYOUT_CC } \\ & \text { MAJOR } \end{aligned}$ | Storage of elements uses column major layout. |  |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { SPARSE_LAYOUT_RC } \\ & \text { OR } \end{aligned}$ | Storage of elements uses row major layout. |  |
| C_FLOAT for mkl_sparse_s_trsm |  |  |
| C_DOUBLE for mkl_sparse_d_trsm |  |  |
| C_FLOAT_COMPLEX for mkl_sparse_c_trsm |  |  |
| C_DOUBLE_COMPLEX for mkl_sparse_z_trsm |  |  |
| Array of size at least rows*cols. |  |  |
|  | layout = <br> SPARSE_LAYOUT_COLU MN_MAJOR | ```layout = SPARSE_LAYOUT_ROW_MA JOR``` |
| rows (number of rows in $x$ ) | $1 d x$ | number of rows in A |

```
cols (number of columns Idx
columns in x)
```

On entry, the array $x$ must contain the matrix $X$.
C_INT.
Number of columns in matrix $Y$.
C_INT.
Specifies the leading dimension of matrix $X$.
C_FLOAT for mkl_sparse_s_trsm
C_DOUBLE for mkl_sparse_d_trsm
C_FLOAT_COMPLEX for mkl_sparse_c_trsm
C_DOUBLE_COMPLEX for mkl_sparse_z_trsm
Array of size at least rows*cols, where

|  | layout = <br> SPARSE_LAYOUT_COLU <br> MN_MAJOR | layout = <br> SPARSE_LAYOUT_ROW_MA <br> JOR |
| :--- | :--- | :--- |
| rows (number of <br> rows in $y$ ) <br> cols (number of <br> columns in $y$ ) <br> $l d y$ | number of rows in A |  |

## Output Parameters

y
C_FLOAT for mkl_sparse_s_trsm
C_DOUBLE for mkl_sparse_d_trsm
C_FLOAT_COMPLEX for mkl_sparse_c_trsm
C_DOUBLE_COMPLEX for mkl_sparse_z_trsm
Overwritten by the updated matrix $Y$.
INTEGER
Value indicating whether the operation was successful or not, and why:

| SPARSE_STATUS_SUCCESS | The operation was successful. |
| :--- | :--- |
| SPARSE_STATUS_NOT_INI The routine encountered an empty handle or <br> TIALIZED matrix array. |  |
| SPARSE_STATUS_ALLOC_F Internal memory allocation failed. <br> AILED  <br> SPARSE_STATUS_INVALID The input parameters contain an invalid value. <br> -VALUE  <br> SPARSE_STATUS_EXECUTI  <br> ON_FAILED  |  |

```
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED
```

mkl_sparse_?_add
Computes the sum of two sparse matrices. The result is stored in a newly allocated sparse matrix.

## Syntax

```
stat = mkl_sparse_s_add (operation, A, alpha, B, C)
stat = mkl_sparse_d_add (operation, A, alpha, B, C)
stat = mkl_sparse_c_add (operation, A, alpha, B, C)
stat = mkl_sparse_z_add (operation, A, alpha, B, C)
```


## Include Files

- mkl_spblas.f90


## Description

The mkl_sparse_?_add routine performs a matrix-matrix operation:

```
C := alpha*op(A) + B
```

where alpha is a scalar, op is a matrix modifier, and $A, B$, and $C$ are sparse matrices.

## NOTE

This routine is only supported for sparse matrices in CSR and BSR formats. It is not supported for COO or CSC formats.

## Input Parameters

A
alpha
operation
Handle which contains the sparse matrix $A$.
C_FLOAT for mkl_sparse_s_add
C_DOUBLE for mkl_sparse_d_add
C_FLOAT_COMPLEX for mkl_sparse_c_add
C_DOUBLE_COMPLEX for mkl_sparse_z_add
Specifies the scalar alpha.
C_INT.
Specifies operation op () on input matrix.
SPARSE_OPERATION_NON_ Non-transpose, op $(A)=A$. TRANSPOSE

SPARSE_OPERATION_TRAN Transpose, op $(A)=A^{T}$.
SPOSE

```
SPARSE_OPERATION_CONJ Conjugate transpose,op (A) = A A
UGATE_TRANSPOSE
SPARSE_MATRIX_T.
Handle which contains the sparse matrix \(B\).
```


## Output Parameters

```
C
```

SPARSE_MATRIX_T.
Handle which contains the resulting sparse matrix.
INTEGER

Value indicating whether the operation was successful or not, and why:

```
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED - matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED
```

mkl_sparse_spmm
Computes the product of two sparse matrices. The result is stored in a newly allocated sparse matrix.

## Syntax

```
stat = mkl_sparse_spmm (operation, A, B, C)
```

Include Files

- mkl_spblas.f90


## Description

The mkl_sparse_spmm routine performs a matrix-matrix operation:

$$
C:=\mathrm{op}(A) \quad * B
$$

where $A, B$, and $C$ are sparse matrices and $o p$ is a matrix modifier for matrix $A$.

## Notes

- This routine is supported only for sparse matrices in CSC, CSR, and BSR formats. It is not supported for sparse matrices in COO format.
- The column indices of the output matrix (if in CSR format) can appear unsorted due to the algorithm chosen internally. To ensure sorted column indices (if that is important), call mkl_sparse_order().


## Input Parameters

operation

A

B

## Output Parameters

C
stat
C_INT.

Specifies operation op () on input matrix.

```
SPARSE_OPERATION_NON_ Non-transpose, op (A) = A.
```

TRANSPOSE
SPARSE_OPERATION_TRAN Transpose, op $(A)=A^{T}$.
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose, op $(A)=A^{H}$.
UGATE_TRANSPOSE
SPARSE_MATRIX_T.

Handle which contains the sparse matrix $A$.
SPARSE_MATRIX_T.
Handle which contains the sparse matrix $B$.

```
SPARSE_MATRIX_T.
```

Handle which contains the resulting sparse matrix.

```
INTEGER
```

Value indicating whether the operation was successful or not, and why:
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED - - matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported. PORTED
mkl_sparse_?_spmmd
Computes the product of two sparse matrices and stores the result as a dense matrix.

## Syntax

```
stat = mkl_sparse_s_spmmd (operation, A, B, layout, C, ldc)
stat = mkl_sparse_d_spmmd (operation, A, B, layout, C, ldc)
stat = mkl_sparse_c_spmmd (operation, A, B, layout, C, ldc)
stat = mkl_sparse_z_spmmd (operation, A, B, layout, C, ldc)
```


## Include Files

- mkl_spblas.f90


## Description

The mkl_sparse_?_spmmd routine performs a matrix-matrix operation:

$$
C:=\mathrm{op}(A) \star B
$$

where $A$ and $B$ are sparse matrices, op is a matrix modifier for matrix $A$, and $C$ is a dense matrix.

## NOTE

This routine is not supported for sparse matrices in the COO format. For sparse matrices in BSR format, these combinations of (indexing, block_layout) are supported:

- (SPARSE_INDEX_BASE_ZERO, SPARSE_LAYOUT_ROW_MAJOR)
- (SPARSE_INDEX_BASE_ONE, SPARSE_LAYOUT_COLUMN_MAJOR)


## Input Parameters

operation

A

B
layout

C_INT.
Specifies operation op () on input matrix.

```
SPARSE_OPERATION_NON_ Non-transpose, op (A) = A.
TRANSPOSE
SPARSE_OPERATION_TRAN Transpose, op (A) = AT
SPOSE
SPARSE_OPERATION_CONJ Conjugate transpose, op (A) = A .
UGATE_TRANSPOSE
```

SPARSE_MATRIX_T.

Handle which contains the sparse matrix $A$.
SPARSE_MATRIX_T.
Handle which contains the sparse matrix $B$.
C_INT.
Describes the storage scheme for the dense matrix:
SPARSE_LAYOUT_COLUMN_ Storage of elements uses column major layout. MAJOR

```
 SPARSE_LAYOUT_ROW_MAJ Storage of elements uses row major layout.
OR
IdC C_INT.
Leading dimension of matrix C.
```

Output Parameters
C
C_FLOAT for mkl_sparse_s_spmmd
C_DOUBLE for mkl_sparse_d_spmmd
C_FLOAT_COMPLEX for mkl_sparse_c_spmmd
C_DOUBLE_COMPLEX for mkl_sparse_z_spmmd

## Resulting dense matrix.

stat

```
INTEGER
```

Value indicating whether the operation was successful or not, and why:

```
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED
```

mkl_sparse_sp2m
Computes the product of two sparse matrices. The result is stored in a newly allocated sparse matrix.

Syntax

```
stat = mkl_sparse_sp2m (opA, descrA, A, opB, descrB, B, request, C)
```

Include Files

- mkl_spblas.f90


## Description

The mkl_sparse_sp 2 m routine performs a matrix-matrix operation:

$$
C:=\operatorname{op} A(A) * \operatorname{op} B(B)
$$

where $A, B$, and $C$ are sparse matrices, $o p A$ and $o p B$ are matrix modifiers for matrices $A$ and $B$, respectively.

## NOTE

The column indices of the output matrix (if in CSR format) can appear unsorted due to the algorithm chosen internally. To ensure sorted column indices (if that is important), call mkl_sparse_order().

## Input Parameters

$o p A$
C_INT.
Specifies operation on input matrix.

| SPARSE_OPERATION_NON_TRANSPOSE | Non-transpose, op $(A)=A$ |
| :--- | :--- |
| SPARSE_OPERATION_TRANSPOSE | Transpose, op $(A)=A^{T}$ |
| SPARSE_OPERATION_CONJUGATE_TRANSP | Conjugate transpose, <br> op $(A)=A^{H}$ |

C_INT.
Specifies operation on input matrix.

| SPARSE_OPERATION_NON_TRANSPOSE | Non-transpose,op $(B)=B$ |
| :--- | :--- |
| SPARSE_OPERATION_TRANSPOSE | Transpose, op $(B)=B^{T}$ |
| SPARSE_OPERATION_CONJUGATE_TRANSP | Conjugate transpose, <br> op $(B)=B^{H}$ |

descrA
MATRIX_DESCR.

Structure that specifies sparse matrix properties.
NOTE Currently, only SPARSE_MATRIX_TYPE_GENERAL is supported.
sparse_matrix_type_ttype specifies the type of sparse matrix.

| SPARSE_MATRIX_TYPE_GENERAL | The matrix is processed as is. |
| :--- | :--- |
| SPARSE_MATRIX_TYPE_SYMMETRIC | The matrix is symmetric (only the <br> requested triangle is processed). |
| SPARSE_MATRIX_TYPE_HERMITIAN | The matrix is Hermitian (only the <br> requested triangle is processed). |
| SPARSE_MATRIX_TYPE_TRIANGULA | The matrix is triangular (only the <br> requested triangle is processed). |
| SPARSE_MATRIX_TYPE_DIAGONAL | The matrix is diagonal (only <br> diagonal elements are processed). |
| SPARSE_MATRIX_TYPE_BLOCK_TRI | The matrix is block-triangular (only <br> ANGULAR |
|  | the requested triangle is <br> processed). This applies to BSR <br> format only. |

```
SPARSE_MATRIX_TYPE_BLOCK_DIA
GONAL
The matrix is block-diagonal (only the requested triangle is processed). This applies to BSR format only.
```

sparse_fill_mode_tmode specifies the triangular matrix portion for symmetric, Hermitian, triangular, and block-triangular matrices.

| SPARSE_FILL_MODE_LOWER | The lower triangular matrix is <br> processed. |
| :--- | :--- |
| SPARSE_FILL_MODE_UPPER | The upper triangular matrix is <br> processed. |

sparse_diag_type_tdiag specifies the type of diagonal for non-general matrices.

| SPARSE_DIAG_NON_UNIT | Diagonal elements must not be <br> equal to 1. |
| :--- | :--- |
| SPARSE_DIAG_UNIT | Diagonal elements are equal to 1. |

C_INT.
Structure that specifies sparse matrix properties.
NOTE Currently, only SPARSE_MATRIX_TYPE_GENERAL is supported.
sparse_matrix_type_ttype specifies the type of sparse matrix.

| SPARSE_MATRIX_TYPE_GENERAL | The matrix is processed as is. |
| :---: | :---: |
| SPARSE_MATRIX_TYPE_SYMMETRIC | The matrix is symmetric (only the requested triangle is processed). |
| SPARSE_MATRIX_TYPE_HERMITIAN | The matrix is Hermitian (only the requested triangle is processed). |
| $\begin{aligned} & \text { SPARSE_MATRIX_TYPE_TRIANGULA } \\ & \text { R } \end{aligned}$ | The matrix is triangular (only the requested triangle is processed). |
| SPARSE_MATRIX_TYPE_DIAGONAL | The matrix is diagonal (only diagonal elements are processed). |
| SPARSE_MATRIX_TYPE_BLOCK_TRI ANGULAR | The matrix is block-triangular (only the requested triangle is processed). This applies to BSR format only. |
| SPARSE_MATRIX_TYPE_BLOCK_DIA GONAL | The matrix is block-diagonal (only the requested triangle is processed). This applies to BSR format only. |

sparse_fill_mode_tmode specifies the triangular matrix portion for symmetric, Hermitian, triangular, and block-triangular matrices.

| SPARSE_FILL_MODE_LOWER | The lower triangular matrix is <br> processed. |
| :--- | :--- |
| SPARSE_FILL_MODE_UPPER | The upper triangular matrix is <br> processed. |

sparse_diag_type_tdiag specifies the type of diagonal for non-general matrices.

| SPARSE_DIAG_NON_UNIT | Diagonal elements must not be <br> equal to 1. |
| :--- | :--- |
| SPARSE_DIAG_UNIT | Diagonal elements are equal to 1. |

A

B
request

```
SPARSE_MATRIX_T.
```

Handle which contains the sparse matrix $A$.
SPARSE_MATRIX_T.
Handle which contains the sparse matrix $B$.
C_INT.
Specifies whether the full computations are performed at once or using the two-stage algorithm. See Two-stage Algorithm for Inspector-executor Sparse BLAS Routines.

| SPARSE_STAGE_NNZ_COUNT | Only rowIndex (BSR/CSR format) or <br> col Index (CSC format) array of the <br> matrix is computed internally. The <br> computation can be extracted to <br> measure the memory required for full <br> operation. |
| :--- | :--- |
| SPARSE_STAGE_FINALIZE_MULT_NO_ | Finalize computations of the matrix <br> structure (values will not be <br> computed). Use only after the call with <br> VAL |
|  | SPARSE_STAGE_NNZ_COUNT <br> parameter. |
|  | Finalize computation. Can also be used <br> when the matrix structure remains <br> unchanged and only values of the <br> resulting matrix $C$ need to be |
| SPARSE_STAGE_FINALIZE_MULT | recomputed. |
| SPARSE_STAGE_FULL_MULT_NO_VAL | Perform computations of the matrix <br> structure. |
| SPARSE_STAGE_FULL_MULT | Perform the entire computation in a <br> single step. |

## Output Parameters

C
stat
SPARSE_MATRIX_T.
Handle which contains the resulting sparse matrix.
INTEGER.
Value indicating whether the operation was successful or not, and why:

| SPARSE_STATUS_SUCCESS | The operation was successful. |
| :--- | :--- |
| SPARSE_STATUS_NOT_INITIALIZE | The routine encountered an empty |
| D | handle or matrix array. |
| SPARSE_STATUS_ALLOC_FAILED | Internal memory allocation failed. |
| SPARSE_STATUS_INVALID_VALUE | The input parameters contain an <br> invalid value. |
| SPARSE_STATUS_EXECUTION_FAIL | Execution failed. |
| ED | An error in algorithm <br> SPARSE_STATUS_INTERNAL_ERROR |
| SPARSE_STATUS_NOT_SUPPORTED | The requested operation is not <br> supported. |

mkl_sparse_?_sp2md
Computes the product of two sparse matrices (support operations on both matrices) and stores the result as a dense matrix.

## Syntax

```
stat = mkl_sparse_s_sp2md (transA, descrA, A, transB, descrB, B, alpha, beta, C,
layout, ldc)
stat = mkl_sparse_d_sp2md (transA, descrA, A, transB, descrB, B, alpha, beta, C,
layout, ldc)
stat = mkl_sparse_c_sp2md (transA, descrA, A, transB, descrB, B, alpha, beta, C,
layout, ldc)
stat = mkl_sparse_z_sp2md (transA, descrA, A, transB, descrB, B, alpha, beta, C,
layout, ldc)
```


## Include Files

- mkl_spblas.f90


## Description

The mkl_sparse_?_sp 2 md routine performs a matrix-matrix operation:

$$
C=\text { alpha } * \operatorname{opA}(A) * o p B(B)+\text { beta* } C
$$

where $A$ and $B$ are sparse matrices, opA is a matrix modifier for matrix $A, o p B$ is a matrix modifier for matrix $B$, and $C$ is a dense matrix, alpha and beta are scalars.

## NOTE

This routine is not supported for sparse matrices in the COO format. For sparse matrices in BSR format, these combinations of (indexing, block_layout) are supported:

- (SPARSE_INDEX_BASE_ZERO, SPARSE_LAYOUT_ROW_MAJOR)
- (SPARSE_INDEX_BASE_ONE, SPARSE_LAYOUT_COLUMN_MAJOR)


## Input Parameters

transA<br>descrA

C_INT.
Specifies operation op() on the input matrix.

| SPARSE_OPERATION_NON_TRANSPOSE | Non-transpose, op $(A)=A$ |
| :--- | :--- |
| SPARSE_OPERATION_TRANSPOSE | Transpose, op $(A)=A^{T}$ |
| SPARSE_OPERATION_CONJUGATE_TRANSP | Conjugate transpose, <br> OSE $(A)=A^{H}$ |

MATRIX_DESCR.
Structure that specifies the sparse matrix properties.
NOTE Currently, only SPARSE_MATRIX_TYPE_GENERAL is supported.
sparse_matrix_type_ttype specifies the type of sparse matrix.

| SPARSE_MATRIX_TYPE_GENERAL | The matrix is processed as is. |
| :--- | :--- |
| SPARSE_MATRIX_TYPE_SYMMETRIC | The matrix is symmetric (only the <br> requested triangle is processed). |
| SPARSE_MATRIX_TYPE_HERMITIAN | The matrix is Hermitian (only the <br> requested triangle is processed). |
| SPARSE_MATRIX_TYPE_TRIANGULA | The matrix is triangular (only the <br> requested triangle is processed). |
| SPARSE_MATRIX_TYPE_DIAGONAL | The matrix is diagonal (only <br> diagonal elements are processed). |
| SPARSE_MATRIX_TYPE_BLOCK_TRI | The matrix is block-triangular (only <br> the requested triangle is |
| ANGULAR | processed). This applies to BSR <br> format only. |
| GPARSE_MATRIX_TYPE_BLOCK_DIA | The matrix is block-diagonal (only <br> the requested triangle is |
|  | processed). This applies to BSR <br> format only. |

sparse_fill_mode_tmode specifies the triangular matrix portion for symmetric, Hermitian, triangular, and block-triangular matrices.

| SPARSE_FILL_MODE_LOWER | The lower triangular matrix is <br> processed. |
| :--- | :--- |
| SPARSE_FILL_MODE_UPPER | The upper triangular matrix is <br> processed. |

sparse_diag_type_tdiag specifies the type of diagonal for non-general matrices.

A
transB
descrB

| SPARSE_DIAG_NON_UNIT | Diagonal elements must not be <br> equal to 1. |
| :--- | :--- |
| SPARSE_DIAG_UNIT | Diagonal elements are equal to 1. |

SPARSE_MATRIX_T.
Handle which contains the sparse matrix $A$.
C_INT.
Specifies operation opB() on the input matrix.

| SPARSE_OPERATION_NON_TRANSPO | Non-transpose, opB $(B)=B$. |
| :--- | :--- |
| SE |  |
| SPARSE_OPERATION_TRANSPOSE | Transpose, opB $(B)=B^{T}$. |
| SPARSE_OPERATION_CONJUGATE_T | Conjugate transpose, opB $(B)=B^{H}$. |
| RANSPOSE |  |

MATRIX_DESCR.
Structure that specifies the sparse matrix properties.

## NOTE

Currently, only SPARSE_MATRIX_TYPE_GENERAL is supported.
sparse_matrix_type_ttype specifies the type of sparse matrix.

| SPARSE_MATRIX_TYPE_GENERAL | The matrix is processed as is. |
| :--- | :--- |
| SPARSE_MATRIX_TYPE_SYMMETRIC | The matrix is symmetric (only the <br> requested triangle is processed). |
| SPARSE_MATRIX_TYPE_HERMITIAN | The matrix is Hermitian (only the <br> requested triangle is processed). |
| SPARSE_MATRIX_TYPE_TRIANGULA | The matrix is triangular (only the <br> R |
| requested triangle is processed). |  |
| SPARSE_MATRIX_TYPE_DIAGONAL | The matrix is diagonal (only <br> diagonal elements are processed). |
| SPARSE_MATRIX_TYPE_BLOCK_TRI | The matrix is block-triangular (only <br> the requested triangle is |
|  | processed). This applies to BSR <br> format only. |
| SOARSE_MATRIX_TYPE_BLOCK_DIA | The matrix is block-diagonal (only <br> the requested triangle is |
|  | processed). This applies to BSR <br> format only. |

sparse_fill_mode_tmode specifies the triangular matrix portion for symmetric, Hermitian, triangular, and block-triangular matrices.

| SPARSE_FILL_MODE_LOWER | The lower triangular matrix is |
| :--- | :--- |
| SPARSE_FILL_MODE_UPPER | The upper triangular matrix is |
|  | processed. |

sparse_diag_type_tdiag specifies the type of diagonal for non-general matrices.

| SPARSE_DIAG_NON_UNIT | Diagonal elements must not be <br> equal to 1. |
| :--- | :--- |
| SPARSE_DIAG_UNIT | Diagonal elements are equal to 1. |

B

## ldc

SPARSE_MATRIX_T.
Handle which contains the sparse matrix $B$.
C_FLOAT for mkl_sparse_s_sp2md.
C_DOUBLE for mkl_sparse_d_sp2md.
C_FLOAT_COMPLEX for mkl_sparse_c_sp2md.
C_DOUBLE_COMPLEX for mkl_sparse_z_sp2md.
Specifies the scalar alpha.
C_FLOAT for mkl_sparse_s_sp2md.
C_DOUBLE for mkl_sparse_d_sp2md.
C_FLOAT_COMPLEX for mkl_sparse_c_sp2md.
C_DOUBLE_COMPLEX for mkl_sparse_z_sp2md.
Specifies the scalar beta.
C_INT.
Describes the storage scheme for the dense matrix:

| SPARSE_LAYOUT_COLUMN_MAJOR | Storage of elements uses column <br> major layout. |
| :--- | :--- |
| SPARSE_LAYOUT_ROW_MAJOR | Storage of elements uses row <br> major layout. |

C_INT.
Leading dimension of matrix $C$.

## Output Parameters

C
C_FLOAT for mkl_sparse_s_sp2md.
C_DOUBLE for mkl_sparse_d_sp2md.
C_FLOAT_COMPLEX for mkl_sparse_c_sp2md.
C_DOUBLE_COMPLEX for mkl_sparse_z_sp2md.
The resulting dense matrix.

INTEGER

| SPARSE_STATUS_SUCCESS | The operation was successful. |
| :--- | :--- |
| SPARSE_STATUS_NOT_INITIALIZE | The routine encountered an empty |
| D | handle or matrix array. |
| SPARSE_STATUS_ALLOC_FAILED | Internal memory allocation failed. |
| SPARSE_STATUS_INVALID_VALUE | The input parameters contain an <br> invalid value. |
| SPARSE_STATUS_EXECUTION_FAIL | Execution failed. |
| ED | An error in algorithm <br> implementation occurred. |
| SPARSE_STATUS_INTERNAL_ERROR | The requested operation is not <br> supported. |

mkl_sparse_sypr
Computes the symmetric product of three sparse matrices and stores the result in a newly allocated sparse matrix.

## Syntax

```
stat = mkl_sparse_sypr (operation, A, B, descrB, C, request)
```


## Include Files

- mkl_spblas.f90


## Description

The mkl_sparse_sypr routine performs a multiplication of three sparse matrices that results in a symmetric or Hermitian matrix, $C$.

$$
C:=A^{\star} B^{\star} \operatorname{op} A(A)
$$

or

$$
C:=\operatorname{op} A(A) * B^{\star} A
$$

depending on the matrix modifier operation.
Here, $A, B$, and $C$ are sparse matrices, where $A$ has a general structure while $B$ and $C$ are symmetric (for real data types) or Hermitian (for complex data types) matrices. op $A$ is the transpose (real data types) or conjugate transpose (complex data types) operator.

## NOTE

This routine is not supported for sparse matrices in COO or CSC formats. This routine supports only CSR and BSR formats. In addition, it supports only the sorted CSR and sorted BSR formats for the input matrix. If the data is unsorted, call the mkl_sparse_order routine before either mkl_sparse_sypr or mkl_sparse_?_syprd.

## Input Parameters

operation

A

B
descrB

C_INT.
Specifies operation on the input sparse matrices.


SPARSE_MATRIX_T.
Handle which contains the sparse matrix $A$.
SPARSE_MATRIX_T.
Handle which contains the sparse matrix $B$.
MATRIX_DESCR.
Structure specifying properties of the sparse matrix.
sparse_matrix_type_t type specifies the type of a sparse matrix

| SPARSE_MATRIX_TYPE_SYMMETRIC | The matrix is symmetric (only <br> the specified triangle is <br> processed). |
| :--- | :--- |
| SPARSE_MATRIX_TYPE_HERMITIAN | The matrix is Hermitian (only <br> the specified triangle is <br> processed). |

sparse_fill_mode_t mode specifies the triangular matrix part.

| SPARSE_FILL_MODE_LOWER | The lower triangular matrix part <br> is processed. |
| :--- | :--- |
| SPARSE_FILL_MODE_UPPER | The upper triangular matrix part <br> is processed. |

sparse_diag_type_t diag specifies the type of diagonal.

| SPARSE_DIAG_NON_UNIT | Diagonal elements cannot be <br> equal to one. |
| :--- | :--- | equal to one.

## NOTE

This routine also supports $C=A A^{\mathrm{T}, \mathrm{H}}$ with these parameters:
descrB.type=SPARSE_MATRIX_TYPE_DIAGONAL
descrB.diag=SPARSE_DIAG_UNIT
In this case, you do not need to allocate structure B. Use the routine as a 2 -stage version of mkl_sparse_syrk.

## request

INTEGER.
Use this routine to specify if the computations should be performed in a single step or using the two-stage algorithm. See Two-stage Algorithm for Inspector-executor Sparse BLAS Routines for more information.
\(\left.$$
\begin{array}{|ll|}\hline \text { SPARSE_STAGE_NNZ_COUNT } & \begin{array}{l}\text { Only rowIndex (BSR/CSR format) } \\
\text { or coll Index (CSC format) array } \\
\text { of the matrix is computed internally. } \\
\text { The computation can be extracted } \\
\text { to measure the memory required } \\
\text { for full operation. }\end{array} \\
\text { SPARSE_STAGE_FINALIZE_MULT_N } & \begin{array}{l}\text { Finalize computations of the matrix } \\
\text { structure (values will not be } \\
\text { computed). Use only after the call } \\
\text { with SPARSE_STAGE_NNZ_COUNT } \\
\text { parameter. }\end{array} \\
\text { SPARSE_STAGE_FINALIZE_MULT } & \begin{array}{l}\text { Finalize computation. Can be used } \\
\text { after the call with the } \\
\text { SPARSE_STAGE_NNZ_COUNT or }\end{array} \\
& \begin{array}{l}\text { SPARSE_STAGE_FINALIZE_MULT_N } \\
\text { O_VAL. Can also be used when the } \\
\text { matrix structure remains unchanged } \\
\text { and only values of the resulting }\end{array}
$$ <br>

matrix C need to be recomputed.\end{array}\right\}\)| Perform computations of the matrix |
| :--- |
| structure. |

## Output Parameters

C
stat

SPARSE_MATRIX_T.
Handle which contains the resulting sparse matrix. Only the uppertriangular part of the matrix is computed.

INTEGER
Value indicating whether the operation was successful, or the reason why it failed.

[^2]```
SPARSE_STATUS_NOT_INITIAL The routine encountered an
IZED empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILE Internal memory allocation
D
SPARSE_STATUS_INVALID_VAL
UE
SPARSE_STATUS_EXECUTION_F Execution failed.
AILED
SPARSE_STATUS_INTERNAL_ER An error in algorithm
ROR
SPARSE_STATUS_NOT_SUPPORT
ED
```

The routine encountered an empty handle or matrix array.

Internal memory allocation failed.

The input parameters contain an invalid value.

Execution failed.

An error in algorithm implementation occurred.

The requested operation is not supported.
mkl_sparse_?_syprd
Computes the symmetric triple product of a sparse matrix and a dense matrix and stores the result as a dense matrix.

Syntax

```
stat = mkl_sparse_s_syprd (operation, A, B, denselayoutB, ldb, alpha, beta, C,
denselayoutC, ldc)
stat = mkl_sparse_d_syprd (operation, A, B, denselayoutB, ldb, alpha, beta, C,
denselayoutc, ldc)
stat = mkl_sparse_c_syprd (operation, A, B, denselayoutB, ldb, alpha, beta, C,
denselayoutc, Idc)
stat = mkl_sparse_z_syprd (operation, A, B, denselayoutB, ldb, alpha, beta, C,
denselayoutc, Idc)
```


Include Files

- mkl_spblas.f90

Description

The mkl_sparse_?_syprd routine performs a multiplication of three sparse matrices that results in a symmetric or Hermitian matrix, C.

$$
C:=a l p h a^{\star} A^{\star} B^{\star} \mathrm{op}(A)+\text { beta*} C
$$

or

```
C:=alpha*op (A)* 飒A + beta*C
```

depending on the matrix modifier operation. Here A is a sparse matrix, B and C are dense and symmetric (or Hermitian) matrices. op is the transpose (real precision) or conjugate transpose (complex precision) operator.

NOTE

This routine is not supported for sparse matrices in COO or CSC formats. It supports only CSR and BSR formats. In addition, this routine supports only the sorted CSR and sorted BSR formats for the input matrix. If the data is unsorted, call the mkl_sparse_order routine before either mkl_sparse_sypr or mkl_sparse_?_syprd.

Input Parameters

```
operation
```

```
C_INT.
```

Specifies operation on the input sparse matrix.

SPARSE_OPERATION_NON_TRANSPOSE	Non-transpose case. $C:=\operatorname{alpha*} A^{*} B^{*}\left(\mathrm{~A}^{\top}\right)$ $+b e t a * C$ for real precision. $C:=a l p h a * A^{*} B^{*}\left(A^{H}\right)$ + beta*C for complex precision.
SPARSE_OPERATION_TRANSPOSE	Transpose case. This is not supported for complex matrices. $\begin{aligned} & C:=\operatorname{alpha*}\left(A^{\top}\right) * B^{*} A \\ & + \text { beta* }^{*} C \end{aligned}$
SPARSE_OPERATION_CONJUGATE_TRAN SPOSE	Conjugate transpose case. This is not supported for real matrices. $\begin{aligned} & C:=\text { alpha* }\left(A^{H}\right) * B^{*} A \\ & + \text { beta*C } \end{aligned}$

A

B

SPARSE_MATRIX_T.
Handle which contains the sparse matrix A.
SPARSE_MATRIX_T.
Input dense matrix. Only the upper triangular part of the matrix is used for computation.

C_INT.
Structure that describes the storage scheme for the dense matrix.

SPARSE_LAYOUT_COLUMN_MAJOR	Store elements in a column- major layout.
SPARSE_LAYOUT_ROW_MAJOR	Store elements in a row-major layout.

SPARSE_MATRIX_T.
Leading dimension of matrix B.
alpha
beta
denselayoutC

Scalar parameter.

$m k l \_$sparse_s_syprd	C_FLOAT
$m k l \_$sparse_d_syprd	C_DOUBLE
mkl _sparse_c_syprd	C_FLOAT_COMPLEX
mkl _sparse_z_syprd	C_DOUBLE_COMPLEX

Scalar parameter.

```
mkl_sparse_s_syprd
C_FLOAT
mkl_sparse_d_syprd C_DOUBLE
mkl_sparse_c_syprd C_FLOAT_COMPLEX
mkl_sparse_z_syprd C_DOUBLE_COMPLEX
```


NOTE

Since the upper triangular part of matrix C is the only portion that is processed, set real values of alpha and beta in the complex case to obtain the Hermitian matrix.
C_INT.

Structure that describes the storage scheme for the dense matrix.

SPARSE_LAYOUT_COLUMN_MAJOR	Store elements in a column- major layout.
SPARSE_LAYOUT_ROW_MAJOR	Store elements in a row-major layout.

C_INT.
Leading dimension of matrix C.

Output Parameters

C

stat

SPARSE_MATRIX_T.
Handle which contains the resulting dense matrix. Only the uppertriangular part of the matrix is computed.

INTEGER

Value indicating whether the operation was successful, or the reason why it failed.

SPARSE_STATUS_SUCCESS	The operation was successful.
SPARSE_STATUS_NOT_INITIAL	The routine encountered an
IZED	empty handle or matrix array.
SPARSE_STATUS_ALLOC_FAILE	Internal memory allocation D
SPailed.	
UEARSE_STATUS_INVALID_VAL	The input parameters contain
	an invalid value.

```
SPARSE_STATUS_EXECUTION_F Execution failed.
AILED
SPARSE_STATUS_INTERNAL_ER An error in algorithm
ROR
SPARSE_STATUS_NOT_SUPPORT
ED implementation occurred.
The requested operation is not supported.
```

mkl_sparse_?_symgs Computes a symmetric Gauss-Seidel preconditioner.

Syntax

```
stat = mkl_sparse_s_symgs (operation, A, descr, alpha, b, x)
stat = mkl_sparse_d_symgs (operation, A, descr, alpha, b, x)
stat = mkl_sparse_c_symgs (operation, A, descr, alpha, b, x)
stat = mkl_sparse_z_symgs (operation, A, descr, alpha, b, x)
```


Include Files

- mkl_spblas.f90

Description

The mkl_sparse_?_symgs routine performs this operation:

```
x0 := x*alpha;
(L + D)** 1 = b - U** 0;
(U + D)*X = b - L* XI;
```

where $A=L+D+U$.

NOTE

This routine is not supported for sparse matrices in BSR, COO, or CSC formats. It supports only the CSR format. Additionally, only symmetric matrices are supported, so the desc.type must be SPARSE_MATRIX_TYPE_SYMMETRIC.

Input Parameters

operation \quad| C_INT. |
| :--- |
| |
| Specifies the operation performed on matrix \boldsymbol{A}. |
| |
| SPARSE_OPERATION_NON_TRANSPOSE, op $(A):=A$. |

NOTE

Transpose (SPARSE_OPERATION_TRANSPOSE) and conjugate transpose (SPARSE_OPERATION_CONJUGATE_TRANSPOSE) are not supported.

A

```
SPARSE_MATRIX_T.
```

Handle which contains the sparse matrix A.
alpha
descr
x

```
C_FLOAT formkl_sparse_s_symgs
C_DOUBLE formkl_sparse_d_symgs
C_FLOAT_COMPLEX formkl_sparse_c_symgs
C_DOUBLE_COMPLEX for mkl_sparse_z_symgs
```

Specifies the scalar alpha.

```
MATRIX_DESCR.
```

Descriptor specifying sparse matrix properties.
type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is. NERAL

SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested $\operatorname{MMETRI} \overline{\mathrm{C}} \quad-\quad-\quad$ triangle is processed).

SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN $\quad-\quad$ triangle is processed).

SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested IANGULAR - triangle is processed).

SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements AGONAL ${ }^{-}$- are processed).

SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested OCK_TRIANGULAR triangle is processed). Applies to BSR format only.

SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal OCK_DIĀGONAL - - blocks are processed). Applies to BSR format only.
mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
diag-Specifies diagonal type for non-general matrices:
SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
C_FLOAT for mkl_sparse_s_symgs
C_DOUBLE for mkl_sparse_d_symgs
C_FLOAT_COMPLEX for mkl_sparse_c_symgs
C_DOUBLE_COMPLEX for mkl_sparse_z_symgs
Array of size at least m, where m is the number of rows of matrix A.
b
On entry, the array x must contain the vector x.
C_FLOAT for mkl_sparse_s_symgs
C_DOUBLE for mkl_sparse_d_symgs
C_FLOAT_COMPLEX for mkl_sparse_c_symgs
C_DOUBLE_COMPLEX for mkl_sparse_z_symgs
Array of size at least m, where m is the number of rows of matrix A.
On entry, the array b must contain the vector b.

Output Parameters

x

stat
Overwritten by the computed vector x.

INTEGER

Value indicating whether the operation was successful or not, and why:

```
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED - - matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED
```

mkl_sparse_?_symgs_mv
Computes a symmetric Gauss-Seidel preconditioner
followed by a matrix-vector multiplication.

Syntax

```
stat = mkl_sparse_s_symgs_mv (operation, A, descr, alpha, b, x, y)
stat = mkl_sparse_d_symgs_mv (operation, A, descr, alpha, b, x, y)
stat = mkl_sparse_c_symgs_mv (operation, A, descr, alpha, b, x, y)
stat = mkl_sparse_z_symgs_mv (operation, A, descr, alpha, b, x, y)
```


Include Files

- mkl_spblas.f90

Description

The mkl_sparse_?_symgs_mv routine performs this operation:

```
x0 := x*alpha;
(L + D)**X1 = b - U** }0\mathrm{ ;
(U + D)* X = b - L* XI;
y := A*}
```

where $A=L+D+U$

NOTE

This routine is not supported for sparse matrices in BSR, COO, or CSC formats. It supports only the CSR format. Additionally, only symmetric matrices are supported, so the desc.type must be SPARSE_MATRIX_TYPE_SYMMETRIC.

Input Parameters

```
operation
    C_INT.
    Specifies the operation performed on input matrix.
    SPARSE_OPERATION_NON_TRANSPOSE,op(A) = A.
        NOTE
        Transpose (SPARSE_OPERATION_TRANSPOSE) and conjugate
        transpose (SPARSE_OPERATION_CONJUGATE_TRANSPOSE) are not
        supported.
A
```

alpha
descr

SPARSE_MATRIX_T.
Handle which contains the sparse matrix A.
C_FLOAT for mkl_sparse_s_symgs_mv
C_DOUBLE for mkl_sparse_d_symgs_mv
C_FLOAT_COMPLEX for mkl_sparse_c_symgs_mv
C_DOUBLE_COMPLEX for mkl_sparse_z_symgs_mv
Specifies the scalar alpha.
MATRIX_DESCR.
Descriptor specifying sparse matrix properties.
type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is.
NERAL
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested $\operatorname{MMETRIC} \overline{\mathrm{C}} \quad-\quad$ triangle is processed).

SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested RMITIAN triangle is processed).

```
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULAR triangle is processed).
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL are processed).
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested
OCK_TRIANGULAR triangle is processed). Applies to BSR format
    only.
SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal
OCK_DIAGONAL _ blocks are processed). Applies to BSR format
    only.
```

mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R
SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R diag - Specifies diagonal type for non-general matrices:

```
SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
```

b

Output Parameters

Y

Overwritten by the computed vector x.
C_FLOAT for mkl_sparse_s_symgs_mv
C_DOUBLE for mkl_sparse_d_symgs_mv
C_FLOAT_COMPLEX for mkl_sparse_c_symgs_mv
C_DOUBLE_COMPLEX for mkl_sparse_z_symgs_mv

Array of size at least m, where m is the number of rows of matrix A. Overwritten by the computed vector y.
stat
INTEGER
Value indicating whether the operation was successful or not, and why:

```
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED - matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED
```

mkl_sparse_syrk
Computes the product of sparse matrix with its transpose (or conjugate transpose) and stores the result in a newly allocated sparse matrix.

Syntax

stat $=m k l \_$sparse_syrk (operation, $\left.A, C\right)$

Include Files

- mkl_spblas.f90

Description

The mkl_sparse_syrk routine performs a sparse matrix-matrix operation which results in a sparse matrix C that is either Symmetric (real) or Hermitian (complex):

$$
C:=A^{*} \mathrm{op}(A)
$$

where $\mathrm{op}\left(^{*}\right)$ is the transpose for real matrices and conjugate transpose for complex matrices OR

$$
C:=o p(A) * A
$$

depending on the matrix modifier op which can be the transpose for real matrices or conjugate transpose for complex matrices.

Here, A and C are sparse matrices.
NOTE This routine is not supported for sparse matrices in COO or CSC formats. It supports only CSR and BSR formats. Additionally, this routine supports only the sorted CSR and sorted BSR formats for the input matrix. If data is unsorted, call the mkl_sparse_order routine before either mkl_sparse_syrk or mkl_sparse_?_syrkd.

Input Parameters

```
operation
A
```


Output Parameters

Specifies the operation op () on input matrix .
SPARSE_OPERATION_NON_TRANSPOSE, Non-transpose, $C:=A^{*} O p(A)$ where $\mathrm{op}\left({ }^{*}\right)$ is the transpose for real matrices and conjugate transpose for complex matrices
SPARSE_OPERATION_TRANSPOSE, Transpose, $C:=\left(A^{\mathrm{T}}\right) *$ Afor real matrix A SPARSE_OPERATION_CONJUGATE_TRANSPOSE, Conjugate transpose, C := $\left(A^{\mathrm{H}}\right){ }^{A}$ for complex matrix A .

SPARSE_MATRIX_T.
Handle which contains the sparse matrix A.
c
SPARSE_MATRIX_T.
Handle which contains the resulting sparse matrix. Only the uppertriangular part of the matrix is computed.

INTEGER
Value indicating whether the operation was successful or not, and why:
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or TIALIZED - - matrix array.
SPARSE_STATUS_ALLIOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported. PORTED
mkl_sparse_?_syrkd
Computes the product of sparse matrix with its transpose (or conjugate transpose) and stores the result as a dense matrix.

Syntax

```
stat = mkl_sparse_s_syrkd (operation, A, alpha, beta, C, layout, ldc)
stat = mkl_sparse_d_syrkd (operation, A, alpha, beta, C, layout, ldc)
stat = mkl_sparse_c_syrkd (operation, A, alpha, beta, C, layout, ldc)
stat = mkl_sparse_z_syrkd (operation, A, alpha, beta, C, layout, ldc)
```


Include Files

- mkl_spblas.f90

Description

The mkl_sparse_?_syrkd routine performs a sparse matrix-matrix operation which results in a dense matrix C that is either symmetric (real case) or Hermitian (complex case):

```
C := beta*C + alpha*A*op(A)
```

or

```
C := beta*C + alpha*op (A)*A
```

depending on the matrix modifier op which can be the transpose for real matrices or conjugate transpose for complex matrices. Here, A is a sparse matrix and C is a dense matrix.

NOTE This routine is not supported for sparse matrices in COO or CSC formats. It supports only CSR and BSR formats. Additionally, this routine supports only the sorted CSR and sorted BSR formats for the input matrix. If data is unsorted, call the mkl_sparse_order routine before either mkl_sparse_syrk or mkl_sparse_?_syrkd.

Input Parameters

layout Describes the storage scheme for the dense matrix.

```
layout = SPARSE_LAYOUT_COLUMN_MAJOR }\begin{array}{l}{\mathrm{ Storage of elements uses}}\\{\mathrm{ column-major layout. }}
layout = SPARSE_LAYOUT_ROW_MAJOR Storage of elements uses
    row-major layout.
```

ldc
C_INT.
Leading dimension of matrix C.

NOTE

Only the upper triangular part of matrix C is processed. Therefore, you must set real values of alpha and beta for complex matrices in order to obtain a Hermitian matrix.

Output Parameters

C
stat

SPARSE_MATRIX_T.
Resulting dense matrix. Only the upper triangular part of the matrix is computed.

INTEGER
Value indicating whether the operation was successful or not, and why:

```
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED - matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED
```

mkl_sparse_?_dotmv
Computes a sparse matrix-vector product followed by a dot product.

Syntax

```
stat = mkl_sparse_s_dotmv (operation, alpha, A, descr, x, beta, y, d)
stat = mkl_sparse_d_dotmv (operation, alpha, A, descr, x, beta, y, d)
stat = mkl_sparse_c_dotmv (operation, alpha, A, descr, x, beta, y, d)
stat = mkl_sparse_z_dotmv (operation, alpha, A, descr, x, beta, y, d)
```


Include Files

- mkl_spblas.f90

Description

The mkl_sparse_?_dotmv routine computes a sparse matrix-vector product and dot product:

```
y := alpha*op(A)*x + beta*yd := 住的* * yi (real case)
d := \sum iconj (xi)* % yi (complex case)
```

where

- alpha and beta are scalars.
- x and y are vectors.
- A is an m-by- k matrix.
- conj represents complex conjugation.
- op (A) is a matrix modifier.

Available options for op (A) are A, A^{T}, or A^{H}.

NOTE

For sparse matrices in the BSR format, the supported combinations of (indexing,block_layout) are:

- (SPARSE_INDEX_BASE_ZERO, SPARSE_LAYOUT_ROW_MAJOR)
- (SPARSE_INDEX_BASE_ONE, SPARSE_LAYOUT_COLUMN_MAJOR)

Input Parameters

```
operation
alpha
A
descr
```

C_INT.
Specifies the operation performed on matrix A.
If operation $=$ SPARSE_OPERATION_NON_TRANSPOSE, op $(A)=A$.
If operation $=$ SPARSE_OPERATION_TRANSPOSE, op $(A)=A^{T}$.
If operation $=$ SPARSE_OPERATION_CONJUGATE_TRANSPOSE, op $(A)=A^{H}$.
C_FLOAT for mkl_sparse_s_dotmv
C_DOUBLE for mkl_sparse_d_dotmv
C_FLOAT_COMPLEX for mkl_sparse_c_dotmv
C_DOUBLE_COMPLEX for mkl_sparse_z_dotmv
Specifies the scalar alpha.
A
descr

SPARSE_MATRIX_T.
Handle which contains the sparse matrix A.
MATRIX_DESCR.
Descriptor specifying sparse matrix properties.
type - Specifies the type of a sparse matrix:
SPARSE_MATRIX_TYPE_GE The matrix is processed as is. NERAL

```
SPARSE_MATRIX_TYPE_SY The matrix is symmetric (only the requested
MMETRIC - - triangle is processed).
SPARSE_MATRIX_TYPE_HE The matrix is Hermitian (only the requested
RMITIAN - - triangle is processed).
SPARSE_MATRIX_TYPE_TR The matrix is triangular (only the requested
IANGULARR - - triangle is processed).
SPARSE_MATRIX_TYPE_DI The matrix is diagonal (only diagonal elements
AGONAL - are processed).
SPARSE_MATRIX_TYPE_BL The matrix is block-triangular (only requested
OCK_TRIANGULAR - - triangle is processed). Applies to BSR format
    only.
SPARSE_MATRIX_TYPE_BL The matrix is block-diagonal (only diagonal
OCK_DIAGONAL blocks are processed). Applies to BSR format
    only.
```

mode - Specifies the triangular matrix part for symmetric, Hermitian, triangular, and block-triangular matrices:

SPARSE_FILL_MODE_LOWE The lower triangular matrix part is processed. R
SPARSE_FILL_MODE_UPPE The upper triangular matrix part is processed. R
diag - Specifies diagonal type for non-general matrices:
SPARSE_DIAG_NON_UNIT Diagonal elements might not be equal to one.
SPARSE_DIAG_UNIT Diagonal elements are equal to one.
C_FLOAT for mkl_sparse_s_dotmv
C_DOUBLE for mkl_sparse_d_dotmv
C_FLOAT_COMPLEX for mkl_sparse_c_dotmv
C_DOUBLE_COMPLEX for mkl_sparse_z_dotmv
If operation = SPARSE_OPERATION_NON_TRANSPOSE, array of size at least
k, where k is the number of columns of matrix A.
Otherwise, array of size at least m, where m is the number of rows of matrix A.
On entry, the array x must contain the vector x.
beta
y

C_FLOAT for mkl_sparse_s_dotmv
C_DOUBLE for mkl_sparse_d_dotmv
C_FLOAT_COMPLEX for mkl_sparse_c_dotmv
C_DOUBLE_COMPLEX for mkl_sparse_z_dotmv
Specifies the scalar beta.
C_FLOAT for mkl_sparse_s_dotmv
C_DOUBLE for mkl_sparse_d_dotmv

C_FLOAT_COMPLEX for mkl_sparse_c_dotmv
C_DOUBLE_COMPLEX for mkl_sparse_z_dotmv
If operation = SPARSE_OPERATION_NON_TRANSPOSE, array of size at least m, where k is the number of rows of matrix A.

Otherwise, array of size at least k, where k is the number of columns of matrix A.

On entry, the array y must contain the vector y.

Output Parameters

y
d
Overwritten by the updated vector y.
C_FLOAT for mkl_sparse_s_dotmv
C_DOUBLE for mkl_sparse_d_dotmv
C_FLOAT_COMPLEX for mkl_sparse_c_dotmv
C_DOUBLE_COMPLEX for mkl_sparse_z_dotmv
Overwritten by the dot product of x and y.

```
INTEGER
```

Value indicating whether the operation was successful or not, and why:

SPARSE_STATUS_SUCCESS | The operation was successful. |
| :--- |
| SPARSE_STATUS_NOT_INI |
| TIALIZED routine encountered an empty handle or |
| matrix array. |

SPARSE_STATUS_ALLOC_F
AILED

SPARErnal memory allocation failed.
_VALUE

SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED
mkl_sparse_?_sorv
Computes forward, backward sweeps or a symmetric successive over-relaxation preconditioner operation.

Syntax

```
stat = sparse_status_t mkl_sparse_s_sorv(type, descrA, A, omega, alpha, x, b)
stat = sparse_status_t mkl_sparse_d_sorv(type, descrA, A, omega, alpha, x, b)
```


Include Files

- mkl_spblas.f90

Description

The mkl_sparse_?_sorv routine performs one of the following operations:
SPARSE_SOR_FORWARD:

$$
(\omega * L+D) * x^{\wedge} 1=(D-\omega * D-\omega * U) * x^{\wedge} 0+\omega * b
$$

SPARSE_SOR_BACKWARD:

$$
(\omega * U+D) * x^{\wedge} 1=(D-\omega * D-\omega * L) * \chi^{\wedge} 0+\omega * b
$$

SPARSE_SOR_SYMMETRIC: Performs application of a

$$
\frac{\omega}{2-\omega}\left(\frac{1}{\omega} D+L\right) D^{-1}\left(\frac{1}{\omega} D+L\right)^{T}
$$

preconditioner.
where $A=L+D+U$ and $x^{\wedge} 0$ is an input vector x scaled by input parameter alpha vector and $x^{\wedge} 1$ is an output stored in vector x.

NOTE

Currently this routine only supports the following configuration:

- CSR format of the input matrix
- SPARSE_SOR_FORWARD operation
- General matrix (descr.type is SPARSE_MATRIX_TYPE_GENERAL) or symmetric matrix with full portrait and unit diagonal (descr.type is SPARSE_MATRIX_TYPE_SYMMETRIC, descr.mode is SPARSE_FILL_MODE_FULL, and descr.diag is SPARSE_DIAG_UNIT)

NOTE

Currently, this routine is optimized only for sequential threading execution mode.

Warning It is currently not allowed to place a sorv call in a parallel section (e.g., under \#pragma omp parallel), because it is not thread-safe in this scenario. This limitation will be addressed in one of the upcoming releases.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Product and Performance Information

Notice revision \#20201201

Input Parameters

type

```
SPARSE_MATRIX_T.
```

Specifies the operation performed by the SORV preconditioner.
SPARSE_SOR_FORWARD Performs forward sweep as defined by:

$$
(\omega * L+D) * x^{\wedge} 1=(D-\omega * D-\omega * U) * x^{\wedge} 0+\omega * b
$$

SPARSE_SOR_BACKWARD Performs backward sweep as defined by:

$$
(\omega * U+D) * x^{\wedge} 1=(D-\omega * D-\omega * L) * x^{\wedge} 0+\omega * b
$$

SPARSE_SOR_SYMMETRIC Preconditioner matrix could be expressed as:

$$
\frac{\omega}{2-\omega}\left(\frac{1}{\omega} D+L\right) D^{-1}\left(\frac{1}{\omega} D+L\right)^{T}
$$

MATRIX_DESCR.
Structure specifying sparse matrix properties.
SPARSE_MATRIX_T type Specifies the type of a sparse matrix:

- SPARSE_MATRIX_TYPE_GENERAL

The matrix is processed as-is.

- SPARSE_MATRIX_TYPE_SYMMETRIC

The matrix is symmetric (only the requested triangle is processed).

- SPARSE_MATRIX_TYPE_HERMITIAN

The matrix is Hermitian (only the requested triangle is processed).

- SPARSE_MATRIX_TYPE_TRIANGULAR

The matrix is triangular (only the requested triangle is processed).

- SPARSE_MATRIX_TYPE_DIAGONAL

The matrix is diagonal (only diagonal elements are processed).

- SPARSE_MATRIX_TYPE_BLOCK_TRIANGULAR

The matrix is block-triangular (only requested triangle is processed). Applies to BSR format only.

- SPARSE_MATRIX_TYPE_BLOCK_DIAGONAL

The matrix is block-diagonal (only diagonal blocks are processed). Applies to BSR format only.

```
C_INT mode Specifies the triangular matrix part for symmetric, Hermitian, triangular, and blocktriangular matrices:
- SPARSE_FILL_MODE_LOWER
```

The lower triangular matrix part is processed.

- SPARSE_FILL_MODE_UPPER

The upper triangular matrix part is processed.

```
SPARSE_MATRIX_TYPE_D Specifies diagonal type for non-general
IAGONAL diag
matrices:
- SPARSE_DIAG_NON_UNIT
```

Diagonal elements might not be equal to one.

- SPARSE_DIAG_UNIT

Diagonal elements are equal to one.

A
omega
alpha
x
b Output Parameters
O
x
stat

SPARSE_MATRIX_T.
Handle containing internal data.
C_FLOAT.
Relaxation factor.

```
C_FLOAT.
```

Parameter that could be used to normalize or set to zero the vector x that holds the initial guess.

C_FLOAT.
Initial guess on input.
C_FLOAT.
Right-hand side.
C_FLOAT.

Solution vector on output.
INTEGER
Value indicating whether the operation was successful or not, and why:

```
SPARSE_STATUS_SUCCESS The operation was successful.
SPARSE_STATUS_NOT_INI The routine encountered an empty handle or
TIALIZED matrix array.
SPARSE_STATUS_ALLOC_F Internal memory allocation failed.
AILED
```

```
SPARSE_STATUS_INVALID The input parameters contain an invalid value.
_VALUE
SPARSE_STATUS_EXECUTI Execution failed.
ON_FAILED
SPARSE_STATUS_INTERNA An error in algorithm implementation occurred.
L_ERROR
SPARSE_STATUS_NOT_SUP The requested operation is not supported.
PORTED
```


BLAS-like Extensions

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library provides C and Fortran routines to extend the functionality of the BLAS routines. These include routines to compute vector products, matrix-vector products, and matrix-matrix products.
Intel ${ }^{\circledR}$ oneAPI Math Kernel Library also provides routines to perform certain data manipulation, including matrix in-place and out-of-place transposition operations combined with simple matrix arithmetic operations. Transposition operations are Copy As Is, Conjugate transpose, Transpose, and Conjugate. Each routine adds the possibility of scaling during the transposition operation by giving some alpha and/or beta parameters. Each routine supports both row-major orderings and column-major orderings.
Table "BLAS-like Extensions" lists these routines.
The <?> symbol in the routine short names is a precision prefix that indicates the data type:

s	REAL
d	DOUBLE PRECISION
c	COMPLEX
z	DOUBLE COMPLEX

BLAS-like Extensions

Routine	Data Types	Description
?axpby	s, d, c, z	Scales two vectors, adds them to one another and stores result in the vector (routines).
?axpy_batch ?axpy_batch_strided	s,d, c, z	Computes groups of vector-scalar products added to a vector.
?dgmm_batch_strided s, d, c, z	Computes groups of diagonal matrix-general matrix product	
?gem2vc	c, z	Two matrix-vector products using a general matrix, complex data.
?gem2vu	Two matrix-vector products using a general matrix, real data.	
?gemm_batch	s, d, c, z	Computes scalar-matrix-matrix products and adds the results to scalar matrix products for groups of general matrices.
gemm_*	Computes a matrix-matrix product with general integer matrices.	

Routine	Data Types	Description
? gemm_compute	h, s, d	Computes a matrix-matrix product with general matrices where one or both input matrices are stored in a packed data structure and adds the result to a scalar-matrix product.
gemm_*_compute	Integer	Computes a matrix-matrix product with general integer matrices where one or both input matrices are stored in a packed data structure and adds the result to a scalarmatrix product.
? ${ }^{\text {gemm_pack }}$	h, s, d	Performs scaling and packing of the matrix into the previously allocated buffer.
gemm_*_pack	Integer,	Pack the matrix into the buffer allocated previously.
?gemm_pack_get_size	h, s, d	Returns the number of bytes required to store the packed matrix.
gemm_*_pack_get_size	Integer,	Returns the number of bytes required to store the packed matrix.
? gemm 3 m	c, z	Computes a scalar-matrix-matrix product using matrix multiplications and adds the result to a scalar-matrix product.
? gemm3m_batch	c, z	Computes a scalar-matrix-matrix product using matrix
? $\mathrm{gemm3m}$ _batch_strided		product.
? gemmt	s, d, c, z	Computes a matrix-matrix product with general matrices but updates only the upper or lower triangular part of the result matrix.
?gemv_batch_strided	s, d, c, z	Computes groups of matrix-vector product using general matrices.
?gemv_batch		
?trsm_batch	s, d, c, z	Solves a triangular matrix equation for a group of matrices.
?trsm_batch_strided		
mkl_?imatcopy	s, d, c, z	Performs scaling and in-place transposition/copying of matrices.
mkl_?imatcopy_batch_ mkl_?imatcopy_batch	S,rdele, z	Computes groups of in-place matrix copy/transposition with scaling using general matrices.
mkl_?omatadd	s, d, c, z	Performs scaling and sum of two matrices including their out-of-place transposition/copying.
mkl_?omatcopy	s, d, c, z	Performs scaling and out-of-place transposition/copying of matrices.
mkl_? omatcopy_batch_stride d	s, d, c, z	Computes groups of out of place matrix copy/transposition with scaling using general matrices.
mkl_?omatcopy_batch		
mkl_?omatcopy2	s, d, c, z	Performs two-strided scaling and out-of-place transposition/copying of matrices.

Routine Data Types	Description
mkl_jit_create_? gemm s, d, c, z	Creates a handle on a jitter and generates a GEMM kernel that computes a scalar-matrix-matrix product and adds the result to a scalar-matrix product, with general matrices.
mkl_jit_destroy	Deletes the previously created jitter and the generated GEMM kernel.
mkl_jit_get_? ${ }^{\text {a }}$,	Returns the GEMM kernel previously generated.

?axpy_batch

Computes a group of vector-scalar products added to a vector.

Syntax

```
call saxpy_batch(n_array, alpha_array, x_array, incx_array, y_array, incy_array,
group_count, group_size_array)
call daxpy_batch(n_array, alpha_array, x_array, incx_array, y_array, incy_array,
group_count, group_size_array)
call caxpy_batch(n_array, alpha_array, x_array, incx_array, y_array, incy_array,
group_count, group_size_array)
call zaxpy_batch(n_array, alpha_array, x_array, incx_array, y_array, incy_array,
group_count, group_size_array)
```


Description

The ?axpy_batch routines perform a series of scalar-vector product added to a vector. They are similar to the ?axpy routine counterparts, but the ?axpy_batch routines perform vector operations with a group of vectors. The groups contain vectors with the same parameters.

The operation is defined as

```
idx = 0
for i = 0 ... group_count - 1
    n, alpha, incx, incy and group_size at position i in n_array, alpha_array, incx_array,
incy_array and group_size_array
    for j = 0 ... group_size}-
            x and y are vectors of size n at position idx in x_array and y_array
            y := alpha * x + y
            idx := idx + 1
    end for
end for
```

The number of entries in x_array, and y_array is total_batch_count = the sum of all of the group_size entries.

Input Parameters

```
n_array
alpha_array REAL for saxpy_batch
    DOUBLE PRECISION for daxpy_batch
```

	COMPLEX for caxpy_batch
	DOUBLE COMPLEX for zaxpy_batch
	Array of size group_count. For the group i, alphai = alpha_array[i] is the scalar alpha.
x_array	INTEGER*8 for Intel ${ }^{\otimes} 64$ architecture
	INTEGER*4 for IA-32 architecture
	Array of size total_batch_count of pointers used to store x vectors. The array allocated for the x vectors of the group i must be of size at least ($1+$ $\left(n_{i}-1\right) * a b s\left(\right.$ incx $\left._{i}\right)$).
incx_array	INTEGER. Array of size group_count. For the group i, incxi $=$ incx_array[i] is the stride of vector x.
y_array	INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture
	INTEGER*4 for IA-32 architecture
	Array of size total_batch_count of pointers used to store y vectors. The array allocated for the y vectors of the group i must be of size at least $(1+$ ($n_{i}-1$)*abs(incyi)).
incy_array	INTEGER. Array of size group_count. For the group i, incyi = incy_array[i] is the stride of vector y.
group_count	INTEGER. Number of groups. Must be at least 0 .
group_size_array	INTEGER. Array of size group_count. The element group_size_array[i] is the number of vector in the group i. Each element in group_size_array must be at least 0 .

Output Parameters

```
y_array
```

Array of pointers holding the total_batch_count updated vector y.

?axpy_batch_strided
 Computes a group of vector-scalar products added to
 a vector.

Syntax

```
call saxpy_batch_strided(n, alpha, x, incx, stridex, y, incy, stridey, batch_size)
call daxpy_batch_strided(n, alpha, x, incx, stridex, y, incy, stridey, batch_size)
call caxpy_batch_strided(n, alpha, x, incx, stridex, y, incy, stridey, batch_size)
call zaxpy_batch_strided(n, alpha, x, incx, stridex, y, incy, stridey, batch_size)
```


Include Files

- mkl.fi

Description

The ?axpy_batch_strided routines perform a series of scalar-vector product added to a vector. They are similar to the ?axpy routine counterparts, but the ?axpy_batch_strided routines perform vector operations with a group of vectors.

All vector x (respectively, y) have the same parameters (size, increments) and are stored at constant stridex (respectively, stridey) from each other. The operation is defined as

```
For i = 0 ... batch_size - 1
    X and Y are vectors at offset i * stridex and i * stridey in x and y
    Y = alpha * X + Y
end for
```


Input Parameters

n
alpha REAL for saxpy_batch_strided
DOUBLE PRECISION for daxpy_batch_strided
COMPLEX for caxpy_batch_strided
DOUBLE COMPLEX for zaxpy_batch_strided
Specifies the scalar alpha.
REAL for saxpy_batch_strided
DOUBLE PRECISION for daxpy_batch_strided
COMPLEX for caxpy_batch_strided
DOUBLE COMPLEX for zaxpy_batch_strided
Array of size at least stridex*batch_size holding the x vectors.
INTEGER. Specifies the increment for the elements of x.
INTEGER. Stride between two consecutive x vectors; must be at least zero.
REAL for saxpy_batch_strided
DOUBLE PRECISION for daxpy_batch_strided
COMPLEX for caxpy_batch_strided
DOUBLE COMPLEX for zaxpy_batch_strided
Array of size at least stridey*batch_size holding the y vectors.
INTEGER. Specifies the increment for the elements of y.
INTEGER. Stride between two consecutive y vectors; must be at least ($1+$ ($\mathrm{n}-1$)*abs(incy)).

INTEGER. Number of axpy computations to perform and x and y vectors. Must be at least 0 .

Output Parameters

y
Array holding the batch_size updated vector y.
?axpby
Scales two vectors, adds them to one another and stores result in the vector.

Syntax

```
call saxpby(n, a, x, incx, b, y, incy)
call daxpby(n, a, x, incx, b, y, incy)
call caxpby(n, a, x, incx, b, y, incy)
call zaxpby(n, a, x, incx, b, y, incy)
call axpby(x, y [,a] [,b])
```


Include Files

- mkl.fi, blas.f90

Description

The ?axpby routines perform a vector-vector operation defined as

$$
y:=a^{\star} x+b^{\star} y
$$

where:
a and b are scalars
x and y are vectors each with n elements.

Input Parameters

n
a

X
b
y

INTEGER. Specifies the number of elements in vectors x and y.
REAL for saxpby
DOUBLE PRECISION for daxpby
COMPLEX for caxpby
DOUBLE COMPLEX for zaxpby
Specifies the scalar a.
REAL for saxpby
DOUBLE PRECISION for daxpby
COMPLEX for caxpby
DOUBLE COMPLEX for zaxpby
Array, size at least $(1+(n-1) \star a b s(i n c x))$.
INTEGER. Specifies the increment for the elements of x.
REAL for saxpby
DOUBLE PRECISION for daxpby
COMPLEX for caxpby
DOUBLE COMPLEX for zaxpby
Specifies the scalar b.
REAL for saxpby
DOUBLE PRECISION for daxpby

```
COMPLEX for caxpby
```

DOUBLE COMPLEX for zaxpby
Array, size at least $(1+(n-1) * a b s(i n c y))$.
incy INTEGER. Specifies the increment for the elements of y.

Output Parameters

y
Contains the updated vector y.

Example

For examples of routine usage, see these code examples in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) installation directory:

- saxpby: examples $\backslash \mathrm{blas} \backslash$ source\saxpbyx.f
- daxpby: examples $\backslash \mathrm{blas} \backslash$ source\daxpbyx.f
- caxpby: examples $\backslash \mathrm{blas} \backslash$ source\caxpbyx.f
- zaxpby: examples \blas \source\zaxpbyx.f

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine axpby interface are the following:

x	Holds the array of size n.
y	Holds the array of size n.
a	The default value is 1.
b	The default value is 1.

?gem2vu
 Computes two matrix-vector products using a general matrix (real data)

Syntax

```
call sgem2vu(m, n, alpha, a, lda, x1, incx1, x2, incx2, beta, y1, incy1, y2, incy2)
call dgem2vu(m, n, alpha, a, lda, x1, incx1, x2, incx2, beta, y1, incy1, y2, incy2)
call gem2vu(a, x1, x2, y1, y2 [,alpha][,beta] )
```

Include Files

- mkl.fi, blas.f90

Description

The ?gem 2 vu routines perform two matrix-vector operations defined as

```
y1 := alpha*A*x1 + beta*y1,
and
```

```
y2 := alpha*A'*x2 + beta*y2,
```

where:
alpha and beta are scalars,
$x 1, x 2, y 1$, and $y 2$ are vectors,
A is an m-by- n matrix.
Input Parameters
m
n
a

Ida
x1
incxl
$x 2$
incx2
beta
y^{1}

INTEGER. Specifies the number of rows of the matrix A. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix A. The value of n must be at least zero.

REAL for sgem2vu
DOUBLE PRECISION for dgem2vu
Specifies the scalar alpha.
REAL for sgem2vu
DOUBLE PRECISION for dgem2vu
Array, size (lda, n). Before entry, the leading m-by- n part of the array a must contain the matrix of coefficients.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, m)$.

REAL for sgem2vu
DOUBLE PRECISION for dgem2vu
Array, size at least $(1+(n-1) * a b s(i n c x 1))$. Before entry, the incremented array $x 1$ must contain the vector $x 1$.

INTEGER. Specifies the increment for the elements of $x 1$.
The value of incx1 must not be zero.
REAL for sgem2vu
DOUBLE PRECISION for dgem2vu
Array, size at least ($1+(m-1) * a b s(i n c x 2))$. Before entry, the incremented array $x 2$ must contain the vector $x 2$.

INTEGER. Specifies the increment for the elements of $x 2$.
The value of incx2 must not be zero.
REAL for sgem2vu
DOUBLE PRECISION for dgem2vu
Specifies the scalar beta. When beta is set to zero, then $y 1$ and $y 2$ need not be set on input.

REAL for sgem2vu
DOUBLE PRECISION for dgem2vu

Array, size at least $(1+(m-1) * a b s(i n c y 1))$. Before entry with non-zero beta, the incremented array $y 1$ must contain the vector $y 1$.
incyl
y
incy2

INTEGER. Specifies the increment for the elements of $y 1$. The value of incy 1 must not be zero.

REAL for sgem2vu
DOUBLE PRECISION for dgem2vu
Array, size at least (1+(n-1)*abs (incy2)). Before entry with non-zero beta, the incremented array y2 must contain the vector $y 2$.

INTEGER. Specifies the increment for the elements of $y 2$.
The value of incy2 must not be zero.

Output Parameters

```
y1 Updated vector y1.
y2 Updated vector y2.
```


BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine gem2vu interface are the following:

a	Holds the matrix A of size (m, n).
$x 1$	Holds the vector with the number of elements $r x 1$ where $r x 1=n$.
$y 1$	Holds the vector with the number of elements $r x 2$ where $r x 2=m$.
y^{2}	Holds the vector with the number of elements $r y 1$ where $r y 1=m$.
alpha	Holds the vector with the number of elements $r y 2$ where $r y 2=n$.
beta	The default value is 1.
The default value is 0.	

```
?gem2vc
Computes two matrix-vector products using a general
matrix (complex data)
```


Syntax

```
call cgem2vc(m, n, alpha, a, lda, x1, incx1, x2, incx2, beta, yl, incy1, y2, incy2)
call zgem2vc(m, n, alpha, a, lda, x1, incx1, x2, incx2, beta, yl, incy1, y2, incy2)
call gem2vc(a, x1, x2, yl, y2 [,alpha][,beta] )
```

Include Files

- mkl.fi, blas.f90

Description

The ? gem2vc routines perform two matrix-vector operations defined as

```
y1 := alpha*A*x1 + beta*y1,
and
y2 := alpha*conjg(A')*x2 + beta*y2,
```

where:
alpha and beta are scalars, $x 1, x 2, y 1$, and $y 2$ are vectors,
A is an m-by- n matrix.

Input Parameters

m
n
a

Ida
x1
incxl
$x 2$
incx2

INTEGER. Specifies the number of rows of the matrix A. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix A. The value of n must be at least zero.

COMPLEX for cgem2vc
DOUBLE COMPLEX for zgem2vc
Specifies the scalar alpha.
COMPLEX for cgem2vc
DOUBLE COMPLEX for zgem2vc
Array, size (lda, n). Before entry, the leading m-by-n part of the array a must contain the matrix of coefficients.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, m)$.

COMPLEX for cgem2vc
DOUBLE COMPLEX for zgem2vc
Array, size at least ($1+(n-1) * a b s(i n c x 1))$. Before entry, the incremented array $x 1$ must contain the vector $x 1$.

INTEGER. Specifies the increment for the elements of $x 1$.
The value of incx1 must not be zero.
COMPLEX for cgem2vc
DOUBLE COMPLEX for zgem2vc
Array, size at least (1+(m-1)*abs (incx2)). Before entry, the incremented array $x 2$ must contain the vector $x 2$.

INTEGER. Specifies the increment for the elements of $x 2$.
The value of incx2 must not be zero.

```
beta COMPLEX for cgem2vc
    DOUBLE COMPLEX for zgem2vc
    Specifies the scalar beta. When beta is set to zero, then y1 and y2 need not
    be set on input.
    COMPLEX for cgem2vc
    DOUBLE COMPLEX for zgem2vc
    Array, size at least (1+(m-1)*abs (incy1)). Before entry with non-zero
    beta, the incremented array y1 must contain the vector y1.
    INTEGER. Specifies the increment for the elements of y1.
    The value of incy1 must not be zero.
    COMPLEX for cgem2vc
DOUBLE COMPLEX for zgem2vc
    Array, size at least (1+(n-1)*abs(incy2)). Before entry with non-zero
    beta, the incremented array y2 must contain the vector y2.
    INTEGER. Specifies the increment for the elements of y2.
    The value of incy must not be zero.
    INTEGER. Specifies the increment for the elements of }y\mathrm{ .
```


Output Parameters

```
y1 Updated vector y1.
y2 Updated vector y2.
```


BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine gem2vc interface are the following:

a	Holds the matrix A of size (m, n).
$x 1$	Holds the vector with the number of elements $r x 1$ where $r x 1=n$.
$y 1$	Holds the vector with the number of elements $r x 2$ where $r x 2=m$.
$y 2$	Holds the vector with the number of elements $r y 1$ where $r y 1=m$.
alpha	Holds the vector with the number of elements $r y 2$ where $r y 2=n$.
beta	The default value is 1.
	The default value is 0.

```
?gemmt
Computes a matrix-matrix product with general matrices but updates only the upper or lower triangular part of the result matrix.
```


Syntax

```
call sgemmt (uplo, transa, transb, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call dgemmt (uplo, transa, transb, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call cgemmt (uplo, transa, transb, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call zgemmt (uplo, transa, transb, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call gemmt (a, b, c[, uplo] [, transa] [, transb] [, alpha] [, beta])
```

Include Files

- mkl.fi, blas.f90

Description

The ? gemmt routines compute a scalar-matrix-matrix product with general matrices and add the result to the upper or lower part of a scalar-matrix product. These routines are similar to the ?gemm routines, but they only access and update a triangular part of the square result matrix (see Application Notes below).

The operation is defined as

```
C := alpha*op(A)*op(B) + beta*C,
```

where:
op (X) is one of op $(X)=X$, or op $(X)=X^{\mathrm{T}}$, or op $(X)=X^{\mathrm{H}}$,
alpha and beta are scalars,
A, B and C are matrices:
op (A) is an n-by- k matrix,
op (B) is a k-by-n matrix,
C is an n-by- n upper or lower triangular matrix.

Input Parameters

uplo
transa
transb

CHARACTER*1. Specifies whether the upper or lower triangular part of the array c is used. If uplo $=$ 'U' or 'u', then the upper triangular part of the array c is used. If uplo $=$ 'L' or 'l', then the lower triangular part of the array c is used.

CHARACTER* 1. Specifies the form of op (A) used in the matrix multiplication:

```
if transa = 'N' or 'n', then op (A) = A;
if transa = 'T' or 't', then op (A) = AT
if transa = 'C' or 'c', then op (A) = A 'H
```

CHARACTER*1. Specifies the form of op (B) used in the matrix multiplication:
if transb $=$ ' N ' or ' n ', then op $(B)=B$;
if transb $=$ 'T' or 't', then op $(B)=B^{T}$;
if transb $=$ ' C ' or ' C ', then $o p(B)=B^{\mathrm{H}}$.
INTEGER. Specifies the order of the matrix C. The value of n must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (A) and the number of rows of the matrix op (B). The value of k must be at least zero.

REAL for sgemmt
DOUBLE PRECISION for dgemmt
COMPLEX for cgemmt
DOUBLE COMPLEX for zgemmt
Specifies the scalar alpha.
REAL for sgemmt
DOUBLE PRECISION for dgemmt
COMPLEX for cgemmt
DOUBLE COMPLEX for zgemmt
Array, size lda by ka, where $k a$ is k when transa $=$ ' N ' or ' n ', and is n otherwise. Before entry with transa $=$ ' N ' or ' n ', the leading n-by- k part of the array a must contain the matrix A, otherwise the leading $k-b y-n$ part of the array a must contain the matrix A.

INTEGER.

Specifies the leading dimension of a declared in the calling (sub)program.

When transa $=$ ' N ' or ' n ', then lda must be at least max $(1, n)$, otherwise lda must be at least $\max (1, k)$.

REAL for sgemmt
DOUBLE PRECISION for dgemmt
COMPLEX for cgemmt
DOUBLE COMPLEX for zgemmt
Array, size $l d b$ by $k b$, where $k b$ is n when transb $={ }^{\prime} N$ ' or ' n ', and is k otherwise. Before entry with transb $=$ ' N ' or ' n ', the leading k-by-n part of the array b must contain the matrix B, otherwise the leading $n-b y-k$ part of the array b must contain the matrix B.

INTEGER. Specifies the leading dimension of b as declared in the calling (sub)program.

When transb $=$ ' N ' or ' n ', then $l d b$ must be at least $\max (1, k)$, otherwise $l d b$ must be at least $\max (1, n)$.

REAL for sgemmt
DOUBLE PRECISION for dgemmt

COMPLEX for cgemmt
DOUBLE COMPLEX for zgemmt
Specifies the scalar beta. When beta is equal to zero, then c need not be set on input.

REAL for sgemmt
DOUBLE PRECISION for dgemmt
COMPLEX for cgemmt
DOUBLE COMPLEX for zgemmt
Array, size ldc by n.
Before entry with uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array c must contain the upper triangular part of the matrix C and the strictly lower triangular part of c is not referenced.

Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array c must contain the lower triangular part of the matrix C and the strictly upper triangular part of c is not referenced.

When beta is equal to zero, c need not be set on input.
INTEGER. Specifies the leading dimension of c as declared in the calling (sub) program. The value of $I d c$ must be at least $\max (1, n)$.

Output Parameters

c
When uplo $=$ 'U' or 'u', the upper triangular part of the array c is overwritten by the upper triangular part of the updated matrix.

When uplo = 'L' or 'l', the lower triangular part of the array c is overwritten by the lower triangular part of the updated matrix.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine gemmt interface are the following:
a
b

Holds the matrix A of size (ma,ka) where
$k a=k$ if transa='N',
$k a=n$ otherwise,
$m a=n$ if transa $={ }^{\prime} N^{\prime}$,
ma $=k$ otherwise.
Holds the matrix B of size $(m b, k b)$ where

$$
\begin{aligned}
k b & =n \text { if transb }='^{\prime} \\
k b & =k \text { otherwise, } \\
m b & =k \text { if transb }=' N^{\prime}
\end{aligned}
$$

	$m b=n$ otherwise.
c	Holds the matrix C of size (n, n).
uplo	Must be 'U' or 'L'.
	The default value is ' U '.
transa	Must be 'N', 'C', or 'T'.
	The default value is ' N '.
transb	Must be 'N', 'C', or 'T'.
	The default value is ' N '.
alpha	The default value is 1.
beta	The default value is 0 .

Application Notes

These routines only access and update the upper or lower triangular part of the result matrix. This can be useful when the result is known to be symmetric; for example, when computing a product of the form $C:=$ alpha* $B^{\star} S^{\star} B^{T}+$ beta* C, where S and C are symmetric matrices and B is a general matrix. In this case, first compute $A:=B^{\star} S$ (which can be done using the corresponding ?symm routine), then compute $C:=$ alpha* $A^{\star} B^{T}+$ beta* C using the ?gemmt routine.

?gemm3m

Computes a scalar-matrix-matrix product using matrix multiplications and adds the result to a scalar-matrix product.

Syntax

```
call cgemm3m(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call zgemm3m(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
call gemm3m(a, b, c [,transa][,transb] [,alpha][,beta])
```

Include Files

- mkl.fi, blas.f90

Description

The ?gemm 3 m routines perform a matrix-matrix operation with general complex matrices. These routines are similar to the ?gemm routines, but they use fewer matrix multiplication operations (see Application Notes below).
The operation is defined as

```
C:= alpha*op (A)*op (B) + beta*C,
```

where:

```
op(x) is one of op(x) = x, or op(x) = x',or op(x) = conjg(x'),
alpha and beta are scalars,
A,B and C are matrices:
```

$o p(A)$ is an m-by- k matrix, $o p(B)$ is a k-by-n matrix,
C is an m-by- n matrix.

Input Parameters

transa
transb
m
n
k
alpha
a

Ida
b

CHARACTER*1. Specifies the form of op (A) used in the matrix multiplication:
if transa $=$ 'N' or 'n', then op $(A)=A$;
if transa $=$ 'T' or 't', then op $(A)=A$ ';
if transa $=$ 'C' or 'c', then op $(A)=\operatorname{conjg}\left(A^{\prime}\right)$.
CHARACTER* 1 . Specifies the form of op (B) used in the matrix multiplication:
if transb $=$ ' N ' or ' n ', then op $(B)=B$;
if transb $=$ ' T ' or ' t ', then op $(B)=B$ ';
if transb $=$ ' C ' or ' c ', then $o p(B)=\operatorname{conjg}\left(B^{\prime}\right)$.
INTEGER. Specifies the number of rows of the matrix op (A) and of the matrix C. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (B) and the number of columns of the matrix C.
The value of n must be at least zero.
INTEGER. Specifies the number of columns of the matrix op (A) and the number of rows of the matrix op (B).

The value of k must be at least zero.
COMPLEX for cgemm 3 m
DOUBLE COMPLEX for zgemm3m
Specifies the scalar alpha.
COMPLEX for cgemm 3 m
DOUBLE COMPLEX for zgemm3m
Array, size lda by $k a$, where $k a$ is k when transa $=$ ' N ' or ' n ', and is m otherwise. Before entry with transa $=$ ' N ' or ' n ', the leading m-by- k part of the array a must contain the matrix A, otherwise the leading k-by-m part of the array a must contain the matrix A.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program.
When transa $=$ ' N ' or ' n ', then lda must be at least max $(1, m)$, otherwise lda must be at least max $(1, k)$.

COMPLEX for cgemm3m
DOUBLE COMPLEX for zgemm3m

Array, size $l d b$ by $k b$, where $k b$ is n when transa $={ }^{\prime} N^{\prime}$ or ' n ', and is k otherwise. Before entry with transa $=$ ' N ' or ' n ', the leading k-by-n part of the array b must contain the matrix B, otherwise the leading $n-b y-k$ part of the array b must contain the matrix B.

INTEGER. Specifies the leading dimension of b as declared in the calling (sub)program.

When transa $=$ ' N ' or ' n ', then $l d b$ must be at least max $(1, k)$, otherwise $1 d b$ must be at least $\max (1, n)$.

COMPLEX for cgemm3m
DOUBLE COMPLEX for zgemm3m
Specifies the scalar beta.
When beta is equal to zero, then c need not be set on input.
COMPLEX for cgemm3m
DOUBLE COMPLEX for zgemm3m
Array, size $l d c$ by n. Before entry, the leading m-by- n part of the array c must contain the matrix C, except when beta is equal to zero, in which case c need not be set on entry.

INTEGER. Specifies the leading dimension of c as declared in the calling (sub)program.

The value of $I d c$ must be at least max $(1, m)$.

Output Parameters

c
Overwritten by the m-by-n matrix (alpha*op (A)*op $(B)+$ beta* C).

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine gemm3m interface are the following:
a
Holds the matrix A of size ($m a, k a$) where

```
ka = k if transa='N',
ka = m otherwise,
ma = m if transa='N',
ma = k otherwise.
```

b
Holds the matrix B of size $(m b, k b)$ where

```
kb = n if transb = 'N',
kb = k otherwise,
mb = k if transb = 'N',
mb = n otherwise.
```

```
c Holds the matrix C of size (m,n).
transa Must be 'N', 'C', or 'T'.
The default value is 'N'.
Must be 'N', 'C', or 'T'.
The default value is 'N'.
The default value is 1.
The default value is 1.
```


Application Notes

These routines perform a complex matrix multiplication by forming the real and imaginary parts of the input matrices. This uses three real matrix multiplications and five real matrix additions instead of the conventional four real matrix multiplications and two real matrix additions. The use of three real matrix multiplications reduces the time spent in matrix operations by 25%, resulting in significant savings in compute time for large matrices.

If the errors in the floating point calculations satisfy the following conditions:
$f l(x \circ p y)=(x \circ p y)(1+\delta),|\delta| \leq u, \circ p=x, /, f l(x \pm y)=x(1+\alpha) \pm y(1+\beta), \quad|\alpha|,|\beta| \leq u$
then for an n-by-n matrix $\hat{C}=f l\left(C_{1}+i C_{2}\right)=f l\left(\left(A_{1}+i A_{2}\right)\left(B_{1}+i B_{2}\right)\right)=\hat{C}_{1}+i \hat{C}_{2}$, the following bounds are satisfied:
$\left\|\hat{C}_{1}-C_{1}\right\| \leq 2(n+1) u\|A\|_{\infty}\|B\|_{\infty}+O\left(u^{2}\right)$,
$\left\|\hat{C}_{2}-C_{2}\right\| \leq 4(n+4) u\|A\|_{\infty}\|B\|_{\infty}+O\left(u^{2}\right)$,
where $\|A\|_{\infty}=\max \left(\left\|A_{1}\right\|_{\infty},\left\|A_{2}\right\|_{\infty}\right)$, and $\|B\|_{\infty}=\max \left(\left\|B_{1}\right\|_{\infty},\left\|B_{2}\right\|_{\infty}\right)$.
Thus the corresponding matrix multiplications are stable.

?gemm_batch

Computes scalar-matrix-matrix products and adds the results to scalar matrix products for groups of general matrices.

Syntax

```
call sgemm_batch(transa_array, transb_array, m_array, n_array, k_array, alpha_array,
a_array, lda_array, b_array, ldb_array, beta_array, c_array, ldc_array, group_count,
group_size)
call dgemm_batch(transa_array, transb_array, m_array, n_array, k_array, alpha_array,
a_array, lda_array, b_array, ldb_array, beta_array, c_array, ldc_array, group_count,
group_size)
call cgemm_batch(transa_array, transb_array, m_array, n_array, k_array, alpha_array,
a_array, lda_array, b_array, ldb_array, beta_array, c_array, ldc_array, group_count,
group_size)
call zgemm_batch(transa_array, transb_array, m_array, n_array, k_array, alpha_array,
a_array, lda_array, b_array, ldb_array, beta_array, c_array, ldc_array, group_count,
group_size)
call sgemm_batch(a_array, b_array, c_array, m_array, n_array, k_array, group_size
[,transa_array][,transb_array] [,alpha_array][,beta_array])
```

```
call dgemm_batch(a_array, b_array, c_array, m_array, n_array, k_array, group_size
[,transa_array][,transb_array] [,alpha_array][,beta_array])
call cgemm_batch(a_array, b_array, c_array, m_array, n_array, k_array, group_size
[,transa_array][,transb_array] [,alpha_array][,beta_array])
call zgemm_batch(a_array, b_array, c_array, m_array, n_array, k_array, group_size
[,transa_array][,transb_array] [,alpha_array][,beta_array])
```


Include Files

- mkl.fi,blas.f90

Description

The ?gemm_batch routines perform a series of matrix-matrix operations with general matrices. They are similar to the ?gemm routine counterparts, but the ?gemm_batch routines perform matrix-matrix operations with groups of matrices, processing a number of groups at once. The groups contain matrices with the same parameters.

The operation is defined as

```
idx = 1
for i = 1..group_count
    alpha and beta in alpha_array(i) and beta_array(i)
    for j = 1..group_size(i)
        A, B, and C matrix in a_array(idx), b_array(idx), and c_array(idx)
        C := alpha*op (A)*op (B) + beta*C,
        idx = idx + 1
    end for
end for
```

where:
op (X) is one of op $(X)=X$, or op $(X)=X^{\mathrm{T}}$, or op $(X)=X^{\mathrm{H}}$,
alpha and beta are scalar elements of alpha_array and beta_array,
A, B and C are matrices such that for m, n, and k which are elements of m_{-}array, n_{-}array, and k_{-}array: $\mathrm{op}(A)$ is an m-by- k matrix,
$o p(B)$ is a k-by-n matrix,
C is an m-by-n matrix.
A, B, and C represent matrices stored at addresses pointed to by a_array, b_array, and c_array, respectively. The number of entries in a_array, b_array, and c_array is total_batch_count $=$ the sum of all of the group_size entries.
See also gemm for a detailed description of multiplication for general matrices and ?gemm3m_batch, BLASlike extension routines for similar matrix-matrix operations.

NOTE

Error checking is not performed for oneMKL Windows* single dynamic libraries for the?gemm_batch routines.

Input Parameters

transa_array	CHARACTER*1. Array of size group_count. For the group i, transa $i_{i}=$ transa_array(i) specifies the form of op (A) used in the matrix multiplication:
	if transa ${ }_{i}=$ ' N ' or ' n ', then op (A) $=A$;
	if transai $=$ 'T' or 't', then op (A) = $A^{\text {T }}$;
	if transa ${ }_{i}=$ 'C' or 'c', then op $(A)=A^{\text {H. }}$.
transb_array	CHARACTER*1. Array of size group_count. For the group i, $\operatorname{trans} b_{i}=$ transb_array (i) specifies the form of op (B_{i}) used in the matrix multiplication:
	if transb ${ }_{i}=$ ' N ' or ' n ', then op (B) $=B$;
	if transb ${ }_{i}=$ 'T' or 't', then op $(B)=B^{\text {T }}$;
	if transb ${ }_{i}={ }^{\prime} C^{\prime}$ or ' C^{\prime} ', then op $(B)=B^{\mathrm{H}}$.
m_array	INTEGER. Array of size group_count. For the group $i, m_{i}=m \quad$ array (i) specifies the number of rows of the matrix op (A) and of the matrix C.
	The value of each element of m_array must be at least zero.
n_array	INTEGER. Array of size group_count. For the group $i, n_{i}=n_{-}$array(i) specifies the number of columns of the matrix op (B) and the number of columns of the matrix C.
	The value of each element of n _array must be at least zero.
k_array	INTEGER. Array of size group_count. For the group $i, k_{i}=k \_a r r a y(i)$ specifies the number of columns of the matrix op (A) and the number of rows of the matrix op (B).
	The value of each element of k _array must be at least zero.
alpha_array	REAL for sgemm_batch
	DOUBLE PRECISION for dgemm_batch
	COMPLEX for cgemm_batch
	DOUBLE COMPLEX for zgemm_batch
	Array of size group_count. For the group i, alpha_array(i) specifies the scalar alpha ${ }_{i}$.
a_array	INTEGER*8 for Intel ${ }^{\oplus} 64$ architecture
	INTEGER* 4 for IA-32 architecture
	Array, size total_batch_count, of pointers to arrays used to store A matrices.
lda_array	INTEGER. Array of size group_count. For the group $i, 1 d a_{i}=$ Ida_array (i) specifies the leading dimension of the array storing matrix A as declared in the calling (sub)program.
	When transa $i_{i}=$ 'N' or 'n', then $/ d a_{i}$ must be at least max $\left(1, m_{i}\right)$, otherwise $/ d a_{i}$ must be at least max $\left(1, k_{i}\right)$.

```
b_array
ldb_array
```

beta_array
c_array
Idc_array
group_count
group_size

INTEGER* 8 for Intel ${ }^{\circledR} 64$ architecture
INTEGER*4 for IA-32 architecture
Array, size total_batch_count, of pointers to arrays used to store B matrices.

INTEGER.
Array of size group_count. For the group $i, I d b_{i}=1 d b_{\text {_array }}(i)$ specifies the leading dimension of the array storing matrix B as declared in the calling (sub)program.

When transbi $=$ ' N ' or 'n', then $l d b_{i}$ must be at least max $\left(1, k_{i}\right)$, otherwise $l d b_{i}$ must be at least max $\left(1, n_{i}\right)$.

REAL for sgemm_batch
DOUBLE PRECISION for dgemm_batch
COMPLEX for cgemm_batch
DOUBLE COMPLEX for zgemm_batch
Array of size group_count. For the group i, beta_array(i) specifies the scalar beta ${ }_{i}$.

When beta ${ }_{i}$ is equal to zero, then C matrices in group i need not be set on input.

INTEGER* 8 for Intel ${ }^{\circledR} 64$ architecture
INTEGER*4 for IA-32 architecture
Array, size total_batch_count, of pointers to arrays used to store C matrices.

INTEGER.
Array of size group_count. For the group $i, l d c_{i}=1 d c_{\text {_ }}$ array (i) specifies the leading dimension of all arrays storing matrix C in group i as declared in the calling (sub)program.
$l d c_{i}$ must be at least $\max \left(1, m_{i}\right)$.
INTEGER.
Specifies the number of groups. Must be at least 0 .
INTEGER.
Array of size group_count. The element group_size(i) specifies the number of matrices in group i. Each element in group_size must be at least 0.

Output Parameters

```
c_array
```

Output buffer, overwritten by total_batch_count matrix multiply operations of the form alpha*op (A)*op (B) + beta*C.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine gemm_batch interface are the following:

a_array	Holds pointers to arrays containing matrices A of size ($m a, k a$) where
	$k a=k$ if transa='N',
	$k a=m$ otherwise,
	$m a=m$ if transa ${ }^{\prime} \mathrm{N}^{\prime}$,
	$m a=k$ otherwise.
b_array	Holds pointers to arrays containing matrices B of size ($m b, k b$) where
	$k b=n$ if transb_array $=$ ' N^{\prime},
	$k b=k$ otherwise,
	$m b=k$ if transb_array $=$ ' N^{\prime},
	$m b=n$ otherwise.
c_array	Holds pointers to arrays containing matrices C of size (m, n).
m_array	Array indicating number of rows of matrices op (A) and C for each group.
n_array	Array indicating number of columns of matrices op (B) and C for each group.
k_array	Array indicating number of columns of matrices op (A) and number of rows of matrices op (B) for each group.
group_size	Array indicating number of matrices for each group. Each element in group_size must be at least 0.
transa_array	Array with each element set to one of ' N ', ' C^{\prime}, or ' T^{\prime} '.
	The default values are ' N '.
transb_array	Array with each element set to one of ' N^{\prime}, ' C^{\prime}, or ' T^{\prime}.
	The default values are ' N '.
alpha_array	Array of alpha values; the default value is 1 .
beta_array	Array of beta values; the default value is 0 .

?gemm_batch_strided
 Computes groups of matrix-matrix product with general matrices.

Syntax

```
call sgemm_batch_strided(transa, transb, m, n, k, alpha, a, lda, stridea, b, ldb,
strideb, beta, c, ldc, stridec, batch_size)
call dgemm_batch_strided(transa, transb, m, n, k, alpha, a, lda, stridea, b, ldb,
strideb, beta, c, ldc, stridec, batch_size)
```

```
call cgemm_batch_strided(transa, transb, m, n, k, alpha, a, lda, stridea, b, ldb,
strideb, beta, c, ldc, stridec, batch_size)
call zgemm_batch_strided(transa, transb, m, n, k, alpha, a, lda, stridea, b, ldb,
strideb, beta, c, ldc, stridec, batch_size)
```


Include Files

- mkl.fi

Description

The ?gemm_batch_strided routines perform a series of matrix-matrix operations with general matrices. They are similar to the ?gemm routine counterparts, but the ?gemm_batch_strided routines perform matrixmatrix operations with groups of matrices. The groups contain matrices with the same parameters.
All matrix a (respectively, b or c) have the same parameters (size, leading dimension, transpose operation, alpha, beta scaling) and are stored at constant stridea (respectively, strideb or stridec) from each other. The operation is defined as

```
For i = 0 ... batch_size - 1
    Ai, Bi and Ci are matrices at offset i * stridea, i * strideb and i * stridec in a, b and c
    Ci = alpha * Ai * Bi + beta * Ci
end for
```


Input Parameters

```
transa
transb
m
n
k
alpha
CHARACTER*1.
Specifies op(A) the transposition operation applied to the matrices \(A\).
if transa \(=\) ' N ' or ' n ', then \(\mathrm{op}(\mathrm{A})=A\);
if transa \(=\) ' \(T\) ' or ' t ' , then op \((A)=A^{\top}\);
if transa \(=\) ' \(C^{\prime}\) ' or ' \(c\) ' , then \(o p(A)=A^{H}\).
CHARACTER*1.
Specifies op(B) the transposition operation applied to the matrices \(B\).
if transb \(=\) ' \(N\) ' or ' \(n\) ', then \(o p(B)=B\);
if transb \(=\) ' \(T\) ' or ' t ', then \(\mathrm{op}(\mathrm{B})=\mathrm{B}^{\top}\);
if transb \(=\) ' \(C\) ' or ' \(C^{\prime}\), then \(o p(B)=B^{H}\).
INTEGER. Number of rows of the op \((A)\) and \(C\) matrices. Must be at least 0 .
Integer. Number of columns of the op(B) and \(C\) matrices. Must be at least 0.
INTEGER. Number of columns of the \(\mathrm{op}(\mathrm{A})\) matrix and number of rows of the op(B) matrix. Must be at least 0 .
REAL for sgemm_batch_strided
DOUBLE PRECISION for dgemm_batch_strided
COMPLEX for cgemm_batch_strided
DOUBLE COMPLEX for zgemm_batch_strided
Specifies the scalar alpha.
```

a
b

C

REAL for sgemm_batch_strided
DOUBLE PRECISION for dgemm_batch_strided
COMPLEX for cgemm_batch_strided
DOUBLE COMPLEX for zgemm_batch_strided
Array of size at least stridea*batch_size holding the a matrices.

transa='N' or 'n'	transa='T' or 't' or 'C' or 'c'

INTEGER. Specifies the leading dimension of the a matrices.

transa='N' or 'n'	transa='T' or 't' or 'C' or 'c'

INTEGER. Stride between two consecutive a matrices.

transa='N' or 'n'	transa='T' or 't' or 'C' or 'c'

REAL for sgemm_batch_strided
DOUBLE PRECISION for dgemm_batch_strided
COMPLEX for cgemm_batch_strided
DOUBLE COMPLEX for zgemm_batch_strided
Array of size at least strideb*batch_size holding the b matrices.

transb='N' or 'n'	transb='T' or 't' or 'C' or 'c'

INTEGER. Specifies the leading dimension of the b matrices.

INTEGER. Stride between two consecutive b matrices.

transa $=$ 'N' or 'n'	transa='T' or 't' or 'C' or 'c'

REAL for sgemm_batch_strided
DOUBLE PRECISION for dgemm_batch_strided
COMPLEX for cgemm_batch_strided
DOUBLE COMPLEX for zgemm_batch_strided
Specifies the scalar beta.
REAL for sgemm_batch_strided
DOUBLE PRECISION for dgemm_batch_strided
COMPLEX for cgemm_batch_strided
DOUBLE COMPLEX for zgemm_batch_strided

Array of size at least stridec*batch_size holding the c matrices.

Idc
INTEGER.
Specifies the leading dimension of the c matrices.
Must be at least $\max (1, m)$.
INTEGER.
Specifies the stride between two consecutive c matrices.
Must be at least Idc*n.
INTEGER.
Number of gemm computations to perform and a, b and c matrices. Must be at least 0 .

Output Parameters

c
Array holding the batch_size updated c matrices.

?gemm3m_batch_strided
 Computes groups of matrix-matrix product with general matrices.

Syntax

```
call cgemm3m_batch_strided(transa, transb, m, n, k, alpha, a, lda, stridea, b, ldb,
strideb, beta, c, ldc, stridec, batch_size)
call zgemm3m_batch_strided(transa, transb, m, n, k, alpha, a, lda, stridea, b, ldb,
strideb, beta, c, ldc, stridec, batch_size)
```


Include Files

- mkl.fi

Description

The ? gemm3m_batch_strided routines perform a series of matrix-matrix operations with general matrices. They are similar to the ?gemm routine counterparts, but the ?gemm3m_batch_strided routines perform matrix-matrix operations with groups of matrices. The groups contain matrices with the same parameters.
All matrix a (respectively, b or c) have the same parameters (size, leading dimension, transpose operation, alpha, beta scaling) and are stored at constant stridea (respectively, strideb or stridec) from each other. The operation is defined as

```
For i = 0 ... batch_size - 1
    Ai, Bi and Ci are matrices at offset i * stridea, i * strideb and i * stridec in a, b and c
    Ci = alpha * Ai * Bi + beta * Ci
end for
```

The ? gemm3m_batch_strided routines use fewer matrix multiplications than the ?gemm routines, as described in the Application Notes below.

Input Parameters
transa
CHARACTER*1.
m
n
k
alpha
a
b

1 db

Specifies op (A) the transposition operation applied to the matrices A.
if transa $=$ ' N ' or ' n ' , then $\mathrm{op}(\mathrm{A})=\mathrm{A}$;
if transa $=$ ' T ' or ' t ' , then $\mathrm{op}(A)=\mathrm{A}^{\top}$;
if transa $=$ ' C ' or ' c ' , then $o p(A)=A^{H}$.
CHARACTER*1.
Specifies op(B) the transposition operation applied to the matrices B.
if transb $=$ ' N ' or ' n ', then op $(B)=B$;
if transb $=$ ' T ' or ' t ', then $\mathrm{op}(\mathrm{B})=\mathrm{B}^{\top}$;
if transb $=$ ' C^{\prime} ' or ' c ', then $\mathrm{op}(\mathrm{B})=\mathrm{B}^{\mathrm{H}}$.
INTEGER. Number of rows of the $o p(A)$ and C matrices. Must be at least 0 .
INTEGER. Number of columns of the op(B) and C matrices. Must be at least 0.

INTEGER. Number of columns of the op(A) matrix and number of rows of the $o p(B)$ matrix. Must be at least 0 .

COMPLEX for cgemm3m_batch_strided
DOUBLE COMPLEX for zgemm3m_batch_strided
Specifies the scalar alpha.
COMPLEX for cgemm3m_batch_strided
DOUBLE COMPLEX for zgemm3m_batch_strided
Array of size at least stridea*batch_size holding the a matrices.

transa='N' or 'n'	transa='T' or 't' or 'C' or 'c'

INTEGER. Specifies the leading dimension of the a matrices.

transa='N' or 'n'	transa='T' or 't' or 'C' or 'c'

INTEGER. Stride between two consecutive a matrices.

transa='N' or 'n'	transa='T' or 't' or 'C' or 'c'

COMPLEX for cgemm3m_batch_strided
DOUBLE COMPLEX for zgemm3m_batch_strided
Array of size at least strideb*batch_size holding the b matrices.

transb $=$ 'N' or 'n'	transb='T' or 't' or 'C' or 'c'

INTEGER. Specifies the leading dimension of the b matrices.

transab='N' or 'n'	transb='T' or 't' or 'C' or 'c'

```
strideb INTEGER. Stride between two consecutive b matrices.
    transa='N' or 'n' }\quad\mathrm{ transa='T' or 't' or 'C' or 'c'
COMPLEX for cgemm3m_batch_strided
DOUBLE COMPLEX for zgemm3m_batch_strided
Specifies the scalar beta.
COMPLEX for cgemm3m_batch_strided
DOUBLE COMPLEX for zgemm3m_batch_strided
Array of size at least stridec*batch_size holding the \(c\) matrices.
INTEGER.
Specifies the leading dimension of the \(c\) matrices.
Must be at least \(\max (1, m)\).
INTEGER.
Specifies the stride between two consecutive c matrices.
Must be at least Idc* \(n\).
INTEGER.
Number of gemm computations to perform and \(a, b\) and \(c\) matrices. Must be at least 0 .
```


Output Parameters

c
Array holding the batch_size updated c matrices.

Application Notes

These routines perform a complex matrix multiplication by forming the real and imaginary parts of the input matrices. This uses three real matrix multiplications and five real matrix additions instead of the conventional four real matrix multiplications and two real matrix additions. The use of three real matrix multiplications reduces the time spent in matrix operations by 25%, resulting in significant savings in compute time for large matrices.
If the errors in the floating point calculations satisfy the following conditions:
$f l(x$ op $y)=(x$ op $y)(1+\delta),|\delta| \leq u, o p=x, /, f l(x \pm y)=x(1+\alpha) \pm y(1+\beta),|\alpha|,|\beta| \leq u$
then for an $n-b y-n$ matrix $\hat{C}=f 1(C 1+i C 2)=f 1((A 1+i A 2)(B 1+i B 2))=\hat{C} 1+i \hat{C} 2$, the following bounds are satisfied:

$$
\begin{aligned}
& \|\hat{C} 1-C 1\| \leq 2(n+1) u\|A\| \infty\|B\| \infty+0(u 2), \\
& \|\hat{C} 2-C 2\| \leq 4(n+4) u\|A\| \infty\|B\| \infty+0(u 2),
\end{aligned}
$$

where $\|A\| \infty=\max (\|A 1\| \infty,\|A 2\| \infty)$, and $\|B\| \infty=\max (\|B 1\| \infty,\|B 2\| \infty)$.
Thus the corresponding matrix multiplications are stable.

```
?gemm3m_batch
Computes scalar-matrix-matrix products and adds the
results to scalar matrix products for groups of general
matrices.
```


Syntax

```
call cgemm3m_batch(transa_array, transb_array, m_array, n_array, k_array, alpha_array,
a_array, lda_array, b_array, ldb_array, beta_array, c_array, ldc_array, group_count,
group_size)
call zgemm3m_batch(transa_array, transb_array, m_array, n_array, k_array, alpha_array,
a_array, lda_array, b_array, ldb_array, beta_array, c_array, ldc_array, group_count,
group_size)
call cgemm3m_batch(a_array, b_array, c_array, m_array, n_array, k_array, group_size
[,transa_array][,transb_array] [,alpha_array][,beta_array])
call zgemm3m_batch(a_array, b_array, c_array, m_array, n_array, k_array, group_size
[,transa_array][,transb_array] [,alpha_array][,beta_array])
```


Include Files

- mkl.fi, blas.f90

Description

The ?gemm3m_batch routines perform a series of matrix-matrix operations with general matrices. They are similar to the ? gemm 3 m routine counterparts, but the ?gemm3m_batch routines perform matrix-matrix operations with groups of matrices, processing a number of groups at once. The groups contain matrices with the same parameters. The ?gemm3m_batch routines use fewer matrix multiplications than the ?gemm_batch routines, as described in the Application Notes.

The operation is defined as

```
idx = 1
for i = 1..group_count
    alpha and beta in alpha array(i) and beta array(i)
    for j = 1..group_size(i)
            A, B, and C matrix in a_array(idx), b_array(idx), and c_array(idx)
            C := alpha*op(A)*op(B) + beta*C,
            idx = idx + 1
    end for
end for
```

where:
op (X) is one of op $(X)=X$, or op $(X)=X^{\mathrm{T}}$, or op $(X)=X^{\mathrm{H}}$,
alpha and beta are scalar elements of alpha_array and beta_array,
A, B and C are matrices such that for m, n, and k which are elements of m_array, n_array, and $k \_a r r a y$: $o p(A)$ is an m-by- k matrix,
$o p(B)$ is a k-by-n matrix,
C is an m-by- n matrix.
A, B, and C represent matrices stored at addresses pointed to by a_array, b_array, and c_array, respectively. The number of entries in a_array, b_array, and c_array is total_batch_count = the sum of all the group_size entries.

See also gemm for a detailed description of multiplication for general matrices and gemm_batch, BLAS-like extension routines for similar matrix-matrix operations.

NOTE

Error checking is not performed for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Windows* single dynamic libraries for the?gemm 3 m _batch routines.

Input Parameters

transa_array	CHARACTER*1. Array of size group_count. For the group i, transa $i_{i}=$ transa_array(i) specifies the form of op (A) used in the matrix multiplication: if transa ${ }_{i}=$ 'N' or 'n', then op $(A)=A$; if transa $i_{i}=$ 'T' or't', then op $(A)=A^{T}$; if transai $=$ 'C' or 'C', then op $(A)=A^{H}$.
transb_array	CHARACTER*1. Array of size group_count. For the group i, transb $i_{i}=$ transb_array (i) specifies the form of op $\left(B_{i}\right)$ used in the matrix multiplication: if $\operatorname{transb}_{i}=$ 'N' or ' n ', then op $(B)=B$; if transb $\mathcal{F}_{i}=$ 'T' or't', then op $(B)=B^{T}$; if transb ${ }_{i}=$ 'C' or ' C ', then $o p(B)=B^{H}$.
m_array	INTEGER. Array of size group_count. For the group $i, m_{i}=m$ array (i) specifies the number of rows of the matrix op (A) and of the matrix C. The value of each element of m_array must be at least zero.
n_array	INTEGER. Array of size group_count. For the group $i, n_{i}=n_{-}$array (i) specifies the number of columns of the matrix op (B) and the number of columns of the matrix C. The value of each element of $n_{\text {_ }}$ array must be at least zero.
k_array	INTEGER. Array of size group_count. For the group $i, k_{i}=k$ _array (i) specifies the number of columns of the matrix op (A) and the number of rows of the matrix op (B).
	The value of each element of k _array must be at least zero.
alpha_array	COMPLEX for cgemm3m_batch
	DOUBLE COMPLEX for zgemm3m_batch
	Array of size group_count. For the group i, alpha_array(i) specifies the scalar alpha ${ }_{i}$.
a_array	INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture
	INTEGER*4 for IA-32 architecture

lda_array	INTEGER. Array of size group_count. For the group $i, I d a_{i}=$ Ida_array(i) specifies the leading dimension of the array storing matrix A as declared in the calling (sub)program.
	When transa $i_{i}={ }^{\prime} N$ ' or 'n', then $/ d a_{i}$ must be at least max $\left(1, m_{i}\right)$, otherwise $/ d a_{i}$ must be at least max $\left(1, k_{i}\right)$.
b array	INTEGER* 8 for Intel ${ }^{\circledR} 64$ architecture
	INTEGER*4 for IA-32 architecture
	Array, size total_batch_count, of pointers to arrays used to store B matrices.
Idb_array	INTEGER.
	Array of size group_count. For the group $i, I d b_{i}=1 d b_{\text {_array }}(i)$ specifies the leading dimension of the array storing matrix B as declared in the calling (sub)program.
	When transb $i_{i}=$ ' N ' or ' n ', then $I d b_{i}$ must be at least max $\left(1, k_{i}\right)$, otherwise $1 d b_{i}$ must be at least max ($1, n_{i}$).
beta_array	COMPLEX for cgemm3m_batch
	DOUBLE COMPLEX for zgemm3m_batch
	For the group i, beta_array (i) specifies the scalar beta ${ }_{\text {i }}$.
	When beta ${ }_{i}$ is equal to zero, then C matrices in group i need not be set on input.
c_array	INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture
	INTEGER*4 for IA-32 architecture
	Array, size total_batch_count, of pointers to arrays used to store C matrices.
Idc_array	INTEGER.
	Array of size group_count. For the group $i, I d c_{i}=I d c_{\text {_ }}$ array (i) specifies the leading dimension of all arrays storing matrix C in group i as declared in the calling (sub)program.
	$I d c_{i}$ must be at least max $\left(1, m_{i}\right)$.
group_count	INTEGER.
	Specifies the number of groups. Must be at least 0 .
group_size	INTEGER.
	Array of size group_count. The element group_size(i) specifies the number of matrices in group i. Each element in group_size must be at least 0 .

Output Parameters

```
c_array
```

Overwritten by the m_{i}-by- n_{i} matrix (alphai*op $(A) \star o p(B)+b e t a_{i} \star C$) for group i.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.
Specific details for the routine gemm3m_batch interface are the following:

```
a_array
b_array
c_array
m_array
n_array
k_array
group_size
transa_array
transb_array
alpha_array
beta_array
    ka = k if transa='N',
    ka = motherwise,
    ma = mif transa='N',
    ma = k otherwise.
    Holds pointers to arrays containing matrices B of size ( }mb,kb\mathrm{ ) where
    kb = n if transb_array = 'N',
    kb = k otherwise,
    mb = k if transb_array = 'N',
    mb = n otherwise.
    Holds pointers to arrays containing matrices C of size (m,n).
    Array indicating number of rows of matrices op (A) and C for each group.
    Array indicating number of columns of matrices op (B) and C for each
    group.
    Array indicating number of columns of matrices op (A) and number of rows
    of matrices op ( }B\mathrm{ ) for each group.
    Array indicating number of matrices for each group. Each element in
    group_size must be at least 0.
    Array with each element set to one of 'N','C', or 'T'.
    The default values are 'N'.
    Array with each element set to one of 'N','C', or 'T'.
    The default values are 'N'.
    Array of alpha values; the default value is 1.
    Array of beta values; the default value is 0.
```


Application Notes

These routines perform a complex matrix multiplication by forming the real and imaginary parts of the input matrices. This uses three real matrix multiplications and five real matrix additions instead of the conventional four real matrix multiplications and two real matrix additions. The use of three real matrix multiplications reduces the time spent in matrix operations by 25%, resulting in significant savings in compute time for large matrices.
If the errors in the floating point calculations satisfy the following conditions:

```
fl(x op y)=(x op y) (1+\delta), |\delta|\lequ, op=x,/, fl (x\pmy)=x(1+\alpha)\pmy(1+\beta), |\alpha|, | | | \lequ
```

then for an n-by-n matrix $\hat{C}=f l\left(C_{1}+i C_{2}\right)=f l\left(\left(A_{1}+i A_{2}\right)\left(B_{1}+i B_{2}\right)\right)=\hat{C}_{1}+i \hat{C}_{2}$, the following bounds are satisfied:

```
\(\left\|\hat{C}_{1}-C_{1}\right\| \leq 2(n+1) u\|A\|_{\infty}\|B\|_{\infty}+O\left(u^{2}\right)\),
\(\left\|\hat{C}_{2}-C_{2}\right\| \leq 4(n+4) u\|A\|_{\infty}\|B\|_{\infty}+O\left(u^{2}\right)\),
where \(\|A\|_{\infty}=\max \left(\left\|A_{1}\right\|_{\infty},\left\|A_{2}\right\|_{\infty}\right)\), and \(\|B\|_{\infty}=\max \left(\left\|B_{1}\right\| \infty,\left\|B_{2}\right\|_{\infty}\right)\).
```

Thus the corresponding matrix multiplications are stable.

?trsm_batch

Solves a triangular matrix equation for a group of matrices.

Syntax

```
call strsm_batch(side_array, uplo_array, transa_array, diag_array, m_array, n_array,
alpha_array, a_array, lda_array, b_array, ldb_array, group_count, group_size)
call dtrsm_batch(side_array, uplo_array, transa_array, diag_array, m_array, n_array,
alpha_array, a_array, lda_array, b_array, ldb_array, group_count, group_size)
call ctrsm_batch(side_array, uplo_array, transa_array, diag_array, m_array, n_array,
alpha_array, a_array, lda_array, b_array, ldb_array, group_count, group_size)
call ztrsm_batch(side_array, uplo_array, transa_array, diag_array, m_array, n_array,
alpha_array, a_array, lda_array, b_array, ldb_array, group_count, group_size)
```


Include Files

- mkl.fi,blas.f90

Description

The ?trsm_batch routines solve a series of matrix equations. They are similar to the ?trsm routines except that they operate on groups of matrices which have the same parameters. The ?trsm_batch routines process a number of groups at once.

```
idx = 1
for i = 1..group_count
    alpha in alpha_array(i)
    for j = 1..group_size(i)
        A and B matrix in a_array(idx) and b_array(idx)
        Solve op(A)*X = alpha\starB
            or
            Solve X*op(A) = alpha*B
```

```
    idx = idx + 1
    end for
end for
```

where:
alpha is a scalar element of alpha_array,
X and B are m-by- n matrices for m and n which are elements of $m_{\text {_ }}$ array and n_{-}array, respectively,
A is a unit, or non-unit, upper or lower triangular matrix,
and op (A) is one of op $(A)=A$, or op $(A)=A^{T}, \operatorname{orop}(A)=\operatorname{conjg}\left(A^{\mathrm{T}}\right)$.
A and B represent matrices stored at addresses pointed to by a_array and b_array, respectively. There are total_batch_count entries in each of a_array and b_array, where total_batch_count is the sum of all the group_size entries.

Input Parameters

side_array
uplo_array
transa_array
diag_array
m_array
n_array
alpha_array

CHARACTER*1. Array of size group_count. For group $i, 1 \leq i \leq g r o u p \_c o u n t$, side $_{i}=$ side_array (i) specifies whether op (A) appears on the left or right of X in the equation:
if side $_{i}=$ 'L' or 'l', then op $(A) * X=$ alpha*B;
if side $_{i}=$ 'R' or 'r', then $X^{\star} o p(A)=a l p h a \star B$.
CHARACTER*1. Array of size group_count. For group $i, 1 \leq i \leq g r o u p \_c o u n t$, $u^{\prime} / o_{i}=$ uplo_array(i) specifies whether the matrix A is upper or lower triangular:
uplo ${ }_{i}=$ 'U' or 'u'
if $u p l o_{i}=$ 'L' or 'l', then the matrix is low triangular.
CHARACTER*1. Array of size group_count. For group $i, 1 \leq i \leq g r o u p \_c o u n t$, transa $a_{i}=$ transa_array (i) specifies the form of op (A) used in the matrix multiplication:
if transa $a_{i}={ }^{\prime} N$ ' or 'n', then op $(A)=A$;
if transa ${ }_{i}=$ 'T' or 't';
if transa ${ }_{i}=$ 'C' or 'c', then op $(A)=\operatorname{conjg}(A$ ').
CHARACTER*1. Array of size group_count. For group $i, 1 \leq i \leq g r o u p \_c o u n t$, $\operatorname{diag}_{i}=$ diag_array (i) specifies whether the matrix A is unit triangular:
if $\operatorname{diag}_{i}=$ 'U' or 'u' then the matrix is unit triangular;
if $\operatorname{diag}_{i}=$ ' N ' or ' n ', then the matrix is not unit triangular.
INTEGER. Array of size group_count. For group $i, 1 \leq i \leq g r o u p \_c o u n t, ~ m_{i}=$ $m_{\text {_array }}(i)$ specifies the number of rows of B. The value of m_{i} must be at least zero.

INTEGER. Array of size group_count. For group $i, 1 \leq i \leq g r o u p \_c o u n t, n_{i}=$ $n^{n} \operatorname{array}(i)$ specifies the number of columns of B. The value of n_{i} must be at least zero.

REAL for strsm_batch
DOUBLE PRECISION for dtrsm_batch

	COMPLEX for ctrsm_batch
	DOUBLE COMPLEX for ztrsm_batch
	Array of size group_count. For group i, $1 \leq i \leq g r o u p \_c o u n t, ~ a l p h a \_a r r a y(i)$ specifies the scalar alpha ${ }_{i}$.
a_array	INTEGER* 8 for Intel ${ }^{\oplus} 64$ architecture
	INTEGER* 4 for IA-32 architecture
	Array, size total_batch_count, of pointers to arrays used to store A matrices.
	For group $i, 1 \leq i \leq g r o u p \_c o u n t, k$ is m_{i} when side $_{i}=$ 'L' or 'l' and is n_{i} when side = 'R' or 'r' and a is any of the group_size(i) arrays starting with a_array(group_size(1) + group_size(2) + ... + group_size(i - 1) + 1):
	Before entry with uplo $o_{i}=$ 'U' or 'u', the leading k by k upper triangular part of the array a must contain the upper triangular matrix and the strictly lower triangular part of a is not referenced.
	Before entry with uploi $=$ 'L' or 'l' lower triangular part of the array a must contain the lower triangular matrix and the strictly upper triangular part of a is not referenced.
	When $\operatorname{diag}_{i}=$ ' U' or 'u', the diagonal elements of a are not referenced either, but are assumed to be unity.
Ida_array	INTEGER. Array of size group_count. For group $i, 1 \leq i \leq g r o u p \_c o u n t, I d a_{i}=$ Ida_array(i) specifies the leading dimension of a as declared in the calling (sub)program. When side $i_{i}=$ 'L' or 'l', then Ida must be at least $\max \left(1, m_{i}\right)$, when $\operatorname{side}_{i}=$ 'R' or 'r', then $/ d a_{i}$ must be at least max (1 , $\left.n_{i}\right)$.
b_array	REAL for strsm_batch
	DOUBLE PRECISION for dtrsm_batch
	COMPLEX for ctrsm_batch
	DOUBLE COMPLEX for ztrsm_batch
	Array, size total_batch_count, of pointers to arrays used to store B matrices.
	For group $i, 1 \leq i \leq g r o u p \_c o u n t, b$ is any of the group_size(i) arrays starting with b_array(group_size(1) + group_size(2) + ... + group_size(i - 1) + 1):
	Before entry, the leading m_{i}-by- n_{i} part of array b must contain the matrix B.
ldb_array	INTEGER. Array of size group_count. Specifies the leading dimension of b as declared in the calling (sub) program. $I d b$ must be at least max ($1, m$).
	INTEGER. Array of size group_count. For group $i, 1 \leq i \leq g r o u p \_c o u n t, I d b_{i}=$ ldb_array(i) specifies the leading dimension of b as declared in the calling (sub) program. $I d b_{i}$ must be at least max $\left(1, m_{i}\right)$.
group_count	INTEGER.

Specifies the number of groups. Must be at least 0 .

```
group_size
```

INTEGER.
Array of size group_count. The element group_size(i) specifies the number of matrices in group i. Each element in group_size must be at least 0 .

Output Parameters

```
b_array
```

Overwritten by the solution matrix X.

BLAS 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see BLAS 95 Interface Conventions.

Specific details for the routine trsm_batch interface are the following:

a_array	Holds pointers to matrices A of size (ma,ma) where ma $=m_{i}$ if side $=$ 'L', ma $=n_{i}$ otherwise.
b_array	Holds pointers to matrices B of size (m_{i}, n_{i}).
m_array	Array indicating the number of rows of matrix C for each group.
n_array	Array indicating the number of columns of matrix B for each group.
group_size	Array indicating the number of matrices for each group. Each element in group_size must be at least zero.
side_array	Array with each element set to either 'L' or 'R'. The default value is 'L'.
uplo_array	Array with each element set to either 'U' or 'L'. The default value is 'U'.
transa_array	Array with each element set to one of 'N', 'C', or 'T'.
	The default value is ' N '.
diag_array	Array with each element set to either 'N' or 'U'. The default value is 'N'.
alpha_array	Array of alphavalues. The default value is 1.

?trsm_batch_strided

Solves groups of triangular matrix equations.
Syntax

```
call strsm_batch_strided(side, uplo, transa, diag, m, n, alpha, a, lda, stridea, b,
ldb, strideb, batch_size)
call dtrsm_batch_strided(side, uplo, transa, diag, m, n, alpha, a, lda, stridea, b,
ldb, strideb, batch_size)
call ctrsm_batch_strided(side, uplo, transa, diag, m, n, alpha, a, lda, stridea, b,
ldb, strideb, batch_size)
call ztrsm_batch_strided(side, uplo, transa, diag, m, n, alpha, a, lda, stridea, b,
ldb, strideb, batch_size)
```


Include Files

- mkl.fi,blas.f90

Description

The ?trsm_batch_strided routines solve a series of triangular matrix equations. They are similar to the ? trsm routine counterparts, but the ?trsm_batch_strided routines solve triangular matrix equations with groups of matrices. All matrix a have the same parameters (size, leading dimension, side, uplo, diag, transpose operation) and are stored at constant stridea from each other. Similarly, all matrix b have the same parameters (size, leading dimension, alpha scaling) and are stored at constant strideb from each other.
The operation is defined as

```
For i = 0 ... batch_size - 1
    Ai, and Bi are matrices at offset i * stridea and i * strideb in a and b
    Solve op(Ai)*Xi = alpha * Bi
            Or
    Solve Xi*op(Ai) = alpha * Bi
end for
```


Input Parameters

```
side
```

uplo
transa
diag
m
n
alpha

CHARACTER*1.
Specifies whether op (A) appears on the left or right of X in the equation.
if side $=$ ' L ' or ' I ', then op $(A) * X=$ alpha*B;
if side $=$ ' R^{\prime} or ' r ', then $X^{*} o p(A)=$ alpha*B.
CHARACTER*1.
Specifies whether the matrices A are upper or lower triangular.
if uplo $=$ ' U ' or 'u', then A are upper triangular;
if uplo $=$ ' L ' or ' I ', then A are lower triangular.

CHARACTER*1.
Specifies op (A) the transposition operation applied to the matrices A.
if transa $=$ ' N ' or ' n ', then op $(A)=A$;
if transa $=$ ' T ' or ' t ', then op $(A)=A^{T}$;
if transa $=$ ' C ' or ' C ', then op $(A)=A^{H}$;
CHARACTER*1.
Specifies whether the matrices A are unit triangular.
if diag $=$ ' U ' or ' u ', then A are unit triangular;
if diag $=$ ' N ' or ' n ', then A are non-unit triangular.
INTEGER.
Number of rows of B matrices. Must be at least 0

INTEGER.
Number of columns of B matrices. Must be at least 0
REAL for strsm_batch_strided

```
DOUBLE PRECISION for dtrsm_batch_strided
COMPLEX for ctrsm_batch_strided
DOUBLE COMPLEX for ztrsm_batch_strided
Specifies the scalar alpha.
REAL for strsm_batch_strided
DOUBLE PRECISION for dtrsm_batch_strided
COMPLEX for ctrsm_batch_strided
DOUBLE COMPLEX for ztrsm_batch_strided
```

Array of size at least stridea*batch_size holding the A matrices. Each A matrix is stored at constant stridea from each other.

Each A matrix has size $l d a^{*} k$, where k is m when side $=$ ' L ' or ' l ' and is n when side $=$ ' R ' or ' r ' .

Before entry with uplo = ' u ' or ' u ', the leading k-by- k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced.
Before entry with uplo = 'L' or 'I' lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced.

When diag = ' u ' or ' u ', the diagonal elements of A are not referenced either, but are assumed to be unity.

INTEGER.
Specifies the leading dimension of the A matrices. When side $=$ ' L ' or ' I ', then Ida must be at least max $(1, m)$, when side $=$ side $=' R$ ' or ' r ', then Ida must be at least max $(1, n)$.

INTEGER.
Stride between two consecutive A matrices.
When side $=$ ' L ' or ' I ', then stridea must be at least $I d{ }^{\star}$. .
When side $=$ side $=$ ' R ' or ' r ', then stridea must be at least $I d a \star n$.
REAL for strsm_batch_strided
DOUBLE PRECISION for dtrsm_batch_strided
COMPLEX for ctrsm_batch_strided
DOUBLE COMPLEX for ztrsm_batch_strided
Array of size at least strideb*batch_size holding the B matrices. Each B matrix is stored at constant strideb from each other.

Each B matrix has size $I d b^{*} n$. Before entry, the leading m-by- n part of the array B must contain the matrix B.

INTEGER.
Specifies the leading dimension of the B matrices.
$I d b$ must be at least max $(1, m)$.

```
strideb
```

batch_size

INTEGER.
Stride between two consecutive B matrices.
strideb must be at least ($I d b^{\star} n$).
INTEGER.
Number of trsm computations to perform. Must be at least 0 .

Output Parameters

b
Overwritten by the solution batch_size X matrices.
mkl_?imatcopy
Performs scaling and in-place transposition/copying of matrices.

Syntax

```
call mkl_simatcopy(ordering, trans, rows, cols, alpha, ab, lda, ldb)
call mkl_dimatcopy(ordering, trans, rows, cols, alpha, ab, lda, ldb)
call mkl_cimatcopy(ordering, trans, rows, cols, alpha, ab, lda, ldb)
call mkl_zimatcopy(ordering, trans, rows, cols, alpha, ab, lda, ldb)
```


Include Files

- mkl.fi

Description

The mkl_? imatcopy routine performs scaling and in-place transposition/copying of matrices. A transposition operation can be a normal matrix copy, a transposition, a conjugate transposition, or just a conjugation. The operation is defined as follows:

```
AB := alpha*op (AB).
```

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

NOTE

Different arrays must not overlap.

Input Parameters

ordering
trans

CHARACTER*1. Ordering of the matrix storage.
If ordering = 'R' or 'r', the ordering is row-major.
If ordering $=$ ' C ' or ' C ', the ordering is column-major.
CHARACTER*1. Parameter that specifies the operation type.

If trans $=$ ' N ' or ' n ', op $(A B)=A B$ and the matrix $A B$ is assumed unchanged on input.

If trans $=$ ' T ' or ' t ', it is assumed that $A B$ should be transposed.
If trans = ' C ' or ' C ', it is assumed that $A B$ should be conjugate transposed.
If trans = ' R ' or 'r', it is assumed that $A B$ should be only conjugated.
If the data is real, then trans = 'R' is the same as trans = 'N', and trans $=$ ' C' is the same as trans $=$ ' T '.

INTEGER. The number of rows in matrix $A B$ before the transpose operation.
INTEGER. The number of columns in matrix $A B$ before the transpose operation.

REAL for mkl_simatcopy.
DOUBLE PRECISION for mkl_dimatcopy.
COMPLEX for mkl_cimatcopy.
DOUBLE COMPLEX for mkl_zimatcopy.
Array, size ab(lda,*).
REAL for mkl_simatcopy.
DOUBLE PRECISION for mkl_dimatcopy.
COMPLEX for mkl_cimatcopy.
DOUBLE COMPLEX for mkl_zimatcopy.
This parameter scales the input matrix by alpha.
INTEGER. Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the source matrix; measured in the number of elements.
This parameter must be at least rows if ordering $=$ ' C ' or ' c ', and $\max (1, c o l s)$ otherwise.

INTEGER. Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the destination matrix; measured in the number of elements.

To determine the minimum value of $1 d b$ on output, consider the following guideline:
If ordering $=$ ' C' or 'c', then

- If trans $=$ 'T' or 't' or 'C' or 'c', this parameter must be at least $\max (1, \operatorname{cols})$
- If trans = 'N' or 'n' or 'R' or 'r', this parameter must be at least $\max (1$, rows $)$
If ordering = 'R' or 'r', then
- If trans $=$ 'T' or 't' or 'C' or 'c', this parameter must be at least $\max (1$, rows $)$
- If trans $=$ 'N' or 'n' or 'R' or 'r', this parameter must be at least $\max (1$, cols $)$

Output Parameters

$a b$
REAL for mkl_simatcopy.
DOUBLE PRECISION for mkl_dimatcopy.
COMPLEX for mkl_cimatcopy.
DOUBLE COMPLEX for mkl_zimatcopy.
Array, size $a b(I d b, *)$.
Contains the matrix $A B$.

Application Notes

For threading to be active in mkl_?imatcopy, the pointer $A B$ must be aligned on the 64-byte boundary. This requirement can be met by allocating $A B$ with mkl_malloc.

Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_simatcopy ( ordering, trans, rows, cols, alpha, ab, lda, ldb )
    CHARACTER*1 ordering, trans
    INTEGER rows, cols, src_ld, dst_ld
    REAL ab(*), alpha*
SUBROUTINE mkl_dimatcopy ( ordering, trans, rows, cols, alpha, ab, lda, ldb )
    CHARACTER*1 ordering, trans
    INTEGER rows, cols, src_ld, dst_ld
    DOUBLE PRECISION ab(*), alpha*
SUBROUTINE mkl_cimatcopy ( ordering, trans, rows, cols, alpha, ab, lda, ldb )
    CHARACTER*1 ordering, trans
    INTEGER rows, cols, src_ld, dst_ld
    COMPLEX ab(*), alpha*
SUBROUTINE mkl_zimatcopy ( ordering, trans, rows, cols, alpha, ab, lda, ldb )
    CHARACTER*1 ordering, trans
    INTEGER rows, cols, src_ld, dst_ld
    DOUBLE COMPLEX ab(*), alpha*
```


mkl_?imatcopy_batch

Computes a group of in-place scaled matrix copy or transposition operations on general matrices.

Syntax

```
call mkl_simatcopy_batch(layout, trans_arrau, rows_arrau, cols_array, alpha_array,
AB_array, lda_array, ldb_array, group_size, group_count)
call mkl_dimatcopy_batch(layout, trans_arrau, rows_arrau, cols_array, alpha_array,
AB_array, lda_array, ldb_array, group_size, group_count)
```

```
call mkl_cimatcopy_batch(layout, trans_arrau, rows_arrau, cols_array, alpha_array,
AB_array, lda_array, ldb_array, group_size, group_count)
call mkl_zimatcopy_batch(layout, trans_arrau, rows_arrau, cols_array, alpha_array,
AB_array, lda_array, ldb_array, group_size, group_count)
```


Description

The mkl_?imatcopy_batch routine performs a series of in-place scaled matrix copies or transpositions. They are similar to the mkl_?imatcopy routine counterparts, but the mkl_?imatcopy_batch routine performs matrix operations with groups of matrices. Each group has the same parameters (matrix size, leading dimension, and scaling parameter), but a single call to mkl_? imatcopy_batch operates on multiple groups, and each group can have different parameters, unlike the related mkl_?imatcopy_batch_strided routines.

The operation is defined as

```
idx = 0
for i = 0..group_count - 1
    m in rows_array[i], n in cols_array[i], and alpha in alpha_array[i]
    for j = 0..group_size[i] - 1
        AB matrices in AB array[idx]
        AB := alpha*op (AB)
        idx = idx + 1
    end for
end for
```

Where op (X) is one of op $(X)=X, o p(X)=X^{\prime}$, op $(X)=\operatorname{conjg}\left(X^{\prime}\right)$, or op $(X)=\operatorname{conjg}(X)$. On entry, $A B$ is a m -by-n matrix such that m and n are elements of rows_array and cols_array.
$A B$ represents a matrix stored at addresses pointed to by $A B \_a r r a y$. The number of entries in $A B \_a r r a y$ is total_batch_count = the sum of all of the group_size entries.

Input Parameters

```
layout
trans_array
rows_array
cols_array
alpha_array
```

CHARACTER*1.

Specifies whether two-dimensional array storage is row-major (R) or column-major (C).

```
CHARACTER*1.
```

Array of size group_count. For the group i, trans = trans_array[i] specifies the form of op $(A B)$, the transposition operation applied to the $A B$ matrix:

If trans $=$ ' N ' or 'n', op $(A B)=A B$.
If trans $=$ 'T' or 't', op $(A B)=A B$ '
If trans $=$ ' C' or ' C ', op $(A B)=\operatorname{conjg}(A B$ ')
If trans $=$ ' R ' or 'r', op $(A B)=\operatorname{conjg}(A B)$
INTEGER. Array of size group_count. Specifies the number of rows of the input matrix $A B$. The value of each element must be at least zero.

INTEGER. Array of size group_count. Specifies the number of columns of the input matrix $A B$. The value of each element must be at least zero.

REAL for mkl_simatcopy_batch.
DOUBLE PRECISION for mkl_dimatcopy_batch.

Output Parameters

```
AB_array
```

INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture.
INTEGER*4 for IA-32 architecture.

Output array of size total_batch_count, holding pointers to arrays used to store the updated $A B$ matrices.

mkl_?imatcopy_batch_strided

Computes a group of in-place scaled matrix copy or transposition using general matrices.

Syntax

```
call mkl_simatcopy_batch_strided(layout, trans, row, col, alpha, ab, lda, ldb, stride,
batch_size)
call mkl_dimatcopy_batch_strided(layout, trans, row, col, alpha, ab, lda, ldb, stride,
batch_size)
call mkl_cimatcopy_batch_strided(layout, trans, row, col, alpha, ab, lda, ldb, stride,
batch_size)
call mkl_zimatcopy_batch_strided(layout, trans, row, col, alpha, ab, lda, ldb, stride,
batch_size)
```


Description

The mkl_?imatcopy_batch_strided routine performs a series of scaled matrix copy or transposition. They are similar to the mkl_?imatcopy routine counterparts, but the mkl_?imatcopy_batch_strided routine performs matrix operations with a group of matrices.

All matrices ab have the same parameters (size, transposition operation...) and are stored at constant stride from each other. The operation is defined as

```
for i = 0 ... batch_size - 1
    AB is a matrix at offset i * stride in ab
    AB = alpha * op(AB)
end for
```


Input Parameters

layout
trans
row

COI
alpha
$a b$

Ida

CHARACTER*1.
Specifies whether two-dimensional array storage is row-major or columnmajor

CHARACTER*1. Specifies op (AB), the transposition operation applied to the AB matrices.

If trans $=$ ' N ' or ' n ', op $(A B)=A B$.
If trans $=$ ' T ' or ' t ', op $(A B)=A B$ '
If trans $=$ ' C ' or ' C ', op $(A B)=\operatorname{conjg}(A B$ ')
If trans $=$ ' R ' or 'r', op $(A B)=\operatorname{conjg}(A B)$
INTEGER. Specifies the number of rows of the matrices AB. The value of row must be at least zero.

INTEGER. Specifies the number of columns of the matrices AB. The value of col must be at least zero.

REAL for mkl_simatcopy_batch_strided.
DOUBLE PRECISION for mkl_dimatcopy_batch_strided.
COMPLEX for mkl_cimatcopy_batch_strided.
DOUBLE COMPLEX for mkl_zimatcopy_batch_strided.
Specifies the scalar alpha.
REAL for mkl_simatcopy_batch_strided.
DOUBLE PRECISION for mkl_dimatcopy_batch_strided.
COMPLEX for mkl_cimatcopy_batch_strided.
DOUBLE COMPLEX for mkl_zimatcopy_batch_strided.
Array holding all the input matrix $A B$. Must be of size at least batch_size * stride.

INTEGER. The leading dimension of the matrix input AB. It must be positive and at least row if column major layout is used or at least col if row major layout is used.
$1 d b$
stride
batch_size

INTEGER. The leading dimension of the matrix input AB. It must be positive and at least
row if column major layout is used and op ($A B$) $=A B$ or $\operatorname{conjg}(A B)$
row if row major layout is used and op $(A B)=A B^{\prime}$ or conjg($A B^{\prime}$)
col otherwise
INTEGER. Stride between two consecutive AB matrices, must be at least $\max (l d b, l d a) * \max (k a, k b)$ where

- ka is row if column major layout is used or col if row major layout is used
- $k b$ is col if column major layout is used and op $(A B)=A B$ or $\operatorname{conjg}(A B)$ or row major layout is used and $o p(A B)=A B^{\prime}$ or conjg(AB'); kb is row otherwise.

INTEGER. Number of imatcopy computations to perform and AB matrices. Must be at least 0 .

Output Parameters

Array holding the batch_size updated matrices AB.
mkl_?omatadd_batch_strided
Computes a group of out-of-place scaled matrix
additions using general matrices.

Syntax

```
call mkl_somatadd_batch_strided(ordering, transa, transb, rows, cols, alpha, A, lda,
stridea, beta, B, ldb, strideb, C, ldc, stridec, batch_size);
call mkl_domatadd_batch_strided(ordering, transa, transb, rows, cols, alpha, A, lda,
stridea, beta, B, ldb, strideb, C, ldc, stridec, batch_size);
call mkl_comatadd_batch_strided(ordering, transa, transb, rows, cols, alpha, A, lda,
stridea, beta, B, ldb, strideb, C, ldc, stridec, batch_size);
call mkl_zomatadd_batch_strided(ordering, transa, transb, rows, cols, alpha, A, lda,
stridea, beta, B, ldb, strideb, C, ldc, stridec, batch_size);
```


Description

The mkl_omatadd_batch_strided routines perform a series of scaled matrix additions. They are similar to the mkl_omatadd routines, but the mkl_omatadd_batch_strided routines perform matrix operations with a group of matrices.

The matrices A, B, and C are stored at a constant stride from each other in memory, given by the parameters stridea, strideb, and stridec. The operation is defined as:

```
for i = 0 ... batch_size - 1
    A is a matrix at offset i * stridea in the array a
    B is a matrix at offset i * strideb in the array b
    C is a matrix at offset i * stridec in the array c
    C = alpha * op(A) + beta * op (B)
end for
```


where:

- $o p(X)$ is one of $o p(X)=X, o p(X)=X^{\prime}, o p(X)=\operatorname{conjg}(X)$ or op $(X)=\operatorname{conjg}\left(X^{\prime}\right)$.
- alpha and beta are scalars.
- A, B, and C are matrices.

The input arrays a and b contain all the input matrices, and the single output array c contains all the output matrices. The locations of the individual matrices within the array are given by stride lengths, while the number of matrices is given by the batch_size parameter.

Input Parameters

layout
transa
transb
rows
cols
alpha
a

Ida
stride_a
beta
b

CHARACTER* Specifies whether two-dimensional array storage is row-major or column-major.
CHARACTER* Specifies op (A), the transposition operation applied to the matrices A . ' N ' or ' n ' indicates no operation, ' T ' or ' t ' is transposition, 'R' or 'r' is complex conjugation wtihout tranpsosition, and ' C ' or ' c ' is conjugate transposition.
CHARACTER* Specifies op (B), the transposition operation applied to the matrices B.
INTEGER Number of rows for the result matrix C. Must be at least zero.
INTEGER Number of columns for the result matrix C. Must be at least zero.
REAL for mkl_somatadd_batch_strided, *DOUBLE PRECISION* for mkl_domatadd_batch_strided, COMPLEX for mkl_comatadd_batch_strided, *DOUBLE COMPLEX* for mkl_zomatadd_batch_strided. Scaling factor for the matrices A.
REAL for mkl_somatadd_batch_strided, *DOUBLE PRECISION* for mkl_domatadd_batch_strided, COMPLEX for mkl_comatadd_batch_strided, *DOUBLE COMPLEX* for mkl zomatadd_batch_strided. Array holding the input matrices A. Must have size at least stride_a*batch_size.
INTEGER Leading dimension of the A matrices. If matrices are stored using column major layout, Ida must be at least rows if A is not transposed or cols if A is transposed. If matrices are stored using row major layout, lda must be at least cols if A is not transposed or at least rows if A is transposed. Must be positive.
INTEGER Stride between the different A matrices. If matrices are stored using column major layout, stride_a must be at least lda*rows if A is not transposed or at least $l d a * c o l s$ if A is transposed. If matrices are stored using row major layout, stride_a must be at least lda*rows if B is not transposed or at least lda*cols if A is transposed.
REAL for mkl_somatadd_batch_strided, *DOUBLE PRECISION* for mkl_domatadd_batch_strided, COMPLEX for mkl_comatadd_batch_strided, *DOUBLE COMPLEX* for mkl_zomatadd_batch_strided. Scaling factor for the matrices B.
REAL for mkl_somatadd_batch_strided, *DOUBLE PRECISION* for mkl_domatadd_batch_strided, COMPLEX for mkl_comatadd_batch_strided, *DOUBLE COMPLEX* for mkl_zomatadd_batch_strided. Array holding the input matrices B. Must have size at least stride_b*batch_size.

Idb
INTEGER Leading dimension of the B matrices. If matrices are stored using column major layout, ldb must be at least rows if B is not transposed or cols if B is transposed. If matrices are stored using row major layout, 1 db must be at least cols if B is not transposed or at least rows if B is transposed. Must be positive.

```
stride_b
```

c
INTEGER Stride between the different B matrices. If matrices are stored using column major layout, stride_b must be at least $l \mathrm{db} * \mathrm{cols}$ if B is not transposed or at least $l \mathrm{db}$ *rows if B is transposed. If matrices are stored using row major layout, stride_b must be at least $1 \mathrm{db} *$ rows if B is not transposed or at least $l \mathrm{db} * \mathrm{col}$ s if B is transposed.
REAL for mkl_somatadd_batch_strided, *DOUBLE PRECISION* for mkl_domatadd_batch_strided, COMPLEX for mkl_comatadd_batch_strided, *DOUBLE COMPLEX* for mkl_zomatadd_batch_strided. Output array, overwritten by batch_size matrix addition operations of the form alpha*op (A) + beta*op (B). Must have size at least stride_c*batch_size.
INTEGER Leading dimension of the A matrices. If matrices are stored using column major layout, lda must be at least rows. If matrices are stored using row major layout, Ida must be at least cols. Must be positive.

```
stride_c
```

INTEGER Stride between the different C matrices. If matrices are stored using column major layout, stride_c must be at least ldc*cols. If matrices are stored using row major layout, stride_c must be at least ldc*rows.

> batch_size

INTEGER Specifies the number of input and output matrices to add.

Output Parameters

c
Array holding the updated matrices c.

mkl_?omatcopy

Performs scaling and out-place transposition/copying of matrices.

Syntax

```
call mkl_somatcopy(ordering, trans, rows, cols, alpha, a, lda, b, ldb)
call mkl_domatcopy(ordering, trans, rows, cols, alpha, a, lda, b, ldb)
call mkl_comatcopy(ordering, trans, rows, cols, alpha, a, lda, b, ldb)
call mkl_zomatcopy(ordering, trans, rows, cols, alpha, a, lda, b, ldb)
```


Include Files

- mkl.fi

Description

The mkl_?omatcopy routine performs scaling and out-of-place transposition/copying of matrices. A transposition operation can be a normal matrix copy, a transposition, a conjugate transposition, or just a conjugation. The operation is defined as follows:

```
B := alpha*op (A)
```

The routine parameter descriptions are common for all implemented interfaces with the exception of data types that mostly refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

NOTE

Different arrays must not overlap.

Input Parameters

ordering	CHARACTER*1. Ordering of the matrix storage.
	If ordering $=$ ' R ' or 'r', the ordering is row-major.
	If ordering $=$ ' C ' or ' C ', the ordering is column-major.
trans	CHARACTER*1. Parameter that specifies the operation type.
	If trans $=$ ' N ' or ' n ', op $(A)=A$ and the matrix A is assumed unchanged on input.
	If trans $=$ 'T' or 't', it is assumed that A should be transposed.
	If trans $=$ ' C ' or ' C ', it is assumed that A should be conjugate transposed.
	If trans $=$ 'R' or 'r', it is assumed that A should be only conjugated.
	If the data is real, then trans $=$ ' R ' is the same as trans $=$ ' N ', and trans $=$ ' C ' is the same as trans $=$ ' T '.
rows	INTEGER. The number of rows in matrix A (the input matrix).
cols	INTEGER. The number of columns in matrix A (the input matrix).
alpha	REAL for mkl_somatcopy.
	DOUBLE PRECISION for mkl_domatcopy.
	COMPLEX for mkl_comatcopy.
	DOUBLE COMPLEX for mkl_zomatcopy.
	This parameter scales the input matrix by alpha.
a	REAL for mkl_somatcopy.
	DOUBLE PRECISION for mkl_domatcopy.
	COMPLEX for mkl_comatcopy.
	DOUBLE COMPLEX for mkl_zomatcopy.
	Input array.
	If ordering $=^{\prime} \mathrm{R}$ ' or 'r', the size of a is $1 \mathrm{da*}$ rows.
	If ordering $=^{\prime} \mathrm{C}$ ' or ' C ', the size of a is lda* cols.
Ida	INTEGER. (Fortran interface).

If ordering = 'R' or 'r', Ida represents the number of elements in array a between adjacent rows of matrix A; lda must be at least equal to the number of columns of matrix A.

If ordering $=$ ' C' or 'c', Ida represents the number of elements in array a between adjacent columns of matrix A; lda must be at least equal to the number of row in matrix A.
b

REAL for mkl_somatcopy.
DOUBLE PRECISION for mkl_domatcopy.
COMPLEX for mkl_comatcopy.
DOUBLE COMPLEX for mkl_zomatcopy.
Output array.
If ordering = 'R' or 'r';

- If trans $=$ 'T' or 't' or 'C' or 'c', the size of b is ldb * cols.
- If trans $=$ 'N' or 'n' or 'R' or 'r', the size of b is $l d b *$ rows.

If ordering = 'C' or 'c';

- If trans $=$ 'T' or 't' or 'C' or 'c', the size of b is $l d b *$ rows.
- If trans $=$ 'N' or ' n ' or ' R ' or ' r ', the size of b is $1 \mathrm{db} *$ cols.

INTEGER. (Fortran interface).
If ordering = 'R' or 'r', ldb represents the number of elements in array b between adjacent rows of matrix B.

- If trans $=$ 'T' or 't' or 'C' or 'c', ldb must be at least equal to rows.
- If trans $=$ 'N' or 'n' or 'R' or 'r', $1 d b$ must be at least equal to cols.

If ordering $=$ ' C ' or ' c ', $I \mathrm{db}$ represents the number of elements in array b between adjacent columns of matrix B.

- If trans $=$ 'T' or 't' or ' C ' or ' c ', 1 db must be at least equal to cols.
- If trans $=$ ' N ' or ' n ' or 'R' or 'r', ldb must be at least equal to rows.

Output Parameters

b
REAL for mkl_somatcopy.
DOUBLE PRECISION for mkl_domatcopy.
COMPLEX for mkl_comatcopy.
DOUBLE COMPLEX for mkl_zomatcopy.
Output array.
Contains the destination matrix.

Interfaces

FORTRAN 77:

```
SUBROUTINE mkl somatcopy ( ordering, trans, rows, cols, alpha, a, lda, b, ldb )
    CHARACTER*1 ordering, trans
    INTEGER rows, cols, lda, ldb
    REAL alpha, b(ldb,*), a(lda,*)
```

SUBROUTINE mkl_domatcopy (ordering, trans, rows, cols, alpha, a, lda, b, ldb)
CHARACTER*1 ordering, trans
INTEGER rows, cols, lda, ldb
DOUBLE PRECISION alpha, b(ldb,*), a(lda,*)
SUBROUTINE mkl_comatcopy (ordering, trans, rows, cols, alpha, a, lda, b, ldb)
CHARACTER*1 ordering, trans
INTEGER rows, cols, lda, ldb
COMPLEX alpha, b(ldb,*), a(lda,*)

```
SUBROUTINE mkl_zomatcopy ( ordering, trans, rows, cols, alpha, a, lda, b, ldb )
    CHARACTER*1 ordering, trans
    INTEGER rows, cols, lda, ldb
    DOUBLE COMPLEX alpha, b(ldb,*), a(lda,*)
```


mkl_?omatcopy_batch

Computes a group of out of place scaled matrix copy or transposition operations on general matrices.

Syntax

```
call mkl_somatcopy_batch(layout, trans_array, rows_array, cols_array, alpha_array,
A_array, Ida_array, B_array, ldb_array, group_count, group_size)
call mkl_domatcopy_batch(layout, trans_array, rows_array, cols_array, alpha_array,
A_array, lda_array, B_array, ldb_array, group_count, group_size)
call mkl_comatcopy_batch(layout, trans_array, rows_array, cols_array, alpha_array,
A_array, lda_array, B_array, ldb_array, group_count, group_size)
call mkl_zomatcopy_batch(layout, trans_array, rows_array, cols_array, alpha_array,
A_array, lda_array, B_array, ldb_array, group_count, group_size)
```


Description

The mkl_?omatcopy_batch routine performs a series of out-of-place scaled matrix copies or transpositions. They are similar to the mkl_? omatcopy routine counterparts, but the mkl_?omatcopy_batch routine performs matrix operations with groups of matrices. Each group has the same parameters (matrix size, leading dimension, and scaling parameter), but a single call to mkl_?omatcopy_batch operates on multiple groups, and each group can have different parameters, unlike the related mkl_?omatcopy_batch_strided routines.

The operation is defined as

```
idx = 0
for i = 0..group_count - 1
    m in rows_array[i], n in cols_array[i], and alpha in alpha_array[i]
    for j = O..group_size[i] - 1
        A and B matrices in a_array[idx] and b_array[idx], respectively
        B := alpha*op(A)
```

```
        idx = idx + 1
    end for
end for
```

Where $o p(X)$ is one of $o p(X)=X, o p(X)=X^{\prime}, o p(X)=\operatorname{conjg}\left(X^{\prime}\right)$, or op $(X)=\operatorname{conjg}(X) . A$ is a m-by-n matrix such that m and n are elements of rows_array and cols_array.
A and B represent matrices stored at addresses pointed to by $A \_$array and $B \_a r r a y$. The number of entries in A_array and B_array is total_batch_count $=$ the sum of all of the group_size entries.

Input Parameters

layout
trans_array
rows_array
cols_array
alpha_array

A_array

Ida_array
ldb_array

CHARACTER*1.
Specifies whether two-dimensional array storage is row-major (R) or column-major (C).

CHARACTER*1.
Array of size group_count. For the group i, trans $=$ trans_array $[i]$ specifies the form of op (A), the transposition operation applied to the A matrix:

If trans $=$ ' N ' or 'n', op $(A)=A$.
If trans $=$ 'T' or 't', op $(A)=A$ '
If trans $=$ ' C' or ' C ', op $(A)=\operatorname{conjg}(A$ ')
If trans $=$ ' R ' or 'r', op $(A)=\operatorname{conjg}(A)$
INTEGER. Array of size group_count. Specifies the number of rows of the matrix A. The value of each element must be at least zero.

INTEGER. Array of size group_count. Specifies the number of columns of the matrix A. The value of each element must be at least zero.

REAL for mkl_somatcopy_batch.
DOUBLE PRECISION for mkl_domatcopy_batch.
COMPLEX for mkl_comatcopy_batch.
DOUBLE COMPLEX for mkl_zomatcopy_batch.
Array of size group_count. Specifies the scalar alpha.
INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture.
INTEGER*4 for IA-32 architecture.
Array of size total_batch_count, holding pointers to arrays used to store A input matrices.

INTEGER. Array of size group_count. The leading dimension of the input matrix A. It must be positive and at least m if column major layout is used or at least n if row major layout is used.

INTEGER. Array of size group_count. The leading dimension of the output matrix B. It must be positive and at least
m if column major layout is used and op(A) $=A$ or conjg (A)
n if row major layout is used and op $(A)=A^{\prime} \operatorname{or} \operatorname{conjg}\left(A^{\prime}\right)$
n otherwise

```
group_count
group_size
```

INTEGER. Specifies the number of groups. Must be at least 0
INTEGER. Array of size group_count. The element group_size[i] specifies the number of matrices in group i. Each element in group_size must be at least 0.

Output Parameters

```
B_array
```


INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture.
 INTEGER*4 for IA-32 architecture.

Output array of size total_batch_count, holding pointers to arrays used to store the B output matrices, the contents of which are overwritten by the operation of the form alpha*op (A).

mkl_?omatcopy_batch_strided

Computes a group of out of place scaled matrix copy or transposition using general matrices.

Syntax

```
call mkl_somatcopy_batch_strided(layout, trans, row, col, alpha, a, lda, stridea, b,
ldb, strideb, batch_size)
call mkl_domatcopy_batch_strided(layout, trans, row, col, alpha, a, lda, stridea, b,
ldb, strideb, batch_size)
call mkl_comatcopy_batch_strided(layout, trans, row, col, alpha, a, lda, stridea, b,
ldb, strideb, batch_size)
call mkl_zomatcopy_batch_strided(layout, trans, row, col, alpha, a, lda, stridea, b,
ldb, strideb, batch_size)
```


Description

The mkl_?omatcopy_batch_strided routine performs a series of out-of-place scaled matrix copy or transposition. They are similar to the mkl_?omatcopy routine counterparts, but the mkl_?omatcopy_batch_strided routine performs matrix operations with group of matrices.

All matrices a and b have the same parameters (size, transposition operation...) and are stored at constant stride from each other respectively given by stridea and strideb. The operation is defined as

```
for i = 0 ... batch_size - 1
    A and B are matrices at offset i * stridea in a and I * strideb in b
    B = alpha * op(A)
end for
```


Input Parameters

layout
trans

CHARACTER*1. Specifies whether two-dimensional array storage is rowmajor or column-major .

CHARACTER*1. Specifies op (A), the transposition operation applied to the $A B$ matrices.

If trans $=$ ' N ' or ' n ', op $(A)=A$.

Stride between two consecutive B matrices. It must be positive and at least:

- ldb* col if column major layout is used and op(A) = A or conjg(A)
- ldb* col if row major layout is used and op(A) = A' or conjg(A')
- Idb* row otherwise

```
batch_size
```


Output Parameters

b
Array holding the batch_size updated matrices B.

mkl_?omatcopy2

Performs two-strided scaling and out-of-place transposition/copying of matrices.

Syntax

```
call mkl_somatcopy2(ordering, trans, rows, cols, alpha, a, lda, stridea, b, ldb,
strideb)
call mkl_domatcopy2(ordering, trans, rows, cols, alpha, a, lda, stridea, b, ldb,
strideb)
call mkl_comatcopy2(ordering, trans, rows, cols, alpha, a, lda, stridea, b, ldb,
strideb)
call mkl_zomatcopy2(ordering, trans, rows, cols, alpha, a, lda, stridea, b, ldb,
strideb)
```


Include Files

- mkl.fi

Description

The mkl_?omatcopy2 routine performs two-strided scaling and out-of-place transposition/copying of matrices. A transposition operation can be a normal matrix copy, a transposition, a conjugate transposition, or just a conjugation. The operation is defined as follows:
$B:=$ alpha*op (A)
Normally, matrices in the BLAS or LAPACK are specified by a single stride index. For instance, in the columnmajor order, $A(2,1)$ is stored in memory one element away from $A(1,1)$, but $A(1,2)$ is a leading dimension away. The leading dimension in this case is at least the number of rows of the source matrix. If a matrix has two strides, then both $A(2,1)$ and $A(1,2)$ may be an arbitrary distance from $A(1,1)$.
Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

NOTE

Different arrays must not overlap.

Input Parameters

```
ordering
trans
rows
cols
alpha
```

a

Ida
stridea
b

CHARACTER*1. Ordering of the matrix storage.
If ordering = 'R' or 'r', the ordering is row-major.
If ordering = 'C' or ' C ', the ordering is column-major.
CHARACTER*1. Parameter that specifies the operation type.
If trans $=$ ' N ' or ' n ', op $(A)=A$ and the matrix A is assumed unchanged on input.
If trans $=$ 'T' or 't', it is assumed that A should be transposed.
If trans $=$ ' C ' or ' C ', it is assumed that A should be conjugate transposed.
If trans $=$ ' R ' or 'r', it is assumed that A should be only conjugated.
If the data is real, then trans $=$ ' R ' is the same as trans $=$ ' N ', and trans $=$ ' C ' is the same as trans $=$ ' T '.

INTEGER. number of rows for the input matrix A. Must be at least zero.
INTEGER. Number of columns for the input matrix A. Must be at least zero.
REAL for mkl_somatcopy2.
DOUBLE PRECISION for mkl_domatcopy2.
COMPLEX for mkl_comatcopy2.
DOUBLE COMPLEX for mkl_zomatcopy2.
Scaling factor for the matrix transposition or copy.
REAL for mkl_somatcopy2.
DOUBLE PRECISION for mkl_domatcopy2.
COMPLEX for mkl_comatcopy2.
DOUBLE COMPLEX for mkl_zomatcopy2.
Array holding the input matrix A. Must have size at least $l d a * n$ for column major ordering and at least $/ d a * m$ for row major ordering.

INTEGER.
Leading dimension of the matrix A. If matrices are stored using column major layout, Ida is the number of elements in the array between adjacent columns of the matrix and must be at least stridea * (m-1) + 1. If using row major layout, Ida is the number of elements between adjacent rows of the matrix and must be at least stridea * $(n-1)+1$.

INTEGER.
The second stride of the matrix A. For column major layout, stridea is the number of elements in the array between adjacent rows of the matrix. For row major layout stridea is the number of elements between adjacent columns of the matrix. In both cases stridea must be at least 1.

REAL for mkl_somatcopy2.

DOUBLE PRECISION for mkl_domatcopy2.
COMPLEX for mkl_comatcopy2.
DOUBLE COMPLEX for mkl_zomatcopy2.
Array holding the output matrix B.

	trans $=$ transpose::nontrans	trans = transpose::trans, or trans = transpose::conjtrans
Column major	B is $m \times n$ matrix. Size of array b must be at least $l d b * n$.	B is $n \times m$ matrix. Size of array b must be at least $l d b * m$.
Row major	B is $m \times n$ matrix. Size of array b must be at least $l d b * m$.	B is $n \times m$ matrix. Size of array b must be at least $/ d b * n$.

INTEGER.
The leading dimension of the matrix B. Must be positive.

	trans $=$ transpose::nontrans	trans $=$ transpose::trans, or trans = transpose::conjtrans
Column major	Idb must be at least strideb * (m-1) + 1.	ldb must be at least strideb * (n-1) + 1.
Row major	Idb must be at least strideb * (n-1) + 1.	ldb must be at least strideb * (m-1) + 1.

INTEGER.

The second stride of the matrix B. For column major layout, strideb is the number of elements in the array between adjacent rows of the matrix. For row major layout, strideb is the number of elements between adjacent columns of the matrix. In both cases strideb must be at least 1.

Output Parameters

b
REAL for mkl_somatcopy2.
DOUBLE PRECISION for mkl_domatcopy2.
COMPLEX for mkl_comatcopy2.
DOUBLE COMPLEX for mkl_zomatcopy2.
Array, size at least m.
Contains the destination matrix.

Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_somatcopy2 ( ordering, trans, rows, cols, alpha, a, lda, stridea, b, ldb,
strideb )
    CHARACTER*1 ordering, trans
    INTEGER rows, cols, lda, stridea, ldb, strideb
    REAL alpha, b(*), a(*)
```

```
SUBROUTINE mkl_domatcopy2 ( ordering, trans, rows, cols, alpha, a, lda, stridea, b, ldb,
```

strideb)
CHARACTER*1 ordering, trans
INTEGER rows, cols, lda, stridea, ldb, strideb
DOUBLE PRECISION alpha, b(*), a(*)
SUBROUTINE mkl_comatcopy2 (ordering, trans, rows, cols, alpha, a, lda, stridea, b, ldb,
strideb)
CHARACTER*1 ordering, trans
INTEGER rows, cols, lda, stridea, ldb, strideb
COMPLEX alpha, b(*), a(*)

```
SUBROUTINE mkl_zomatcopy2 ( ordering, trans, rows, cols, alpha, a, lda, stridea, b, ldb,
strideb )
    CHARACTER*1 ordering, trans
    INTEGER rows, cols, lda, stridea, ldb, strideb
    DOUBLE COMPLEX alpha, b(*), a(*)
```


mkl_?omatadd

Scales and sums two matrices including in addition to performing out-of-place transposition operations.

Syntax

```
call mkl_somatadd(ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc)
call mkl_domatadd(ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc)
call mkl_comatadd(ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc)
call mkl_zomatadd(ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc)
```


Include Files

- mkl.fi

Description

The mkl_?omatadd routine scales and adds two matrices, as well as performing out-of-place transposition operations. A transposition operation can be no operation, a transposition, a conjugate transposition, or a conjugation (without transposition). The following out-of-place memory movement is done:

```
C := alpha*op(A) + beta*op(B)
```

where the op (A) and op (B) operations are transpose, conjugate-transpose, conjugate (no transpose), or no transpose, depending on the values of transa and transb. If no transposition of the source matrices is required, m is the number of rows and n is the number of columns in the source matrices A and B. In this case, the output matrix C is $m-b y-n$.

Parameter descriptions are common for all implemented interfaces with the exception of data types that refer here to the FORTRAN 77 standard types. Data types specific to the different interfaces are described in the section "Interfaces" below.

NOTE

Note that different arrays must not overlap.

Input Parameters

ordering	CHARACTER*1. Ordering of the matrix storage.
	If ordering = 'R' or 'r', the ordering is row-major.
	If ordering $=$ ' C' or 'c', the ordering is column-major.
transa	CHARACTER*1. Parameter that specifies the operation type on matrix A.
	If transa $=$ ' N ' or ' n ', op $(A)=A$ and the matrix A is assumed unchanged on input.
	If transa $=$ 'T' or 't', it is assumed that A should be transposed.
	If transa $=$ ' C ' or ' C ', it is assumed that A should be conjugate transposed.
	If transa = 'R' or 'r', it is assumed that A should be conjugated (and not transposed).
	If the data is real, then transa $=$ ' R ' is the same as transa $=$ ' N ', and transa $=$ ' C' is the same as transa $=$ 'T'.
transb	CHARACTER*1. Parameter that specifies the operation type on matrix B.
	If transb $=$ ' N ' or ' n ', op $(B)=B$ and the matrix B is assumed unchanged on input.
	If transb $=$ 'T' or 't', it is assumed that B should be transposed.
	If transb $=$ ' C ' or ' C ', it is assumed that B should be conjugate transposed.
	If transb = 'R' or 'r', it is assumed that B should be conjugated (and not transposed).
	If the data is real, then transb $=$ ' R ' is the same as transb $=$ ' N ', and transb $=$ ' C ' is the same as transb $=$ ' T '.
m	INTEGER. The number of matrix rows in op (A), op (B), and C.
n	INTEGER. The number of matrix columns in op $(A), \mathrm{op}(B)$, and C.
alpha	REAL for mkl_somatadd.
	DOUBLE PRECISION for mkl_domatadd.
	COMPLEX for mkl_comatadd.
	DOUBLE COMPLEX for mkl_zomatadd.
	This parameter scales the input matrix by alpha.
	REAL for mkl_somatadd.

DOUBLE PRECISION for mkl_domatadd.
COMPLEX for mkl_comatadd.
DOUBLE COMPLEX for mkl_zomatadd.
Array, size a (Ida,*).
Integer. Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the source matrix A; measured in the number of elements.
For ordering = 'C' or 'c': when transa = 'n', 'n','R', or 'r', lda must be at least $\max (1, m)$; otherwise 1 da must be $\max (1, n)$.

For ordering = 'R' or 'r': when transa = 'n', 'n','R', or 'r', lda must be at least $\max (1, n)$; otherwise 1 da must be $\max (1, m)$.

REAL for mkl_somatadd.
DOUBLE PRECISION for mki_domatadd.
COMPLEX for mkl_comatadd.
DOUBLE COMPLEX for mkl_zomatadd.
This parameter scales the input matrix by beta.
REAL for mkl_somatadd.
DOUBLE PRECISION for mkl_domatadd.
COMPLEX for mkl_comatadd.
DOUBLE COMPLEX for mkl_zomatadd.
Array, size b(ldb,*).
Integer. Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the source matrix B; measured in the number of elements.
For ordering = 'C' or 'c': when transa = 'n', 'n','R', or 'r', ldb must be at least $\max (1, m)$; otherwise $1 d b$ must be $\max (1, n)$.

For ordering = 'R' or 'r': when transa = 'n', 'n','R', or'r', ldb must be at least $\max (1, n)$; otherwise $1 d b$ must be $\max (1, m)$.

Integer. Distance between the first elements in adjacent columns (in the case of the column-major order) or rows (in the case of the row-major order) in the destination matrix C; measured in the number of elements.
If ordering = ' C ' or ' c ', then $1 d c$ must be at least max $(1, m)$, otherwise $l d c$ must be at least $\max (1, n)$.

Output Parameters

REAL for mkl_somatadd.
DOUBLE PRECISION for mkl_domatadd.
COMPLEX for mkl_comatadd.
DOUBLE COMPLEX for mkl_zomatadd.

Array, size $c(I d c, *)$.

Interfaces

FORTRAN 77:

```
SUBROUTINE mkl_somatadd ( ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc )
    CHARACTER*1 ordering, transa, transb
    INTEGER m, n, lda, ldb, ldc
    REAL alpha, beta
    REAL a(lda,*), b(ldb,*), c(ldc,*)
```

SUBROUTINE mkl_domatadd (ordering, transa, transb, m, $n, a l p h a, ~ a, ~ l d a, ~ b e t a, ~ b, ~ l d b, ~ c, ~ l d c ~) ~$
CHARACTER*1 ordering, transa, transb
INTEGER m, n, lda, ldb, ldc
DOUBLE PRECISION alpha, beta
DOUBLE PRECISION $\mathrm{a}\left(l \mathrm{da},{ }^{*}\right)$, $\mathrm{b}(l \mathrm{db}, *), \mathrm{c}\left(l \mathrm{dc},^{*}\right)$
SUBROUTINE mkl_comatadd (ordering, transa, transb, m, n, alpha, a, lda, beta, b, ldb, c, ldc)
CHARACTER*1 ordering, transa, transb
INTEGER m, n, lda, ldb, ldc
COMPLEX alpha, beta
COMPLEX $\mathrm{a}\left(l \mathrm{da},{ }^{*}\right)$, $\mathrm{b}(l \mathrm{db}, *), \mathrm{c}(l \mathrm{dc}, *)$
SUBROUTINE mkl_zomatadd (ordering, transa, transb, m, $n, a l p h a, ~ a, ~ l d a, ~ b e t a, ~ b, ~ l d b, ~ c, ~ l d c ~) ~$
CHARACTER*1 ordering, transa, transb
INTEGER m, n, lda, ldb, ldc
DOUBLE COMPLEX alpha, beta
DOUBLE COMPLEX a(lda,*), b(ldb,*), c(ldc,*)

?gemm_pack_get_size, gemm_*_pack_get_size Returns the number of bytes required to store the packed matrix.

Syntax

```
dest = sgemm_pack_get_size (identifier, m, n, k)
dest = dgemm_pack_get_size (identifier, m, n, k)
dest = gemm_s8u8s32_pack_get_size (identifier, m, n, k)
dest = gemm_s16s16s32_pack_get_size (identifier, m, n, k)
```


Include Files

- mkl.fi

Description

The ?gemm_pack_get_size and gemm_*_pack_get_size routines belong to a set of related routines that enable the use of an internal packed storage. Call the ?gemm_pack_get_size and gemm_*_pack_get_size routines first to query the size of storage required for a packed matrix structure to be used in subsequent calls. Ultimately, the packed matrix structure is used to compute
$C:=$ alpha*op $(A) * o p(B)+b e t a * C$ for bfloat16, half, single and double precision or

where:
op (X) is one of the operations op $(X)=X$ or op $(X)=X^{\text {T }}$
alpha and beta are scalars,
A, $A \_$offset, B, B _offset, C, and $C \_$offset are matrices
$o p(A)$ is an m-by- k matrix,
$o p(B)$ is a k-by-n matrix,
C is an m-by-n matrix.
A_offset is an m-by- k matrix.
B _offset is an k-by- n matrix.
C_offset is an m-by-n matrix.
Input Parameters

Parameter	Type	Description
identifier	CHARACTER*1.	Specifies which matrix is to be packed:
		If identifier = 'A' or 'a', the size returned is the size required to store matrix A in an internal format.
		If identifier = 'B' or 'b', the size returned is the size required to store matrix B in an internal format.
m	INTEGER.	Specifies the number of rows of matrix op (A) and of the matrix C. The value of m must be at least zero.
n	INTEGER.	Specifies the number of columns of matrix $\mathrm{op}(B)$ and the number of columns of matrix C. The value of n must be at least zero.
k	INTEGER.	Specifies the number of columns of matrix $\mathrm{op}(A)$ and the number of rows of matrix $\mathrm{op}(B)$. The value of k must be at least zero.

Return Values

Parameter	Type	Description
size	INTEGER.	Returns the size (in bytes) required to store
		the matrix when packed into the internal
		format of Intel® oneAPI Math Kernel Library
		(oneMKL).

Example

See the following examples in the MKL installation directory to understand the use of these routines:
sgemm_pack_get_size: examples\blas\source\sgemm_computex.f
dgemm_pack_get_size: examples\blas\source\dgemm_computex.f
gemm_s8u8s32_pack_get_size: examples\blas\source\gemm_s8u8s32_computex.f
gemm_s16s16s32_pack_get_size: examples\blas\source\gemm_s16s16s32_computex.f

See Also

?gemm_pack and gemm_*_pack
to pack the matrix into a buffer allocated previously.
?gemm_compute and ?gemm_*_compute
to compute a matrix-matrix product with general matrices (where one or both input matrices are stored in a packed data structure) and add the result to a scalar-matrix product.

```
?gemm_pack
Performs scaling and packing of the matrix into the
previously allocated buffer.
Syntax
call sgemm pack (identifier, trans, m, n, k, alpha, src, ld, dest)
call dgemm_pack (identifier, trans, m, n, k, alpha, src, ld, dest)
```


Include Files

- mkl.fi

Description

The ?gemm_pack routine is one of a set of related routines that enable use of an internal packed storage. Call ?gemm_pack after you allocate a buffer whose size is given by ?gemm_pack_get_size. The ?gemm_pack routine scales the identified matrix by alpha and packs it into the buffer allocated previously.

NOTE

Do not copy the packed matrix to a different address because the internal implementation depends on the alignment of internally-stored metadata.

The ?gemm_pack routine performs this operation:

```
dest := alpha*op(src) as part of the computation \(C:=\) alpha*op(A)*op(B) + beta*C
```

where:
op (X) is one of the operations op $(X)=X, o p(X)=X^{\mathrm{T}}$, or op $(X)=X^{\mathrm{H}}$,
alpha and beta are scalars,
$s r c$ is a matrix,
A, B, and C are matrices
op (src) is an m-by-k matrix if identifier = 'A' or 'a',
op (src) is a k-by-n matrix if identifier = 'B' or 'b',
dest is an internal packed storage buffer.

NOTE

For best performance, use the same number of threads for packing and for computing.
If packing for both A and B matrices, you must use the same number of threads for packing A as for packing B.

Input Parameters

identifier
CHARACTER*1. Specifies which matrix is to be packed:
If identifier = 'A' or 'a', the routine allocates storage to pack matrix A.

If identifier $=$ ' B ' or 'b', the routine allocates storage to pack matrix B.

CHARACTER*1. Specifies the form of op (src) used in the packing:
If trans $=$ ' N ' or 'n' op (src) $=$ src.
If trans $=$ 'T' or 't' op (src) $=s r c^{T}$.
If trans $=$ ' C' or 'c' op (src) $=s r c^{\mathrm{H}}$.
INTEGER. Specifies the number of rows of the matrix op (A) and of the matrix C. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (B) and the number of columns of the matrix C. The value of n must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (A) and the number of rows of the matrix $o p(B)$. The value of k must be at least zero.

REAL for sgemm_pack
DOUBLE PRECISION for dgemm_pack
Specifies the scalar alpha.
REAL for sgemm_pack
DOUBLE PRECISION for dgemm_pack
Array:

	trans $=$ 'N' or 'n'	trans = 'T','t', 'C', or 'c'
$\begin{aligned} & \text { identifier }= \\ & \text { 'A' or 'a' } \end{aligned}$	Size $l d^{\star} k$. Before entry, the leading m-by-k part of the array src must contain the matrix A.	Size $1 d^{\star} m$. Before entry, the leading k-by-m part of the array src must contain the matrix A.
identifier = 'B' or 'b'	Size $1 d^{\star} n$. Before entry, the leading k-by-n part of the array src must contain the matrix B.	Size $l d^{\star} k$. Before entry, the leading n-by-k part of the array src must contain the matrix B.

INTEGER. Specifies the leading dimension of src as declared in the calling (sub)program.

	trans = 'N' or 'n'	$\operatorname{trans}=' \mathrm{~T}$ ', 't', 'C', or 'c'
identifier = 'A' or 'a'	ld must be at least $\max (1, ~ m)$.	ld must be at least $\max (1, k)$.

| identifier $=$
 'b' | or | $I d$ must be at least
 $\max (1, k)$. |
| :--- | :--- | :--- | :--- |
| $\max (1, \quad n)$. | | |

dest
POINTER.
Scaled and packed internal storage buffer.

Output Parameters

dest
Overwritten by the matrix alpha*op (src).

See Also

?gemm_pack_get_size Returns the number of bytes required to store the packed matrix.
? gemm_compute Computes a matrix-matrix product with general matrices where one or both input matrices are stored in a packed data structure and adds the result to a scalar-matrix product.
? gemm
for a detailed description of general matrix multiplication.

```
gemm_*_pack
```

Pack the matrix into the buffer allocated previously.

Syntax

```
call gemm_s8u8s32_pack (identifier, trans, m, n, k, src, ld, dest)
call gemm_s16s16s32_pack (identifier, trans, m, n, k, src, ld, dest)
```


Include Files

- mkl.fi

Description

The gemm_*_pack routine is one of a set of related routines that enable the use of an internal packed storage. Call gemm_*_pack after you allocate a buffer whose size is given by gemm_*_pack_get_size. The gemm_*_pack routine packs the identified matrix into the buffer allocated previously.
The gemm_*_pack routine performs this operation:
dest $:=o p(s r c)$ as part of the computation $C:=\operatorname{alpha*}\left(o p(A)+A \_o f f s e t\right) *\left(o p(B)+B \_o f f s e t\right)+$
beta*C + C_offset for integer types.
$C:=a l p h a^{*} o p(A) *$ op $(B)+b e t a * C$ for bfloat16 type.
where:
op (X) is one of the operations op $(X)=X$ or op $(X)=X^{\mathrm{T}}$
alpha and beta are scalars,
src is a matrix,

op (src) is an m-by-k matrix if identifier = 'A' or 'a',
op (src) is a k-by-n matrix if identifier $=$ ' B^{\prime} or 'b',
dest is the buffer previously allocated to store the matrix packed into an internal format
A_offset is an m-by- k matrix.
$B \_o f f s e t$ is an k-by- n matrix.

C_offset is an m-by-n matrix.

NOTE

For best performance, use the same number of threads for packing and for computing.
If packing for both A and B matrices, you must use the same number of threads for packing A as for packing B.

Input Parameters

identifier
trans
m
n
k
src
ld

CHARACTER*1.
Specifies which matrix is to be packed:
If identifier = 'A' or 'a', the A matrix is packed.
If identifier = ' B ' or ' b ', the B matrix is packed.
CHARACTER*1.
Specifies the form of op (src) used in the packing:
If trans $=$ ' N ' or 'n' op $(s r c)=s r c$.
If trans $=$ 'T' or 't' op (src) $=s r c^{T}$.

INTEGER.
Specifies the number of rows of matrix $\operatorname{op}(A)$ and of the matrix C. The value of m must be at least zero.

INTEGER.
Specifies the number of columns of matrix $\mathrm{op}(B)$ and the number of columns of matrix C. The value of n must be at least zero.

INTEGER.
Specifies the number of columns of matrix $\mathrm{op}(A)$ and the number of rows of matrix $\operatorname{op}(B)$. The value of k must be at least zero.

INTEGER*1 for gemm_s8u8s32_pack and INTEGER*2 for gemm_s16s16s32_pack

	trans $=$ 'N' or 'n'	trans $=$ 'T' or 't'
$\begin{aligned} & \text { identifier = 'A' or } \\ & \text { 'a' } \end{aligned}$	Size $1 d^{*} k$.	Size $1 d^{\star} m$.
	Before entry, the leading m-by- k part of	Before entry, the
	the array src must contain the matrix A.	the array src must contain the matrix A.
$\begin{aligned} & \text { identifier = 'B' or } \\ & \text { 'b' } \end{aligned}$	Size $1 d^{\star} n$.	Size $1 d^{\star} k$.
	Before entry, the leading k-by-n part of the array src must contain the matrix B.	Before entry, the leading n-by- k part of the array src must contain the matrix B.

INTEGER. Specifies the leading dimension of src as declared in the calling (sub)program.

	trans $=$ 'N' or 'n'	trans $=$ 'T' or 't'
$\begin{aligned} & \text { identifier = 'A' or } \\ & \text { 'a' } \end{aligned}$	Id must be at least $\max (1, m)$.	Id must be at least $\max (1, k)$.
$\begin{aligned} & \text { identifier = 'B' or } \\ & \text { 'b' } \end{aligned}$	ld must be at least $\max (1, k)$.	Id must be at least $\max (1, n)$.

INTEGER*1 for gemm_s8u8s32_pack or INTEGER*2 for gemm_s16s16s32_pack
Buffer for the packed matrix.

Output Parameters

dest
INTEGER*1 for gemm_s8u8s32_pack or INTEGER*2 for
gemm_s16s16s32_pack
Overwritten by the matrix op (src) stored in a format internal to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).

Example

See the following examples in the MKL installation directory to understand the use of these routines:
gemm_s8u8s32_pack: examples\blas\source\gemm_s8u8s32_computex.f
gemm_s16s16s32_pack: examples\blas\source\gemm_s16s16s32_computex.f

Application Notes

See Also

gemm_*_pack_get_size
to return the number of bytes needed to store the packed matrix.
gemm_*_compute
to compute a matrix-matrix product with general integer matrices (where one or both input matrices are stored in a packed data structure) and add the result to a scalar-matrix product.

?gemm_compute

Computes a matrix-matrix product with general matrices where one or both input matrices are stored in a packed data structure and adds the result to a scalar-matrix product.

Syntax

```
call sgemm_compute (transa, transb, m, n, k, a, lda, b, ldb, beta, C, ldc)
call dgemm_compute (transa, transb, m, n, k, a, lda, b, ldb, beta, C, ldc)
```

Include Files

- mkl.fi

Description

The ? gemm_compute routine is one of a set of related routines that enable use of an internal packed storage. After calling ?gemm_pack call ?gemm_compute to compute

```
C := op(A)*op(B) + beta*C,
```

where:
$\mathrm{op}(X)$ is one of the operations op $(X)=X, o p(X)=X^{\mathrm{T}}$, or op $(X)=X^{\mathrm{H}}$,
beta is a scalar,
A, B, and C are matrices:
$o p(A)$ is an m-by- k matrix,
$o p(B)$ is a k-by-n matrix,
C is an m-by-n matrix.

NOTE

For best performance, use the same number of threads for packing and for computing.
If packing for both A and B matrices, you must use the same number of threads for packing A as for packing B.

Input Parameters

transa
transb
m
n
k
a

CHARACTER* 1. Specifies the form of op (A) used in the matrix multiplication:
If transa $=$ 'N' or 'n' op $(A)=A$.
If transa $=$ 'T' or 't' op $(A)=A^{T}$.
If transa $=$ 'C' or 'C' op $(A)=A^{H}$.
If transa $=$ ' P ' or ' p ' the matrix in array a is packed and $l d a$ is ignored.
CHARACTER* 1. Specifies the form of op (B) used in the matrix multiplication:
If transb $=$ ' N ' or ' n ' op $(B)=B$.
If transb $=$ 'T' or 't' $o p(B)=B^{T}$.
If transb $=$ ' C ' or ' C ' op $(B)=B^{H}$.
If transb $=$ ' P ' or ' p ' the matrix in array b is packed and $l d b$ is ignored.
INTEGER. Specifies the number of rows of the matrix op (A) and of the matrix C. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (B) and the number of columns of the matrix C. The value of n must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (A) and the number of rows of the matrix $o p(B)$. The value of k must be at least zero.

REAL for sgemm_compute
DOUBLE PRECISION for dgemm_compute
Array:

transa $=$ 'N' or 'n'	$\text { transa }=\text { 'T', 't', 'C', }$ or 'c'	$\begin{aligned} & \operatorname{transa}=' \mathrm{P}^{\prime} \\ & \text { or 'p' } \end{aligned}$

Size $l d a \star k$.	Size $l d a \star m$.	Stored in internal packed
Before entry, the leading m-by- k part of the array a must contain the matrix A.	Before entry, the leading $k-m$ part of the array a by must contain the matrix A.	

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program.
If transa $=$ ' N ' or ' n ', Ida must be at least max $(1, m)$.
If transa $=$ ' T ', 't', 'C', or 'c', Ida must be at least max $(1, k)$.
If transa $=$ ' P ' or ' p ', Ida is ignored.
REAL for sgemm_compute
DOUBLE PRECISION for dgemm_compute
Array:

transb $=$ 'N' or 'n'	$\begin{aligned} & \text { transb = 'T','t', 'C', } \\ & \text { or'c' } \end{aligned}$	$\begin{aligned} & \text { transb = 'p' } \\ & \text { or 'p' } \end{aligned}$
Size $1 d b^{*} n$. Before entry, the leading k-by-n part of the array b must contain the matrix B.	Size $1 d b^{*} k$. Before entry, the leading n -by- k part of the array b must contain the matrix B.	Stored in internal packed format.

INTEGER. Specifies the leading dimension of b as declared in the calling (sub)program.
If transb $=$ ' N ' or ' n ', ldb must be at least max ($1, k)$.
If transb $=$ ' T ', ' t ', ' C ', or ' C ', ldb must be at least max $(1, n)$.
If transb $=$ ' P ' or ' p ', ldb is ignored.
REAL for sgemm_compute
DOUBLE PRECISION for dgemm_compute
Specifies the scalar beta. When beta is equal to zero, then c need not be set on input.

REAL for sgemm_compute
DOUBLE PRECISION for dgemm_compute
Array, size $l d c$ by n. Before entry, the leading m-by- n part of the array c must contain the matrix C, except when beta is equal to zero, in which case c need not be set on entry.

INTEGER. Specifies the leading dimension of c as declared in the calling (sub)program.

The value of $I d c$ must be at least max $(1, m)$.

Output Parameters

C
Overwritten by the m-by-n matrix op $(A) * o p(B)+$ beta*C.

See Also

?gemm_pack_get_size Returns the number of bytes required to store the packed matrix.
? gemm_pack Performs scaling and packing of the matrix into the previously allocated buffer.
?gemm
for a detailed description of general matrix multiplication.

```
gemm_*_compute
Computes a matrix-matrix product with general
integer matrices (where one or both input matrices
are stored in a packed data structure) and adds the
result to a scalar-matrix product.
```

Syntax

```
call gemm_s8u8s32_compute (transa, transb, offsetc, m, n, k, alpha, a, lda, oa, b, ldb,
ob, beta, c, ldc, oc)
call gemm_s16s16s32_compute (transa, transb, offsetc, m, n, k, alpha, a, lda, oa, b,
ldb, ob, beta, c, ldc, oc)
```


Include Files

- mkl.fi

Description

The gemm_*_compute routine is one of a set of related routines that enable use of an internal packed storage. After calling gemm_*_pack call gemm_*_compute to compute

```
C := alpha*(op(A) + A_offset)*(op(B) + B_offset) + beta*C + C_offset,
```

where:
op (X) is either op $(X)=X$ or $o p(X)=X^{T}$
alpha and betaare scalars
A, B, and C are matrices:
$o p(A)$ is an m-by- k matrix,
$o p(B)$ is a k-by-n matrix,
C is an m-by-n matrix.
A_offset is an m-by-k matrix with every element equal to the value oa.
B _offset is an k-by- n matrix with every element equal to the value ob.
C_offset is an m-by-n matrix defined by the oc array as described in the description of the offsetc parameter.

NOTE

For best performance, use the same number of threads for packing and for computing.
If you are packing for both A and B matrices, you must use the same number of threads for packing A as for packing B.

Input Parameters

transa
CHARACTER*1. Specifies the form of op (A) used in the packing:
If transa $=$ 'N' or 'n' op $(A)=A$.
If transa $=$ 'T' or't' op $(A)=A^{T}$.
If transa $=$ ' P ' or ' p ' the matrix in array ais packed into a format internal to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) and lda is ignored.
transb
CHARACTER*1. Specifies the form of op (B) used in the packing:
If transb $=$ ' N ' or 'n' op $(B)=B$.
If transb $=$ 'T' or 't' op $(B)=B^{T}$.
If transb $=$ ' P ' or ' p ' the matrix in array bis packed into a format internal to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) and $l d b$ is ignored.
offsetc CHARACTER*1. Specifies the form of $C_{\text {_offset }}$ used in the matrix multiplication.
If offsetc='F' or 'f' :oc has a single element and every element of C_offset is equal to this element.

If offsetc='C' or 'c' :oc has a size of m and every element of C_offset is equal to oc.
If offsetc='R' or 'r' :oc has a size of n and every element of C _offset is equal to oc.
m
n
k
alpha
a
INTEGER. Specifies the number of rows of the matrix op (A) and of the matrix C. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (B) and the number of columns of the matrix C. The value of n must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (A) and the number of rows of the matrix $o p(B)$. The value of k must be at least zero.

REAL. Specifies the scalar alpha.
INTEGER*1 for gemm_s8u8s32_compute
INTEGER*2 for gemm_s16s16s32_compute

transa $=$ 'N' or 'n'	transa = 'T', 't'	transa $=$ 'P' or 'p'
Array, size $1 d a^{*} k$. Before entry, the leading m-by-k part of the array a must contain the matrix A.	Array, size $l d a^{\star} m$. Before entry, the leading k-by-m part of the array a must contain the matrix A.	Array of size returned by gemm_*_pack_get_size and initialized using gemm_*_pack

Ida INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program.
If transa $=$ ' N ' or ' n ', lda must be at least max $(1, m)$.
If transa $=$ 'T', 't', lda must be at least max $(1, k)$.
oa
INTEGER*1 for gemm_s8u8s32_compute
INTEGER*2 for gemm_s16s16s32_compute

Specifies the scalar offset value for the matrix A.
b

1 db
ob
beta

C
ldc

OC

INTEGER*1 for gemm_s8u8s32_compute INTEGER*2 for gemm_s16s16s32_compute

transb $=$ 'N' or 'n'	transb = 'T', 't'	transb $=$ ' P' or 'p'
Array, size $1 d b^{\star} n$. Before entry, the leading k -by-n part of the array b must contain the matrix B.	Array, size $l d b^{*} k$. Before entry, the leading n-by- k part of the array b must contain the matrix B.	Array of size returned by gemm_*_pack_get_size and initialized using gemm_*_pack

INTEGER. Specifies the leading dimension of b as declared in the calling (sub)program.
If transb $=$ ' N ' or ' n ', ldb must be at least max $(1, k)$.
If transb $=$ 'T', 't', 'C', or 'C', ldb must be at least max $(1, n)$.

INTEGER*1 for gemm_s8u8s32_compute
INTEGER*2 for gemm_s16s16s32_compute
Specifies the scalar offset value for the matrix B.
REAL
Specifies the scalar beta.
INTEGER*4
Array, size $l d c$ by n. Before entry, the leading $m-b y-n$ part of the array c must contain the matrix C, except when beta is equal to zero, in which case c need not be set on entry.

INTEGER. Specifies the leading dimension of c as declared in the calling (sub)program.
The value of $I d c$ must be at least max $(1, m)$.
INTEGER*4
Array, size len. Specifies the scalar offset value for the matrix C.
If offsetc $=$ ' F ' or 'f', len must be at least 1 .
If offsetc $=$ 'C' or 'C', len must be at least max $(1, m)$.
If offsetc $=$ 'R' or 'r', len must be at least max $(1, n)$.

Output Parameters

c

INTEGER*4

Overwritten by the matrix alpha*(op (A) + A_offset)*(op (B) + B_offset) + beta*C + C_offset.

Example

See the following examples in the MKL installation directory to understand the use of these routines:
gemm_s8u8s32_compute: examples\blas\source\gemm_s8u8s32_computex.f

```
gemm_s16s16s32_compute: examples\blas\source\gemm_s16s16s32_computex.f
```


Application Notes

You can expand the matrix-matrix product in this manner:

```
(op(A) + A_offset)*(op(B) + B_offset) =op(A)*op(B) +op(A)*B_offset + A_offset*op(B) +
A_offset*B_offset
```

After computing these four multiplication terms separately, they are summed from left to right. The results from the matrix-matrix product and the C matrix are scaled with alpha and beta floating-point values respectively using double-precision arithmetic. Before storing the results to the output c array, the floatingpoint values are rounded to the nearest integers.
In the event of overflow or underflow, the results depend on the architecture. The results are either unsaturated (wrapped) or saturated to maximum or minimum representable integer values for the data type of the output matrix.

See Also

gemm_*_pack_get_size
to return the number of bytes needed to store the packed matrix.
gemm_*_pack
to pack the matrix into the buffer allocated previously.
?gemm_free
Frees the storage previously allocated for the packed matrix (deprecated).

Syntax

```
call sgemm_free (dest)
call dgemm_free (dest)
```

Include Files

- mkl.fi

Description

The ?gemm_free routine is one of a set of related routines that enable use of an internal packed storage. Call the ? gemm_free routine last to release storage for the packed matrix structure allocated with ?gemm_alloc (deprecated).

Input Parameters

```
dest
```

POINTER.
Previously allocated storage.

Output Parameters

dest
The freed buffer.

See Also

?gemm_pack Performs scaling and packing of the matrix into the previously allocated buffer. ?gemm_compute Computes a matrix-matrix product with general matrices where one or both input matrices are stored in a packed data structure and adds the result to a scalar-matrix product.
? gemm
for a detailed description of general matrix multiplication.

```
gemm_*
Computes a matrix-matrix product with general
integer matrices.
```

Syntax

```
call gemm_s8u8s32(transa, transb, offsetc, m, n, k, alpha, a, lda, oa, b, ldb, ob, beta,
c, Idc, OC)
call gemm_s16s16s32(transa, transb, offsetc, m, n, k, alpha, a, lda, oa, b, ldb, ob,
beta, c, ldc, oc)
```


Include Files

- mkl.fi

Description

The gemm_* routines compute a scalar-matrix-matrix product and adds the result to a scalar-matrix product. To get the final result, a vector is added to each row or column of the output matrix. The operation is defined as:

```
C := alpha*(op(A) + A_offset)*(op(B) + B_offset) + beta*C + C_offset
```

where :
$\mathrm{op}(X)$ is either op $(X)=X$ or op $(X)=X^{T}$,
A_offset is an m-by- k matrix with every element equal to the value oa,
B _offset is a $k-b y-n$ matrix with every element equal to the value ob,
C_offset is an m-by-n matrix defined by the oc array as described in the description of the offsetc parameter,
alpha and beta are scalars,
A is a matrix such that op (A) is m-by- k,
B is a matrix such that op (B) is $k-b y-n$,
and C is an m-by-n matrix.

Input Parameters

transa CHARACTER*1. Specifies the form of op (A) used in the matrix multiplication:

```
if transa = 'N' or 'n', then op(A) = A;
if transa = 'T' or 't', then op (A) = AT'.
```

CHARACTER*1. Specifies the form of op(B) used in the matrix multiplication:

```
if transb = 'N' or 'n', then op(B) = B;
if transb = 'T' or 't', then op (B) = B'.
```

CHARACTER*1. Specifies the form of C_offset used in the matrix multiplication.
offsetc = 'F' or 'f': oc has a single element and every element of C_offset is equal to this element.
offsetc $=$ ' C' or 'c': oc has a size of m and every column of C_offset is equal to oc.
offsetc $=$ 'R' or 'r': oc has a size of n and every row of C _offset is equal to oc.
m
n
k
a
b

INTEGER. Specifies the number of rows of the matrix op (A) and of the matrix C. The value of m must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (B) and the number of columns of the matrix C. The value of n must be at least zero.

INTEGER. Specifies the number of columns of the matrix op (A) and the number of rows of the matrix $o p(B)$. The value of k must be at least zero.

SINGLE PRECISION. Specifies the scalar alpha.
INTEGER*1 for gemm_s8u8s32.
INTEGER*2 for gemm_s16s16s32.
Array, size lda by $k a$, where $k a$ is k when transa $=$ ' N ' or ' n ', and is m otherwise. Before entry with transa $=$ ' N ' or ' n ', the leading m-by- k part of the array a must contain the matrix A, otherwise the leading k-by-m part of the array a must contain the matrix A.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program.
When transa $=$ ' N ' or ' n ', then lda must be at least max $(1, m)$, otherwise lda must be at least max $(1, k)$.

INTEGER*1 for gemm_s8u8s32.
INTEGER*2 for gemm_s16s16s32.
Specifies the scalar offset value for matrix A.
INTEGER*1 for gemm_s8u8s32. INTEGER*2 for gemm_s16s16s32. Array, size $l d b$ by $k b$, where $k b$ is n when transa $={ }^{\prime} N$ ' or ' n ', and is k otherwise. Before entry with transa $=$ ' N ' or ' n ', the leading k-by-n part of the array b must contain the matrix B, otherwise the leading $n-b y-k$ part of the array b must contain the matrix B.

INTEGER. Specifies the leading dimension of b as declared in the calling (sub)program.
When transb $=$ ' N ' or ' n ', then $1 d b$ must be at least max $(1, k)$, otherwise $1 d b$ must be at least $\max (1, n)$.

INTEGER*1 for gemm_s8u8s32. INTEGER*2 for gemm_s16s16s32. Specifies the scalar offset value for matrix B.

SINGLE PRECISION. Specifies the scalar beta. When beta is equal to zero, then c need not be set on input.

INTEGER*4

Array, size $l d c$ by n. Before entry, the leading m-by- n part of the array c must contain the matrix C, except when beta is equal to zero, in which case c need not be set on entry.

INTEGER. Specifies the leading dimension of c as declared in the calling (sub)program.
The value of $I d c$ must be at least max $(1, m)$.
Array, size len. Specifies the offset values for matrix C.

> If offsetc $=$ ' F ' or ' f ': len must be at least 1 .
> If offsetc $=$ 'C' or 'c': len must be at least $\max (1, m)$.
> If offsetc $=$ 'R' or 'r': oc must be at least $\max (1, n)$.

Output Parameters

c
Overwritten by alpha* (op (A) + A_offset)*(op(B) + B_offset)

+ beta*C+ C_offset.

Application Notes

The matrix-matrix product can be expanded:

```
(op(A) + A_offset)*(op(B) + B_offset)
=op(A)*op (B) + op(A)*B_offset + A_offset*op(B) + A_offset*B_offset
```

After computing these four multiplication terms separately, they are summed from left to right. The results from the matrix-matrix product and the C matrix are scaled with alpha and beta floating-point values respectively using double-precision arithmetic. Before storing the results to the output c array, the floatingpoint values are rounded to the nearest integers. In the event of overflow or underflow, the results depend on the architecture. The results are either unsaturated (wrapped) or saturated to maximum or minimum representable integer values for the data type of the output matrix.

When using cblas_gemm_s8u8s32 with row-major layout, the data types of A and B must be swapped. That is, you must provide an 8-bit unsigned integer array for matrix A and an 8-bit signed integer array for matrix B.

Intermediate integer computations in gemm_s8u8s32 on 64-bit Intel® Advanced Vector Extensions 2 (Intel ${ }^{\circledR}$ AVX2) and Intel ${ }^{\circledR}$ Advanced Vector Extensions 512 (Inte ${ }^{\circledR}$ AVX-512) architectures without Vector Neural Network Instructions (VNNI) extensions can saturate. This is because only 16 -bits are available for the accumulation of intermediate results. You can avoid integer saturation by maintaining all integer elements of A or B matrices under 8 bits.

?gemv_batch_strided
 Computes groups of matrix-vector product with general matrices.

Syntax

```
call sgemv_batch_strided(trans, m, n, alpha, a, lda, stridea, x, incx, stridex, beta, y,
incy, stridey, batch_size)
call dgemv_batch_strided(trans, m, n, alpha, a, lda, stridea, x, incx, stridex, beta, y,
incy, stridey, batch_size)
call cgemv_batch_strided(trans, m, n, alpha, a, lda, stridea, x, incx, stridex, beta, y,
incy, stridey, batch_size)
```

```
call zgemv_batch_strided(trans, m, n, alpha, a, lda, stridea, x, incx, stridex, beta, y,
incy, stridey, batch_size)
```


Include Files

- mkl.fi

Description

The ?gemv_batch_strided routines perform a series of matrix-vector product added to a scaled vector. They are similar to the ?gemv routine counterparts, but the ?gemv_batch_strided routines perform matrixvector operations with groups of matrices and vectors.

All matrices a and vectors x and y have the same parameters (size, increments) and are stored at constant stridea, stridex, and stridey from each other. The operation is defined as

```
for i = 0 ... batch_size - 1
    A is a matrix at offset i * stridea in a
    X and Y are vectors at offset i * stridex and i * stridey in x and y
    Y = alpha * op(A) * X + beta * Y
end for
```


Input Parameters

```
trans
```

m
n
alpha
a

CHARACTER*1.
Specifies op(A) the transposition operation applied to the A matrices.
if trans $=$ ' N ' or ' n ' , then $o p(A)=A$;
if trans = ' T ' or ' t ' , then op $(\mathrm{A})=\mathrm{A}$ ';
if trans $=$ ' C ' or ' c ' , then $o p(A)=\operatorname{conjg}(A$ ').
INTEGER. Number of rows of the matrices A. The value of m must be at least 0.

INTEGER. Number of columns of the matrices A. The value of n must be at least 0 .

REAL for sgemv_batch_strided
DOUBLE PRECISION for dgemv_batch_strided
COMPLEX for cgemv_batch_strided
DOUBLE COMPLEX for zgemv_batch_strided
Specifies the scalar alpha.
REAL for sgemv_batch_strided
DOUBLE PRECISION for dgemv_batch_strided
COMPLEX for cgemv_batch_strided
DOUBLE COMPLEX for zgemv_batch_strided
Array holding all the input matrix A. Must be of size at least $/ d a^{*} k+s^{2}$ stridea * (batch_size -1) where k is n if column major layout is used or m if row major layout is used.

INTEGER. Specifies the leading dimension of the matrixA. It must be positive and at least m.

```
stridea
x
incx
stridex
beta
y
incy
stridey
batch_size
INTEGER. Stride between two consecutive \(A\) matrices. Must be at least 0 .
REAL for sgemv_batch_strided
DOUBLE PRECISION for dgemv_batch_strided
COMPLEX for cgemv_batch_strided
DOUBLE COMPLEX for zgemv_batch_strided
Array holding all the input vector \(x\). Must be of size at least ( \(1+\) (len-1)*abs(incx)) + stridex * (batch_size - 1) where len is \(n\) if the \(A\) matrix is not transposed or \(m\) otherwise.
INTEGER. Stride between two consecutive elements of the \(x\) vectors. Must not be zero.
INTEGER. Stride between two consecutive \(x\) vectors, must be at least 0 .
REAL for sgemv_batch_strided
DOUBLE PRECISION for dgemv_batch_strided
COMPLEX for cgemv_batch_strided
DOUBLE COMPLEX for zgemv_batch_strided
Specifies the scalar beta.
REAL for sgemv_batch_strided
DOUBLE PRECISION for dgemv_batch_strided
COMPLEX for cgemv_batch_strided
DOUBLE COMPLEX for zgemv_batch_strided
Array holding all the input vectors \(y\). Must be of size at least batch_size * stridey.
INTEGER.
Stride between two consecutive elements of the \(y\) vectors. Must not be zero.
INTEGER.
Stride between two consecutive \(y\) vectors, must be at least ( \(1+\) (len-1)*abs(incy)) where len is \(m\) if the matrix \(A\) is non transpose or \(n\) otherwise.
INTEGER.
Number of gemv computations to perform and \(a\) matrices, \(x\) and \(y\) vectors. Must be at least 0 .
```


Output Parameters

y
Array holding the batch_size updated vector y.
?gemv_batch
Computes groups of matrix-vector product with general matrices.

Syntax

```
call sgemv_batch(trans_array, m_array, n_array, alpha_array, a_array, lda_array,
x_array, incx_array, beta_array, y_array, incy_array, group_count, group_size)
call dgemv_batch(trans_array, m_array, n_array, alpha_array, a_array, lda_array,
x_array, incx_array, beta_array, y_array, incy_array, group_count, group_size)
call cgemv_batch(trans_array, m_array, n_array, alpha_array, a_array, lda_array,
x_array, incx_array, beta_array, y_array, incy_array, group_count, group_size)
call zgemv_batch(trans_array, m_array, n_array, alpha_array, a_array, lda_array,
x_array, incx_array, beta_array, y_array, incy_array, group_count, group_size)
```


Include Files

- mkl.fi

Description

The ?gemv_batch routines perform a series of matrix-vector product added to a scaled vector. They are similar to the ? gemv routine counterparts, but the ?gemv_batch routines perform matrix-vector operations with groups of matrices and vectors.

Each group contains matrices and vectors with the same parameters (size, increments). The operation is defined as:

```
idx = 0
For i = 0 ... group_count - 1
    trans, m, n, alpha, lda, incx, beta, incy and group_size at position i in trans_array,
m_array, n_array, alpha_array, lda_array, incx_array, beta_array, incy_array and group_size_array
    for j = 0 ... group_size - 1
        a is a matrix of size mxn at position idx in a_array
        x and y are vectors of size m or n depending on trans, at position idx in x_array and
y_array
        y := alpha * op(a) * x + beta * y
        idx := idx + 1
    end for
end for
```

The number of entries in a_array, $x_{\text {_ array, }}$ and $y_{\text {_ }}$ array is total_batch_count $=$ the sum of all of the group_size entries.

Input Parameters

```
trans_array
m_array
n_array
alpha_array
```

CHARACTER*1.

Array of size group_count. For the group i^{\prime} trans $_{i}=$ trans_array[i] specifies the transposition operation applied to A.
if trans $=$ ' N ' or ' n ', then $o p(A)=A$;
if trans $=$ ' T ' or ' t ' , then $\mathrm{op}(\mathrm{A})=\mathrm{A}$ ';
if trans $=$ ' C ' or ' c ' , then $o p(A)=\operatorname{conjg}(A$ ' $)$.
INTEGER. Array of size group_count. For the group $i, m_{i}=m_{-}$array $[\mathrm{i}]$ is the number of rows of the matrix A.

INTEGER. Array of size group_count. For the group $i, n_{i}=n_{-} a r r a y[i]$ is the number of columns in the matrix A.

REAL for sgemv_batch

	DOUBLE PRECISION for dgemv_batch
	COMPLEX for cgemv_batch
	DOUBLE COMPLEX for zgemv_batch
	Array of size group_count. For the group i, alpha $_{i}=$ alpha_array $[i]$ is the scalar alpha.
a_array	INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture
	INTEGER*4 for IA 32 architecture
	Array of size total_batch_count of pointers used to store A matrices. The array allocated for the A matrices of the group i must be of size at least $I d a_{i}$ $* n_{i}$ if column major layout is used or at least $I d a_{i} * m_{i}$ is row major layout is used.
lda_array	INTEGER. Array of size group_count. For the group $i, I d a_{i}=I d a \_a r r a y[i]$ is the leading dimension of the matrix A. It must be positive and at least m_{i}.
x_array	INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture
	INTEGER*4 for IA32 architecture
	Array of size total_batch_count of pointers used to store x vectors. The array allocated for the x vectors of the group i must be of size at least $(1+$ len $n_{i}-1$)*abs(incx $)$) where $l e n_{i}$ is n_{i} if the A matrix is not transposed or m_{i} otherwise.
incx_array	INTEGER. Array of size group_count. For the group i, incx $_{i}=i n c x \_a r r a y[i]$ is the stride of vector x. Must not be zero.
beta_array	REAL for sgemv_batch
	DOUBLE PRECISION for dgemv_batch
	COMPLEX for cgemv_batch
	DOUBLE COMPLEX for zgemv_batch
	Array of size group_count. For the group i, beta $_{i}=$ beta_array $[i]$ is the scalar beta.
y_array	INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture
	INTEGER*4 for IA 32 architecture
	Array of size total_batch_count of pointers used to store y vectors. The array allocated for the y vectors of the group i must be of size at least ($1+$ len $n_{i}-1$)*abs $\left(\right.$ incy $\left._{i}\right)$) where $l e n_{i}$ is m_{i} if the A matrix is not transposed or n_{i} otherwise.
incy_array	INTEGER.
	Array of size group_count. For the group i, incy $_{i}=i n c y \_a r r a y[i]$ is the stride of vector y. Must not be zero.
group_count	INTEGER.
	Number of groups. Must be at least 0 .
group_size	INTEGER.

Array of size group_count. The element group_count[$i]$ is the number of operations in the group i. Each element in group_count must be at least 0.

Output Parameters

```
y_array
```

Array of pointers holding the total_batch_count updated vector y.

?dgmm_batch_strided
 Computes groups of matrix-vector product using general matrices.

Syntax

```
call sdgmm_batch_strided(left_right, m, n, a, lda, stridea, x, incx, stridex, c, ldc,
stridec, batch_size)
call ddgmm_batch_strided(left_right, m, n, a, lda, stridea, x, incx, stridex, c, ldc,
stridec, batch_size)
call cdgmm_batch_strided(left_right, m, n, a, lda, stridea, x, incx, stridex, c, ldc,
stridec, batch_size)
call zdgmm_batch_strided(left_right, m, n, a, lda, stridea, x, incx, stridex, c, ldc,
stridec, batch_size)
```


Include Files

- mkl.fi

Description

The ?dgmm_batch_strided routines perform a series of diagonal matrix-matrix product. The diagonal matrices are stored as dense vectors and the operations are performed with group of matrices and vectors.
All matrices a and c and vector x have the same parameters (size, increments) and are stored at constant stride, respectively, given by stridea, stridec, and stridex from each other. The operation is defined as

```
for i = 0 ... batch_size - 1
    A and C are matrices at offset i * stridea in a and i * stridec in c
    X is a vector at offset i * stridex in x
    C = diag(X) * A or C = A * diag(X)
end for
```


Input Parameters

```
left_right
m
n
a
```

CHARACTER*1.

Specifies the position of the diagonal matrix in the matrix product
if left_right $=$ 'L' or 'I' , then $C=\operatorname{diag}(X) * A$;
if left_right $=$ ' R ' or ' r ', then $C=A * \operatorname{diag}(X)$.
INTEGER. Number of rows of the matrices A and C. The value of m must be at least 0 .

INTEGER. Number of columns of the matrices A and C. The value of n must be at least 0 .

REAL for sdgmm_batch_strided

Ida
stridea
x
incx
stridex
c
ldc
stridec
batch_size

DOUBLE PRECISION for ddgmm_batch_strided
COMPLEX for cdgmm_batch_strided
DOUBLE COMPLEX for zdgmm_batch_strided
Array holding all the input matrix A. Must be of size at least $/ d a * k+s t r i d e a$ * (batch_size -1) where k is n if column major layout is used or m if row major layout is used.

INTEGER. Specifies the leading dimension of the matrixA. It must be positive and at least m.

INTEGER. Stride between two consecutive A matrices, must be at least 0 .
REAL for sdgmm_batch_strided
DOUBLE PRECISION for ddgmm_batch_strided
COMPLEX for cdgmm_batch_strided
DOUBLE COMPLEX for zdgmm_batch_strided
Array holding all the input vector x. Must be of size at least (1+ (len $-1) * a b s(i n c x))+$ stridex * (batch_size -1$)$ where len is n if the diagonal matrix is on the right of the product or m otherwise.

INTEGER. Stride between two consecutive elements of the x vectors.
INTEGER. Stride between two consecutive x vectors, must be at least 0 .
REAL for sdgmm_batch_strided
DOUBLE PRECISION for ddgmm_batch_strided
COMPLEX for cdgmm_batch_strided
DOUBLE COMPLEX for zdgmm_batch_strided
Array holding all the input matrix C. Must be of size at least batch_size * stridec.

INTEGER.
Specifies the leading dimension of the matrix C. It must be positive and at least m.

INTEGER.
Stride between two consecutive A matrices, must be at least $/ d c * n$.
INTEGER.
Number of dgmm computations to perform and a c matrices and x vectors. Must be at least 0 .

Output Parameters

Array holding the batch_size updated matrices c.

```
?dgmm_batch
Computes groups of matrix-vector product using
general matrices.
```


Syntax

```
call sdgmm_batch(left_right_array, m_array, n_array, a_array, lda_array, x_array,
incx_array, c_array, ldc_array, group_count, group_size)
call ddgmm_batch(left_right_array, m_array, n_array, a_array, lda_array, x_array,
incx_array, c_array, ldc_array, group_count, group_size)
call codgmm_batch(left_right_array, m_array, n_array, a_array, lda_array, x_array,
incx_array, c_array, ldc_array, group_count, group_size)
call zdgmm_batch(left_right_array, m_array, n_array, a_array, lda_array, x_array,
incx_array, c_array, ldc_array, group_count, group_size)
```

Include Files

- mkl.fi

Description

The ?dgmm_batch routines perform a series of diagonal matrix-matrix product. The diagonal matrices are stored as dense vectors and the operations are performed with group of matrices and vectors. .

Each group contains matrices and vectors with the same parameters (size, increments). The operation is defined as:

```
idx = 0
For i = 0 ... group_count - 1
    left_right, m, n, lda, incx, ldc and group_size at position i in left_right_array, m_array,
n_array, lda_array, incx_array, ldc_array and group_size_array
    for j = 0 ... group_size - 1
            a and c are matrices of size mxn at position idx in a_array and c_array
            x is a vector of size m or n depending on left_right, at position idx in x_array
            if (left_right == oneapi::mkl::side::left) c := diag(x) * a
            else c := a * diag(x)
            idx := idx + 1
    end for
end for
```

The number of entries in a_array, x_array, and c_array is total_batch_count $=$ the sum of all of the group_size entries.

Input Parameters

```
left_right_array
m_array
CHARACTER*1.
Array of size group_count. For the group \(i\), left_right \({ }_{i}=\) left_right_array[i] specifies the position of the diagonal matrix in the matrix product.
if left_right \({ }_{i}=\) 'L' or ' I ', then \(C=\operatorname{diag}(X) * A\).
if left_right \({ }_{i}=\) 'R' or 'r', then \(C=A * \operatorname{diag}(X)\).
INTEGER. Array of size group_count. For the group \(i, m_{i}=m_{-}\)array \([i]\) is the number of rows of the matrix \(A\) and \(C\).
```

n_array	INTEGER. Array of size group_count. For the group $i, n_{i}=n_{-}$array $[i]$ is the number of columns in the matrix A and C.
a_array	INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture
	INTEGER*4 for IA32 architecture
	Array of size total_batch_count of pointers used to store A matrices. The array allocated for the A matrices of the group i must be of size at least $I d a_{i}$ * n_{i}.
Ida_array	INTEGER. Array of size group_count. For the group $i, I d a_{i}=I d a \_a r r a y[i]$ is the leading dimension of the matrix A. It must be positive and at least m_{i}
x_array	INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture
	INTEGER*4 for IA 32 architecture
	Array of size total_batch_count of pointers used to store x vectors. The array allocated for the x vectors of the group i must be of size at least $(1+$ len $n_{i}-1$)*abs $\left(i n c x_{i}\right)$) where $l e n_{i}$ is n_{i} if the diagonal matrix is on the right of the product or m_{i} otherwise.
incx_array	INTEGER. Array of size group_count. For the group i, incx $x_{i}=i n c x \_a r r a y[i]$ is the stride of vector x.
c_array	INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture
	INTEGER*4 for IA32 architecture
	Array of size total_batch_count of pointers used to store C matrices. The array allocated for the C matrices of the group i must be of size at least $I d c_{i}$ * n_{i},
Idc_array	INTEGER.
	Array of size group_count. For the group $i, I d c_{i}=I d c \_a r r a y[i]$ is the leading dimension of the matrix C. It must be positive and at least m_{i}.
group_count	INTEGER.
	Number of groups. Must be at least 0 .
group_size	Integer.
	Array of size group_count. The element group_count[i] is the number of operations in the group i. Each element in group_size must be at least 0 .

Output Parameters

```
c_array
```

Array of pointers holding the total_batch_count updated matrix C.
mkl_jit_create_?gemm
Create a GEMM kernel that computes a scalar-matrixmatrix product and adds the result to a scalar-matrix product.

Syntax

```
status = mkl_jit_create_sgemm(jitter, transa, transb, m, n, k, alpha, lda, ldb, beta,
Idc)
```

```
status = mkl_jit_create_dgemm(jitter, transa, transb, m, n, k, alpha, lda, ldb, beta,
ldc)
status = mkl_jit_create_cgemm(jitter, transa, transb, m, n, k, alpha, lda, ldb, beta,
ldc)
status = mkl_jit_create_zgemm(jitter, transa, transb, m, n, k, alpha, lda, ldb, beta,
Idc)
```


Include Files

- mkl_blas.f90

Description

The mkl_jit_create_?gemm functions belong to a set of related routines that enable use of just-in-time code generation.
The mkl_jit_create_? gemm functions create a handle to a just-in-time code generator (a jitter) and generate a GEMM kernel that computes a scalar-matrix-matrix product and adds the result to a scalar-matrix product, with general matrices. The operation of the generated GEMM kernel is defined as follows:

```
C := alpha*op (A)*op (B) + beta*C
```

Where:

- $o p(X)$ is either $o p(X)=X$ or $o p(X)=X^{T}$ or $o p(X)=X^{H}$
- alpha and beta are scalars
- A, B, and C are matrices
- op (A) is an m-by-k matrix
- op (B) is a k-by-n matrix
- C is an m-by-n matrix

NOTE

Generating a new kernel with mkl_jit_create_?gemm involves moderate runtime overhead. To benefit from JIT code generation, use this feature when you need to call the generated kernel many times (for example, several hundred calls).

NOTE

The JIT API requires Fortran 90 and the ISO_C_BINDING module.

Input Parameters

transa
CHARACTER*1.
Specifies the form of op (A) used in the generated matrix multiplication:

- if transa $=$ 'N', then op $(A)=A$
- if transa $=$ 'T', then op $(A)=A^{T}$
- if transa $=$ ' C', then op $(A)=A^{H}$

CHARACTER*1.
Specifies the form of op(B) used in the generated matrix multiplication:

- if transb $=$ ' N ', then op $(B)=B$
- if transb $=$ ' T ', then op $(B)=B^{T}$
- if transb $='^{\prime} C^{\prime}$, then op $(B)=B^{H}$
m
n
k
alpha

Ida

1 db
beta
ldc

INTEGER.
Specifies the number of rows of the matrix op (A) and of the matrix C. The value of m must be at least zero.

INTEGER.
Specifies the number of columns of the matrix op (B) and of the matrix C. The value of n must be at least zero.

INTEGER.
Specifies the number of columns of the matrix op (A) and the number of rows of the matrix $\mathrm{op}(\mathrm{B})$. The value of k must be at least zero.

REAL for mkl_jit_create_sgemm
DOUBLE PRECISION for mkl_jit_create_dgemm.
COMPLEX for mkl_jit_create_cgemm
DOUBLE COMPLEX for mkl_jit_create_zgemm
Specifies the scalar alpha.
INTEGER.
Specifies the leading dimension of a.

- If transa $=$ 'N'lda must be at least max $(1, m)$.
- If transa $=$ ' T ' or transa $=$ 'C', lda must be at least max $(1, k)$.

INTEGER.
Specifies the leading dimension of b :

- If transb $=$ ' N ' Idb must be at least max $(1, k)$.
- If transb $=$ 'T' or transb $=$ ' C^{\prime}, I db must be at least max $(1, n)$.

REAL for mkl_jit_create_sgemm
DOUBLE PRECISION for mkl_jit_create_dgemm.
COMPLEX for mkl_jit_create_cgemm
DOUBLE COMPLEX for mkl_jit_create_zgemm
Specifies the scalar beta.
INTEGER.
Specifies the leading dimension of c which must be at least max $(1, m)$.

Output Parameters

jitter
TYPE (C_PTR). C pointer to a handle to the newly created code generator.

Return Values

```
status
```


INTEGER

Returns one of the following:

- MKL_JIT_ERROR if the handle cannot be created (no memory)
-or-
- MKL_JIT_SUCCESS if the jitter has been created and the GEMM kernel was successfully created
-or-
- MKL_NO_JIT if the jitter has been created, but a JIT GEMM kernel was not created because JIT is not beneficial for the given input parameters. The function pointer returned by mkl_jit_get_?gemm_ptr will call standard (non-JIT) GEMM.

```
mkl_jit_get_?gemm_ptr
Return the GEMM kernel associated with a jitter
previously created with mkl_jit_create_?gemm.
```


Syntax

```
c_func = mkl_jit_get_sgemm_ptr(jitter)
```

c_func = mkl_jit_get_sgemm_ptr(jitter)
c_func = mkl_jit_get_dgemm_ptr(jitter)
c_func = mkl_jit_get_dgemm_ptr(jitter)
c_func = mkl_jit_get_cgemm_ptr(jitter)
c_func = mkl_jit_get_cgemm_ptr(jitter)
c_func = mkl_jit_get_zgemm_ptr(jitter)

```
c_func = mkl_jit_get_zgemm_ptr(jitter)
```


Include Files

- mkl_blas.f90

Description

The mkl_jit_get_?gemm_ptr functions belong to a set of related routines that enable use of just-in-time code generation.
The mkl_jit_get_?gemm_ptr functions take as input a jitter previously created with mkl_jit_create_? gemm, and return the GEMM kernel associated with that jitter. The returned GEMM kernel computes a scalar-matrix-matrix product and adds the result to a scalar-matrix product, with general matrices. The operation is defined as follows:

$$
C:=\text { alpha*op }(A) * o p(B)+\text { beta*C }
$$

Where:

- $o p(X)$ is one of $o p(X)=X$ or $o p(X)=X^{T}$ or op $(X)=X^{H}$
- alpha and beta are scalars
- A, B, and C are matrices
- op (A) is an m-by-k matrix
- op (B) is a k-by-n matrix
- C is an m-by-n matrix

NOTE

Generating a new kernel with mkl_jit_create_?gemm involves moderate runtime overhead. To benefit from JIT code generation, use this feature when you need to call the generated kernel many times (for example, several hundred calls).

NOTE

The JIT API requires Fortran 90 and the ISO_C_BINDING module.

Input Parameter

```
jitter
```

TYPE (C_PTR), VALUE
Handle to the code generator.

Return Values

```
c_func
```

```
TYPE (C_FUNPTR)
```

If the jitter input is not a C NULL pointer, returns a C function pointer to a GEMM kernel. The returned C function pointer must be converted to a Fortran procedure pointer (of abstract interface ?gemm_jit_kernel_t) using C_F_PROCPOINTER. The GEMM kernel can then be called with four parameters: the jitter and the three matrices a, b, and c. Otherwise, returns a C NULL pointer.

If transa, transb, $m, n, k, l d a, l d b$, and $l d c$ are the parameters used during the creation of the input jitter, then:
a

transa $=$ ' \mathbf{N} '	transa $=$ 'T' or transa $=$ ' \mathbf{C} '
Array of size $1 \mathrm{da}^{*} k$	Array of size $1 \mathrm{da}^{*} \mathrm{~m}$
Before calling the returned function pointer, the leading m -by- k part of the array a must contain the matrix A.	Before calling the returned function pointer, the leading k-by-m part of the array a must contain the matrix A.

b

transb $=$ ' \mathbf{N} '	transb $=$ ' $\mathbf{T ' ~ o r ~}^{\text {cransb }}=$ ' C'
Array of size $1 \mathrm{db}^{*}{ }_{n}$	Array of size $1 \mathrm{db}^{*} k$
Before calling the returned function pointer, the leading k -by-n part of the array b must contain the matrix B.	Before calling the returned function pointer, the leading $n-b y-k$ part of the array b must contain the matrix B.

C
Array of size $1 d c^{*} n$
Before calling the returned function pointer, the leading m-by- n part of the array c must contain the matrix C.

```
mkl_jit_destroy
```

Delete the jitter previously created with
mkl_jit_create_? gemm as well as the GEMM kernel that it contains.

Syntax

```
status = mkl_jit_destroy (jitter)
```


Include Files

- mkl_blas.f90

Description

The mkl_jit_destroy function belongs to a set of related routines that enable use of just-in-time code generation.
The mkl_jit_destroy function takes as input a jitter previously created with mkl_jit_create_?gemm and deletes the jitter as well as the GEMM kernel that it contains.

NOTE

Generating a new kernel with mkl_jit_create_?gemm involves moderate runtime overhead. To benefit from JIT code generation, use this feature when you need to call the generated kernel many times (for example, several hundred calls).

NOTE

The JIT API requires Fortran 90 and the ISO_C_BINDING module.

Input Parameter

```
jitter
```

TYPE (C_PTR), VALUE
Jitter handle

Return Values

INTEGER

Returns one of the following:

- MKL_JIT_ERROR if the pointer is not NULL and is not a handle on a jitter-that is, if it was not created with mkl_jit_create_? gemm
-or-
- MKL_JIT_SUCCESS if the jitter has been successfully destroyed

LAPACK Routines

Intel oneAPI Math Kernel Library (oneMKL)implements routines from the LAPACK package that are used for solving systems of linear equations, linear least squares problems, eigenvalue and singular value problems, and performing a number of related computational tasks. The library includes LAPACK routines for both real and complex data. Routines are supported for systems of equations with the following types of matrices:

- General
- Banded
- Symmetric or Hermitian positive-definite (full, packed, and rectangular full packed (RFP) storage)
- Symmetric or Hermitian positive-definite banded
- Symmetric or Hermitian indefinite (both full and packed storage)
- Symmetric or Hermitian indefinite banded
- Triangular (full, packed, and RFP storage)
- Triangular banded
- Tridiagonal
- Diagonally dominant tridiagonal.

NOTE

Different arrays used as parameters to Intel ${ }^{\circledR}$ MKL LAPACK routines must not overlap.

Warning

LAPACK routines assume that input matrices do not contain IEEE 754 special values such as INF or NaN values. Using these special values may cause LAPACK to return unexpected results or become unstable.

Intel MKL supports the Fortran 95 interface, which uses simplified routine calls with shorter argument lists, in addition to the FORTRAN 77 interface to LAPACK computational and driver routines. The syntax section of the routine description gives the calling sequence for the Fortran 95 interface, where available, immediately after the FORTRAN 77 calls.

Naming Conventions for LAPACK Routines

To call one of the routines from a FORTRAN 77 program, you can use the LAPACK name.
LAPACK names have the structure ?yyzzz or ?yyzz, where the initial symbol ? indicates the data type:

s	real, single precision
c	complex, single precision
d	real, double precision
z	complex, double precision

Some routines can have combined character codes, such as ds or zc.
The Fortran 95 interfaces to the LAPACK computational and driver routines are the same as the FORTRAN 77 names but without the first letter that indicates the data type. For example, the name of the routine that performs a triangular factorization of general real matrices in Fortran 95 is getrf. Different data types are handled through the definition of a specific internal parameter that refers to a module block with named constants for single and double precision.

Fortran 95 Interface Conventions for LAPACK Routines

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) implements the Fortran 95 interface to LAPACK through wrappers that call respective FORTRAN 77 routines. This interface uses such Fortran 95 features as assumedshape arrays and optional arguments to provide simplified calls to LAPACK routines with fewer arguments.

NOTE

For LAPACK, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) offers two types of the Fortran 95 interfaces:

- using mkl_lapack. fi only through the include 'mkl_lapack.fi' statement. Such interfaces allow you to make use of the original LAPACK routines with all their arguments
- using lapack.f90 that includes improved interfaces. This file is used to generate the module files lapack95.mod and f95_precision.mod. See also the section "Fortran 95 interfaces and wrappers to LAPACK and BLAS" of the Intel® oneAPI Math Kernel Library (oneMKL) Developer Guide for details. The module files are used to process the FORTRAN use clauses referencing the LAPACK interface: use lapack95 and use f95_precision.

The main conventions for the Fortran 95 interface are as follows:

- The names of arguments used in Fortran 95 call are typically the same as for the respective generic (FORTRAN 77) interface. In rare cases, formal argument names may be different. For instance, select instead of selctg.
- Input arguments such as array dimensions are not required in Fortran 95 and are skipped from the calling sequence. Array dimensions are reconstructed from the user data that must exactly follow the required array shape.

Another type of generic arguments that are skipped in the Fortran 95 interface are arguments that represent workspace arrays (such as work, rwork, and so on). The only exception are cases when workspace arrays return significant information on output.

NOTE

Internally, workspace arrays are allocated by the Fortran 95 interface wrapper, and are of optimal size for the best performance of the routine.

An argument can also be skipped if its value is completely defined by the presence or absence of another argument in the calling sequence, and the restored value is the only meaningful value for the skipped argument.

- Some generic arguments are declared as optional in the Fortran 95 interface and may or may not be present in the calling sequence. An argument can be declared optional if it meets one of the following conditions:
- If an argument value is completely defined by the presence or absence of another argument in the calling sequence, it can be declared optional. The difference from the skipped argument in this case is that the optional argument can have some meaningful values that are distinct from the value reconstructed by default. For example, if some argument (like jobz) can take only two values and one of these values directly implies the use of another argument, then the value of jobz can be uniquely reconstructed from the actual presence or absence of this second argument, and jobz can be omitted.
- If an input argument can take only a few possible values, it can be declared as optional. The default value of such argument is typically set as the first value in the list and all exceptions to this rule are explicitly stated in the routine description.
- If an input argument has a natural default value, it can be declared as optional. The default value of such optional argument is set to its natural default value.
- Argument info is declared as optional in the Fortran 95 interface. If it is present in the calling sequence, the value assigned to info is interpreted as follows:
- If this value is more than -1000, its meaning is the same as in the FORTRAN 77 routine.
- If this value is equal to -1000, it means that there is not enough work memory.
- If this value is equal to -1001, incompatible arguments are present in the calling sequence.
- If this value is equal to -i, the ith parameter (counting parameters in the FORTRAN 77 interface, not the Fortran 95 interface) had an illegal value.
- Optional arguments are given in square brackets in the Fortran 95 call syntax.

The "Fortran 95 Notes" subsection at the end of the topic describing each routine details concrete rules for reconstructing the values of the omitted optional parameters.

Intel ${ }^{\oplus}$ MKL Fortran 95 Interfaces for LAPACK Routines vs. Netlib Implementation

The following list presents general digressions of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) LAPACK95 implementation from the Netlib analog:

- The Intel® oneAPI Math Kernel Library (oneMKL) Fortran 95 interfaces are provided for pure procedures.
- Names of interfaces do not contain the LA_ prefix.
- An optional array argument always has the target attribute.
- Functionality of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) LAPACK95 wrapper is close to the FORTRAN 77 original implementation in thegetrf, gbtrf, and potrf interfaces.
- If jobz argument value specifies presence or absence of z argument, then z is always declared as optional and jobz is restored depending on whether z is present or not.
- To avoid double error checking, processing of the info argument is limited to checking of the allocated memory and disarranging of optional arguments.
- If an argument that is present in the list of arguments completely defines another argument, the latter is always declared as optional.
You can transform an application that uses the Netlib LAPACK interfaces to ensure its work with the Intel ${ }^{(8)}$ oneAPI Math Kernel Library (oneMKL) interfaces providing that:
a. The application is correct, that is, unambiguous, compiler-independent, and contains no errors.
b. Each routine name denotes only one specific routine. If any routine name in the application coincides with a name of the original Netlib routine (for example, after removing the LA prefix) but denotes a routine different from the Netlib original routine, this name should be modified through context name replacement.
You should transform your application in the following cases:
- When using the Netlib routines that differ from the Intel® oneAPI Math Kernel Library (oneMKL) routines only by theLA_ prefix or in the array attribute target. The only transformation required in this case is context name replacement.
- When using Netlib routines that differ from the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) routines by theLA_ prefix, the target array attribute, and the names of formal arguments. In the case of positional passing of arguments, no additional transformation except context name replacement is required. In the case of the keywords passing of arguments, in addition to the context name replacement the names of mismatching keywords should also be modified.
- When using the Netlib routines that differ from the respective Intel® oneAPI Math Kernel Library (oneMKL) routines by theLA prefix, the targetarray attribute, sequence of the arguments, arguments missing in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) but present in Netlib and, vice versa, present in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) but missing in Netlib. Remove the differences in the sequence and range of the arguments in process of all the transformations when you use the Netlib routines specified by this bullet and the preceding bullet.
- When using the getrf, gbtrf, and potrfinterfaces, that is, new functionality implemented in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) but unavailable in the Netlib source. To override the differences, build the desired functionality explicitly with the Intel® oneAPI Math Kernel Library (oneMKL) means or create a new subroutine with the new functionality, using specific MKL interfaces corresponding to LAPACK 77 routines. You can call the LAPACK 77 routines directly but using the new Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) interfaces is preferable. Note that if the transformed application callsgetrf, gbtrf or potrf without controlling arguments rcond and norm, just context name replacement is enough in modifying the calls into the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) interfaces, as described in the first bullet above. The Netlib functionality is preserved in such cases.
- When using the Netlib auxiliary routines. In this case, call a corresponding subroutine directly, using the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) LAPACK 77 interfaces.
Transform your application as follows:

1. Make sure conditions a. and b. are met.
2. Select Netlib LAPACK 95 calls. For each call, do the following:

- Select the type of digression and do the required transformations.
- Revise results to eliminate unneeded code or data, which may appear after several identical calls.

3. Make sure the transformations are correct and complete.

Matrix Storage Schemes for LAPACK Routines

LAPACK routines use the following matrix storage schemes:

- Full storage: an m-by- n matrix A is stored in a two-dimensional array a, with the matrix element $a_{i j}$ ($i=$ $1 . . m j=1 . . n$), and stored in the array element a(i,j).
- Packed storage scheme allows you to store symmetric, Hermitian, or triangular matrices more compactly: the upper or lower triangle of the matrix is packed by columns in a one-dimensional array.
- Band storage: an m-by-n band matrix with $k l$ sub-diagonals and $k u$ superdiagonals is stored compactly in a two-dimensional array $a b$ with $k l+k u+1$ rows and n columns. Columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.
- Rectangular Full Packed (RFP) storage: the upper or lower triangle of the matrix is packed combining the full and packed storage schemes. This combination enables using half of the full storage as packed storage while maintaining efficiency by using Level 3 BLAS/LAPACK kernels as the full storage.
Generally in LAPACK routines, arrays that hold matrices in packed storage have names ending in p; arrays with matrices in band storage have names ending in b; arrays with matrices in the RFP storage have names ending in $f p$.
For more information on matrix storage schemes, see "Matrix Arguments" in "Routine and Function Arguments".

Mathematical Notation for LAPACK Routines

Descriptions of LAPACK routines use the following notation:
For an M-by $-N$ matrix A, denotes the conjugate transposed N-by- M matrix with elements:

$$
a_{i, j}^{\mathrm{H}}=\overline{a_{j, i}}
$$

For a real-valued matrix, $A^{H}=A^{T}$.
The dot product of two vectors, defined as:

$$
x \cdot y=\sum_{i} x_{i} \overline{y_{i}}
$$

A system of linear equations with an n-by- n matrix $A=\left\{a_{i j}\right\}$, a right-hand side vector $b=\left\{b_{i}\right\}$, and an unknown vector $x=\left\{x_{i}\right\}$.

A set of systems with a common matrix A and multiple right-hand sides. The columns of B are individual right-hand sides, and the columns of X are the corresponding solutions.
the vector with elements $\left|x_{i}\right|$ (absolute values of x_{i}).
the matrix with elements $\left|a_{i j}\right|$ (absolute values of $a_{i j}$).
The infinity-norm of the vector x.
The infinity-norm of the matrix A.
The one-norm of the matrix $A .||A||_{1}=\left|\left|A^{T}\right|\right|_{\infty}=\left|\left|A^{H}\right|\right|_{\infty}$
The 2-norm of the vector x : $||x||_{2}=\left(\Sigma_{i}\left|x_{i}\right|^{2}\right)^{1 / 2}=\| x| |_{E}$ (see the definition for Euclidean norm in this topic).

The 2-norm (or spectral norm) of the matrix A.

$$
\|A\|_{2}=\max _{i} \sigma_{i},\|A\|_{2}^{2}=\max _{\| x|l| l}=1
$$

$||A||_{E}$
$\kappa(A)=||A|| \cdot| | A^{-1}| |$
λ_{i}
σ_{i}

The Euclidean norm of the matrix $A:||A|| E^{2}=\Sigma_{i} \Sigma_{j}\left|a_{i j}\right|^{2}$.
The condition number of the matrix A.
Eigenvalues of the matrix A (for the definition of eigenvalues, see Eigenvalue Problems).

Singular values of the matrix A. They are equal to square roots of the eigenvalues of $A^{H} A$. (For more information, see Singular Value Decomposition).

Error Analysis

In practice, most computations are performed with rounding errors. Besides, you often need to solve a system $A x=b$, where the data (the elements of A and b) are not known exactly. Therefore, it is important to understand how the data errors and rounding errors can affect the solution x.
Data perturbations. If x is the exact solution of $A x=b$, and $x+\delta x$ is the exact solution of a perturbed problem $(A+\delta A)(x+\delta x)=(b+\delta b)$, then this estimate, given up to linear terms of perturbations, holds:

where $A+\delta A$ is nonsingular and

In other words, relative errors in A or b may be amplified in the solution vector x by a factor $\kappa(A)=\| A| |$ $\left|\left|A^{-1}\right|\right|$ called the condition number of A.
Rounding errors have the same effect as relative perturbations $c(n) \varepsilon$ in the original data. Here ε is the machine precision, defined as the smallest positive number x such that $1+x>1$; and $c(n)$ is a modest function of the matrix order n. The corresponding solution error is
$||\delta x|| /||x|| \leq C(n) \kappa(A) \varepsilon$. (The value of $c(n)$ is seldom greater than 10n.)

NOTE
Machine precision depends on the data type used.

Thus, if your matrix A is ill-conditioned (that is, its condition number $\kappa(A)$ is very large), then the error in the solution x can also be large; you might even encounter a complete loss of precision. LAPACK provides routines that allow you to estimate $\kappa(A)$ (see Routines for Estimating the Condition Number) and also give you a more precise estimate for the actual solution error (see Refining the Solution and Estimating Its Error).

LAPACK Linear Equation Routines

This section describes routines for performing the following computations:

- factoring the matrix (except for triangular matrices)
- equilibrating the matrix (except for RFP matrices)
- solving a system of linear equations
- estimating the condition number of a matrix (except for RFP matrices)
- refining the solution of linear equations and computing its error bounds (except for RFP matrices)
- inverting the matrix.

To solve a particular problem, you can call two or more computational routines or call a corresponding driver routine that combines several tasks in one call. For example, to solve a system of linear equations with a general matrix, call ?getrf (LU factorization) and then ?getrs (computing the solution). Then, call ?gerfs to refine the solution and get the error bounds. Alternatively, use the driver routine ?gesvx that performs all these tasks in one call.

LAPACK Linear Equation Computational Routines

Table "Computational Routines for Systems of Equations with Real Matrices" lists the LAPACK computational routines (FORTRAN 77 and Fortran 95 interfaces) for factorizing, equilibrating, and inverting real matrices, estimating their condition numbers, solving systems of equations with real matrices, refining the solution, and estimating its error. Table "Computational Routines for Systems of Equations with Complex Matrices" lists similar routines for complex matrices. Respective routine names in the Fortran 95 interface are without the first symbol (see Routine Naming Conventions).

Computational Routines for Systems of Equations with Real Matrices

Matrix type, storage scheme	Factorize matrix	Equilibrate matrix	Solve system	Condition number	Estimate error	Invert matrix
general	?getrf	?geequ,	?getrs	?gecon	?gerfs,	?getri
general band	?gbtrf	?gbequ,	?gbtrs	?gbcon	?gbrfs,	
general tridiagonal ?gttrf				?gbrfsx		
diagonally dominant tridiagonal	?dttrfb		?gttrs	?gtcon	?gtrfs	
symmetric positive-definite	?potrf	?poequ,	?potrs	?pocon	?porfs,	?potri
symmetric positive-definite, packed storage	?pptrf	?ppequ	?pptrs	?ppcon	?pprfs	?pptri
symmetric positive-definite, RFP storage	?pftrf					

In the table above, ? denotes s (single precision) or d (double precision) for the FORTRAN 77 interface.
Computational Routines for Systems of Equations with Complex Matrices

Matrix type, storage scheme	Factorize matrix	Equilibrate matrix	Solve system	Condition number	Estimate error	Invert matrix
general	? getrf	? geequ,	? getrs	? gecon	? gerfs,	? getri
		? geequb			? gerfsx	
general band	? gbtrf	? gbequ ,	? gbtrs	? gbcon	? gbrfs ,	
		? gbequb			? gbrfsx	
general tridiagonal	? gttrf		? gttrs	? gtcon	? gtrfs	
Hermitian positive-definite	?potrf	?poequ,	?potrs	? pocon	?porfs,	?potri
		?poequb			?porfsx	
Hermitian positive-definite, packed storage	?pptrf	?ppequ	?pptrs	?ppcon	? pprfs	?pptri
Hermitian positive-definite, RFP storage	?pftrf		?pftrs			?pftri
Hermitian positive-definite, band	?pbtrf	? pbequ	?pbtrs	?pbcon	?pbrfs	

Matrix type, storage scheme	Factorize matrix	Equilibrate matrix	Solve system	Condition number
Hermitian positive-definite, tridiagonal	?pttrf	error		

In the table above, ? stands for c (single precision complex) or z (double precision complex) for FORTRAN 77 interface.

Matrix Factorization: LAPACK Computational Routines

This section describes the LAPACK routines for matrix factorization. The following factorizations are supported:

- LU factorization
- Cholesky factorization of real symmetric positive-definite matrices
- Cholesky factorization of real symmetric positive-definite matrices with pivoting
- Cholesky factorization of Hermitian positive-definite matrices
- Cholesky factorization of Hermitian positive-definite matrices with pivoting
- Bunch-Kaufman factorization of real and complex symmetric matrices
- Bunch-Kaufman factorization of Hermitian matrices.

You can compute:

- the $L U$ factorization using full and band storage of matrices
- the Cholesky factorization using full, packed, RFP, and band storage
- the Bunch-Kaufman factorization using full and packed storage.

```
?getrf
Computes the LU factorization of a general m-by-n
matrix.
Syntax
```

```
call sgetrf( m, n, a, lda, ipiv, info )
```

call sgetrf(m, n, a, lda, ipiv, info)
call dgetrf(m, n, a, lda, ipiv, info)
call dgetrf(m, n, a, lda, ipiv, info)
call cgetrf(m, n, a, lda, ipiv, info)
call cgetrf(m, n, a, lda, ipiv, info)
call zgetrf(m, n, a, lda, ipiv, info)
call zgetrf(m, n, a, lda, ipiv, info)
call getrf(a [,ipiv] [,info])

```
call getrf( a [,ipiv] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes the $L U$ factorization of a general m-by-n matrix A as

$$
A=P^{\star} L^{\star} U,
$$

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if $m>$ n) and U is upper triangular (upper trapezoidal if $m<n$). The routine uses partial pivoting, with row interchanges.

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

m
n
a

lda

Output Parameters

a
ipiv
Overwritten by L and U. The unit diagonal elements of L are not stored.

INTEGER.

Array, size at least $\max (1, \min (m, n))$. Contains the pivot indices; for $1 \leq i \leq \min (m, n)$, row i was interchanged with row ipiv(i).
info
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, u_{i i}$ is 0 . The factorization has been completed, but U is exactly singular. Division by 0 will occur if you use the factor U for solving a system of linear equations.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine getrf interface are as follows:

```
a Holds the matrix A of size (m,n).
ipiv Holds the vector of length min}(m,n)
```


Application Notes

The computed L and U are the exact factors of a perturbed matrix $A+E$, where

```
|E| \leqc(min(m,n))\varepsilonP|L||U|
```

$C(n)$ is a modest linear function of n, and ε is the machine precision.
The approximate number of floating-point operations for real flavors is
$(2 / 3) n^{3}$
If $m=n$,
$(1 / 3) n^{2}(3 m-n)$
If $m>n$,
$(1 / 3) m^{2}(3 n-m)$
If $m<n$.

The number of operations for complex flavors is four times greater.
After calling this routine with $m=n$, you can call the following:

?getrs	to solve $A^{\star} X=B$ or $A^{T} X=B$ or $A^{H} X=B$
?gecon	to estimate the condition number of A
?getri	to compute the inverse of A.

See Also

mkl_progress
Matrix Storage Schemes
?getrf_batch
Computes the LU factorization for 1 or more groups of general m-by-n matrices.

Syntax

```
call sgetrf_batch(m_array, n_array, A_array, lda_array, ipiv_array, group_size,
group_count, info_array)
call dgetrf_batch(m_array, n_array, A_array, lda_array, ipiv_array, group_size,
group_count, info_array)
call cgetrf_batch(m_array, n_array, A_array, lda_array, ipiv_array, group_size,
group_count, info_array)
call zgetrf_batch(m_array, n_array, A_array, lda_array, ipiv_array, group_size,
group_count, info_array)
```


Include Files

mkl.fi

Description

The ?getrf_batch routines are similar to the ?getrf counterparts, but instead compute the LU factorization for a group of general m-by-n matrices, processing one or more groups at once. Each group contains matrices with the same parameters.

The operation is defined as

```
i = 1
for g = 1 ... group_count
    mg ng and ldag in m_array(g), n_array(g) and lda_array(g)
    for j = 1 ... group_size(g)
        Ai, ipivi in A_array(i), ipiv_array(i)
        Ai
        i = i + 1
    end for
end for
```

where P_{i} is a permutation matrix, L_{i} is lower triangular with unit diagonal elements (lower trapezoidal if $m_{g}>$ n_{g}) and U_{i} is upper triangular (upper trapezoidal if $m_{g}<n_{g}$). These routines use partial pivoting, with row interchanges.
A_{i} represents matrices stored at the addresses pointed to by A_{-}array. The dimensions of each matrix is $m_{g^{-}}$ by- n_{g}, where m_{g} and n_{g} are the g-th elements of m_{-}array and n_{-}array, respectively. Similarly, ipiv represents the pivot arrays stored at addresses pointed to by ipiv_array, where the size of the pivoting arrays is $\min \left(m_{g}, n_{g}\right)$.
The number of entries in A_array and ipiv_array is total_batch_count, which is equal to the sum of all the entries in the array group_size.
Refer to ?getrf for a detailed description of the LU factorization of general matrices.

Input Parameters

m_array
n_array

INTEGER. Array of size group_count. For the group $g, m_{g}=m_{\text {_ }}$ array (g) specifies the number of rows of the matrices A_{i} in group g.
The value of each element of m_array must be at least zero.
INTEGER. Array of size group_count. For the group $g, n_{g}=n_{-} \operatorname{array}(g)$ specifies the number of columns of the matrices A_{i} in group g.

The value of each element of $n_{\text {_array }}$ must be at least zero.

A_array	INTEGER* 8 for Intel ${ }^{\circledR} 64$ architecture
	INTEGER* 4 for IA-32 architecture
	Array, size total_batch_count, of pointers to arrays used to store A_{i} matrices.
Ida_array	INTEGER. Array of size group_count. For group g, Idag $=I d a \_a r r a y(g)$ specifies the leading dimension of the matricies A_{i} in group g, as declared in the calling (sub)program.
	The value of $/ d a_{g}$ must be at least $\max \left(1, m_{g}\right)$.
group_count	INTEGER.
	Specifies the number of groups. Must be at least 0 .
group_size	INTEGER.
	Array of size group_count. The element group_size (g) specifies the number of matrices in group g. Each element in group_size must be at least 0.

Output Parameters

```
A_array
ipiv_array
```

info_array

Output array, overwritten by the total_batch_count LU-factored matrices. Each matrix A_{i} is overwritten by L_{i} and U_{i}. The unit diagonal elements of L_{i} are not stored.

INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture
INTEGER* 4 for IA-32 architecture
Array, size total_batch_count, of pointers to the pivot arrays associated with the LU-factored A_{i} matrices.

INTEGER.
Array of size total_batch_count, which reports the factorization status for each matrix.
If info($i)=0$, the execution is successful for A_{i}.
If info $(i)=-j$, the j-th parameter had an illegal value for A_{i}.
If info($i)=j$, the j-th diagonal element of U_{i} is 0 . The factorization has been completed, but U_{i} is exactly singular. Division by 0 will occur if you use the factor U_{i} for solving a system of linear equations.

Related Information

Refer to ?getrf batch strided, which computes the LU factorization for a group of general m-by-n matrices that are allocated at a constant stride from each other in the same contiguous block of memory.

```
?getrf_batch_strided
Computes the LU factorization of a group of general
m-by-n matrices that are stored at a constant stride
from each other in a contiguous block of memory.
Syntax
call sgetrf_batch_strided(m, n, A, lda, stride_a, ipiv, stride_ipiv, batch_size, info)
```

```
call dgetrf_batch_strided(m, n, A, lda, stride_a, ipiv, stride_ipiv, batch_size, info)
call cgetrf_batch_strided(m, n, A, lda, stride_a, ipiv, stride_ipiv, batch_size, info)
call zgetrf_batch_strided(m, n, A, lda, stride_a, ipiv, stride_ipiv, batch_size, info)
```


Include Files

```
mkl.fi
```


Description

The ?getrf_batch_strided routines are similar to the ?getrf counterparts, but instead compute the LU factorization for a group of general m-by- n matrices.
All matrices have the same parameters (matrix size, leading dimension) and are stored at constant stride_a from each other in a contiguous block of memory. Their respective pivot arrays associated with each of the LU-factored A_{i} matrices are stored at constant stride_ipiv from each other. The operation is defined as

```
for i = 0 ... batch_size-1
    Ai is a matrix at offset i * stride_a from A
    ipivi is an array at offset i * stride_ipiv from ipiv
    Ai
end for
```

where P_{i} is a permutation matrix, L_{i} is lower triangular with unit diagonal elements (lower trapezoidal if $m>$ n) and U_{i} is upper triangular (upper trapezoidal if $m<n$). The routine uses partial pivoting, with row interchanges.

Input Parameters

m
n

A
lda
stride_a
stride_ipiv
batch_size

INTEGER. The number of rows in the A matrices: $m \geq 0$.
INTEGER. The number of columns in the A matrices: $n \geq 0$.
REAL for sgetrf_batch_strided
DOUBLE PRECISION for dgetrf_batch_strided
COMPLEX for cgetrf_batch_strided
DOUBLE COMPLEX for zgetrf_batch_strided
The A array of size at least stride_a * batch_size holding the A_{i} matrices.

INTEGER. Specifies the leading dimension of the A_{j} matrices; $I d a \geq$ $\max (1, m)$.

INTEGER.
Stride between two consecutive A_{i} matrices; stride_a \geq lda ${ }^{*} n$.
INTEGER.
Stride between two consecutive pivot arrays; stride_ipiv $\geq \min (m, n)$.
INTEGER.
Number of A_{i} matrices to be factorized. Must be at least 0 .

Output Parameters

A
Array holding the LU-factored A_{i} matrices. Each matrix is overwritten by their respective L_{i} and U_{i} factors. The unit diagonal elements of L are not stored.

INTEGER
Array of size at least stride_ipiv* batch_size holding the pivot array associated with each of the LU-factored A_{i} matrices. The pivot array ipivi contains the pivot indices associated with matrix A_{i}; for $1 \leq j \leq \min (m, n)$, row j was interchanged with row ipivi(j).

INTEGER.
Array of size at least batch_size, which reports the factorization status for each matrix.

If info($i)=0$, the execution is successful for A_{i}.
If info $(i)=-j$, the j-th parameter had an illegal value for A_{i}.
If info($i)=j$, the j-th diagonal element of U_{i} is 0 . The factorization has been completed, but U_{i} is exactly singular. Division by 0 will occur if you use the factor U_{i} for solving a system of linear equations.

After calling this routine with $m=n$, you can call the following:

```
?getrs_batch_strided
```

to solve systems of linear equations of the form $A_{i} * X_{i}=B_{i}$ or $A_{i}^{T} * X_{i}=B_{i}$ or $A_{i}^{H} * X_{i}=B_{i}$ with the group of LU-factored matrices.

Related Information

See ?getrf_batch, which computes the LU factorization for a group of general m-by-n matrices that are allocated at a constant stride from each other in the same contiguous block of memory.
mkl_?getrfnp
Computes the LU factorization of a general m-by-n matrix without pivoting.

Syntax

```
call mkl_sgetrfnp( m, n, a, lda, info )
call mkl_dgetrfnp( m, n, a, lda, info )
call mkl_cgetrfnp( m, n, a, lda, info )
call mkl_zgetrfnp( m, n, a, lda, info )
```

Include Files

- mkl.fi

Description

The routine computes the $L U$ factorization of a general m-by-n matrix A as

$$
A=L^{*} U,
$$

where L is lower triangular with unit-diagonal elements (lower trapezoidal if $m>n$) and U is upper triangular (upper trapezoidal if $m<n$). The routine does not use pivoting.

Input Parameters

m
n
a

Ida

Output Parameters

a
info

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A ; n \geq 0$.
REAL for mkl_sgetrfnp
DOUBLE PRECISION for mkl_dgetrfnp
COMPLEX for mkl_cgetrfnp
DOUBLE COMPLEX for mkl_zgetrfnp.
Array, size Ida by *. Contains the matrix A. The second dimension of a must be at least max $(1, n)$.

INTEGER. The leading dimension of array a.

Overwritten by L and U. The unit diagonal elements of L are not stored.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, u_{i i}$ is 0 . The factorization has been completed, but U is exactly singular. Division by 0 will occur if you use the factor U for solving a system of linear equations.

Application Notes

The approximate number of floating-point operations for real flavors is
$(2 / 3) n^{3}$
$(1 / 3) n^{2}(3 m-n)$
If $m=n$,
$(1 / 3) m^{2}(3 n-m)$
If $m>n$,

The number of operations for complex flavors is four times greater.
After calling this routine with $m=n$, you can call the following:
mkl_?getrinp to compute the inverse of A

See Also

mkl_progress
Matrix Storage Schemes
?getrfnp_batch_strided
Computes the LU factorization, without pivoting, of a group of general m-by-n matrices that are stored at a constant stride from each other in a contiguous block of memory.

Syntax

```
call sgetrfnp_batch_strided(m, n, A, lda, stride_a, batch_size, info)
call dgetrfnp_batch_strided(m, n, A, lda, stride_a, batch_size, info)
call cgetrfnp_batch_strided(m, n, A, lda, stride_a, batch_size, info)
call zgetrfnp_batch_strided(m, n, A, lda, stride_a, batch_size, info)
```


Include Files

mkl.fi

Description

The ?getrfnp_batch_strided routines are similar to the ?getrfnp counterparts, but instead compute the LU factorization for a group of general m-by- n matrices.
All matrices A have the same parameters (matrix size, leading dimension) and are stored at constant stride_a from each other in a single block of memory. The operation is defined as

```
for i = 0 ... batch_size-1
    Ai is a matrix at offset i * stride_a from A
    A
end for
```

where L_{i} is lower triangular with unit diagonal elements (lower trapezoidal if $m>n$) and U_{i} is upper triangular (upper trapezoidal if $m<n$). The routine does not perform any pivoting.

Input Parameters

m
n
A
lda
stride_a
batch_size

INTEGER. The number of rows in the A matrices: $m \geq 0$.
INTEGER. The number of columns in the A_{i} matrices: $n \geq 0$.
REAL for sgetrfnp_batch_strided
DOUBLE PRECISION for dgetrfnp_batch_strided
COMPLEX for cgetrfnp_batch_strided
DOUBLE COMPLEX for zgetrfnp_batch_strided
The A array of size at least stride_a* batch_size holding the A_{i} matrices.

INTEGER. Specifies the leading dimension of the A_{i} matrices; $1 d a \geq$ $\max (1, m)$.

INTEGER.
Stride between two consecutive A_{i} matrices; stride_a $\geq l_{a}{ }^{*} n$.
INTEGER.
Number of A_{i} matrices to be factorized. Must be at least 0 .

Output Parameters

A
Array holding the LU-factored A_{i} matrices. Each matrix is overwritten by their respective L_{i} and U_{i} factors. The unit diagonal elements of L are not stored.

INTEGER.
Array of size at least batch_size, which reports the factorization status for each matrix.
If info(i) $=0$, the execution is successful for A_{i}.
If info($i)=-j$, the j-th parameter had an illegal value for A_{i}.
If info($i)=j$, the j-th diagonal element of U_{i} is 0 . The factorization has been completed, but U_{i} is exactly singular. Division by 0 will occur if you use the factor U_{i} for solving a system of linear equations.

After calling this routine with $m=n$, you can call the following:

```
?getrsnp_batch_strided
```

to solve systems of linear equations of the form $A_{i} * X_{i}=B_{i}$ or $A_{i}^{T} * X_{i}=B_{i}$ or $A_{i}^{H} * X_{i}=B_{i}$ with the group of LU-factored matrices.

mkl_?getrfnpi

Performs LU factorization (complete or incomplete) of a general matrix without pivoting.

Syntax

```
call mkl_sgetrfnpi (m, n, nfact, a, lda, info)
call mkl_dgetrfnpi (m, n, nfact, a, lda, info )
call mkl_cgetrfnpi (m, n, nfact, a, lda, info)
call mkl_zgetrfnpi (m, n, nfact, a, lda, info )
call mkl_getrfnpi ( a [, nfact] [, info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes the LU factorization of a general m-by- n matrix A without using pivoting. It supports incomplete factorization. The factorization has the form:
$A=L^{\star} U$,
where L is lower triangular with unit diagonal elements (lower trapezoidal if $m>n$) and U is upper triangular (upper trapezoidal if $m<n$).

Incomplete factorization has the form:

$$
A=L * U+\tilde{A}
$$

where L is lower trapezoidal with unit diagonal elements, U is upper trapezoidal, and

A

is the unfactored part of matrix A. See the application notes section for further details.

NOTE
Use ?getrf if it is possible that the matrix is not diagonal dominant.

Input Parameters

The data types are given for the Fortran interface.

m	INTEGER. The number of rows in matrix $A ; m \geq 0$.
n	INTEGER. The number of columns in matrix $A ; n \geq 0$.
$n f a c t$	INTEGER. The number of rows and columns to factor; $0 \leq n f a c t \leq \min (m$, n). Note that if $n f a c t<\min (m, n)$, incomplete factorization is performed.
a	REAL for mkl_sgetrfnpi
	DOUBLE PRECISION for mkl_dgetrfnpi
	COMPLEX for mkl_cgetrfnpi
	DOUBLE COMPLEX for mkl_zgetrfnpi
	Array of size ($I d a, *$). Contains the matrix A. The second dimension of a must be at least max $(1, n)$.
Ida	INTEGER. The leading dimension of array a. $1 d a \geq \max (1, m)$.

Output Parameters

a
Overwritten by L and U. The unit diagonal elements of L are not stored. When incomplete factorization is specified by setting nfact $<\min (m, n)$, a also contains the unfactored submatrix

$$
\hat{A}_{A_{2}}
$$

. See the application notes section for further details.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, u_{i i}$ is 0 . The requested factorization has been completed, but U is exactly singular. Division by 0 will occur if factorization is completed and factor U is used for solving a system of linear equations.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine getrf interface are as follows:
a
Holds the matrix A of size (m, n).

Application Notes

The computed L and U are the exact factors of a perturbed matrix $A+E$, with

```
|E|\leqC(min(m,n))\varepsilon| L||U|
```

where $c(n)$ is a modest linear function of n, and ε is the machine precision.
The approximate number of floating-point operations for real flavors is
$(2 / 3) n^{3}$
If $m=n=n$ fact
$(1 / 3) n^{2}(3 m-n)$
If $m>n=n f a c t$
$(1 / 3) m^{2}(3 n-m)$
If $m=n f a c t<n$
$(2 / 3) n^{3}-(n-n f a c t)^{3}$
If $m=n, n f a c t<\min (m, n)$
$(1 / 3)\left(n^{2}(3 m-n)-(n-n f a c t)^{2}(3 m-\quad\right.$ If $m>n>n f a c t$
2nfact-n))
$(1 / 3)\left(m^{2}(3 n-m)-(m-n f a c t)^{2}(3 n-\quad\right.$ If n fact $<m<n$
2nfact-m))

The number of operations for complex flavors is four times greater.
When incomplete factorization is specified, the first nfact rows and columns are factored, with the update of the remaining rows and columns of A as follows:

If matrix A is represented as a block 2-by-2 matrix:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where

- A_{11} is a square matrix of order nfact,
- A_{21} is an (m-nfact)-by-nfact matrix,
- A_{12} is an nfact-by-($\left.n-n f a c t\right)$ matrix, and
- A_{22} is an (m-nfact)-by-($n-n f a c t$) matrix.

The result is

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{l}
L_{1} \\
L_{2}
\end{array}\right] \cdot\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & \tilde{A}_{2}
\end{array}\right]
$$

L_{1} is a lower triangular square matrix of order nfact with unit diagonal and U_{1} is an upper triangular square matrix of order nfact. L_{1} and U_{1} result from LU factorization of matrix $A_{11}: A_{11}=L_{1} U_{1}$.
L_{2} is an (m-nfact)-by-nfact matrix and $L_{2}=A_{21} U_{1}{ }^{-1} . U_{2}$ is an nfact-by-($n-n$ fact) matrix and $U_{2}=$ $L_{1}{ }^{-1} A_{12}$.

$$
\tilde{A}_{22}
$$

is an (m-nfact)-by-($n-n f a c t)$ matrix and

$$
\tilde{A}_{22}
$$

$=A_{22}-L_{2} U_{2}$.
On exit, elements of the upper triangle U_{1} are stored in place of the upper triangle of block A_{11} in array a; elements of the lower triangle L_{1} are stored in the lower triangle of block A_{11} in array a (unit diagonal elements are not stored). Elements of L_{2} replace elements of $A_{21} ; U_{2}$ replaces elements of A_{12} and

$$
\tilde{A}_{22}
$$

replaces elements of A_{22}.

output

?getrf2
 Computes LU factorization using partial pivoting with row interchanges.

Syntax

```
call sgetrf2 (m, n, a, lda, ipiv, info )
call dgetrf2 (m, n, a, lda, ipiv, info )
call cgetrf2 (m, n, a, lda, ipiv, info )
call zgetrf2 (m, n, a, lda, ipiv, info )
```

Include Files

- mkl.fi

Description

? getrf2 computes an LU factorization of a general m-by-n matrix A using partial pivoting with row interchanges.
The factorization has the form
$A=P * L * U$
where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if $m>$ n), and U is upper triangular (upper trapezoidal if $m<n$).

This is the recursive version of the algorithm. It divides the matrix into four submatrices:
$A=\left(\begin{array}{ll}A 11 & A 12 \\ A 21 & A 22\end{array}\right)$
where $A 11$ is $n 1$ by $n 1$ and $A 22$ is $n 2$ by $n 2$ with $n 1=\min (m, n)$, and $n 2=n-n 1$.
The subroutine calls itself to factor $\binom{A 11}{A 12}$,
do the swaps on $\binom{A 12}{A 22}$, solve $A 12$, update $A 22$, then it calls itself to factor $A 22$ and do the swaps on A21.

Input Parameters

```
m INTEGER. The number of rows of the matrix A. m > = 0.
    INTEGER. The number of columns of the matrix A. n>=0.
    REAL for sgetrf2
    DOUBLE PRECISION for dgetrf2
    COMPLEX for cgetrf2
    DOUBLE COMPLEX for zgetrf2
    Array, size (lda,n).
    On entry, the m-by-n matrix to be factored.
    INTEGER. The leading dimension of the array a. lda >= max (1,m).
```


Output Parameters

a
ipiv
info

On exit, the factors L and U from the factorization $A=P * L * U$; the unit diagonal elements of L are not stored.

INTEGER. Array, size $(\min (m, n))$.
The pivot indices; for $1<=i<=\min (m, n)$, row i of the matrix was interchanged with row ipiv(i).

INTEGER. $=0$: successful exit.
<0 : if info $=-i$, the i-th argument had an illegal value.
>0 : if info $=i, U_{i, i}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.
?getri_oop_batch
Computes the inverses for 1 or more groups of LU
factored, n-by-n matrices.

Syntax

```
call sgetri_oop_batch(n_array, A_array, lda_array, ipiv_array, Ainv_array, ldainv_array,
group_count, group_size, info_array)
```

```
call dgetri_oop_batch(n_array, A_array, lda_array, ipiv_array, Ainv_array, ldainv_array,
group_count, group_size, info_array)
call cgetri_oop_batch(n_array, A_array, lda_array, ipiv_array, Ainv_array, ldainv_array,
group_count, group_size, info_array)
call zgetri_oop_batch(n_array, A_array, lda_array, ipiv_array, Ainv_array, ldainv_array,
group_count, group_size, info_array)
```


Include Files

```
mkl.fi
```


Description

The ?getri_oop_batch routines are similar to the ?getri counterparts, but instead compute the inverses for groups of n-by-n LU factored matrices, processing one or more groups at once. Each group contains matrices with the same parameters.

The operation is defined as

```
i = 1
for g = 1 ... group_count
    ng}\mathrm{ and ldag in n_array(g) and lda_array(g)
    for j = 1 ... group_size(g)
    Ai, Ainvi, ipivi in A_array(i), Ainv_array(i), ipiv_array(i)
    Ainv i := inv(P ( 
    i = i + 1
    end for
end for
```

where P_{i} is a permutation matrix, L_{i} is lower triangular with unit diagonal elements and U_{i} is upper triangular. These routines use partial pivoting, with row interchanges.
A_{i} and $A i n v_{i}$ represents matrices stored at the addresses pointed to by A_array and Ainv_array. The dimensions of each matrix is $n_{g}-$ by $-n_{g}$, where n_{g} is the g-th elements of n_{-}array. Similarly, ipiv represents the pivot arrays stored at addresses pointed to by ipiv_array, where the size of the pivoting arrays is n_{g}.

The number of entries in A_array, Ainv_array and ipiv_array is total_batch_count, which is equal to the sum of all the entries in the array group_size.

Refer to ?getri for a detailed description of the inversion of LU factorized matrices.

Input Parameters

n_array	INTEGER. Array of size group_count. For the group $g, n_{g}=n_{\text {_ }}$ array (g) specifies the order of the matrices A_{i} in group g.
	The value of each element of n _array must be at least zero.
A_array	INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture
	INTEGER* 4 for IA-32 architecture
	Array, size total_batch_count, of pointers to the A_{i} matrices.
Ida_array	INTEGER. Array of size group_count. For group $g, I d a_{g}=I d a \_a r r a y(g)$ specifies the leading dimension of the matricies A_{i} in group g, as declared in the calling (sub)program.
	The value of $I d a_{g}$ must be at least max $\left(1, n_{g}\right)$.
ipiv_array	INTEGER*8 for Intel ${ }^{\circledR} 64$ architecture

	INTEGER* 4 for IA- 32 architecture
Array, size total_batch_count, of pointers to the pivot arrays associated with	
the LU-factored A_{i} matrices, as returned by ? getrf_batch.	
group_size	INTEGER.
	Specifies the number of groups. Must be at least 0.
	INTEGER.
	Array of size group_count. The element group_size (g) specifies the
	number of matrices in group g. Each element in group_size must be at
least 0.	

Output Parameters

info_array

INTEGER* 8 for Intel ${ }^{\circledR} 64$ architecture
INTEGER*4 for IA-32 architecture
Array, size total_batch_count, of pointers to the Ainv v_{i} matrices.
Each matrix is overwritten by the n_{g}-by- n_{g} matrix $\operatorname{inv}\left(A_{i}\right)$.
INTEGER.
Array of size group_count. For group g, Idainv ${ }_{g}=/$ dainv_array $^{(g)}$ specifies the leading dimension of the matrices Ainv_{i} in group g.

The value of $/ d^{2} i^{\prime} v_{g}$ must be at least $\max \left(1, n_{g}\right)$.
INTEGER.
Array of size total_batch_count, which reports the inversion status for each matrix.

If info($i)=0$, the execution is successful for A_{i}.
If info $(i)=-j$, the j-th parameter had an illegal value for A_{i}.
If $\operatorname{info}(i)=j$, the j-th diagonal element of the factor U_{i} is $0, U_{i}$ is singular, and the inversion could not be completed.

Related Information

Refer to ?getri_oop_batch_strided, which computes inverses for a group of n-by-n matrices that are allocated at a constant stride from each other in the same contiguous block of memory.

?getri_oop_batch_strided
 Computes the inverses of a group of $L U$ factored matrices that are stored at a constant stride from each other in a contiguous block of memory.

Syntax

```
call sgetri_oop_batch_strided(n, A, lda, stride_a, ipiv, stride_ipiv, Ainv, ldainv,
stride_ainv, batch_size, info)
call dgetri_oop_batch_strided(n, A, lda, stride_a, ipiv, stride_ipiv, Ainv, ldainv,
stride_ainv, batch_size, info)
call cgetri_oop_batch_strided(n, A, lda, stride_a, ipiv, stride_ipiv, Ainv, ldainv,
stride_ainv, batch_size, info)
```

```
call zgetri_oop_batch_strided(n, A, lda, stride_a, ipiv, stride_ipiv, Ainv, ldainv,
stride_ainv, batch_size, info)
```


Include Files

```
mkl.fi
```


Description

The ?getri_oop_batch_strided routines are similar to the ?getri counterparts, but instead compute the inverses for a group of LU factored matrices.
All matrices have the same parameters (matrix size, leading dimension) and are stored at constant stride_a from each other in a contiguous block of memory. The output arrays are stored at constant stride_ainv from each other in a contiguous block of memory. Their respective pivot arrays associated with each of the LUfactored A_{i} matrices are stored at constant stride_ipiv from each other.

The operation is defined as

```
for i = 0 ... batch_size-1
    Ai is a matrix at offset i * stride_a from A
    ipivi is an array at offset i * stride_ipiv from ipiv
    Ainvi is a matrix at offset i * stride_ainv from Ainv
    Ainv i := inv( }\mp@subsup{P}{i}{}* \mp@subsup{L}{i}{}* U Ui
end for
```

where P_{i} is a permutation matrix, L_{i} is lower triangular with unit diagonal elements (lower trapezoidal if $m>n$), and U_{i} is upper triangular (upper trapezoidal if $m<n$). The routine uses partial pivoting, with row interchanges.

Input Parameters

n	INTEGER. The number of columns in the A_{i} matrices; $n \geq 0$.
A	REAL for sgetri_oop_batch_strided
	DOUBLE PRECISION for dgetri_oop_batch_strided
	COMPLEX for cgetri_oop_batch_strided
	DOUBLE COMPLEX for zgetri_oop_batch_strided
	The A array of size at least stride_a * batch_size holding the A_{i} matrices.
Ida	INTEGER. Specifies the leading dimension of the A_{i} matrices; Ida $\geq n$.
stride_a	INTEGER. Stride between two consecutive A_{i} matrices; ; stride_a \geq Ida ${ }^{*} n$.
ipiv	INTEGER.
	Array of size at least stride_ipiv * batch_size, holding the pivot array associated with each of the LU-factored A_{i} matrices, as returned by ?getrf_batch_strided.
stride_ipiv	INTEGER.
	Stride between two consecutive pivot arrays; stride_ipiv $\geq n$.
Idainv	INTEGER. Specifies the leading dimension of the Ainv_{i} matrices; Idainv $\geq n$.
stride_ainv	INTEGER. Stride between two consecutive Ainv \boldsymbol{v}_{i} matrices; ; stride_ainv \geq Idainv * n.
batch_size	INTEGER.

Number of A_{i} matrices to be factorized. Must be at least 0 .

Output Parameters

Ainv
info
Array holding the inverses $\operatorname{Ainv} v_{i}$ matrices. Each matrix is overwritten by their respective L_{i} and U_{i} factors. The unit diagonal elements of L are not stored.

INTEGER.
Array of size batch_size, which reports the factorization status for each matrix.

If info(i) $=0$, the execution is successful for A_{i}.
If info $(i)=-j$, the j-th parameter had an illegal value for A_{i}.
If info($i)=j$, the j-th diagonal element of the factor U_{i} is $0, U_{i}$ is exactly singular. Division by - will occur if you use the factor U_{i} to solve a system of linear equations.

```
?gbtrf
Computes the LU factorization of a general m-by-n
band matrix.
Syntax
```

```
call sgbtrf( m, n, kl, ku, ab, ldab, ipiv, info )
```

call sgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
call dgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
call dgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
call cgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
call cgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
call zgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
call zgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
call gbtrf(ab [,kl] [,m] [,ipiv] [,info])

```
call gbtrf( ab [,kl] [,m] [,ipiv] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine forms the $L U$ factorization of a general m-by- n band matrix A with $k l$ non-zero subdiagonals and $k u$ non-zero superdiagonals, that is,

$$
A=P^{\star} L^{*} U,
$$

where P is a permutation matrix; L is lower triangular with unit diagonal elements and at most $k l$ non-zero elements in each column; U is an upper triangular band matrix with $k l+k u$ superdiagonals. The routine uses partial pivoting, with row interchanges (which creates the additional $k l$ superdiagonals in U).

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

```
n
kl
ku
ab
ldab
```


Output Parameters

Overwritten by L and $U . U$ is stored as an upper triangular band matrix with $k l+k u$ superdiagonals in rows 1 to $k l+k u+1$, and the multipliers used during the factorization are stored in rows $k l+$ $k u+2$ to $2 * k l+k u+1$.

See Application Notes below for further details.
INTEGER.
Array, size at least max $(1, \min (m, n))$. The pivot indices; for $1 \leq i \leq$ $\min (m, n)$, row i was interchanged with row ipiv(i).

If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, u_{i i}$ is 0 . The factorization has been completed, but U is exactly singular. Division by 0 will occur if you use the factor U for solving a system of linear equations.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine gbtrf interface are as follows:

ab	Holds the array A of size $(2 \star k l+k u+1, n)$.
ipiv	Holds the vector of length $\min (m, n)$.
$k l$	If omitted, assumed $k l=k u$.

```
ku Restored as ku = Ida-2*kl-1.
m
If omitted, assumed m=n.
```


Application Notes

The computed L and U are the exact factors of a perturbed matrix $A+E$, where

```
|E|\leqC(kl+ku+1) \varepsilonP|L||U|
```

$C(k)$ is a modest linear function of k, and ε is the machine precision.
The total number of floating-point operations for real flavors varies between approximately $2 n(k u+1) k l$ and $2 n(k l+k u+1) k l$. The number of operations for complex flavors is four times greater. All these estimates assume that $k l$ and $k u$ are much less than min (m, n).

The band storage scheme is illustrated by the following example, when $m=n=6, k l=2, k u=1$:
on entry

$$
\left[\begin{array}{cccccc}
\star & \star & \star & + & + & + \\
\star & \star & + & + & + & + \\
\star & a_{12} & a_{23} & a_{34} & a_{45} & a_{56} \\
a_{11} & a_{22} & a_{33} & a_{44} & a_{55} & a_{66} \\
a_{21} & a_{32} & a_{43} & a_{54} & a_{65} & \star \\
a_{31} & a_{42} & a_{53} & a_{64} & \star & \star
\end{array}\right]
$$

on exit

$$
\left[\begin{array}{cccccc}
\star & \star & \star & u_{14} & u_{25} & u_{36} \\
\star & \star & u_{13} & u_{24} & u_{35} & u_{46} \\
\star & u_{12} & u_{23} & u_{34} & u_{45} & u_{56} \\
u_{11} & u_{22} & u_{33} & u_{44} & u_{55} & u_{66} \\
m_{21} & m_{32} & m_{43} & m_{34} & m_{65} & \star \\
m_{31} & m_{42} & m_{53} & m_{64} & \star & \star
\end{array}\right]
$$

Elements marked * are not used; elements marked + need not be set on entry, but are required by the routine to store elements of U because of fill-in resulting from the row interchanges.

After calling this routine with $m=n$, you can call the following routines:

```
gbtrs to solve }A*X=B\mathrm{ or }\mp@subsup{A}{}{T}*X=B\mathrm{ or }\mp@subsup{A}{}{H}*X=
gbcon to estimate the condition number of }A\mathrm{ .
```


See Also

mkl_progress
Matrix Storage Schemes
?gttrf
Computes the LU factorization of a tridiagonal matrix.
Syntax

```
call sgttrf( n, dl, d, du, du2, ipiv, info )
call dgttrf( n, dl, d, du, du2, ipiv, info )
call cgttrf( n, dl, d, du, du2, ipiv, info )
call zgttrf( n, dl, d, du, du2, ipiv, info )
call gttrf( dl, d, du, du2 [, ipiv] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes the $L U$ factorization of a real or complex tridiagonal matrix A using elimination with partial pivoting and row interchanges.

The factorization has the form

$$
A=L * U,
$$

where L is a product of permutation and unit lower bidiagonal matrices and U is upper triangular with nonzeroes in only the main diagonal and first two superdiagonals.

Input Parameters

n	INTEGER. The order of the matrix $A ; n \geq 0$.
$d l, d, d u$	REAL for sgttrf
	DOUBLE PRECISION for dgttrf
	COMPLEX for cgttrf
	DOUBLE COMPLEX for zgttrf.
	Arrays containing elements of A.
	The array $d l$ of dimension (n-1) contains the subdiagonal elements of A.
	The array d of dimension n contains the diagonal elements of A.
	The array $d u$ of dimension ($n-1$) contains the superdiagonal elements of A.
Output Parameters	
$d l$	Overwritten by the ($n-1$) multipliers that define the matrix L from the
	$L U$ factorization of A. The matrix L has unit diagonal elements, and the $(n-1)$ elements of $d l$ form the subdiagonal. All other elements of L are zero.
d	Overwritten by the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.
$d u$	Overwritten by the ($n-1$) elements of the first superdiagonal of U.
du2	REAL for sgttrf
	DOUBLE PRECISION for dgttrf
	COMPLEX for cgttrf
	DOUBLE COMPLEX for zgttrf.
	Array, dimension ($n-2$). On exit, du2 contains ($n-2$) elements of the second superdiagonal of U.
ipiv	INTEGER.

Array, dimension (n). The pivot indices: for $1 \leq i \leq n$, row i was interchanged with row ipiv(i). ipiv(i) is always i or $i+1$; ipiv(i) $=i$ indicates a row interchange was not required.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, u_{i i}$ is 0 . The factorization has been completed, but U is exactly singular. Division by zero will occur if you use the factor U for solving a system of linear equations.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine gttrf interface are as follows:

$d l$	Holds the vector of length $(n-1)$.
d	Holds the vector of length n.
$d u$	Holds the vector of length $(n-1)$.
$d u 2$	Holds the vector of length $(n-2)$.
ipiv	Holds the vector of length n.

Application Notes

?gbtrs	to solve $A \star X=B$ or $A^{T} \star X=B$ or $A^{H \star} X=B$
?gbcon	to estimate the condition number of A.

?dttrfb
Computes the factorization of a diagonally dominant tridiagonal matrix.

Syntax

```
call sdttrfb( n, dl, d, du, info )
call ddttrfb( n, dl, d, du, info )
call cdttrfb( n, dl, d, du, info )
call zdttrfb( n, dl, d, du, info )
call dttrfb( dl, d, du [, info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The ? dttrfb routine computes the factorization of a real or complex tridiagonal matrix A with the BABE (Burning At Both Ends) algorithm without pivoting. The factorization has the form

$$
A=L_{1} \star U^{\star} L_{2}
$$

where

- L_{1} and L_{2} are unit lower bidiagonal with k and $n-k-1$ subdiagonal elements, respectively, where $k=$ $n / 2$, and
- U is an upper bidiagonal matrix with nonzeroes in only the main diagonal and first superdiagonal.

Input Parameters

```
n INTEGER. The order of the matrix A; n\geq0.
dl, d, du
REAL for sdttrfb
    DOUBLE PRECISION for ddttrfb
    COMPLEX for cdttrfb
    DOUBLE COMPLEX for zdttrfb.
```

 Arrays containing elements of \(A\).
 The array \(d l\) of dimension (\(n-1\)) contains the subdiagonal
 elements of \(A\).
 The array \(d\) of dimension \(n\) contains the diagonal elements of \(A\).
 The array \(d u\) of dimension (\(n-1\)) contains the superdiagonal
 elements of \(A\).

Output Parameters

```
dl
d
du
info
```

Overwritten by the ($n-1$) multipliers that define the matrix L from the $L U$ factorization of A.

Overwritten by the n diagonal element reciprocals of the upper triangular matrix U from the factorization of A.

Overwritten by the $(n-1)$ elements of the superdiagonal of U.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, \quad u_{i i}$ is 0 . The factorization has been completed, but U is exactly singular. Division by zero will occur if you use the factor U for solving a system of linear equations.

Application Notes

A diagonally dominant tridiagonal system is defined such that $\left|d_{i}\right|>\left|d l_{i-1}\right|+\left|d u_{i}\right|$ for any i :
$1<i<n$, and $\left|d_{1}\right|>\left|d u_{1}\right|,\left|d_{n}\right|>\left|d l_{n-1}\right|$
The underlying BABE algorithm is designed for diagonally dominant systems. Such systems are free from the numerical stability issue unlike the canonical systems that use elimination with partial pivoting (see ?gttrf). The diagonally dominant systems are much faster than the canonical systems.

NOTE

- The current implementation of BABE has a potential accuracy issue on very small or large data close to the underflow or overflow threshold respectively. Scale the matrix before applying the solver in the case of such input data.
- Applying the ?dttrfb factorization to non-diagonally dominant systems may lead to an accuracy loss, or false singularity detected due to no pivoting.

```
?potrf
Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite matrix.
Syntax
```

```
call spotrf( uplo, n, a, lda, info )
```

call spotrf(uplo, n, a, lda, info)
call dpotrf(uplo, n, a, lda, info)
call dpotrf(uplo, n, a, lda, info)
call cpotrf(uplo, n, a, lda, info)
call cpotrf(uplo, n, a, lda, info)
call zpotrf(uplo, n, a, lda, info)
call zpotrf(uplo, n, a, lda, info)
call potrf(a [, uplo] [,info])

```
call potrf( a [, uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix A :
$A=U^{T \star} \quad U$ for real data, $A=U^{H_{\star}} \quad U$ for complex data
if uplo='U'
$A=L^{\star} L^{T}$ for real data, $A=L^{\star} L^{H}$ for complex data
if uplo='L'
where L is a lower triangular matrix and U is upper triangular.

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

uplo
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored and how A is factored:

If uplo = 'U', the array a stores the upper triangular part of the matrix A, and the strictly lower triangular part of the matrix is not referenced.

If uplo = 'L', the array a stores the lower triangular part of the matrix A, and the strictly upper triangular part of the matrix is not referenced.
n
a

Ida

Output Parameters

a
info

INTEGER. Specifies the order of the matrix A. The value of n must be at least zero.

REAL for spotrf
DOUBLE PRECISION for dpotrf
COMPLEX for cpotrf
DOUBLE COMPLEX for zpotrf.
Array, size (Ida,*). The array a contains either the upper or the lower triangular part of the matrix A (see uplo). The second dimension of a must be at least max $(1, n)$.

INTEGER. The leading dimension of a.

The upper or lower triangular part of a is overwritten by the Cholesky factor U or L, as specified by uplo.

INTEGER. If info=0, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the leading minor of order i (and therefore the matrix A itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix A.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine potrf interface are as follows:

```
a Holds the matrix A of size (n,n).
uplo Must be 'U' or 'L'.The default value is 'U'.
```


Application Notes

If uplo $=$ ' U ', the computed factor U is the exact factor of a perturbed matrix $A+E$, where
$c(n)$ is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for uplo $=$ 'L'.
The total number of floating-point operations is approximately $(1 / 3) n^{3}$ for real flavors or $(4 / 3) n^{3}$ for complex flavors.
After calling this routine, you can call the following routines:
?potrs

$$
\text { to solve } A * X=B
$$

?pocon
?potri

See Also

mkl_progress
Matrix Storage Schemes
?potrf2
Computes Cholesky factorization using a recursive algorithm.

Syntax

```
call spotrf2(uplo, n, a, lda, info)
call dpotrf2(uplo, n, a, lda, info)
call cpotrf2(uplo, n, a, lda, info)
call zpotrf2(uplo, n, a, lda, info)
```

Include Files

- mkl.fi

Description

?potrf2 computes the Cholesky factorization of a real or complex symmetric positive definite matrix A using the recursive algorithm.
The factorization has the form
for real flavors:
$A=U^{\top} * U$, if uplo $=' U '$ ', or
$A=L^{*} L^{\top}$, if uplo = 'L',
for complex flavors:
$A=U^{H} * U$, if uplo $=' U '$,
or $A=L^{*} L^{H}$, if uplo = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the recursive version of the algorithm. It divides the matrix into four submatrices:
$A=\left(\begin{array}{ll}A 11 & A 12 \\ A 21 & A 22\end{array}\right)$
where $A 11$ is $n 1$ by $n 1$ and $A 22$ is $n 2$ by $n 2$, with $n 1=n / 2$ and $n 2=n-n 1$.
The subroutine calls itself to factor $A 11$. Update and scale $A 21$ or $A 12$, update $A 22$ then call itself to factor A22.

Input Parameters
uplo
n
CHARACTER*1. = 'U': Upper triangle of A is stored;
$=$ 'L': Lower triangle of A is stored.
INTEGER. The order of the matrix A.
$n \geq 0$.
a
REAL for spotrf2
DOUBLE PRECISION for dpotrf2
COMPLEX for cpotrf2
DOUBLE COMPLEX for zpotrf2
Array, size (lda, n).
On entry, the symmetric matrix A.
If uplo = 'U', the leading n-by- n upper triangular part of a contains the upper triangular part of the matrix A, and the strictly lower triangular part of a is not referenced.

If uplo = 'L', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.

INTEGER. The leading dimension of the array a.
$I d a \geq \max (1, n)$.

Output Parameters

a
On exit, if info $=0$, the factor U or L from the Cholesky factorization. For real flavors:
$A=U^{\top} * U$ or $A=L^{*} L^{\top} ;$
For complex flavors:
$A=U^{\mathrm{H} *} U$ or $A=L^{*} L^{\mathrm{H}}$.
INTEGER. $=0$: successful exit
<0 : if info $=-i$, the i-th argument had an illegal value
> 0 : if info $=i$, the leading minor of order i is not positive definite, and the factorization could not be completed.
?pstrf
Computes the Cholesky factorization with complete pivoting of a real symmetric (complex Hermitian) positive semidefinite matrix.

Syntax

```
call spstrf( uplo, n, a, lda, piv, rank, tol, work, info )
call dpstrf( uplo, n, a, lda, piv, rank, tol, work, info )
call cpstrf( uplo, n, a, lda, piv, rank, tol, work, info )
call zpstrf( uplo, n, a, lda, piv, rank, tol, work, info )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the Cholesky factorization with complete pivoting of a real symmetric (complex Hermitian) positive semidefinite matrix. The form of the factorization is:

$$
\begin{aligned}
& P^{T} \star A \star P=U^{T} \star U \text {, if uplo }=\text { 'U' for real flavors, } \\
& P^{T} \star A \star P=U^{\mathrm{H}} \star U \text {, if uplo='U' for complex flavors, } \\
& P^{T} \star A \star P=L \star L^{T} \text {, if uplo }=\text { ' } \mathrm{L} \text { ' for real flavors, } \\
& P^{T} \star A \star P=L \star L^{\mathrm{H}} \text {, if uplo }=' \mathrm{~L} \text { ' for complex flavors, }
\end{aligned}
$$

where P is a permutation matrix stored as vector piv, and U and L are upper and lower triangular matrices, respectively.

This algorithm does not attempt to check that A is positive semidefinite. This version of the algorithm calls level 3 BLAS.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored: If uplo = 'U', the array a stores the upper triangular part of the matrix A, and the strictly lower triangular part of the matrix is not referenced.
	If uplo = 'L', the array a stores the lower triangular part of the matrix A, and the strictly upper triangular part of the matrix is not referenced.
n	INTEGER. The order of matrix $A ; n \geq 0$.
a	REAL for spstrf
	DOUBLE PRECISION for dpstrf
	COMPLEX for cpstrf
	DOUBLE COMPLEX for zpstrf.
	Array a, size $(I d a, *)$. The array a contains either the upper or the lower triangular part of the matrix A (see uplo). The second dimension of a must be at least max $(1, n)$.
work	REAL for spstrf and cpstrf
	DOUBLE PRECISION for dpstrf and zpstrf. work (*) is a workspace array. The dimension of work is at least $\max \left(1,2 *_{n}\right)$.
tol	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	User defined tolerance. If tol <0, then $n^{*} \varepsilon^{*} \max \left(A_{k, k}\right)$, where ε is the machine precision, will be used (see Error Analysis for the definition of machine precision). The algorithm terminates at the ($k-1$)-st step, if the pivot $\leq t \circ$.
$1 d a$	INTEGER. The leading dimension of a; at least max $(1, n)$.

Output Parameters

a
piv
rank
info

If info $=0$, the factor U or L from the Cholesky factorization is as described in Description.

INTEGER.
Array, size at least max $(1, n)$. The array piv is such that the nonzero entries are $P_{\text {piv }}(k), k(1 \leq k \leq n)$.

INTEGER.
The rank of a given by the number of steps the algorithm completed.
INTEGER. If info $=0$, the execution is successful.
If info $=-k$, the k-th argument had an illegal value.
If info >0, the matrix A is either rank deficient with a computed rank as returned in rank, or is not positive semidefinite.

See Also

Matrix Storage Schemes
?pftrf
Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite matrix using the
Rectangular Full Packed (RFP) format .

Syntax

```
call spftrf( transr, uplo, n, a, info )
call dpftrf( transr, uplo, n, a, info )
call cpftrf( transr, uplo, n, a, info)
call zpftrf( transr, uplo, n, a, info)
```


Include Files

- mkl.fi, lapack.f90

Description

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, a Hermitian positive-definite matrix A :

$$
\begin{array}{ll}
A=U^{T} \star U \text { for real data, } A=U^{H} \star U \text { for complex data } & \text { if uplo='U' } \\
A=L^{\star} L^{T} \text { for real data, } A=L^{\star} L^{H} \text { for complex data } & \text { if uplo='L' }
\end{array}
$$

where L is a lower triangular matrix and U is upper triangular.
The matrix A is in the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.
This is the block version of the algorithm, calling Level 3 BLAS.

Input Parameters

transr
uplo
n
a

Output Parameters

a
info

REAL for spftrf
DOUBLE PRECISION for dpftrf
COMPLEX for cpftrf
DOUBLE COMPLEX for zpftrf.
Array, size $\left(n^{\star}(n+1) / 2\right)$. The array a contains the matrix A in the RFP format.
CHARACTER*1. Must be 'N', 'T' (for real data) or ' C ' (for complex data).
If transr $=$ ' N ', the Normal transr of RFP A is stored.
If transr $=$ 'T', the Transpose transr of RFP A is stored.
If transr $=$ ' C ', the Conjugate-Transpose transr of RFP A is stored.
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the array a stores the upper triangular part of the matrix A.

If uplo = 'L', the array a stores the lower triangular part of the matrix A.

INTEGER. The order of the matrix $A ; n \geq 0$.
format.
a is overwritten by the Cholesky factor U or L, as specified by uplo and trans.

INTEGER. If info $=0$, the execution is successful.

If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the leading minor of order i (and therefore the matrix A itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix A.

See Also

Matrix Storage Schemes
?pptrf
Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite matrix using packed
storage.

Syntax

```
call spptrf( uplo, n, ap, info )
call dpptrf( uplo, n, ap, info )
call cpptrf( uplo, n, ap, info )
call zpptrf( uplo, n, ap, info )
```

```
call pptrf( ap [, uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, Hermitian positive-definite packed matrix A :
$A=U^{T} * U$ for real data, $A=U^{H} * U$ for complex data
if uplo='U'
$A=L \star L^{T}$ for real data, $A=L \star L^{H}$ for complex data
if uplo='L'
where L is a lower triangular matrix and U is upper triangular.

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

```
uplo
n
ap
```

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is packed in the array $a p$, and how A is factored:
If uplo = 'U', the array ap stores the upper triangular part of the matrix A, and A is factored as $U^{H * U}$.

If uplo = 'L', the array ap stores the lower triangular part of the matrix A; A is factored as $L^{*} L^{H}$.

INTEGER. The order of matrix $A ; n \geq 0$.
REAL for spptrf
DOUBLE PRECISION for dpptrf
COMPLEX for cpptrf
DOUBLE COMPLEX for zpptrf.
Array, size at least $\max (1, n(n+1) / 2)$. The array ap contains either the upper or the lower triangular part of the matrix A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

ap
info

Overwritten by the Cholesky factor U or L, as specified by uplo.
INTEGER. If info=0, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the leading minor of order i (and therefore the matrix A itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix A.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine pptrf interface are as follows:
ap \quad Holds the array A of size $\left(n^{*}(n+1) / 2\right)$.
uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

If uplo = ' U', the computed factor U is the exact factor of a perturbed matrix $A+E$, where

$$
\left|\Psi^{W}\right| \leq C(n) E\left|U^{H}\right||U|,\left|e_{i j i}\right| \leq C(n) c_{\sqrt{ }} \sqrt{a_{i j} a_{j j}}
$$

$c(n)$ is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for uplo = 'L'.
The total number of floating-point operations is approximately $(1 / 3) n^{3}$ for real flavors and $(4 / 3) n^{3}$ for complex flavors.

After calling this routine, you can call the following routines:

?pptrs	to solve $A * X=B$
?ppcon	to estimate the condition number of A
?pptri	to compute the inverse of A.

See Also

mkl_progress
Matrix Storage Schemes
?pbtrf
Computes the Cholesky factorization of a symmetric (Hermitian) positive-definite band matrix.

Syntax

```
call spbtrf( uplo, n, kd, ab, ldab, info )
call dpbtrf( uplo, n, kd, ab, ldab, info )
call cpbtrf( uplo, n, kd, ab, ldab, info )
call zpbtrf( uplo, n, kd, ab, ldab, info )
call pbtrf( ab [, uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, Hermitian positive-definite band matrix A :

$$
\begin{array}{ll}
A=U^{T} \star U \text { for real data, } A=U^{H} \star U \text { for complex data } & \text { if uplo='U' } \\
A=L^{\star} L^{T} \text { for real data, } A=L^{\star} L^{H} \text { for complex data } & \text { if uplo='L' }
\end{array}
$$

where L is a lower triangular matrix and U is upper triangular.

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

uplo
n
$k d$
$a b$
ldab

Output Parameters

$a b$
info

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored in the array $a b$, and how A is factored:

If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The order of matrix $A ; n \geq 0$.
INTEGER. The number of superdiagonals or subdiagonals in the matrix $A ; k d \geq 0$.

REAL for spbtrf
DOUBLE PRECISION for dpbtrf
COMPLEX for cpbtrf
DOUBLE COMPLEX for zpbtrf.
Array, size ($I \mathrm{dab}, *$). The array $a b$ contains either the upper or the lower triangular part of the matrix A (as specified by uplo) in band storage (see Matrix Storage Schemes). The second dimension of $a b$ must be at least max $(1, n)$.

INTEGER. The leading dimension of the array $a b .(1 d a b \geq k d+1)$

The upper or lower triangular part of A (in band storage) is overwritten by the Cholesky factor U or L, as specified by uplo.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the leading minor of order i (and therefore the matrix A itself) is not positive-definite, and the factorization could not be completed. This may indicate an error in forming the matrix A.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine pbtrf interface are as follows:

```
ab Holds the array A of size (kd+1,n).
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

If uplo = 'U', the computed factor U is the exact factor of a perturbed matrix $A+E$, where

$$
|\underline{\Psi}| \leq C(k d+1) \varepsilon\left|U^{H}\right||U|,\left|e_{i j}\right| \leq C(k d+l) \varepsilon \sqrt{a_{i j} a_{j j}}
$$

$c(n)$ is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for uplo = 'L'.
The total number of floating-point operations for real flavors is approximately $n(k d+1)^{2}$. The number of operations for complex flavors is 4 times greater. All these estimates assume that $k d$ is much less than n.

After calling this routine, you can call the following routines:
?pbtrs to solve $A * X=B$
?pbcon to estimate the condition number of A.

```
See Also
mkl_progress
```

Matrix Storage Schemes
?pttrf
Computes the factorization of a symmetric (Hermitian)
positive-definite tridiagonal matrix.

Syntax

```
call spttrf( n, d, e, info )
call dpttrf( n, d, e, info )
call cpttrf( n, d, e, info )
call zpttrf( }n,d,e,info 
call pttrf( d, e [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine forms the factorization of a symmetric positive-definite or, for complex data, Hermitian positivedefinite tridiagonal matrix A :

```
A = L*D* 焐 for real flavors, or
A = L*D* L H
```

where D is diagonal and L is unit lower bidiagonal. The factorization may also be regarded as having the form $A=U^{T} D^{\star} U$ for real flavors, or $A=U^{H} \star D^{\star} U$ for complex flavors, where U is unit upper bidiagonal.

Input Parameters

```
n INTEGER. The order of the matrix A; n\geq0.
d REAL for spttrf, cpttrf
DOUBLE PRECISION for dpttrf, zpttrf.
```

Array, dimension (n). Contains the diagonal elements of A.
REAL for spttrf
DOUBLE PRECISION for dpttrf
COMPLEX for cpttrf
DOUBLE COMPLEX for zpttrf.
Array, dimension ($n-1$). Contains the subdiagonal elements of A.

Output Parameters

d	Overwritten by the n diagonal elements of the diagonal matrix D from the $L^{*} D^{*} L^{T}$ (for real flavors) or $L^{*} D^{*} L^{H}$ (for complex flavors) factorization of A.
e	Overwritten by the ($n-1$) sub-diagonal elements of the unit bidiagonal factor L or U from the factorization of A.
info	INTEGER. If info $=0$, the execution is successful.
	If info $=-i$, the i-th parameter had an illegal value.
	If info $=i$, the leading minor of order i (and therefore the matrix A itself) is not positive-definite; if $i<n$, the factorization could not be completed, while if $i=n$, the factorization was completed, but $d(n)$ ≤ 0.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine pttrf interface are as follows:

```
d Holds the vector of length n.
e Holds the vector of length (n-1).
```

?sytrf
Computes the Bunch-Kaufman factorization of a symmetric matrix.

Syntax

```
call ssytrf( uplo, n, a, lda, ipiv, work, lwork, info )
call dsytrf( uplo, n, a, lda, ipiv, work, lwork, info )
call csytrf( uplo, n, a, lda, ipiv, work, lwork, info )
call zsytrf( uplo, n, a, lda, ipiv, work, lwork, info )
call sytrf( a [, uplo] [,ipiv] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the factorization of a real/complex symmetric matrix A using the Bunch-Kaufman diagonal pivoting method. The form of the factorization is:

```
if uplo='U', \(A=U^{*} D^{*} U^{\top}\)
if uplo \(=\) 'L' \(^{\prime}, A=L^{*} D^{*} L^{\top}\)
```

where A is the input matrix, U and L are products of permutation and triangular matrices with unit diagonal (upper triangular for U and lower triangular for L), and D is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

NOTE This routine supports the Progress Routine feature. See Progress Routine for details.

Input Parameters

```
uplo
n
a
Ida
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored:
If uplo = 'U', the array a stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(U^{*} D * U^{T}\).
If uplo \(=\) 'L', the array a stores the lower triangular part of the matrix \(A\), and \(A\) is factored as \(L \star D^{\star} L^{T}\).
INTEGER. The order of matrix \(A ; n \geq 0\).
REAL for ssytrf
DOUBLE PRECISION for dsytrf
COMPLEX for csytrf
DOUBLE COMPLEX for zsytrf.
Array, size (Ida,*). The array a contains either the upper or the lower triangular part of the matrix \(A\) (see uplo). The second dimension of \(a\) must be at least max \((1, n)\).
INTEGER. The leading dimension of \(a\); at least max \((1, n)\).
```

```
work
```

I work

Same type as a. A workspace array, dimension at least $\max (1,1$ work $)$.

INTEGER. The size of the work array (1 work $\geq n$).
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.
See Application Notes for the suggested value of Iwork.

Output Parameters

a
work(1)
ipiv
info
The upper or lower triangular part of a is overwritten by details of the block-diagonal matrix D and the multipliers used to obtain the factor U (or L).

If info=0, on exit work (1) contains the minimum value of /work required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
Array, size at least max $(1, n)$. Contains details of the interchanges and the block structure of D. If $\operatorname{ipiv}(i)=k>0$, then $d_{i i}$ is a 1-by-1 block, and the i-th row and column of A was interchanged with the k th row and column.
If uplo $=$ ' U' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0$, then D has a 2-by-2 block in rows/columns i and $i-1$, and ($i-1$)-th row and column of A was interchanged with the m-th row and column.

If uplo $=$ ' L' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0$, then D has a 2-by-2 block in rows/columns i and $i+1$, and ($i+1$)-th row and column of A was interchanged with the m-th row and column.

INTEGER. If info $=0$, the execution is successful.

If info $=-i$, the i-th parameter had an illegal value.
If info $=i, D_{i i}$ is 0 . The factorization has been completed, but D is exactly singular. Division by 0 will occur if you use D for solving a system of linear equations.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sytrf interface are as follows:
$\begin{array}{ll}\text { a } & \text { holds the matrix } A \text { of size }(n, n) \\ \text { ipiv } & \text { holds the vector of length } n \\ \text { uplo } & \text { must be 'U' or 'L'. The default value is 'U'. }\end{array}$

Application Notes

For better performance, try using lwork $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The remaining elements of U and L are stored in the corresponding columns of the array a, but additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If $\operatorname{ipiv}(i)=i$ for all $i=1 \ldots n$, then all off-diagonal elements of $U(L)$ are stored explicitly in the corresponding elements of the array a.
If uplo = 'U', the computed factors U and D are the exact factors of a perturbed matrix $A+E$, where

```
|E|\leqC(n)\varepsilonP|U||D|| UT
```

$c(n)$ is a modest linear function of n, and ε is the machine precision. A similar estimate holds for the computed L and D when uplo $=$ 'L'.

The total number of floating-point operations is approximately $(1 / 3) n^{3}$ for real flavors or $(4 / 3) n^{3}$ for complex flavors.
After calling this routine, you can call the following routines:

```
?sytrs to solve }A*X=
?sycon to estimate the condition number of }
?sytri to compute the inverse of }A\mathrm{ .
```

If uplo = 'U', then $A=U * D * U '$, where

```
U = P(n)*U(n)* \ldots. *P (k)*U(k)*\ldots,
```

that is, U is a product of terms $\mathrm{P}(k){ }^{*} \mathrm{U}(k)$, where

- k decreases from n to 1 in steps of 1 and 2 .
- D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks $D(k)$.
- $\mathrm{P}(k)$ is a permutation matrix as defined by ipiv(k).
- $\mathrm{U}(k)$ is a unit upper triangular matrix, such that if the diagonal block $\mathrm{D}(k)$ is of order $s(s=1$ or 2$)$, then

$$
\begin{aligned}
& U(k)=\left(\begin{array}{ccc}
I & V & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right) \begin{array}{c}
k-s \\
s \\
k-k
\end{array} \\
& k-s \quad s \quad n-k
\end{aligned}
$$

If $s=1, \mathrm{D}(k)$ overwrites $A(k, k)$, and v overwrites $A(1: k-1, k)$.
If $s=2$, the upper triangle of $\mathrm{D}(k)$ overwrites $A(k-1, k-1), A(k-1, k)$ and $A(k, k)$, and v overwrites $A(1: k-2, k$ -1:k).

If uplo = 'L', then $A=L * D * L '$, where

```
L = P(1)*L(1)* ... *P(k)*L(k)*...,
```

that is, L is a product of terms $\mathrm{P}(k) * \mathrm{~L}(k)$, where

- k increases from 1 to n in steps of 1 and 2 .
- D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks $D(k)$.
- $\mathrm{P}(k)$ is a permutation matrix as defined by ipiv (k).
- $L(k)$ is a unit lower triangular matrix, such that if the diagonal block $D(k)$ is of order $s(s=1$ or 2$)$, then

If $s=1, \mathrm{D}(k)$ overwrites $A(k, k)$, and v overwrites $A(k+1: n, k)$.
If $s=2$, the lower triangle of $\mathrm{D}(k)$ overwrites $A(k, k), A(k+1, k)$, and $A(k+1, k+1)$, and v overwrites $A(k$ $+2: n, k: k+1)$.

See Also

mkl_progress

Matrix Storage Schemes

?sytrf_aa
Computes the factorization of a symmetric matrix using Aasen's algorithm.

```
call ssytrf_aa(uplo, n, A, lda, ipiv, work, lwork, info)
call dsytrf_aa(uplo, n, A, lda, ipiv, work, lwork, info)
call csytrf_aa(uplo, n, A, lda, ipiv, work, lwork, info)
```

```
call zsytrf_aa(uplo, n, A, lda, ipiv, work, lwork, info)
```


Description

?sytrf_aa computes the factorization of a symmetric matrix A using Aasen's algorithm. The form of the factorization is $A=U * T^{*} U^{\top}$ or $A=L^{*} T^{*} L^{\top}$ where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and T is a complex symmetric tridiagonal matrix.

This is the blocked version of the algorithm, calling Level 3 BLAS.

Input Parameters

uplo
n

A
lda
lwork

CHARACTER*1

- = 'U': The upper triangle of A is stored.
- = 'L': The lower triangle of A is stored.

INTEGER
The order of the matrix A. $n \geq 0$.
REAL for ssytrf_aa
DOUBLE PRECISION for dsytrf_aa
COMPLEX for csytrf_aa
COMPLEX*16 for zsytrf_aa
Array, dimension ($1 \mathrm{da}, \mathrm{n}$). On entry, the symmetric matrix A. If uplo = 'U', the leading n-by- n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If uplo $=$ 'L', the leading n-by- n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.

INTEGER
The leading dimension of the array $A .1 d a \geq \max (1, n)$.
INTEGER
The length of the array work.
If lwork $=-1$, a workspace query is assumed; the routine calculates only the optimal size of the work array and returns this value as the first entry of the work array, and no error message related to lwork is issued by XERBLA.

Output Parameters

A

```
REAL for ssytrf_aa
DOUBLE PRECISION for dsytrf_aa
COMPLEX for csytrf_aa
COMPLEX*16 for zsytrf_aa
```

On exit, the tridiagonal matrix is stored in the diagonals and the subdiagonals of A just below (or above) the diagonals, and L is stored below (or above) the subdiagonals, when uplo is 'L' (or 'U').

```
ipiv INTEGER
    Array, dimension (n). On exit, it contains the details of the interchanges;
    that is, the row and column k of A were interchanged with the row and
    column ipiv(k).
work REAL for ssytrf_aa
    DOUBLE PRECISION for dsytrf_aa
    COMPLEX for csytrf_aa
    COMPLEX*16 for zsytrf_aa
```

 Array, dimension (max(1, lwork)). On exit, if info \(=0\), work(1) returns
 the optimal lwork.
 INTEGER
 - = 0: successful exit.
 - <0: If info $=-i$, the $i^{\text {th }}$ argument had an illegal value.
- >0: If info $=i, \mathrm{D}(i, i)$ is exactly zero. The factorization has been
completed, but the block diagonal matrix D is exactly singular, and
division by zero will occur if it is used to solve a system of equations.
?sytrf_rook
Computes the bounded Bunch-Kaufman factorization
of a symmetric matrix.

Syntax

```
call ssytrf_rook( uplo, n, a, lda, ipiv, work, lwork, info )
call dsytrf_rook( uplo, n, a, lda, ipiv, work, lwork, info )
call csytrf_rook( uplo, n, a, lda, ipiv, work, lwork, info )
call zsytrf_rook( uplo, n, a, lda, ipiv, work, lwork, info )
call sytrf_rook( a [, uplo] [,ipiv] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes the factorization of a real/complex symmetric matrix A using the bounded BunchKaufman ("rook") diagonal pivoting method. The form of the factorization is:

$$
\begin{aligned}
& \text { if uplo= 'U', } A=U^{*} D^{*} U^{\top} \\
& \text { if uplo }=L^{\prime} ' A=L^{*} D^{*} L^{\top},
\end{aligned}
$$

where A is the input matrix, U and L are products of permutation and triangular matrices with unit diagonal (upper triangular for U and lower triangular for L), and D is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

Input Parameters

```
uplo
n
a
lda
work
lwork
```


Output Parameters

a
work(1)
ipiv
The upper or lower triangular part of a is overwritten by details of the block-diagonal matrix D and the multipliers used to obtain the factor U (or L).

If info=0, on exit work (1) contains the minimum value of /work required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
Array, size at least max $(1, n)$. Contains details of the interchanges and the block structure of D.
If $\operatorname{ipiv}(k)>0$, then rows and columns k and $\operatorname{ipiv}(k)$ were interchanged and $D_{k, k}$ is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) < 0 and ipiv(k-1) < 0, then rows and columns k and -ipiv (k) were interchanged, rows and columns $k-$ 1 and -ipiv(k-1) were interchanged, and $D_{k-1: k, ~}$ k-1:k is a 2-by-2 diagonal block.

If uplo = 'L' and ipiv(k) <0 and ipiv($k+1)<0$, then rows and columns k and $-\operatorname{ipiv}(k)$ were interchanged, rows and columns $k+$ 1 and -ipiv $(k+1)$ were interchanged, and $D_{k: k+1, k: k+1}$ is a 2-by-2 diagonal block.
info
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, D_{i i}$ is 0 . The factorization has been completed, but D is exactly singular. Division by 0 will occur if you use D for solving a system of linear equations.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine sytrf_rook interface are as follows:

```
a holds the matrix A of size ( }n,n\mathrm{ )
ipiv holds the vector of length }
uplo must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

The total number of floating-point operations is approximately $(1 / 3) n^{3}$ for real flavors or $(4 / 3) n^{3}$ for complex flavors.
After calling this routine, you can call the following routines:

```
?sytrs_rook to solve }A*X=
?sycon_rook to estimate the condition number of }
?sytri_rook to compute the inverse of A.
```

If uplo = 'U', then $A=U * D * U '$, where

```
U = P(n)*U(n)* ... *P(k)*U(k)*...,
```

that is, U is a product of terms $\mathrm{P}(k) * \mathrm{U}(k)$, where

- k decreases from n to 1 in steps of 1 and 2 .
- D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks $D(k)$.
- $P(k)$ is a permutation matrix as defined by ipiv(k).
- $\mathrm{U}(k)$ is a unit upper triangular matrix, such that if the diagonal block $\mathrm{D}(k)$ is of order $s(s=1$ or 2$)$, then

$$
\begin{aligned}
U(k)= & \left(\begin{array}{ccc}
I & V & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right) \begin{array}{c}
k-s \\
s-k \\
k-s \\
s
\end{array} n-k
\end{aligned}
$$

If $s=1, \mathrm{D}(k)$ overwrites $A(k, k)$, and v overwrites $A(1: k-1, k)$.
If $s=2$, the upper triangle of $\mathrm{D}(k)$ overwrites $A(k-1, k-1), A(k-1, k)$ and $A(k, k)$, and v overwrites $A(1: k-2, k$ -1:k).

If uplo = 'L', then $A=L * D * L '$, where

```
L = P(1)*L(1)* ... *P(k)*L(k)*...,
```

that is, L is a product of terms $\mathrm{P}(k) * \mathrm{~L}(k)$, where

- k increases from 1 to n in steps of 1 and 2 .
- D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks $D(k)$.
- $P(k)$ is a permutation matrix as defined by ipiv(k).
- $L(k)$ is a unit lower triangular matrix, such that if the diagonal block $D(k)$ is of order $s(s=1$ or 2$)$, then

$$
L(k)=\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
0 & V & I \\
k-1 & s & n-k-s+1
\end{array}\right) n \begin{gathered}
k-1 \\
s \\
n-k-s+1
\end{gathered}
$$

If $s=1, \mathrm{D}(k)$ overwrites $A(k, k)$, and v overwrites $A(k+1: n, k)$.
If $s=2$, the lower triangle of $\mathrm{D}(k)$ overwrites $A(k, k), A(k+1, k)$, and $A(k+1, k+1)$, and v overwrites $A(k$ $+2: n, k: k+1)$.

See Also

Matrix Storage Schemes

?sytrf_rk

Computes the factorization of a real or complex symmetric indefinite matrix using the bounded BunchKaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm).

```
call ssytrf_rk(uplo, n, A, lda, e, ipiv, work, lwork, info)
call dsytrf_rk(uplo, n, A, lda, e, ipiv, work, lwork, info)
call csytrf_rk(uplo, n, A, lda, e, ipiv, work, lwork, info)
```

```
call zsytrf_rk(uplo, n, A, lda, e, ipiv, work, lwork, info)
```


Description

?sytrf_rk computes the factorization of a real or complex symmetric matrix A using the bounded BunchKaufman (rook) diagonal pivoting method: $A=P^{*} U^{*} D^{*}\left(U^{\top}\right) *\left(P^{\top}\right)$ or $A=P^{*} L^{*} D^{*}\left(L^{\top}\right) *\left(P^{\top}\right)$, where U (or L) is unit upper (or lower) triangular matrix, U^{\top} (or L^{\top}) is the transpose of U (or L), P is a permutation matrix, P^{\top} is the transpose of P , and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

This is the blocked version of the algorithm, calling Level-3 BLAS.

Input Parameters

uplo
n

A

Ida
lwork

CHARACTER*1
Specifies whether the upper or lower triangular part of the symmetric matrix A is stored:

- = 'U': Upper triangular
- = 'L': Lower triangular

INTEGER
The order of the matrix A. $n \geq 0$.
REAL for ssytrf_rk
DOUBLE PRECISION for dsytrf_rk
COMPLEX for csytrf_rk
COMPLEX*16 for zsytrf_rk
Array, dimension (lda, n). On entry, the symmetric matrix A. If uplo= 'U', the leading n-by- n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If uplo = 'L', the leading n-by- n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.

INTEGER
The leading dimension of the array $A .1 d a \geq \max (1, n)$.
INTEGER
The length of the array work.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by XERBLA.

Output Parameters

A

```
REAL for ssytrf_rk
DOUBLE PRECISION for dsytrf_rk
COMPLEX for csytrf_rk
COMPLEX*16 for zsytrf_rk
```

On exit, contains:

- Only diagonal elements of the symmetric block diagonal matrix D on the diagonal of A ; that is, $\mathrm{D}(k, k)=\mathrm{A}(k, k)$; (superdiagonal (or subdiagonal) elements of D are stored on exit in array e).
- If uplo = 'U', factor U in the superdiagonal part of A. If uplo = 'L', factor L in the subdiagonal part of A.

```
REAL for ssytrf_rk
DOUBLE PRECISION for dsytrf_rk
COMPLEX for csytrf_rk
COMPLEX*16 for zsytrf_rk
```

Array, dimension (n). On exit, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks. If uplo $=$ ' U ', $\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}$, and $\mathrm{e}(1)$ is set to 0 . If uplo $=$ 'L', $\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1$, and $\mathrm{e}(n)$ is set to 0 .

NOTE For 1-by-1 diagonal block $\mathrm{D}(k)$, where $1 \leq k \leq n$, the element $e(k)$ is set to 0 in both the uplo $=$ ' U ' and uplo $=$ ' L ' cases.

INTEGER
Array, dimension (n).ipiv describes the permutation matrix P in the factorization of matrix A as follows: The absolute value of $\operatorname{ipiv}(k)$ represents the index of the row and column that were interchanged with the $k^{\text {th }}$ row and column. The value of uplo describes the order in which the interchanges were applied. Also, the sign of ipiv represents the block structure of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, which correspond to 1 or 2 interchanges at each factorization step. If uplo $=$ ' U ' (in factorization order, k decreases from n to 1):

1. A single positive entry $\operatorname{ipiv}(k)>0$ means that $\mathrm{D}(k, k)$ is a 1-by-1 diagonal block. If $\operatorname{ipiv}(k)!=k$, rows and columns k and $\operatorname{ipiv}(k)$ were interchanged in the matrix $\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})$. If $\operatorname{ipiv}(k)=k$, no interchange occurred.
2. A pair of consecutive negative entries $\operatorname{ipiv}(k)<0$ and $\operatorname{ipiv}(k-1) .<0$ means that $\mathrm{D}(k-1: k, k-1: k)$ is a 2 -by-2 diagonal block. (Note that negative entries in ipiv appear only in pairs.)

- If $-\operatorname{ipiv}(k)!=k$, rows and columns k and $-i \operatorname{piv}(k)$ were interchanged in the matrix $\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})$. If $-\operatorname{ipiv}(k)=k$, no interchange occurred.
- If $-\operatorname{ipiv}(k-1)!=k-1$, rows and columns $k-1$ and $-\operatorname{ipiv}(k-1)$ were interchanged in the matrix $\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})$. If $-\operatorname{ipiv}(k-1)=k-1$, no interchange occurred.

3. In both cases 1 and 2, always $\operatorname{ABS}(\operatorname{ipiv}(k)) \leq k$.

NOTE Any entry $\operatorname{ipiv}(k)$ is always nonzero on output.

If uplo = 'L' (in factorization order, k increases from 1 to n):

1. A single positive entry $\operatorname{ipiv}(k)>0$ means that $D(k, k)$ is a 1-by-1 diagonal block. If $\operatorname{ipiv}(k)!=k$, rows and columns k and $\operatorname{ipiv}(k)$ were interchanged in the matrix $\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})$. If $\operatorname{ipiv}(k)=k$, no interchange occurred.
2. A pair of consecutive negative entries $\operatorname{ipiv}(k)<0$ and $\operatorname{ipiv}(k+1)<0$ means that $\mathrm{D}(k: k+1, k: k+1)$ is a 2-by-2 diagonal block. (Note that negative entries in ipiv appear only in pairs.)

- If $-\operatorname{ipiv}(k)!=k$, rows and columns k and $-i \operatorname{piv}(k)$ were interchanged in the matrix $\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})$. If $-\operatorname{ipiv}(k)=k$, no interchange occurred.
- If $-\operatorname{ipiv}(k+1)!=k+1$, rows and columns $k-1$ and $-\operatorname{ipiv}(k-1)$ were interchanged in the matrix $\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})$. If $-\operatorname{ipiv}(k+1)=k+1$, no interchange occurred.

3. In both cases 1 and 2 , always $\mathrm{ABS}(\operatorname{ipiv}(k)) \geq k$.

NOTE Any entry $\operatorname{ipiv}(k)$ is always nonzero on output.
work
info

REAL for ssytrf_rk
DOUBLE PRECISION for dsytrf_rk
COMPLEX for csytrf_rk
COMPLEX*16 for zsytrf_rk
Array, dimension (MAX(1, Iwork)). On exit, if info $=0$, work(1) returns the optimal lwork.

INTEGER

- $=0$: Successful exit.
- < 0: If info $=-k$, the $k^{\text {th }}$ argument had an illegal value.
- >0: If info $=k$, the matrix A is singular. If uplo $=' U '$, column k in the upper triangular part of A contains all zeros. If uplo = 'L', column k in the lower triangular part of A contains all zeros. Therefore, $D(k, k)$ is exactly zero, and superdiagonal elements of column k of U (or subdiagonal elements of column k of L) are all zeros. The factorization has been completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.

NOTE info stores only the first occurrence of a singularity; any subsequent occurrence of singularity is not stored in info even though the factorization always completes.

```
?hetrf
Computes the Bunch-Kaufman factorization of a complex Hermitian matrix.
```


Syntax

```
call chetrf( uplo, n, a, lda, ipiv, work, lwork, info )
```

call chetrf(uplo, n, a, lda, ipiv, work, lwork, info)
call zhetrf(uplo, n, a, lda, ipiv, work, lwork, info)

```
call zhetrf( uplo, n, a, lda, ipiv, work, lwork, info )
```

```
call hetrf( a [, uplo] [,ipiv] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting method:

```
if uplO='U',A = U*D* UH
if uplo='L',A = L*D* L',
```

where A is the input matrix, U and L are products of permutation and triangular matrices with unit diagonal (upper triangular for U and lower triangular for L), and D is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

NOTE

This routine supports the Progress Routine feature. See Progress Routine for details.

Input Parameters

```
uplo
n
a, work
Ida
lwork
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored:
If uplo = 'U', the array a stores the upper triangular part of the matrix \(A\), and \(A\) is factored as \(U^{*} D * U^{H}\).
If uplo = 'L', the array a stores the lower triangular part of the matrix \(A\), and \(A\) is factored as \(L^{\star} D \star L^{\mathrm{H}}\).
INTEGER. The order of matrix \(A ; n \geq 0\).
COMPLEX for chetrf
DOUBLE COMPLEX for zhetrf.
Arrays, size (Ida,*), work(*).
The array a contains the upper or the lower triangular part of the matrix \(A\) (see uplo). The second dimension of a must be at least \(\max (1, n)\).
work (*) is a workspace array of dimension at least max (1, lwork).
INTEGER. The leading dimension of \(a\); at least max \((1, n)\).
INTEGER. The size of the work array (lwork \(\geq n\) ).
If /work = -1 , then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.
```

See Application Notes for the suggested value of Iwork.

Output Parameters

a
work(1)
ipiv
info

The upper or lower triangular part of a is overwritten by details of the block-diagonal matrix D and the multipliers used to obtain the factor U (or L).

If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
Array, size at least max $(1, n)$. Contains details of the interchanges and the block structure of D. If $\operatorname{ipiv}(i)=k>0$, then $d_{i i}$ is a 1-by-1 block, and the i-th row and column of A was interchanged with the k th row and column.
If uplo $=$ ' U' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0$, then D has a 2-by-2 block in rows/columns i and $i-1$, and ($i-1$)-th row and column of A was interchanged with the m-th row and column.

If uplo $=$ 'L' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0$, then D has a 2-by-2 block in rows/columns i and $i+1$, and ($i+1$)-th row and column of A was interchanged with the m-th row and column.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, d_{i i}$ is 0 . The factorization has been completed, but D is exactly singular. Division by 0 will occur if you use D for solving a system of linear equations.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hetrf interface are as follows:

a	holds the matrix A of size (n, n)
ipiv	holds the vector of length n
uplo	must be 'U' or 'L'. The default value is 'U'.

Application Notes

This routine is suitable for Hermitian matrices that are not known to be positive-definite. If A is in fact positive-definite, the routine does not perform interchanges, and no 2-by-2 diagonal blocks occur in D.
For better performance, try using Iwork $=n^{*}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The remaining elements of U and L are stored in the corresponding columns of the array a, but additional row interchanges are required to recover U or L explicitly (which is seldom necessary).
$\operatorname{Ifipiv}(i)=i$ for all $i=1 \ldots n$, then all off-diagonal elements of $U(L)$ are stored explicitly in the corresponding elements of the array a.
If uplo = 'U', the computed factors U and D are the exact factors of a perturbed matrix $A+E$, where

```
|E|\leqC(n)&P|U||D|| UT
```

$c(n)$ is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo $=$ 'L'.
The total number of floating-point operations is approximately $(4 / 3) n^{3}$.
After calling this routine, you can call the following routines:

```
?hetrs to solve }A*X=
?hecon to estimate the condition number of }
?hetri to compute the inverse of }A\mathrm{ .
```


See Also
 mkl_progress

Matrix Storage Schemes

?hetrf_aa
Computes the factorization of a complex hermitian matrix using Aasen's algorithm.
call chetrf_aa(uplo, $n, ~ a, ~ l d a, ~ i p i v, ~ w o r k, ~ l w o r k, ~ i n f o) ~$
call zhetrf_aa(uplo, $n, ~ a, ~ l d a, ~ i p i v, ~ w o r k, ~ l w o r k, ~ i n f o) ~$

Description

?hetrf_aa computes the factorization of a complex Hermitian matrix A using Aasen's algorithm. The form of the factorization is $A=U^{*} T^{*} U^{H}$ or $a=L^{*} T^{*} \mathrm{~L}^{H}$ where $U($ or L$)$ is a product of permutation and unit upper (lower) triangular matrices, and T is a Hermitian tridiagonal matrix. This is the blocked version of the algorithm, calling Level 3 BLAS.

Input Parameters
uplo
n

CHARACTER*1. = 'U': Upper triangle of A is stored; = 'L': Lower triangle of a is stored.

INTEGER. The order of the matrix A. $n \geq 0$.
a
COMPLEX for chetrf_aa
COMPLEX*16 for zhetrf_aa
Array of size (lda, n). On entry, the Hermitian matrix A.
If uplo = ' U ', the leading n-by- n upper triangular part of a contains the upper triangular part of the matrix A, and the strictly lower triangular part of a is not referenced.

If uplo = ' L ', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.

Integer. The leading dimension of the array a. $1 d a \geq \max (1, n)$.
Integer. The length of work. 1 work $\geq 2^{*}$ n. For optimum performance lwork $\geq n^{*}(1+n b)$, where $n b$ is the optimal block size. If l work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

Output Parameters

On exit, the tridiagonal matrix is stored in the diagonals and the subdiagonals of a just below (or above) the diagonals, and L is stored below (or above) the subdiagonals, when uplo is 'L' (or 'U').

INTEGER . array, dimension (n) On exit, it contains the details of the interchanges: the row and column k of a were interchanged with the row and column ipiv(k).

COMPLEX for chetrf_aa
COMPLEX*16 for zhetrf_aa
Array of size (max(1, lwork)). On exit, if info $=0$, work (1) returns the optimal lwork.

INTEGER.
If info $=0$: successful exit < 0 : if info $=-i$, the i-th argument had an illegal value,
If info >0 : if info $=i, D_{i, i}$ is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.
?hetrf_rook
Computes the bounded Bunch-Kaufman factorization of a complex Hermitian matrix.

Syntax

```
call chetrf_rook( uplo, n, a, lda, ipiv, work, lwork, info )
call zhetrf_rook( uplo, n, a, lda, ipiv, work, lwork, info )
call hetrf_rook( a [, uplo] [,ipiv] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes the factorization of a complex Hermitian matrix A using the bounded Bunch-Kaufman diagonal pivoting method:

```
if uplo='U', \(A=U^{*} D^{*} U^{H}\)
if uplo='L', \(A=L^{*} D^{*} L^{\mathrm{H}}\),
```

where A is the input matrix, U (or L) is a product of permutation and unit upper (or lower) triangular matrices, and D is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks.

This is the blocked version of the algorithm, calling Level 3 BLAS.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored:
	If uplo = 'U', the array a stores the upper triangular part of the matrix A.
	If uplo = 'L', the array a stores the lower triangular part of the matrix A.
n	INTEGER. The order of matrix A; $n \geq 0$.
a	COMPLEX for chetrf_rook
	COMPLEX*16 for zhetrf_rook.
	Array $a^{\text {a }}$ size ($1 \mathrm{da}, \mathrm{n}$).
	The array a contains the upper or the lower triangular part of the matrix A (see uplo).
	If uplo = ' U ', the leading $n-b y-n$ upper triangular part of a contains the upper triangular part of the matrix A, and the strictly lower triangular part of a is not referenced. If uplo $=$ ' L ', the leading $n-b y-n$ lower triangular part of a contains the lower triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.
Ida	INTEGER. The leading dimension of a; at least max $(1, n)$.
work	COMPLEX for chetrf_rook
	COMPLEX*16 for zhetrf_rook.
	Array work(*).
	work(*) is a workspace array of dimension at least max (1, lwork).
lwork	INTEGER. The size of the work array (/work $\geq n$).
	The length of work. lwork ≥ 1. For best performance $1 w o r k \geq n * n b$, where $n b$ is the block size returned by ilaenv.

If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

Output Parameters

a
work(1)
ipiv
info

The block diagonal matrix D and the multipliers used to obtain the factor U or L (see Application Notes for further details).

If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
Array, size at least max $(1, n)$. Contains details of the interchanges and the block structure of D.

- If uplo = 'U':

If ipiv(k) > 0 , then rows and columns k and ipiv(k) were interchanged and $D_{k, k}$ is a 1-by-1 diagonal block.

If ipiv(k) < 0 and $\operatorname{ipiv}(k-1)<0$, then rows and columns k and -ipiv(k) were interchanged and rows and columns $k-1$ and -
ipiv $(k-1)$ were interchanged, $D_{k-1: k, k-1: k}$ is a 2-by-2 diagonal block.

- If uplo = 'L':

If $\operatorname{ipiv}(k)>0$, then rows and columns k and ipiv(k) were interchanged and $D_{k, k}$ is a 1-by-1 diagonal block.
If $\operatorname{ipiv}(k)<0$ and $\operatorname{ipiv}(k+1)<0$, then rows and columns k and -ipiv(k) were interchanged and rows and columns $k+1$ and ipiv $(k+1)$ were interchanged, $D_{k: k+1, k: k+1}$ is a 2-by-2 diagonal block.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, D_{i i}$ is exactly 0 . The factorization has been completed, but the block diagonal matrix D is exactly singular, and division by 0 will occur if you use D for solving a system of linear equations.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hetrf_rook interface are as follows:

a	holds the matrix A of size (n, n)
ipiv	holds the vector of length n
uplo	must be 'U' or 'L'. The default value is 'U'.

Application Notes

If uplo $=$ ' U ', then $A=U \star D^{*} U^{H}$, where
$U=P(n) * U(n)^{*} \ldots * P(k) U(k) * \ldots$,
i.e., U is a product of terms $P(k)^{*} U(k)$, where k decreases from n to 1 in steps of 1 or 2 , and D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks $D(k) . P(k)$ is a permutation matrix as defined by ipiv(k), and $U(k)$ is a unit upper triangular matrix, such that if the diagonal block $D(k)$ is of order $s(s=1$ or 2$)$, then

$U(k)=$| $k-s$ |
| :---: |
| $k-s$ |
| $s-k$ |
| $n-k$ |\(\left(\begin{array}{lll}I \& v \& 0

0 \& I \& 0

0 \& 0 \& I\end{array}\right)\)
If $s=1, D(k)$ overwrites $A(k, k)$, and v overwrites $A(1: k-1, k)$.
If $s=2$, the upper triangle of $D(k)$ overwrites $A(k-1, k-1), A(k-1, k)$, and $A(k, k)$, and v overwrites $A(1: k-2, k-1: k)$.
If uplo $=$ ' L ', then $A=L^{\star} D^{\star} L^{H}$, where
$L=P(1) * L(1)^{*} \ldots * P(k) * L(k)^{*} \ldots$,
i.e., L is a product of terms $P(k)^{*} L(k)$, where k increases from 1 to n in steps of 1 or 2 , and D is a block diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks $D(k) . P(k)$ is a permutation matrix as defined by ipiv (k), and $L(k)$ is a unit lower triangular matrix, such that if the diagonal block $D(k)$ is of order $s(s=1$ or 2), then
$L(k)=\begin{gathered} \\ k-1 \\ s \\ n-k-s+1\end{gathered} \quad\left(\begin{array}{lll} \\ k-1 & n-k-s+1 \\ 0 & I & 0 \\ 0 & v & I\end{array}\right)$
If $s=1, D(k)$ overwrites $A(k, k)$, and v overwrites $A(k+1: n, k)$.
If $s=2$, the lower triangle of $D(k)$ overwrites $A(k, k), A(k+1, k)$, and $A(k+1, k+1)$, and v overwrites $A(k$ $+2: n, k: k+1)$.

See Also

mkl_progress

Matrix Storage Schemes

?hetrf_rk

Computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked
algorithm).

```
call chetrf_rk(uplo, n, A, lda, e, ipiv, work, lwork, info)
call zhetrf_rk(uplo, n, A, lda, e, ipiv, work, lwork, info)
```


Description

?hetrf_rk computes the factorization of a complex Hermitian matrix A using the bounded Bunch-Kaufman (rook) diagonal pivoting method: $A=P * U^{*} D^{*}\left(U^{H}\right)^{*}\left(P^{\top}\right)$ or $A=P * L^{*} D^{*}\left(L^{H}\right)^{*}\left(P^{\top}\right)$, where U (or L) is unit upper (or lower) triangular matrix, U^{H} (or L^{H}) is the conjugate of U (or L), P is a permutation matrix, P^{\top} is the transpose of P, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

This is the blocked version of the algorithm, calling Level 3 BLAS.

Input Parameters

uplo
n

A

CHARACTER*1

Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored:

- = 'U': Upper triangular.
- = 'L': Lower triangular.

INTEGER

The order of the matrix A. $n \geq 0$.
COMPLEX for chetrf_rk
COMPLEX*16 for zhetrf_rk
Array, dimension (lda, n). On entry, the Hermitian matrix A. If uplo = ' U': The leading $n-b y-n$ upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If uplo $=$ ' L': The leading n-by- n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.

INTEGER
The leading dimension of the array $A .1 d a \geq \max (1, n)$.
INTEGER
The length of the array work.
If 1 work $=-1$, a workspace query is assumed; the routine calculates only the optimal size of the work array and returns this value as the first entry of the work array, and no error message related to lwork is issued by XERBLA.

Output Parameters

A
e

COMPLEX for chetrf_rk
COMPLEX*16 for zhetrf_rk
On exit, contains:

- Only diagonal elements of the Hermitian block diagonal matrix D on the diagonal of A ; that is, $\mathrm{D}(k, k)=\mathrm{A}(k, k)$. Superdiagonal (or subdiagonal) elements of D are stored on exit in array e.
-and-
- If uplo = 'U', factor U in the superdiagonal part of A. If uplo = 'L', factor L in the subdiagonal part of A.

COMPLEX for chetrf_rk
COMPLEX* 16 for zhetrf_rk
Array, dimension (n). On exit, contains the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks. If uplo $=$ ' U ', $\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}$, and $\mathrm{e}(1)$ is set to 0 . If uplo = 'L', $\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1$, and $\mathrm{e}(n)$ is set to 0 .

NOTE For 1-by-1 diagonal block $\mathrm{D}(\mathrm{k})$, where $1 \leq \mathrm{k} \leq n$, the element $e(k)$ is set to 0 in both the uplo $=$ ' U ' and uplo $=$ ' $\mathrm{L} '$ cases.

ipiv

INTEGER

Array, dimension (n). ipiv describes the permutation matrix P in the factorization of matrix A as follows. The absolute value of $\operatorname{ipiv(k)}$ represents the index of row and column that were interchanged with the $k^{\text {th }}$ row and column. The value of uplo describes the order in which the interchanges were applied. Also, the sign of ipiv represents the block structure of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks that correspond to 1 or 2 interchanges at each factorization step. If uplo = ' U ' (in factorization order, k decreases from n to 1):

1. A single positive entry $\operatorname{ipiv}(k)>0$ means that $D(k, k)$ is a 1 -by-1 diagonal block. If $\operatorname{ipiv}(k)!=k$, rows and columns k and $\operatorname{ipiv}(k)$ were interchanged in the matrix $\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})$. If $\operatorname{ipiv}(k)=k$, no interchange occurred.
2. A pair of consecutive negative entries $\operatorname{ipiv}(k)<0$ and $\operatorname{ipiv}(k-1)<0$ means that $\mathrm{D}(k-1: k, k-1: k)$ is a 2 -by- 2 diagonal block. (Note that negative entries in ipiv appear only in pairs.)

- If $-\operatorname{ipiv}(k)!=k$, rows and columns k and $-\operatorname{ipiv}(k)$ were interchanged in the matrix $\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})$. If $-\operatorname{ipiv}(k)=k$, no interchange occurred.
- If $-\operatorname{ipiv}(k-1)!=k-1$, rows and columns $k-1$ and $-\operatorname{ipiv}(k-1)$ were interchanged in the matrix $\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})$. If $-\operatorname{ipiv}(k-1)=k-1$, no interchange occurred.

3. In both cases 1 and 2 , always $\operatorname{ABS}(\operatorname{ipiv}(k)) \leq k$.

NOTE Any entry $\operatorname{ipiv}(k)$ is always nonzero on output.

If uplo = ' L' (in factorization order, k increases from 1 to n):

1. A single positive entry $\operatorname{ipiv}(k)>0$ means that $\mathrm{D}(k, k)$ is a 1 -by- 1 diagonal block. If $\operatorname{ipiv}(k)!=k$, rows and columns k and $\operatorname{ipiv}(k)$ were interchanged in the matrix $\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})$. If $\operatorname{ipiv}(k)=k$, no interchange occurred.
2. A pair of consecutive negative entries $\operatorname{ipiv}(k)<0$ and $\operatorname{ipiv}(k+1)<0$ means that $\mathrm{D}(k: k+1, k: k+1)$ is a 2 -by- 2 diagonal block. (Note that negative entries in ipiv appear only in pairs.)

- If -ipiv(k)!= k, rows and columns k and -ipiv(k) were interchanged in the matrix $\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})$. If $-\operatorname{ipiv}(k)=k$, no interchange occurred.
- If -ipiv $(k+1)!=k+1$, rows and columns $k-1$ and $-\operatorname{ipiv}(k-1)$ were interchanged in the matrix $\mathrm{A}(1: \mathrm{N}, 1: \mathrm{N})$. If $-\operatorname{ipiv}(k+1)=k+1$, no interchange occurred.

3. In both cases 1 and 2 , always $\operatorname{ABS}(\operatorname{ipiv}(k)) \geq k$.
```
NOTE Any entry \(\operatorname{ipiv}(k)\) is always nonzero on output.
```

work
info

COMPLEX for chetrf_rk
COMPLEX*16 for zhetrf_rk
Array, dimension (MAX(1, Iwork)). On exit, if info $=0$, work(1) returns the optimal lwork.

INTEGER

- = 0: Successful exit.
- < 0: If info $=-k$, the $k^{\text {th }}$ argument had an illegal value.
- >0: If info $=k$, the matrix A is singular. If uplo = 'U', the column k in the upper triangular part of A contains all zeros. If uplo = 'L', the column k in the lower triangular part of A contains all zeros. Therefore $\mathrm{D}(k, k)$ is exactly zero, and superdiagonal elements of column k of U (or subdiagonal elements of column k of L) are all zeros. The factorization has been completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.

NOTE info $^{\text {s }}$ stores only the first occurrence of a singularity; any subsequent occurrence of a singularity is not stored in info even though the factorization always completes.
?sptrf
Computes the Bunch-Kaufman factorization of a symmetric matrix using packed storage.

Syntax

```
call ssptrf( uplo, n, ap, ipiv, info )
call dsptrf( uplo, n, ap, ipiv, info )
call csptrf( uplo, n, ap, ipiv, info )
call zsptrf( uplo, n, ap, ipiv, info )
call sptrf( ap [,uplo] [,ipiv] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the factorization of a real/complex symmetric matrix A stored in the packed format using the Bunch-Kaufman diagonal pivoting method. The form of the factorization is:

```
if uplo='U',A = U*D* UT
if uplo='L',A = L* D* LT,
```

where U and L are products of permutation and triangular matrices with unit diagonal (upper triangular for U and lower triangular for L), and D is a symmetric block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2 -by- 2 blocks of D.

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

uplo

n
ap

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is packed in the array $a p$ and how A is factored:
If uplo = 'U', the array $a p$ stores the upper triangular part of the matrix A, and A is factored as $U^{*} D^{\star} U^{T}$.

If uplo = 'L', the array ap stores the lower triangular part of the matrix A, and A is factored as $L \star D \star L^{T}$.

INTEGER. The order of matrix $A ; n \geq 0$.
REAL for ssptrf
DOUBLE PRECISION for dsptrf
COMPLEX for csptrf
DOUBLE COMPLEX for zsptrf.
Array, size at least $\max (1, n(n+1) / 2)$. The array ap contains the upper or the lower triangular part of the matrix A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

$a p$
ipiv
info
The upper or lower triangle of A (as specified by uplo) is overwritten by details of the block-diagonal matrix D and the multipliers used to obtain the factor U (or L).

INTEGER.
Array, size at least max $(1, n)$. Contains details of the interchanges and the block structure of D. If $\operatorname{ipiv}(i)=k>0$, then $d_{i i}$ is a 1-by-1 block, and the i-th row and column of A was interchanged with the k th row and column.

If uplo $=$ ' U' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0$, then D has a 2-by-2 block in rows/columns i and $i-1$, and (i-1)-th row and column of A was interchanged with the m-th row and column.

If uplo $=$ 'L' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0$, then D has a 2-by-2 block in rows/columns i and $i+1$, and ($i+1$)-th row and column of A was interchanged with the m-th row and column.

INTEGER. If info $=0$, the execution is successful.

If info $=-i$, the i-th parameter had an illegal value.

If info $=i, d_{i i}$ is 0 . The factorization has been completed, but D is exactly singular. Division by 0 will occur if you use D for solving a system of linear equations.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sptrf interface are as follows:
ap \quad Holds the array A of size $\left(n^{*}(n+1) / 2\right)$.
ipiv Holds the vector of length n.
uplo
Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The remaining elements of U and L overwrite elements of the corresponding columns of the array ap, but additional row interchanges are required to recover U or L explicitly (which is seldom necessary).

If $i p i v(i)=i$ for all $i=1 \ldots n$, then all off-diagonal elements of $U(L)$ are stored explicitly in packed form.
If uplo = 'U', the computed factors U and D are the exact factors of a perturbed matrix $A+E$, where

```
    |E| \leqC(n)\varepsilonP|U||D|| UT}|\mp@subsup{|}{}{T
```

$C(n)$ is a modest linear function of n, and ε is the machine precision. A similar estimate holds for the computed L and D when uplo $=$ 'L'.
The total number of floating-point operations is approximately $(1 / 3) n^{3}$ for real flavors or $(4 / 3) n^{3}$ for complex flavors.

After calling this routine, you can call the following routines:

```
?sptrs to solve }A*X=
?spcon to estimate the condition number of }
?sptri to compute the inverse of }A\mathrm{ .
```


See Also
 mkl_progress

Matrix Storage Schemes

```
?hptrf
Computes the Bunch-Kaufman factorization of a
complex Hermitian matrix using packed storage.
```


Syntax

```
call chptrf( uplo, n, ap, ipiv, info )
call zhptrf( uplo, n, ap, ipiv, info )
call hptrf( ap [,uplo] [,ipiv] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes the factorization of a complex Hermitian packed matrix A using the Bunch-Kaufman diagonal pivoting method:

```
if uplo='U', \(A=U^{*} D^{*} U^{H}\)
if uplo='L', \(A=L^{*} D^{*} L^{H}\),
```

where A is the input matrix, U and L are products of permutation and triangular matrices with unit diagonal (upper triangular for U and lower triangular for L), and D is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. U and L have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks of D.

NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

Input Parameters

uplo
n
ap
都
,

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is packed and how A is factored:

If uplo = 'U', the array ap stores the upper triangular part of the matrix A, and A is factored as $U^{*} D * U^{\mathrm{H}}$.

If uplo = 'L', the array ap stores the lower triangular part of the matrix A, and A is factored as $L \star D * L^{\mathrm{H}}$.

INTEGER. The order of matrix $A ; n \geq 0$.
COMPLEX for chptrf
DOUBLE COMPLEX for zhptrf.
Array, size at least $\max (1, n(n+1) / 2)$. The array ap contains the upper or the lower triangular part of the matrix A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

ap
ipiv
The upper or lower triangle of A (as specified by uplo) is overwritten by details of the block-diagonal matrix D and the multipliers used to obtain the factor U (or L).

INTEGER.
Array, size at least max $(1, n)$. Contains details of the interchanges and the block structure of D. If $\operatorname{ipiv}(i)=k>0$, then $d_{i i}$ is a 1-by-1 block, and the i-th row and column of A was interchanged with the k th row and column.

If uplo $=$ ' U' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0$, then D has a 2-by-2 block in rows/columns i and $i-1$, and ($i-1$)-th row and column of A was interchanged with the m-th row and column.

If uplo $=$ ' L' and $\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0$, then D has a 2-by-2 block in rows/columns i and $i+1$, and ($i+1$)-th row and column of A was interchanged with the m-th row and column.
info
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, d_{i i}$ is 0 . The factorization has been completed, but D is exactly singular. Division by 0 will occur if you use D for solving a system of linear equations.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hptrf interface are as follows:

```
ap Holds the array A of size ( }n*(n+1)/2)
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements of U and L are not stored. The remaining elements of U and L are stored in the array ap, but additional row interchanges are required to recover U or L explicitly (which is seldom necessary).
If $\operatorname{ipiv}(i)=i$ for all $i=1 \ldots n$, then all off-diagonal elements of $U(L)$ are stored explicitly in the corresponding elements of the array a.
If uplo = 'U', the computed factors U and D are the exact factors of a perturbed matrix $A+E$, where

```
    |E| \leqc(n)\varepsilonP|U||D|| | UT}|\mp@subsup{P}{}{T
```

$C(n)$ is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for the computed L and D when uplo $=' L$ '.
The total number of floating-point operations is approximately (4/3) n^{3}.
After calling this routine, you can call the following routines:
?hptrs to solve $A * X=B$
?hpcon to estimate the condition number of A
?hptri to compute the inverse of A.

See Also
mkl_progress
Matrix Storage Schemes

mkl_?spffrt2, mkl_?spffrtx

Computes the partial $L D L^{\top}$ factorization of a symmetric matrix using packed storage.

Syntax

```
call mkl_sspffrt2( ap, n, ncolm, work, work2 )
call mkl_dspffrt2( ap, n, ncolm, work, work2 )
call mkl_cspffrt2( ap, n, ncolm, work, work2 )
call mkl_zspffrt2( ap, n, ncolm, work, work2 )
call mkl_sspffrtx( ap, n, ncolm, work, work2 )
call mkl_dspffrtx( ap, n, ncolm, work, work2 )
call mkl_cspffrtx( ap, n, ncolm, work, work2 )
call mkl_zspffrtx( ap, n, ncolm, work, work2 )
```


Include Files

- mkl.fi

Description

The routine computes the partial factorization $A=L D L^{\top}$, where L is a lower triangular matrix and D is a diagonal matrix.

Caution

The routine assumes that the matrix A is factorizable. The routine does not perform pivoting and does not handle diagonal elements which are zero, which cause the routine to produce incorrect results without any indication.

Consider the matrix $A=\left(\begin{array}{ll}a & b^{T} \\ b & C\end{array}\right)$, where a is the element in the first row and first column of A, b is a column vector of size $n-1$ containing the elements from the second through n-th column of A, C is the lower-right square submatrix of A, and I is the identity matrix.
The mkl_?spffrt2 routine performs ncolm successive factorizations of the form
$A=\left(\begin{array}{ll}a & b^{\mathrm{T}} \\ b & C\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ b & I\end{array}\right)\left(\begin{array}{cc}-1 & 0 \\ a^{-1} & C-b a^{-1} b^{\mathrm{T}}\end{array}\right)\left(\begin{array}{cc}a & b^{\mathrm{T}} \\ 0 & I\end{array}\right)$.
The mkl_?spffrtx routine performs ncolm successive factorizations of the form
$A=\left(\begin{array}{cc}a & b^{\mathrm{T}} \\ b & C\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ b a^{-1} & I\end{array}\right)\left(\begin{array}{cc}a & 0 \\ 0 & C-b a^{-1} b^{\mathrm{T}}\end{array}\right)\left(\begin{array}{cc}1 & \left(b a^{-1}\right)^{\mathrm{T}} \\ 0 & I\end{array}\right)$.
The approximate number of floating point operations performed by real flavors of these routines is $(1 / 6){ }^{*} n c o l m *\left(2 *_{n c o l m}{ }^{2}-6 *_{n c o l m}{ }_{n}+3^{*} n c o l m+6_{n}{ }^{2}-6 *_{n}+7\right)$.
The approximate number of floating point operations performed by complex flavors of these routines is

Input Parameters

$a p$
REAL for mkl_sspffrt2 and mkl_sspffrtx
DOUBLE PRECISION for mkl_dspffrt2 and mkl_dspffrtx
COMPLEX for mkl_cspffrt2 and mkl_cspffrtx
DOUBLE COMPLEX for mkl_zspffrt2 and mkl_zspffrtx.
Array, size at least $\max (1, n(n+1) / 2)$. The array $a p$ contains the lower triangular part of the matrix A in packed storage (see Matrix Storage Schemes for uplo = 'L').

Integer. The order of matrix $A ; n \geq 0$.
INTEGER. The number of columns to factor, ncolm $\leq n$.
REAL for mkl_sspffrt2 and mkl_sspffrtx
DOUBLE PRECISION for mkl_dspffrt2 and mkl_dspffrtx
COMPLEX for mkl_cspffrt2 and mkl_cspffrtx
DOUBLE COMPLEX for mkl_zspffrt2 and mkl_zspffrtx.
Workspace arrays, size of each at least n.

Output Parameters

ap
Overwritten by the factor L. The first ncolm diagonal elements of the input matrix A are replaced with the diagonal elements of D. The subdiagonal elements of the first ncolm columns are replaced with the corresponding elements of L. The rest of the input array is updated as indicated in the Description section.

NOTE

Specifying ncolm $=n$ results in complete factorization $A=$ $L D L^{\top}$.

See Also

mkl_progress
Matrix Storage Schemes

Solving Systems of Linear Equations: LAPACK Computational Routines

This section describes the LAPACK routines for solving systems of linear equations. Before calling most of these routines, you need to factorize the matrix of your system of equations (see Routines for Matrix Factorization). However, the factorization is not necessary if your system of equations has a triangular matrix.

?getrs

Solves a system of linear equations with an LUfactored square coefficient matrix, with multiple righthand sides.

Syntax

```
call sgetrs( trans, n, nrhs, a, lda, ipiv, b, ldb, info )
call dgetrs( trans, n, nrhs, a, lda, ipiv, b, ldb, info )
call cgetrs( trans, n, nrhs, a, lda, ipiv, b, ldb, info )
call zgetrs( trans, n, nrhs, a, lda, ipiv, b, ldb, info )
call getrs( a, ipiv, b [, trans] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the following systems of linear equations:

```
A*X = B if trans='N',
AT* 隹 = if trans='T',
A}\mp@subsup{}{}{H*X}=B\quad if trans='C' (for complex matrices only)
```

Before calling this routine, you must call ? getrf to compute the $L U$ factorization of A.

Input Parameters

trans
n
nrhs
a, b

Ida

CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans $=' N^{\prime}$ ', then $A * X=B$ is solved for X.
If trans $=$ 'T', then $A^{T \star} X=B$ is solved for X.
If trans $=' C^{\prime}$, then $A^{H \star} X=B$ is solved for X.

INTEGER. The order of A; the number of rows in $B(n \geq 0)$.
INTEGER. The number of right-hand sides; nrhs ≥ 0.
REAL for sgetrs
DOUBLE PRECISION for dgetrs
COMPLEX for cgetrs
DOUBLE COMPLEX for zgetrs.
Arrays: a (size $/ d a$ by $*), b($ size $/ d b$ by $*)$.
The array a contains $L U$ factorization of matrix A resulting from the call of ?getrf.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
The second dimension of a must be at least max $(1, n)$ and the second dimension of b at least max (1, nrhs).

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
$1 d b$
ipiv

INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$. The ipiv array, as returned by ? getre.

Output Parameters

b
info

Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine getrs interface are as follows:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size $(n, n r h s)$.
trans	Holds the vector of length n.
Must be ' $N^{\prime}, '^{\prime} C^{\prime}$, or ' T '. The default value is ' N '.	

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A $+E) x=b$, where

$|E| \leq C(n) \varepsilon P|L||U|$

$C(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

where $\operatorname{cond}(A, x)=\|\left.\left|\left|A^{-1}\right|\right| A| | x| |\right|_{\infty} /||x||_{\infty} \leq\left|\left|A^{-1}\right|\right|_{\infty}| | A| |_{\infty}=\kappa_{\infty}(A)$.
Note that con (A, x) can be much smaller than $\kappa_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $\kappa_{\infty}(A)$.

The approximate number of floating-point operations for one right-hand side vector b is $2 n^{2}$ for real flavors and $8 n^{2}$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ? gecon.
To refine the solution and estimate the error, call ?serfs.

See Also
Matrix Storage Schemes

?getrs_batch_strided
Solves a group of systems of linear equations, each with an LU-factored square coefficient matrix and multiple right hand sides.

Syntax

```
call sgetrs_batch_strided(trans, n, nrhs, A, lda, stride_a, ipiv, stride_ipiv, b, ldb,
stride_b, batch_size, info)
call dgetrs_batch_strided(trans, n, nrhs, A, lda, stride_a, ipiv, stride_ipiv, b, ldb,
stride_b, batch_size, info)
call cgetrs_batch_strided(trans, n, nrhs, A, lda, stride_a, ipiv, stride_ipiv, b, ldb,
stride_b, batch_size, info)
call zgetrs_batch_strided(trans, n, nrhs, A, lda, stride_a, ipiv, stride_ipiv, b, ldb,
stride_b, batch_size, info)
```


Include Files

mkl.fi

Description

The ?getrs_batch_strided routines are similar to the ?getrs counterparts, but instead solve a group of systems of linear equations. Before calling this routine, you must call ?getrf_batch_strided to compute the LU factorization of the square coefficient matrix of each linear system.
All coefficient matrices, A_{i} have the same parameters (matrix size, leading dimension) and are stored at constant stride_a from each other. Similarly, all right-hand-side matrices, B_{i}, have the same parameters and are stored at constant stride_b from each other. The respective pivot array associated with each of the LU-factored A_{i} matrices are stored at constant stride_ipiv from each other. The operation is defined as

```
for i = 0 ... batch_size-1
    A}\mp@subsup{A}{i}{},\mp@subsup{B}{i}{}\mathrm{ are matrices at offset i * stride_a, i * stride_b from A and B
    ipivi is an array at offset i * stride_ipiv from ipiv
    Solve the system
    Ai * X 
    A}\mp@subsup{i}{}{T}*\mp@subsup{\textrm{X}}{\textrm{i}}{}=\mp@subsup{\textrm{B}}{\textrm{i}}{}\mathrm{ , if trans='T'
    A}\mp@subsup{i}{}{C}*\mp@subsup{\textrm{X}}{\textrm{i}}{}=\mp@subsup{\textrm{B}}{\textrm{i}}{}\mathrm{ , if trans='C' (for complex matrices)
end for
```


Input Parameters

trans
CHARACTER*1. Must be ' N ', ' T ', or ' C '.
Indicates the form of the systems of linear equations:
If trans $=$ ' N ', $A_{i}{ }^{*} X_{i}=B_{i}$ is solved for X_{i}.
If trans $=$ ' T ', $A_{i}^{T} * X_{i}=B_{i}$ is solved for X_{i}.
If trans $={ }^{\prime} \mathrm{C}^{\prime}, A_{i}^{C} * X_{i}=B_{i}$ is solved for X_{i}.

```
n
nrhs
A, B
Ida
I db
stride_a
stride_b
ipiv
stride_ipiv
batch_size
```


Output Parameters

B
info

INTEGER. The order fo the A_{j} matrices; $n \geq 0$.
INTEGER. The number of right hand sides in each linear system of equations ($n r h s \geq 0$).

REAL for sgetrs_batch_strided
DOUBLE PRECISION for dgetrs_batch_strided
COMPLEX for cgetrs_batch_strided
DOUBLE COMPLEX for zgetrs_batch_strided
The A array of size at least stride_a * batch_size holding the LUfactorized A_{i} matrices resulting from the call to ?getrf_batch_strided.
The B array of size at least stride_b* batch_size holding the B_{i} matrices, whose columns are the right -hand sides for each linear system of equations.

INTEGER. Specifies the leading dimension of the A_{j} matrices; $I d a \geq$ $\max (1, n)$.

INTEGER. Specifies the leading dimension of the B_{i} matrices; $1 d b \geq$ $\max (1, n)$.

INTEGER.
Stride between two consecutive A_{i} matrices; stride_a $\geq l d a * n$.
INTEGER.
Stride between two consecutive B_{i} matrices; stride_b $\geq l d b * n r h s$.
INTEGER.
Array of size at least stride_ipiv* batch_size holding the pivoting indices for each LU-factorized matrix A_{i}.

INTEGER.
Stride between two consecutive pivot arrays; stride_ipiv $\geq n$).
INTEGER.
Number of linear systems to be solved; batch_size ≥ 0.

Array is overwritten by the solution matrices X_{i}.
INTEGER.
Array of size at least batch_size, which reports the status for each linear system solve.
If info(i) $=0$, the execution is successful for A_{i}.
If info $(i)=-j$, the j-th parameter had an illegal value for A_{i}.

```
?getrsnp_batch_strided
Solves a group of systems of linear equations, each
with an LU-factored square coefficient matrix and
multiple right hand sides.
```


Syntax

```
call sgetrsnp_batch_strided(trans, n, nrhs, A, lda, stride_a, b, ldb, stride_b,
batch_size, info)
call dgetrsnp_batch_strided(trans, n, nrhs, A, lda, stride_a, b, ldb, stride_b,
batch_size, info)
call cgetrsnp_batch_strided(trans, n, nrhs, A, lda, stride_a, b, ldb, stride_b,
batch size, info)
call zgetrsnp_batch_strided(trans, n, nrhs, A, lda, stride_a, b, ldb, stride_b,
batch_size, info)
```


Include Files

```
mkl.fi
```


Description

The ?getrsnp_batch_strided routines solve a group of systems of linear equations. Before calling this routine, you must call ? getrfnp_batch_strided to compute the LU factorization (without pivoting) of the square coefficient matrix of each linear system.

All coefficient matrices, A_{i} have the same parameters (matrix size, leading dimension) and are stored at constant stride_a from each other. Similarly, all right-hand-side matrices, B_{i}, have the same parameters and are stored at constant stride_b from each other. The operation is defined as

```
for i = 0 ... batch_size-1
    A}\mp@subsup{A}{1}{},\mp@subsup{B}{i}{}\mathrm{ are matrices at offset i * stride_a, i * stride_b from A and B
    Solve the system
    Ai
    A}\mp@subsup{i}{}{T}*\mp@subsup{\textrm{X}}{\textrm{i}}{}=\mp@subsup{\textrm{B}}{\textrm{i}}{},\mathrm{ , if trans='T'
    A}\mp@subsup{i}{}{C}*\mp@subsup{\textrm{X}}{\textrm{i}}{}=\mp@subsup{\textrm{B}}{\textrm{i}}{},\mathrm{ , if trans='C' (for complex matrices)
end for
```


Input Parameters

$$
\begin{array}{ll}
\text { trans } & \text { CHARACTER* } 1 \text {. Must be ' } \mathrm{N} \text { ', ' } \mathrm{T} \text { ', or ' } \mathrm{C} \text { '. } \\
& \text { Indicates the form of the systems of linear equations: } \\
& \text { If trans }=\text { ' } \mathrm{N} \text { ', } A_{i} * X_{i}=B_{i} \text { is solved for } X_{i} . \\
& \text { If trans }=\text { 'T', } A_{i}^{T} * X_{i}=B_{i} \text { is solved for } X_{i} . \\
& \text { If trans }=\text { ' } \mathrm{C}^{\prime}, A_{i}^{C} * X_{i}=B_{i} \text { is solved for } X_{i} . \\
n & \text { INTEGER. The order fo the } A_{i} \text { matrices; } n \geq 0 . \\
\text { nrhs } & \text { INTEGER. The number of right hand sides in each linear system of } \\
& \text { equations }(n r h s \geq 0) .
\end{array}
$$

A, B	REAL for sgetrsnp_batch_strided
	DOUBLE PRECISION for dgetrsnp_batch_strided
	COMPLEX for cgetrsnp_batch_strided
	DOUBLE COMPLEX for zgetrsnp_batch_strided
	The A array of size at least stride_a * batch_size holding the LUfactorized A_{i} matrices resulting from the call to ?getrfnp_batch_strided.
	The B array of size at least stride_b* batch_size holding the B_{i} matrices, whose columns are the right -hand sides for each linear system of equations.
Ida	INTEGER. Specifies the leading dimension of the A_{i} matrices; lda \geq $\max (1, n)$.
1 db	INTEGER. Specifies the leading dimension of the B_{i} matrices; $1 d b \geq$ $\max (1, n)$.
stride_a	INTEGER.
	Stride between two consecutive A_{i} matrices; stride_a \geq lda ${ }^{*} n$.
stride_b	INTEGER.
	Stride between two consecutive B_{i} matrices; stride_b $\geq 1 d b *$ nrhs.
ipiv	INTEGER.
	Array of size at least stride_ipiv* batch_size holding the pivoting indices for each LU-factorized matrix A_{i}.
batch_size	INTEGER.
	Number of linear systems to be solved; batch_size ≥ 0.

Output Parameters

B
info

Array is overwritten by the solution matrices X_{i}.
INTEGER.
Array of size at least batch_size, which reports the status for each linear system solve.
If info($i)=0$, the execution is successful for A_{i}.
If info($i)=-j$, the j-th parameter had an illegal value for A_{i}.

?gbtrs

Solves a system of linear equations with an LU-
factored band coefficient matrix, with multiple right-
hand sides.

Syntax

```
call sgbtrs( trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
call dgbtrs( trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
call cgbtrs( trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
```

```
call zgbtrs( trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
call gbtrs( ab, b, ipiv, [, kl] [, trans] [, info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the following systems of linear equations:

```
A*X=B if trans='N',
AT*X = B if trans='T',
A}\mp@subsup{}{}{H}\mp@subsup{A}{X}{\prime}=B\quad if trans='C' (for complex matrices only)
```

Here A is an $L U$-factored general band matrix of order n with $k l$ non-zero subdiagonals and $k u$ nonzero superdiagonals. Before calling this routine, call ?gbtrf to compute the $L U$ factorization of A.

Input Parameters

trans	CHARACTER*1. Must be 'N' or 'T' or 'C'.
n	INTEGER. The order of A; the number of rows in $B ; n \geq 0$.
kl	INTEGER. The number of subdiagonals within the band of $A ; k l \geq 0$.
ku	INTEGER. The number of superdiagonals within the band of $A ; k u \geq 0$.
nrhs	INTEGER. The number of right-hand sides; nrhs ≥ 0.
$a b, b$	REAL for sgbtrs
	DOUBLE PRECISION for dgbtrs
	COMPLEX for cgbtrs
	DOUBLE COMPLEX for zgbtrs.
	Arrays: $\mathrm{ab}(1 \mathrm{dab}, *), \mathrm{b}(1 \mathrm{db}, *)$.
	The array $a b$ contains elements of the LU factors of the matrix A as returned by gbtrf. The second dimension of $a b$ must be at least $\max (1, n)$.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b at least $\max (1, n r h s)$.
Idab	INTEGER. The leading dimension of the array $a b ; / d a b \geq 2 * k I+k u+1$.
1 db	INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
ipiv	INTEGER. Array, size at least max (1, n). The ipiv array, as returned by ?gbtrf.

Output Parameters

b
Overwritten by the solution matrix X.

```
info
```

INTEGER. If info oo, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gbtrs interface are as follows:

```
ab Holds the array A of size (2*kl+ku+1,n).
b Holds the matrix B of size (n,nrhs).
ipiv Holds the vector of length min}(m,n)\mathrm{ .
kl If omitted, assumed kl = ku.
ku Restored as lda-2*kl-1.
trans
    Must be 'N', 'C', or 'T'. The default value is 'N'.
```


Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A $+E) x=b$, where

```
|E|\leqc(kl+ku + 1)\varepsilonP| L||U|
```

$c(k)$ is a modest linear function of k, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(k I+k u+1) \operatorname{cond}(A, x) \varepsilon
$$

where cont $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that con (A, x) can be much smaller than $\kappa_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $\kappa_{\infty}(A)$.

The approximate number of floating-point operations for one right-hand side vector is $2 n(k u+2 k l)$ for real flavors. The number of operations for complex flavors is 4 times greater. All these estimates assume that $k l$ and $k u$ are much less than $\min (m, n)$.
To estimate the condition number $\kappa_{\infty}(A)$, call ? gbcon.
To refine the solution and estimate the error, call ?gbrfs.

See Also
Matrix Storage Schemes

?gttrs

Solves a system of linear equations with a tridiagonal coefficient matrix using the LU factorization computed by ?gttrf.

Syntax

```
call sgttrs( trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info )
call dgttrs( trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info )
call cgttrs( trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info )
call zgttrs( trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info )
call gttrs( dl, d, du, du2, b, ipiv [, trans] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the following systems of linear equations with multiple right hand sides:

```
A*X=B if trans='N',
AT*X = B if trans='T',
AH*X=B if trans='C' (for complex matrices only).
```

Before calling this routine, you must call ? gttrf to compute the $L U$ factorization of A.

Input Parameters

```
trans CHARACTER*1.Must be 'N' or 'T' or 'C'.
    Indicates the form of the equations:
    If trans = 'N', then A*X = B is solved for X.
    If trans = 'T', then AT*X=B is solved for X.
    If trans = 'C', then }\mp@subsup{A}{}{H*X}=B\mathrm{ is solved for }X\mathrm{ .
    INTEGER. The order of A; n\geq0.
    INTEGER. The number of right-hand sides, that is, the number of
    columns in B; nrhs\geq 0.
REAL for sgttrs
DOUBLE PRECISION for dgttrs
COMPLEX for cgttrs
DOUBLE COMPLEX for zgttrs.
Arrays: dl(n -1),d(n),du(n -1), du2(n -2),b(ldb,nrhs).
The array \(d l\) contains the \((n-1)\) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\).
```

The array d contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.

The array $d u$ contains the $(n-1)$ elements of the first superdiagonal of U.
The array $d u 2$ contains the $(n-2)$ elements of the second superdiagonal of U.
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.

INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. Array, size (n). The ipiv array, as returned by ? gttrf.

Output Parameters

b
info
Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gttrs interface are as follows:

$d l$	Holds the vector of length $(n-1)$.
d	Holds the vector of length n.
$d u$	Holds the vector of length $(n-1)$.
$d u 2$	Holds the vector of length $(n-2)$.
b	Holds the matrix B of size $(n, n r h s)$.
ipiv	Holds the vector of length n.

trans Must be 'N', 'C', or 'T'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A
$+E) x=b$, where
$|E| \leq C(n) \varepsilon P|L||U|$
$c(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty s}}{\|x\|_{\infty}} \leq c(k I+k u+1) \operatorname{cond}(A, x) \varepsilon
$$

where cont $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|\left\|_{\infty}\right\| A \|_{\infty}=\kappa_{\infty}(A)$.
Note that $\operatorname{cond}(A, x)$ can be much smaller than $\kappa_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $\kappa_{\infty}(A)$.
The approximate number of floating-point operations for one right-hand side vector b is $7 n$ (including n divisions) for real flavors and $34 n$ (including $2 n$ divisions) for complex flavors.
To estimate the condition number $\kappa_{\infty}(A)$, call ?gtcon.
To refine the solution and estimate the error, call ?gtrfs.

See Also

Matrix Storage Schemes

?dttrsb

Solves a system of linear equations with a diagonally dominant tridiagonal coefficient matrix using the LU factorization computed by ?dttrfb.

Syntax

```
call sdttrsb( trans, n, nrhs, dl, d, du, b, ldb, info )
call ddttrsb( trans, n, nrhs, dl, d, du, b, ldb, info )
call cdttrsb( trans, n, nrhs, dl, d, du, b, ldb, info )
call zdttrsb( trans, n, nrhs, dl, d, du, b, ldb, info )
call dttrsb( dl, d, du, b [, trans] [, info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The ? dttrsb routine solves the following systems of linear equations with multiple right hand sides for X :

$$
\begin{array}{ll}
A^{*} X=B & \text { if trans ='N', } \\
A^{T * X}=B & \text { if trans ='T', } \\
A^{H * X}=B & \text { if trans ='C' (for complex matrices only). }
\end{array}
$$

Before calling this routine, call ? dttrfb to compute the factorization of A.

Input Parameters

trans
CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations solved for X :

	If trans $=$ ' N^{\prime} ', then $A^{*} X=B$.
	If trans $=$ 'T', then $A^{T *} X=B$.
	If trans $=$ ' C', then $A^{H *} X=B$.
n	INTEGER. The order of $A ; n \geq 0$.
nrhs	INTEGER. The number of right-hand sides, that is, the number of columns in $B ; n r h s \geq 0$.
$d l, d, d u, b$	REAL for sdttrsb
	DOUBLE PRECISION for ddttrsb
	COMPLEX for cdttrsb
	DOUBLE COMPLEX for zdttrsb.
	Arrays: $d l(n-1), d(n), d u(n-1), b(l d b, n r h s)$.
	The array $d l$ contains the ($n-1$) multipliers that define the matrices L_{1}, L_{2} from the factorization of A.
	The array d contains the n diagonal elements of the upper triangular matrix U from the factorization of A.
	The array $d u$ contains the $(n-1)$ elements of the superdiagonal of U.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
1 db	INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.

Output Parameters

```
b
info
```

Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

```
?potrs
Solves a system of linear equations with a Cholesky-
factored symmetric (Hermitian) positive-definite
coefficient matrix.
Syntax
```

```
call spotrs( uplo, n, nrhs, a, lda, b, ldb, info )
```

call spotrs(uplo, n, nrhs, a, lda, b, ldb, info)
call dpotrs(uplo, n, nrhs, a, lda, b, ldb, info)
call dpotrs(uplo, n, nrhs, a, lda, b, ldb, info)
call cpotrs(uplo, n, nrhs, a, lda, b, ldb, info)
call cpotrs(uplo, n, nrhs, a, lda, b, ldb, info)
call zpotrs(uplo, n, nrhs, a, lda, b, ldb, info)
call zpotrs(uplo, n, nrhs, a, lda, b, ldb, info)
call potrs(a, b [,uplo] [, info])

```
call potrs( a, b [,uplo] [, info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the system of linear equations $A * X=B$ with a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix A, given the Cholesky factorization of A :

$$
\begin{array}{ll}
A=U^{T} \star U \text { for real data, } A=U^{H} \star U \text { for complex data } & \text { if uplo='U' } \\
A=L^{\star} L^{T} \text { for real data, } A=L^{\star} L^{H} \text { for complex data } & \text { if uplo='L' }
\end{array}
$$

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?potrf to compute the Cholesky factorization of A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', U is stored, where $A=U^{\top *} U$ for real data, for complex data.
	If uplo = 'L', L is stored, where $A=L^{*} L^{\top}$ for real data, complex data.
n	INTEGER. The order of matrix $A ; n \geq 0$.
nrhs	INTEGER. The number of right-hand sides ($n r h s \geq 0$).
a, b	REAL for spotrs
	DOUBLE PRECISION for dpotrs
	COMPLEX for cpotrs
	DOUBLE COMPLEX for zpotrs.
	Arrays: $a(l d a, *), b(l d b, *)$.
	The array a contains the factor U or L (see uplo) as return The second dimension of a must be at least max $(1, n)$.
	The array b contains the matrix B whose columns are the sides for the systems of equations. The second dimension be at least max ($1, n r h s$).
Ida	INTEGER. The leading dimension of a. $1 \mathrm{da} \geq \max (1, n)$.
1 db	INTEGER. The leading dimension of b. $1 d b \geq \max (1, n)$.

Output Parameters

b
info

Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine potrs interface are as follows:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size $(n, n r h s)$.
uplo	Must be ' U ' or ' L '. The default value is ' U '.

Application Notes

If uplo = 'U', the computed solution for each right-hand side b is the exact solution of a perturbed system of equations $(A+E) x=b$, where
$|E| \leq C(n) \varepsilon\left|U^{H}\right||U|$
$C(n)$ is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for uplo $=$ 'L'. If x_{0} is the true solution, the computed solution x satisfies this error bound:

where $\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$. The approximate number of floating-point operations for one right-hand side vector b is $2 n^{2}$ for real flavors and $8 n^{2}$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?pocon.
To refine the solution and estimate the error, call ?porfs.

See Also

Matrix Storage Schemes
?pftrs
Solves a system of linear equations with a Choleskyfactored symmetric (Hermitian) positive-definite coefficient matrix using the Rectangular Full Packed (RFP) format.

Syntax

```
call spftrs( transr, uplo, n, nrhs, a, b, ldb, info )
call dpftrs( transr, uplo, n, nrhs, a, b, ldb, info)
call cpftrs( transr, uplo, n, nrhs, a, b, ldb, info )
call zpftrs( transr, uplo, n, nrhs, a, b, ldb, info )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine solves a system of linear equations $A * X=B$ with a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix A using the Cholesky factorization of A :

$$
\begin{array}{ll}
A=U^{T} \star U \text { for real data, } A=U^{H} \star U \text { for complex data } & \text { if uplo='U' } \\
A=L^{\star} L^{T} \text { for real data, } A=L^{\star} L^{H} \text { for complex data } & \text { if uplo='L' }
\end{array}
$$

Before calling ?pftrs, you must call ?pftrf to compute the Cholesky factorization of A. L stands for a lower triangular matrix and U for an upper triangular matrix.

The matrix A is in the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

Input Parameters

transr	CHARACTER*1. Must be 'N', 'T' (for real data) or 'C' (for complex data).
	If transr $=$ ' N', the untransposed factor of Ais stored in RFP format.
	If transr $=$ ' T', the transposed factor of Ais stored in RFP format.
	If transr = ' C', the conjugate-transposed factor of Ais stored in RFP format.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', U is stored, where $A=U^{\top} * U$ for real data, $A=U^{H *} U$ for complex data.
	If uplo = 'L', L is stored, where $A=L^{*} L^{\top}$ for real data, $A=L^{*} L^{H}$ for complex data
n	INTEGER. The order of the matrix $A ; n \geq 0$.
nrhs	INTEGER. The number of right-hand sides, that is, the number of columns of the matrix $B ; n r h s \geq 0$.
a, b	REAL for spftrs
	DOUBLE PRECISION for dpftrs
	COMPLEX for cpftrs
	DOUBLE COMPLEX for zpftrs.
	Arrays: $a\left(n^{*}(n+1) / 2\right), b(1 d b, n r h s)$.
	The array a contains, in the RFP format, the factor U or L obtained by factorization of matrix A.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
1 db	INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.

Output Parameters

```
b The solution matrix }X\mathrm{ .
info
INTEGER. If info=0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
```


See Also

Matrix Storage Schemes
?pptrs
Solves a system of linear equations with a packed Cholesky-factored symmetric (Hermitian) positivedefinite coefficient matrix.

Syntax

```
call spptrs( uplo, n, nrhs, ap, b, ldb, info )
call dpptrs( uplo, n, nrhs, ap, b, ldb, info )
call cpptrs( uplo, n, nrhs, ap, b, ldb, info )
call zpptrs( uplo, n, nrhs, ap, b, ldb, info )
call pptrs( ap, b [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the system of linear equations $A * X=B$ with a packed symmetric positive-definite or, for complex data, Hermitian positive-definite matrix A, given the Cholesky factorization of A :

$$
\begin{array}{ll}
A=U^{T} \star U \text { for real data, } A=U^{H} \star U \text { for complex data } & \text { if uplo='U' } \\
A=L^{\star} L^{T} \text { for real data, } A=L^{\star} L^{H} \text { for complex data } & \text { if uplo='L' }
\end{array}
$$

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?pptrf to compute the Cholesky factorization of A.

Input Parameters

```
uplo
n
nrhs
    ap,b
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored:
If uplo = 'U', \(U\) is stored, where \(A=U^{\top *} U\) for real data, \(A=U^{H *} U\) for complex data.
If uplo \(=\) 'L', \(L\) is stored, where \(A=L^{*} L^{\top}\) for real data, \(A=L^{*} L^{H}\) for complex data
INTEGER. The order of matrix \(A ; n \geq 0\).
INTEGER. The number of right-hand sides (nrhs \(\geq 0\) ).
REAL for spptrs
```

DOUBLE PRECISION for dpptrs
COMPLEX for cpptrs
DOUBLE COMPLEX for zpptrs.
Arrays: $a p(*), b(l d b, *)$
The size of ap must be at least max $(1, n(n+1) / 2)$.
The array ap contains the factor U or L, as specified by uplo, in packed storage (see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).

INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.

Output Parameters

```
b
info
```

Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine pptrs interface are as follows:
ap
b Holds the matrix B of size ($n, n r h s$).
uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

If uplo = 'U', the computed solution for each right-hand side b is the exact solution of a perturbed system of equations $(A+E) x=b$, where
$|E| \leq C(n) \varepsilon\left|U^{H}\right||U|$
$C(n)$ is a modest linear function of n, and ε is the machine precision.
A similar estimate holds for uplo = 'L'.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$.
The approximate number of floating-point operations for one right-hand side vector b is $2 n^{2}$ for real flavors and $8 n^{2}$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?ppcon.
To refine the solution and estimate the error, call ?pprfs.

See Also

Matrix Storage Schemes
?pbtrs
Solves a system of linear equations with a Choleskyfactored symmetric (Hermitian) positive-definite band coefficient matrix.

Syntax

```
call spbtrs( uplo, n, kd, nrhs, ab, ldab, b, ldb, info )
call dpbtrs( uplo, n, kd, nrhs, ab, ldab, b, ldb, info )
call cpbtrs( uplo, n, kd, nrhs, ab, ldab, b, ldb, info )
call zpbtrs( uplo, n, kd, nrhs, ab, ldab, b, ldb, info )
call pbtrs( ab, b [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves for real data a system of linear equations $A * X=B$ with a symmetric positive-definite or, for complex data, Hermitian positive-definite band matrix A, given the Cholesky factorization of A :

$$
\begin{array}{ll}
A=U^{T} \star U \text { for real data, } A=U^{H} \star U \text { for complex data } & \text { if uplo='U' } \\
A=L^{\star} L^{T} \text { for real data, } A=L^{\star} L^{H} \text { for complex data } & \text { if uplo='L' }
\end{array}
$$

where L is a lower triangular matrix and U is upper triangular. The system is solved with multiple right-hand sides stored in the columns of the matrix B.

Before calling this routine, you must call ?p.btrf to compute the Cholesky factorization of A in the band storage form.

Input Parameters

uplo

CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo $=' U ', U$ is stored in $a b$, where $A=U^{\top *} U$ for real matrices and $A=U^{\mathrm{H} *} U$ for complex matrices.

If uplo = 'L', L is stored in $a b$, where $A=L^{*} L^{\top}$ for real matrices and $A=L^{*} L^{\mathrm{H}}$ for complex matrices.

```
n
kd
nrhs
ab,b
ldab
ldb
INTEGER. The order of matrix \(A ; n \geq 0\).
INTEGER. The number of superdiagonals or subdiagonals in the matrix \(A ; k d \geq 0\).
INTEGER. The number of right-hand sides; nrhs \(\geq 0\).
REAL for spbtrs
DOUBLE PRECISION for dpbtrs
COMPLEX for cpbtrs
DOUBLE COMPLEX for zp.btrs.
Arrays: \(a b(l d a b, *), \quad b(l d b, *)\).
The array \(a b\) contains the Cholesky factor, as returned by the factorization routine, in band storage form.
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
The second dimension of \(a b\) must be at least \(\max (1, n)\), and the second dimension of \(b\) at least max ( \(1, n r h s\) ).
INTEGER. The leading dimension of the array \(a b ; I d a b \geq k d+1\).
INTEGER. The leading dimension of \(b ; I d b \geq \max (1, n)\).
```


Output Parameters

b
info

Overwritten by the solution matrix X.
INTEGER. If info=0, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine pbtrs interface are as follows:
$a b \quad$ Holds the array A of size $(k d+1, n)$.
$b \quad$ Holds the matrix B of size ($n, n r h s$).
uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A
$+E) x=b$, where
$|E| \leq_{C}(k d+1) \varepsilon P\left|U^{H}\right||U|$ or $|E| \leq_{C}(k d+1) \varepsilon P\left|L^{H}\right||L|$
$c(k)$ is a modest linear function of k, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(k d+1) \operatorname{cond}(A, x) \varepsilon
$$

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$.
The approximate number of floating-point operations for one right-hand side vector is $4 n^{*} k d$ for real flavors and $16 n^{*} k d$ for complex flavors.
To estimate the condition number $\kappa_{\infty}(A)$, call ?pbcon.
To refine the solution and estimate the error, call ?pbrfs.

See Also

Matrix Storage Schemes

?pttrs

Solves a system of linear equations with a symmetric (Hermitian) positive-definite tridiagonal coefficient matrix using the factorization computed by ?pttrf.

Syntax

```
call spttrs( n, nrhs, d, e, b, ldb, info )
call dpttrs( n, nrhs, d, e, b, ldb, info )
call cpttrs( uplo, n, nrhs, d, e, b, ldb, info )
call zpttrs( uplo, n, nrhs, d, e, b, ldb, info )
call pttrs( d, e, b [,info] )
call pttrs( d, e, b [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X a system of linear equations $A * X=B$ with a symmetric (Hermitian) positive-definite tridiagonal matrix A. Before calling this routine, call ?pttrf to compute the $L * D^{\star} L^{\mathrm{T}}$ or $U^{\mathrm{T}} \star^{*} \mathrm{U}^{\text {Uffor real data }}$ and the $L^{\star} D^{\star} L^{H}$ or $U^{H} D^{\star}$ Ufactorization of A for complex data.

Input Parameters

uplo
CHARACTER*1. Used for cpttrs/zpttrs only. Must be 'U' or 'L'.
Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix A is stored and how A is factored:

If uplo = 'U', the array e stores the conjugated values of the superdiagonal of U, and A is factored as $U^{H} * D^{*} U$.

	If uplo = 'L', the array e stores the subdiagonal of L, and A is factored as $L^{\star} D^{\star} L^{\mathrm{H}}$.
n	INTEGER. The order of A; $n \geq 0$.
nrhs	INTEGER. The number of right-hand sides, that is, the number of columns of the matrix $B ; n r h s \geq 0$.
d	REAL for spttrs, cpttrs
	DOUBLE PRECISION for dpttrs, zpttrs.
	Array, dimension (n). Contains the diagonal elements of the diagonal matrix D from the factorization computed by ?pttrf.
e, b	REAL for spttrs
	DOUBLE PRECISION for dpttrs
	COMPLEX for cpttrs
	DOUBLE COMPLEX for zpttrs.
	Arrays: $e(n-1), b(/ d b, n r h s)$.
	The array e contains the $(n-1)$ sub-diagonal elements of the unit bidiagonal factor L or the conjugated values of the superdiagonal of U from the factorization computed by ?pttrf (see uplo).
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
1 db	INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.

Output Parameters

b
info

Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine pttrs interface are as follows:

d	Holds the vector of length n.
e	Holds the vector of length $(n-1)$.
b	Holds the matrix B of size $(n, n r h s)$.
uplo	Used in complex flavors only. Must be 'U' or 'L'. The default value is 'U'.

See Also

Matrix Storage Schemes
?sytrs
Solves a system of linear equations with a UDUT- or $L D L^{T}$-factored symmetric coefficient matrix.

Syntax

```
call ssytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call dsytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call csytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call zsytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call sytrs( a, b, ipiv [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the system of linear equations $A * X=B$ with a symmetric matrix A, given the BunchKaufman factorization of A :

```
if uplo='U',
A = U*D* UT
if uplo='L',
A = L*D* L',
```

where U and L are upper and lower triangular matrices with unit diagonal and D is a symmetric blockdiagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix B. You must supply to this routine the factor U (or L) and the array ipiv returned by the factorization routine ?sytrf.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array a stores the upper triangular factor U of the factorization $A=U^{\star} D^{\star} U^{T}$.
	If uplo = 'L', the array a stores the lower triangular factor L of the factorization $A=L^{\star} D^{\star} L^{T}$.
n	INTEGER. The order of matrix $A ; n \geq 0$.
nrhs	INTEGER. The number of right-hand sides; nrhs ≥ 0.
ipiv	INTEGER. Array, size at least max $(1, n)$. The ipiv array, as returned by ?sytrf.
a, b	REAL for ssytrs
	DOUBLE PRECISION for dsytrs
	COMPLEX for csytrs
	DOUBLE COMPLEX for zsytrs.
	Arrays: $a(l d a, *), b(l d b, *)$.

Ida
$1 d b$

Output Parameters

```
b
info
```

The array a contains the factor U or L (see uplo). The second dimension of a must be at least max $(1, n)$.

The array b contains the matrix B whose columns are the right-hand sides for the system of equations. The second dimension of b must be at least max (1, nrhs).

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.

b
 info
 LAPACK 95 Interface Notes

Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sytrs interface are as follows:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size $(n, n r h s)$.
ipiv	Holds the vector of length n.
	Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A $+E) x=b$, where

```
|E| \leqC(n)\varepsilonP|U||D||U'T | PT
```

$c(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$.
The total number of floating-point operations for one right-hand side vector is approximately $2 n^{2}$ for real flavors or $8 n^{2}$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?sycon.
To refine the solution and estimate the error, call ?syrfs.

```
See Also
Matrix Storage Schemes
?sytrs_aa
Solves a system of linear equations A * X = B with a
symmetric matrix.
```

```
call ssytrs_aa(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, lwork, info)
```

call ssytrs_aa(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, lwork, info)
call dsytrs_aa(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, lwork, info)
call dsytrs_aa(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, lwork, info)
call csytrs_aa(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, lwork, info)
call csytrs_aa(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, lwork, info)
call zsytrs_aa(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, lwork, info)

```
call zsytrs_aa(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, lwork, info)
```


Description

?sytrs_a solves a system of linear equations $A * X=B$ with a symmetric matrix A using the factorization A $=U * T * \bar{U}^{\top}$ or $A=L^{*} T^{*} L^{\top}$ computed by ?sytrf_aa.

Input Parameters

```
uplo
```

n
nrhs

A
da

B

CHARACTER*1

Specifies whether the details of the factorization are stored as an upper or lower triangular matrix.

- = 'U': Upper triangular; the form is $A=U^{*} T^{*} U^{\top}$.
- = 'L': Lower triangular; the form is $A=L^{*} T^{*} L^{\top}$.

INTEGER
The order of the matrix A. $n \geq 0$.
INTEGER
The number of right-hand sides; that is, the number of columns of the matrix B. nrhs ≥ 0.

REAL for ssytrs_aa
DOUBLE COMPLEX for dsytrs_aa
COMPLEX for csytrs_aa
COMPLEX*16 for zsytrs_aa
Array, dimension (lda, n). Details of factors computed by ?sytrf_aa.
INTEGER
The leading dimension of the array $A .1 d a \geq \max (1, n)$.
INTEGER
Array, dimension (n). Details of the interchanges as computed by ?sytrf_aa.

REAL for ssytrs_aa
DOUBLE COMPLEX for dsytrs_aa

```
    COMPLEX for csytrs_aa
    COMPLEX*16 for zsytrs_aa
    Array, dimension (Idb,nrhs). On entry, the right-hand side matrix B.
    INTEGER
    The leading dimension of the array B. ldb \geq max (1,n).
    Array, dimension (MAX(1,1 work)).
REAL for ssytrs_aa
DOUBLE COMPLEX for dsytrs_aa
COMPLEX for csytrs_aa
COMPLEX*16 for zsytrs_aa
INTEGER
The length of the array work.
```


Output Parameters

B
REAL for ssytrs_aa
DOUBLE COMPLEX for dsytrs_aa
COMPLEX for csytrs_aa
COMPLEX*16 for zsytrs_aa
On exit, the solution matrix X.
INTEGER

- If info $=0$: Successful exit.
- < 0: If info $=-i$, the $i^{\text {th }}$ argument had an illegal value.
?sytrs_rook
Solves a system of linear equations with a UDU- or LDL-factored symmetric coefficient matrix.

Syntax

```
call ssytrs_rook( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call dsytrs_rook( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call csytrs_rook( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call zsytrs_rook( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call sytrs_rook( a, b, ipiv [,uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine solves a system of linear equations $A * X=B$ with a symmetric matrix A, using the factorization A $=U \star D^{*} U^{\mathrm{T}}$ or $A=L^{\star} D^{\star} L^{\mathrm{T}}$ computed by ?sytrf_rook.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the factorization is of the form $A=U * D * U^{\text {P }}$.
	If uplo = 'L', the factorization is of the form $A=L \star D^{*} L^{T}$.
n	INTEGER. The order of matrix $A ; n \geq 0$.
nrhs	INTEGER. The number of right-hand sides; nrhs ≥ 0.
ipiv	INTEGER. Array, size at least max $(1, n)$. The ipiv array, as returned by ?sytrf_rook.
a, b	REAL for ssytrs_rook
	DOUBLE PRECISION for dsytrs_rook
	COMPLEX for csytrs_rook
	DOUBLE COMPLEX for zsytrs_rook.
	Arrays: $\mathrm{a}(\mathrm{lda}, \mathrm{n}), \mathrm{b}(\mathrm{ldb}, \mathrm{nrhs})$.
	The array a contains the block diagonal matrix D and the multipliers used to obtain U or L as computed by ?sytrf_rook (see uplo).
	The array b contains the matrix B whose columns are the right-hand sides for the system of equations.
lda	INTEGER. The leading dimension of a; lda $\geq \max (1, n)$.
1 db	INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.

Output Parameters

b
info

Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sytrs_rook interface are as follows:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size $(n, n r h s)$.
ipiv	Holds the vector of length n.
Must be 'U' or ' L '. The default value is ' U '.	

Application Notes

The total number of floating-point operations for one right-hand side vector is approximately $2 n^{2}$ for real flavors or $8 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes
?hetrs
Solves a system of linear equations with a UDU ${ }^{T}$ - or LDL ${ }^{T}$-factored Hermitian coefficient matrix.

Syntax

```
call chetrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call zhetrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call hetrs( a, b, ipiv [, uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the system of linear equations $A * X=B$ with a Hermitian matrix A, given the BunchKaufman factorization of A :
if uplo='U',
$A=U^{*} D^{\star} U^{H}$
if uplo='L',
$A=L \star D^{\star} L^{\mathrm{H}}$,
where U and L are upper and lower triangular matrices with unit diagonal and D is a symmetric blockdiagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix B. You must supply to this routine the factor U (or L) and the array ipiv returned by the factorization routine ?hetrf.

Input Parameters

```
uplo
n
nrhs
ipiv
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored:
If uplo = 'U', the array a stores the upper triangular factor \(U\) of the factorization \(A=U{ }^{*} D^{*} U^{\mathrm{H}}\).
If uplo = 'L', the array a stores the lower triangular factor \(L\) of the factorization \(A=L^{\star} D^{\star} L^{\mathrm{H}}\).
INTEGER. The order of matrix \(A ; n \geq 0\).
INTEGER. The number of right-hand sides; nrhs \(\geq 0\).
INTEGER.
Array, size at least max \((1, n)\).
The ipiv array, as returned by ?hetrf.
```

```
a,b
lda
ldb
COMPLEX for chetrs
DOUBLE COMPLEX for zhetrs.
Arrays: \(a(l d a, *), b(l d b, *)\).
The array a contains the factor \(U\) or \(L\) (see uplo).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the system of equations.
The second dimension of \(a\) must be at least max \((1, n)\), the second dimension of \(b\) at least max ( \(1, n r h s\) ).
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of \(b ; I d b \geq \max (1, n)\).
```


Output Parameters

b
info

Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hetrs interface are as follows:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size $(n, n r h s)$.
ipiv	Holds the vector of length n.
Must be 'U' or 'L'. The default value is 'U'.	

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A
$+E) x=b$, where

```
    |E| \leqC(n)\varepsilonP|U||D|| U H}|\mp@subsup{P}{}{T}\mathrm{ or |E| Sc(n) &P| L||D|| LH}|\mp@subsup{P}{}{T
```

$C(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$.
The total number of floating-point operations for one right-hand side vector is approximately $8 n^{2}$.
To estimate the condition number $\kappa_{\infty}(A)$, call ?hecon.
To refine the solution and estimate the error, call ?herfs.

See Also

Matrix Storage Schemes
?hetrs_aa
BSolves a system of linear equations $A^{*} X=$ with a
complex Hermitian matrix.

Description

?hetrs_aa solves a system of linear equations $A^{*} X=X$ with a complex Hermitian matrix A using the factorization $A=U * T * U^{H}$ or $A=L * T * L^{H}$ computed by ?hetrf_aa.

Input Parameters

uplo	CHARACTER*1. Specifies whether the details of the factorization are stored as an upper or lower triangular matrix.
	If uplo = 'U': Upper triangular of the form $A=U * T * U^{\mathrm{H}}$.
	If uplo= 'L': Lower triangular of the form $A=L * T * L \mathrm{H}$.
n	INTEGER. The order of the matrix A. $n \geq 0$.
nrhs	INTEGER. The number of right hand sides: the number of columns of the matrix b. nrhs 0 .
a	COMPLEX for chetrs_aa
	COMPLEX*16 for zhetrs_aa
	Array of size (lda, n). Details of factors computed by ?hetrf_aa.
Ida	INTEGER. The leading dimension of the array a. $1 \mathrm{~d} a \geq \max (1, n)$.
ipiv	INTEGER . Array of size (n). Details of the interchanges as computed by ?hetrf_aa.
b	COMPLEX for chetrs_aa
	COMPLEX*16 for zhetrs_aa
	Array of size ($1 \mathrm{db}, \mathrm{nrhs}$). On entry, the right hand side matrix B.
1 db	INTEGER. The leading dimension of the array b. $1 \mathrm{db} \geq \max (1, n)$.
work	DOUBLE . Array of size (max(1, lwork)).
lwork	INTEGER. 1 work $\geq \max \left(1,3 *_{n}-2\right)$.

Output Parameters

```
b
info
```

On exit, the solution matrix X.
INTEGER.
If info $=0$: successful exit.
If info <0 : if info $=-i$, the i-th argument had an illegal value.
?hetrs_rook
Solves a system of linear equations with a UDU- or
LDL-factored Hermitian coefficient matrix.

Syntax

```
call chetrs_rook( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call zhetrs_rook( uplo, n, nrhs, a, lda, ipiv, b, ldb, info )
call hetrs_rook( a, b, ipiv [, uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves for a system of linear equations $A * X=B$ with a complex Hermitian matrix A using the factorization $A=U \star D * U^{\mathrm{H}}$ or $A=L \star D * L^{\mathrm{H}}$ computed by ?hetrf_rook.

Input Parameters

uplo
n
nrhs
ipiv
a, b

CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the factorization is of the form $A=U^{*} D^{*} U^{H}$.
If uplo = ' L', the factorization is of the form $A=L^{\star} D^{\star} L^{\mathrm{H}}$.
INTEGER. The order of matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; nrhs ≥ 0.
INTEGER.
Array, size at least max $(1, n)$.
The ipiv array, as returned by ?hetrf_rook.
COMPLEX for chetrs_rook
DOUBLE COMPLEX for zhetrs_rook.
Arrays: $a(l d a, n), b(l d b, n r h s)$.
The array a contains the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ?hetrf_rook (see uplo).

	The array b contains the matrix B whose columns are the
	sides for the system of equations.
$I d a$	INTEGER. The leading dimension of $a ; I d a \geq \max (1, n)$.
$I d b$	INTEGER. The leading dimension of $b ; I d b \geq \max (1, n)$.

Output Parameters

b
info

Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hetrs_rook interface are as follows:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size $(n, n r h s)$.
ipiv	Holds the vector of length n.
Must be 'U' or 'L'. The default value is 'U'.	

?sytrs2
Solves a system of linear equations with a UDU- or
LDL-factored symmetric coefficient matrix.
Syntax

```
call ssytrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info )
call dsytrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info )
call csytrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info )
call zsytrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info )
call sytrs2( a,b,ipiv[,uplo][,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves a system of linear equations $A * X=B$ with a symmetric matrix A using the factorization of A:

```
if uplo='U',
    A = U*D* UT
if uplo='L',
A = L* D* L'T
```

where

- U and L are upper and lower triangular matrices with unit diagonal
- D is a symmetric block-diagonal matrix.

The factorization is computed by ?sytrf.

Input Parameters

```
uplo
n
nrhs
a,b
lda
ldb
ipiv
work
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored:
If upIo = ' U ', the array a stores the upper triangular factor \(U\) of the factorization \(A=U * D * U^{T}\).
If uplo = ' L ', the array a stores the lower triangular factor \(L\) of the factorization \(A=L^{*} D^{*} L^{T}\).
Integer. The order of matrix \(A ; n \geq 0\).
InTEGER. The number of right-hand sides; nrhs 0 .
ReAL for ssytrs2
DOUBLE PRECISION for dsytrs2
COMPLEX for csytrs2
Double complex for zsytrs2
Arrays: a(lda,*), b(ldb,*).
The array a contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?sytrf.
The array \(b\) contains the right-hand side matrix \(B\).
The second dimension of \(a\) must be at least \(\max (1, n)\), and the second dimension of \(b\) at least \(\max (1, n r h s)\).
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of \(b ; I d b \geq \max (1, n)\).
InTEGER. Array of size \(n\). The ipiv array contains details of the interchanges and the block structure of \(D\) as determined by ?sytrf.
ReAL for ssytrs2
DOUBLE PRECISION for dsytrs2
COMPLex for csytrs2
DOUBLE COMPLEX for zsytrs2
Workspace array, size \(n\).
```


Output Parameters

b
info
Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine sytrs2 interface are as follows:

a	Holds the matrix A of size (n, n).
b ipiv	Holds the matrix B of size $(n, n r h s)$.
uplo	Holds the vector of length n.
	Indicates how the input matrix A has been factored. Must be 'U' or

See Also

?sytrf
Matrix Storage Schemes
?hetrs2
Solves a system of linear equations with a UDU- or
LDL-factored Hermitian coefficient matrix.
Syntax

```
call chetrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info )
call zhetrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info )
call hetrs2( a, b, ipiv [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves a system of linear equations $A \star X=B$ with a complex Hermitian matrix A using the factorization of A :
if uplo='U',
$A=U \star D^{\star} U^{H}$
if uplo='L',
$A=L * D^{\star} L^{H}$
where

- U and L are upper and lower triangular matrices with unit diagonal
- D is a Hermitian block-diagonal matrix.

The factorization is computed by ?hetrf.

Input Parameters

uplo
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the factorization $A=U \star D * U^{H}$.

If uplo = 'L', the array a stores the lower triangular factor L of the factorization $A=L^{\star} D^{\star} L^{H}$.

INTEGER. The order of matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; nrhs ≥ 0.
COMPLEX for chetrs2
DOUBLE COMPLEX for zhetrs2
Arrays: $a(l d a, *), b(I d b, *)$.
The array a contains the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ?hetrf.

The array b contains the right-hand side matrix B.
The second dimension of a must be at least max $(1, n)$, and the second dimension of b at least max ($1, n r h s$).

INTEGER. The leading dimension of $a ; \operatorname{lda} \geq \max (1, n)$.
INTEGER. The leading dimension of $b ; I d b \geq \max (1, n)$.
INTEGER. Array of size n. The ipiv array contains details of the interchanges and the block structure of D as determined by ?hetrf.

COMPLEX for chetrs2
DOUBLE COMPLEX for zhetrs2
Workspace array, size n.

Output Parameters

b
info
Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hetrs2 interface are as follows:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size $(n, n r h s)$.
ipiv	Holds the vector of length n.
Must be 'U' or 'L'. The default value is 'U'.	

See Also

?hetrf
Matrix Storage Schemes
?sytrs_3
Solves a system of linear equations $A * X=B$ with a
real or complex symmetric matrix.

```
call ssytrs_3(uplo, n, nrhs, A, lda, e, ipiv, B, ldb, info)
call dsytrs_3(uplo, n, nrhs, A, lda, e, ipiv, B, ldb, info)
call csytrs_3(uplo, n, nrhs, A, lda, e, ipiv, B, ldb, info)
call zsytrs_3(uplo, n, nrhs, A, lda, e, ipiv, B, ldb, info)
```


Description

?sytrs_3 solves a system of linear equations $A * X=B$ with a real or complex symmetric matrix A using the factorizātion computed by ?sytrf_rk: $A=P^{*} U^{*} D^{*}\left(U^{\top}\right) *\left(P^{\top}\right)$ or $A=P^{*} L^{*} D^{*}\left(L^{\top}\right) *\left(P^{\top}\right)$, where U (or L) is unit upper (or lower) triangular matrix, U^{\top} (or L^{\top}) is the transpose of U (or L), P is a permutation matrix, P^{\top} is the transpose of P, and D is a symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This algorithm uses Level 3 BLAS.

Input Parameters

```
uplo
```

n
nrhs

A

Ida
e

CHARACTER*1
Specifies whether the details of the factorization are stored as an upper or lower triangular matrix:

- = ' U': Upper triangular; the form is $A=P^{*} U^{*} D^{*}\left(U^{\top}\right)^{*}\left(P^{\top}\right)$.
- $=$ ' L^{\prime} : Lower triangular; the form is $A=P * L^{*} D^{*}\left(L^{\top}\right)^{*}\left(P^{\top}\right)$.

INTEGER
The order of the matrix A. $n \geq 0$.
INTEGER
The number of right-hand sides; that is, the number of columns of the matrix B. nrhs ≥ 0.

REAL for ssytrs_3
DOUBLE PRECISION for dsytrs_3
COMPLEX for csytrs_3
COMPLEX*16 for zsytrs_3
Array, dimension (lda,n). Diagonal of the block diagonal matrix D and factors U or L as computed by ?sytrf_rk:

- Only diagonal elements of the symmetric block diagonal matrix D on the diagonal of A; that is, $D(k, k)=A(k, k)$. Superdiagonal (or subdiagonal) elements of D should be provided on entry in array e.
-and-
- If uplo = 'U', factor U in the superdiagonal part of A. If uplo = 'L', factor L in the subdiagonal part of A.

INTEGER
The leading dimension of the array $A . I d a \geq \max (1, n)$.
REAL for ssytrs_3

```
DOUBLE PRECISION for dsytrs_3
COMPLEX for csytrs_3
COMPLEX*16 for zsytrs_3
```

Array, dimension (n). On entry, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks. If uplo = ' U ', $\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}$, and $\mathrm{e}(1)$ is not referenced. If uplo = ' L ', $\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1$, and $\mathrm{e}(n)$ is not referenced.

NOTE For 1-by-1 diagonal block $\mathrm{D}(\mathrm{k})$, where $1 \leq \mathrm{k} \leq n$, the element $e(k)$ is not referenced in both the uplo $=$ ' U' and uplo = 'L' cases.
ipiv

B

1 db

INTEGER
Array, dimension (n). Details of the interchanges and the block structure of D as determined by ?sytrf_rk.

REAL for ssytrs_3
DOUBLE PRECISION for dsytrs_3
COMPLEX for csytrs_3
COMPLEX*16 for zsytrs_3
On entry, the right-hand side matrix B.
The second dimension of B must be at least max(1, nrhs).
INTEGER
The leading dimension of the array $B . l d b \geq \max (1, n)$.

Output Parameters

B
info

REAL for ssytrs_3
DOUBLE PRECISION for dsytrs_3
COMPLEX for csytrs_3
COMPLEX*16 for zsytrs_3
On exit, the solution matrix X.
INTEGER

- = 0: successful exit.
- <0: If info $=-i$, the $t^{\text {th }}$ argument had an illegal value.
?hetrs_3
Solves a system of linear equations $A * X=B$ with a complex Hermitian matrix using the factorization computed by ?hetrf_rk.

```
call chetrs_3(uplo, n, nrhs, A, lda, e, ipiv, B, ldb, info)
```

call zhetrs_3(uplo, $n, ~ n r h s, A, l d a, ~ e, ~ i p i v, ~ B, ~ l d b, i n f o)$

Description

?hetrs_3 solves a system of linear equations $A * X=B$ with a complex Hermitian matrix A using the factorization computed by ?hetrf_rk: $A=P * U^{*} D^{*}\left(U^{H}\right)^{*}\left(P^{\top}\right)$ or $A=P^{*} L^{*} D^{*}\left(L^{H}\right) *\left(P^{\top}\right)$, where U (or L) is unit upper (or lower) triangular matrix, $U^{H}\left(\right.$ or $\left.L^{H}\right)$ is the conjugate of $U(o r L), P$ is a permutation matrix, P^{\top} is the transpose of P, and D is a Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

This algorithm uses Level 3 BLAS.

Input Parameters

n

A
lda
e
ipiv

CHARACTER*1
Specifies whether the details of the factorization are stored as an upper or lower triangular matrix:

- = 'U': Upper triangular; form is $A=P^{*} U^{*} D^{*}\left(U^{H}\right)^{*}\left(P^{\top}\right)$.
- = 'L': Lower triangular; form is $A=P * L^{*} D^{*}\left(L^{H}\right)^{*}\left(P^{\top}\right)$.

INTEGER
The order of the matrix A. $n \geq 0$.
INTEGER
The number of right-hand sides; that is, the number of columns in the matrix B. nrhs ≥ 0.

COMPLEX for chetrs_3
COMPLEX*16 for zhetrs_3
Array, dimension (Ida, n). Diagonal of the block diagonal matrix D and factor U or L as computed by ?hetrf_rk:

- Only diagonal elements of the Hermitian block diagonal matrix D on the diagonal of A; that is, $\mathrm{D}(k, k)=\mathrm{A}(k, k)$. Superdiagonal (or subdiagonal) elements of D should be provided on entry in array e.
- If uplo = 'U', factor U in the superdiagonal part of A. If uplo = 'L', factor L in the subdiagonal part of A.

INTEGER
The leading dimension of the array $A . I d a \geq \max (1, n)$.
COMPLEX for chetrs_3
COMPLEX*16 for zhetrs_3
Array, dimension (n). On entry, contains the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks. If uplo $=$ ' U', $\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}$, and $\mathrm{e}(1)$ is not referenced. If uplo $=$ ' L ', $\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1$, and $\mathrm{e}(n)$ is not referenced.

NOTE For 1-by-1 diagonal block $\mathrm{D}(k)$, where $1 \leq k \leq n$, the element $e(k)$ is not referenced in both the uplo $=$ 'U' and uplo = 'L' cases.

INTEGER

Array, dimension (n). Details of the interchanges and the block structure of D as determined by ?hetrf_rk.

B

1 db

COMPLEX for chetrs_3
COMPLEX*16 for zhetrs_3
On entry, the right-hand side matrix B.
The second dimension of B must be at least max (1, nrhs).
INTEGER
The leading dimension of the array $B . l d b \geq \max (1, n)$.

Output Parameters

B
COMPLEX for chetrs_3
COMPLEX* 16 for zhetrs_3
On exit, the solution matrix X .
INTEGER

- = 0: Successful exit.
- < 0: If info $=-i$, the $i^{\text {th }}$ argument had an illegal value.

?sptrs

Solves a system of linear equations with a UDU- or
LDL-factored symmetric coefficient matrix using
packed storage.

Syntax

```
call ssptrs( uplo, n, nrhs, ap, ipiv, b, ldb, info )
call dsptrs( uplo, n, nrhs, ap, ipiv, b, ldb, info )
call csptrs( uplo, n, nrhs, ap, ipiv, b, ldb, info)
call zsptrs( uplo, n, nrhs, ap, ipiv, b, ldb, info)
call sptrs( ap, b, ipiv [, uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the system of linear equations $A * X=B$ with a symmetric matrix A, given the BunchKaufman factorization of A :

```
if uplo='U',
    A=U*D*UT
if uplo='L', A=L*D* 'T,
```

where U and L are upper and lower packed triangular matrices with unit diagonal and D is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix B. You must supply the factor $U($ or $L)$ and the array ipiv returned by the factorization routine ?sptrf.

Input Parameters

```
uplo
n
nrhs
ipiv
ap
b
ldb
```

CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array ap stores the packed factor U of the factorization $A=U^{\star} D^{\star} U^{\mathrm{T}}$. If uplo $=$ ' L ', the array ap stores the packed factor L of the factorization $A=L * D * L^{\mathrm{T}}$.

INTEGER. The order of matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; nrhs ≥ 0.
INTEGER.
Array, size at least $\max (1, n)$. The ipiv array, as returned by ?sptrf.
REAL for ssptrs
DOUBLE PRECISION for dsptrs
COMPLEX for csptrs
DOUBLE COMPLEX for zsptrs.
The dimension of array ap must be at least $\max (1, n(n+1) / 2)$. The array ap contains the factor U or L, as specified by uplo, in packed storage (see Matrix Storage Schemes).

REAL for ssptrs
DOUBLE PRECISION for dsptrs
COMPLEX for csptrs
DOUBLE COMPLEX for zsptrs.
The array $b(I d b, *)$ contains the matrix B whose columns are the right-hand sides for the system of equations. The second dimension of b must be at least max ($1, n r h s$).

INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.

Output Parameters

b
info

Overwritten by the solution matrix X.
INTEGER. If info=0, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine sptrs interface are as follows:
ap
Holds the array A of size $\left(n^{*}(n+1) / 2\right)$.
Holds the matrix B of size ($n, n r h s$).

```
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A $+E) x=b$, where

```
|E| Sc(n)\varepsilonP|U||D||U\mp@subsup{U}{}{T}|\mp@subsup{P}{}{T}\mathrm{ or |E| SC(n) &P|L||D|| LT}|\mp@subsup{P}{}{T}
```

$c(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) c
$$

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$.
The total number of floating-point operations for one right-hand side vector is approximately $2 n^{2}$ for real flavors or $8 n^{2}$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?spcon.
To refine the solution and estimate the error, call ?sprfs.

See Also

Matrix Storage Schemes
?hptrs
Solves a system of linear equations with a UDU- or
LDL-factored Hermitian coefficient matrix using
packed storage.
Syntax

```
call chptrs( uplo, n, nrhs, ap, ipiv, b, ldb, info )
call zhptrs( uplo, n, nrhs, ap, ipiv, b, ldb, info )
call hptrs( ap, b, ipiv [,uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the system of linear equations $A * X=B$ with a Hermitian matrix A, given the BunchKaufman factorization of A :

if uplo='U',	$A=U^{\star} D^{\star} U^{H}$
if uplo='L',	$A=L^{\star} D^{\star} L^{\mathrm{H}}$,

where U and L are upper and lower packed triangular matrices with unit diagonal and D is a symmetric block-diagonal matrix. The system is solved with multiple right-hand sides stored in the columns of the matrix B.

You must supply to this routine the arrays ap (containing U or L) and ipiv in the form returned by the factorization routine ?hptrf.

Input Parameters

```
uplo CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored:
If uplo = 'U', the array ap stores the packed factor \(U\) of the factorization \(A=U * D * U^{H}\). If uplo \(=\) 'L', the array ap stores the packed factor \(L\) of the factorization \(A=L \star D^{\star} L^{\mathrm{H}}\).
INTEGER. The order of matrix \(A ; n \geq 0\).
INTEGER. The number of right-hand sides; nrhs \(\geq 0\).
INTEGER. Array, size at least max \((1, n)\). The ipiv array, as returned by ?hptrf.
COMPLEX for chptrs
DOUBLE COMPLEX for zhptrs.
The dimension of array \(a p(*)\) must be at least \(\max (1, n(n+1) / 2)\). The array ap contains the factor \(U\) or \(L\), as specified by uplo, in packed storage (see Matrix Storage Schemes).
b
\(1 d b\)
COMPLEX for chptrs
DOUBLE COMPLEX for zhptrs.
The array \(b(l d b, *)\) contains the matrix \(B\) whose columns are the right-hand sides for the system of equations. The second dimension of \(b\) must be at least max ( 1, nrhs).
INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\).
```


Output Parameters

b
info

Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hptrs interface are as follows:
$a p$
b
ipiv
uplo

Holds the array A of size $\left(n^{*}(n+1) / 2\right)$.
Holds the matrix B of size ($n, n r h s$).
Holds the vector of length n.
Must be 'U' or 'L'. The default value is 'U'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A $+E) x=b$, where
$|E| \leq C(n) \varepsilon P|U||D|\left|U^{H}\right| P^{T}$ or $|E| \leq C(n) \varepsilon P|L||D|\left|L^{H}\right| P^{T}$
$c(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$.
The total number of floating-point operations for one right-hand side vector is approximately $8 n^{2}$ for complex flavors.
To estimate the condition number $\kappa_{\infty}(A)$, call ?hpcon.
To refine the solution and estimate the error, call ?hprfs.

See Also

Matrix Storage Schemes
?trtrs
Solves a system of linear equations with a triangular coefficient matrix, with multiple right-hand sides.

Syntax

```
call strtrs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, info )
call dtrtrs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, info )
call ctrtrs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, info )
call ztrtrs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, info )
call trtrs( a, b [,uplo] [, trans] [,diag] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the following systems of linear equations with a triangular matrix A, with multiple right-hand sides stored in B :

```
A*X = B
AT*X = B if trans='T',
A}\mp@subsup{}{}{H*X}=B\quad if trans='C' (for complex matrices only)
```


Input Parameters

```
uplo
```

trans
diag
n
nrhs
a
b

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.
ChARACTER*1. Must be 'N' or 'T' or 'C'.
If trans $=' N^{\prime}$, then $A * X=B$ is solved for X.
If trans $=' \mathrm{~T}$ ', then $A^{T *} X=B$ is solved for X.
If trans $=' \mathrm{C}$ ', then $A^{H *} X=B$ is solved for X.
CHARACTER*1. Must be 'N' or 'U'.
If diag $=$ ' N ', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array a.

INTEGER. The order of A; the number of rows in $B ; n \geq 0$.
INTEGER. The number of right-hand sides; nrhs ≥ 0.
REAL for strtrs
DOUBLE PRECISION for dtrtrs
COMPLEX for ctrtrs
DOUBLE COMPLEX for ztrtrs.
The array a(lda,*) contains the matrix A.
The second dimension of a must be at least max $(1, n)$.
REAL for strtrs
DOUBLE PRECISION for dtrtrs
COMPLEX for ctrtrs
DOUBLE COMPLEX for ztrtrs.
The array $b(l d b, *)$ contains the matrix B whose columns are the right-hand sides for the systems of equations.
The second dimension of b at least max $(1, n r h s)$.

Ida

1 db

Output Parameters

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
b
info
Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine trtrs interface are as follows:

a	Stands for argument ap in FORTRAN 77 interface. Holds the matrix A of size $\left(n^{*}(n+1) / 2\right)$.
b	Holds the matrix B of size ($n, n r h s)$.
trans	Must be 'U' or 'L'. The default value is 'U'.
diag	Must be 'N', 'C', or 'T'. The default value is 'N'.
	Must be 'N' or 'U'. The default value is 'N'.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A
$+E) x=b$, where

$$
|E| \leq C(n) \varepsilon|A|
$$

$c(n)$ is a modest linear function of n, and ε is the machine precision. If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon \text { provided } C(n) \text { cond }(A, x) \varepsilon<1
$$

where $\operatorname{cond}(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $\kappa_{\infty}(A)$.
The approximate number of floating-point operations for one right-hand side vector b is n^{2} for real flavors and $4 n^{2}$ for complex flavors.
To estimate the condition number $\kappa_{\infty}(A)$, call ?trcon.
To estimate the error in the solution, call ?trrfs.

See Also
Matrix Storage Schemes

?tptrs

Solves a system of linear equations with a packed triangular coefficient matrix, with multiple right-hand sides.

Syntax

```
call stptrs( uplo, trans, diag, n, nrhs, ap, b, ldb, info )
call dtptrs( uplo, trans, diag, n, nrhs, ap, b, ldb, info )
call ctptrs( uplo, trans, diag, n, nrhs, ap, b, ldb, info )
call ztptrs( uplo, trans, diag, n, nrhs, ap, b, ldb, info )
call tptrs( ap, b [,uplo] [, trans] [,diag] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the following systems of linear equations with a packed triangular matrix A, with multiple right-hand sides stored in B :

```
A*X=B if trans='N',
A T*X = B if trans='T',
A H*X = B if trans='C' (for complex matrices only).
```


Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether A is upper or lower triangular:
	If uplo = 'U', then A is upper triangular.
	If uplo = 'L', then A is lower triangular.
trans	CHARACTER*1. Must be 'N' or 'T' or 'C'.
	If trans $=$ ' N ', then $A * X=B$ is solved for X.
	If trans $=$ 'T', then $A^{T *} X=B$ is solved for X.
	If trans $=$ ' C', then $A^{H *} X=B$ is solved for X.
diag	CHARACTER*1. Must be 'N' or 'U'.
	If diag $=$ ' N ', then A is not a unit triangular matrix.
	If diag = 'U', then A is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array ap.
n	INTEGER. The order of A; the number of rows in $B ; n \geq 0$.
nrhs	INTEGER. The number of right-hand sides; nrhs ≥ 0.
$a p$	REAL for stptrs
	DOUBLE PRECISION for dtptrs

COMPLEX for ctptrs
DOUBLE COMPLEX for ztptrs.
The dimension of arrayap (*) must be at least max($1, n(n+1) / 2)$. The array $a p$ contains the matrix A in packed storage (see Matrix Storage Schemes).
b
REAL for stptrs
DOUBLE PRECISION for dtptrs
COMPLEX for ctptrs
DOUBLE COMPLEX for ztptrs.
The array $b(l d b, *)$ contains the matrix B whose columns are the right-hand sides for the system of equations.

The second dimension of b must be at least max ($1, n r h s$).
INTEGER. The leading dimension of $b ; l d b \geq \max (1, n)$.

Output Parameters

b
info

Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine tptrs interface are as follows:

ap	Holds the array A of size ($\left.n^{\star}(n+1) / 2\right)$.
b	Holds the matrix B of size ($n, n r h s$).
uplo	Must be 'U' or 'L'. The default value is 'U'.
trans	Must be 'N', 'C', or 'T'. The default value is 'N'.
diag	Must be 'N' or 'U'. The default value is ' N '.

Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A $+E) x=b$, where
$|E| \leq C(n) \varepsilon|A|$
$c(n)$ is a modest linear function of n, and ε is the machine precision.
If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq c(n) \operatorname{cond}(A, x) \varepsilon \text { provided } c(n) \operatorname{cond}(A, x) \varepsilon<1
$$

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|\left\|_{\infty} /\right\| x\left\|_{\infty} \leq\right\| A^{-1}\left\|_{\infty}\right\| A \|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $\kappa_{\infty}(A)$.

The approximate number of floating-point operations for one right-hand side vector b is n^{2} for real flavors and $4 n^{2}$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?tpcon.
To estimate the error in the solution, call ?tprfs.

See Also

Matrix Storage Schemes
?tbtrs
Solves a system of linear equations with a band
triangular coefficient matrix, with multiple right-hand sides.

Syntax

```
call stbtrs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info )
call dtbtrs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info )
call ctbtrs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info )
call ztbtrs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info )
call tbtrs( ab, b [,uplo] [, trans] [,diag] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the following systems of linear equations with a band triangular matrix A, with multiple right-hand sides stored in B :

```
A*X=B if trans='N',
AT*X = B if trans='T',
A H}\mp@subsup{}{*}{
```


Input Parameters

uplo
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.

trans	CHARACTER*1. Must be 'N' or 'T' or 'C'.
	If trans $=$ ' N', then $A * X=B$ is solved for X.
	If trans $=$ 'T', then $A^{T *} X=B$ is solved for X.
	If trans $=$ ' C ', then $A^{H * X}=B$ is solved for X.
diag	CHARACTER*1. Must be 'N' or 'U'.
	If diag $=$ ' N', then A is not a unit triangular matrix.
	If diag $=$ 'U', then A is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array $a b$.
n	INTEGER. The order of A; the number of rows in $B ; n \geq 0$.
kd	INTEGER. The number of superdiagonals or subdiagonals in the matrix $A ; k d \geq 0$.
nrhs	INTEGER. The number of right-hand sides; nrhs ≥ 0.
$a b$	REAL for stbtrs
	DOUBLE PRECISION for dtbtrs
	COMPLEX for ctbtrs
	DOUBLE COMPLEX for ztbtrs.
	The array $a b$ (ldab, *) contains the matrix A in band storage form.
	The second dimension of $a b$ must be at least max $(1, n)$.
b	REAL for stbtrs
	DOUBLE PRECISION for dtbtrs
	COMPLEX for ctbtrs
	DOUBLE COMPLEX for ztbtrs.
	The array $b(l d b, *)$ contains the matrix B whose columns are the right-hand sides for the systems of equations.
	The second dimension of b at least max ($1, n r h s$) .
Idab	INTEGER. The leading dimension of $a b ; / d a b \geq k d+1$.
1 db	INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.

Output Parameters

```
b
info
```

Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

```
Specific details for the routine tbtrs interface are as follows:
ab Holds the array A of size (kd+1,n)
b Holds the matrix B of size ( }n,nrhs\mathrm{ ).
uplo Must be 'U' or 'L'. The default value is 'U'.
trans Must be 'N','C', or 'T'. The default value is 'N'.
diag Must be 'N' or 'U'. The default value is 'N'.
```


Application Notes

For each right-hand side b, the computed solution is the exact solution of a perturbed system of equations (A $+E) x=b$, where

$|E| \leq C(n) \varepsilon|A|$

$c(n)$ is a modest linear function of n, and ε is the machine precision. If x_{0} is the true solution, the computed solution x satisfies this error bound:

$$
\frac{\left\|x-x_{0}\right\|_{\infty}}{\|x\|_{\infty}} \leq C(n) \operatorname{cond}(A, x) \varepsilon \text { provided } C(n) \operatorname{con} d(A, x) \varepsilon<1
$$

where cond $(A, x)=\left\|\left|A^{-1}\right||A||x|\right\|_{\infty} /\|x\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty}=\kappa_{\infty}(A)$.
Note that cond (A, x) can be much smaller than $\kappa_{\infty}(A)$; the condition number of A^{T} and A^{H} might or might not be equal to $\kappa_{\infty}(A)$.

The approximate number of floating-point operations for one right-hand side vector b is $2 n^{\star} k d$ for real flavors and $8 n^{\star} k d$ for complex flavors.

To estimate the condition number $\kappa_{\infty}(A)$, call ?tbcon.
To estimate the error in the solution, call ?tbrfs.

See Also
 Matrix Storage Schemes

Estimating the Condition Number: LAPACK Computational Routines

This section describes the LAPACK routines for estimating the condition number of a matrix. The condition number is used for analyzing the errors in the solution of a system of linear equations (see Error Analysis). Since the condition number may be arbitrarily large when the matrix is nearly singular, the routines actually compute the reciprocal condition number.

?gecon

Estimates the reciprocal of the condition number of a general matrix in the 1-norm or the infinity-norm.

Syntax

```
call sgecon( norm, n, a, lda, anorm, rcond, work, iwork, info )
call dgecon( norm, n, a, lda, anorm, rcond, work, iwork, info )
call cgecon( norm, n, a, lda, anorm, rcond, work, rwork, info )
call zgecon( norm, n, a, lda, anorm, rcond, work, rwork, info )
```

```
call gecon( a, anorm, rcond [,norm] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a general matrix A in the 1-norm or infinitynorm:
$\kappa_{1}(A)=\|A\|_{1}| | A^{-1} \|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right)$
$\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right)$.
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm (either $||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ? getrf to compute the $L U$ factorization of A.

Input Parameters

norm	CHARACTER*1. Must be '1' or 'O' or 'I'.
	If norm $=$ ' 1 ' or ' O^{\prime} ', then the routine estimates the condition number of matrix A in 1-norm.
	If norm = 'I', then the routine estimates the condition number of matrix A in infinity-norm.
n	INTEGER. The order of the matrix $A ; n \geq 0$.
a, work	REAL for sgecon
	DOUBLE PRECISION for dgecon
	COMPLEX for cgecon
	DOUBLE COMPLEX for zgecon. Arrays: a (lda,*), work(*).
	The array a contains the $L U$-factored matrix A, as returned by ? getrf. The second dimension of a must be at least max $(1, n)$. The array work is a workspace for the routine.
	The dimension of work must be at least max (1, $4 *_{n}$) for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
anorm	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	The norm of the original matrix A (see Description).
Ida	INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
iwork	$\operatorname{INTEGER}$. Workspace array, size at least max $(1, n)$.
rwork	REAL for cgecon
	DOUBLE PRECISION for zgecon.
	Workspace array, size at least max (1, 2* n) .

Output Parameters

rcond
info

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gecon interface are as follows:

```
a
    Holds the matrix }A\mathrm{ of size ( }n,n)\mathrm{ .
    Must be '1','O', or 'I'. The default value is '1'.
```


Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star}{ }_{X}=b$ or $A^{H_{\star}}{ }_{X}=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 \star n^{2}$ floating-point operations for real flavors and $8 * n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes
?gbcon
Estimates the reciprocal of the condition number of a band matrix in the 1-norm or the infinity-norm.

Syntax

```
call sgbcon( norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info )
call dgbcon( norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info )
call cgbcon( norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info )
call zgbcon( norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, rwork, info )
call gbcon( ab, ipiv, anorm, rcond [,kl] [,norm] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a general band matrix A in the 1-norm or infinity-norm:

$$
\begin{aligned}
& \kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right) \\
& \kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right) .
\end{aligned}
$$

An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.
Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\left.\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)$
- call ?gbtrf to compute the $L U$ factorization of A.

Input Parameters

norm	CHARACTER*1. Must be '1' or 'O' or 'I'.
	If norm $=$ ' 1 ' or ' O ', then the routine estimates the condition number of matrix A in 1 -norm.
	If norm = 'I', then the routine estimates the condition number of matrix A in infinity-norm.
n	INTEGER. The order of the matrix $A ; n \geq 0$.
kI	INTEGER. The number of subdiagonals within the band of $A ; k l \geq 0$.
ku	INTEGER. The number of superdiagonals within the band of $A ; k u \geq 0$.
Idab	INTEGER. The leading dimension of the array $a b$. (Idab $\geq 2 * k I+k u$ +1).
ipiv	INTEGER. Array, size at least max (1, n). The ipiv array, as returned by ?gbtrf.
ab, work	REAL for sgbcon
	DOUBLE PRECISION for dgbcon
	COMPLEX for cgbcon
	DOUBLE COMPLEX for zgbcon.
	Arrays: ab(ldab,*), work(*).
	The array $a b$ contains the factored band matrix A, as returned by ?gbtrf.
	The second dimension of $a b$ must be at least max $(1, n)$. The array work is a workspace for the routine.
	The dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
anorm	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	The norm of the original matrix A (see Description).
iwork	INTEGER. Workspace array, size at least max (1, n) .
rwork	REAL for cgbcon
	DOUBLE PRECISION for zgbcon.

Workspace array, size at least max (1, 2*n).

Output Parameters

rcond
info
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine gbcon interface are as follows:

```
ab Holds the array A of size (2* kl+ku+1,n).
ipiv Holds the vector of length n.
norm
kl
ku Restored as ku = lda-2*kl-1.
```


Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} X=b$ or $A^{H *_{X}}=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n(k u+2 k l)$ floating-point operations for real flavors and $8 n(k u+2 k l)$ for complex flavors.

See Also

Matrix Storage Schemes
?gtcon
Estimates the reciprocal of the condition number of a tridiagonal matrix.

Syntax

```
call sgtcon( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info )
call dgtcon( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, iwork, info )
call cgtcon( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info )
call zgtcon( norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info )
call gtcon( dl, d, du, du2, ipiv, anorm, rcond [,norm] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a real or complex tridiagonal matrix A in the 1-norm or infinity-norm:
$\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}$
$\kappa_{\infty}(A)=\|A\|_{\infty}| | A^{-1} \|_{\infty}$
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm (either $||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?gttrf to compute the $L U$ factorization of A.

Input Parameters

norm	CHARACTER*1. Must be '1' or 'O' or 'I'.
	If norm $=$ '1' or ' O ', then the routine estimates the condition number of matrix A in 1-norm.
	If norm = 'I', then the routine estimates the condition number of matrix A in infinity-norm.
n	INTEGER. The order of the matrix $A ; n \geq 0$.
$d 1, d, d u, d u 2$	REAL for sgtcon
	DOUBLE PRECISION for dgtcon
	COMPLEX for cgtcon
	DOUBLE COMPLEX for zgtcon.
	Arrays: $d l(n-1), d(n), d u(n-1), d u 2(n-2)$.
	The array d l contains the $(n-1)$ multipliers that define the matrix L from the $L U$ factorization of A as computed by ?gttrf.
	The array d contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.
	The array du contains the ($n-1$) elements of the first superdiagonal of U.
	The array du2 contains the $(n-2)$ elements of the second superdiagonal of U.
ipiv	INTEGER.
	Array, size (n). The array of pivot indices, as returned by ?gttrf.
anorm	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	The norm of the original matrix A (see Description).

```
work REAL for sgtcon
    DOUBLE PRECISION for dgtcon
    COMPLEX for cgtcon
    DOUBLE COMPLEX for zgtcon.
    Workspace array, size (2*n).
    INTEGER. Workspace array, size (n). Used for real flavors only.
```


Output Parameters

```
rcond
```

info

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond=0 if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gtcon interface are as follows:

```
dl Holds the vector of length (n-1).
d Holds the vector of length n.
du Holds the vector of length (n-1).
du2
ipiv
norm
    Holds the vector of length (n-2).
    Holds the vector of length n.
    Must be '1','O', or 'I'. The default value is '1'.
```


Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star}{ }_{X}=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

[^3]
Syntax

```
call spocon( uplo, n, a, lda, anorm, rcond, work, iwork, info )
call dpocon( uplo, n, a, lda, anorm, rcond, work, iwork, info )
call cpocon( uplo, n, a, lda, anorm, rcond, work, rwork, info )
call zpocon( uplo, n, a, lda, anorm, rcond, work, rwork, info )
call pocon( a, anorm, rcond [,uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite matrix A:
$\kappa_{1}(A)=\|\left. A\right|_{1}| | A^{-1}| |_{1}$ (since A is symmetric or Hermitian, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm (either $||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?potrf to compute the Cholesky factorization of A.

Input Parameters

n	INTEGER. The order of the matrix $A ; n \geq 0$.
a, work	REAL for spocon
	DOUBLE PRECISION for dpocon
	COMPLEX for cpocon
	DOUBLE COMPLEX for zpocon.
	Arrays: a (lda,*), work (*).
	The array a contains the factored matrix A, as returned by ?potrf. The second dimension of a must be at least max $(1, n)$.
	The array work is a workspace for the routine. The dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
Ida	INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
anorm	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	The norm of the original matrix A (see Description).
iwork	INTEGER. Workspace array, size at least max $(1, n)$.
rwork	REAL for cpocon

DOUBLE PRECISION for zpocon.
Workspace array, size at least max $(1, n)$.

Output Parameters

rcond
info
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine pocon interface are as follows:

```
a Holds the matrix A of size ( }n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes
?ppcon
Estimates the reciprocal of the condition number of a packed symmetric (Hermitian) positive-definite matrix.

Syntax

```
call sppcon( uplo, n, ap, anorm, rcond, work, iwork, info )
call dppcon( uplo, n, ap, anorm, rcond, work, iwork, info )
call cppcon( uplo, n, ap, anorm, rcond, work, rwork, info )
call zppcon( uplo, n, ap, anorm, rcond, work, rwork, info )
call ppcon( ap, anorm, rcond [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a packed symmetric (Hermitian) positivedefinite matrix A :
$\kappa_{1}(A)=\left\|\left.A\right|_{1}| | A^{-1} \mid\right\|_{1}$ (since A is symmetric or Hermitian, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond = $1 /\left(||A||| | A^{-1}| |\right)$.
Before calling this routine:

- compute anorm (either $||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?pptrf to compute the Cholesky factorization of A.

Input Parameters

```
n
ap, work
```

anorm
iwork
rwork

INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for sppcon
DOUBLE PRECISION for dppcon
COMPLEX for cppcon
DOUBLE COMPLEX for zppcon.
Arrays: ap(*), work(*).
The array ap contains the packed factored matrix A, as returned by ?pptrf. The dimension of ap must be at least $\max (1, n(n+1) / 2)$.
The array work is a workspace for the routine. The dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).
INTEGER. Workspace array, size at least max $(1, n)$.
REAL for cppcon
DOUBLE PRECISION for zppcon.
Workspace array, size at least max $(1, n)$.

Output Parameters

rcond

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ppcon interface are as follows:
$a p \quad \quad$ Holds the array A of size $\left(n^{\star}(n+1) / 2\right)$.
uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than 10 r. A call to this routine involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 \mathrm{n}^{2}$ for complex flavors.

```
See Also
Matrix Storage Schemes
?pbcon
Estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite band matrix.
Syntax
```

```
call spbcon( uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info )
```

call spbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)
call dpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)
call dpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)
call cpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)
call cpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)
call zpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)
call zpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)
call pbcon(ab, anorm, rcond [,uplo] [,info])

```
call pbcon( ab, anorm, rcond [,uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite band matrix A :
$\kappa_{1}(A)=\left\|A| |_{1}| | A^{-1} \mid\right\|_{1}$ (since A is symmetric or Hermitian, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond = $1 /\left(||A||| | A^{-1}| |\right)$.
Before calling this routine:

- compute anorm (either $||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $||A||_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?pbtrf to compute the Cholesky factorization of A.

Input Parameters

anorm
iwork
rwork

INTEGER. The order of the matrix $A ; n \geq 0$.
INTEGER. The number of superdiagonals or subdiagonals in the matrix $A ; k d \geq 0$.

INTEGER. The leading dimension of the array $a b .(/ d a b \geq k d+1)$.
REAL for spbcon
DOUBLE PRECISION for dpbcon
COMPLEX for cpbcon
DOUBLE COMPLEX for zpbcon.
Arrays: ab(ldab,*), work(*).
The array $a b$ contains the factored matrix A in band form, as returned by ?pbtrf. The second dimension of $a b$ must be at least max $(1, n)$.

The array work is a workspace for the routine. The dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).
INTEGER. Workspace array, size at least max $(1, n)$.
REAL for cpbcon
DOUBLE PRECISION for zpbcon.
Workspace array, size at least max $(1, n)$.

Output Parameters

rcond
info

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine pbcon interface are as follows:

Holds the array A of size $(k d+1, n)$.
uplo
Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{*} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $4{ }^{*} n(k d+1)$ floating-point operations for real flavors and $16{ }^{*} n(k d+1)$ for complex flavors.

See Also

Matrix Storage Schemes
?ptcon
Estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite tridiagonal matrix.

Syntax

```
call sptcon( n, d, e, anorm, rcond, work, info )
call dptcon( n, d, e, anorm, rcond, work, info )
call cptcon( n, d, e, anorm, rcond, work, info )
call zptcon( }n,d,e, anorm, rcond, work, info 
call ptcon( d, e, anorm, rcond [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes the reciprocal of the condition number (in the 1-norm) of a real symmetric or complex Hermitian positive-definite tridiagonal matrix using the factorization $A=L^{\star} D^{\star} L^{T}$ for real flavors and $A=$ $L^{\star} D^{\star} L^{H}$ for complex flavors or $A=U^{T} D^{*} * U$ for real flavors and $A=U^{H} \star D^{*} U$ for complex flavors computed by ?pttrf:
$\kappa_{1}(A)=\|\left. A\right|_{1}| | A^{-1}| |_{1}$ (since A is symmetric or Hermitian, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
The norm $\left|\left|A^{-1}\right|\right|$ is computed by a direct method, and the reciprocal of the condition number is computed as rcond $=1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm as $||A||_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$
- call ?pttrf to compute the factorization of A.

Input Parameters

n
d, work

INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Arrays, dimension (n).
The array d contains the n diagonal elements of the diagonal matrix D from the factorization of A, as computed by ?pttrf ;
work is a workspace array.
e
REAL for sptcon
DOUBLE PRECISION for dptcon
COMPLEX for cptcon
DOUBLE COMPLEX for zptcon.
Array, size ($n-1$).
Contains off-diagonal elements of the unit bidiagonal factor U or L from the factorization computed by ?pttrf.

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The 1- norm of the original matrix A (see Description).

Output Parameters

```
rcond
info
```

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine $g t c o n$ interface are as follows:

```
d Holds the vector of length n.
e
    Holds the vector of length (n-1).
```


Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than 10r. A call to this routine involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $4^{*} n(k d+1)$ floating-point operations for real flavors and $16 * n(k d+1)$ for complex flavors.
?sycon
Estimates the reciprocal of the condition number of a symmetric matrix.

Syntax

```
call ssycon( uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info )
call dsycon( uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info )
call csycon( uplo, n, a, lda, ipiv, anorm, rcond, work, info )
call zsycon( uplo, n, a, lda, ipiv, anorm, rcond, work, info )
call sycon( a, ipiv, anorm, rcond [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a symmetric matrix A :
$\kappa_{1}(A)=||A||_{1}| | A^{-1}| |_{1}$ (since A is symmetric, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?sytrf to compute the factorization of A.

Input Parameters

```
uplo
n
a, work
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored:
If uplo = 'U', the array a stores the upper triangular factor \(U\) of the factorization \(A=U * D * U^{\mathrm{T}}\).
If uplo = 'L', the array a stores the lower triangular factor \(L\) of the factorization \(A=L \star D^{\star} L^{T}\).
INTEGER. The order of matrix \(A ; n \geq 0\).
REAL for ssycon
DOUBLE PRECISION for dsycon
COMPLEX for csycon
DOUBLE COMPLEX for zsycon.
Arrays: a(lda,*), work(*).
The array a contains the factored matrix \(A\), as returned by ?sytrf. The second dimension of \(a\) must be at least max \((1, n)\).
The array work is a workspace for the routine.
```

Ida
ipiv
anorm
iwork

Output Parameters

rcond
info

The dimension of work must be at least max $\left(1,2 *_{n}\right)$.
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. Array, size at least max ($1, n$).
The array ipiv, as returned by ?sytrf.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The norm of the original matrix A (see Description).
INTEGER. Workspace array, size at least $\max (1, n)$.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sycon interface are as follows:
$\begin{array}{ll}\text { a } & \text { Holds the matrix } A \text { of size }(n, n) . \\ \text { ipiv } & \text { Holds the vector of length } n . \\ \text { uplo } & \text { Must be 'U' or 'L'. The default value is 'U'. }\end{array}$

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes
?sycon_rook
Estimates the reciprocal of the condition number of a symmetric matrix.

Syntax

```
call ssycon_rook( uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info )
call dsycon_rook( uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info )
call csycon_rook( uplo, n, a, lda, ipiv, anorm, rcond, work, info )
call zsycon_rook( uplo, n, a, lda, ipiv, anorm, rcond, work, info )
call sycon_rook( a, ipiv, anorm, rcond [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a symmetric matrix A :
$\kappa_{1}(A)=\| A| |_{1}| | A^{-1}| |_{1}$ (since A is symmetric, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?sytrf_rook to compute the factorization of A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array a stores the upper triangular factor U of the factorization $A=U^{\star} D^{\star} U^{T}$.
	If uplo = 'L', the array a stores the lower triangular factor L of the factorization $A=L^{\star} D^{\star} L^{T}$.
n	INTEGER. The order of matrix $A ; n \geq 0$.
a, work	REAL for ssycon_rook
	DOUBLE PRECISION for dsycon_rook
	COMPLEX for csycon_rook
	DOUBLE COMPLEX for zsycon_rook.
	Arrays: a (Ida,*), work (*).
	The array a contains the factored matrix A, as returned by ?sytrf_rook. The second dimension of a must be at least $\max (1, n)$.
	The array work is a workspace for the routine.
	The dimension of work must be at least max (1, $2 * n)$.
Ida	INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
ipiv	INTEGER. Array, size at least max (1, n) .
	The array ipiv, as returned by ?sytrf_rook.

```
anorm REAL for single precision flavors.
    DOUBLE PRECISION for double precision flavors.
    The norm of the original matrix A (see Description).
    INTEGER. Workspace array, size at least max (1, n).
```


Output Parameters

rcond

info
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sycon_rook interface are as follows:

```
a Holds the matrix }A\mathrm{ of size ( }n,n)\mathrm{ .
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{*} X=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

```
See Also
Matrix Storage Schemes
?sycon_3
Estimates the reciprocal of the condition number (in
the 1-norm) of a real or complex symmetric matrix A
using the factorization computed by ?sytrf_rk.
```

```
call ssycon_3(uplo, n, A, lda, e, ipiv, anorm, rcond, work, iwork, info)
```

call ssycon_3(uplo, n, A, lda, e, ipiv, anorm, rcond, work, iwork, info)
call dsycon_3(uplo, n, A, lda, e, ipiv, anorm, rcond, work, iwork, info)
call dsycon_3(uplo, n, A, lda, e, ipiv, anorm, rcond, work, iwork, info)
call csycon_3(uplo, n, A, lda, e, ipiv, anorm, rcond, work, info)
call csycon_3(uplo, n, A, lda, e, ipiv, anorm, rcond, work, info)
call zsycon_3(uplo, n, A, lda, e, ipiv, anorm, rcond, work, info)

```
call zsycon_3(uplo, n, A, lda, e, ipiv, anorm, rcond, work, info)
```


Description

?sycon_3 estimates the reciprocal of the condition number (in the 1-norm) of a real or complex symmetric matrix \bar{A} using the factorization computed by ?sytrf_rk. $A=P^{*} U^{*} D^{*}\left(U^{\top}\right) *\left(P^{\top}\right)$ or $A=P^{*} L^{*} D^{*}\left(L^{\top}\right) *\left(P^{\top}\right)$, where U (or L) is unit upper (or lower) triangular matrix, U^{\top} (or L^{\top}) is the transpose of U (or L), P is a permutation matrix, P^{\top} is the transpose of P, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

An estimate is obtained for norm($\operatorname{inv}(A))$, and the reciprocal of the condition number is computed as rcond $=1 /(\operatorname{anorm} * \operatorname{norm}(\operatorname{inv}(A)))$.
This routine uses BLAS3 solver ?sytrs_3.

Input Parameters

```
uplo
```

n
e

CHARACTER*1

Specifies whether the details of the factorization are stored as an upper or lower triangular matrix:

- = 'U': Upper triangular. The form is $A=P^{*} U^{*} D^{*}\left(U^{\top}\right) *\left(P^{\top}\right)$.
- = 'L': Lower triangular. The form is $A=P * L * D *\left(L^{\top}\right) *\left(P^{\top}\right)$.

INTEGER
The order of the matrix A. $n \geq 0$.

```
REAL for ssycon_3
DOUBLE PRECISION for dsycon_3
COMPLEX for csycon_3
COMPLEX*16 for zsycon_3
```

Array, dimension (lda,n). Diagonal of the block diagonal matrix D and factors U or L as computed by ?sytrf_rk:

- Only diagonal elements of the symmetric block diagonal matrix D on the diagonal of A ; that is, $\mathrm{D}(k, k)=\mathrm{A}(k, k)$. Superdiagonal (or subdiagonal) elements of D should be provided on entry in array e).
-and-
- If uplo = 'U', factor U in the superdiagonal part of A. If uplo = 'L', factor L in the subdiagonal part of A.

INTEGER
The leading dimension of the array $A .1 d a \geq \max (1, n)$.
REAL for ssycon_3
DOUBLE PRECISION for dsycon_3
COMPLEX for csycon_3
COMPLEX*16 for zsycon_3
Array, dimension (n). On entry, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks. If uplo $=$ ' U ', $\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}$, and $\mathrm{e}(1)$ is not referenced. If uplo $=$ ' L ', $\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1$, and $\mathrm{e}(n)$ is not referenced.

NOTE For 1-by-1 diagonal block $\mathrm{D}(k)$, where $1 \leq k \leq n$, the element $e(k)$ is not referenced in both the uplo $=$ 'U' and uplo = 'L' cases.
ipiv
anorm

INTEGER

Array, dimension (n). Details of the interchanges and the block structure of D as determined by ?sytrf_rk.

REAL for ssycon_3
DOUBLE PRECISION for dsycon_3
REAL for csycon_3
DOUBLE PRECISION for zsycon_3
The 1-norm of the original matrix A.

Output Parameters

rcond

work
iwork
info

REAL for ssycon_3
DOUBLE PRECISION for dsycon_3
REAL for csycon_3
DOUBLE PRECISION for zsycon_3
The reciprocal of the condition number of the matrix A, computed as rcond $=1 /($ anorm $*$ AINVNM), where AINVNM is an estimate of the 1 -norm of $\operatorname{inv}(A)$ computed in this routine.

REAL for ssycon_3
DOUBLE PRECISION for dsycon_3
COMPLEX for csycon_3
COMPLEX*16 for zsycon_3
Array, dimension $\left(2 *_{n}\right)$
INTEGER
Array, dimension (n).
INTEGER

- $=0$: Successful exit.
- <0: If info $=-i$, the $i^{\text {th }}$ argument had an illegal value.
?hecon
Estimates the reciprocal of the condition number of a
Hermitian matrix.

Syntax

```
call checon( uplo, n, a, lda, ipiv, anorm, rcond, work, info )
call zhecon( uplo, n, a, lda, ipiv, anorm, rcond, work, info )
```

```
call hecon( a, ipiv, anorm, rcond [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a Hermitian matrix A :
$\kappa_{1}(A)=\left\|A| |_{1}| | A^{-1} \mid\right\|_{1}$ (since A is Hermitian, $\left.\kappa_{\infty}(A)=\kappa_{1}(A)\right)$.
Before calling this routine:

- compute anorm (either $\left\|A\left|\|_{1}=\max _{j} \Sigma_{i}\right| a_{i j} \mid\right.$ or $\| A \|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|$)
- call ?hetrf to compute the factorization of A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array a stores the upper triangular factor U of the factorization $A=U^{\star} D^{\star} U^{H}$.
	If uplo = 'L', the array a stores the lower triangular factor L of the factorization $A=L^{\star} D^{\star} L^{\mathrm{H}}$.
n	INTEGER. The order of matrix $A ; n \geq 0$.
a, work	COMPLEX for checon
	DOUBLE COMPLEX for zhecon.
	Arrays: a (lda,*), work (*).
	The array a contains the factored matrix A, as returned by ?hetrf. The second dimension of a must be at least max $(1, n)$.
	The array work is a workspace for the routine. The dimension of work must be at least max $\left(1,2 *_{n}\right)$.
Ida	INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
ipiv	INTEGER. Array, size at least max (1, n).
	The array ipiv, as returned by ?hetrf.
anorm	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	The norm of the original matrix A (see Description).

Output Parameters

rcond
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.
info
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hecon interface are as follows:

```
a Holds the matrix A of size ( }n,n)\mathrm{ .
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{*} x=b$; the number is usually 5 and never more than 11 . Each solution requires approximately $8 n^{2}$ floating-point operations.

See Also

Matrix Storage Schemes
?hecon_rook
Estimates the reciprocal of the condition number of a
Hermitian matrix using factorization obtained with one
of the bounded diagonal pivoting methods (max 2
interchanges).

Syntax

```
call checon_rook( uplo, n, a, lda, ipiv, anorm, rcond, work, info )
call zhecon_rook( uplo, n, a, lda, ipiv, anorm, rcond, work, info )
call hecon_rook( a, ipiv, anorm, rcond [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a Hermitian matrix A using the factorization A $=U^{*} D^{*} U^{H}$ or $A=L^{*} D^{*} L^{H}$ computed by hetrf_rook.
An estimate is obtained for norm $\left(A^{-1}\right)$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(\right.$ anorm* $\left.\operatorname{norm}\left(A^{-1}\right)\right)$.

Input Parameters

```
uplo
n
a, work
Ida
ipiv
anorm
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored:
If uplo = 'U', the array a stores the upper triangular factor \(U\) of the factorization \(A=U^{*} D^{*} U^{\mathrm{H}}\).
If uplo = ' L ', the array a stores the lower triangular factor \(L\) of the factorization \(A=L^{*} D^{*} L^{\mathrm{H}}\).
Integer. The order of matrix \(A ; n \geq 0\).
COMPLEX for checon_rook
COMPLEX*16 for zhecon_rook.
Arrays: a (lda, n), work (*).
The array a contains the factored matrix \(A\), as returned by ?hetrf_rook. The second dimension of \(a\) must be at least \(\max (1, n)\).
The array work is a workspace for the routine. The dimension of work must be at least max \(\left(1,2 *_{n}\right)\).
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
Integer. Array, size at least max \((1, n)\).
The array ipiv, as returned by hetrf_rook.
REAL for checon_rook
DOUBLE PRECISION for zhecon_rook.
```

The 1-norm of the original matrix A (see Description).

Output Parameters

rcond
info
REAL for checon_rook
DOUBLE PRECISION for zhecon_rook.
The reciprocal of the condition number of the matrix A, computed as rcond $=1 /($ anorm $*$ ainvnm), where ainvnm is an estimate of the 1 norm of A^{-1} computed in this routine.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hecon_rook interface are as follows:
Holds the matrix A of size (n, n).

```
ipiv Holds the vector of length n.
uplo Must be 'U'or 'L'. The default value is 'U'.
```


See Also
 Matrix Storage Schemes

?hecon_3
Estimates the reciprocal of the condition number (in the 1 -norm) of a complex Hermitian matrix A.

```
call checon_3 (uplo, n, A, lda, e, ipiv, anorm, rcond, work, info)
call zhecon 3(uplo, n, A, lda, e, ipiv, anorm, rcond, work, info)
```


Description

?hecon_3 estimates the reciprocal of the condition number (in the 1-norm) of a complex Hermitian matrix A using the factorization computed by ?hetrf_rk: $A=P^{*} U^{*} D^{*}\left(U^{H}\right)^{*}\left(P^{\top}\right)$ or $A=P^{*} L^{*} D^{*}\left(L^{H}\right)^{*}\left(P^{\top}\right)$, where U (or L) is unit upper (or lower) triangular matrix, U^{H} (or L^{H}) is the conjugate of U (or L), P is a permutation matrix, P^{\top} is the transpose of P, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. An estimate is obtained for norm $(\operatorname{inv}(A))$, and the reciprocal of the condition number is computed as rcond $=1 /($ anorm $* \operatorname{norm}(\operatorname{inv}(A)))$.

This routine uses BLAS3 solver ?hetrs_3.

Input Parameters

```
uplo CHARACTER*1. Specifies whether the details of the factorization are stored
    as an upper or lower triangular matrix: = 'U': Upper triangular, form is A =
    P*U*D*(UH)*(P'); = 'L': Lower triangular, form is A = P*L*D*(LH}\mp@subsup{)}{}{*}(\mp@subsup{P}{}{\top})
    INTEGER. The order of the matrix A. n \geq0.
    COMPLEX for checon_3
COMPLEX*16 for zhecon_3
Array, dimension (lda,n). Diagonal of the block diagonal matrix D and factor \(U\) or \(L\) as computed by ?hetrf_rk:
- Only diagonal elements of the Hermitian block diagonal matrix D on the diagonal of A-that is, \(\mathrm{D}(k, k)=\mathrm{A}(k, k)\). Superdiagonal (or subdiagonal) elements of \(D\) must be provided on entry in array \(e\).
-and-
- If uplo = 'U', factor \(U\) in the superdiagonal part of \(A\). If uplo = 'L', factor \(L\) in the subdiagonal part of \(A\).
INTEGER
The leading dimension of the array \(A . I d a \geq \max (1, n)\).
e
COMPLEX for checon_3
COMPLEX*16 for zhecon_3
```

Array, dimension (n). On entry, contains the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks. If uplo $=$ ' U ', $\mathrm{e}(\mathrm{i})=\mathrm{D}(i-1, i), i=2: \mathrm{N}$, and $\mathrm{e}(1)$ is not referenced. If uplo $=$ ' L ', $\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1$, and $\mathrm{e}(n)$ is not referenced.

NOTE For 1-by-1 diagonal block $\mathrm{D}(k)$, where $1 \leq k \leq n$, the element $e(k)$ is not referenced in both the uplo $=$ 'U' and uplo = 'L' cases.
ipiv
anorm

INTEGER
Array, dimension (n). Details of the interchanges and the block structure of D as determined by ?hetrf_rk.

COMPLEX for checon_3
COMPLEX* 16 for zhecon_3
The 1-norm of the original matrix A.

Output Parameters

rcond
COMPLEX for checon_3
COMPLEX* 16 for zhecon_3
The reciprocal of the condition number of the matrix A, computed as rcond $=1 /($ anorm $*$ AINVNM $)$, where AINVNM is an estimate of the 1 -norm of $\operatorname{inv}(\mathrm{A})$ computed in this routine.
work
info
COMPLEX for checon_3
COMPLEX*16 for zhecon_3
Array, dimension $\left(2^{*} n\right)$.
INTEGER.

- = 0: Successful exit.
- < 0: If info $=-i$, the $i^{\text {th }}$ argument had an illegal value.
?spcon
Estimates the reciprocal of the condition number of a packed symmetric matrix.

Syntax

```
call sspcon( uplo, n, ap, ipiv, anorm, rcond, work, iwork, info )
call dspcon( uplo, n, ap, ipiv, anorm, rcond, work, iwork, info )
call cspcon( uplo, n, ap, ipiv, anorm, rcond, work, info )
call zspcon( uplo, n, ap, ipiv, anorm, rcond, work, info )
call spcon( ap, ipiv, anorm, rcond [,uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a packed symmetric matrix A :
$\kappa_{1}(A)=\left\|\left.A\right|_{1}| | A^{-1} \mid\right\|_{1}$ (since A is symmetric, $\kappa_{\infty}(A)=\kappa_{1}(A)$).
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\left.\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)$
- call ?sptrf to compute the factorization of A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array ap stores the packed upper triangular factor U of the factorization $A=U \star D \star U^{\mathrm{T}}$.
	If uplo = 'L', the array ap stores the packed lower triangular factor L of the factorization $A=L^{\star} D^{\star} L^{T}$.
n	INTEGER. The order of matrix A; $n \geq 0$.
ap, work	REAL for sspcon
	DOUBLE PRECISION for dspcon
	COMPLEX for cspcon
	DOUBLE COMPLEX for zspcon.
	Arrays: ap(*), work(*).
	The array ap contains the packed factored matrix A, as returned by ?sptrf. The dimension of ap must be at least max $(1, n(n+1) / 2)$.
	The array work is a workspace for the routine. The dimension of work must be at least max $(1,2 * n)$.
ipiv	INTEGER. Array, size at least max (1, n).
	The array ipiv, as returned by ?sptrf.
anorm	REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	The norm of the original matrix A (see Description).
iwork	INTEGER. Workspace array, size at least max $(1, n)$.
Output Parameters	
rcond	REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0 , for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine spcon interface are as follows:
ap \quad Holds the array A of size $\left(n^{*}(n+1) / 2\right)$.
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} X=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors and $8 n^{2}$ for complex flavors.

```
See Also
Matrix Storage Schemes
?hpcon
Estimates the reciprocal of the condition number of a
packed Hermitian matrix.
Syntax
call chpcon( uplo, n, ap, ipiv, anorm, rcond, work, info )
call zhpcon( uplo, n, ap, ipiv, anorm, rcond, work, info )
call hpcon( ap, ipiv, anorm, rcond [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a Hermitian matrix A :
$\kappa_{1}(A)=\left\|A| |_{1}| | A^{-1} \mid\right\|_{1}$ (since A is Hermitian, $\left.\kappa_{\infty}(A)=\mathrm{k}_{1}(A)\right)$.
An estimate is obtained for $\left|\left|A^{-1}\right|\right|$, and the reciprocal of the condition number is computed as rcond $=$ $1 /\left(||A||| | A^{-1}| |\right)$.

Before calling this routine:

- compute anorm (either $\|A\|_{1}=\max _{j} \Sigma_{i}\left|a_{i j}\right|$ or $\left.\|A\|_{\infty}=\max _{i} \Sigma_{j}\left|a_{i j}\right|\right)$
- call ?hptrf to compute the factorization of A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array $a p$ stores the packed upper triangular factor U of the factorization $A=U^{\star} D^{\star} U^{T}$.
	If uplo = 'L', the array ap stores the packed lower triangular factor L of the factorization $A=L^{\star} D^{\star} L^{T}$.
n	INTEGER. The order of matrix $A ; n \geq 0$.
ap, work	COMPLEX for chpcon
	DOUBLE COMPLEX for zhpcon.
	The array $a p(*)$ contains the packed factored matrix A, as returned by ?hptrf. The dimension of ap must be at least max $(1, n(n+1) / 2)$.
	The array work (*) is a workspace for the routine. The dimension of work must be at least max (1, 2*n).
ipiv	INTEGER.
	Array, size at least max $(1, n)$. The array ipiv, as returned by ?hptrf.
anorm	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	The norm of the original matrix A (see Description).

Output Parameters

rcond
info
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hbcon interface are as follows:
ap
ipiv Holds the vector of length n.

Holds the array A of size $\left(n^{*}(n+1) / 2\right)$.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 5 and never more than 11 . Each solution requires approximately $8 n^{2}$ floating-point operations.

See Also

Matrix Storage Schemes
?trcon
Estimates the reciprocal of the condition number of a triangular matrix.

Syntax

```
call strcon( norm, uplo, diag, n, a, lda, rcond, work, iwork, info )
call dtrcon( norm, uplo, diag, n, a, lda, rcond, work, iwork, info )
call ctrcon( norm, uplo, diag, n, a, lda, rcond, work, rwork, info )
call ztrcon( norm, uplo, diag, n, a, lda, rcond, work, rwork, info )
call trcon( a, rcond [,uplo] [,diag] [,norm] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a triangular matrix A in either the 1-norm or infinity-norm:

$$
\begin{aligned}
& \kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right) \\
& \kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\mathrm{k}_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right) .
\end{aligned}
$$

Input Parameters

norm	CHARACTER*1. Must be '1' or 'O' or 'I'.
	If norm = '1' or ' O ', then the routine estimates the condition number of matrix A in 1 -norm.
	If norm = 'I', then the routine estimates the condition number of matrix A in infinity-norm.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether A is upper or lower triangular:
	If uplo = 'U', the array a stores the upper triangle of A, other array elements are not referenced.

If uplo = 'L', the array a stores the lower triangle of A, other array elements are not referenced.
diag
n
a, work

Ida
iwork
rwork

CHARACTER*1. Must be 'N' or 'U'.
If diag $=$ ' N ', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array a.

INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for strcon
DOUBLE PRECISION for dtrcon
COMPLEX for ctrcon
DOUBLE COMPLEX for ztrcon.
The array $a(I d a, *)$ contains the matrix A. The second dimension of a must be at least max $(1, n)$.
The array work (*) is a workspace for the routine. The dimension of work must be at least max $(1,3 * n)$ for real flavors and max ($1,2 * n$) for complex flavors.

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. Workspace array, size at least max $(1, n)$.
REAL for ctrcon
DOUBLE PRECISION for ztrcon.
Workspace array, size at least max $(1, n)$.

Output Parameters

rcond
info

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine trcon interface are as follows:
a
Holds the matrix A of size (n, n).

```
norm Must be '1','O', or 'I'. The default value is '1'.
uplo Must be 'U' or 'L'. The default value is 'U'.
diag Must be 'N' or 'U'. The default value is 'N'.
```


Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} X=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately n^{2} floating-point operations for real flavors and $4 n^{2}$ operations for complex flavors.

See Also
 Matrix Storage Schemes

?tpcon
Estimates the reciprocal of the condition number of a packed triangular matrix.

Syntax

```
call stpcon( norm, uplo, diag, n, ap, rcond, work, iwork, info )
call dtpcon( norm, uplo, diag, n, ap, rcond, work, iwork, info )
call ctpcon( norm, uplo, diag, n, ap, rcond, work, rwork, info )
call ztpcon( norm, uplo, diag, n, ap, rcond, work, rwork, info )
call tpcon( ap, rcond [,uplo] [,diag] [,norm] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a packed triangular matrix A in either the 1norm or infinity-norm:
$\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right)$
$\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right)$.

Input Parameters

CHARACTER*1. Must be '1' or 'O' or 'I'.
If norm = '1' or 'O', then the routine estimates the condition number of matrix A in 1-norm.
If norm = 'I', then the routine estimates the condition number of matrix A in infinity-norm.
uplo
CHARACTER*1. Must be 'U' or 'L'. Indicates whether A is upper or lower triangular:
If uplo = 'U', the array ap stores the upper triangle of A in packed form.

If uplo = 'L', the array ap stores the lower triangle of A in packed form.

CHARACTER*1. Must be 'N' or 'U'.
If diag $=$ ' N ', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array ap.

INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for stpcon
DOUBLE PRECISION for dtpcon
COMPLEX for ctpcon
DOUBLE COMPLEX for ztpcon.
The array $a p(*)$ contains the packed matrix A. The dimension of $a p$ must be at least $\max (1, n(n+1) / 2)$.
The array work (*) is a workspace for the routine. The dimension of work must be at least max $(1,3 * n)$ for real flavors and max $(1,2 * n)$ for complex flavors.

INTEGER. Workspace array, size at least max $(1, n)$.
REAL for ctpcon
DOUBLE PRECISION for ztpcon.
Workspace array, size at least max $(1, n)$.

Output Parameters

```
rcond
```

info
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine tpcon interface are as follows:
norm

Holds the array A of size $\left(n^{\star}(n+1) / 2\right)$.
Must be '1', 'O', or 'I'. The default value is '1'.
uplo
diag

Must be 'U' or 'L'. The default value is 'U'.
Must be ' N ' or ' U '. The default value is ' N '.

Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately n^{2} floating-point operations for real flavors and $4 n^{2}$ operations for complex flavors.

See Also

Matrix Storage Schemes
?tbcon
Estimates the reciprocal of the condition number of a triangular band matrix.

Syntax

```
call stbcon( norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info )
call dtbcon( norm, uplo, diag, n, kd, ab, ldab, rcond, work, iwork, info )
call ctbcon( norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info )
call ztbcon( norm, uplo, diag, n, kd, ab, ldab, rcond, work, rwork, info )
call tbcon( ab, rcond [,uplo] [,diag] [,norm] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the reciprocal of the condition number of a triangular band matrix A in either the 1norm or infinity-norm:
$\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=\kappa_{\infty}\left(A^{T}\right)=\kappa_{\infty}\left(A^{H}\right)$
$\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=\kappa_{1}\left(A^{T}\right)=\kappa_{1}\left(A^{H}\right)$.
Input Parameters
norm
uplo

CHARACTER*1. Must be '1' or 'O' or 'I'.
If norm $=$ ' 1 ' or ' O ', then the routine estimates the condition number of matrix A in 1-norm.

If norm $=$ 'I', then the routine estimates the condition number of matrix A in infinity-norm.

CHARACTER*1. Must be 'U' or 'L'. Indicates whether A is upper or lower triangular:
If uplo = 'U', the array ap stores the upper triangle of A in packed form.

If uplo = 'L', the array ap stores the lower triangle of A in packed form.

```
CHARACTER*1. Must be 'N' or 'U'.
```

If diag $=$ ' N ', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements are assumed to be 1 and not referenced in the array $a b$.

INTEGER. The order of the matrix $A ; n \geq 0$.
INTEGER. The number of superdiagonals or subdiagonals in the matrix $A ; k d \geq 0$.

REAL for stbcon
DOUBLE PRECISION for dt.bcon
COMPLEX for ctbcon
DOUBLE COMPLEX for ztbcon.
The array $a b$ (ldab,*) contains the band matrix A. The second dimension of $a b$ must be at least max $(1, n)$.
The array work is a workspace for the routine. The dimension of work (*) must be at least max (1, $3 *_{n}$) for real flavors and max (1, $2{ }^{\star} n$) for complex flavors.

INTEGER. The leading dimension of the array $a b$. (Idab $\geq k d+1)$.
INTEGER. Workspace array, size at least max $(1, n)$.
REAL for ctbcon
DOUBLE PRECISION for ztbcon.
Workspace array, size at least max $(1, n)$.

Output Parameters

rcond
info
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal of the condition number. The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.

INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine tbcon interface are as follows:

```
ab Holds the array A of size (kd+1,n).
norm
uplo
diag
Holds the array \(A\) of size \((k d+1, n)\).
Must be '1', 'O', or 'I'. The default value is '1'.
Must be 'U' or 'L'. The default value is 'U'.
Must be 'N' or 'U'. The default value is 'N'.
```


Application Notes

The computed rcond is never less than r (the reciprocal of the true condition number) and in practice is nearly always less than $10 r$. A call to this routine involves solving a number of systems of linear equations $A^{*} x=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 \star_{n}(k d+1)$ floating-point operations for real flavors and $8 *_{n}(k d+1)$ operations for complex flavors.

See Also

Matrix Storage Schemes

Refining the Solution and Estimating Its Error: LAPACK Computational Routines

This section describes the LAPACK routines for refining the computed solution of a system of linear equations and estimating the solution error. You can call these routines after factorizing the matrix of the system of equations and computing the solution (see Routines for Matrix Factorization and Routines for Solving Systems of Linear Equations).

?gerfs

Refines the solution of a system of linear equations with a general coefficient matrix and estimates its error.

Syntax

```
call sgerfs( trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
iwork, info )
call dgerfs( trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
iwork, info )
call cgerfs( trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info )
call zgerfs( trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info )
call gerfs( a, af, ipiv, b, x [,trans] [,ferr] [,berr] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A \star X=B$ or $A^{T} \star X$ $=B$ or $A^{H *} X=B$ with a general matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.

Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|\mathrm{x}-\mathrm{x}_{e}\right|\right|_{\infty} / \|$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?getrf
- call the solver routine ?getrs.

Input Parameters

trans	CHARACTER*1. Must be 'N' or 'T' or 'C'.
	Indicates the form of the equations:
	If trans $=$ ' N ', the system has the form $A * X=B$.
	If trans $=$ ' T ', the system has the form $A^{T * X}=B$.
	If trans $=$ ' C ', the system has the form $A^{H * X}=B$.
n	INTEGER. The order of the matrix $A ; n \geq 0$.
nrhs	INTEGER. The number of right-hand sides; nrhs ≥ 0.
a,af, b, x, work	REAL for sgerfs
	DOUBLE PRECISION for dgerfs
	COMPLEX for cgerfs
	DOUBLE COMPLEX for zgerfs.
	Arrays:
	a(size Ida by *) contains the original matrix A, as supplied to af(size $I d a f$ by ${ }^{*}$) contains the factored matrix A, as returned by ?getrf.
	b (size $/ d b$ by *) contains the right-hand side matrix B.
	x (size $l d x$ by ${ }^{*}$) contains the solution matrix X.
	work(size *) is a workspace array.
	The second dimension of a and af must be at least max $(1, n)$; the second dimension of b and x must be at least max ($1, n r h s$); the dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 \star_{n}\right)$ for complex flavors.
Ida	INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
Idaf	INTEGER. The leading dimension of $a f ; 1 d a \leq$ max $(1, n)$.
1 db	INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
$1 d x$	INTEGER. The leading dimension of $x ; 1 d x \geq \max (1, n)$.
ipiv	INTEGER.
	Array, size at least max (1, n) .
	The ipiv array, as returned by ?getre.
iwork	INTEGER.

```
    Workspace array, size at least max (1, n).
    REAL for cgerfs
    DOUBLE PRECISION for zgerfs.
    Workspace array, size at least max (1, n).
```


Output Parameters

x

```
ferr, berr
```

info

The refined solution matrix X.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, size at least max (1, nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine gerfs interface are as follows:

a	Holds the matrix A of size (n, n).
af	Holds the matrix $A F$ of size (n, n).
ipiv	Holds the vector of length n.
x	Holds the matrix B of size $(n, n r h s)$.
ferr	Holds the matrix X of size $(n, n r h s)$.
berr	Holds the vector of length (nrhs).
trans	Holds the vector of length (nrhs).
	Must be 'N', 'C', or ' T '. The default value is ' N '.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A^{\star} X=b$ with the same coefficient matrix A and different right hand sides b; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes

?gerfsx
 Uses extra precise iterative refinement to improve the solution to the system of linear equations with a general coefficient matrix A and provides error bounds and backward error estimates.

Syntax

```
call sgerfsx( trans, equed, n, nrhs, a, lda, af, ldaf, ipiv, r, c, b, ldb, x, ldx, rcond,
berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info )
call dgerfsx( trans, equed, n, nrhs, a, lda, af, ldaf, ipiv, r, c, b, ldb, x, ldx, rcond,
berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info )
call cgerfsx( trans, equed, n, nrhs, a, lda, af, ldaf, ipiv, r, c, b, ldb, x, ldx, rcond,
berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
call zgerfsx( trans, equed, n, nrhs, a, lda, af, ldaf, ipiv, r, c, b, ldb, x, ldx, rcond,
berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed, r, and c below. In this case, the solution and error bounds returned are for the original unequilibrated system.

Input Parameters

trans
equed
CHARACTER*1. Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $A^{\star} X=B$ (No transpose).
If trans $=$ 'T', the system has the form $A^{T} * X=B$ (Transpose).
If trans $=$ ' C', the system has the form $A^{\mathrm{H}} * X=B$ (Conjugate transpose for complex flavors, Transpose for real flavors).

CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
Specifies the form of equilibration that was done to A before calling this routine.

If equed $=$ ' N ', no equilibration was done.
If equed = 'R', row equilibration was done, that is, A has been premultiplied by diag(r).

If equed $=$ ' C ', column equilibration was done, that is, A has been postmultiplied by $\operatorname{diag}(c)$.
n
nrhs
$a, a f, b$, work

Ida

Idaf
ipiv
r, c

If equed = 'B', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(r) \star A \star \operatorname{diag}(c)$. The right-hand side B has been changed accordingly.

INTEGER. The number of linear equations; the order of the matrix A; $n \geq 0$.

INTEGER. The number of right-hand sides; the number of columns of the matrices B and X; nrhs ≥ 0.

REAL for sgerfsx
DOUBLE PRECISION for dgerfsx
COMPLEX for cgerfsx
DOUBLE COMPLEX for zgerfsx.
Arrays: a (size lda by *), af (size ldaf by *), b(size Idb by *), work(*).

The array a contains the original n-by- n matrix A.
The array af contains the factored form of the matrix A, that is, the factors L and U from the factorization $A=P \star L \star U$ as computed by ?getrf.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max ($1, n r h s$).
work (size *) is a workspace array. The dimension of work must be at least $\max (1,4 * n)$ for real flavors, and at least $\max \left(1,2 *_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $a f ; \operatorname{lda} \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$. Contains the pivot indices as computed by ?getrf; for row $1 \leq i \leq n$, row i of the matrix was interchanged with row ipiv(i).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: r (size n), c (size n). The array r contains the row scale factors for A, and the array C contains the column scale factors for A.
equed $=$ 'R' or 'B', A is multiplied on the left by diag(r); if equed = 'N' or 'C', r is not accessed.

If equed $=$ ' R ' or ' B ', each element of r must be positive.
If equed $=$ ' C ' or ' B ', A is multiplied on the right by $\operatorname{diag}(c)$; if equed $=$ ' N ' or 'R', c is not accessed.

If equed $=$ ' C ' or ' B ', each element of c must be positive.

1 db
X
$1 d x$
n_err_bnds
nparams
params

Each element of r or c should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.
REAL for sgerfsx
DOUBLE PRECISION for dgerfsx
COMPLEX for cgerfsx
DOUBLE COMPLEX for zgerfsx.
Array, size $/ d x$ by *.
The solution matrix X as computed by ?getrs
INTEGER. The leading dimension of the output array $x ; 1 d x \geq \max (1$, n).

INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

INTEGER. Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0, that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams $=0$, which prevents the source code from accessing the params argument.
params (1) : Whether to perform iterative refinement or not. Default:
1.0
$=0.0 \quad$ No refinement is performed and no error bounds are computed.
$=1.0 \quad$ Use the double-precision refinement algorithm, possibly with doubled-single computations if the compilation environment does not support double precision.
(Other values are reserved for future use.)
params (2) : Maximum number of residual computations allowed for refinement.

Default
10.0

	Aggressive	Set to 100.0 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
	params (3) solution with precision a component	mining if the code will attempt to find a mponentwise relative error in the doublesitive is true, 0.0 is false. Default: 1.0 (attempt gence).
iwork	INTEGER. flavors on	ray, size at least max $(1, n)$; used in real
rwork	REAL for sin	n flavors
	DOUBLE PR	double precision flavors.
	Workspace only.	t least max $(1, \quad 3 * n)$; used in complex flavors
Output Parame		
x	REAL for sg	
	DOUBLE PR	dgerfsx
	COMPLEX fo	
	DOUBLE CO	gerfsx.
	The impro	matrix X.
rcond	REAL for sis	n flavors
	DOUBLE PR	double precision flavors.
	Reciprocal Skeel cond rcond is le the matrix still be small ill-condition	tion number. An estimate of the reciprocal of the matrix A after equilibration (if done). If machine precision, in particular, if rcond $=0$, working precision. Note that the error may s number is very small and the matrix appears
berr	REAL for s	n flavors
	DOUBLE PR	double precision flavors.
	Array, size relative ba smallest re exact solut	(1, nrhs). Contains the componentwise for each solution vector $x(j)$, that is, the e in any element of A or B that makes $x(j)$ an
err_bnds_norm	REAL for sin	n flavors
	DOUBLE PR	double precision flavors.

Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:

Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
The first index in err_bnds_norm(i,:) corresponds to the i-th righthand side.

The second index in err_bnds_norm (: ,err) contains the following three fields:

$e r r=1$	"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors.
err=2	"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n)$ * dlamch (ε) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
err=3	Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n)$ *slamch (ε) for single precision flavors and sqrt(n)*dlamch (ε) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1 .

DOUBLE PRECISION for double precision flavors.
Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

$$
\max _{j} \frac{\left|X t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}
$$

The array is indexed by the right-hand side i, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params (3) $=0.0$), then err_bnds_comp is not accessed. If $n_{-} e r r_{-}$bnds <3, then at most the first (:,n_err_bnds) entries are returned.
The first index in err_bnds_comp (i,:) corresponds to the i-th righthand side.

The second index in err_bnds_comp (:,err) contains the following three fields:

err=1	"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors.
err=2	"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt(n)*slamch (ε) for single precision flavors and sqrt(n) *dlamch (ε) for double precision flavors. This error bound should only be trusted if the previous boolean is true.
$e r r=3$	Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) *$ dlamch (ε) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$\left\|\left.z\right|_{0} \cdot\right\| z^{-1} \|_{0}$

Let $z=s^{*}(a * \operatorname{diag}(x))$, where x is the solution for the current right-hand side and s scales each row of $a * \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Output parameter only if the input contains erroneous values, namely, in params (1), params (2), params (3). In such a case, the corresponding elements of params are filled with default values on output.

INTEGER. If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.

If info $=-i$, the i-th parameter had an illegal value.
If 0 < info $n: U_{i n f o, i n f o}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with $k>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) $=0.0$, then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that err_bnds_norm(j,1) $=0.0$ or err_bnds_comp $(j, 1)=$ $0.0)$. See the definition of err_bnds_norm and err_bnds_comp for err $=1$. To get information about all of the right-hand sides, check err_bnds_norm or err_bnds_comp.

See Also

Matrix Storage Schemes

?gbrfs

Refines the solution of a system of linear equations
with a general band coefficient matrix and estimates
its error.

Syntax

```
call sgbrfs( trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr,
berr, work, iwork, info )
call dgbrfs( trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr,
berr, work, iwork, info )
call cgbrfs( trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info )
call zgbrfs( trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info )
call gbrfs( ab, afb, ipiv, b, x [,kl] [,trans] [,ferr] [,berr] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A \star X=B$ or $A^{T} \star X$ $=B$ or $A^{H *} X=B$ with a band matrix A, with multiple right-hand sides. For each computed solution vector X, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:

```
| \deltaa ij| \leq | | a ij|, | \deltab i | \leq | | bi| such that (A + \deltaA)x = (b + \deltab).
```

Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} / \|$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?gbtrf
- call the solver routine ?gbtrs.

Input Parameters

```
trans
n
kl
ku
nrhs
ab,afb,b,x,work
CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans \(=\) ' \(N\) ', the system has the form \(A * X=B\).
If trans \(=\) ' \(T\) ', the system has the form \(A^{T * X}=B\).
If trans \(=\) ' C ', the system has the form \(A^{H * X}=B\).
INTEGER. The order of the matrix \(A ; n \geq 0\).
INTEGER. The number of sub-diagonals within the band of \(A ; k l \geq 0\).
INTEGER. The number of super-diagonals within the band of \(A ; k u \geq 0\).
INTEGER. The number of right-hand sides; nrhs \(\geq 0\).
REAL for sgbrfs
DOUBLE PRECISION for dgbrfs
COMPLEX for cgbrfs
DOUBLE COMPLEX for zgbrfs.
Arrays:
\(a b\) (size \(I d a b\) by *) contains the original band matrix \(A\), as supplied to ? gbtrf, but stored in rows from 1 to \(k l+k u+1\).
afb(size Idafb by *) contains the factored band matrix \(A\), as returned by ?gbtrf.
\(b\) (size \(l d b\) by \({ }^{*}\) ) contains the right-hand side matrix \(B\).
\(x\) (size \(I d x\) by \({ }^{*}\) ) contains the solution matrix \(X\).
work(*) is a workspace array.
```

The second dimension of $a b$ and $a f b$ must be at least max $(1, n)$; the second dimension of b and x must be at least max ($1, n r h s$); the dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 \star_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of $a b$.
INTEGER. The leading dimension of afb.
INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of $x ; 1 d x \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$. The ipiv array, as returned by ? gbtrf.
INTEGER. Workspace array, size at least max $(1, n)$.
REAL for cgbrfs
DOUBLE PRECISION for zgbrfs.
Workspace array, size at least max $(1, n)$.

Output Parameters

```
X
ferr, berr
```

info

The refined solution matrix X.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, size at least max (1, nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gbrfs interface are as follows:

ab	Holds the array A of size $(k l+k u+1, n)$.
afb	Holds the array $A F$ of size $\left(2 * k I^{\star} k u+1, n\right)$.
ipiv	Holds the vector of length n.
x	Holds the matrix B of size $(n, n r h s)$.
ferr	Holds the matrix X of size ($n, n r h s)$.
berr	Holds the vector of length (nrhs).
Holds the vector of length (nrhs).	

```
trans Must be 'N', 'C', or 'T'. The default value is 'N'.
kl If omitted, assumed kl = ku.
ku Restored as ku = Ida-kl-1.
```


Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n(k l+k u)$ floatingpoint operations (for real flavors) or $16 n(k l+k u$) operations (for complex flavors). In addition, each step of iterative refinement involves $2 n(4 k l+3 k u$) operations (for real flavors) or $8 n(4 k l+3 k u)$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A^{\star} x=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

See Also
 Matrix Storage Schemes

?gbrfsx

Uses extra precise iterative refinement to improve the solution to the system of linear equations with a banded coefficient matrix A and provides error bounds and backward error estimates.

Syntax

```
call sgbrfsx( trans, equed, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, r, c, b, ldb, x,
ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
iwork, info )
call dgbrfsx( trans, equed, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, r, c, b, ldb, x,
ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
iwork, info )
call cgbrfsx( trans, equed, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, r, c, b, ldb, x,
ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
rwork, info )
call zgbrfsx( trans, equed, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, r, c, b, ldb, x,
ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
rwork, info )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed, r, and c below. In this case, the solution and error bounds returned are for the original unequilibrated system.

Input Parameters

```
trans
equed
n
kl
ku
nrhs
ab, afb, b, work
```

CHARACTER*1. Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans $=' N$ ', the system has the form $A \star X=B$ (No transpose).
If trans $=$ 'T', the system has the form $A^{T} * X=B$ (Transpose).
If trans $=$ ' C', the system has the form $A^{\mathrm{H}} \star X=B$ (Conjugate transpose for complex flavors, Transpose for real flavors).

CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
Specifies the form of equilibration that was done to A before calling this routine.

If equed $=$ ' N ', no equilibration was done.
If equed = 'R', row equilibration was done, that is, A has been premultiplied by diag(r).

If equed $=$ ' C', column equilibration was done, that is, A has been postmultiplied by diag(c).
If equed = 'B', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$. The right-hand side B has been changed accordingly.

INTEGER. The number of linear equations; the order of the matrix $A ; n \geq 0$.
INTEGER. The number of subdiagonals within the band of $A ; k l \geq 0$.
INTEGER. The number of superdiagonals within the band of $A ; k u \geq 0$.
INTEGER. The number of right-hand sides; the number of columns of the matrices B and $X ; n r h s \geq 0$.

REAL for sgbrfsx
DOUBLE PRECISION for dgbrfsx
COMPLEX for cgbrfsx
DOUBLE COMPLEX for zgbrfsx.
Arrays: $a b(l d a b, *), a f b(l d a f b, *), b(l d b, *), w o r k(*)$.
The array ab contains the original matrix A in band storage, in rows 1 to $k l$ $+k u+1$. The j-th column of A is stored in the j-th column of the array $a b$ as follows:

```
ab(ku+1+i-j,j) = A(i,j) for max (1,j-ku) \leqi\leq min(n,j+kl).
```

The array afb contains details of the LU factorization of the banded matrix A as computed by ?gbtrf. U is stored as an upper triangular banded matrix with $k l+k u$ superdiagonals in rows 1 to $k l+k u+1$. The multipliers used during the factorization are stored in rows $k l+k u+2$ to $2 * k l+k u+1$.
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).

```
Idab
Idafb
ipiv
```

r, c
1 db
x
$I d x$
n_err_bnds
nparams
params
work $\left({ }^{*}\right)$ is a workspace array. The dimension of work must be at least $\max \left(1,4 *_{n}\right)$ for real flavors, and at least $\max \left(1,2 *_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of the array $a b ; l d a b \geq k l+k u+1$.
Integer. The leading dimension of the array $a f b ; 1 d a f b \geq 2 * k l+k u+1$.
INTEGER.
Array, size at least $\max (1, n)$. Contains the pivot indices as computed by ?gbtrf; for row $1 \leq i \leq n$, row i of the matrix was interchanged with row ipiv(i).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: $r(n), c(n)$. The array r contains the row scale factors for A, and the array c contains the column scale factors for A.
If equed $=$ 'R' or 'B', A is multiplied on the left by $\operatorname{diag}(r)$; if equed $=$ ' N ' or 'C', r is not accessed.
If equed $=$ ' R ' or ' B ', each element of r must be positive.
If equed $=$ ' C ' or ' B ', A is multiplied on the right by $\operatorname{diag}(c)$; if equed $=$ 'N' or 'R', c is not accessed.
If equed $=$ ' C ' or ' B ', each element of c must be positive.
Each element of r or c should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.
REAL for sgbrfsx
DOUBLE PRECISION for dgbrfsx
COMPLEX for cgbrfsx
DOUBLE COMPLEX for zgbrfsx.
Array, size ($1 d x, *$).
The solution matrix X as computed by sgbtrs/dgbtrs for real flavors or cgbtrs/zgbtrs for complex flavors.

Integer. The leading dimension of the output array $x ; \operatorname{ldx} \geq \max (1, n)$.
INTEGER. Number of error bounds to return for each right-hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

INTEGER. Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

REAL for single precision flavors DOUBLE PRECISION for double precision flavors.

Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0 , that entry will be filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for highernumbered parameters. If defaults are acceptable, you can pass nparams = 0 , which prevents the source code from accessing the params argument.
params (1) : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).

$$
\begin{array}{ll}
=0.0 & \begin{array}{l}
\text { No refinement is performed and no error bounds } \\
\text { are computed. }
\end{array} \\
=1.0 & \begin{array}{l}
\text { Use the double-precision refinement algorithm, } \\
\text { possibly with doubled-single computations if the } \\
\text { compilation environment does not support } \\
\text { double precision. }
\end{array}
\end{array}
$$

(Other values are reserved for future use.) params (2) : Maximum number of residual computations allowed for refinement.

Default 10.0
Aggressive Set to 100.0 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params (3): Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

INTEGER. Workspace array, size at least max $(1, n)$; used in real flavors only.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, size at least $\max \left(1,3 *_{n}\right)$; used in complex flavors only.

Output Parameters

X
rcond

REAL for sgbrfsx
DOUBLE PRECISION for dgbrfsx
COMPLEX for cgbrfsx
DOUBLE COMPLEX for zgbrfsx.
The improved solution matrix X.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ($1, \mathrm{nrhs}$). Contains the componentwise relative backward error for each solution vector $x(j)$, that is, the smallest relative change in any element of A or B that makes $x(j)$ an exact solution.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size nrhs by $n \_e r r \_b n d s$. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:

Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

The first index in err_bnds_norm(i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_norm (: ,err) contains the following three fields:

$e r r=1$	"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors.
$e r r=2$	"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.
err=3	Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors

flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1 .

err_bnds_comp

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size nrhs by $n \_e r r \_b n d s$. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the i-th solution vector:

$$
\max _{j} \frac{\left|X t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}
$$

The array is indexed by the right-hand side i, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params (3) $=0.0$), then err_bnds_comp is not accessed. If $n_{-} e r r_{-}$bnds <3, then at most the first (:, $n_{-} e r r_{-} b n d s$) entries are returned.

The first index in err_bnds_comp (i,:) corresponds to the i-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the following three fields:

$e r r=1$	"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) *$ dlamch (ε) for double precision flavors.
$e r r=2$	"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.
$e r r=3$	Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold

params
info
sqrt $(n)^{*} \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of $a^{\star} \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Output parameter only if the input contains erroneous values, namely, in params (1), params (2), and params (3). In such a case, the corresponding elements of params are filled with default values on output.

INTEGER. If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, the i-th parameter had an illegal value.
If 0 < infosn: $U_{i n f o, i n f o}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with k $>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) = 0.0 , then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that err_bnds_norm $(j, 1)=$ 0.0 or err_bnds_comp $(j, 1)=0.0$. See the definition of err_bnds_norm and err_bnds_comp for err $=1$. To get information about all of the righthand sides, check err_bnds_norm or err_bnds_comp.

See Also
Matrix Storage Schemes

?gtrfs

Refines the solution of a system of linear equations with a tridiagonal coefficient matrix and estimates its error.

Syntax

```
call sgtrfs( trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx, ferr,
berr, work, iwork, info )
call dgtrfs( trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx, ferr,
berr, work, iwork, info )
```

```
call cgtrfs( trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info )
call zgtrfs( trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx, ferr,
berr, work, rwork, info )
call gtrfs( dl, d, du, dlf, df, duf, du2, ipiv, b, x [,trans] [,ferr] [,berr] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A \star X=B$ or $A^{T} \star X$ $=B$ or $A^{H *} X=B$ with a tridiagonal matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:

```
| \deltaa ij |/| a ij | \leq | | aij|, | \deltab i |/| | i i | \leq | b b | such that (A + \deltaA)x = (b + \deltab).
```

Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right| l_{\infty} /| |$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?gttrf
- call the solver routine ?gttrs.

Input Parameters

```
trans CHARACTER*1.Must be 'N' or 'T' or 'C'.
    Indicates the form of the equations:
    If trans =' 'N', the system has the form A*X=B.
    If trans = 'T', the system has the form }\mp@subsup{A}{}{T*}X=B\mathrm{ .
    If trans = 'C', the system has the form }\mp@subsup{A}{}{H*}X=B\mathrm{ .
    INTEGER. The order of the matrix A; n\geq0.
    INTEGER. The number of right-hand sides, that is, the number of
    columns of the matrix B; nrhs }\geq0\mathrm{ .
    REAL for sgtrfs
    DOUBLE PRECISION for dgtrfs
    COMPLEX for cgtrfs
DOUBLE COMPLEX for zgtrfs.
Arrays:
dl, dimension (n-1), contains the subdiagonal elements of }A\mathrm{ .
d, dimension ( }n\mathrm{ ), contains the diagonal elements of A.
du, dimension (n-1), contains the superdiagonal elements of A.
dlf, dimension (n-1), contains the (n-1) multipliers that define the
matrix L from the LU factorization of A as computed by ?gttrf.
```

```
ldb
Idx
ipiv
iwork
rwork
```

$d f$, dimension (n), contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.
duf, dimension ($n-1$), contains the ($n-1$) elements of the first superdiagonal of U.
$d u 2$, dimension ($n-2$), contains the $(n-2)$ elements of the second superdiagonal of U.
b ($I d b, n r h s$) contains the right-hand side matrix B.
x (Idx, nrhs) contains the solution matrix X, as computed by ?gttrs.
work (*) is a workspace array; the dimension of work must be at least $\max \left(1,3^{*} n\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of $x ; \operatorname{ldx} \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$. The ipiv array, as returned by ? gttrf. INTEGER. Workspace array, size (n). Used for real flavors only.

REAL for cgtrfs
DOUBLE PRECISION for zgtrfs.
Workspace array, size (n). Used for complex flavors only.

Output Parameters

```
X
ferr, berr
```

info

The refined solution matrix X.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gtrfs interface are as follows:
$d l$
d
$d u$
dlf
$d f$

Holds the vector of length ($n-1$).
Holds the vector of length n.
Holds the vector of length ($n-1$).
Holds the vector of length ($n-1$).
Holds the vector of length n.

```
duf Holds the vector of length (n-1).
du2 Holds the vector of length (n-2).
ipiv Holds the vector of length n.
b
x Holds the matrix X of size (n,nrhs).
ferr
berr
trans
Holds the matrix B of size ( }n,nrhs)
Holds the vector of length (nrhs).
Holds the vector of length (nrhs).
Must be 'N','C', or 'T'. The default value is 'N'.
```


See Also

Matrix Storage Schemes

?porfs

Refines the solution of a system of linear equations with a symmetric (Hermitian) positive-definite coefficient matrix and estimates its error.

Syntax

```
call sporfs( uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work, iwork,
info )
call dporfs( uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work, iwork,
info )
call cporfs( uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work, rwork,
info )
call zporfs( uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work, rwork,
info )
call porfs( a, af, b, x [,uplo] [,ferr] [,berr] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a symmetric (Hermitian) positive definite matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right| \infty /| |$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?potrf
- call the solver routine ?potrs.

Input Parameters

```
uplo
n
nrhs
a,af,b,x,work
```

Ida
Idaf
1 db
$1 d x$
iwork
rwork

CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', the upper triangle of A is stored.
If uplo = ' L ', the lower triangle of A is stored.
INTEGER. The order of the matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; nrhs ≥ 0.
REAL for sporfs
DOUBLE PRECISION for dporfs
COMPLEX for cporfs
DOUBLE COMPLEX for zporfs.
Arrays:
a (lda,*) contains the original matrix A, as supplied to ?potrf.
af(ldaf,*) contains the factored matrix A, as returned by ?potrf.
$b(I d b, *)$ contains the right-hand side matrix B.
$x(I d x, *)$ contains the solution matrix X.
work (*) is a workspace array.
The second dimension of a and af must be at least max $(1, n)$; the second dimension of b and x must be at least max ($1, n r h s$) ; the dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $a f ; I d a f \geq \max (1, n)$.
Integer. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of $x ; I d x \geq \max (1, n)$.
INTEGER. Workspace array, size at least max $(1, n)$.
REAL for cporfs
DOUBLE PRECISION for zporfs.
Workspace array, size at least $\max (1, n)$.

Output Parameters

```
ferr, berr
```

The refined solution matrix X.
REAL for single precision flavors

DOUBLE PRECISION for double precision flavors.
Arrays, size at least max ($1, \quad \mathrm{nrhs}$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine porfs interface are as follows:

```
a Holds the matrix A of size (n,n).
af Holds the matrix AF of size (n,n).
b Holds the matrix B of size (n,nrhs).
x Holds the matrix X of size (n,nrhs).
ferr Holds the vector of length (nrhs).
berr
Holds the vector of length (nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A^{\star} X=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes

?porfsx
Uses extra precise iterative refinement to improve the solution to the system of linear equations with a symmetric/Hermitian positive-definite coefficient matrix A and provides error bounds and backward error estimates.

Syntax

```
call sporfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, s, b, ldb, x, ldx, rcond, berr,
n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info )
call dporfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, s, b, ldb, x, ldx, rcond, berr,
n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info )
call cporfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, s, b, ldb, x, ldx, rcond, berr,
n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
call zporfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, s, b, ldb, x, ldx, rcond, berr,
n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed and s below. In this case, the solution and error bounds returned are for the original unequilibrated system.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored:
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
equed	CHARACTER*1. Must be 'N' or 'Y'.
	Specifies the form of equilibration that was done to A before calling this routine.
	If equed = 'N', no equilibration was done.
	If equed = 'Y', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$. The right-hand side B has been changed accordingly.
n	INTEGER. The number of linear equations; the order of the matrix $A ; n \geq 0$.
nrhs	INTEGER. The number of right-hand sides; the number of columns of the matrices B and $X ; n r h s \geq 0$.
$a, ~ a f, ~ b, ~ w o r k ~$	REAL for sporfsx
	DOUBLE PRECISION for dporfsx
	COMPLEX for cporfsx
	DOUBLE COMPLEX for zporfsx.
	Arrays: $\mathrm{a}\left(\mathrm{lda},^{*}\right)$, af(ldaf,*), b(ldb,*), work(*).
	The array a contains the symmetric/Hermitian matrix A as specified by uplo. If uplo = ' U ', the leading n-by- n upper triangular part of a contains the upper triangular part of the matrix A and the strictly lower triangular part of a is not referenced. If uplo $=$ ' L ', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A and the strictly upper triangular part of a is not referenced. The second dimension of a must be at least max $(1, n)$.
	The array af contains the triangular factor L or U from the Cholesky factorization $A=U * * T * U$ or $A=L^{*} L^{* *} T$ as computed by spotrf for real flavors or dpotrf for complex flavors.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least $\max (1, n r h s)$.
work $\left({ }^{*}\right)$ is a workspace array. The dimension of work must be at least $\max (1,4 * n)$ for real flavors, and at least max $(1,2 * n)$ for complex flavors.

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $a f ; l d a f \geq \max (1, n)$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size n. The array s contains the scale factors for A.
If equed = 'N', s is not accessed.
If equed $=$ ' Y ', each element of s must be positive.
Each element of s should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.
REAL for sporfsx
DOUBLE PRECISION for dporfsx
COMPLEX for cporfsx
DOUBLE COMPLEX for zporfsx.
Array, size Idx by *.
The solution matrix X as computed by ?potrs
INTEGER. The leading dimension of the output array $x ; \operatorname{ldx} \geq \max (1, n)$.
INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

INTEGER. Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0 , that entry will be filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for highernumbered parameters. If defaults are acceptable, you can pass nparams $=$ 0 , which prevents the source code from accessing the params argument.
params (1) : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).

$$
\begin{array}{ll}
=0.0 & \begin{array}{l}
\text { No refinement is performed and no error bounds } \\
\text { are computed. }
\end{array} \\
=1.0 & \begin{array}{l}
\text { Use the double-precision refinement algorithm, } \\
\text { possibly with doubled-single computations if the } \\
\text { compilation environment does not support } \\
\text { double precision. }
\end{array}
\end{array}
$$

(Other values are reserved for future use.)
params (2) : Maximum number of residual computations allowed for refinement.

Default 10.0
Aggressive Set to 100.0 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params (3) : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

INTEGER. Workspace array, size at least $\max (1, n)$; used in real flavors only.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, size at least max $(1,3 * n)$; used in complex flavors only.

Output Parameters

X

REAL for sporfsx
DOUBLE PRECISION for dporfsx
COMPLEX for cporfsx
DOUBLE COMPLEX for zporfsx.
The improved solution matrix X.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Array, size at least max ($1, n r h s$). Contains the componentwise relative backward error for each solution vector $x(j)$, that is, the smallest relative change in any element of A or B that makes $x(j)$ an exact solution.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:

Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

The first index in err_bnds_norm(i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_norm (: ,err) contains the following three fields:

$$
\begin{aligned}
& \text { err=1 "Trust/don't trust" boolean. Trust the answer if } \\
& \text { the reciprocal condition number is less than the } \\
& \text { threshold sqrt (} n \text {) *slamch (} \varepsilon \text {) for single } \\
& \text { precision flavors and } \operatorname{sqrt}(n) * \text { damch (} \varepsilon \text {) for } \\
& \text { double precision flavors. } \\
& \text { "Guaranteed" error bound. The estimated } \\
& \text { forward error, almost certainly within a factor of } \\
& 10 \text { of the true error so long as the next entry is } \\
& \text { greater than the threshold } \operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon) \\
& \text { for single precision flavors and } \\
& \operatorname{sqrt}(n) * \text { dlamch (} \varepsilon \text {) for double precision } \\
& \text { flavors. This error bound should only be trusted } \\
& \text { if the previous boolean is true. } \\
& \text { err=3 } \\
& \text { Reciprocal condition number. Estimated } \\
& \text { normwise reciprocal condition number. } \\
& \text { Compared with the threshold } \\
& \operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon) \text { for single precision flavors } \\
& \text { and } \operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon) \text { for double precision } \\
& \text { flavors to determine if the error estimate is } \\
& \text { "guaranteed". These reciprocal condition } \\
& \text { numbers for some appropriately scaled matrix } Z \\
& \text { are } \\
& \|z\|_{0} \cdot \mid z^{-1} \|_{0}
\end{aligned}
$$

err_bnds_comp

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1 .

REAL for single precision flavors

DOUBLE PRECISION for double precision flavors.

Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the i-th solution vector:

$$
\max _{j} \frac{\left|X t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}
$$

The array is indexed by the right-hand side i, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params (3) $=0.0$), then err_bnds_comp is not accessed. If $n_{-} e r r_{-} b n d s$ < 3, then at most the first (:, n_err_bnds) entries are returned.

The first index in err_bnds_comp (i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_comp (: ,err) contains the following three fields:

$e r r=1$	"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt(n) *slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors.
err=2	"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.
err=3	Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z

$\|z\|_{0} \cdot \mid z^{-1} \|_{0}$

Let $z=s^{*}(a * \operatorname{diag}(x))$, where x is the solution for the current right-hand side and s scales each row of $a^{\star} \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .
params
info

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Output parameter only if the input contains erroneous values, namely in params (1), params (2), or params (3). In such a case, the corresponding elements of params are filled with default values on output.

INTEGER. If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, the i-th parameter had an illegal value.
If 0 < info $n: U_{i n f o, i n f o}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with k $>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) = 0.0 , then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that err_bnds_norm $(j, 1)=$ 0.0 or err_bnds_comp $(j, 1)=0.0$. See the definition of err_bnds_norm and err_bnds_comp for err $=1$. To get information about all of the righthand sides, check err_bnds_norm or err_bnds_comp.

See Also

Matrix Storage Schemes

?pprfs

Refines the solution of a system of linear equations with a symmetric (Hermitian) positive-definite coefficient matrix stored in a packed format and estimates its error.

Syntax

```
call spprfs( uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, iwork, info )
call dpprfs( uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, iwork, info )
call cpprfs( uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork, info )
call zpprfs( uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork, info )
call pprfs( ap, afp, b, x [,uplo] [,ferr] [,berr] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a symmetric (Hermitian) positive definite matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:

```
\(\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
```

Finally, the routine estimates the component-wise forward error in the computed solution

```
\(\left|\left|x-x_{e}\right|\right|_{\infty} /||x||_{\infty}\)
```

where x_{e} is the exact solution.
Before calling this routine:

- call the factorization routine ?pptrf
- call the solver routine ?pptrs.

Input Parameters

```
uplo
n
nrhs
ap, afp, b, x, work
```

1 db
$1 d x$

CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo $=$ ' U ', the upper triangle of A is stored.
If uplo $=$ 'L', the lower triangle of A is stored.
INTEGER. The order of the matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; nrhs ≥ 0.
REAL for spprfs
DOUBLE PRECISION for dpprfs
COMPLEX for cpprfs
DOUBLE COMPLEX for zpprfs.

Arrays:

$\operatorname{ap}(*)$ contains the original matrix A in a packed format, as supplied to ?pptrf.
$\operatorname{afp}(*)$ contains the factored matrix A in a packed format, as returned by ?pptrf.
$b(I d b, *)$ contains the right-hand side matrix B.
$x(I d x, *)$ contains the solution matrix X.
work(*) is a workspace array.
The dimension of arrays ap and afp must be at least max (1, n (n $+1) / 2$) ; the second dimension of b and x must be at least max (1, $n r h s)$; the dimension of work must be at least max ($1,3 * n$) for real flavors and max $(1,2 * n)$ for complex flavors.

INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of $x ; 1 d x \geq \max (1, n)$.

```
iwork INTEGER. Workspace array, size at least max (1, n).
rwork
REAL for cpprfs
DOUBLE PRECISION for zpprfs.
Workspace array, size at least max (1, n).
```


Output Parameters

```
X
ferr, berr
```

info

The refined solution matrix X.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine pprfs interface are as follows:

```
ap Holds the array A of size (n* (n+1)/2).
afp Holds the array AF of size (n* (n+1)/2).
b Holds the matrix B of size (n,nrhs).
x Holds the matrix }X\mathrm{ of size ( }n,nrhs\mathrm{ ).
ferr Holds the vector of length (nrhs).
berr
Holds the vector of length (nrhs).
uplo
Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 .

Estimating the forward error involves solving a number of systems of linear equations $A^{*} x=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

See Also
 Matrix Storage Schemes

?pbrfs
 Refines the solution of a system of linear equations with a band symmetric (Hermitian) positive-definite coefficient matrix and estimates its error.

Syntax

```
call spbrfs( uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr, work,
iwork, info )
call dpbrfs( uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr, work,
iwork, info )
call cpbrfs( uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr, work,
rwork, info )
call zpbrfs( uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr, work,
rwork, info )
call pbrfs( ab, afb, b, x [,uplo] [,ferr] [,berr] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a symmetric (Hermitian) positive definite band matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} /| |$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).
Before calling this routine:

- call the factorization routine ?pbtrf
- call the solver routine ?pbtrs.

Input Parameters

```
uplo
n
kd
nrhs
ab,afb,b,x,work
```

CHARACTER*1. Must be 'U' or 'L'.

Indicates how the input matrix A has been factored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The order of the matrix $A ; n \geq 0$.
INTEGER. The number of superdiagonals or subdiagonals in the matrix $A ; k d \geq 0$.

INTEGER. The number of right-hand sides; nrhs ≥ 0.
REAL for spbrfs
DOUBLE PRECISION for dpbrfs

COMPLEX for cpbrfs
DOUBLE COMPLEX for zpbrfs.
Arrays:
$a b(l d a b, *)$ contains the original band matrix A, as supplied to ?pbtrf.
$a f b(l d a f b, *)$ contains the factored band matrix A, as returned by ?pbtrf.
$b(I d b, *)$ contains the right-hand side matrix B.
$x(I d x, *)$ contains the solution matrix X.
work (*) is a workspace array.
The second dimension of $a b$ and $a f b$ must be at least max $(1, n)$; the second dimension of b and x must be at least max ($1, n r h s$); the dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max (1,2 \star n)$ for complex flavors.

INTEGER. The leading dimension of $a b ; I d a b \geq k d+1$.
INTEGER. The leading dimension of $a f b ; / l d a f b \geq k d+1$.
INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of $x ; \operatorname{ldx} \geq \max (1, n)$.
INTEGER. Workspace array, size at least max $(1, n)$.
REAL for cpbrfs
DOUBLE PRECISION for zpbrfs.
Workspace array, size at least max $(1, n)$.

Output Parameters

```
x
ferr, berr
```

info

The refined solution matrix X.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine pbrfs interface are as follows:
$a b$
Holds the array A of size $(k d+1, n)$.

```
afb Holds the array AF of size (kd+1,n).
b Holds the matrix B of size ( }n,nrhs\mathrm{ ).
x Holds the matrix }X\mathrm{ of size ( }n,nrhs)
ferr Holds the vector of length (nrhs).
berr Holds the vector of length (nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
For each right-hand side, computation of the backward error involves a minimum of $8 n^{\star} k d$ floating-point operations (for real flavors) or $32 n^{\star} k d$ operations (for complex flavors). In addition, each step of iterative refinement involves $12 n^{\star} k d$ operations (for real flavors) or $48 n^{\star} k d$ operations (for complex flavors); the number of iterations may range from 1 to 5.
Estimating the forward error involves solving a number of systems of linear equations $A^{\star} X=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $4 n \star k d$ floating-point operations for real flavors or $16 n^{\star} k d$ for complex flavors.

See Also
 Matrix Storage Schemes

?ptrfs
Refines the solution of a system of linear equations with a symmetric (Hermitian) positive-definite tridiagonal coefficient matrix and estimates its error.

Syntax

```
call sptrfs( n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info )
call dptrfs( n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, info )
call cptrfs( uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, rwork, info )
call zptrfs( uplo, n, nrhs, d, e, df, ef, b, ldb, x, ldx, ferr, berr, work, rwork, info )
call ptrfs( d, df, e, ef, b, x [,ferr] [,berr] [,info] )
call ptrfs( d, df, e, ef, b, x [,uplo] [,ferr] [,berr] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A \star X=B$ with a symmetric (Hermitian) positive definite tridiagonal matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.

Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} / \|$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?pttrf
- call the solver routine ?pttrs.

Input Parameters

```
uplo
n
nrhs
\(d, d f, r w o r k\)
```

e,ef,b,x,work

CHARACTER*1. Used for complex flavors only. Must be 'U' or 'L'.
Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix A is stored and how A is factored:
If uplo = 'U', the array e stores the superdiagonal of A, and A is factored as $U^{H *} D^{*} U$.

If uplo = 'L', the array e stores the subdiagonal of A, and A is factored as $L^{\star} D^{\star} L^{H}$.

INTEGER. The order of the matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; nrhs ≥ 0.
REAL for single precision flavors DOUBLE PRECISION for double precision flavors
Arrays: $d(n), d f(n), r w o r k(n)$.
The array d contains the n diagonal elements of the tridiagonal matrix A.

The array $d f$ contains the n diagonal elements of the diagonal matrix D from the factorization of A as computed by ?pttrf.

The array rwork is a workspace array used for complex flavors only.
REAL for sptrfs
DOUBLE PRECISION for dptrfs
COMPLEX for cptrfs
DOUBLE COMPLEX for zptrfs.
Arrays: e(n-1), ef(n-1),b(ldb,nrhs), x(ldx,nrhs), work(*).
The array e contains the ($n-1$) off-diagonal elements of the tridiagonal matrix A (see uplo).
The array ef contains the $(n-1)$ off-diagonal elements of the unit bidiagonal factor U or L from the factorization computed by ?pttrf (see uplo).

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
The array x contains the solution matrix X as computed by ?pttrs.
The array work is a workspace array. The dimension of work must be at least $2{ }^{*} n$ for real flavors, and at least n for complex flavors.

INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.

$1 d x$

INTEGER. The leading dimension of $x ; 1 d x \geq \max (1, n)$.

Output Parameters

x ferr, berr
info

The refined solution matrix X.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine ptrfs interface are as follows:

```
d Holds the vector of length n.
df Holds the vector of length n.
e Holds the vector of length (n-1).
ef Holds the vector of length (n-1).
b Holds the matrix B of size ( n,nrhs).
x Holds the matrix X of size (n,nrhs).
ferr Holds the vector of length (nrhs).
berr Holds the vector of length (nrhs).
uplo Used in complex flavors only. Must be 'U' or 'L'. The default value is
    'U'.
```


See Also

Matrix Storage Schemes

?syrfs

Refines the solution of a system of linear equations with a symmetric coefficient matrix and estimates its error.

Syntax

```
call ssyrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
iwork, info )
call dsyrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
iwork, info )
```

```
call csyrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info )
call zsyrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info )
call syrfs( a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a symmetric full-storage matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:

```
| \deltaa ij| \leq | | aij|, | \deltab i| \leq | b b | such that (A + \deltaA)x = (b + \deltab).
```

Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} /| |$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?sytrf
- call the solver routine ?sytrs.

Input Parameters

```
uplo
n
nrhs
a,af,b,x,work
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', the upper triangle of \(A\) is stored.
If uplo = 'L', the lower triangle of \(A\) is stored.
INTEGER. The order of the matrix \(A ; n \geq 0\).
INTEGER. The number of right-hand sides; nrhs \(\geq 0\).
REAL for ssyrfs
DOUBLE PRECISION for dsyrfs
COMPLEX for csyrfs
DOUBLE COMPLEX for zsyrfs.
```


Arrays:

a(lda,*) contains the original matrix A, as supplied to ?sytrf.
af(ldaf,*) contains the factored matrix A, as returned by ?sytrf.
$b(I d b, *)$ contains the right-hand side matrix B.
$x(I d x, *)$ contains the solution matrix X.
work(*) is a workspace array.

Ida
Idaf
1 db
Idx
ipiv
iwork
rwork

The second dimension of a and af must be at least max $(1, n)$; the second dimension of b and x must be at least max ($1, n r h s$); the dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 \star_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $a f ; \operatorname{lda} E \max (1, n)$.
INTEGER. The leading dimension of $b ; I d b \geq \max (1, n)$.
INTEGER. The leading dimension of $x ; \operatorname{ldx} \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$. The ipiv array, as returned by ?sytrf.
INTEGER. Workspace array, size at least max $(1, n)$.
REAL for csyrfs
DOUBLE PRECISION for zsyrfs.
Workspace array, size at least max $(1, n)$.

Output Parameters

```
X
ferr, berr
```

info

The refined solution matrix X.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine syrfs interface are as follows:

a	Holds the matrix A of size (n, n).
af	Holds the matrix $A F$ of size (n, n).
ipiv	Holds the vector of length n.
x	Holds the matrix B of size $(n, n r h s)$.
ferr	Holds the matrix X of size $(n, n r h s)$.
berr	Holds the vector of length (nrhs).
Holds the vector of length $(n r h s)$.	

Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations (for real flavors) or $16 n^{2}$ operations (for complex flavors). In addition, each step of iterative refinement involves $6 n^{2}$ operations (for real flavors) or $24 n^{2}$ operations (for complex flavors); the number of iterations may range from 1 to 5 . Estimating the forward error involves solving a number of systems of linear equations $A^{\star} X=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{2}$ floating-point operations for real flavors or $8 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes

?syrfsx

Uses extra precise iterative refinement to improve the solution to the system of linear equations with a symmetric indefinite coefficient matrix A and provides error bounds and backward error estimates.

Syntax

```
call ssyrfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond,
berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info )
call dsyrfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond,
berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info )
call csyrfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond,
berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
call zsyrfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond,
berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine improves the computed solution to a system of linear equations when the coefficient matrix is symmetric indefinite, and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.
The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed and s below. In this case, the solution and error bounds returned are for the original unequilibrated system.

Input Parameters

uplo
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.

	If uplo = 'L', the lower triangle of A is stored.
equed	CHARACTER*1. Must be 'N' or 'Y'.
	Specifies the form of equilibration that was done to A before calling this routine.
	If equed = 'N', no equilibration was done.
	If equed $=$ ' Y ', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(s){ }^{*} A^{*} \operatorname{diag}(s)$. The right-hand side B has been changed accordingly.
n	Integer. The number of linear equations; the order of the matrix $A ; n \geq 0$.
nrhs	INTEGER. The number of right-hand sides; the number of columns of the matrices B and X; nrhs ≥ 0.
$a, ~ a f, b$, work	REAL for ssyrfsx
	DOUBLE PRECISION for dsyrfsx
	COMPLEX for csyrfsx
	DOUBLE COMPLEX for zsyrfsx.
	Arrays: $a(l d a, *), a f(l d a f, *), b(l d b, *)$, work (*).
	The array a contains the symmetric/Hermitian matrix A as specified by uplo. If uplo = ' U ', the leading n-by- n upper triangular part of a contains the upper triangular part of the matrix A and the strictly lower triangular part of a is not referenced. If uplo = ' L ', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A and the strictly upper triangular part of a is not referenced. The second dimension of a must be at least $\max (1, n)$.
	The array af contains the triangular factor L or U from the Cholesky factorization $A=U^{\top} * U$ or $A=L^{*} L^{\top}$ as computed by ssytrf for real flavors or dsytrf for complex flavors.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least $\max (1, n r h s)$.
	work(*) is a workspace array. The dimension of work must be at least $\max \left(1,4 *_{n}\right)$ for real flavors, and at least $\max \left(1,2 *_{n}\right)$ for complex flavors.
Ida	INTEGER. The leading dimension of a; $1 \mathrm{da} \geq \mathrm{l} \max (1, n)$.
Idaf	INTEGER. The leading dimension of $a f ; 1 d a \leq \geq m a x(1, n)$.
ipiv	INTEGER.
	Array, size at least $\max (1, n)$. Contains details of the interchanges and the block structure of D as determined by ssytrf for real flavors or dsytrf for complex flavors.
s	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	Array, size (n). The array s contains the scale factors for A.

If equed $=$ ' N ', s is not accessed.
If equed $=$ ' Y ', each element of s must be positive.
Each element of s should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.
REAL for ssyrfsx
DOUBLE PRECISION for dsyrfsx
COMPLEX for csyrfsx
DOUBLE COMPLEX for zsyrfsx.
Array, size $/ d x$ by *.
The solution matrix X as computed by ?sytrs
INTEGER. The leading dimension of the output array $x ; \operatorname{ldx} \geq \max (1, n)$.
INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

INTEGER. Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0 , that entry will be filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for highernumbered parameters. If defaults are acceptable, you can pass nparams = 0 , which prevents the source code from accessing the params argument.
params (1) : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).
$=0.0 \quad$ No refinement is performed and no error bounds are computed.
=1.0 Use the double-precision refinement algorithm, possibly with doubled-single computations if the compilation environment does not support double precision.
(Other values are reserved for future use.)
params (2) : Maximum number of residual computations allowed for refinement.

Default 10.0

Aggressive	Set to 100.0 to permit convergence using
approximate factorizations or factorizations	
other than $L U$. If the factorization uses a	
technique other than Gaussian elimination, the	
guarantees in err_bnds_norm and	
err_bnds_comp may no longer be trustworthy.	

params (3) : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

INTEGER. Workspace array, size at least max $(1, n)$; used in real flavors only.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, size at least max $(1,3 * n)$; used in complex flavors only.

Output Parameters

x

rcond
berr
err_bnds_norm

REAL for ssyrfsx
DOUBLE PRECISION for dsyrfsx
COMPLEX for csyrfsx
DOUBLE COMPLEX for zsyrfsx.
The improved solution matrix X.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ($1, n r h s$). Contains the componentwise relative backward error for each solution vector $x(j)$, that is, the smallest relative change in any element of A or B that makes $x(j)$ an exact solution.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:
Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

The first index in err_bnds_norm(i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_norm (: ,err) contains the follwoing three fields:
err=1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n)*slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors.
err=2
err=3
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n)$ *dlamch (ε) for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{1} \cdot\left\|z^{-1}\right\|_{0}
$$

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:
$\left.\max _{j} \frac{\mid X \operatorname{true}}{j i} 1-X_{j i} \right\rvert\,$

The array is indexed by the right-hand side i, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params (3) $=0.0$), then err_bnds_comp is not accessed. If $n_{-} e r r_{-} b n d s$ <3, then at most the first (:, $n_{-} e r r_{-} b n d s$) entries are returned.

The first index in err_bnds_comp (i,:) corresponds to the i-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the following three fields:

err=1	"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n)*slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors.
err=2	"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.
err=3	Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z

$$
\|Z\|_{\infty} \cdot\left\|Z^{-1}\right\|_{\infty}
$$

Let $z=s^{\star}(a * \operatorname{diag}(x))$, where x is the solution for the current right-hand side and s scales each row of $a \star \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .

REAL for single precision flavors

DOUBLE PRECISION for double precision flavors.
Output parameter only if the input contains erroneous values, namely, in params (1), params (2), params (3). In such a case, the corresponding elements of params are filled with default values on output.

INTEGER. If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.

If info $=-i$, the i-th parameter had an illegal value.

If 0 < info n : $U_{i n f o, i n f o}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with k $>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) = 0.0 , then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that err_bnds_norm $(j, 1)=$ 0.0 or err_bnds_comp $(j, 1)=0.0$. See the definition of err_bnds_norm and err_bnds_comp for err = 1. To get information about all of the righthand sides, check err_bnds_norm or err_bnds_comp.

```
See Also
Matrix Storage Schemes
?herfs
Refines the solution of a system of linear equations
with a complex Hermitian coefficient matrix and
estimates its error.
```


Syntax

```
call cherfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
```

call cherfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info)
rwork, info)
call zherfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
call zherfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work,
rwork, info)
rwork, info)
call herfs(a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info])

```
call herfs( a, af, ipiv, b, x [,uplo] [,ferr] [,berr] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine performs an iterative refinement of the solution to a system of linear equations $A * X=B$ with a complex Hermitian full-storage matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
Finally, the routine estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right| \infty /| |$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine:

- call the factorization routine ?hetrf
- call the solver routine ?hetrs.

Input Parameters
uplo
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', the upper triangle of A is stored.

	If uplo = 'L', the lower triangle of A is stored.
n	INTEGER. The order of the matrix $A ; n \geq 0$.
nrhs	INTEGER. The number of right-hand sides; nrhs ≥ 0.
$a, a f, b, x$, work	COMPLEX for cherfs
	DOUBLE COMPLEX for zherfs.
	Arrays:
	a(size lda by *) contains the original matrix A, as supplied to ?hetrf.
	af(size ldaf by *) contains the factored matrix A, as returned by ?hetrf.
	$\mathrm{b}(\mathrm{size} \mathrm{ldb}$ by *) contains the right-hand side matrix B.
	$x($ size ldx by *) contains the solution matrix X.
	work(*) is a workspace array.
	The second dimension of a and af must be at least max $(1, n)$; the second dimension of b and x must be at least max ($1, n r h s$); the dimension of work must be at least max (1, $2 \star_{n}$).
lda	INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
Idaf	INTEGER. The leading dimension of $a f ; 1 d a f \geq \max (1, n)$.
1 db	INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
$1 d x$	INTEGER. The leading dimension of $x ; 1 d x \geq \max (1, n)$.
ipiv	INTEGER.
	Array, size at least max $(1, n)$. The ipiv array, as returned by ?hetrf.
rwork	REAL for cherfs
	DOUBLE PRECISION for zherfs.
	Workspace array, size at least max (1, n) .
Output Parameters	
x	The refined solution matrix X.
ferr, berr	REAL for cherfs
	DOUBLE PRECISION for zherfs.
	Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.
info	INTEGER. If info $=0$, the execution is successful.
	If info $=-i$, the i-th parameter had an illegal value

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine herfs interface are as follows:

```
a Holds the matrix A of size (n,n).
af Holds the matrix AF of size (n,n).
ipiv Holds the vector of length n.
b Holds the matrix B of size ( n,nrhs).
x Holds the matrix X of size (n,nrhs).
ferr Holds the vector of length (nrhs).
berr Holds the vector of length (nrhs).
```

uplo Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $16 n^{2}$ operations. In addition, each step of iterative refinement involves $24 n^{2}$ operations; the number of iterations may range from 1 to 5 .
Estimating the forward error involves solving a number of systems of linear equations $A^{*}{ }_{x}=b$; the number is usually 4 or 5 and never more than 11. Each solution requires approximately $8 n^{2}$ floating-point operations.

The real counterpart of this routine is ?ssyrfs/?dsyrfs

See Also
 Matrix Storage Schemes

?herfsx
Uses extra precise iterative refinement to improve the solution to the system of linear equations with a symmetric indefinite coefficient matrix A and provides error bounds and backward error estimates.

Syntax

```
call cherfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond,
berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
call zherfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond,
berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine improves the computed solution to a system of linear equations when the coefficient matrix is Hermitian indefinite, and provides error bounds and backward error estimates for the solution. In addition to a normwise error bound, the code provides a maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.
The original system of linear equations may have been equilibrated before calling this routine, as described by the parameters equed and s below. In this case, the solution and error bounds returned are for the original unequilibrated system.

Input Parameters

```
uplo
equed
n
nrhs
a, af,b, work
```

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
CHARACTER*1. Must be 'N' or 'Y'.
Specifies the form of equilibration that was done to A before calling this routine.

If equed $=$ ' N ', no equilibration was done.
If equed = 'Y', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$. The right-hand side B has been changed accordingly.

INTEGER. The number of linear equations; the order of the matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; the number of columns of the matrices B and X; nrhs ≥ 0.

COMPLEX for cherfsx
DOUBLE COMPLEX for zherfsx.
Arrays: $a(l d a, *), a f(l d a f, *), b(l d b, *), \operatorname{work}(*)$.
The array a contains the Hermitian matrix A as specified by uplo. If uplo $=$ ' U', the leading n-by- n upper triangular part of a contains the upper triangular part of the matrix A and the strictly lower triangular part of a is not referenced. If uplo $=$ ' L', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A and the strictly upper triangular part of a is not referenced. The second dimension of a must be at least max $(1, n)$.

The array af contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization $A=U^{\star} D^{\star} U^{\mathbb{T}}$ or $A=$ $L^{\star} D^{\star} L^{T}$ as computed by ssytrf for cherfsx or dsytrf for zherfsx.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).
work (*) is a workspace array. The dimension of work must be at least $\max \left(1,2 *_{n}\right)$.

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.

```
ldaf
ipiv
s
ldb
x
ldx
n_err_bnds

INTEGER. The leading dimension of \(a f ; \quad l d a E \geq \max (1, n)\).

INTEGER.
Array, size at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\) as determined by ssytrf for real flavors or dsytrf for complex flavors.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size ( \(n\) ). The array \(s\) contains the scale factors for \(A\).
If equed = 'N', \(s\) is not accessed.
If equed \(=\) ' \(Y\) ', each element of \(s\) must be positive.
Each element of \(s\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array \(b ; 1 d b \geq \max (1, n)\).
COMPLEX for cherfsx
DOUBLE COMPLEX for zherfsx.
Array, size ( \(1 d x, *\) ).
The solution matrix \(X\) as computed by ?hetrs
INTEGER. The leading dimension of the output array \(x ; \operatorname{ldx} \geq \max (1, n)\).
integer. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

INTEGER. Specifies the number of parameters set in params. If \(\leq 0\), the params array is never referenced and default values are used.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0 , that entry will be filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for highernumbered parameters. If defaults are acceptable, you can pass nparams \(=\) 0 , which prevents the source code from accessing the params argument.
params (1) : Whether to perform iterative refinement or not. Default: 1.0 (for cherfsx), 1.0D+0 (for zherfsx).
\(=0.0 \quad\) No refinement is performed and no error bounds are computed.

Use the double-precision refinement algorithm, possibly with doubled-single computations if the compilation environment does not support double precision.
(Other values are reserved for future use.)
params (2) : Maximum number of residual computations allowed for refinement.

Default 10
Aggressive Set to 100 to permit convergence using approximate factorizations or factorizations other than \(L U\). If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params (3) : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the double-precision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

REAL for cherfsx
DOUBLE PRECISION for zherfsx.
Workspace array, size at least max (1, \(3 *^{*} n\) ).

\section*{Output Parameters}

X
rcond
berr
err_bnds_norm
COMPLEX for cherfsx
DOUBLE COMPLEX for zherfsx.
The improved solution matrix \(X\).
REAL for cherfsx
DOUBLE PRECISION for zherfsx.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

REAL for cherfsx
DOUBLE PRECISION for zherfsx.
Array, size at least max ( \(1, n r h s\) ). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.

REAL for cherfsx
DOUBLE PRECISION for zherfsx.

Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:

Normwise relative error in the \(i\)-th solution vector


The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
The first index in err_bnds_norm(i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_norm (: ,err) contains the following three fields:
err \(=1\)
err=2
err=3
err_bnds_comp
REAL for cherfsx

DOUBLE PRECISION for zherfsx.
Array of size nrhs by \(n _e r r _b n d s\). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the \(i\)-th solution vector:


The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params (3) \(=0.0\) ), then err_bnds_comp is not accessed. If \(n_{-}\)err_bnds \(<3\), then at most the first (:, \(n_{-} e r r_{-} b n d s\) ) entries are returned.

The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.

The second index in err_bnds_comp (: ,err) contains the following three fields:
\[
\begin{aligned}
& \text { err=1 "Trust/don't trust" boolean. Trust the answer if } \\
& \text { the reciprocal condition number is less than the } \\
& \text { threshold } \operatorname{sqrt}(n) \text { *slamch ( } \varepsilon \text { ) for cherfsx and } \\
& \operatorname{sqrt}(n) * d l a m c h(\varepsilon) \text { for zherfsx. } \\
& \text { err=2 "Guaranteed" error bpound. The estimated } \\
& \text { forward error, almost certainly within a factor of } \\
& 10 \text { of the true error so long as the next entry is } \\
& \text { greater than the threshold } \operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon) \\
& \text { for cherfsx and } \operatorname{sqrt}(n) * d l a m c h(\varepsilon) \text { for } \\
& \text { zherfsx. This error bound should only be } \\
& \text { trusted if the previous boolean is true. } \\
& \text { err=3 } \\
& \text { Reciprocal condition number. Estimated } \\
& \text { componentwise reciprocal condition number. } \\
& \text { Compared with the threshold } \\
& \operatorname{sqrt}(n) * s l a m c h(\varepsilon) \text { for single precision flavors } \\
& \text { and } \operatorname{sqrt}(n) * d l a m c h(\varepsilon) \text { for double precision } \\
& \text { flavors to determine if the error estimate is } \\
& \text { "guaranteed". These reciprocal condition } \\
& \text { numbers for some appropriately scaled matrix } Z \\
& \text { are: } \\
& \|z\|_{0} \cdot \mid z^{-1} \|_{0}
\end{aligned}
\]

Let \(z=s^{\star}(a * \operatorname{diag}(x))\), where \(x\) is the solution for the current right-hand side and \(s\) scales each row of \(a^{\star} \operatorname{diag}(x)\) by a power of the radix so all absolute row sums of \(z\) are approximately 1 .

\section*{REAL for single precision flavors}

DOUBLE PRECISION for double precision flavors.
Output parameter only if the input contains erroneous values, namely, in params (1), params (2), params (3). In such a case, the corresponding elements of params are filled with default values on output.
info INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If 0 < info \(n\) : \(U_{\text {info, info }}\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; \(r\) cond \(=0\) is returned.

If info \(=n+j\) : The solution corresponding to the \(j\)-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides \(k\) with \(k\) \(>j\) may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) = 0.0 , then the \(j\)-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest \(j\) such that err_bnds_norm \((j, 1)=\) 0.0 or err_bnds_comp \((j, 1)=0.0\). See the definition of err_bnds_norm and err_bnds_comp for err \(=1\). To get information about all of the righthand sides, check err_bnds_norm or err_bnds_comp.

\section*{See Also}

\author{
Matrix Storage Schemes
}

\section*{?sprfs}

Refines the solution of a system of linear equations with a packed symmetric coefficient matrix and estimates the solution error.

\section*{Syntax}
```

call ssprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork,
info)
call dsprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork,
info)
call csprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork,
info)
call zsprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork,
info)
call sprfs(ap, afp, ipiv, b, x [,uplo] [,ferr] [,berr] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine performs an iterative refinement of the solution to a system of linear equations \(A * X=B\) with a packed symmetric matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward errorß. This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\(\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|\) such that \((A+\delta A) x=(b+\delta b)\).
Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\mid x-x_{e}\|\infty /\|\right.\) \(x \mid \|_{\infty}\) (here \(x_{e}\) is the exact solution).

Before calling this routine:
- call the factorization routine ?sptrf
- call the solver routine ?sptrs.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', the upper triangle of \(A\) is stored. \\
\hline & If uplo = 'L', the lower triangle of \(A\) is stored. \\
\hline \(n\) & INTEGER. The order of the matrix \(A\); \(n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides; nrhs \(\geq 0\). \\
\hline \(a p, a f p, b, x, w o r k\) & REAL for ssprfs \\
\hline & DOUBLE PRECISION for dsprfs \\
\hline & COMPLEX for csprfs \\
\hline & DOUBLE COMPLEX for zsprfs. \\
\hline & Arrays: \\
\hline & ap (size *) contains the original packed matrix \(A\), as supplied to ?sptrf. \\
\hline & afp (size *) contains the factored packed matrix \(A\), as returned by ?sptrf. \\
\hline & \(b\) (size ldb by *) contains the right-hand side matrix \(B\). \\
\hline & \(x(\) size ldx by *) contains the solution matrix \(X\). \\
\hline & work(*) is a workspace array. \\
\hline & The dimension of arrays \(a p\) and afp must be at least max ( \(1, n(n\) +1 ) / 2) ; the second dimension of \(b\) and \(x\) must be at least max (1, \(n r h s)\); the dimension of work must be at least max (1, \(3{ }^{*} n\) ) for real flavors and max \(\left(1,2 *_{n}\right)\) for complex flavors. \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline \(1 d x\) & INTEGER. The leading dimension of \(x ; 1 d x \geq \max (1, n)\). \\
\hline ipiv & INTEGER. \\
\hline & Array, size at least max (1, n). The ipiv array, as returned by ? sptrf. \\
\hline iwork & \(\operatorname{INTEGER}\). Workspace array, size at least max \((1, n)\). \\
\hline rwork & REAL for csprfs \\
\hline & DOUBLE PRECISION for zsprfs. \\
\hline & Workspace array, size at least max (1, n) . \\
\hline
\end{tabular}

\section*{Output Parameters}
```

ferr, berr REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, size at least max(1, nrhs). Contain the component-wise
forward and backward errors, respectively, for each solution vector.
INTEGER. If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

```

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sprfs interface are as follows:
```

ap Holds the array A of size (n* (n+1)/2).
afp Holds the array AF of size (n* (n+1)/2).
ipiv Holds the vector of length n.
b Holds the matrix B of size (}n,nrhs)\mathrm{ .
x Holds the matrix }X\mathrm{ of size (}n,nrhs)\mathrm{ .
ferr Holds the vector of length (nrhs).
berr Holds the vector of length (nrhs).
uplo
Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of \(4 n^{2}\) floating-point operations (for real flavors) or \(16 n^{2}\) operations (for complex flavors). In addition, each step of iterative refinement involves \(6 n^{2}\) operations (for real flavors) or \(24 n^{2}\) operations (for complex flavors); the number of iterations may range from 1 to 5 .

Estimating the forward error involves solving a number of systems of linear equations \(A^{*}{ }_{x}=b\); the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately \(2 n^{2}\) floating-point operations for real flavors or \(8 n^{2}\) for complex flavors.

\section*{See Also}

Matrix Storage Schemes
?hprfs
Refines the solution of a system of linear equations with a packed complex Hermitian coefficient matrix and estimates the solution error.

Syntax
```

call chprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork,
info)

```
```

call zhprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork,
info)
call hprfs(ap, afp, ipiv, b, x [,uplo] [,ferr] [,berr] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine performs an iterative refinement of the solution to a system of linear equations \(A \star X=B\) with a packed complex Hermitian matrix \(A\), with multiple right-hand sides. For each computed solution vector \(x\), the routine computes the component-wise backward errorß. This error is the smallest relative perturbation in elements of \(A\) and \(b\) such that \(x\) is the exact solution of the perturbed system:
\[
\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|, \quad\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right| \text { such that }(A+\delta A) x=(b+\delta b)
\]

Finally, the routine estimates the component-wise forward error in the computed solution \(\left|\left|x-x_{e}\right|\right|_{\infty} /| |\) \(x\left|\left.\right|_{\infty}\right.\) (here \(x_{e}\) is the exact solution).

Before calling this routine:
- call the factorization routine ?hptrf
- call the solver routine ?hptrs.

\section*{Input Parameters}
```

uplo
n
nrhs
ap,afp,b,x,work

CHARACTER*1. Must be 'U' or 'L'.
If uplo $=$ ' U ', the upper triangle of A is stored.
If uplo $=$ 'L', the lower triangle of A is stored.
INTEGER. The order of the matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; nrhs ≥ 0.
COMPLEX for chprfs
DOUBLE COMPLEX for zhprfs.
Arrays:
ap (size *) contains the original packed matrix A, as supplied to ?hptrf.
$\operatorname{afp}\left(\operatorname{size}^{*}\right)$ contains the factored packed matrix A, as returned by ?hptrf.
$b($ size $l d b$ by $*$) contains the right-hand side matrix B.
$x($ size $l d x$ by $*)$ contains the solution matrix X.
work(*) is a workspace array.
The dimension of arrays ap and afp must be at least max ($1, n$ (n
$+1) / 2$) ; the second dimension of b and x must be at least
$\max (1, n r h s)$; the dimension of work must be at least max $(1,2 * n)$.
INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.

```
Idx INTEGER. The leading dimension of }x;1dx\geq max(1, n)
ipiv
rwork
INTEGER. The leading dimension of \(x ; \operatorname{ldx} \geq \max (1, n)\).
INTEGER.
Array, size at least max \((1, n)\). The ipiv array, as returned by ?hptrf.
REAL for chprfs
DOUBLE PRECISION for zhprfs.
Workspace array, size at least max \((1, n)\).
```


Output Parameters

```
X
ferr, berr
```

info

The refined solution matrix X.
REAL for chprfs.
DOUBLE PRECISION for zhprfs.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hprfs interface are as follows:

```
ap Holds the array A of size (n* (n+1)/2).
afp Holds the array AF of size (n* (n+1)/2).
ipiv Holds the vector of length n.
b
x Holds the matrix }X\mathrm{ of size (n,nrhs).
ferr Holds the vector of length (nrhs).
berr
Holds the vector of length (nrhs).
Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

For each right-hand side, computation of the backward error involves a minimum of $16 n^{2}$ operations. In addition, each step of iterative refinement involves $24 n^{2}$ operations; the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear equations $A^{\star} X=b$; the number is usually 4 or 5 and never more than 11 . Each solution requires approximately $8 n^{2}$ floating-point operations.

The real counterpart of this routine is ?ssprfs/?dsprfs.

See Also
Matrix Storage Schemes

?trrfs

Estimates the error in the solution of a system of linear equations with a triangular coefficient matrix.

Syntax

```
call strrfs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr, work, iwork,
info )
call dtrrfs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr, work, iwork,
info )
call ctrrfs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr, work, rwork,
info )
call ztrrfs( uplo, trans, diag, n, nrhs, a, lda, b, ldb, x, ldx, ferr, berr, work, rwork,
info )
call trrfs( a, b, x [,uplo] [,trans] [,diag] [,ferr] [,berr] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the errors in the solution to a system of linear equations $A * X=B$ or $A^{T} * X=B$ or $A^{H * X}=B$ with a triangular matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
The routine also estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} / \|$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine, call the solver routine ?trtrs.

Input Parameters

uplo
trans
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.
CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans $=$ ' N ', the system has the form $A * X=B$.
If trans $=$ ' T ', the system has the form $A^{T *} X=B$.
If trans $=' \mathrm{C}$ ', the system has the form $A^{H * X}=B$.
diag
n
nrhs
a, b, x, work

Ida
1 db
$1 d x$
iwork
rwork

Output Parameters

```
ferr, berr
```

info

CHARACTER*1. Must be 'N' or 'U'.
If diag $=$ ' N ', then A is not a unit triangular matrix.
If diag = 'U', then A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array a.

INTEGER. The order of the matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; nrhs ≥ 0.
REAL for strrfs
DOUBLE PRECISION for dtrrfs
COMPLEX for ctrrfs
DOUBLE COMPLEX for ztrrfs.
Arrays:
a(size Ida by *) contains the upper or lower triangular matrix A, as specified by uplo.
b (size $l d b$ by ${ }^{*}$) contains the right-hand side matrix B.
x (size $I d x$ by *) contains the solution matrix X.
work(*) is a workspace array.
The second dimension of a must be at least max $(1, n)$; the second dimension of b and x must be at least max ($1, n r h s$) ; the dimension of work must be at least max $\left(1,3 \star_{n}\right)$ for real flavors and max $\left(1,2 *_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of $x ; 1 d x \geq \max (1, n)$.
INTEGER. Workspace array, size at least max $(1, n)$.
REAL for ctrrfs
DOUBLE PRECISION for ztrrfs.
Workspace array, size at least max $(1, n)$.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine trrfs interface are as follows:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size $(n, n r h s)$.
ferr	Holds the matrix X of size $(n, n r h s)$.
berr	Holds the vector of length ($n r h s$).
uplo	Holds the vector of length (nrhs).
trans	Must be 'U' or 'L'. The default value is 'U'.
diag	Must be 'N', 'C', or 'T'. The default value is 'N'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear equations $A^{*} x$ $=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately n^{2} floating-point operations for real flavors or $4 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes
?tprfs
Estimates the error in the solution of a system of linear equations with a packed triangular coefficient matrix.

Syntax

```
call stprfs( uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, iwork,
info )
call dtprfs( uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, iwork,
info )
call ctprfs( uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, rwork,
info )
call ztprfs( uplo, trans, diag, n, nrhs, ap, b, ldb, x, ldx, ferr, berr, work, rwork,
info )
call tprfs( ap, b, x [,uplo] [,trans] [,diag] [,ferr] [,berr] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the errors in the solution to a system of linear equations $A * X=B$ or $A^{T} * X=B$ or $A^{H *} X=B$ with a packed triangular matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:

```
| \deltaa ij| \leq | | aij|, | \deltabi
```

The routine also estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right|_{\infty} /| |$ $x\left|\left.\right|_{\infty}\right.$ (here x_{e} is the exact solution).

Before calling this routine, call the solver routine ?tptrs.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether A is upper or lower triangular:
	If uplo = 'U', then A is upper triangular.
	If uplo = 'L', then A is lower triangular.
trans	CHARACTER*1. Must be 'N' or 'T' or 'C'.
	Indicates the form of the equations:
	If trans $=$ ' N ', the system has the form $A * X=B$.
	If trans $=$ ' T ', the system has the form $A^{T *} X=B$.
	If trans $=$ ' C', the system has the form $A^{H * X}=B$.
diag	CHARACTER*1. Must be 'N' or 'U'.
	If diag = 'N', A is not a unit triangular matrix.
	If diag = 'U', A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array ap.
n	INTEGER. The order of the matrix $A ; n \geq 0$.
nrhs	INTEGER. The number of right-hand sides; nrhs ≥ 0.
ap, b, x, work	REAL for stprfs
	DOUBLE PRECISION for dtprfs
	COMPLEX for ctprfs
	DOUBLE COMPLEX for ztprfs.
	Arrays:
	ap (size *) contains the upper or lower triangular matrix A, as specified by uplo.
	b (size $l d b$ by ${ }^{*}$) contains the right-hand side matrix B. $x($ size $I d x$ by *) contains the solution matrix X.
	work(*) is a workspace array.

```
ldb
ldx
iwork
```

rwork

The dimension of $a p$ must be at least $\max (1, n(n+1) / 2)$; the second dimension of b and x must be at least max ($1, n r h s$); the dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 \star_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of $b ; I d b \geq \max (1, n)$.
INTEGER. The leading dimension of $x ; \operatorname{ldx} \geq \max (1, n)$.
INTEGER. Workspace array, size at least max $(1, n)$.
REAL for ctprfs
DOUBLE PRECISION for ztprfs.
Workspace array, size at least max $(1, n)$.

Output Parameters

```
ferr, berr
```

info
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, size at least max ($1, n r h s$). Contain the component-wise forward and backward errors, respectively, for each solution vector.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine tprfs interface are as follows:

ap	Holds the array A of size $\left(n^{\star}(n+1) / 2\right)$.
b	Holds the matrix B of size $(n, n r h s)$.
ferr	Holds the matrix X of size $(n, n r h s)$.
berr	Holds the vector of length ($n r h s$).
uplo	Holds the vector of length (nrhs).
trans	Must be 'U' or 'L'. The default value is 'U'.
diag	Must be 'N', 'C', or 'T'. The default value is 'N'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of systems of linear equations $A^{*} x$ $=b$; the number of systems is usually 4 or 5 and never more than 11. Each solution requires approximately n^{2} floating-point operations for real flavors or $4 n^{2}$ for complex flavors.

See Also

Matrix Storage Schemes

?tbrfs

Estimates the error in the solution of a system of linear equations with a triangular band coefficient matrix.

Syntax

```
call stbrfs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr, berr, work,
iwork, info )
call dtbrfs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr, berr, work,
iwork, info )
call ctbrfs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr, berr, work,
rwork, info )
call ztbrfs( uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, x, ldx, ferr, berr, work,
rwork, info )
call tbrfs( ab, b, x [,uplo] [,trans] [,diag] [,ferr] [,berr] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine estimates the errors in the solution to a system of linear equations $A * X=B$ or $A^{T} * X=B$ or $A^{H *} X=B$ with a triangular band matrix A, with multiple right-hand sides. For each computed solution vector x, the routine computes the component-wise backward error β. This error is the smallest relative perturbation in elements of A and b such that x is the exact solution of the perturbed system:
$\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right|,\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right|$ such that $(A+\delta A) x=(b+\delta b)$.
The routine also estimates the component-wise forward error in the computed solution $\left|\left|x-x_{e}\right|\right| \infty /| |$ $x \mid l_{\infty}$ (here x_{e} is the exact solution).
Before calling this routine, call the solver routine ? tbtrs.

Input Parameters

uplo
trans

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether A is upper or lower triangular:
If uplo = 'U', then A is upper triangular.
If uplo = 'L', then A is lower triangular.
CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans $=$ ' N ', the system has the form $A * X=B$.

	If trans $=$ 'T', the system has the form $A^{T * X}=B$. If trans $=$ ' C', the system has the form $A^{H * X}=B$.
diag	CHARACTER*1. Must be 'N' or 'U'.
	If diag = 'N', A is not a unit triangular matrix.
	If diag = 'U', A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array $a b$.
n	INTEGER. The order of the matrix $A ; n \geq 0$.
kd	INTEGER. The number of super-diagonals or sub-diagonals in the matrix $A ; k d \geq 0$.
nrhs	INTEGER. The number of right-hand sides; nrhs ≥ 0.
ab, b, x, work	REAL for stbrfs
	DOUBLE PRECISION for dtbrfs
	COMPLEX for ctbrfs
	DOUBLE COMPLEX for ztbrfs.
	Arrays:
	$a b$ (size $/ d a b$ by ${ }^{*}$) contains the upper or lower triangular matrix A, as specified by uplo, in band storage format.
	b (size $/ d b$ by ${ }^{*}$) contains the right-hand side matrix B.
	$x\left(\right.$ size $/ d x$ by ${ }^{*}$) contains the solution matrix X.
	work(*) is a workspace array.
	The second dimension of a must be at least max $(1, n)$; the second dimension of b and x must be at least max ($1, n r h s$). The dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.
Idab	INTEGER. The leading dimension of the array $a b ; / d a b \geq k d+1$.
1 db	INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
$1 d x$	INTEGER. The leading dimension of $x ; 1 d x \geq \max (1, n)$.
iwork	INTEGER. Workspace array, size at least max (1, n) .
rwork	REAL for ctbrfs
	DOUBLE PRECISION for ztbrfs.
	Workspace array, size at least max (1, n) .

Output Parameters

ferr, berr

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays, size at least max (1, nrhs). Contain the component-wise forward and backward errors, respectively, for each solution vector.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine tbrfs interface are as follows:

$a b$	Holds the array A of size $(k d+1, n)$.
b	Holds the matrix B of size $(n, n r h s)$.
x	Holds the matrix X of size $(n, n r h s)$.
ferr	Holds the vector of length $(n r h s)$.
uplo	Holds the vector of length ($n r h s$).
trans	Must be 'U' or 'L'. The default value is ' U '.
diag	Must be 'N', 'C' or 'T'. The default value is 'N'.

Application Notes

The bounds returned in ferr are not rigorous, but in practice they almost always overestimate the actual error.
A call to this routine involves, for each right-hand side, solving a number of systems of linear equations $A^{\star} X$ $=b$; the number of systems is usually 4 or 5 and never more than 11 . Each solution requires approximately $2 n^{*} k d$ floating-point operations for real flavors or $8 n^{*} k d$ operations for complex flavors.

See Also

Matrix Storage Schemes

Matrix Inversion: LAPACK Computational Routines

It is seldom necessary to compute an explicit inverse of a matrix. In particular, do not attempt to solve a system of equations $A x=b$ by first computing A^{-1} and then forming the matrix-vector product $x=A^{-1} b$. Call a solver routine instead (see Routines for Solving Systems of Linear Equations); this is more efficient and more accurate.
However, matrix inversion routines are provided for the rare occasions when an explicit inverse matrix is needed.

```
?getri
Computes the inverse of an LU-factored general
matrix.
Syntax
```

```
call sgetri( n, a, lda, ipiv, work, lwork, info )
```

call sgetri(n, a, lda, ipiv, work, lwork, info)
call dgetri(n, a, lda, ipiv, work, lwork, info)
call dgetri(n, a, lda, ipiv, work, lwork, info)
call cgetri(n, a, lda, ipiv, work, lwork, info)
call cgetri(n, a, lda, ipiv, work, lwork, info)
call zgetri(n, a, lda, ipiv, work, lwork, info)

```
call zgetri( n, a, lda, ipiv, work, lwork, info )
```

```
call getri( a, ipiv [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a general matrix A. Before calling this routine, call ? getrf to factorize A.

Input Parameters

```
n INTEGER. The order of the matrix A; n\geq0.
a,work
lda
ipiv
lwork
```

INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for sgetri
DOUBLE PRECISION for dgetri
COMPLEX for cgetri
DOUBLE COMPLEX for zgetri.
Arrays: a(lda,*), work(*).
$a(I d a, *)$ contains the factorization of the matrix A, as returned by ?getrf: $A=P^{\star} L * U$.
The second dimension of a must be at least max $(1, n)$.
work (*) is a workspace array of dimension at least max (1, lwork).
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$.
The ipiv array, as returned by ?getrf.
INTEGER. The size of the work array; Iwork $\geq n$.
If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to /work is issued by xerbla.

See Application Notes below for the suggested value of Iwork.

Output Parameters

a
work(1)
info

Overwritten by the n-by- n matrix $\operatorname{inv}(A)$.
If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

If info $=i$, the i-th diagonal element of the factor U is zero, U is singular, and the inversion could not be completed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine getri interface are as follows:

```
a Holds the matrix A of size (n,n).
ipiv Holds the vector of length n.
```


Application Notes

For better performance, try using lwork $=n *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed inverse X satisfies the following error bound:

```
|XA - I| \leqC(n)\varepsilon|X|P|L||U|,
```

where $c(n)$ is a modest linear function of $n ; \varepsilon$ is the machine precision; I denotes the identity matrix; P, L, and U are the factors of the matrix factorization $A=P^{\star} L * U$.

The total number of floating-point operations is approximately $(4 / 3) n^{3}$ for real flavors and $(16 / 3) n^{3}$ for complex flavors.

See Also

Matrix Storage Schemes
mkl_?getrinp
Computes the inverse of an LU-factored general
matrix without pivoting.

Syntax

```
call mkl_sgetrinp( n, a, lda, work, lwork, info )
call mkl_dgetrinp( n, a, lda, work, lwork, info )
call mkl_cgetrinp( n, a, lda, work, lwork, info )
call mkl_zgetrinp( n, a, lda, work, lwork, info )
```


Include Files

- mkl.fi

Description

The routine computes the inverse inv (A) of a general matrix A. Before calling this routine, call mkl_? getrfnp to factorize A.

Input Parameters

```
n INTEGER. The order of the matrix A; n\geq0.
a,work
Ida
lwork
```

INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for mkl_sgetrinp
DOUBLE PRECISION for mkl_dgetrinp
COMPLEX for mkl_cgetrinp
DOUBLE COMPLEX for mkl_zgetrinp.
Arrays: a(lda,*), work(*).
a (lda, *) contains the factorization of the matrix A, as returned by mkl_? getrfnp: $A=L * U$.
The second dimension of a must be at least max $(1, n)$.
work(*) is a workspace array of dimension at least max (1,1 work).
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The size of the work array; Iwork $\geq n$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to /work is issued by xerbla.

See Application Notes below for the suggested value of Iwork.

Output Parameters

a
work(1)
info

Overwritten by the n-by- n matrix inv (A).
If info $=0$, on exit work (1) contains the minimum value of /work required for optimum performance. Use this Iwork for subsequent runs.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of the factor U is zero, U is singular, and the inversion could not be completed.

Application Notes

The total number of floating-point operations is approximately $(4 / 3) n^{3}$ for real flavors and $(16 / 3) n^{3}$ for complex flavors.

```
See Also
Matrix Storage Schemes
?potri
Computes the inverse of a symmetric (Hermitian)
positive-definite matrix using the Cholesky
factorization.
Syntax
```

```
call spotri( uplo, n, a, lda, info )
```

call spotri(uplo, n, a, lda, info)
call dpotri(uplo, n, a, lda, info)
call dpotri(uplo, n, a, lda, info)
call cpotri(uplo, n, a, lda, info)
call cpotri(uplo, n, a, lda, info)
call zpotri(uplo, n, a, lda, info)
call zpotri(uplo, n, a, lda, info)
call potri(a [,uplo] [,info])

```
call potri( a [,uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a symmetric positive definite or, for complex flavors, Hermitian positive-definite matrix A. Before calling this routine, call ?potrf to factorize A.

Input Parameters

```
uplo
n
a
lda
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored:
If uplo = 'U', the upper triangle of \(A\) is stored.
If uplo = 'L', the lower triangle of \(A\) is stored.
INTEGER. The order of the matrix \(A ; n \geq 0\).
REAL for spotri
DOUBLE PRECISION for dpotri
COMPLEX for cpotri
DOUBLE COMPLEX for zpotri.
Array a(size Ida by *) Contains the factorization of the matrix \(A\), as returned by ?potrf.
The second dimension of a must be at least max \((1, n)\).
INTEGER. The leading dimension of \(a\). \(1 d a \geq \max (1, n)\).
```


Output Parameters

```
a
info
Overwritten by the upper or lower triangle of the inverse of \(A\).
INTEGER.
If info \(=0\), the execution is successful.
```

If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of the Cholesky factor (and therefore the factor itself) is zero, and the inversion could not be completed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine potri interface are as follows:

```
a Holds the matrix A of size ( }n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

The computed inverse X satisfies the following error bounds:

where $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.
The 2-norm $||A||_{2}$ of a matrix A is defined by $||A||_{2}=\max _{x \cdot x=1}(A x \cdot A x)^{1 / 2}$, and the condition number $\kappa_{2}(A)$ is defined by $\kappa_{2}(A)=||A||_{2}| | A^{-1}| |_{2}$.

The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

See Also

Matrix Storage Schemes
?pftri
Computes the inverse of a symmetric (Hermitian) positive-definite matrix in RFP format using the Cholesky factorization.

Syntax

```
call spftri( transr, uplo, n, a, info )
call dpftri( transr, uplo, n, a, info )
call cpftri( transr, uplo, n, a, info )
call zpftri( transr, uplo, n, a, info )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a symmetric positive definite or, for complex data, Hermitian positive-definite matrix A using the Cholesky factorization:

$$
A=U^{T} \star U \text { for real data, } A=U^{H} \star U \text { for complex data } \quad \text { if up } 10='^{\prime}
$$

$A=L \star L^{T}$ for real data, $A=L \star L^{H}$ for complex data
if uplo='L'

Before calling this routine, call ?pftrf to factorize A.
The matrix A is in the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

Input Parameters

transr
uplo
n
a

Output Parameters

a
info

CHARACTER*1. Must be 'N', 'T' (for real data) or 'C' (for complex data).
If transr $=$ 'N', the Normal transr of RFP U (if uplo = 'U') or L (if uplo = 'L') is stored.

If transr $=$ 'T', the Transpose transr of RFP U (if uplo $=$ 'U') or L (if uplo = 'L' is stored.

If transr $=$ ' C ', the Conjugate-Transpose transr of RFP U (if uplo $=$ 'U') or L (if uplo = 'L' is stored.

CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo $=$ 'U', $A=U^{\top *} U$ for real data or $A=U^{H *} U$ for complex data, and U is stored.
If uplo $=$ 'L', $A=L^{*} L^{\top}$ for real data or $A=L^{*} L^{H}$ for complex data, and L is stored.

INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for spftri
DOUBLE PRECISION for dpftri
COMPLEX for cpftri
DOUBLE COMPLEX for zpftri.
Array, size $\left(n^{\star}(n+1) / 2\right)$. The array a contains the factor U or L matrix A in the RFP format.

The symmetric/Hermitian inverse of the original matrix in the same storage format.

INTEGER. If info=0, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the (i, i) element of the factor U or L is zero, and the inverse could not be computed.

See Also
Matrix Storage Schemes

```
?pptri
Computes the inverse of a packed symmetric
(Hermitian) positive-definite matrix using Cholesky
factorization.
```

Syntax

```
call spptri( uplo, n, ap, info )
call dpptri( uplo, n, ap, info )
call cpptri( uplo, n, ap, info )
call zpptri( uplo, n, ap, info )
call pptri( ap [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a symmetric positive definite or, for complex flavors, Hermitian positive-definite matrix A in packed form. Before calling this routine, call ?pptrf to factorize A.

Input Parameters

uplo
n
$a p$

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular factor is stored in ap:
If uplo = 'U', then the upper triangular factor is stored.
If uplo = 'L', then the lower triangular factor is stored.
INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for spptri
DOUBLE PRECISION for dpptri
COMPLEX for cpptri
DOUBLE COMPLEX for zpptri.
Array, size at least $\max (1, n(n+1) / 2)$.
Contains the factorization of the packed matrix A, as returned
by ?pptrf.
The dimension ap must be at least $\max (1, n(n+1) / 2)$.

Output Parameters

$a p$
info
Overwritten by the packed n-by- n matrix inv (A).
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

If info $=i$, the i-th diagonal element of the Cholesky factor (and therefore the factor itself) is zero, and the inversion could not be completed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine pptri interface are as follows:
$a p$
Holds the array A of size $\left(n^{\star}(n+1) / 2\right)$.
uplo
Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed inverse X satisfies the following error bounds:

where $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.
The 2-norm $||A||_{2}$ of a matrix A is defined by $||A||_{2}=\max _{x \cdot x=1}(A x \cdot A x)^{1 / 2}$, and the condition number $\kappa_{2}(A)$ is defined by $\kappa_{2}(A)=||A||_{2}| | A^{-1}| |_{2}$.
The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

See Also

Matrix Storage Schemes
?sytri
Computes the inverse of a symmetric matrix using
$U^{*} D^{*} U^{T}$ or $L^{*} D^{*} L^{T}$ Bunch-Kaufman factorization.

Syntax

```
call ssytri( uplo, n, a, lda, ipiv, work, info )
call dsytri( uplo, n, a, lda, ipiv, work, info )
call csytri( uplo, n, a, lda, ipiv, work, info)
call zsytri( uplo, n, a, lda, ipiv, work, info )
call sytri( a, ipiv [,uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a symmetric matrix A. Before calling this routine, call ?sytrf to factorize A.

Input Parameters

uplo
n
a, work
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the Bunch-Kaufman factorization A $=U \star D * U^{\mathbb{T}}$.

If uplo = 'L', the array a stores the Bunch-Kaufman factorization A $=L^{*} D^{*} L^{T}$.

INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for ssytri
DOUBLE PRECISION for dsytri
COMPLEX for csytri
DOUBLE COMPLEX for zsytri.
Arrays:
a(size $/ d a$ by ${ }^{*}$) contains the factorization of the matrix A, as returned by ?sytrf.
The second dimension of a must be at least max $(1, n)$.
work (*) is a workspace array. The dimension of work must be at least $\max \left(1,2 *_{n}\right)$.

INTEGER. The leading dimension of $a ; \operatorname{lda} \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$.
The ipiv array, as returned by ?sytrf.

Output Parameters

```
a
info
```

Overwritten by the n-by-n matrix inv (A).
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of D is zero, D is singular, and the inversion could not be completed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sytri interface are as follows:
a
ipiv
Holds the matrix A of size (n, n).
Holds the vector of length n.
uplo
Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed inverse X satisfies the following error bounds:

```
| 甥* * P
```

for uplo $=$ 'U', and

for uplo $=$ 'L'. Here $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

See Also

Matrix Storage Schemes
?sytri_rook
Computes the inverse of a symmetric matrix using $U^{*} D^{*} U^{T}$ or $L^{*} D^{*} L^{T}$ bounded Bunch-Kaufman factorization.

Syntax

```
call ssytri_rook( uplo, n, a, lda, ipiv, work, info )
call dsytri_rook( uplo, n, a, lda, ipiv, work, info )
call csytri_rook( uplo, n, a, lda, ipiv, work, info )
call zsytri_rook( uplo, n, a, lda, ipiv, work, info)
call sytri_rook( a, ipiv [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a symmetric matrix A. Before calling this routine, call ?sytrf_rook to factorize A.

Input Parameters

```
uplo
n
a, work
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
    If uplo = 'U', the array a stores the factorization A = U*D* U'T.
    If uplo = 'L', the array a stores the factorization A = L*D* 'T
    INTEGER. The order of the matrix A; n\geq0.
    REAL for ssytri_rook
    DOUBLE PRECISION for dsytri_rook
```

```
COMPLEX for csytri_rook
DOUBLE COMPLEX for zsytri_rook.
Arrays:
a(size \(/ d a\) by \({ }^{*}\) ) contains the factorization of the matrix \(A\), as returned by ?sytrf_rook.
The second dimension of a must be at least max \((1, n)\).
work (*) is a workspace array. The dimension of work must be at least max \((1, n)\).
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER.
Array, size at least max \((1, n)\).
The ipiv array, as returned by ?sytrf_rook.
```


Output Parameters

a
info

Overwritten by the n-by-n matrix inv (A). If uplo = 'U', the upper triangular part of the inverse is formed and the part of a below the diagonal is not referenced; if uplo = 'L' the lower triangular part of the inverse is formed and the part of a above the diagonal is not referenced."

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of D is zero, D is singular, and the inversion could not be completed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sytri_rook interface are as follows:

```
a Holds the matrix A of size (n,n).
ipiv Holds the vector of length n.
uplo
    Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

See Also
Matrix Storage Schemes

```
?hetri
Computes the inverse of a complex Hermitian matrix
using U*D*UH}\mathrm{ or L*D*LH}\mathrm{ Bunch-Kaufman
factorization.
```

Syntax

```
call chetri( uplo, n, a, lda, ipiv, work, info )
call zhetri( uplo, n, a, lda, ipiv, work, info )
call hetri( a, ipiv [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a complex Hermitian matrix A. Before calling this routine, call ?hetrf to factorize A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array a stores the Bunch-Kaufman factorization A $=U \star D * U^{\mathrm{H}}$.
	If uplo = 'L', the array a stores the Bunch-Kaufman factorization A $=L^{\star} D^{*} L^{\mathrm{H}}$.
n	INTEGER. The order of the matrix $A ; n \geq 0$.
a, work	COMPLEX for chetri
	DOUBLE COMPLEX for zhetri.
	Arrays:
	$a(l d a, *)$ contains the factorization of the matrix A, as returned by ?hetrf.
	The second dimension of a must be at least max $(1, n)$.
	work (*) is a workspace array.
	The dimension of work must be at least max $(1, n)$.
Ida	INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
ipiv	INTEGER.
	Array, size at least max $(1, n)$. The ipiv array, as returned by ?hetrf.

Output Parameters

a
info
Overwritten by the n-by- n matrix $\operatorname{inv}(A)$.
INTEGER.

If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of D is zero, D is singular, and the inversion could not be completed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hetri interface are as follows:

```
a Holds the matrix A of size ( }n,n\mathrm{ ).
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

The computed inverse X satisfies the following error bounds:

```
| D* U'H
```

for uplo = 'U', and

```
| D* L'** P
```

for uplo = 'L'. Here $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.

The total number of floating-point operations is approximately (8/3) n^{3} for complex flavors.
The real counterpart of this routine is ?sytri.

See Also

Matrix Storage Schemes
?hetri_rook
Computes the inverse of a complex Hermitian matrix using $U^{*} D^{*} U^{H}$ or $L^{*} D^{*} L^{H}$ bounded Bunch-Kaufman factorization.

Syntax

```
call chetri_rook( uplo, n, a, lda, ipiv, work, info )
call zhetri_rook( uplo, n, a, lda, ipiv, work, info )
call hetri_rook( a, ipiv [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a complex Hermitian matrix A. Before calling this routine, call ?hetrf_rook to factorize A.

Input Parameters

uplo
n
a, work

Ida
ipiv

CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the factorization $A=U^{\star} D^{\star} U^{H}$.
If uplo = 'L', the array a stores the factorization $A=L^{\star} D^{\star} L^{H}$.
INTEGER. The order of the matrix $A ; n \geq 0$.
COMPLEX for chetri_rook
DOUBLE COMPLEX for zhetri_rook.

Arrays:

a(lda,*) contains the factorization of the matrix A, as returned by ?hetrf_rook.

The second dimension of a must be at least max $(1, n)$.
work(*) is a workspace array.
The dimension of work must be at least max $(1, n)$.
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$. The ipiv array, as returned by ?hetrf_rook.

Output Parameters

```
a
info
```

Overwritten by the n-by- n matrix $\operatorname{inv}(A)$.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of D is zero, D is singular, and the inversion could not be completed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hetri_rook interface are as follows:

a	Holds the matrix A of size (n, n).
ipiv	Holds the vector of length n.
uplo	Must be ' U ' or ' L '. The default value is ' U '.

Application Notes

The total number of floating-point operations is approximately $(8 / 3) n^{3}$ for complex flavors.

The real counterpart of this routine is ?sytri_rook.

```
See Also
Matrix Storage Schemes
?sytri2
Computes the inverse of a symmetric indefinite matrix
through setting the leading dimension of the
workspace and calling ?sytri2x.
```


Syntax

```
call ssytri2( uplo, n, a, lda, ipiv, work, lwork, info )
call dsytri2( uplo, n, a, lda, ipiv, work, lwork, info )
call csytri2( uplo, n, a, lda, ipiv, work, lwork, info )
call zsytri2( uplo, n, a, lda, ipiv, work, lwork, info )
call sytri2( a,ipiv[,uplo][,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a symmetric indefinite matrix A using the factorization $A=$ $U * D * U^{T}$ or $A=L * D * L^{T}$ computed by ?sytrf.

The ?sytri2 routine sets the leading dimension of the workspace before calling ?sytri2x that actually computes the inverse.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array a stores the factorization $A=U^{\star} D^{*} U^{T}$.
	If uplo = 'L', the array a stores the factorization $A=L^{\star} D^{\star} L^{T}$.
n	INTEGER. The order of the matrix $A ; n \geq 0$.
a, work	REAL for ssytri2
	DOUBLE PRECISION for dsytri2
	COMPLEX for csytri2
	DOUBLE COMPLEX for zsytri2
	Array a(size lda by n) contains the block diagonal matrix D and the multipliers used to obtain the factor U or L as returned by ?sytrf.
	The second dimension of a must be at least max $(1, n)$.
	work is a workspace array of $(n+n b+1) *(n b+3)$ dimension.
Ida	INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
ipiv	INTEGER.

Array, size at least max $(1, n)$.
Details of the interchanges and the block structure of D as returned by ?sytrf.
lwork
INTEGER. The dimension of the work array.
lwork $\geq(n+n b+1) *(n b+3)$
where
$n b$ is the block size parameter as returned by sytrf.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

Output Parameters

a
If info $=0$, the symmetric inverse of the original matrix.
If uplo = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced.

If uplo = 'L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, D(i, i)=0 ; D$ is singular and its inversion could not be computed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sytri2 interface are as follows:
a Holds the matrix A of size (n, n).
ipiv Holds the vector of length n.
uplo
Indicates how the matrix A has been factored. Must be 'U' or 'L'.

See Also

?sytrf
?sytri2x
Matrix Storage Schemes
?hetri2
Computes the inverse of a Hermitian indefinite matrix through setting the leading dimension of the workspace and calling ?hetri2x.

Syntax

```
call chetri2( uplo, n, a, lda, ipiv, work, lwork, info )
call zhetri2( uplo, n, a, lda, ipiv, work, lwork, info )
call hetri2( a,ipiv[,uplo][,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a Hermitian indefinite matrix A using the factorization $A=$ $U^{*} D^{\star} U^{H}$ or $A=L^{\star} D^{*} L^{\mathrm{H}}$ computed by ?hetrf.

The ?hetri2 routine sets the leading dimension of the workspace before calling ?hetri2x that actually computes the inverse.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array a stores the factorization $A=U^{*} D^{*} U^{H}$.
	If uplo = 'L', the array a stores the factorization $A=L^{*} D^{*} L^{H}$.
n	INTEGER. The order of the matrix A; $n \geq 0$.
a, work	COMPLEX for chetri2
	DOUBLE COMPLEX for zhetri2
	Array a(size Ida by *) contains the block diagonal matrix D and the multipliers used to obtain the factor U or L as returned by ?sytrf.
	The second dimension of a must be at least max ($1, n$).
	work is a workspace array of ($n+n b+1) *(n b+3)$ dimension.
lda	INTEGER. The leading dimension of $a ; 1 d a \geq m a x(1, n)$.
ipiv	Integer.
	Array, size at least max ($1, n$).
	Details of the interchanges and the block structure of D as returned by ?hetrf.
lwork	Integer. The dimension of the work array.
	1 work $\geq(n+n b+1) *(n b+3)$
	where
	$n b$ is the block size parameter as returned by hetrf.
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

Output Parameters

a
If info $=0$, the inverse of the original matrix.
If uplo = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced.
If uplo = 'L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, D(i, i)=0 ; D$ is singular and its inversion could not be computed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hetri2 interface are as follows:

```
a Holds the matrix A of size (n,n).
ipiv Holds the vector of length n.
uplo Indicates how the input matrix A has been factored. Must be 'U' or
    'L'.
```


See Also

?hetrf
?hetri2x
Matrix Storage Schemes
?sytri2x
Computes the inverse of a symmetric indefinite matrix after ?sytri2sets the leading dimension of the workspace.

Syntax

```
call ssytri2x( uplo, n, a, lda, ipiv, work, nb, info )
call dsytri2x( uplo, n, a, lda, ipiv, work, nb, info )
call csytri2x( uplo, n, a, lda, ipiv, work, nb, info )
call zsytri2x( uplo, n, a, lda, ipiv, work, nb, info )
call sytri2x( a,ipiv,nb[,uplo][,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a symmetric indefinite matrix A using the factorization $A=$ $U^{\star} D^{\star} U^{T}$ or $A=L^{\star} D^{\star} L^{T}$ computed by ?sytrf.

The ?sytri2x actually computes the inverse after the ?sytri2 routine sets the leading dimension of the workspace before calling ?sytri2x.

Input Parameters

uplo
n
a, work

Ida
ipiv
nb

Output Parameters

a
info

CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the factorization $A=U \star D^{*} U^{T}$.
If uplo = 'L', the array a stores the factorization $A=L^{*} D^{*} L^{T}$.
INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for ssytri2x
DOUBLE PRECISION for dsytri2x
COMPLEX for csytri2x
DOUBLE COMPLEX for zsytri2x
Arrays:
$a(l d a, *)$ contains the $n b$ (block size) diagonal matrix D and the multipliers used to obtain the factor U or L as returned by ?sytrf.

The second dimension of a must be at least max $(1, n)$.
work is a workspace array of dimension $(n+n b+1) *(n b+3)$
where
$n b$ is the block size as set by ?sytrf.
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$.
Details of the interchanges and the $n b$ structure of D as returned by ?sytrf.

INTEGER. Block size.

If info $=0$, the symmetric inverse of the original matrix.
If info = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced.

If info = 'L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

INTEGER.
If info $=0$, the execution is successful.

If info $=-i$, the i-th parameter had an illegal value.
If info $=i, D_{i i}=0 ; D$ is singular and its inversion could not be computed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sytri2x interface are as follows:

```
a Holds the matrix A of size ( n, n).
ipiv Holds the vector of length n.
nb Holds the block size.
uplo Indicates how the input matrix A has been factored. Must be 'U' or
    'L'.
```


See Also

?sytrf
?sytri2
Matrix Storage Schemes
?hetri2x
Computes the inverse of a Hermitian indefinite matrix
after ?hetri2sets the leading dimension of the
workspace.
Syntax

```
call chetri2x( uplo, n, a, lda, ipiv, work, nb, info )
call zhetri2x( uplo, n, a, lda, ipiv, work, nb, info )
call hetri2x( a,ipiv,nb[,uplo][,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a Hermitian indefinite matrix A using the factorization $A=$ $U^{\star} D^{\star} U^{H}$ or $A=L^{\star} D^{\star} L^{H}$ computed by ?hetrf.

The ?hetri2x actually computes the inverse after the ?hetri2 routine sets the leading dimension of the workspace before calling ?hetri2x.

Input Parameters
uplo
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:
If uplo = 'U', the array a stores the factorization $A=U \star D^{\star} U^{H}$.
If uplo = 'L', the array a stores the factorization $A=L \star D^{\star} L^{H}$.
n
a, work

Ida
ipiv
$n b$

Output Parameters

a
info

INTEGER. The order of the matrix $A ; n \geq 0$.
COMPLEX for chetri2x
DOUBLE COMPLEX for zhetri2x
Arrays:
$a(l d a, *)$ contains the $n b$ (block size) diagonal matrix D and the multipliers used to obtain the factor U or L as returned by ?hetrf.

The second dimension of a must be at least max $(1, n)$.
work is a workspace array of the dimension $(n+n b+1) *(n b+3)$
where
$n b$ is the block size as set by ?hetrf.
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$.
Details of the interchanges and the $n b$ structure of D as returned by ?hetrf.

INTEGER. Block size.

If info $=0$, the symmetric inverse of the original matrix.
If info = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced.
If info = 'L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, D_{i i}=0 ; D$ is singular and its inversion could not be computed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hetri2x interface are as follows:
a
ipiv
n.b
Holds the matrix A of size (n, n).
Holds the vector of length n.
Holds the block size.

Indicates how the input matrix A has been factored. Must be 'U' or 'L'.

See Also

?hetrf
?hetri2
Matrix Storage Schemes
?sytri_3
Computes the inverse of a real or complex symmetric matrix.

```
call ssytri_3(uplo, n, A, lda, e, ipiv, work, lwork, info)
call dsytri_3(uplo, n, A, lda, e, ipiv, work, lwork, info)
call csytri_3(uplo, n, A, lda, e, ipiv, work, lwork, info)
call zsytri_3(uplo, n, A, lda, e, ipiv, work, lwork, info)
```


Description

?sytri_3 computes the inverse of a real or complex symmetric matrix A using the factorization computed by ?sytrf_rk: $A=P^{*} U^{*} D^{*}\left(U^{\top}\right) *\left(P^{\top}\right)$ or $A=P^{*} L^{*} D^{*}\left(L^{\top}\right) *\left(P^{\top}\right)$, where U (or L) is a unit upper (or lower) triangular matrix, U^{\top} (or L^{\top}) is the transpose of U (or L), P is a permutation matrix, P^{\top} is the transpose of P, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
?sytri_3 sets the leading dimension of the workspace before calling ?sytri_3x, which actually computes the inverse. This is the blocked version of the algorithm, calling Level-3 BLAS.

Input Parameters

uplo
n

A

CHARACTER*1
Specifies whether the details of the factorization are stored as an upper or lower triangular matrix.

- = 'U': The upper triangle of A is stored.
- = 'L': The lower triangle of A is stored.

INTEGER
The order of the matrix A. $n \geq 0$.
REAL for ssytri_3
DOUBLE PRECISION for dsytri_3
COMPLEX for csytri_3
COMPLEX*16 for zsytri_3
Array, dimension (Ida, n). On entry, diagonal of the block diagonal matrix D and factors U or L as computed by ?sytrf_rk:

- Only diagonal elements of the symmetric block diagonal matrix D on the diagonal of A; that is, $\mathrm{D}(k, k)=\mathrm{A}(k, k)$. Superdiagonal (or subdiagonal) elements of D should be provided on entry in array e.
-and-

Ida
e

- If uplo = 'U', factor U in the superdiagonal part of A. If uplo = 'L', factor L in the subdiagonal part of A.

```
INTEGER
```

The leading dimension of the array $A .1 d a \geq \max (1, n)$.
REAL for ssytri_3
DOUBLE PRECISION for dsytri_3
COMPLEX for csytri_3
COMPLEX*16 for zsytri_3
Array, dimension (n). On entry, contains the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks. If uplo $=$ ' U ', $\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}$, and $\mathrm{e}(1)$ is not referenced. If uplo $=$ ' L ', $\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1$, and $\mathrm{e}(n)$ is not referenced.

> NOTE For 1 -by- 1 diagonal block $\mathrm{D}(k)$, where $1 \leq \mathrm{k} \leq n$, the element $e(k)$ is not referenced in both the uplo $=$ 'U' and uplo $=$ 'L' cases.

INTEGER

Array, dimension (n). Details of the interchanges and the block structure of D as determined by ?sytrf_rk.

INTEGER
The length of the array work.
If $L D W O R K=-1$, a workspace query is assumed; the routine calculates only the optimal size of the optimal size of the work array and returns this value as the first entry of the work array, and no error message related to lwork is issued by XERBLA.

Output Parameters

A
REAL for ssytri_3
DOUBLE PRECISION for dsytri_3
COMPLEX for csytri_3
COMPLEX*16 for zsytri_3
On exit, if info $=0$, the symmetric inverse of the original matrix. If uplo $=$ ' U ', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced. If uplo='L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

REAL for ssytri_3
DOUBLE PRECISION for dsytri_3
COMPLEX for csytri_3

```
COMPLEX*16 for zsytri 3
Array, dimension \((n+N B+1)^{*}(N B+3)\). On exit, if info \(=0\), work(1) returns the optimal lwork.
INTEGER
- = 0: successful exit.
- < 0: If info \(=-i\), the \(i^{\text {th }}\) argument had an illegal value.
- > 0: If info \(=i, \mathrm{D}(i, i)=0\); the matrix is singular and its inverse could not be computed.
```

?hetri_3
Computes the inverse of a complex Hermitian matrix using the factorization computed by ?hetrf_rk.

```
call chetri_3(uplo, n, A, lda, e, ipiv, work, lwork, info)
```


Description

?hetri_3 computes the inverse of a complex Hermitian matrix A using the factorization computed by ?hetrf_rk: $A=P * U^{*} D^{*}\left(U^{H}\right) *\left(P^{\top}\right)$ or $A=P^{*} L^{*} D^{*}\left(L^{H}\right) *\left(P^{\top}\right)$, where U (or L) is a unit upper (or lower) triangular matrix, U^{H} (or L^{H}) is the conjugate of U (or L), P is a permutation matrix, P^{\top} is the transpose of P, and D is a Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
?hetri_3 sets the leading dimension of the workspace before calling ?hetri_3x, which actually computes the inverse.

This is the blocked version of the algorithm, calling Level-3 BLAS.

Input Parameters

```
uplo
n
A
lda
CHARACTER*1
Specifies whether the details of the factorization are stored as an upper or lower triangular matrix.
- = 'U': The upper triangle of \(A\) is stored.
- = 'L': The lower triangle of \(A\) is stored.
```


INTEGER

```
The order of the matrix A. \(n \geq 0\).
COMPLEX for chetri_3
COMPLEX*16 for zhetri_3
Array, dimension ( \(1 \mathrm{da}, \mathrm{n}\) ). On entry, diagonal of the block diagonal matrix D and factor \(U\) or \(L\) as computed by ?hetrf_rk:
- Only diagonal elements of the Hermitian block diagonal matrix \(D\) on the diagonal of \(A\); that is, \(\mathrm{D}(k, k)=\mathrm{A}(k, k)\). Superdiagonal (or subdiagonal) elements of \(D\) should be provided on entry in array e.
- If uplo = 'U', factor \(U\) in the superdiagonal part of \(A\). If uplo = 'L', factor \(L\) is the subdiagonal part of \(A\).
INTEGER
```

e

The leading dimension of the array $A .1 d a \geq \max (1, n)$.
COMPLEX for chetri_3
COMPLEX*16 for zhetri_3
Array, dimension (n). On entry, contains the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks. If uplo $=$ ' U ', $\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}$, and $\mathrm{e}(1)$ is not referenced. If uplo $=$ ' L ', $\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1$, and $\mathrm{e}(n)$ is not referenced.

NOTE For 1-by-1 diagonal block $\mathrm{D}(k)$, where $1 \leq k \leq n$, the element $e(k)$ is not referenced in both the uplo $=$ 'U' and uplo $=$ 'L' cases.

INTEGER
Array, dimension (n). Details of the interchanges and the block structure of D as determined by ?hetrf_rk.

INTEGER
The length of the array work.
If $L D W O R K=-1$, a workspace query is assumed; the routine calculates only the optimal size of the work array and returns this value as the first entry of the work array, and no error message related to lwork is issued by XERBLA.

Output Parameters

A
info
COMPLEX for chetri_3
COMPLEX*16 for zhetri_3
On exit, if info $=0$, the Hermitian inverse of the original matrix. If uplo $=$ ' U ', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced. If uplo = 'L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

COMPLEX for chetri_3
COMPLEX*16 for zhetri_3
Array, dimension $(n+N B+1)^{*}(N B+3)$. On exit, if info $=0$, work(1) returns the optimal lwork.

INTEGER

- = 0: Successful exit.
- < 0: If info $=-i$, the $i^{\text {th }}$ argument had an illegal value.
- > 0: If info $=i, \mathrm{D}(i, i)=0$; the matrix is singular and its inverse could not be computed.

?sptri

Computes the inverse of a symmetric matrix using $U * D^{*} U^{\top}$ or $L * D^{*} L^{\top}$ Bunch-Kaufman factorization of matrix in packed storage.

Syntax

```
call ssptri( uplo, n, ap, ipiv, work, info )
call dsptri( uplo, n, ap, ipiv, work, info )
call csptri( uplo, n, ap, ipiv, work, info )
call zsptri( uplo, n, ap, ipiv, work, info )
call sptri( ap, ipiv [,uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a packed symmetric matrix A. Before calling this routine, call ?sptrf to factorize A.

Input Parameters

```
uplo
n
ap, work
ipiv
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix \(A\) has been factored:
If uplo = 'U', the array ap stores the Bunch-Kaufman factorization \(A\) \(=U \star D * U^{\mathrm{T}}\).
If uplo = 'L', the array ap stores the Bunch-Kaufman factorization \(A\) \(=L * D * L^{T}\).
INTEGER. The order of the matrix \(A ; n \geq 0\).
REAL for ssptri
DOUBLE PRECISION for dsptri
COMPLEX for csptri
DOUBLE COMPLEX for zsptri.
```


Arrays:

```
\(a p(*)\) contains the factorization of the matrix \(A\), as returned by ?sptrf.
The dimension of \(a p\) must be at least \(\max (1, n(n+1) / 2)\).
work (*) is a workspace array.
The dimension of work must be at least max \((1, n)\).
INTEGER.
Array, size at least max \((1, n)\). The ipiv array, as returned by ?sptrf.
```


Output Parameters

```
ap
info
Overwritten by the matrix inv (A) in packed form.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the \(i\)-th diagonal element of \(D\) is zero, \(D\) is singular, and the inversion could not be completed.
```


LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sptri interface are as follows:

ap	Holds the array A of size $(n \star(n+1) / 2)$.
ipiv	Holds the vector of length n.
uplo	Must be 'U' or 'L'. The default value is 'U'.

Application Notes

The computed inverse X satisfies the following error bounds:

for uplo = 'U', and

```
| D* L'* * P
```

for uplo $=$ 'L'. Here $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately $(2 / 3) n^{3}$ for real flavors and $(8 / 3) n^{3}$ for complex flavors.

See Also

Matrix Storage Schemes
?hptri
Computes the inverse of a complex Hermitian matrix using $U^{*} D^{*} U^{H}$ or $L^{*} D^{*} L^{H}$ Bunch-Kaufman factorization of matrix in packed storage.

Syntax

```
call chptri( uplo, n, ap, ipiv, work, info )
call zhptri( uplo, n, ap, ipiv, work, info )
call hptri( ap, ipiv [,uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a complex Hermitian matrix A using packed storage. Before calling this routine, call ?hptrf to factorize A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates how the input matrix A has been factored:
	If uplo = 'U', the array ap stores the packed Bunch-Kaufman factorization $A=U \star D^{\star} U^{H}$.
	If uplo = 'L', the array ap stores the packed Bunch-Kaufman factorization $A=L \star D^{\star} L^{\mathrm{H}}$.
n	INTEGER. The order of the matrix $A ; n \geq 0$.
ap, work	COMPLEX for chptri
	DOUBLE COMPLEX for zhptri.
	Arrays:
	$a p(*)$ contains the factorization of the matrix A, as returned by ?hptrf.
	The dimension of ap must be at least max $(1, n(n+1) / 2)$. work(*) is a workspace array.
	The dimension of work must be at least max (1,n).
ipiv	INTEGER.
	Array, size at least max (1, n) .
	The ipiv array, as returned by ?hptrf.

Output Parameters

$a p$
info

Overwritten by the matrix inv (A).
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of D is zero, D is singular, and the inversion could not be completed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hptri interface are as follows:
Holds the array A of size $\left(n^{\star}(n+1) / 2\right)$.

```
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

The computed inverse X satisfies the following error bounds:

for uplo = 'U', and

```
| D* L'H\star P}\mp@subsup{P}{}{T}\star\mp@subsup{X}{}{\star}PL-I|\leqC(n)\varepsilon(|D||\mp@subsup{L}{}{H}|\mp@subsup{P}{}{T}|X|P|L|+|D| | D - | | 
```

for uplo $=$ 'L'. Here $c(n)$ is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.

The total number of floating-point operations is approximately $(8 / 3) n^{3}$.
The real counterpart of this routine is ?sptri.

See Also

Matrix Storage Schemes
?trtri
Computes the inverse of a triangular matrix.
Syntax

```
call strtri( uplo, diag, n, a, lda, info )
call dtrtri( uplo, diag, n, a, lda, info )
call ctrtri( uplo, diag, n, a, lda, info )
call ztrtri( uplo, diag, n, a, lda, info )
call trtri( a [,uplo] [,diag] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a triangular matrix A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether A is upper or lower triangular:
	If uplo = 'U', then A is upper triangular.
	If uplo = 'L', then A is lower triangular.
diag	CHARACTER*1. Must be 'N' or 'U'.
	If diag $=$ ' N ', then A is not a unit triangular matrix.
	If diag = 'U', A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array a.

n
a

Ida
Output Parameters
a
info

INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for strtri
DOUBLE PRECISION for dtrtri
COMPLEX for ctrtri
DOUBLE COMPLEX for ztrtri.
Array: size I da by ${ }^{*}$ size $\max \left(1, I d^{*} *_{n}\right)$. Contains the matrix A. The second dimension of a must be at least max $(1, n)$.
$\operatorname{INTEGER}$. The first dimension of $a ; 1 d a \geq \max (1, n)$.

Overwritten by the matrix inv (A).
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of A is zero, A is singular, and the inversion could not be completed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine trtri interface are as follows:

a	Holds the matrix A of size (n, n).
uplo	Must be ' U ' or 'L'. The default value is ' U '.
diag	Must be ' N ' or ' U '. The default value is ' N '.

Application Notes

The computed inverse X satisfies the following error bounds:

```
|XA - I| \leqc(n)\varepsilon |X| |A|
|XA - I| Sc(n) & | A-1}||A||X|
```

where $c(n)$ is a modest linear function of $n ; \varepsilon$ is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately $(1 / 3) n^{3}$ for real flavors and $(4 / 3) n^{3}$ for complex flavors.

See Also

Matrix Storage Schemes
?tftri
Computes the inverse of a triangular matrix stored in the Rectangular Full Packed (RFP) format.

Syntax

```
call stftri( transr, uplo, diag, n, a, info )
call dtftri( transr, uplo, diag, n, a, info )
call ctftri( transr, uplo, diag, n, a, info )
call ztftri( transr, uplo, diag, n, a, info )
```

Include Files

- mkl.fi, lapack.f90

Description

Computes the inverse of a triangular matrix A stored in the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

This is the block version of the algorithm, calling Level 3 BLAS.

Input Parameters

transr
uplo
diag
n
a

CHARACTER*1. Must be 'N', 'T' (for real data) or ' C ' (for complex data).

If transr $=$ ' N ', the Normal transr of RFP A is stored.
If transr $=$ 'T', the Transpose transr of RFP A is stored.
If transr $=$ ' C ', the Conjugate-Transpose transr of RFP A is stored.
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of RFP A is stored:

If uplo $=$ 'U', the array a stores the upper triangular part of the matrix A.

If uplo = 'L', the array a stores the lower triangular part of the matrix A.

CHARACTER*1. Must be 'N' or 'U'.
If diag $=$ ' N ', then A is not a unit triangular matrix.
If diag $={ }^{\prime} U$ ', A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array a.

INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for stftri
DOUBLE PRECISION for dtftri
COMPLEX for ctftri
DOUBLE COMPLEX for ztftri.
Array, size $\max \left(1, n^{*}(n+1) / 2\right)$. The array a contains the matrix A in the RFP format.

Output Parameters

a
The (triangular) inverse of the original matrix in the same storage format.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, A(i, i)$ is exactly zero. The triangular matrix is singular and its inverse cannot be computed.

See Also

Matrix Storage Schemes
?tptri
Computes the inverse of a triangular matrix using
packed storage.
packed storage.

Syntax

```
call stptri( uplo, diag, n, ap, info )
call dtptri( uplo, diag, n, ap, info )
call ctptri( uplo, diag, n, ap, info )
call ztptri( uplo, diag, n, ap, info )
call tptri( ap [,uplo] [,diag] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes the inverse inv (A) of a packed triangular matrix A.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether A is upper or lower triangular:
	If uplo = 'U', then A is upper triangular.
	If uplo = 'L', then A is lower triangular.
diag	CHARACTER*1. Must be 'N' or 'U'.
	If diag $=$ ' N ', then A is not a unit triangular matrix.
	If diag = 'U', A is unit triangular: diagonal elements of A are assumed to be 1 and not referenced in the array $a p$.
n	INTEGER. The order of the matrix $A ; n \geq 0$.
$a p$	REAL for stptri
	DOUBLE PRECISION for dtptri

COMPLEX for ctptri
DOUBLE COMPLEX for ztptri.
Array, size at least max $(1, n(n+1) / 2)$.
Contains the packed triangular matrix A .

Output Parameters

```
ap
info
```

Overwritten by the packed n-by- n matrix $\operatorname{inv}(A)$.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of A is zero, A is singular, and the inversion could not be completed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine tptri interface are as follows:
$a p$
uplo Must be 'U' or 'L'. The default value is 'U'.
diag

Holds the array A of size $\left(n^{*}(n+1) / 2\right)$.

Must be ' N ' or ' U '. The default value is ' N '.

Application Notes

The computed inverse X satisfies the following error bounds:

$$
\begin{aligned}
& |X A-I| \leq C(n) \varepsilon|X||A| \\
& \left|X-A^{-1}\right| \leq C(n) \varepsilon\left|A^{-1}\right||A||X|
\end{aligned}
$$

where $c(n)$ is a modest linear function of $n ; \varepsilon$ is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately $(1 / 3) n^{3}$ for real flavors and $(4 / 3) n^{3}$ for complex flavors.

See Also

Matrix Storage Schemes

Matrix Equilibration: LAPACK Computational Routines

Routines described in this section are used to compute scaling factors needed to equilibrate a matrix. Note that these routines do not actually scale the matrices.

?geequ

Computes row and column scaling factors intended to equilibrate a general matrix and reduce its condition number.

Syntax

```
call sgeequ( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
call dgeequ( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
call cgeequ( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
call zgeequ( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
call geequ( a, r, c [,rowcnd] [,colcnd] [,amax] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes row and column scalings intended to equilibrate an m-by- n matrix A and reduce its condition number. The output array r returns the row scale factors and the array c the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix B with elements $b_{i j}=r(i) * a_{i j}{ }^{*} C(j)$ have absolute value 1.

See ? laqge auxiliary function that uses scaling factors computed by ?geequ.

Input Parameters

m
n
a

Ida

Output Parameters

```
r,c
```

rowend

INTEGER. The number of rows of the matrix $A ; m \geq 0$.
INTEGER. The number of columns of the matrix $A ; n \geq 0$.
REAL for sgeequ
DOUBLE PRECISION for dgeequ
COMPLEX for cgeequ
DOUBLE COMPLEX for zgeequ.
Array: size Ida by *.
Contains the m-by- n matrix A whose equilibration factors are to be computed.

The second dimension of a must be at least max $(1, n)$.
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, m)$.

REAL for single precision flavors

DOUBLE PRECISION for double precision flavors.
Arrays: r (size m), c (size n).
If info $=0$, or info $>m$, the array r contains the row scale factors of the matrix A.

If info $=0$, the array c contains the column scale factors of the matrix A.

REAL for single precision flavors

	DOUBLE PRECISION for double precision flavors.
	If info $=0$ or info>m, rowchd contains the ratio of the smallest $r(i)$ to the largest $r(i)$.
colcnd	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	If info $=0$, colcnd contains the ratio of the smallest $c(i)$ to the largest $c(i)$.
amax	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	Absolute value of the largest element of the matrix A.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i-th parameter had an illegal value.
	If info $=i, i>0$, and
	$i \leq m$, the i-th row of A is exactly zero;
	$i>m$, the ($i-m$) th column of A is exactly zero.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine geequ interface are as follows:

a	Holds the matrix A of size (m, n).
r	Holds the vector of length (m).
c	Holds the vector of length n.

Application Notes

All the components of r and c are restricted to be between SMLNUM $=$ smallest safe number and BIGNUM= largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice.

SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision values of SMLNUM and BIGNUM as follows:

```
SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM
```

If rowend ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by r.
If colcn $d \geq 0.1$, it is not worth scaling by c.
If amax is very close to SMLNUM or very close to BIGNUM, the matrix A should be scaled.

See Also
Error Analysis

Matrix Storage Schemes

?geequb
 Computes row and column scaling factors restricted to a power of radix to equilibrate a general matrix and reduce its condition number.

Syntax

```
call sgeequb( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
call dgeequb( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
call cgeequb( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
call zgeequb( m, n, a, lda, r, c, rowcnd, colcnd, amax, info )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes row and column scalings intended to equilibrate an m-by- n general matrix A and reduce its condition number. The output array r returns the row scale factors and the array c - the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix B with elements $b_{i, j}=r(i) * a_{i, j}{ }^{*} C(j)$ have an absolute value of at most the radix.
$r(i)$ and $c(j)$ are restricted to be a power of the radix between SMLNUM $=$ smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of a but works well in practice.
SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision values of SMLNUM and BIGNUM as follows:

```
SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM
```

This routine differs from ?geequ by restricting the scaling factors to a power of the radix. Except for overand underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer equal to approximately 1 but lie between sqrt (radix) and 1/sqrt (radix).

Input Parameters

m
n
a

INTEGER. The number of rows of the matrix $A ; m \geq 0$.
INTEGER. The number of columns of the matrix $A ; n \geq 0$.
REAL for sgeequb
DOUBLE PRECISION for dgeequb
COMPLEX for cgeequb
DOUBLE COMPLEX for zgeequb.
Array: size (lda,*).
Contains the m-by- n matrix A whose equilibration factors are to be computed.

The second dimension of a must be at least max $(1, n)$.

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, m)$.

Output Parameters

colcnd
amax
info

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: $r(m), c(n)$.
If info $=0$, or info>m, the array r contains the row scale factors for the matrix A.
If info $=0$, the array c contains the column scale factors for the matrix A.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info $=0$ or info>m, rowend contains the ratio of the smallest r (i) to the largest r (i). If rowcnd ≥ 0.1, and amax is neither too large nor too small, it is not worth scaling by r.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info $=0$, colcnd contains the ratio of the smallest $c(i)$ to the largest c (i). If colcn $d \geq 0.1$, it is not worth scaling by c.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A. If amax is very close to SMLNUM or very close to BIGNUM, the matrix should be scaled.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, i>0$, and
$i \leq m$, the i-th row of A is exactly zero;
$i>m$, the $(i-m)$-th column of A is exactly zero.

See Also

Error Analysis
Matrix Storage Schemes
?gbequ
Computes row and column scaling factors intended to equilibrate a banded matrix and reduce its condition number.

Syntax

```
call sgbequ( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
```

```
call dgbequ( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
call cgbequ( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
call zgbequ( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
call gbequ( ab, r, c [,kl] [,rowcnd] [,colcnd] [,amax] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes row and column scalings intended to equilibrate an m-by- n band matrix A and reduce its condition number. The output array r returns the row scale factors and the array c the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix B with elements $b_{i j}=r(i) * a_{i j}{ }^{*} C(j)$ have absolute value 1.

See ? laqgb auxiliary function that uses scaling factors computed by ? gbequ.

Input Parameters

m
n
$k l$
ku
$a b$

Idab

Output Parameters

$$
r, c
$$

rowend

INTEGER. The number of rows of the matrix $A ; m \geq 0$.
INTEGER. The number of columns of the matrix $A ; n \geq 0$.
INTEGER. The number of subdiagonals within the band of $A ; k l \geq 0$.
INTEGER. The number of superdiagonals within the band of $A ; k u \geq 0$.
REAL for sgbequ
DOUBLE PRECISION for dgbequ
COMPLEX for cgbequ
DOUBLE COMPLEX for zgbequ.
Array, size $I d a b$ by *. Contains the original band matrix A stored in rows from 1 to $k l+k u+1$. The second dimension of $a b$ must be at least max $(1, n)$.

INTEGER. The leading dimension of $a b ; / d a b \geq k \mid+k u+1$.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: r (size m), c (size n).
If info $=0$, or info>m, the array r contains the row scale factors of the matrix A.
If info $=0$, the array c contains the column scale factors of the matrix A.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

	If info $=0$ or info>m, rowcnd contains the ratio of the smallest $r(i)$ to the largest $r(i)$.
colcnd	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors. If info $=0$, colcnd contains the ratio of the smallest $c(i)$ to the largest $c(i)$.
amax	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	Absolute value of the largest element of the matrix A.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i-th parameter had an illegal value.
	If info $=$ i and
	$i \leq m$, the i-th row of A is exactly zero;
	$i>m$, the ($i-m$) th column of A is exactly zero.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gbequ interface are as follows:

$a b$	Holds the array A of size $(k l+k u+1, n)$.
r	Holds the vector of length (m).
c	Holds the vector of length n.
$k l$	If omitted, assumed $k l=k u$.
$k u$	Restored as $k u=l d a-k l-1$.

Application Notes

All the components of r and c are restricted to be between $S M L N U M=$ smallest safe number and BIGNUM= largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice.

SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision values of SMLNUM and BIGNUM as follows:

```
SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM
```

If rowend ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by r.
If colcnd 0.1 , it is not worth scaling by c.
If amax is very close to SMLNUM or very close to BIGNUM, the matrix A should be scaled.

```
See Also
Error Analysis
Matrix Storage Schemes
```


?gbequb

```
Computes row and column scaling factors restricted to a power of radix to equilibrate a banded matrix and reduce its condition number.
```


Syntax

```
call sgbequb( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
call dgbequb( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
call cgbequb( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
call zgbequb( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes row and column scalings intended to equilibrate an m-by- n banded matrix A and reduce its condition number. The output array r returns the row scale factors and the array c - the column scale factors. These factors are chosen to try to make the largest element in each row and column of the matrix B with elements $b(i j)=r(i) * a(i j) * c(j)$ have an absolute value of at most the radix.
$r(i)$ and $c(j)$ are restricted to be a power of the radix between SMLNUM $=$ smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of a but works well in practice.

SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision values of SMLNUM and BIGNUM as follows:

```
SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM
```

This routine differs from ?gbequ by restricting the scaling factors to a power of the radix. Except for overand underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer equal to approximately 1 but lie between sqrt (radix) and $1 /$ sqrt (radix).

Input Parameters

m
n
kl
ku
$a b$

```
INTEGER. The number of rows of the matrix A; m\geq0.
INTEGER. The number of columns of the matrix A; n\geq0.
INTEGER. The number of subdiagonals within the band of A;kl\geq0.
INTEGER. The number of superdiagonals within the band of A; ku\geq0.
REAL for sgbequb
DOUBLE PRECISION for dgbequb
COMPLEX for cgbequb
DOUBLE COMPLEX for zgbequb.
```

ldab

Output Parameters

r, c
rowend
colcnd
amax
info

Array: size /dab by *
Contains the original banded matrix A stored in rows from 1 to $k l+$ $k u+1$. The j-th column of A is stored in the j-th column of the array ab as follows:
$a b(k u+1+i-j, j)=a(i, j)$ for $\max (1, j-k u) \leq i \leq \min (n, j+k l)$.
The second dimension of $a b$ must be at least max $(1, n)$.
INTEGER. The leading dimension of $a ; \operatorname{ldab} \geq \max (1, m)$.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: r (size m), c (size n).
If info $=0$, or info>m, the array r contains the row scale factors for the matrix A.

If info $=0$, the array c contains the column scale factors for the matrix A.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info $=0$ or info>m, rowend contains the ratio of the smallest r (i) to the largest r (i). If rowcnd ≥ 0.1, and amax is neither too large nor too small, it is not worth scaling by r.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info $=0$, colcnd contains the ratio of the smallest c (i) to the largest $c(i)$. If colcnd ≥ 0.1, it is not worth scaling by c.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A. If amax is very close to SMLNUM or BIGNUM, the matrix should be scaled.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of A is nonpositive.
$i \leq m$, the i-th row of A is exactly zero;
$i>m$, the $(i-m)$-th column of A is exactly zero.

See Also
Error Analysis
Matrix Storage Schemes

?poequ
Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite matrix and reduce its condition number.

Syntax

```
call spoequ( n, a, lda, s, scond, amax, info )
call dpoequ( n, a, lda, s, scond, amax, info )
call cpoequ( n, a, lda, s, scond, amax, info )
call zpoequ( n, a, lda, s, scond, amax, info )
call poequ( a, s [,scond] [,amax] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positivedefinite matrix A and reduce its condition number (with respect to the two-norm). The output array s returns scale factors such that $s(i) s[i+1]$ contains

$$
1 / \sqrt{a_{i, i}}
$$

These factors are chosen so that the scaled matrix B with elements $B_{i, j}=S(i) \star A_{i, j}{ }^{\star} S(j)$ has diagonal elements equal to 1 .

This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.
See ?laqsy auxiliary function that uses scaling factors computed by ?poequ.

Input Parameters

n
INTEGER. The order of the matrix $A ; n \geq 0$.
REAL for spoequ
DOUBLE PRECISION for dpoequ
COMPLEX for cpoequ
DOUBLE COMPLEX for zpoequ.
Array: size Ida by *.
Contains the n-by- n symmetric or Hermitian positive definite matrix A whose scaling factors are to be computed. Only the diagonal elements of A are referenced.
The second dimension of a must be at least max $(1, n)$.
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.

Output Parameters

S
scond
amax
info

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size n.
If info $=0$, the array s contains the scale factors for A.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info $=0$, scond contains the ratio of the smallest $s(i)$ to the largest $s(i)$.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of A is nonpositive.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine poequ interface are as follows:
a
Holds the matrix A of size (n, n).
Holds the vector of length n.

Application Notes

If scon $d \geq 0.1$ and amax is neither too large nor too small, it is not worth scaling by s.
If amax is very close to SMLNUM or very close to BIGNUM, the matrix A should be scaled.

See Also

Error Analysis
Matrix Storage Schemes
?poequb
Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite matrix and reduce its condition number.

Syntax

```
call spoequib( n, a, lda, s, scond, amax, info )
call dpoequb( }n,a,lda, s, scond, amax, info 
call cpoequb( n, a, lda, s, scond, amax, info )
```

```
call zpoequb( n, a, lda, s, scond, amax, info )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positivedefinite matrix A and reduce its condition number (with respect to the two-norm).
These factors are chosen so that the scaled matrix B with elements $B_{i, j}=s(i) * A_{i, j}{ }^{*}(j)$ has diagonal elements equal to $1 . s(i)$ is a power of two nearest to, but not exceeding $1 / \operatorname{sqrt}\left(A_{i, i}\right)$.

This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.

Input Parameters

```
n INTEGER. The order of the matrix A; n\geq0.
a REAL for spoequib
    DOUBLE PRECISION for dpoequb
    COMPLEX for cpoequ.b
DOUBLE COMPLEX for zpoequ.b.
```

Array: size Ida by *.
Contains the $n-b y-n$ symmetric or Hermitian positive definite matrix A whose scaling factors are to be computed. Only the diagonal elements of A are referenced.

The second dimension of a must be at least max $(1, n)$.
INTEGER. The leading dimension of $a ; I d a \geq \max (1, m)$.

Output Parameters

S
scond
amax

REAL for single precision flavors DOUBLE PRECISION for double precision flavors.

Array, size (n).
If info $=0$, the array s contains the scale factors for A.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If info $=0$, scond contains the ratio of the smallest $s(i)$ to the largest s (i). If scond 0.1 , and amax is neither too large nor too small, it is not worth scaling by s.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Absolute value of the largest element of the matrix A. If amax is very close to SMLNUM or BIGNUM, the matrix should be scaled.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of A is nonpositive.

See Also

Error Analysis
Matrix Storage Schemes
?ppequ
Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite matrix in packed storage and reduce its condition number.

Syntax

```
call sppequ( uplo, n, ap, s, scond, amax, info )
call dppequ( uplo, n, ap, s, scond, amax, info )
call cppequ( uplo, n, ap, s, scond, amax, info )
call zppequ( uplo, n, ap, s, scond, amax, info )
call ppequ( ap, s [,scond] [,amax] [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positive definite matrix A in packed storage and reduce its condition number (with respect to the two-norm). The output array s returns scale factors such that $s(i) s[i+1]$ contains

These factors are chosen so that the scaled matrix B with elements $b_{i j}=S(i) * a_{i j}{ }^{*} S(j)$ has diagonal elements equal to 1.
This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.
See ? laqsp auxiliary function that uses scaling factors computed by ?ppequ.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is packed in the array $a p$:
	If uplo = 'U', the array ap stores the upper triangular part of the matrix A.
	If uplo = 'L', the array ap stores the lower triangular part of the matrix A.
n	INTEGER. The order of matrix $A ; n \geq 0$.
$a p$	REAL for sppequ
	DOUBLE PRECISION for dppequ
	COMPLEX for cppequ
	DOUBLE COMPLEX for zppequ.
	Array, size at least max $(1, n(n+1) / 2)$. The array ap contains the upper or the lower triangular part of the matrix A (as specified by uplo) in packed storage (see Matrix Storage Schemes).

Output Parameters

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size (n).

scond	If info $=0$, the array s contains the scale factors for A.
	REAL for single precision flavors
amax	DOUBLE PRECISION for double precision flavors.
	If info $=0$, scond contains the ratio of the smallest s (i) to the
	largest $s(i)$.
	REAL for single precision flavors
info	DOUBLE PRECISION for double precision flavors.
	AbSolute value of the largest element of the matrix A.
	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i-th parameter had an illegal value.
	If info $=i$, the i-th diagonal element of A is nonpositive.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ppequ interface are as follows:

ap	Holds the array A of size $(n \star(n+1) / 2)$.
splo	Holds the vector of length n.
Must be 'U' or 'L'. The default value is 'U'.	

Application Notes

If scond ≥ 0.1 and $a m a x$ is neither too large nor too small, it is not worth scaling by s.
If amax is very close to SMLNUM or very close to BIGNUM, the matrix A should be scaled.

```
See Also
Error Analysis
Matrix Storage Schemes
?pbequ
Computes row and column scaling factors intended to
equilibrate a symmetric (Hermitian) positive-definite
band matrix and reduce its condition number.
```


Syntax

```
call spbequ( uplo, n, kd, ab, ldab, s, scond, amax, info )
call dpbequ( uplo, n, kd, ab, ldab, s, scond, amax, info )
call cpbequ( uplo, n, kd, ab, ldab, s, scond, amax, info )
call zpbequ( uplo, n, kd, ab, ldab, s, scond, amax, info )
call pbequ( ab, s [,scond] [,amax] [,uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes row and column scalings intended to equilibrate a symmetric (Hermitian) positive definite band matrix A and reduce its condition number (with respect to the two-norm). The output array s returns scale factors such that $s(i) s[i+1]$ contains

$$
s(i)=\frac{1}{\sqrt{a_{i, i}}}
$$

These factors are chosen so that the scaled matrix B with elements $b_{i j}=s(i) * a_{i j}{ }^{*} S(j)$ has diagonal elements equal to 1 . This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.
See ? laqsb auxiliary function that uses scaling factors computed by ?pbequ.

Input Parameters

```
uplo
```

n
$k d$
$a b$

Idab

Output Parameters

	DOUBLE PRECISION for double precision flavors.
	Array, size (n).
	If info $=0$, the array s contains the scale factors for A.
scond	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	If info $=0$, scond contains the ratio of the smallest s (i) to the largest $s(i)$.
amax	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	Absolute value of the largest element of the matrix A.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i-th parameter had an illegal value.
	If info $=i$, the i-th diagonal element of A is nonpositive.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine pbequ interface are as follows:

```
ab Holds the array A of size ( }kd+1,n)
Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.
```


Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by s.
If amax is very close to SMLNUM or very close to BIGNUM, the matrix A should be scaled.

See Also

Error Analysis
Matrix Storage Schemes

?syequb
 Computes row and column scaling factors intended to equilibrate a symmetric indefinite matrix and reduce its condition number.

Syntax

```
call ssyequb( uplo, n, a, lda, s, scond, amax, work, info )
call dsyequb( uplo, n, a, lda, s, scond, amax, work, info )
call csyequb( uplo, n, a, lda, s, scond, amax, work, info )
call zsyequb( uplo, n, a, lda, s, scond, amax, work, info )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine computes row and column scalings intended to equilibrate a symmetric indefinite matrix A and reduce its condition number (with respect to the two-norm).
The array s contains the scale factors, $s(i)=1 / \operatorname{sqrt}(A(i, i))$. These factors are chosen so that the scaled matrix B with elements $b(i, j)=s(i) * a(i, j) * s(j)$ has ones on the diagonal.

This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored: If uplo = 'U', the array a stores the upper triangular part of the matrix A.
	If uplo = 'L', the array a stores the lower triangular part of the matrix A.
n	INTEGER. The order of the matrix $A ; n \geq 0$.
a, work	REAL for ssyequib
	DOUBLE PRECISION for dsyequb
	COMPLEX for csyequb
	DOUBLE COMPLEX for zsyequb.
	Array a: Ida by *.
	Contains the n-by- n symmetric indefinite matrix A whose scaling factors are to be computed. Only the diagonal elements of A are referenced. The second dimension of a must be at least max $(1, n)$.
	work (*) is a workspace array. The dimension of work is at least $\max \left(1,3^{\star} n\right)$.
Ida	INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, m)$.

Output Parameters

s
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size (n).
If info $=0$, the array s contains the scale factors for A.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
amax
info

If info $=0$, scond contains the ratio of the smallest $s(i)$ to the largest s (i). If scond ≥ 0.1, and amax is neither too large nor too small, it is not worth scaling by s.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest element of the matrix A. If amax is very close to SMLNUM or BIGNUM, the matrix should be scaled.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of A is nonpositive.

See Also

Error Analysis
Matrix Storage Schemes

?heequb

Computes row and column scaling factors intended to equilibrate a Hermitian indefinite matrix and reduce its condition number.

Syntax

```
call cheequb( uplo, n, a, lda, s, scond, amax, work, info )
call zheequb( uplo, n, a, lda, s, scond, amax, work, info )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes row and column scalings intended to equilibrate a Hermitian indefinite matrix A and reduce its condition number (with respect to the two-norm).

The array s contains the scale factors, $s(i)=1 / \operatorname{sqrt}(A(i, i))$. These factors are chosen so that the scaled matrix B with elements $b(i, j)=s(i) * a(i, j) * s(j)$ has ones on the diagonal.

This choice of s puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.

Input Parameters

uplo
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the array a stores the upper triangular part of the matrix A.

If uplo = 'L', the array a stores the lower triangular part of the matrix A.
n
a, work

Ida

Output Parameters

S

scond
amax
info

INTEGER. The order of the matrix $A ; n \geq 0$.
COMPLEX for cheequb
DOUBLE COMPLEX for zheequ.
Array a: size Ida by *.
Contains the n-by- n symmetric indefinite matrix A whose scaling factors are to be computed. Only the diagonal elements of A are referenced.

The second dimension of a must be at least max $(1, n)$.
work (*) is a workspace array. The dimension of work is at least $\max \left(1,3^{*} n\right)$.

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, m)$.

REAL for cheequb
DOUBLE PRECISION for zheequb.
Array, size (n).
If info $=0$, the array s contains the scale factors for A.
REAL for cheequb
DOUBLE PRECISION for zheequ.
If info $=0$, scond contains the ratio of the smallest $s(i)$ to the largest s (i). If scono ≥ 0.1, and amax is neither too large nor too small, it is not worth scaling by s.

REAL for cheequb
DOUBLE PRECISION for zheequb.
Absolute value of the largest element of the matrix A. If amax is very close to SMLNUM or BIGNUM, the matrix should be scaled.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the i-th diagonal element of A is nonpositive.

See Also

Error Analysis
Matrix Storage Schemes

LAPACK Linear Equation Driver Routines

Table "Driver Routines for Solving Systems of Linear Equations" lists the LAPACK driver routines for solving systems of linear equations with real or complex matrices.

Driver Routines for Solving Systems of Linear Equations

Matrix type, storage scheme	Simple Driver	Expert Driver Extra-Precise Interative Refinement

general	? gesv	? gesvx	? gesvxx
general band	? 9 bsv	?gbsvx	? gbsvxx
general tridiagonal	? gtsv	? gtsvx	
diagonally dominant tridiagonal	? dtsvb		
symmetric/Hermitian positive-definite	?posv	?posvx	?posvxx
symmetric/Hermitian positive-definite, storage	?ppsv	?ppsvx	
symmetric/Hermitian positive-definite, band	? pbsv	?pbsvx	
symmetric/Hermitian positive-definite, tridiagonal	?ptsv	?ptsvx	
symmetric/Hermitian indefinite	?sysv/?hesv	?sysvx/?hesvx	?sysvxx/?hesvxx
	$\begin{aligned} & \text { ?sysv_rook/?sysv_rk/ } \\ & \text { ?hesv_rook/?hesv_rk } \end{aligned}$		
	?sysv_aa/?hesv_aa		
symmetric/Hermitian indefinite, packed storage	?spsv/?hpsv	?spsvx/?hpsvx	
complex symmetric	?sysv	?sysvx	
	?sysv_rook		
complex symmetric, packed storage	?spsv	?spsvx	

In this table ? stands for s (single precision real), d (double precision real), c (single precision complex), or z (double precision complex). In the description of ?gesv and ?posv routines, the ? sign stands for combined character codes $d s$ and $z c$ for the mixed precision subroutines.

```
?gesv
Computes the solution to the system of linear
equations with a square coefficient matrix A and
multiple right-hand sides.
Syntax
```

```
call sgesv( n, nrhs, a, lda, ipiv, b, ldb, info )
```

call sgesv(n, nrhs, a, lda, ipiv, b, ldb, info)
call dgesv(n, nrhs, a, lda, ipiv, b, ldb, info)
call dgesv(n, nrhs, a, lda, ipiv, b, ldb, info)
call cgesv(n, nrhs, a, lda, ipiv, b, ldb, info)
call cgesv(n, nrhs, a, lda, ipiv, b, ldb, info)
call zgesv(n, nrhs, a, lda, ipiv, b, ldb, info)

```
call zgesv( n, nrhs, a, lda, ipiv, b, ldb, info )
```

```
call dsgesv( n, nrhs, a, lda, ipiv, b, ldb, x, ldx, work, swork, iter, info )
call zcgesv( n, nrhs, a, lda, ipiv, b, ldb, x, ldx, work, swork, rwork, iter, info )
call gesv( a, b [,ipiv] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the system of linear equations $A * X=B$, where A is an n-by-n matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The $L U$ decomposition with partial pivoting and row interchanges is used to factor A as $A=P^{\star} L^{\star} U$, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations $A * X=B$.

The dsgesv and zcgesv are mixed precision iterative refinement subroutines for exploiting fast single precision hardware. They first attempt to factorize the matrix in single precision (dsgesv) or single complex precision (zcgesv) and use this factorization within an iterative refinement procedure to produce a solution with double precision (dsgesv) / double complex precision (zcgesv) normwise backward error quality (see below). If the approach fails, the method switches to a double precision or double complex precision factorization respectively and computes the solution.

The iterative refinement is not going to be a winning strategy if the ratio single precision performance over double precision performance is too small. A reasonable strategy should take the number of right-hand sides and the size of the matrix into account. This might be done with a call to ilaenv in the future. At present, iterative refinement is implemented.
The iterative refinement process is stopped if

```
iter > itermax
```

or for all the right-hand sides:

```
rnmr < sqrt(n)*xnrm*anrm*eps*bwdmax
```

where

- iter is the number of the current iteration in the iterativerefinement process
- rnmr is the infinity-norm of the residual
- xnrm is the infinity-norm of the solution
- anrm is the infinity-operator-norm of the matrix A
- eps is the machine epsilon returned by dlamch ('Epsilon').

The values itermax and bwdmax are fixed to 30 and $1.0 \mathrm{~d}+00$ respectively.

Input Parameters

n

INTEGER. The number of linear equations, that is, the order of the matrix $A ; n \geq 0$.

INTEGER. The number of right-hand sides, that is, the number of columns of the matrix $B ; n r h s \geq 0$.

REAL for sgesv
DOUBLE PRECISION for dgesv and dsgesv
b

Ida
1 db

$I d x$

work
swork
rwork

Output Parameters

a
b

COMPLEX for cgesv
DOUBLE COMPLEX for zgesv and zcgesv.
The array a(size lda by *) contains the n-by- n coefficient matrix A.

The second dimension of a must be at least max $(1, n)$, the second dimension of b at least max ($1, n r h s$).

REAL for sgesv
DOUBLE PRECISION for dgesv and dsgesv
COMPLEX for cgesv
DOUBLE COMPLEX for zgesv and zcgesv.
The array $b($ size $l d b$ by *) contains the n-by-nrhs matrix of right hand side matrix B.

INTEGER. The leading dimension of the array $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of the array $x ; \operatorname{ldx} \geq \max (1, n)$.
DOUBLE PRECISION for dsgesv
DOUBLE COMPLEX for zcgesv.
Workspace array, size at least max ($1, n * n r h s$). This array is used to hold the residual vectors.

REAL for dsgesv
COMPLEX for zcgesv.
Workspace array, size at least max ($1, n^{\star}(n+n r h s)$). This array is used to use the single precision matrix and the right-hand sides or solutions in single precision.

DOUBLE PRECISION. Workspace array, size at least max $(1, n)$.

Overwritten by the factors L and U from the factorization of $A=$ $P * L * U$; the unit diagonal elements of L are not stored.

If iterative refinement has been successfully used (info $=0$ and iter ≥ 0), then A is unchanged.
If double precision factorization has been used (info $=0$ and iter $<$ 0), then the array A contains the factors L and U from the factorization $A=P{ }^{\star} L^{\star} U$; the unit diagonal elements of L are not stored.

Overwritten by the solution matrix X for dgesv, sgesv,zgesv,zgesv. Unchanged for dsgesv and zcgesv.

INTEGER.

Array, size at least max $(1, n)$. The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row ipiv(i). Corresponds to the single precision factorization (if info $=0$ and iter ≥ 0) or the double precision factorization (if info $=0$ and iter <0).

X
info

DOUBLE PRECISION for dsgesv
DOUBLE COMPLEX for zcgesv.
Array, size $l d x$ by nrhs. If info $=0$, contains the n-by-nrhs solution matrix X.

INTEGER.
If iter < 0: iterative refinement has failed, double precision factorization has been performed

- If iter $=-1$: the routine fell back to full precision for implementation- or machine-specific reason
- If iter $=-2$: narrowing the precision induced an overflow, the routine fell back to full precision
- If iter $=-3$: failure of sgetrf for dsgesv, or cgetrf for zcgesv
- If iter $=-31$: stop the iterative refinement after the 30th iteration.

If iter > 0: iterative refinement has been successfully used. Returns the number of iterations.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, U_{i, i}$ (computed in double precision for mixed precision subroutines) is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gesv interface are as follows:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size $(n, n r h s)$.
ipiv	Holds the vector of length n.

NOTE

Fortran 95 Interface is so far not available for the mixed precision subroutines dsgesv/ zcgesv.

See Also

[^4]dlamch
sgetrf
Matrix Storage Schemes

?gesvx

Computes the solution to the system of linear equations with a square coefficient matrix A and multiple right-hand sides, and provides error bounds on the solution.

Syntax

```
call sgesvx( fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info )
call dgesvx( fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info )
call cgesvx( fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info )
call zgesvx( fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info )
call gesvx( a, b, x [,af] [,ipiv] [,fact] [,trans] [,equed] [,r] [,c] [,ferr] [,berr]
[,rcond] [,rpvgrw] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A \star X=B$, where A is an n-by- n matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ? gesvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors r and c are computed to equilibrate the system:
trans $=$ 'N': $\operatorname{diag}(r) * A * \operatorname{diag}(C) * i n v(\operatorname{diag}(C)) * X=\operatorname{diag}(r) * B$
trans $=$ 'T': $(\operatorname{diag}(r) * A * \operatorname{diag}(C))^{T * i n v}(\operatorname{diag}(r)) * X=\operatorname{diag}(C) * B$
trans $='^{\prime}$ ': $(\operatorname{diag}(r) * A * \operatorname{diag}(C))^{H \star} \operatorname{inv}(\operatorname{diag}(r)) * X=\operatorname{diag}(C) * B$
Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(r) * A \star \operatorname{diag}(C)$ and B by diag(r)*B (if trans='N') or $\operatorname{diag}(C) * B$ (if trans $=$ ' T ' or 'C').
2. If fact $=$ ' N ' or 'E', the $L U$ decomposition is used to factor the matrix A (after equilibration if fact $=$ ' E ') as $A=P^{*} L^{*} U$, where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.
3. If some $U_{i, i}=0$, so that U is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form of A.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(c)$ (if $\operatorname{trans}=$ ' N ') or $\operatorname{diag}(r)$ (if trans $=$ ' T ' or ' C ') so that it solves the original system before equilibration.

Input Parameters

fact
trans
n
a
af

CHARACTER*1. Must be ' F^{\prime}, ' N^{\prime}, or ' E^{\prime}.
Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
If fact $=$ ' F^{\prime} ' on entry, af and ipiv contain the factored form of A. If equed is not ' N ', the matrix A has been equilibrated with scaling factors given by r and c.
$a, a f$, and ipiv are not modified.
If fact $=$ ' N ', the matrix A will be copied to af and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then copied to af and factored.

CHARACTER*1. Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $A * X=B$ (No transpose).
If trans $=$ ' T ', the system has the form $A^{T *} X=B$ (Transpose).
If trans $=$ ' C', the system has the form $A^{H *} X=B$ (Transpose for real flavors, conjugate transpose for complex flavors).

InTEGER. The number of linear equations; the order of the matrix A; $n \geq 0$.

INTEGER. The number of right hand sides; the number of columns of the matrices B and $X ; n r h s \geq 0$.

REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
The array a(size $/ d a$ by $*$) contains the matrix A. If fact $=' F$ ' and equed is not ' N ', then A must have been equilibrated by the scaling factors in r and/or c. The second dimension of a must be at least $\max (1, n)$.

REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
b

Ida

Idaf
1 db
ipiv
equed
r, c

The array $a_{a f} f($ size ldaf by *) is an input argument if fact $=$ ' F '. It contains the factored form of the matrix A, that is, the factors L and U from the factorization $A=P^{\star} L * U$ as computed by ?getrf. If equed is not ' N ', then $a f$ is the factored form of the equilibrated matrix A. The second dimension of af must be at least max $(1, n)$.

REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
The array bb(size ldb by *) contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max ($1, n r h s$).

REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
work $\left(^{*}\right.$) is a workspace array. The dimension of work must be at least $\max \left(1,4 \star_{n}\right)$ for real flavors, and at least $\max \left(1,2 \star_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $a f ; I d a f \geq \max (1, n)$.
INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $=$ ' F^{\prime}. It contains the pivot indices from the factorization $A=$ $P^{\star} L \star U$ as computed by ?getrf; row i of the matrix was interchanged with row ipiv(i).

CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact $={ }^{\prime} F^{\prime}$. It specifies the form of equilibration that was done:
If equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N').

If equed = 'R', row equilibration was done, that is, A has been premultiplied by diag(r).

If equed $=$ ' C ', column equilibration was done, that is, A has been postmultiplied by diag(c).

If equed = ' B ', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(r) \star A \star \operatorname{diag}(c)$.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Arrays: r (size $n), c$ (size n). The array r contains the row scale factors for A, and the array c contains the column scale factors for A. These arrays are input arguments if fact = 'F' only; otherwise they are output arguments.

If equed $=$ 'R' or 'B', A is multiplied on the left by diag(r); if equed $=$ 'N' or 'C', r is not accessed.

If fact $=$ ' F ' and equed $=$ ' R ' or ' B ', each element of r must be positive.
If equed $=$ ' C ' or ' B ', A is multiplied on the right by $\operatorname{diag}(c)$; if equed $=$ ' N ' or 'R', c is not accessed.
If fact $=$ ' F ' and equed $=$ ' C ' or ' B ', each element of c must be positive.

INTEGER. The leading dimension of the output array $x ; l d x \geq \max (1$, n).

INTEGER. Workspace array, size at least max $(1, n)$; used in real flavors only.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, size at least max $(1,2 * n)$; used in complex flavors only.

Output Parameters

X
a

REAL for sgesvx
DOUBLE PRECISION for dgesvx
COMPLEX for cgesvx
DOUBLE COMPLEX for zgesvx.
Array, size $/ d x$ by *.
If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the original system of equations. Note that A and B are modified on exit if equed \neq 'N', and the solution to the equilibrated system is:
$\operatorname{diag}(C)^{-1 *} X$, if trans $=$ ' N ' and equed $=$ ' C' or ' B ';
$\operatorname{diag}(R)^{-1 *} X$, if trans $=$ 'T' or 'C' and equed $=$ 'R' or 'B'. The second dimension of x must be at least max ($1, n r h s$).

Array a is not modified on exit if fact $={ }^{\prime} F^{\prime}$ or 'N', or if fact $=$ 'E' and equed = 'N'. If equed $\neq{ }^{\prime} N^{\prime}$ ', A is scaled on exit as follows:
equed $=' R ': A=\operatorname{diag}(R) * A$
equed $=$ 'C': $A=A \star \operatorname{diag}(C)$
equed $='^{\prime}$ ': $A=\operatorname{diag}(R) * A * \operatorname{diag}(C)$.

work (1) for real flavors, or rwork (1) for complex flavors is much less than 1 , then the stability of the $L U$ factorization of the (equilibrated) matrix A could be poor. This also means that the solution x, condition estimator rcond, and forward error bound ferr could be unreliable. If factorization fails with $0<i n f o \leq n$, then work (1) for real flavors, or rwork (1) for complex flavors contains the reciprocal pivot growth factor for the leading info columns of A.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, and $i \leq n$, then $U(i, i)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=n+1$, then U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gesvx interface are as follows:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size ($n, n r h s$).
x	Holds the matrix X of size ($n, n r h s$).
af	Holds the matrix AF of size (n, n).
ipiv	Holds the vector of length n.
r	Holds the vector of length n. Default value for each element is $r(i)=$ 1.0_WP.
c	Holds the vector of length n. Default value for each element is $c(i)=$ 1.0_WP.
ferr	Holds the vector of length (nrhs).
berr	Holds the vector of length (nrhs).
fact	Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then both arguments af and ipiv must be present; otherwise, an error is returned.
trans	Must be 'N', 'C', or 'T'. The default value is 'N'.
equed	Must be 'N', 'B', 'C', or 'R'. The default value is ' N^{\prime}.

Real value that contains the reciprocal pivot growth factor norm (A) / norm(U).

See Also

Matrix Storage Schemes

?gesvxx

Uses extra precise iterative refinement to compute the solution to the system of linear equations with a square coefficient matrix A and multiple right-hand sides

Syntax

```
call sgesvxx( fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
iwork, info )
call dgesvxx( fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
iwork, info )
call cgesvxx( fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
rwork, info )
call zgesvxx( fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
rwork, info )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A * X=B$, where A is an n-by-n matrix, the columns of the matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error (O (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.
The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with 0 (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.
The routine ? gesvxx performs the following steps:

1. If fact $=$ ' E ', scaling factors r and c are computed to equilibrate the system:
```
trans = 'N': diag(r)*A* diag(c)*inv(diag(c))*X = diag(r)*B
trans = 'T':(diag(r)*A* diag(C)) T*inv(diag(r))*X = diag(c)*B
trans = 'C':(diag(r)*A*diag(C)) 'H*inv(diag(r))*X = diag(c)*B
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$ and B by $\operatorname{diag}(r) * B$ (if trans='N') or diag $(C) * B$ (if trans $=$ 'T' or 'C').
2. If fact $=$ 'N' or 'E', the $L U$ decomposition is used to factor the matrix A (after equilibration if fact $=$ ' E ') as $A=P^{*} L^{*} U$, where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.
3. If some $U_{i, i}=0$, so that U is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for X and compute error bounds.
4. The system of equations is solved for X using the factored form of A.
5. By default, unless params (la_linrx_itref_i) is set to zero, the routine applies iterative refinement to improve the computed solution matrix and calculate error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix X is premultiplied by diag(c) (if trans $={ }^{\prime} N^{\prime}$) or diag(r) (if trans $=$ ' T ' or ' C') so that it solves the original system before equilibration.

Input Parameters

fact
trans
n
nrhs
a, af, b, work

CHARACTER*1. Must be ' F^{\prime}, ' N^{\prime}, or ${ }^{\prime} \mathrm{E}^{\prime}$.
Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
If fact $=$ ' F ', on entry, af and ipiv contain the factored form of A. If equed is not ' N ', the matrix A has been equilibrated with scaling factors given by r and c. Parameters $a, a f$, and ipiv are not modified.

If fact $=$ 'N', the matrix A will be copied to af and factored.
If fact $=$ ' E ', the matrix A will be equilibrated, if necessary, copied to $a f$ and factored.

CHARACTER*1. Must be 'N','T', or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $A * X=B$ (No transpose).
If trans $=$ ' T ', the system has the form $A^{\top *} X=B$ (Transpose).
If trans $=$ ' C ', the system has the form $A^{\mathrm{H} *} X=B$ (Conjugate Transpose $=$ Transpose for real flavors, Conjugate Transpose for complex flavors).

INTEGER. The number of linear equations; the order of the matrix A; $n \geq 0$.

INTEGER. The number of right hand sides; the number of columns of the matrices B and $X ; n r h s \geq 0$.

REAL for sgesvxx
DOUBLE PRECISION for dgesvxx
COMPLEX for cgesvxx
DOUBLE COMPLEX for zgesvxx.

```
lda
Idaf
ipiv
```

equed
r, C

Arrays: a(size lda by *), af(size ldafby *), b(size ldb by *), work(*).

The array a contains the matrix A. If fact $={ }^{\prime} F$ ' and equed is not ' N ', then A must have been equilibrated by the scaling factors in r and/or c. The second dimension of a must be at least $\max (1, n)$.
The array $a f$ is an input argument if fact $='^{\prime} \mathrm{F}^{\prime}$. It contains the factored form of the matrix A, that is, the factors L and U from the factorization $A=P \star L \star U$ as computed by ?getrf. If equed is not ' N ', then $a f$ is the factored form of the equilibrated matrix A. The second dimension of af must be at least max $(1, n)$.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).
work(*) is a workspace array. The dimension of work must be at least $\max (1,4 * n)$ for real flavors, and at least max $\left(1,2 *_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $a f ; l d a f \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $=$ ' F^{\prime}. It contains the pivot indices from the factorization $A=$ $P^{\star} L \star U$ as computed by ?getrf; row i of the matrix was interchanged with row ipiv(i).

CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact $={ }^{\prime} F^{\prime}$. It specifies the form of equilibration that was done:
If equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N').

If equed = 'R', row equilibration was done, that is, A has been premultiplied by diag(r).
If equed $=$ ' C ', column equilibration was done, that is, A has been postmultiplied by diag(c).

If equed = 'B', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: r (size n), c (size n). The array r contains the row scale factors for A, and the array c contains the column scale factors for A. These arrays are input arguments if fact = 'F' only; otherwise they are output arguments.

If equed $=$ 'R' or 'B', A is multiplied on the left by diag(r); if equed $='^{\prime} \mathrm{N}^{\prime}$ or ' C ', r is not accessed.

If fact $=$ ' F ' and equed $=$ ' R 'or ' B ', each element of r must be positive.

If equed $=$ ' C ' or ' B ', A is multiplied on the right by diag(c); if equed $=$ 'N' or 'R', c is not accessed.

If fact $=$ ' F ' and equed $=$ ' C' or ' B ', each element of c must be positive.

Each element of r or c should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of the output array $x ; l d x \geq \max (1$, n).

INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

INTEGER. Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size max(1, nparams). Specifies algorithm parameters. If an entry is less than 0.0 , that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams $=0$, which prevents the source code from accessing the params argument.
params (1) : Whether to perform iterative refinement or not. Default:
1.0
$=0.0 \quad$ No refinement is performed and no error bounds are computed.
$=1.0 \quad$ Use the double-precision refinement algorithm, possibly with doubled-single computations if the compilation environment does not support double precision.
(Other values are reserved for future use.)
params (2) : Maximum number of residual computations allowed for refinement.

Default 10.0
iwork
rwork

Aggressive
Set to 100.0 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params (3) : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the doubleprecision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

INTEGER. Workspace array, size at least max $(1, n)$; used in real flavors only.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, size at least max $\left(1,3 *^{*} n\right)$; used in complex flavors only.

Output Parameters

X
a
$a f$
b

REAL for sgesvxx
DOUBLE PRECISION for dgesvxx
COMPLEX for cgesvxx
DOUBLE COMPLEX for zgesvxx.
Array, size ($I d x, *)$.
If info $=0$, the array x contains the solution n-by-nrhs matrix X to the original system of equations. Note that A and B are modified on exit if equed \neq ' N^{\prime}, and the solution to the equilibrated system is:
$\operatorname{inv}(\operatorname{diag}(c)) * X$, if trans $=$ ' N ' and equed $=$ ' C^{\prime} or 'B'; or $\operatorname{inv}(\operatorname{diag}(r)) * X$, if $t r a n s='^{\prime} T$ or ' C ' and equed $='^{\prime} R^{\prime}$ or 'B'. The second dimension of x must be at least max ($1, n r h s$).

Array a is not modified on exit if fact $=' F^{\prime}$ or ' N^{\prime}, or if fact $=' E '$ and equed $=$ ' N '.

If equed $\neq{ }^{\prime} N^{\prime}, A$ is scaled on exit as follows:
equed $=$ 'R': $A=\operatorname{diag}(r) * A$
equed $=$ ' $C^{\prime}: A=A^{\star} \operatorname{diag}(C)$
equed $=$ ' $\mathrm{B}^{\prime}: A=\operatorname{diag}(r) \star A \star \operatorname{diag}(c)$.
If fact $=$ 'N' or 'E', then af is an output argument and on exit returns the factors L and U from the factorization $A=P L U$ of the original matrix A (if fact $=$ 'N') or of the equilibrated matrix A (if fact $=' E '$). See the description of a for the form of the equilibrated matrix.

Overwritten by $\operatorname{diag}(r) * B$ if trans $=$ 'N' and equed $=$ ' R ' or ' B ';
overwritten by trans $=$ 'T' or 'C' and equed = 'C' or 'B'; not changed if equed $=$ ' N^{\prime}.

These arrays are output arguments if fact $\neq{ }^{\prime} \mathrm{F}^{\prime}$. Each element of these arrays is a power of the radix. See the description of r, c in Input Arguments section.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Contains the reciprocal pivot growth factor:

$\||4|| | v \mid$

If this is much less than 1 , the stability of the $L U$ factorization of the (equlibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. If factorization fails with $0<$ info $\leq n$, this parameter contains the reciprocal pivot growth factor for the leading info columns of A. In ?gesvx, this quantity is returned in work (1).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ($1, \quad n r h s$). Contains the componentwise relative backward error for each solution vector $x(j)$, that is, the smallest relative change in any element of A or B that makes $x(j)$ an exact solution.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size nrhs by n _err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:
Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

The first index in err_bnds_norm (i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_norm (: ,err) contains the following three fields:
err=1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n) *slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * \operatorname{dlamch}(\varepsilon)$ for double precision flavors.
$e r r=2$
err $=3$
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt (n) *slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1 .
err_bnds_comp
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

$$
\max _{j} \frac{\left|X^{2} t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}
$$

The array is indexed by the right-hand side i, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for
each right-hand side. If componentwise accuracy is not requested (params (3) $=0.0$), then err_bnds_comp is not accessed. If $n_{-} e r r_{-}$bnds <3, then at most the first (:, n_err_bnds) entries are returned.

The first index in err_bnds_comp (i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_comp (: ,err) contains the following three fields:
err=1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n)*slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors.
err=2
err=3
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{0} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{\star}\left(a^{\star} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of a^{*} diag (x) by a power of the radix so all absolute row sums of z are approximately 1 .

If fact $=$ 'N' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization $A=P^{\star} L \star U$ of the original matrix A (if fact $=$ 'N') or of the equilibrated matrix A (if fact $='^{\prime} \mathrm{E}^{\prime}$).

If fact $\neq ' F^{\prime}$, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

If an entry is less than 0.0 , that entry is filled with the default value used for that parameter, otherwise the entry is not modified

INTEGER. If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.

If info $=-i$, the i-th parameter had an illegal value.
If 0 < infón: U (info,info) is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with k $>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) = 0.0 , then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that err_bnds_norm $(j, 1)=$ 0.0 or err_bnds_comp $(j, 1)=0.0$. See the definition of err_bnds_norm and err_bnds_comp for err = 1. To get information about all of the righthand sides, check err_bnds_norm or err_bnds_comp.

See Also
 Matrix Storage Schemes
 ?gbsv
 Computes the solution to the system of linear equations with a band coefficient matrix A and multiple right-hand sides.

Syntax

```
call sgbsv( n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
call dgbsv( n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
call cgbsv( n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
call zgbsv( n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info )
call gbsv( ab, b [,kl] [,ipiv] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the real or complex system of linear equations $A * X=B$, where A is an n-by- n band matrix with $k l$ subdiagonals and $k u$ superdiagonals, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

The $L U$ decomposition with partial pivoting and row interchanges is used to factor A as $A=L * U$, where L is a product of permutation and unit lower triangular matrices with $k l$ subdiagonals, and U is upper triangular with $k l+k u$ superdiagonals. The factored form of A is then used to solve the system of equations $A * X=B$.

Input Parameters

n
$k I$
$k u$
INTEGER. The order of A. The number of rows in $B ; n \geq 0$.
INTEGER. The number of subdiagonals within the band of $A ; k l \geq 0$.
INTEGER. The number of superdiagonals within the band of $A ; k u \geq 0$.

```
nrhs
ab,b
Idab
ldb
INTEGER. The number of right-hand sides. The number of columns in \(B ; n r h s \geq 0\).
REAL for sgbsv
DOUBLE PRECISION for dgbsv
COMPLEX for cgbsv
DOUBLE COMPLEX for zgbsv.
Arrays: \(a b\) (size \(/ d a b\) by \({ }^{*}\) ), \(b\) (size \(l d b\) by *).
The array \(a b\) contains the matrix \(A\) in band storage (see Matrix Storage Schemes). The second dimension of \(a b\) must be at least \(\max (1, n)\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max (1, nrhs).
INTEGER. The leading dimension of the array \(a b\). (Idab \(\geq 2 k I+k u+1)\)
INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\).
```


Output Parameters

Overwritten by L and U. The diagonal and $k l+k u$ superdiagonals of U are stored in the first $1+k l+k u$ rows of $a b$. The multipliers used to form L are stored in the next $k l$ rows.

Overwritten by the solution matrix X.
INTEGER.
Array, size at least max $(1, n)$. The pivot indices: row i was interchanged with row ipiv(i).

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, U(i, i)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gbsv interface are as follows:

```
ab Holds the array A of size (2* kl+ku+1,n).
    Holds the matrix B of size ( }n,nrhs)
    Holds the vector of length n.
    If omitted, assumed kl = ku.
```

ku
Restored as $k u=I d a-2 * k l-1$.

See Also

Matrix Storage Schemes

?gbsvx

Computes the solution to the real or complex system of linear equations with a band coefficient matrix A and multiple right-hand sides, and provides error bounds on the solution.

Syntax

```
call sgbsvx( fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info )
call dgbsvx( fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info )
call cgbsvx( fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info )
call zgbsvx( fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info )
call gbsvx( ab, b, x [,kl] [,afb] [,ipiv] [,fact] [,trans] [,equed] [,r] [,c] [,ferr]
[,berr] [,rcond] [,rpvgrw] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A^{*} X=B, A^{T *} X=B$, or $A^{H * X}=B$, where A is a band matrix of order n with $k l$ subdiagonals and $k u$ superdiagonals, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?gbsvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors r and c are computed to equilibrate the system:
```
trans = 'N':diag(r)*A*diag(C) *inv(diag(C))*X = diag(r)*B
trans = 'T':(diag(r)*A*diag(c) )T *inv(diag(r))*X = diag(c)*B
trans = 'C':(diag(r)*A*diag(c)) H *inv(diag(r))*X = diag(c)*B
```

Whether the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$ and B by $\operatorname{diag}(r) * B$ (if trans='N') or $\operatorname{diag}(c) * B$ (if trans = 'T'or 'C').
2. If fact = 'N'or 'E', the $L U$ decomposition is used to factor the matrix A (after equilibration if fact $=$ ${ }^{\prime} E^{\prime}$) as $A=L * U$, where L is a product of permutation and unit lower triangular matrices with kl subdiagonals, and U is upper triangular with $k l+k u$ superdiagonals.
3. If some $U_{i, i}=0$, so that U is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form of A.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(c)$ (if $\operatorname{trans}=$ ' N ') or diag(r) (if trans $=$ ' T ' or ' C') so that it solves the original system before equilibration.

Input Parameters

fact
trans
n
nrhs
ab, afb, b, work

CHARACTER*1. Must be 'F', 'N', or 'E'.
Specifies whether the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.

If fact $=$ ' F^{\prime} : on entry, afb and ipiv contain the factored form of A. If equed is not ' N ', the matrix A is equilibrated with scaling factors given by r and c.
$a b, a f b$, and ipiv are not modified.
If fact $=$ ' N ', the matrix A will be copied to $a f b$ and factored.
If fact = 'E', the matrix A will be equilibrated if necessary, then copied to $a f b$ and factored.

CHARACTER*1. Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $A \star X=B$ (No transpose).
If trans $=$ ' T ', the system has the form $A^{T *} X=B$ (Transpose).
If trans $=$ ' C', the system has the form $A^{H * X}=B$ (Transpose for real flavors, conjugate transpose for complex flavors).

INTEGER. The number of linear equations, the order of the matrix A; $n \geq 0$.

INTEGER. The number of subdiagonals within the band of $A ; k l \geq 0$.
INTEGER. The number of superdiagonals within the band of $A ; k u \geq 0$.
INTEGER. The number of right hand sides, the number of columns of the matrices B and X; nrhs ≥ 0.

REAL for sgbsvx
DOUBLE PRECISION for dgbsvx
COMPLEX for cgbsvx
DOUBLE COMPLEX for zgbsvx.
Arrays: $a b(l d a b, *), ~ a f b(l d a f b, *), b(s i z e ~ l d b ~ b y ~ *), ~ w o r k(*) . ~$
The array $a b$ contains the matrix A in band storage (see Matrix Storage Schemes). The second dimension of $a b$ must be at least $\max (1, n)$. If fact $=' F^{\prime}$ and equed is not 'N', then A must have been equilibrated by the scaling factors in r and/or c.

The array afb is an input argument if fact $=$ ' F^{\prime}. The second dimension of afb must be at least max $(1, n)$. It contains the factored form of the matrix A, that is, the factors L and U from the factorization
$A=P^{\star} L \star U$ as computed by ? gbtrf. U is stored as an upper triangular band matrix with $k l+k u$ superdiagonals in the first $1+k l$ $+k u$ rows of $a f b$. The multipliers used during the factorization are stored in the next $k l$ rows. If equed is not ' N ', then $a f b$ is the factored form of the equilibrated matrix A.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).
work(*) is a workspace array. The dimension of work must be at least $\max (1,3 * n)$ for real flavors, and at least max $\left(1,2 *_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of $a b ; I d a b \geq k l+k u+1$.
INTEGER. The leading dimension of $a f b ; I d a f b \geq 2 * k I+k u+1$.
INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $=$ ' F^{\prime}. It contains the pivot indices from the factorization $A=$ $P^{*} L^{*} U$ as computed by ?gbtrf; row i of the matrix was interchanged with row $\operatorname{ipiv}(i)$.

CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact $='^{\prime} F^{\prime}$. It specifies the form of equilibration that was done:

If equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N').

If equed = 'R', row equilibration was done, that is, A has been premultiplied by diag(r).

If equed $=$ ' C ', column equilibration was done, that is, A has been postmultiplied by diag(c).
if equed $=$ ' B ', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(r) * A * \operatorname{diag}(C)$.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: r (size n), c (size n).
The array r contains the row scale factors for A, and the array c contains the column scale factors for A. These arrays are input arguments if fact $=$ ' F ' only; otherwise they are output arguments.

If equed = 'R'or 'B', A is multiplied on the left by $\operatorname{diag}(r)$; if equed $=$ 'N' or 'C', r is not accessed.

If fact $=$ ' F ' and equed $=$ ' R ' or ' B ', each element of r must be positive.

If equed $=$ 'C'or 'B', A is multiplied on the right by $\operatorname{diag}(c)$; if equed $=$ 'N'or 'R', c is not accessed.

If fact $=$ ' F ' and equed $=$ ' C 'or ' B ', each element of c must be positive.
$1 d x$
iwork
rwork

INTEGER. The leading dimension of the output array $x ; 1 d x \geq \max (1$, n).

INTEGER. Workspace array, size at least max $(1, n)$; used in real flavors only.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, size at least max $(1, n)$; used in complex flavors only.

Output Parameters

X
$a b$
$a f b$
b
r, C

REAL for sgbsvx
DOUBLE PRECISION for dgbsvx
COMPLEX for cgbsvx
DOUBLE COMPLEX for zgbsvx.
Array, size $I d x$ by *.
If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the original system of equations. Note that A and B are modified on exit if equed \neq ' N ', and the solution to the equilibrated system is: inv $(\operatorname{diag}(c)) * X$, if trans $=$ 'N' and equed $=$ 'C'or 'B'; $\operatorname{inv}(\operatorname{diag}(r)) * X$, if trans $=$ 'T' or 'C' and equed $=$ 'R' or 'B'.
The second dimension of x must be at least max ($1, n r h s$).
Array $a b$ is not modified on exit if fact $=$ ' F^{\prime} or 'N', or if fact $=$ ' E ' and equed = 'N'.

If equed \neq ' N ', A is scaled on exit as follows:
equed $=$ 'R': $A=\operatorname{diag}(r) * A$
equed $=$ 'C': $A=A * \operatorname{diag}(C)$
equed $=' B ': A=\operatorname{diag}(r) * A * \operatorname{diag}(C)$.
If fact $=$ 'N' or 'E', then $a f b$ is an output argument and on exit returns details of the $L U$ factorization of the original matrix A (if fact $=$ 'N') or of the equilibrated matrix A (if fact $=$ 'E'). See the description of $a b$ for the form of the equilibrated matrix.

Overwritten by diag $(r) * b$ if trans $=$ ' N ' and equed = 'R' or 'B'; overwritten by diag $(C) * b$ if trans $=$ ' T ' or ' C ' and equed $='^{\prime} C^{\prime}$ or 'B';
not changed if equed $=$ ' N '.
These arrays are output arguments if fact $\neq{ }^{\prime} F^{\prime}$. See the description of r, c in Input Arguments section.

```
rcond
ferr
berr
ipiv
info
```

equed
work, rwork

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after equilibration (if done).

If rcond is less than the machine precision (in particular, if rcond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ($1, \mathrm{nrhs}$). Contains the estimated forward error bound for each solution vector $x(j)$ (the j-th column of the solution matrix X). If x true is the true solution corresponding to $x(j)$, ferr (j) is an estimated upper bound for the magnitude of the largest element in $(x(j)-x t r u e)$ divided by the magnitude of the largest element in $x(j)$. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ($1, n r h s$). Contains the component-wise relative backward error for each solution vector $x(j)$, that is, the smallest relative change in any element of A or B that makes $x(j)$ an exact solution.

If fact $=$ 'N' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization $A=L^{*} U$ of the original matrix A (if fact $=N^{\prime} \mathrm{I}^{\prime}$) or of the equilibrated matrix A (if fact $=$ 'E').

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, and $i \leq n$, then $U(i, i)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned. If info $=i$, and $i=n+1$, then U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

If fact $\neq{ }^{\prime} F^{\prime}$, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

On exit, work (1) for real flavors, or rwork (1) for complex flavors, contains the reciprocal pivot growth factor norm $(A) /$ norm (U). The "max absolute element" norm is used. If work (1) for real flavors, or rwork (1) for complex flavors is much less than 1, then the stability of
the $L U$ factorization of the (equilibrated) matrix A could be poor. This also means that the solution x, condition estimator rcond, and forward error bound ferr could be unreliable. If factorization fails with $0<$ info $\leq n$, then work (1) for real flavors, or rwork (1) for complex flavors contains the reciprocal pivot growth factor for the leading info columns of A.
info
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, and $i \leq n$, then $U(i, i)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned. If info $=i$, and $i=n+1$, then U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gbsvx interface are as follows:

$a . b$	Holds the array A of size $(k l+k u+1, n)$.
b	Holds the matrix B of size ($n, n r h s$).
x	Holds the matrix X of size ($n, n r h s$) .
$a f b$	Holds the array AF of size ($2 * k l+k u+1, n)$.
ipiv	Holds the vector of length n.
r	Holds the vector of length n. Default value for each element is $r(i)=$ 1.0_WP.
c	Holds the vector of length n. Default value for each element is $C(i)=$ 1.0_WP.
ferr	Holds the vector of length (nrhs).
berr	Holds the vector of length (nrhs).
trans	Must be 'N', 'C', or 'T'. The default value is 'N'.
equed	Must be 'N', 'B', 'C', or 'R'. The default value is 'N'.
fact	Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then both arguments af and ipiv must be present; otherwise, an error is returned.
rpvgrw	Real value that contains the reciprocal pivot growth factor norm (A) / norm(U).

```
kl
If omitted, assumed kl = ku.
Restored as ku = lda-kl-1.
```


See Also

Matrix Storage Schemes
?gbsvxx
Uses extra precise iterative refinement to compute the
solution to the system of linear equations with a
banded coefficient matrix A and multiple right-hand
sides

Syntax

```
call sgbsvxx( fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams,
params, work, iwork, info )
call dgbsvxx( fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams,
params, work, iwork, info )
call cgbsvxx( fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams,
params, work, rwork, info )
call zgbsvxx( fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, equed, r, c, b,
ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams,
params, work, rwork, info )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A^{*} X=B, A^{\mathrm{T}} \star X=B$, or $A^{\mathrm{H}} \star X=B$, where A is an n-by- n banded matrix, the columns of the matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error (O (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.

The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with 0 (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.

The routine ? gbsvxx performs the following steps:

1. If fact $=$ ' E ', scaling factors r and c are computed to equilibrate the system:
```
trans = 'N': diag(r)*A*diag(c)*inv(diag(c))*X = diag(r)*B
trans = 'T': (diag(r)*A*diag(c)) T*inv(diag(r))*X = diag(C)*B
trans = 'C': (diag(r)*A*diag(c)) H\starinv(diag(r))*X = diag(C)*B
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(r) * A * \operatorname{diag}(c)$ and B by $\operatorname{diag}(r) * B$ (if trans='N') or $\operatorname{diag}(C) * B$ (if trans $=$ 'T' or 'C').
2. If fact $=$ 'N' or 'E', the $L U$ decomposition is used to factor the matrix A (after equilibration if fact $=$ ' E ') as $A=P^{*} L^{*} U$, where P is a permutation matrix, L is a unit lower triangular matrix, and U is upper triangular.
3. If some $U_{i, i}=0$, so that U is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for X and compute error bounds.
4. The system of equations is solved for X using the factored form of A.
5. By default, unless params (1) is set to zero, the routine applies iterative refinement to improve the computed solution matrix and calculate error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(c)$ (if trans $=N^{\prime}$) or diag(r) (if trans $=$ ' T ' or ' C') so that it solves the original system before equilibration.

Input Parameters

COMPLEX for cgbsvxx
DOUBLE COMPLEX for zgbsvxx.
Arrays: $a b(l d a b, *), ~ a f b(l d a f b, *), b(s i z e ~ l d b ~ b y ~ *), ~ w o r k(*) . ~$
The array $a b$ contains the matrix A in band storage, in rows 1 to kl $+k u+1$. The j-th column of A is stored in the j-th column of the array ab as follows:
$a b(k u+1+i-j, j)=A(i, j)$ for max $(1, j-k u) \leq i \leq \min (n, j+k l)$.
If fact $=$ ' F ' and equed is not ' N ', then $A B$ must have been equilibrated by the scaling factors in r and/or c. The second dimension of a must be at least max $(1, n)$.

The array $a f b$ is an input argument if fact $={ }^{\prime} F^{\prime}$. It contains the factored form of the banded matrix A, that is, the factors L and U from the factorization $A=P^{\star} L^{\star} U$ as computed by ?gbtrf. U is stored as an upper triangular banded matrix with $k l+k u$ superdiagonals in rows 1 to $k l+k u+1$. The multipliers used during the factorization are stored in rows $k l+k u+2$ to $2 * k l+k u+1$. If equed is not ' N ', then $a f b$ is the factored form of the equilibrated matrix A.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).
work (*) is a workspace array. The dimension of work must be at least $\max (1,4 * n)$ for real flavors, and at least $\max \left(1,2 *_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of the array $a b ; ~ l d a b \geq k l+k u+1$.
INTEGER. The leading dimension of the array $a f b ; \operatorname{ldafb} \geq 2 * k l+k u$ +1 .

INTEGER.
Array, size at least max $(1, n)$. The array ipiv is an input argument if fact $={ }^{\prime} \mathrm{F}^{\prime}$. It contains the pivot indices from the factorization $A=$ $P^{\star} L^{\star} U$ as computed by ?gbtrf; row i of the matrix was interchanged with row ipiv(i).

CHARACTER*1. Must be 'N', 'R', 'C', or 'B'.
equed is an input argument if fact $={ }^{\prime} \mathrm{F}$ '. It specifies the form of equilibration that was done:

If equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N').

If equed = 'R', row equilibration was done, that is, A has been premultiplied by diag(r).

If equed $=$ ' C ', column equilibration was done, that is, A has been postmultiplied by diag(c).
If equed = 'B', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(r) \star A \star \operatorname{diag}(c)$.
r, c
$1 d b$
$1 d x$
n_err_bnds
nparams
params

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays: r (size n), c (size n). The array r contains the row scale factors for A, and the array c contains the column scale factors for A. These arrays are input arguments if fact $=$ ' F ' only; otherwise they are output arguments.

If equed $=$ ' R ' or ' B ', A is multiplied on the left by diag(r); if equed $='^{\prime}$ 'or 'C', r is not accessed.

If fact $=$ ' F ' and equed $=$ ' R ' or ' B ', each element of r must be positive.
If equed $=$ ' C ' or ' B ', A is multiplied on the right by diag(c); if equed $=$ ' N ' or 'R', c is not accessed.

If fact $=$ ' F ' and equed $=$ ' C' or 'B', each element of c must be positive.
Each element of r or c should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of the output array $x ; 1 d x \geq \max (1$, n).

INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

INTEGER. Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

REAL for single precision flavors

DOUBLE PRECISION for double precision flavors.

Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0, that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams $=0$, which prevents the source code from accessing the params argument.
params (1) : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).

$=0.0$	No refinement is performed and no error bounds are computed.
$=1.0$	Use the extra-precise refinement algorithm.

(Other values are reserved for future use.)
params (2) : Maximum number of residual computations allowed for refinement.

Default

Aggressive
10.0

Set to 100.0 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params (3) : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the doubleprecision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

INTEGER. Workspace array, size at least max $(1, n)$; used in real flavors only.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, size at least max $\left(1,2 *_{n}\right)$; used in complex flavors only.

Output Parameters

X
$a b$

REAL for sgbsvxx
DOUBLE PRECISION for dgbsvxx
COMPLEX for cgbsvxx
DOUBLE COMPLEX for zgbsvxx.
Array, size $/ d x$ by *.
If info $=0$, the array x contains the solution n-by-nrhs matrix X to the original system of equations. Note that A and B are modified on exit if equed \neq ' N ', and the solution to the equilibrated system is:
$\operatorname{inv}(\operatorname{diag}(c)) * X$, if trans $=$ ' N ' and equed $=$ ' C^{\prime} or 'B'; or $\operatorname{inv}(\operatorname{diag}(r)) * X$, if trans $=$ 'T' or ' C ' and equed $='^{\prime} R^{\prime}$ or 'B'. The second dimension of x must be at least max (1, nrhs).

Array $a b$ is not modified on exit if fact $='^{\prime} F^{\prime}$ or ${ }^{\prime} N^{\prime}$, or if fact $='^{\prime}$ and equed $=$ ' N '.

If equed \neq ' N^{\prime}, A is scaled on exit as follows:

```
equed = 'R':A = diag(r)*A
equed = 'C': A = A* diag(c)
equed = 'B':A = diag(r)*A*diag(c).
```


$\|A|||\mid U \|$
If this is much less than 1 , the stability of the $L U$ factorization of the (equlibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. If factorization fails with $0<$ info $\leq n$, this parameter contains the reciprocal pivot growth factor for the leading info columns of A. In ?gbsvx, this quantity is returned in work (1).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ($1, n r h s$). Contains the componentwise relative backward error for each solution vector $x(j)$, that is, the smallest relative change in any element of A or B that makes $x(j)$ an exact solution.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:

Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

The first index in err_bnds_norm(i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_norm (: ,err) contains the following three fields:
err=1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n) *slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * \operatorname{dlamch}(\varepsilon)$ for double precision flavors.
err=2
err=3
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n)$ *dlamch (ε) for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * s l a m c h(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{1} \cdot\left\|z^{-1}\right\|_{0}
$$

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1.

err_bnds_comp

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size nrhs by $n \_e r r \_b n d s$. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

$$
\max _{j} \frac{\left|X t r u e_{j i}-X_{j i}\right|}{\left|X_{j i}\right|}
$$

The array is indexed by the right-hand side i, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params (3) $=0.0$), then err_bnds_comp is not accessed. If $n_{-} e r r_{-} b n d s$ <3, then at most the first (:, n_err_bnds) entries are returned.

The first index in err_bnds_comp (i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_comp (: ,err) contains the following three fields:

$$
\begin{aligned}
& \text { err=1 "Trust/don't trust" boolean. Trust the answer if } \\
& \text { the reciprocal condition number is less than the } \\
& \text { threshold sqrt(} n \text {) *slamch (} \varepsilon \text {) for single } \\
& \text { precision flavors and } \operatorname{sqrt}(n) * \operatorname{dlamch}(\varepsilon) \text { for } \\
& \text { double precision flavors. } \\
& \text { err=2 } \\
& \text { err=3 } \\
& \text { "Guaranteed" error bpound. The estimated } \\
& \text { forward error, almost certainly within a factor of } \\
& 10 \text { of the true error so long as the next entry is } \\
& \text { greater than the threshold } \operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon) \\
& \text { for single precision flavors and } \\
& \operatorname{sqrt}(n) * d l a m c h(\varepsilon) \text { for double precision } \\
& \text { flavors. This error bound should only be trusted } \\
& \text { if the previous boolean is true. } \\
& \text { Reciprocal condition number. Estimated } \\
& \text { componentwise reciprocal condition number. } \\
& \text { Compared with the threshold } \\
& \operatorname{sqrt}(n) * s l a m c h(\varepsilon) \text { for single precision flavors } \\
& \text { and } \operatorname{sqrt}(n) * d l a m c h(\varepsilon) \text { for double precision } \\
& \text { flavors to determine if the error estimate is } \\
& \text { "guaranteed". These reciprocal condition } \\
& \text { numbers for some appropriately scaled matrix } Z \\
& \text { are: }
\end{aligned}
$$

If fact $=$ 'N' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization $A=P^{\star} L * U$ of the original matrix A (if fact $='^{\prime}$ ') or of the equilibrated matrix A (if fact $=' E '$).

```
equed
params
info
If fact \(\neq\) ' \(\mathrm{F}^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
If an entry is less than 0.0, that entry is filled with the default value used for that parameter, otherwise the entry is not modified.
INTEGER. If info \(=0\), the execution is successful. The solution to every right-hand side is guaranteed.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If 0 < infosn: \(U_{i n f o, i n f o}\) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=n+j\) : The solution corresponding to the \(j\)-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides \(k\) with \(k\) \(>j\) may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) = 0.0 , then the \(j\)-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest \(j\) such that err_bnds_norm \((j, 1)=\) 0.0 or err_bnds_comp \((j, 1)=0.0\). See the definition of err_bnds_norm and err_bnds_comp for err \(=1\). To get information about all of the righthand sides, check err_bnds_norm or err_bnds_comp.
```


See Also

Matrix Storage Schemes

?gtsv
 Computes the solution to the system of linear equations with a tridiagonal coefficient matrix A and multiple right-hand sides.

Syntax

```
call sgtsv( n, nrhs, dl, d, du, b, ldb, info )
call dgtsv( n, nrhs, dl, d, du, b, ldb, info )
call cgtsv( n, nrhs, dl, d, du, b, ldb, info )
call zgtsv( n, nrhs, dl, d, du, b, ldb, info )
call gtsv( dl, d, du, b [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the system of linear equations $A * X=B$, where A is an n-by- n tridiagonal matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions. The routine uses Gaussian elimination with partial pivoting.

Note that the equation $A^{T *} X=B$ may be solved by interchanging the order of the arguments $d u$ and $d l$.

Input Parameters

n
nrhs
$d l$
d
$d u$
b

1 db

Output Parameters

INTEGER. The order of A, the number of rows in $B ; n \geq 0$.
INTEGER. The number of right-hand sides, the number of columns in B; nrhs ≥ 0.

REAL for sgtsv
DOUBLE PRECISION for dgtsv
COMPLEX for cgtsv
DOUBLE COMPLEX for zgtsv.
The array $d l$ (size $n-1$) contains the ($n-1$) subdiagonal elements of A.

REAL for sgtsv
DOUBLE PRECISION for dgtsv
COMPLEX for cgtsv
DOUBLE COMPLEX for zgtsv.
The array d (size n) contains the diagonal elements of A.
REAL for sgtsv
DOUBLE PRECISION for dgtsv
COMPLEX for cgtsv
DOUBLE COMPLEX for zgtsv.
The array $d u$ (size $n-1$) contains the ($n-1$) superdiagonal elements of A.

REAL for sgtsv
DOUBLE PRECISION for dgtsv
COMPLEX for cgtsv
DOUBLE COMPLEX for zgtsv.
The array b (size $I d b$ by *) contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least $\max (1, n r h s)$.

INTEGER. The leading dimension of $b ; I d b \geq \max (1, n)$.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, U(i, i)$ is exactly zero, and the solution has not been computed. The factorization has not been completed unless $i=n$.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gtsv interface are as follows:

```
dl Holds the vector of length (n-1).
d Holds the vector of length n.
dl Holds the vector of length (n-1).
b Holds the matrix B of size (n,nrhs).
```


See Also

Matrix Storage Schemes

?gtsvx

Computes the solution to the real or complex system of linear equations with a tridiagonal coefficient matrix A and multiple right-hand sides, and provides error bounds on the solution.

Syntax

```
call sgtsvx( fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info )
call dgtsvx( fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info )
call cgtsvx( fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info )
call zgtsvx( fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info )
call gtsvx( dl, d, du, b, x [,dlf] [,df] [,duf] [,du2] [,ipiv] [,fact] [,trans] [,ferr]
[,berr] [,rcond] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A * X=B, A^{T *} X=B$, or $A^{H *} X=B$, where A is a tridiagonal matrix of order n, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine ? gtsvx performs the following steps:

1. If fact $=$ ' N ', the $L U$ decomposition is used to factor the matrix A as $A=L * U$, where L is a product of permutation and unit lower bidiagonal matrices and U is an upper triangular matrix with nonzeroes in only the main diagonal and first two superdiagonals.
2. If some $U_{i, i}=0$, so that U is exactly singular, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
3. The system of equations is solved for X using the factored form of A.
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

Input Parameters

```
fact
trans
n
nrhs
dl,d,du,dlf,df, duf,du2,b
,work
```

CHARACTER*1. Must be 'F' or 'N'.

Specifies whether or not the factored form of the matrix A has been supplied on entry.

If fact $=$ ' F ': on entry, dlf, df, duf, du2, and ipiv contain the factored form of A; arrays $d l, d, d u, d l f, d f, d u f, d u 2$, and ipiv will not be modified.

If fact $=$ ' N ', the matrix A will be copied to $d l f, d f$, and duf and factored.

CHARACTER*1. Must be 'N','T', or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $A \star X=B$ (No transpose).
If trans $=$ ' T ', the system has the form $A^{T *} X=B$ (Transpose).
If trans $=$ ' C', the system has the form $A^{H * X}=B$ (Conjugate transpose).

INTEGER. The number of linear equations, the order of the matrix A; $n \geq 0$.

INTEGER. The number of right hand sides, the number of columns of the matrices B and X; nrhs ≥ 0.

REAL for sgtsvx
DOUBLE PRECISION for dgtsvx
COMPLEX for cgtsvx
DOUBLE COMPLEX for zgtsvx.
Arrays:
$d l$, size ($n-1$), contains the subdiagonal elements of A.
d, size (n), contains the diagonal elements of A.
$d u$, size ($n-1$), contains the superdiagonal elements of A.
$d l f$, size ($n-1$). If fact $=$ ' F^{\prime}, then dlf is an input argument and on entry contains the ($n-1$) multipliers that define the matrix L from the $L U$ factorization of A as computed by ?gttrf.
$1 d b$

Idx
ipiv
iwork
rwork
$d f$, size (n). If fact $='^{\prime} \mathrm{F}^{\prime}$, then $d f$ is an input argument and on entry contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.
$d u f$, size ($n-1$). If fact $=$ ' F ', then duf is an input argument and on entry contains the $(n-1)$ elements of the first superdiagonal of U.
$d u 2$, size ($n-2$). If fact $=$ ' F^{\prime}, then du2 is an input argument and on entry contains the ($n-2$) elements of the second superdiagonal of U.
$b(l d b, *)$ contains the right-hand side matrix B. The second dimension of b must be at least max (1, nrhs).
work (*) is a workspace array. The size of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors and max $\left(1,2 *_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of $b ; I d b \geq \max (1, n)$.
INTEGER. The leading dimension of $x ; \operatorname{ldx} \geq \max (1, n)$.
INTEGER.
Array, size at least max $(1, n)$. If fact $=' F$ ', then ipiv is an input argument and on entry contains the pivot indices, as returned by ?gttrf.

INTEGER. Workspace array, size (n). Used for real flavors only.
REAL for cgtsvx
DOUBLE PRECISION for zgtsvx.
Workspace array, size (n). Used for complex flavors only.

Output Parameters

x
REAL for sgtsvx
DOUBLE PRECISION for dgtsvx
COMPLEX for cgtsvx
DOUBLE COMPLEX for zgtsvx.
Array, size $l d x$ by *.
If info $=0$ or info $=n+1$, the array x contains the solution matrix X. The second dimension of x must be at least max (1, nrhs).

If fact $=$ ' N ', then $d l f$ is an output argument and on exit contains the ($n-1$) multipliers that define the matrix L from the $L U$ factorization of A.

If fact $=$ ' N ', then $d f$ is an output argument and on exit contains the n diagonal elements of the upper triangular matrix U from the $L U$ factorization of A.

If fact $=$ ' N ', then duf is an output argument and on exit contains the $(n-1)$ elements of the first superdiagonal of U.
du2
ipiv
rcond
ferr
berr
info

If fact $=$ ' N ', then $d u 2$ is an output argument and on exit contains the $(n-2)$ elements of the second superdiagonal of U.

The array ipiv is an output argument if fact = 'N' and, on exit, contains the pivot indices from the factorization $A=L \star U$; row i of the matrix was interchanged with row $\operatorname{ipiv}(i)$. The value of $\operatorname{ipiv}(i)$ will always be i or $i+1$; $i p i v(i)=i$ indicates a row interchange was not required.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A. If rcond is less than the machine precision (in particular, if rcond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ($1, n r h s$). Contains the estimated forward error bound for each solution vector $x(j)$ (the j-th column of the solution matrix X). If x true is the true solution corresponding to $x(j)$, ferr (j) is an estimated upper bound for the magnitude of the largest element in $(x(j)-x t r u e)$ divided by the magnitude of the largest element in $x(j)$. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ($1, n r h s$). Contains the component-wise relative backward error for each solution vector $x(j)$, that is, the smallest relative change in any element of A or B that makes $x(j)$ an exact solution.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If $i n f o=i$, and $i \leq n$, then $U(i, i)$ is exactly zero. The factorization has not been completed unless $i=n$, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned. If info $=i$, and $i=n+1$, then U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gtsvx interface are as follows:

dl	Holds the vector of length ($n-1$).
d	Holds the vector of length n.
du	Holds the vector of length ($n-1$).
b	Holds the matrix B of size ($n, n r h s$) .
x	Holds the matrix X of size ($n, n r h s$) .
dlf	Holds the vector of length ($n-1$).
df	Holds the vector of length n.
duf	Holds the vector of length ($n-1$).
du2	Holds the vector of length ($n-2$).
ipiv	Holds the vector of length n.
ferr	Holds the vector of length (nrhs).
berr	Holds the vector of length (nrhs).
fact	Must be 'N' or ' F '. The default value is ' N '. If fact $=$ ' F ', then the arguments dlf, df, duf, du2, and ipiv must be present; otherwise, an error is returned.
trans	Must be 'N', 'C', or 'T'. The default value is ' N '.

See Also

Matrix Storage Schemes
?dtsvb
Computes the solution to the system of linear equations with a diagonally dominant tridiagonal coefficient matrix A and multiple right-hand sides.

Syntax

```
call sdtsvb( n, nrhs, dl, d, du, b, ldb, info )
call ddtsvb( n, nrhs, dl, d, du, b, ldb, info )
call cdtsvb( n, nrhs, dl, d, du, b, ldb, info )
call zdtsvb( n, nrhs, dl, d, du, b, ldb, info )
call dtsvb( dl, d, du, b [, info])
```


Include Files

- mkl.fi, lapack.f90

Description

The ? dtsvb routine solves a system of linear equations $A * X=B$ for X, where A is an n-by- n diagonally dominant tridiagonal matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions. The routine uses the BABE (Burning At Both Ends) algorithm.

Note that the equation $A^{T *} X=B$ may be solved by interchanging the order of the arguments $d u$ and $d l$.

Input Parameters

n
nrhs
$d l, d, d u, b$
$1 d b$

Output Parameters

$d I$
d
b
info

INTEGER. The order of A, the number of rows in $B ; n \geq 0$.
INTEGER. The number of right-hand sides, the number of columns in $B ; n r h s \geq 0$.

REAL for sdtsvb
DOUBLE PRECISION for ddtsvb
COMPLEX for cdtsvb
DOUBLE COMPLEX for $z d t s v b$.
Arrays: $d l($ size $n-1), d($ size $n), d u($ size $n-1), b($ size $l d b, *)$.
The array $d l$ contains the $(n-1)$ subdiagonal elements of A.
The array d contains the diagonal elements of A.
The array $d u$ contains the $(n-1)$ superdiagonal elements of A.
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).

INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.

Overwritten by the ($n-1$) elements of the subdiagonal of the lower triangular matrices L_{1}, L_{2} from the factorization of A (see dttrfb).

Overwritten by the n diagonal element reciprocals of U.
Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i, u_{i i}$ is exactly zero, and the solution has not been
computed. The factorization has not been completed unless $i=n$.

Application Notes

A diagonally dominant tridiagonal system is defined such that $\left|d_{i}\right|>\left|d l_{i-1}\right|+\left|d u_{i}\right|$ for any i :
$1<i<n$, and $\left|d_{1}\right|>\left|d u_{1}\right|,\left|d_{n}\right|>\left|d l_{n-1}\right|$
The underlying BABE algorithm is designed for diagonally dominant systems. Such systems have no numerical stability issue unlike the canonical systems that use elimination with partial pivoting (see ?gtsv). The diagonally dominant systems are much faster than the canonical systems.

NOTE

- The current implementation of BABE has a potential accuracy issue on very small or large data close to the underflow or overflow threshold respectively. Scale the matrix before applying the solver in the case of such input data.
- Applying the ?dtsvb factorization to non-diagonally dominant systems may lead to an accuracy loss, or false singularity detected due to no pivoting.

```
?posv
Computes the solution to the system of linear
equations with a symmetric or Hermitian positive-
definite coefficient matrix A and multiple right-hand
sides.
Syntax
```

```
call sposv( uplo, n, nrhs, a, lda, b, ldb, info )
```

call sposv(uplo, n, nrhs, a, lda, b, ldb, info)
call dposv(uplo, n, nrhs, a, lda, b, ldb, info)
call dposv(uplo, n, nrhs, a, lda, b, ldb, info)
call cposv(uplo, n, nrhs, a, lda, b, ldb, info)
call cposv(uplo, n, nrhs, a, lda, b, ldb, info)
call zposv(uplo, n, nrhs, a, lda, b, ldb, info)
call zposv(uplo, n, nrhs, a, lda, b, ldb, info)
call dsposv(uplo, n, nrhs, a, lda, b, ldb, x, ldx, work, swork, iter, info)
call dsposv(uplo, n, nrhs, a, lda, b, ldb, x, ldx, work, swork, iter, info)
call zcposv(uplo, n, nrhs, a, lda, b, ldb, x, ldx, work, swork, rwork, iter, info)
call zcposv(uplo, n, nrhs, a, lda, b, ldb, x, ldx, work, swork, rwork, iter, info)
call posv(a, b [,uplo] [,info])

```
call posv( a, b [,uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the real or complex system of linear equations $A * X=B$, where A is an n-by- n symmetric/Hermitian positive-definite matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
The Cholesky decomposition is used to factor A as
$A=U^{T *} U$ (real flavors) and $A=U^{H *} U$ (complex flavors), if uplo $='^{\prime}$
or $A=L \star L^{T}$ (real flavors) and $A=L^{\star} L^{H}$ (complex flavors), if uplo $=$ 'L',
where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations $A * X=B$.

The dsposv and zcposv are mixed precision iterative refinement subroutines for exploiting fast single precision hardware. They first attempt to factorize the matrix in single precision (dsposv) or single complex precision (zcposv) and use this factorization within an iterative refinement procedure to produce a solution with double precision (dsposv) / double complex precision (zcposv) normwise backward error quality (see below). If the approach fails, the method switches to a double precision or double complex precision factorization respectively and computes the solution.

The iterative refinement is not going to be a winning strategy if the ratio single precision/complex performance over double precision/double complex performance is too small. A reasonable strategy should take the number of right-hand sides and the size of the matrix into account. This might be done with a call to ilaenv in the future. At present, iterative refinement is implemented.

The iterative refinement process is stopped if

```
iter > itermax
or for all the right-hand sides:
rnmr < sqrt(n)*xnrm*anrm*eps*bwdmax,
where
```

- iter is the number of the current iteration in the iterative refinement process
- rnmr is the infinity-norm of the residual
- xnrm is the infinity-norm of the solution
- anrm is the infinity-operator-norm of the matrix A
- eps is the machine epsilon returned by dlamch ('Epsilon').

The values itermax and bwdmax are fixed to 30 and $1.0 \mathrm{~d}+00$ respectively.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored: If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	INTEGER. The order of matrix A; $n \geq 0$.
nrhs	INTEGER. The number of right-hand sides, the number of columns in $B ; n r h s \geq 0$.
a, b	REAL for sposv
	DOUBLE PRECISION for dposv and dsposv.
	COMPLEX for cposv
	DOUBLE COMPLEX for zposv and zcposv.
	Arrays: $a($ size $l d a, *), b(l d b, *)$. The array a contains the upper or the lower triangular part of the matrix A (see uplo). The second dimension of a must be at least max $(1, n)$.
	Note that in the case of zcposv the imaginary parts of the diagonal elements need not be set and are assumed to be zero.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).
Ida	INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
1 db	INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
$1 d x$	INTEGER. The leading dimension of the array $x ; 1 d x \geq \max (1, n)$.
work	DOUBLE PRECISION for dsposv
	DOUBLE COMPLEX for zcposv.
	Workspace array, size ($n^{\star} n r h s$). This array is used to hold the residual vectors.
swork	REAL for dsgesv

rwork

Output Parameters

a
b
x
iter
info

COMPLEX for zcgesv.
Workspace array, size ($n^{\star}(n+n r h s)$). This array is used to use the single precision matrix and the right-hand sides or solutions in single precision.

DOUBLE PRECISION. Workspace array, size (n).

If info $=0$, the upper or lower triangular part of a is overwritten by the Cholesky factor U or L, as specified by uplo.

If iterative refinement has been successfully used (info $=0$ and iter ≥ 0), then A is unchanged.

If double precision factorization has been used (info= 0 and iter < 0), then the array A contains the factors L or U from the Cholesky factorization.

Overwritten by the solution matrix X.
DOUBLE PRECISION for dsposv
DOUBLE COMPLEX for zcposv.
Array, size $l d x$ by nrhs. If info $=0$, contains the n-by-nrhs solution matrix X.

INTEGER.
If iter < 0: iterative refinement has failed, double precision factorization has been performed

- If iter $=-1$: the routine fell back to full precision for implementation- or machine-specific reason
- If iter $=-2$: narrowing the precision induced an overflow, the routine fell back to full precision
- If iter $=-3$: failure of spotrf for dsposv, or cpotrf for zcposv
- If iter $=-31$: stop the iterative refinement after the 30th iteration.

If iter >0 : iterative refinement has been successfully used. Returns the number of iterations.

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the leading minor of order i (and therefore the matrix A itself) is not positive definite, so the factorization could not be completed, and the solution has not been computed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine posv interface are as follows:

```
a
uplo
```

b Holds the matrix B of size ($n, n r h s$).

Holds the matrix A of size (n, n).
Holds the matrix B of size ($n, n r h s$).
Must be 'U' or 'L'. The default value is 'U'.

See Also

Matrix Storage Schemes
?posvx
Uses the Cholesky factorization to compute the solution to the system of linear equations with a symmetric or Hermitian positive-definite coefficient matrix A, and provides error bounds on the solution.

Syntax

```
call sposvx( fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
ferr, berr, work, iwork, info )
call dposvx( fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
ferr, berr, work, iwork, info )
call cposvx( fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info )
call zposvx( fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info )
call posvx( a, b, x [,uplo] [,af] [,fact] [,equed] [,s] [,ferr] [,berr] [,rcond]
[,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine uses the Cholesky factorization $A=U^{T} * U$ (real flavors) / $A=U^{H} * U$ (complex flavors) or $A=L^{\star} L^{T}$ (real flavors) / $A=L^{\star} L^{H}$ (complex flavors) to compute the solution to a real or complex system of linear equations $A \star X=B$, where A is a n-by- n real symmetric/Hermitian positive definite matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?posvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors s are computed to equilibrate the system:
```
diag(s)*A* diag(s)*inv(diag(s))*X = diag(s)*B.
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$ and B by $\operatorname{diag}(s) * B$.
2. If fact $=$ ' N ' or ' E ', the Cholesky decomposition is used to factor the matrix A (after equilibration if fact $=$ 'E') as
$A=U^{T} \star U$ (real), $A=U^{H} * U$ (complex), if uplo = 'U', or $A=L \star L^{T}$ (real), $A=L^{\star} L^{H}$ (complex), if uplo $=$ 'L', where U is an upper triangular matrix and L is a lower triangular matrix.
3. If the leading i-by- i principal minor is not positive-definite, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form of A.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(s)$ so that it solves the original system before equilibration.

Input Parameters

```
fact
uplo
    n
nrhs
a, af,b, work
```

CHARACTER*1. Must be 'F', 'N', or 'E'.
Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.

If fact = 'F': on entry, af contains the factored form of A. If equed $=$ ' Y ', the matrix A has been equilibrated with scaling factors given by s.
a and $a f$ will not be modified.
If fact $=$ ' N ', the matrix A will be copied to af and factored.
If fact $=$ ' E ', the matrix A will be equilibrated if necessary, then copied to af and factored.

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The order of matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides, the number of columns in B; nrhs 0 .

REAL for sposvx
DOUBLE PRECISION for dposvx
COMPLEX for cposvx
DOUBLE COMPLEX for zposvx.
Arrays: $a($ size $I d a$ by *), af(size $I d a f$ by *), $b($ size $l d b$ by *), work(*).

The array a contains the matrix A as specified by uplo. If fact $={ }^{\prime} \mathrm{F}^{\prime}$ and equed $=$ ' Y ', then A must have been equilibrated by the scaling factors in s, and a must contain the equilibrated matrix $\operatorname{diag}(s) * A^{*} \operatorname{diag}(s)$. The second dimension of a must be at least $\max (1, n)$.

Ida
ldaf
1 db
equed

S
$1 d x$
iwork
rwork

The array af is an input argument if fact $={ }^{\prime} F$ '. It contains the triangular factor U or L from the Cholesky factorization of A in the same storage format as A. If equed is not ' N ', then $a f$ is the factored form of the equilibrated matrix $\operatorname{diag}(s) * A^{\star} \operatorname{diag}(s)$. The second dimension of af must be at least max $(1, n)$.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).
work(*) is a workspace array. The dimension of work must be at least $\max \left(1,3 *_{n}\right)$ for real flavors, and at least $\max \left(1,2 *_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $a f ; l d a f \geq \max (1, n)$.
INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact $={ }^{\prime} F^{\prime}$. It specifies the form of equilibration that was done:
if equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N');
if equed $=$ ' Y ', equilibration was done, that is, A has been replaced by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size (n). The array s contains the scale factors for A. This array is an input argument if fact $=$ ' F ' only; otherwise it is an output argument.
If equed $=$ ' N ', s is not accessed.
If fact $=$ ' F ' and equed $=$ ' Y ', each element of s must be positive.
INTEGER. The leading dimension of the output array $x ; 1 d x \geq \max (1$, n).

INTEGER. Workspace array, size at least max $(1, n)$; used in real flavors only.

REAL for cposvx
DOUBLE PRECISION for zposvx.
Workspace array, size at least max $(1, n)$; used in complex flavors only.

Output Parameters

COMPLEX for cposvx
DOUBLE COMPLEX for zposvx.
Array, size $/ d x$ by *.
If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the original system of equations. Note that if equed $=$ ' Y ', A and B are modified on exit, and the solution to the equilibrated system is $\operatorname{inv}(\operatorname{diag}(s)) * x$. The second dimension of x must be at least max (1,nrhs).

Array a is not modified on exit if fact $='^{\prime} \mathrm{F}^{\prime}$ or 'N', or if fact $=$ ' E ' and equed = 'N'.

If fact $=$ ' E ' and equed $=$ 'Y', A is overwritten by
$\operatorname{diag}(s) * A * \operatorname{diag}(s)$.
If fact $=$ 'N' or 'E', then af is an output argument and on exit returns the triangular factor U or L from the Cholesky factorization $A=U^{\mathrm{T}} * U$ or $A=L^{\star} L^{\mathrm{T}}$ (real routines), $A=U^{\mathrm{H}} * U$ or $A=L^{\star} L^{\mathrm{H}}$ (complex routines) of the original matrix A (if fact $={ }^{\prime} N^{\prime}$), or of the equilibrated matrix A (if fact $=$ 'E'). See the description of a for the form of the equilibrated matrix.

Overwritten by $\operatorname{diag}(s) * B$, if equed $=$ ' Y '; not changed if equed $=$ 'N'.

This array is an output argument if $f a c t \neq ' F^{\prime}$. See the description of s in Input Arguments section.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ($1, n r h s$). Contains the estimated forward error bound for each solution vector x_{j} (the j-th column of the solution matrix X). If x true is the true solution corresponding to x_{j}, ferr (j) is an estimated upper bound for the magnitude of the largest element in $\left.\left(x_{j}\right)-x t r u e\right)$ divided by the magnitude of the largest element in x_{j}. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max (1, nrhs). Contains the component-wise relative backward error for each solution vector x_{j}, that is, the smallest relative change in any element of A or B that makes x_{j} an exact solution.

```
equed
info
If \(f a c t \neq ' F^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and \(i \leq n\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=i\), and \(i=n+1\), then \(U\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.
```


LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine posvx interface are as follows:

a	Holds the matrix A of size (n, n).
b	Holds the matrix B of size ($n, n r h s$).
x	Holds the matrix X of size ($n, n r h s$) .
$a f$	Holds the matrix $A F$ of size (n, n).
s	Holds the vector of length n. Default value for each element is $s(i)=$ 1.0_WP.
ferr	Holds the vector of length (nrhs).
berr	Holds the vector of length (nrhs).
uplo	Must be 'U' or 'L'. The default value is 'U'.
fact	Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then af must be present; otherwise, an error is returned.
equed	Must be ' N ' or 'Y'. The default value is ' N '.

See Also

Matrix Storage Schemes

?posvxx

Uses extra precise iterative refinement to compute the solution to the system of linear equations with a symmetric or Hermitian positive-definite coefficient matrix A applying the Cholesky factorization.

Syntax

```
call sposvxx( fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork,
info )
call dposvxx( fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork,
info )
call cposvxx( fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork,
info )
call zposvxx( fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b, ldb, x, ldx, rcond,
rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork,
info )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine uses the Cholesky factorization $A=U^{T} * U$ (real flavors) / $A=U^{H} * U$ (complex flavors) or $A=L^{\star} L^{T}$ (real flavors) / $A=L * L^{H}$ (complex flavors) to compute the solution to a real or complex system of linear equations $A * X=B$, where A is an n-by- n real symmetric/Hermitian positive definite matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error (0 (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.
The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with O (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.
The routine ?posvxx performs the following steps:

1. If fact $=$ ' E ', scaling factors are computed to equilibrate the system:
```
diag(s)*A* diag(s) *inv(diag(s))*X = diag(s)*B
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(s) * A^{*} \operatorname{diag}(s)$ and B by $\operatorname{diag}(s) * B$.
2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the matrix A (after equilibration if fact = 'E') as
$A=U^{T} * U$ (real), $A=U^{H} * U$ (complex), if $u p l o=' U '$,
or $A=L * L^{T}$ (real), $A=L * L^{H}$ (complex), if uplo = 'L',
where U is an upper triangular matrix and L is a lower triangular matrix.
3. If the leading i-by- i principal minor is not positive-definite, the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for X and compute error bounds.
4. The system of equations is solved for X using the factored form of A.
5. By default, unless params (1) is set to zero, the routine applies iterative refinement to get a small error and error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix X is premultiplied by diag(s) so that it solves the original system before equilibration.

Input Parameters

```
uplo
```

n
nrhs
a, af, b, work

CHARACTER*1. Must be ' F^{\prime}, 'N', or 'E'.
Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.

If fact $=$ ' F ', on entry, af contains the factored form of A. If equed is not ' N ', the matrix A has been equilibrated with scaling factors given by s. Parameters a and $a f$ are not modified.

If fact $=$ 'N', the matrix A will be copied to $a f$ and factored.
If fact $=$ ' E ', the matrix A will be equilibrated, if necessary, copied to $a f$ and factored.

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The number of linear equations; the order of the matrix A; $n \geq 0$.

INTEGER. The number of right-hand sides; the number of columns of the matrices B and X; nrhs ≥ 0.

REAL for sposvxx
DOUBLE PRECISION for dposvxx
COMPLEX for cposvxx
DOUBLE COMPLEX for zposvxx.
Arrays: $a(\operatorname{size} l d a$ by *), af(size ldafby *), b(size ldb by *), work(*).

The array a contains the matrix A as specified by uplo. If fact $=$ ' F ' and equed $=$ ' Y ', then A must have been equilibrated by the scaling factors in s, and a must contain the equilibrated matrix $\operatorname{diag}(s) * A * \operatorname{diag}(s)$. The second dimension of a must be at least $\max (1, n)$.

The array af is an input argument if fact = 'F'. It contains the triangular factor U or L from the Cholesky factorization of A in the same storage format as A. If equed is not ' N ', then af is the factored form of the equilibrated matrix $\operatorname{diag}(s) * A * \operatorname{diag}(s)$. The second dimension of af must be at least max $(1, n)$.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).

```
Ida
Idaf
```

equed
S
$1 d b$
$1 d x$
n_err_bnds
nparams
params
work (*) is a workspace array. The dimension of work must be at least $\max \left(1,4 *_{n}\right)$ for real flavors, and at least $\max \left(1,2 *_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of the array $a ; I d a \geq \max (1, n)$. INTEGER. The leading dimension of the array $a f ; I d a \leq \max (1, n)$.

CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact $={ }^{\prime} F^{\prime}$. It specifies the form of equilibration that was done:
If equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N').
if equed = 'Y', both row and column equilibration was done, that is, A has been replaced by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size (n). The array s contains the scale factors for A. This array is an input argument if fact $={ }^{\prime} \mathrm{F}^{\prime}$ only; otherwise it is an output argument.
If equed $=$ 'N', s is not accessed.
If fact $=$ ' F ' and equed $=$ 'Y', each element of s must be positive.
Each element of s should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of the output array $x ; l d x \geq \max (1$, n).

INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in the Output Arguments section below.

INTEGER. Specifies the number of parameters set in params. If ≤ 0, the params array is never referenced and default values are used.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0, that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are
used for higher-numbered parameters. If defaults are acceptable, you can pass nparams $=0$, which prevents the source code from accessing the params argument.
params (1) : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), $1.0 \mathrm{D}+0$ (for double precision flavors).
$=0.0 \quad$ No refinement is performed and no error bounds are computed.
$=1.0 \quad$ Use the extra-precise refinement algorithm.
(Other values are reserved for future use.) params (2) : Maximum number of residual computations allowed for refinement.

Default
Aggressive
10.0

Set to 100.0 to permit convergence using approximate factorizations or factorizations other than $L U$. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params (3): Flag determining if the code will attempt to find a solution with a small componentwise relative error in the doubleprecision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

INTEGER. Workspace array, size at least max $(1, n)$; used in real flavors only.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, size at least max $\left(1,3 *_{n}\right)$; used in complex flavors only.

Output Parameters

X

```
REAL for sposvxx
DOUBLE PRECISION for dposvxx
COMPLEX for cposvxx
DOUBLE COMPLEX for zposvxx.
Array, size ldx by *.
If info \(=0\), the array \(x\) contains the solution \(n\)-by-nrhs matrix \(X\) to the original system of equations. Note that \(A\) and \(B\) are modified on exit if equed \(\neq\) ' \(N\) ', and the solution to the equilibrated system is:
inv(diag(s))*X.
```

a
err_bnds_norm

Array a is not modified on exit if fact $='^{\prime}$ ' or 'N', or if fact $=$ 'E' and equed $=$ 'N'.

If fact $=$ ' E ' and equed $=$ 'Y', \boldsymbol{A} is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.
If fact $=$ ' N ' or ' E ', then $a f$ is an output argument and on exit returns the triangular factor U or L from the Cholesky factorization $A=U^{\mathbb{T}} * U$ or $A=L^{\star} L^{\mathrm{T}}$ (real routines), $A=U^{\mathrm{H}} \star U$ or $A=L^{\star} L^{\mathrm{H}}$ (complex routines) of the original matrix A (if fact $=$ ' N '), or of the equilibrated matrix A (if fact $=' E '$). See the description of a for the form of the equilibrated matrix.

If equed $=$ ' N ', B is not modified.
If equed $=$ ' Y ', B is overwritten by $\operatorname{diag}(s) * B$.
This array is an output argument if $f a c t \neq ' \mathrm{~F}$ '. Each element of this array is a power of the radix. See the description of s in Input Arguments section.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Contains the reciprocal pivot growth factor:

$||4|||v|$

If this is much less than 1 , the stability of the $L U$ factorization of the (equlibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. If factorization fails with $0<i n f o \leq n$, this parameter contains the reciprocal pivot growth factor for the leading info columns of A.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ($1, n r h s$). Contains the componentwise relative backward error for each solution vector $x(j)$, that is, the smallest relative change in any element of A or B that makes $x(j)$ an exact solution.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:
Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

The first index in err_bnds_norm(i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_norm (: ,err) contains the following three fields:
err=1 "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n)*slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors.
err=2
err=3
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n)$ *dlamch (ε) for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * s l a m c h(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|z\|_{1} \cdot \mid z^{-1} \|_{0}
$$

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1.
err_bnds_comp
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

$$
\max _{j} \frac{\mid X \operatorname{true}}{j i} 1-X_{j i}| |
$$

The array is indexed by the right-hand side i, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params (3) $=0.0$), then err_bnds_comp is not accessed. If n_{-}err_bnds <3, then at most the first (: , n_err_bnds) entries are returned.
The first index in err_bnds_comp (i,:) corresponds to the i-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the following three fields:

$e r r=1$	"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n) *slamch (ε) for single precision flavors and sqrt(n)*dlamch (ε) for double precision flavors.
err=2	"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt (n) *slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.
err=3	Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix Z are:

$$
\|Z\|_{\infty} \cdot\left\|Z^{-1}\right\|_{\infty}
$$

Let $z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of $a^{*} \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .

If fact \neq ' F^{\prime}, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

If an entry is less than 0.0 , that entry is filled with the default value used for that parameter, otherwise the entry is not modified.

INTEGER. If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.

If info $=-i$, the i-th parameter had an illegal value.
If 0 < info $n: U_{\text {info, info }}$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=n+j$: The solution corresponding to the j-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides k with k $>j$ may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) = 0.0 , then the j-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest j such that err_bnds_norm $(j, 1)=$ 0.0 or err_bnds_comp $(j, 1)=0.0$. See the definition of err_bnds_norm and err_bnds_comp for err = 1. To get information about all of the righthand sides, check err_bnds_norm or err_bnds_comp.

See Also

Matrix Storage Schemes

?ppsv

Computes the solution to the system of linear equations with a symmetric (Hermitian) positive definite packed coefficient matrix A and multiple righthand sides.

Syntax

```
call sppsv( uplo, n, nrhs, ap, b, ldb, info )
call dppsv( uplo, n, nrhs, ap, b, ldb, info )
call cppsv( uplo, n, nrhs, ap, b, ldb, info )
call zppsv( uplo, n, nrhs, ap, b, ldb, info )
call ppsv( ap, b [,uplo] [,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the real or complex system of linear equations $A * X=B$, where A is an n-by- n real symmetric/Hermitian positive-definite matrix stored in packed format, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
The Cholesky decomposition is used to factor A as
$A=U^{T} * U$ (real flavors) and $A=U^{H *} U$ (complex flavors), if uplo $='^{\prime}$
or $A=L^{\star} L^{T}$ (real flavors) and $A=L^{\star} L^{H}$ (complex flavors), if uplo = 'L',
where U is an upper triangular matrix and L is a lower triangular matrix. The factored form of A is then used to solve the system of equations $A * X=B$.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored:
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	INTEGER. The order of matrix $A ; n \geq 0$.
nrhs	INTEGER. The number of right-hand sides, the number of columns in B; nrhs ≥ 0.
$a p, b$	REAL for sppsv
	DOUBLE PRECISION for dppsv
	COMPLEX for cppsv
	DOUBLE COMPLEX for zppsv.
	Arrays: $a p($ size *), $b($ size $l d b, *)$. The array $a p$ contains the upper or the lower triangular part of the matrix A (as specified by uplo) in packed storage (see Matrix Storage Schemes). The dimension of ap must be at least max $(1, n(n+1) / 2)$.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).
	INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$

Output Parameters

```
ap
b
info
```

If info $=0$, the upper or lower triangular part of A in packed storage is overwritten by the Cholesky factor U or L, as specified by uplo.

Overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=i$, the leading minor of order i (and therefore the matrix A itself) is not positive-definite, so the factorization could not be completed, and the solution has not been computed.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine ppsv interface are as follows:

ap	Holds the array A of size $\left(n^{\star}(n+1) / 2\right)$.
bplo	Holds the matrix B of size $(n, n r h s)$.
Must be 'U' or 'L'. The default value is ' U '.	

See Also
 Matrix Storage Schemes
 ?ppsvx
 Uses the Cholesky factorization to compute the solution to the system of linear equations with a symmetric (Hermitian) positive definite packed coefficient matrix A, and provides error bounds on the solution.

Syntax

```
call sppsvx( fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx, rcond, ferr, berr,
work, iwork, info )
call dppsvx( fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx, rcond, ferr, berr,
work, iwork, info )
call cppsvx( fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx, rcond, ferr, berr,
work, rwork, info )
call zppsvx( fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx, rcond, ferr, berr,
work, rwork, info )
call ppsvx( ap, b, x [,uplo] [,af] [,fact] [,equed] [,s] [,ferr] [,berr] [,rcond]
[,info] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine uses the Cholesky factorization $A=U^{T} \star U$ (real flavors) / $A=U^{H} \star U$ (complex flavors) or $A=L^{\star} L^{T}$ (real flavors) / $A=L^{\star} L^{H}$ (complex flavors) to compute the solution to a real or complex system of linear equations $A * X=B$, where A is a n-by- n symmetric or Hermitian positive-definite matrix stored in packed format, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?ppsvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors s are computed to equilibrate the system:
```
diag(s)*A* diag(s)*inv(diag(s))*X = diag(s)*B.
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$ and B by $\operatorname{diag}(s) * B$.
2. If fact $=$ ' N ' or ' E ', the Cholesky decomposition is used to factor the matrix A (after equilibration if fact $=$ 'E') as
$A=U^{T} * U$ (real), $A=U^{H} * U$ (complex), if uplo $='^{\prime}$,
or $A=L * L^{T}$ (real), $A=L^{*} L^{H}$ (complex), if uplo $=$ 'L',
where U is an upper triangular matrix and L is a lower triangular matrix.
3. If the leading i-by-i principal minor is not positive-definite, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form of A.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(s)$ so that it solves the original system before equilibration.

Input Parameters

```
fact
uplo
    n
nrhs
ap, afp, b, work
```

Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.

If fact = 'F': on entry, afp contains the factored form of A. If equed $=$ ' Y ', the matrix A has been equilibrated with scaling factors given by s.
$a p$ and afp will not be modified.
If fact $=$ ' N ', the matrix A will be copied to afp and factored.
If fact $=$ ' E ', the matrix A will be equilibrated if necessary, then copied to afp and factored.

```
CHARACTER*1. Must be 'U' or 'L'.
```

Indicates whether the upper or lower triangular part of A is stored:
If uplo = ' U ', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The order of matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; the number of columns in B; nrhs ≥ 0.

REAL for sppsvx
DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx
double complex for zppsvx.
Arrays: (size *), afp(size *), b(size ldb by *), work (*).
The array ap contains the upper or lower triangle of the original symmetric/Hermitian matrix A in packed storage (see Matrix Storage Schemes). In case when fact = 'F' and equed = 'Y', ap must contain the equilibrated matrix $\operatorname{diag}(s) * A^{*} \operatorname{diag}(s)$.
The array afp is an input argument if fact = 'F' and contains the triangular factor U or L from the Cholesky factorization of A in the same storage format as A. If equed is not ' N ', then afp is the factored form of the equilibrated matrix A.
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations.
work (*) is a workspace array.

The dimension of arrays $a p$ and $a f p$ must be at least max $(1, n(n$ $+1) / 2$) ; the second dimension of b must be at least max ($1, n r h s$); the dimension of work must be at least max $\left(1,3 *_{n}\right)$ for real flavors and $\max \left(1,2 *_{n}\right)$ for complex flavors.

INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact $={ }^{\prime} F^{\prime}$. It specifies the form of equilibration that was done:
if equed $=$ ' N ', no equilibration was done (always true if fact $=$ 'N');
if equed = 'Y', equilibration was done, that is, A has been replaced by $\operatorname{diag}(s) A^{*} \operatorname{diag}(s)$.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size (n). The array s contains the scale factors for A. This array is an input argument if fact $=$ ' F ' only; otherwise it is an output argument.

If equed $=$ ' N ', s is not accessed.
If fact $=$ ' F ' and equed $=$ 'Y', each element of s must be positive.
INTEGER. The leading dimension of the output array $x ; 1 d x \geq \max (1$, n).

INTEGER. Workspace array, size at least max $(1, n)$; used in real flavors only.

REAL for cppsvx;
DOUBLE PRECISION for zppsvx.
Workspace array, size at least max $(1, n)$; used in complex flavors only.

Output Parameters

x

REAL for sppsvx
DOUBLE PRECISION for dppsvx
COMPLEX for cppsvx
DOUBLE COMPLEX for zppsvx.
Array, size $/ d x$ by *.
If info $=0$ or info $=n+1$, the array x contains the solution matrix X to the original system of equations. Note that if equed $=$ ' Y ', A and B are modified on exit, and the solution to the equilibrated system is inv $(\operatorname{diag}(s)) * X$. The second dimension of x must be at least $\max (1, n r h s)$.
ap
afp
b
serr
reond
ferr
s
berr
equed
info

Array $a p$ is not modified on exit if fact $='^{\prime} \mathrm{F}^{\prime}$ or ' N ', or if fact $=$ ' E 'and equed $=$ ' N '.

If fact $=$ 'E' and equed $=$ 'Y', ap is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

If fact $=$ 'N'or 'E', then afp is an output argument and on exit returns the triangular factor U or L from the Cholesky factorization $A=U^{T} * U$ or $A=L^{*} L^{T}$ (real routines), $A=U^{H} * U$ or $A=L * L^{H}$ (complex routines) of the original matrix A (if fact $={ }^{\prime} N^{\prime}$), or of the equilibrated matrix A (if fact $=$ ' E '). See the description of $a p$ for the form of the equilibrated matrix.

Overwritten by diag(s)*B, if equed = 'Y'; not changed if equed = 'N'.

This array is an output argument if $f a c t \neq ' F^{\prime}$. See the description of s in Input Arguments section.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond $=0$), the matrix is singular to working precision. This condition is indicated by a return code of info >0.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ($1, n r h s$). Contains the estimated forward error bound for each solution vector $x(j)$ (the j-th column of the solution matrix X). If x true is the true solution corresponding to $x(j)$, ferr (j) is an estimated upper bound for the magnitude of the largest element in $(x(j)-x t r u e)$ divided by the magnitude of the largest element in $x(j)$. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ($1, n r h s$). Contains the component-wise relative backward error for each solution vector $x(j)$, that is, the smallest relative change in any element of A or B that makes $x(j)$ an exact solution.

If fact \neq ' F^{\prime}, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

INTEGER. If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

If info $=i$, and $i \leq n$, the leading minor of order i (and therefore the matrix A itself) is not positive-definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond $=0$ is returned.

If info $=i$, and $i=n+1$, then U is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ppsvx interface are as follows:

$a p$	Holds the array A of size $\left(n^{*}(n+1) / 2\right)$.
b	Holds the matrix B of size ($n, n r h s$).
x	Holds the matrix X of size ($n, n r h s$) .
afp	Holds the matrix $A F$ of size ($\left.n^{*}(n+1) / 2\right)$.
s	Holds the vector of length n. Default value for each element is s (i) 1.0_WP.
ferr	Holds the vector of length (nrhs).
berr	Holds the vector of length (nrhs).
uplo	Must be 'U' or 'L'. The default value is 'U'.
fact	Must be 'N', 'E', or 'F'. The default value is 'N'. If fact = 'F', then af must be present; otherwise, an error is returned.
equed	Must be ' N ' or 'Y'. The default value is ' N '.

See Also

Matrix Storage Schemes
?pbsv
Computes the solution to the system of linear equations with a symmetric or Hermitian positivedefinite band coefficient matrix A and multiple righthand sides.

Syntax

```
call spbsv( uplo, n, kd, nrhs, ab, ldab, b, ldb, info )
call dpbsv( uplo, n, kd, nrhs, ab, ldab, b, ldb, info )
call cpbsv( uplo, n, kd, nrhs, ab, ldab, b, ldb, info )
call zpbsv( uplo, n, kd, nrhs, ab, ldab, b, ldb, info )
```

```
call pbsv( ab, b [,uplo] [,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine solves for X the real or complex system of linear equations $A * X=B$, where A is an n-by- n symmetric/Hermitian positive definite band matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.
The Cholesky decomposition is used to factor A as

```
A = UT*U (real flavors) and A = U U*U (complex flavors), if uplo = 'U'
or A = L* LT (real flavors) and A = L\star L'H (complex flavors), if uplo = 'L',
```

where U is an upper triangular band matrix and L is a lower triangular band matrix, with the same number of superdiagonals or subdiagonals as A. The factored form of A is then used to solve the system of equations $A * X=B$.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored: If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.
n	INTEGER. The order of matrix $A ; n \geq 0$.
$k d$	INTEGER. The number of superdiagonals of the matrix A if uplo $=$ ' U ', or the number of subdiagonals if uplo $=$ ' L '; $k d \geq 0$.
nrhs	INTEGER. The number of right-hand sides, the number of columns in B; nrhs ≥ 0.
$a b, b$	REAL for spbsv
	DOUBLE PRECISION for dpbsv
	COMPLEX for cpbsv
	DOUBLE COMPLEX for zpbsv.
	Arrays: $a b$ (size $I d a b$ by $*$), b (size $I d b$ by *). The array $a b$ contains the upper or the lower triangular part of the matrix A (as specified by uplo) in band storage (see Matrix Storage Schemes). The second dimension of $a b$ must be at least max $(1, n)$.
	The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).
Idab	INTEGER. The leading dimension of the array $a b ; / 2 a b \geq k d+1$.
1 db	INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.

Output Parameters

```
ab
The upper or lower triangular part of \(A\) (in band storage) is overwritten by the Cholesky factor \(U\) or \(L\), as specified by uplo, in the same storage format as \(A\).
b
info
Overwritten by the solution matrix \(X\).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, so the factorization could not be completed, and the solution has not been computed.
```


LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine pbsv interface are as follows:

```
ab Holds the array A of size (kd+1,n).
b Holds the matrix B of size ( n,nrhs).
uplo Must be 'U' or 'L'. The default value is 'U'.
```


See Also
 Matrix Storage Schemes

?pbsvx

Uses the Cholesky factorization to compute the solution to the system of linear equations with a symmetric (Hermitian) positive-definite band coefficient matrix A, and provides error bounds on the solution.

Syntax

```
call spbsvx( fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info )
call dpbsvx( fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info )
call cpbsvx( fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info )
call zpbsvx( fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info )
call pbsvx( ab, b, x [,uplo] [,afb] [,fact] [,equed] [,s] [,ferr] [,berr] [,rcond]
[,info] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine uses the Cholesky factorization $A=U^{T} * U$ (real flavors) / $A=U^{H} * U$ (complex flavors) or $A=L^{\star} L^{T}$ (real flavors) / $A=L^{\star} L^{H}$ (complex flavors) to compute the solution to a real or complex system of linear equations $A * X=B$, where A is a n-by- n symmetric or Hermitian positive definite band matrix, the columns of matrix B are individual right-hand sides, and the columns of X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?pbsvx performs the following steps:

1. If fact $=$ ' E ', real scaling factors s are computed to equilibrate the system:
```
diag(s)*A* diag(s)*inv(diag(s))*X = diag(s)*B.
```

Whether or not the system will be equilibrated depends on the scaling of the matrix A, but if equilibration is used, A is overwritten by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$ and B by $\operatorname{diag}(s) * B$.
2. If fact $=$ ' N ' or ' E ', the Cholesky decomposition is used to factor the matrix A (after equilibration if fact $=$ 'E') as
$A=U^{T} * U$ (real), $A=U^{H} * U$ (complex), if uplo $=' U '$,
or $A=L \star L^{T}$ (real), $A=L^{\star} L^{H}$ (complex), if uplo = 'L',
where U is an upper triangular band matrix and L is a lower triangular band matrix.
3. If the leading i-by- i principal minor is not positive definite, then the routine returns with info $=i$. Otherwise, the factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, info $=n+1$ is returned as a warning, but the routine still goes on to solve for X and compute error bounds as described below.
4. The system of equations is solved for X using the factored form of A.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix X is premultiplied by $\operatorname{diag}(s)$ so that it solves the original system before equilibration.

Input Parameters

fact	CHARACTER*1. Must be 'F', 'N', or 'E'.
	Specifies whether or not the factored form of the matrix A is supplied on entry, and if not, whether the matrix A should be equilibrated before it is factored.
	If fact $=$ ' F ': on entry, $a f b$ contains the factored form of A. If equed $=$ 'Y', the matrix A has been equilibrated with scaling factors given by s. $a b$ and $a f b$ will not be modified.
	If fact $=$ 'N', the matrix A will be copied to afb and factored.
	If fact $=$ ' E ', the matrix A will be equilibrated if necessary, then copied to $a f b$ and factored.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	Indicates whether the upper or lower triangular part of A is stored:
	If uplo = 'U', the upper triangle of A is stored.
	If uplo = 'L', the lower triangle of A is stored.

```
n
kd
nrhs
ab, afb, b, work
ldab
Idafb
ldb
equed

INTEGER. The number of superdiagonals or subdiagonals in the matrix \(A ; k d \geq 0\).

INTEGER. The number of right-hand sides, the number of columns in \(B\); nrhs \(\geq 0\).

REAL for spbsvx
DOUBLE PRECISION for dpbsvx
COMPLEX for cpbsvx
DOUBLE COMPLEX for zpbsvx.
Arrays: \(a b(\) size \(I d a b\) by *), \(a f b(\) size \(I d a f b\) by *), \(b(\) size \(I d b\) by *), work(*).

The array \(a b\) contains the upper or lower triangle of the matrix \(A\) in band storage (see Matrix Storage Schemes).

If fact \(=\) ' F ' and equed \(=\) 'Y', then \(a b\) must contain the equilibrated matrix \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\). The second dimension of \(a b\) must be at least max \((1, n)\).

The array afb is an input argument if fact \(={ }^{\prime} F^{\prime}\). It contains the triangular factor \(U\) or \(L\) from the Cholesky factorization of the band matrix \(A\) in the same storage format as \(A\). If equed \(=\) ' \(Y\) ', then afb is the factored form of the equilibrated matrix \(A\). The second dimension of afb must be at least max \((1, n)\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max (1, nrhs).
work (*) is a workspace array.
The dimension of work must be at least max \(\left(1,3 *_{n}\right)\) for real flavors, and at least \(\max \left(1,2 \star_{n}\right)\) for complex flavors.

INTEGER. The leading dimension of \(a b ; / d a b \geq k d+1\).
INTEGER. The leading dimension of \(a f b ; / \operatorname{ldafb} \geq k d+1\).
INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\).
CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact \(=\) ' \(F\) '. It specifies the form of equilibration that was done:
if equed \(=\) 'N', no equilibration was done (always true if fact \(=\) 'N')
if equed \(=\) 'Y', equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
\(1 d x\)
iwork
rwork

Array, size ( \(n\) ). The array \(s\) contains the scale factors for \(A\). This array is an input argument if fact \(={ }^{\prime} F^{\prime}\) only; otherwise it is an output argument.

If equed \(=\) ' \(N\) ', \(s\) is not accessed.
If fact \(=\) ' F ' and equed \(=\) ' \(Y\) ', each element of \(s\) must be positive.
INTEGER. The leading dimension of the output array \(x ; 1 d x \geq \max (1\), n).

INTEGER. Workspace array, size at least max \((1, n)\); used in real flavors only.

REAL for cpbsvx
DOUBLE PRECISION for zpbsvx.
Workspace array, size at least max \((1, n)\); used in complex flavors only.

\section*{Output Parameters}

X
\(a b\)
\(a f b\)
b

S
rcond

REAL for spbsvx
DOUBLE PRECISION for dpbsvx
COMPLEX for cpbsvx
DOUBLE COMPLEX for zpbsvx.
Array, size \(I d x\) by *.
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(X\) to the original system of equations. Note that if equed \(=\) ' \(Y\) ', \(A\) and \(B\) are modified on exit, and the solution to the equilibrated system is inv ( \(\operatorname{diag}(s)) * X\). The second dimension of \(x\) must be at least \(\max (1, n r h s)\).

On exit, if fact \(=\) 'E'and equed \(=' Y\) ', \(A\) is overwritten by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).

If fact \(=\) 'N'or 'E', then \(a f b\) is an output argument and on exit returns the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T} * U\) or \(A=L * L^{T}\) (real routines), \(A=U^{H} * U\) or \(A=L * L^{H}\) (complex routines) of the original matrix \(A\) (if fact \(={ }^{\prime} N^{\prime}\) ), or of the equilibrated matrix \(A\) (if fact \(=' E '\) ). See the description of \(a b\) for the form of the equilibrated matrix.

Overwritten by \(\operatorname{diag}(s) * B\), if equed \(=\) ' \(Y\) '; not changed if equed \(=\) 'N'.

This array is an output argument if \(f a c t \neq ' F^{\prime}\). See the description of \(s\) in Input Arguments section.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

An estimate of the reciprocal condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ( \(1, n r h s\) ). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(X\) ). If \(x\) true is the true solution corresponding to \(x(j)\), ferr \((j)\) is an estimated upper bound for the magnitude of the largest element in \((x(j)-x t r u e)\) divided by the magnitude of the largest element in \(x(j)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ( \(1, n r h s\) ). Contains the component-wise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.

If fact \(\neq{ }^{\prime} \mathrm{F}^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and \(i \leq n\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond \(=0\) is returned. If info \(=i\), and \(i=n+1\), then \(U\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine pbsvx interface are as follows:
\begin{tabular}{ll}
\(a b\) & Holds the array \(A\) of size \((k d+1, n)\). \\
\(x\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
\(a f b\) & Holds the matrix \(X\) of size \((n, n r h s)\). \\
Holds the array \(A F\) of size \((k d+1, n)\).
\end{tabular}
```

S
Holds the vector with the number of elements n. Default value for
each element is s(i) = 1.0_WP.
Holds the vector with the number of elements nrhs.
Holds the vector with the number of elements nrhs.
Must be 'U' or 'L'. The default value is 'U'.
Must be 'N','E', or 'F'. The default value is 'N'. If fact = 'F',
then af must be present; otherwise, an error is returned.
Must be 'N' or 'Y'. The default value is 'N'.

```

\section*{See Also}

Matrix Storage Schemes
?ptsv
Computes the solution to the system of linear equations with a symmetric or Hermitian positive definite tridiagonal coefficient matrix A and multiple right-hand sides.

Syntax
```

call sptsv(n, nrhs, d, e, b, ldb, info)
call dptsv(n, nrhs, d, e, b, ldb, info)
call cptsv(n, nrhs, d, e, b, ldb, info)
call zptsv(n, nrhs, d, e, b, ldb, info)
call ptsv(d, e, b [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine solves for \(X\) the real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) symmetric/Hermitian positive-definite tridiagonal matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.
\(A\) is factored as \(A=L^{\star} D^{\star} L^{T}\) (real flavors) or \(A=L^{\star} D^{\star} L^{H}\) (complex flavors), and the factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}
\(n\)
nrhs
\(d\)

INTEGER. The order of matrix \(A ; n \geq 0\).
INTEGER. The number of right-hand sides, the number of columns in \(B\); nrhs \(\geq 0\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Array, dimension at least max \((1, n)\). Contains the diagonal elements of the tridiagonal matrix \(A\).
\(e, b\)
\(1 d b\)

\section*{Output Parameters}
d
e
b
info

Overwritten by the \(n\) diagonal elements of the diagonal matrix \(D\) from the \(L \star D^{\star} L^{T}\) (real)/ \(L \star D^{\star} L^{H}\) (complex) factorization of \(A\).

Overwritten by the ( \(n-1\) ) subdiagonal elements of the unit bidiagonal factor \(L\) from the factorization of \(A\).

Overwritten by the solution matrix \(X\).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, and the solution has not been computed. The factorization has not been completed unless \(i=n\).

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ptsv interface are as follows:
```

d Holds the vector of length n.
e Holds the vector of length (n-1).
b Holds the matrix B of size (n,nrhs).

```

\section*{See Also}

Matrix Storage Schemes
?ptsvx
Uses factorization to compute the solution to the system of linear equations with a symmetric (Hermitian) positive definite tridiagonal coefficient matrix A, and provides error bounds on the solution.

\section*{Syntax}
```

call sptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr, work, info)
call dptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr, work, info)
call cptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr, work, rwork,
info)
call zptsvx(fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond, ferr, berr, work, rwork,
info)
call ptsvx(d, e, b, x [,df] [,ef] [,fact] [,ferr] [,berr] [,rcond] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine uses the Cholesky factorization \(A=L^{\star} D^{\star} L^{T}\) (real)/A \(=L^{\star} D^{\star} L^{H}\) (complex) to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is a \(n\)-by- \(n\) symmetric or Hermitian positive definite tridiagonal matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?ptsvx performs the following steps:
1. If fact \(=\) ' \(N^{\prime}\), the matrix \(A\) is factored as \(A=L^{\star} D^{\star} L^{T}\) (real flavors) \(/ A=L^{\star} D^{\star} L^{H}\) (complex flavors), where \(L\) is a unit lower bidiagonal matrix and \(D\) is diagonal. The factorization can also be regarded as having the form \(A=U^{T} \star^{*} * U\) (real flavors) \(/ A=U^{H}{ }^{+}{ }^{*} U\) (complex flavors).
2. If the leading \(i\)-by-i principal minor is not positive-definite, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(X\) and compute error bounds as described below.
3. The system of equations is solved for \(X\) using the factored form of \(A\).
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

\section*{Input Parameters}
fact
\(n\)
nrhs
d, df, rwork

CHARACTER*1. Must be 'F' or 'N'.
Specifies whether or not the factored form of the matrix \(A\) is supplied on entry.
If fact \(=\) ' \(\mathrm{F}^{\prime}\) : on entry, df and ef contain the factored form of \(A\). Arrays \(d, e, d f\), and ef will not be modified.

If fact \(=\) ' \(N\) ', the matrix \(A\) will be copied to \(d f\) and ef, and factored.
INTEGER. The order of matrix \(A ; n \geq 0\).
INTEGER. The number of right-hand sides, the number of columns in \(B\); nrhs \(\geq 0\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.

Arrays: \(d\) (size \(n\) ), \(d f(\) size \(n\) ), rwork ( \(n\) ).
The array \(d\) contains the \(n\) diagonal elements of the tridiagonal matrix A.

The array \(d f\) is an input argument if fact \(=\) ' \(F\) ' and on entry contains the \(n\) diagonal elements of the diagonal matrix \(D\) from the \(L^{\star} D^{\star} L^{T}\) (real)/ \(L^{\star} D^{\star} L^{H}\) (complex) factorization of \(A\).

The array rwork is a workspace array used for complex flavors only.
REAL for sptsvx
DOUBLE PRECISION for dptsvx
COMPLEX for cptsvx
DOUBLE COMPLEX for zptsvx.
Arrays: e (size \(n-1\) ), ef (size \(n-1\) ), \(b\) (size \(1 d b,{ }^{*}\) ), work (*). The array \(e\) contains the \((n-1)\) subdiagonal elements of the tridiagonal matrix \(A\).
The array ef is an input argument if fact \(=\) ' F ' and on entry contains the \((n-1)\) subdiagonal elements of the unit bidiagonal factor \(L\) from the \(L^{\star} D^{\star} L^{T}\) (real)/ \(L^{\star} D^{\star} L^{H}\) (complex) factorization of \(A\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
The array work is a workspace array. The dimension of work must be at least \(2{ }^{\star} n\) for real flavors, and at least \(n\) for complex flavors.

INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\).
INTEGER. The leading dimension of \(x ; 1 d x \geq \max (1, n)\).

\section*{Output Parameters}
x
\(d f, e f\)
rcond

REAL for sptsvx
DOUBLE PRECISION for dptsvx
COMPLEX for cptsvx
DOUBLE COMPLEX for zptsvx.
Array, size \(/ d x\) by *.
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(X\) to the system of equations. The second dimension of \(x\) must be at least max (1, nrhs).

These arrays are output arguments if fact \(=\) ' N'. See the description of \(d f\), ef in Input Arguments section.

REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
ferr
berr
info

An estimate of the reciprocal condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ( \(1, n r h s\) ). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(X\) ). If \(x\) true is the true solution corresponding to \(x(j)\), ferr \((j)\) is an estimated upper bound for the magnitude of the largest element in \((x(j)-x t r u e)\) divided by the magnitude of the largest element in \(x(j)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ( \(1, n r h s\) ). Contains the component-wise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.

INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and \(i \leq n\), the leading minor of order \(i\) (and therefore the matrix \(A\) itself) is not positive-definite, so the factorization could not be completed, and the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=i\), and \(i=n+1\), then \(U\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine ptsvx interface are as follows:
\begin{tabular}{ll}
\(d\) & Holds the vector of length \(n\). \\
\(e\) & Holds the vector of length \((n-1)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
\(d f\) & Holds the matrix \(X\) of size \((n, n r h s)\). \\
Holds the vector of length \(n\).
\end{tabular}
```

ef Holds the vector of length (n-1).
ferr Holds the vector of length (nrhs).
berr Holds the vector of length (nrhs).
fact Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then
both arguments af and ipiv must be present; otherwise, an error is
returned.

```

\section*{See Also}

Matrix Storage Schemes
?sysv
Computes the solution to the system of linear equations with a real or complex symmetric coefficient matrix \(A\) and multiple right-hand sides.

\section*{Syntax}
```

call ssysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call dsysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call csysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call zsysv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call sysv(a, b [,uplo] [,ipiv] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine solves for \(X\) the real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) symmetric matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.
The diagonal pivoting method is used to factor \(A\) as \(A=U^{*} D^{*} U^{T}\) or \(A=L^{*} D^{*} L^{T}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}
```

uplo
n
nrhs
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The order of matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; the number of columns in B; nrhs ≥ 0.

```
```

a,b, work
Ida
ldb
l work

```

1da
\(1 d b\)
lwork

REAL for sSysv
DOUBLE PRECISION for dsysv
COMPLEX for csysv
DOUBLE COMPLEX for zsysv.
Arrays: \(a\left(\right.\) size \(\left./ d a \operatorname{by}{ }^{*}\right), b\left(\right.\) size \(/ d b\) by \(\left.{ }^{*}\right), \operatorname{work}(*)\).
The array a contains the upper or the lower triangular part of the symmetric matrix \(A\) (see uplo). The second dimension of a must be at least max \((1, n)\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max ( \(1, n r h s\) ).
work is a workspace array, dimension at least max (1, lwork).
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of \(b ; I d b \geq \max (1, n)\).
INTEGER. The size of the work array; Iwork \(\geq 1\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to /work is issued by xerbla. See Application Notes below for details and for the suggested value of Iwork.

\section*{Output Parameters}
a
b
ipiv
work(1)
info
If info \(=0, a\) is overwritten by the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U(\operatorname{or} L)\) from the factorization of \(A\) as computed by ?sytrf.

If info \(=0, b\) is overwritten by the solution matrix \(X\).

\section*{INTEGER.}

Array, size at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\), as determined by ?sytrf.

If ipiv(i) \(=k>0\), then \(d_{i i}\) is a 1-by-1 diagonal block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.
If uplo \(=\) 'U' and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a \(2-\) by-2 block in rows/columns \(i\) and \(i-1\), and (i-1)-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo \(=\) 'L'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

If info \(=0\), on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER. If info \(=0\), the execution is successful.

If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular, so the solution could not be computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sysv interface are as follows:
```

a Holds the matrix A of size (}n,n)\mathrm{ .
b Holds the matrix B of size (n,nrhs).
ipiv Holds the vector of length n.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

For better performance, try using lwork \(=n *\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{See Also \\ Matrix Storage Schemes}
?sysv_aa
Computes the solution to a system of linear equations
\(A * X=B\) for symmetric matrices.
call ssysv_aa(uplo, \(n, ~ n r h s, ~ A, ~ l d a, ~ i p i v, ~ B, ~ l d b, ~ w o r k, ~ l w o r k, ~ i n f o) ~\)
call csysv_aa(uplo, \(n, ~ n r h s, ~ A, ~ l d a, ~ i p i v, ~ B, ~ l d b, ~ w o r k, ~ l w o r k, ~ i n f o) ~\)
call dsysv_aa(uplo, \(n, ~ n r h s, ~ A, ~ l d a, ~ i p i v, ~ B, ~ l d b, ~ w o r k, ~ l w o r k, ~ i n f o) ~\)
call zsysv_aa(uplo, \(n, ~ n r h s, ~ A, ~ l d a, ~ i p i v, ~ B, ~ l d b, ~ w o r k, ~ l w o r k, ~ i n f o) ~\)

\section*{Description}

The ?sysv routine computes the solution to a complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by-n symmetric matrix and \(X\) and \(B\) are \(n\)-by-nrhs matrices.

Aasen's algorithm is used to factor \(A\) as \(A=U * T * U^{\top}\), if uplo \(=\) ' \(U^{\prime}\), or \(A=L * T * L^{\top}\), if uplo = 'L', where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(T\) is symmetric tridiagonal. The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}
uplo
n
nrhs

A

Ida

B

1 db

I work

CHARACTER*1
- = 'U': The upper triangle of \(A\) is stored.
- = 'L': The lower triangle of \(A\) is stored.

INTEGER
The number of linear equations; that is, the order of the matrix \(A . n \geq 0\).
```

INTEGER

```

The number of right-hand sides; that is, the number of columns of the matrix B. nrhs \(\geq 0\).

REAL for ssysv_aa
DOUBLE PRECISION for dsysv_aa
COMPLEX for csysv_aa
COMPLEX*16 for zsysv_aa
Array, dimension ( \(\operatorname{lda}, n\) ). On entry, the symmetric matrix A. If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(A\) contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(A\) is not referenced. If uplo \(=\) 'L', the leading \(n\)-by- \(n\) lower triangular part of \(A\) contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(A\) is not referenced.

INTEGER
The leading dimension of the array \(A .1 d a \geq \max (1, n)\).
REAL for ssysv_aa
DOUBLE PRECISION for dsysv_aa
COMPLEX for csysv_aa
COMPLEX*16 for zsysv_aa
Array, dimension (ldb,nrhs). On entry, the \(n\)-by-nrhs right-hand side matrix B.

INTEGER
The leading dimension of the array \(B . l d b \geq \max (1, n)\).
INTEGER
The length of the array work.
If lwork \(=-1\), a workspace query is assumed; the routine calculates only the optimal size of the work array and returns this value as the first entry of the work array, and no error message related to lwork is issued by XERBLA.

\section*{Output Parameters}

A
REAL for ssysv_aa
DOUBLE PRECISION for dsysv_aa
```

 COMPLEX for csysv_aa
 COMPLEX*16 for zsysv_aa
 On exit, if info $=0$, the tridiagonal matrix T and the multipliers used to obtain the factor U or L from the factorization $A=U * T * U^{\top}$ or $A=L * T^{*} L^{\top}$ as computed by ?sytrf.
INTEGER
Array, dimension (n). On exit, it contains the details of the interchanges; that is, the row and column k of A were interchanged with the row and column ipiv (k).
B
REAL for ssysv_aa
DOUBLE PRECISION for dsytrs_aa
COMPLEX for csysv_aa
COMPLEX*16 for zsysv_aa
On exit, if info $=0$, the n-by-nrhs solution matrix X.
REAL for ssysv_aa
DOUBLE PRECISION for dsytrs_aa
COMPLEX for csysv_aa
COMPLEX*16 for zsysv_aa

```

Array, dimension (MAX(1,lwork)). On exit, if info \(=0\), work(1) returns the optimal lwork.

INTEGER
- \(=0\) : Successful exit.
- <0: If info \(=-i\), the \(i^{\text {th }}\) argument had an illegal value.
- >0: If info \(=i, \mathrm{D}(i, i)\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, so the solution could not be computed.

\section*{?sysv_rook}

Computes the solution to the system of linear equations with a real or complex symmetric coefficient matrix \(A\) and multiple right-hand sides.

\section*{Syntax}
```

call ssysv_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call dsysv_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call csysv_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call zsysv_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call sysv_rook(a, b [,uplo] [,ipiv] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine solves for \(X\) the real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) symmetric matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.
The diagonal pivoting method is used to factor \(A\) as \(A=U^{\star} D^{\star} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
The ?sysv_rook routine is called to compute the factorization of a complex symmetric matrix \(A\) using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}
```

uplo
n
nrhs
a, b, work
lda
ldb
lwork
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The order of matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; the number of columns in B; nrhs ≥ 0.
REAL for ssysv_rook
DOUBLE PRECISION for dsysv_rook
COMPLEX for CSysv_rook
DOUBLE COMPLEX for zsysv_rook.
Arrays: $a\left(\right.$ size $\left./ d a \operatorname{by}{ }^{*}\right), b($ size $/ d b$ by $*), \operatorname{work}(*)$.
The array a contains the upper or the lower triangular part of the symmetric matrix A (see uplo). The second dimension of a must be at least max $(1, n)$.
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max ($1, n r h s$).
work is a workspace array, dimension at least max (1, Iwork).
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $b ; 1 d b \geq \max (1, n)$.
INTEGER. The size of the work array; Iwork ≥ 1.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla. See Application Notes below for details and for the suggested value of Iwork.

```

\section*{Output Parameters}
a
b
ipiv
work(1)
info

If info \(=0, a\) is overwritten by the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\) ) from the factorization of \(A\) as computed by sytrf_rook.

If info \(=0, b\) is overwritten by the solution matrix \(X\).
INTEGER.
Array, size at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\), as determined by sytrf_rook.

If \(\operatorname{ipiv}(k)>0\), then rows and columns \(k\) and \(\operatorname{ipiv}(k)\) were interchanged and \(D_{k, k}\) is a 1-by-1 diagonal block.

If uplo = 'U' and ipiv(k) < 0 and ipiv(k-1) < 0, then rows and columns \(k\) and -ipiv( \(k\) ) were interchanged, rows and columns \(k\) 1 and -ipiv \((k-1)\) were interchanged, and \(D_{k-1: k, ~}^{k-1: k}\) is a 2-by-2 diagonal block.

If uplo = 'L' and ipiv(k) < 0 and \(\operatorname{ipiv}(k+1)<0\), then rows and columns \(k\) and \(-\operatorname{ipiv}(k)\) were interchanged, rows and columns \(k+\) 1 and -ipiv \((k+1)\) were interchanged, and \(D_{k: k+1, k: k+1}\) is a 2-by-2 diagonal block.

If info \(=0\), on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular, so the solution could not be computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sysv_rook interface are as follows:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((n, n)\). \\
b & Holds the matrix \(B\) of size \((n, n r h s)\). \\
ipiv & Holds the vector of length \(n\). \\
uplo & Must be 'U' or 'L'. The default value is 'U'.
\end{tabular}

\section*{See Also}

Matrix Storage Schemes
?sysv_rk
Computes the solution to system of linear equations \(A\)
* \(X=B\) for SY matrices.

```

call dsysv_rk(uplo, n, nrhs, A, lda, e, ipiv, B, ldb, work, lwork, info)
call csysv_rk(uplo, n, nrhs, A, lda, e, ipiv, B, ldb, work, lwork, info)
call zsysv_rk(uplo, n, nrhs, A, lda, e, ipiv, B, ldb, work, lwork, info)

```

\section*{Description}
?sysv_rk computes the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\) -by- \(n\) symmetric matrix and \(X\) and \(B\) are \(n\)-by-nrhs matrices.

The bounded Bunch-Kaufman (rook) diagonal pivoting method is used to factor \(A\) as \(A=P^{*} U^{*} D^{*}\left(U^{\top}\right)^{*}\left(P^{\top}\right)\), if uplo \(=' U '\), or \(A=P * L^{*} D^{*}\left(L^{\top}\right)^{*}\left(P^{\top}\right)\), if uplo \(=' L '\), where \(U(o r L\) ) is unit upper (or lower) triangular matrix, \(U^{\top}\) (or \(L^{\top}\) ) is the transpose of \(U\) (or \(L\) ), \(P\) is a permutation matrix, \(P^{\top}\) is the transpose of \(P\), and \(D\) is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
?sytrf_rk is called to compute the factorization of a real or complex symmetric matrix. The factored form of \(A\) is then used to solve the system of equations \(A * X=B\) by calling BLAS3 routine ?sytrs_3.

\section*{Input Parameters}
uplo
n
nrhs

A

Ida

B

\section*{CHARACTER*1}

Specifies whether the upper or lower triangular part of the symmetric matrix A is stored:
- = 'U': The upper triangle of \(A\) is stored.
- = 'L': The lower triangle of \(A\) is stored.

INTEGER
The number of linear equations; that is, the order of the matrix \(A . n \geq 0\).

\section*{INTEGER}

The number of right-hand sides; that is, the number of columns of the matrix B. nrhs \(\geq 0\).

REAL for ssysv_rk
DOUBLE PRECISION for dsysv_rk
COMPLEX for csysv_rk
COMPLEX*16 for zsysv_rk
Array, dimension ( \(\operatorname{lda}, n\) ). On entry, the symmetric matrix A. If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(A\) contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(A\) is not referenced. If uplo \(=\) ' L', the leading \(n\)-by- \(n\) lower triangular part of \(A\) contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(A\) is not referenced.

INTEGER
The leading dimension of the array \(A . I d a \geq \max (1, n)\).
```

REAL for ssysv_rk
DOUBLE PRECISION for dsysv_rk
COMPLEX for csysv_rk
COMPLEX*16 for zsysv_rk

```

Array, dimension (lab,nrhs). On entry, the \(n\)-by-nrhs right-hand side matrix B.

INTEGER
The leading dimension of the array \(B . l d b \geq \max (1, n)\).
INTEGER
The length of the array work.
If 1 work \(=-1\), a workspace query is assumed; the routine calculates only the optimal size of the work array for factorization stage and returns this value as the first entry of the work array, and no error message related to lwork is issued by XERBLA.

\section*{Output Parameters}

A
e
REAL for ssysv_rk
DOUBLE PRECISION for dsysv_rk
COMPLEX for csysv_rk
COMPLEX*16 for zsysv_rk
Array, dimension ( \(n\) ). On exit, contains the output computed by the factorization routine ?sytrf_rk; that is, the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix \(D\) with 1-by-1 or 2-by-2 diagonal blocks. If uplo \(=\) ' U ', \(\mathrm{e}(i)=\mathrm{D}(i-1, i), i=1: \mathrm{N}-1\), and \(\mathrm{e}(1)\) is set to 0 . If uplo \(=\) ' L ', \(\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1\), and \(\mathrm{e}(n)\) is set to 0 .

NOTE For 1-by-1 diagonal block \(\mathrm{D}(k)\), where \(1 \leq \mathrm{k} \leq n\), the element \(\mathrm{e}(k)\) is set to 0 in both the uplo \(=\) 'U' and uplo \(=\) 'L' cases. For more information, see the description of the?sytrf_rk routine.

B
work
info

Array, dimension (n). Details of the interchanges and the block structure of D, as determined by ?sytrf_rk. For more information, see the description of the ?sytrf_rk routine.

REAL for ssysv_rk
DOUBLE PRECISION for dsysv_rk
COMPLEX for csysv_rk
COMPLEX*16 for zsysv_rk
On exit, if info \(=0\), the \(n\)-by-nrhs solution matrix \(X\).
REAL for ssysv_rk
DOUBLE PRECISION for dsysv_rk
COMPLEX for csysv_rk
COMPLEX*16 for zsysv_rk
Array, dimension ( MAX(1,1work) ). Work array used in the factorization stage. On exit, if info \(=0\), work(1) returns the optimal lwork.

INTEGER
- = 0: successful exit.
- <0: If info \(=-k\), the \(k^{\text {th }}\) argument had an illegal value.
- >0: If info \(=k\), the matrix \(A\) is singular. If uplo \(=\) ' U', column \(k\) in the upper triangular part of \(A\) contains all zeros. If uplo \(l^{\prime} \mathrm{L}\) ', column \(k\) in the lower triangular part of A contains all zeros. Therefore \(D(k, k)\) is exactly zero, and superdiagonal elements of column \(k\) of \(U\) (or subdiagonal elements of column \(k\) of \(L\) ) are all zeros. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, and division by zero will occur if it is used to solve a system of equations.

NOTE info stores only the first occurrence of a singularity; any subsequent occurrence of singularity is not stored in info even though the factorization always completes.

\section*{?sysvx}

Uses the diagonal pivoting factorization to compute the solution to the system of linear equations with a real or complex symmetric coefficient matrix \(A\), and provides error bounds on the solution.

\section*{Syntax}
```

call ssysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, lwork, iwork, info)
call dsysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, lwork, iwork, info)
call csysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, lwork, rwork, info)

```
```

call zsysvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, lwork, rwork, info)
call sysvx(a, b, x [,uplo] [,af] [,ipiv] [,fact] [,ferr] [,berr] [,rcond] [,info])

```
Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine uses the diagonal pivoting factorization to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is a \(n\)-by- \(n\) symmetric matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?sysvx performs the following steps:
1. If fact \(=\) ' \(N\) ', the diagonal pivoting method is used to factor the matrix \(A\). The form of the factorization is \(A=U \star D^{*} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some \(d_{i, i}=0\), so that \(D\) is exactly singular, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(X\) and compute error bounds as described below.
3. The system of equations is solved for \(X\) using the factored form of \(A\).
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{fact} & CHARACTER*1. Must be 'F' or 'N'. \\
\hline & Specifies whether or not the factored form of the matrix \(A\) has been supplied on entry. \\
\hline & If fact \(=\) ' F ': on entry, af and ipiv contain the factored form of \(A\). Arrays \(a, a f\), and ipiv will not be modified. \\
\hline & If fact \(=\) ' N ', the matrix \(A\) will be copied to af and factored. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & \begin{tabular}{l}
Indicates whether the upper or lower triangular part of \(A\) is stored: \\
If uplo = 'U', the upper triangle of \(A\) is stored.
\end{tabular} \\
\hline & If uplo \(=\) 'L', the lower triangle of \(A\) is stored. \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides, the number of columns in B; nrhs \(\geq 0\). \\
\hline \multirow[t]{3}{*}{\(a, ~ a f, b\), work} & REAL for ssysvx \\
\hline & DOUBLE PRECISION for dsysvx \\
\hline & COMPLEX for csysvx \\
\hline
\end{tabular}

DOUBLE COMPLEX for zsysvx.
Arrays: a(size Ida by *), af(size Idaf by *), b(size Idb by *), work (*).
The array a contains the upper or the lower triangular part of the symmetric matrix \(A\) (see uplo). The second dimension of a must be at least max \((1, n)\).

The array af is an input argument if fact \(={ }^{\prime} \mathrm{F}^{\prime}\). It contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) from the factorization \(A=U * D * U^{\mathbb{T}}\) or \(A=L \star D * L^{T}\) as computed by ?sytrf. The second dimension of af must be at least max \((1, n)\).

The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max (1, nrhs).
work(*) is a workspace array, dimension at least max(1, lwork).
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of \(a f ; l d a f \geq \max (1, n)\).
INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\).
INTEGER.
Array, size at least max \((1, n)\). The array ipiv is an input argument if fact \(={ }^{\prime} \mathrm{F}^{\prime}\). It contains details of the interchanges and the block structure of \(D\), as determined by ?sytrf.

If \(\operatorname{ipiv}(i)=k>0\), then \(d_{i i}\) is a 1-by-1 diagonal block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.

If uplo = 'U'and ipiv(i) = ipiv(i-1) \(=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and ( \(i-1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

If uplo = 'L'and ipiv(i) = ipiv(i+1) \(=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

INTEGER. The leading dimension of the output array \(x ; l d x \geq \max (1\), n).

INTEGER. The size of the work array.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla. See Application Notes below for details and for the suggested value of Iwork.

INTEGER. Workspace array, size at least max \((1, n)\); used in real flavors only.

REAL for csysvx;
DOUBLE PRECISION for zsysvx.

Workspace array, size at least max \((1, n)\); used in complex flavors only.

\section*{Output Parameters}

X
REAL for ssysvx
DOUBLE PRECISION for dsysvx
COMPLEX for csysvx
DOUBLE COMPLEX for zsysvx.
Array, size \(l d x\) by \(*\).
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(X\) to the system of equations. The second dimension of \(x\) must be at least max (1, nrhs).

These arrays are output arguments if fact \(={ }^{\prime} N^{\prime}\).
See the description of af, ipiv in Input Arguments section.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix \(A\). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).

\section*{REAL for single precision flavors}

DOUBLE PRECISION for double precision flavors.
Array, size at least max ( \(1, n r h s\) ). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(X\) ). If \(x\) true is the true solution corresponding to \(x(j)\), ferr \((j)\) is an estimated upper bound for the magnitude of the largest element in \((x(j)-x t r u e)\) divided by the magnitude of the largest element in \(x(j)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ( \(1, n r h s\) ). Contains the component-wise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.

If info \(=0\), on exit work (1) contains the minimum value of /work required for optimum performance. Use this Iwork for subsequent runs.

INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

If info \(=i\), and \(i \leq n\), then \(d_{i i}\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.

If info \(=i\), and \(i=n+1\), then \(D\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sysvx interface are as follows:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size ( \(n, n\) ). \\
\hline b & Holds the matrix \(B\) of size ( \(n, n r h s\) ) . \\
\hline \(x\) & Holds the matrix \(X\) of size ( \(n, n r h s\) ) . \\
\hline af & Holds the matrix AF of size (n,n). \\
\hline ipiv & Holds the vector of length \(n\). \\
\hline ferr & Holds the vector of length (nrhs). \\
\hline berr & Holds the vector of length (nrhs). \\
\hline uplo & Must be 'U' or 'L'. The default value is 'U'. \\
\hline fact & Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then both arguments af and ipiv must be present; otherwise, an error is returned. \\
\hline
\end{tabular}

\section*{Application Notes}

The value of Iwork must be at least \(\max \left(1, m^{\star} n\right)\), where for real flavors \(m=3\) and for complex flavors \(m=\) 2. For better performance, try using lwork \(=\max \left(1, m^{\star} n, n^{\star} b l o c k s i z e\right)\), where blocksize is the optimal block size for ?sytrf.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{See Also \\ Matrix Storage Schemes \\ ?sysvxx \\ Uses extra precise iterative refinement to compute the solution to the system of linear equations with a symmetric indefinite coefficient matrix \(A\) applying the diagonal pivoting factorization.}

\section*{Syntax}
```

call ssysvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
iwork, info)
call dsysvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
iwork, info)
call csysvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx,
rcond, rpvgrw, berr, n err bnds, err bnds norm, err bnds comp, nparams, params, work,
rwork, info)
call zsysvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
rwork, info)

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine uses the diagonal pivoting factorization to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) real symmetric/Hermitian matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error ( O (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.

The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with 0 (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.
The routine ?sysvxx performs the following steps:
1. If fact \(=\) ' \(E\) ', scaling factors are computed to equilibrate the system:
```

diag(s)*A* diag(s) *inv(diag(s))*X = diag(s)*B

```

Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\) and \(B\) by \(\operatorname{diag}(s) * B\).
2. If fact \(=\) ' \(N\) ' or ' \(E\) ', the LU decomposition is used to factor the matrix \(A\) (after equilibration if fact = 'E') as
\(A=U^{\star} D^{\star} U^{T}\), if \(u p l o=' U '\),
or \(A=L^{\star} D^{\star} L^{T}\), if uplo = 'L',
where \(U\) or \(L\) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is a symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
3. If some \(D(i, i)=0\), so that \(D\) is exactly singular, the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\) (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for \(X\) and compute error bounds.
4. The system of equations is solved for \(X\) using the factored form of \(A\).
5. By default, unless params (1) is set to zero, the routine applies iterative refinement to get a small error and error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix \(X\) is premultiplied by \(\operatorname{diag}(r)\) so that it solves the original system before equilibration.

\section*{Input Parameters}
```

fact
uplo
n
nrhs
a, af,b, work

```

Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored.

If fact \(=\) ' F ', on entry, af and ipiv contain the factored form of \(A\). If equed is not ' \(N\) ', the matrix \(A\) has been equilibrated with scaling factors given by \(s\). Parameters \(a\), af, and ipiv are not modified.
If fact \(=\) ' \(N\) ', the matrix \(A\) will be copied to \(a f\) and factored.
If fact \(=\) ' \(E\) ', the matrix \(A\) will be equilibrated, if necessary, copied to \(a f\) and factored.

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored:
If uplo = 'U', the upper triangle of \(A\) is stored.
If uplo = 'L', the lower triangle of \(A\) is stored.
INTEGER. The number of linear equations; the order of the matrix \(A\); \(n \geq 0\).

INTEGER. The number of right-hand sides; the number of columns of the matrices \(B\) and \(X\); nrhs \(\geq 0\).

REAL for ssysvxx
DOUBLE PRECISION for dsysvxx
COMPLEX for csysvxx
DOUBLE COMPLEX for zsysvxx.
Arrays: a(size lda by *), af(size ldaf by *), b(size ldb, *), work(*).
The array a contains the symmetric matrix \(A\) as specified by uplo. If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\) and the strictly lower triangular part of \(a\) is not referenced. If uplo \(=\) ' L', the leading \(n\)-by- \(n\) lower
triangular part of a contains the lower triangular part of the matrix \(A\) and the strictly upper triangular part of \(a\) is not referenced. The second dimension of a must be at least max \((1, n)\).
The array af is an input argument if fact \(={ }^{\prime} F^{\prime}\). It contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) and \(L\) from the factorization \(A=U^{\star} D^{\star} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\) as computed by ?sytrf. The second dimension of af must be at least max \((1, n)\).

The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max ( \(1, n r h s\) ).
work (*) is a workspace array. The dimension of work must be at least max \(\left(1,4 *_{n}\right)\) for real flavors, and at least max \((1,2 * n)\) for complex flavors.

INTEGER. The leading dimension of the array \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of the array \(a f ; I d a f \geq \max (1, n)\).
INTEGER.
Array, size at least max \((1, n)\). The array ipiv is an input argument if fact \(={ }^{\prime} F^{\prime}\). It contains details of the interchanges and the block structure of \(D\) as determined by ?sytrf. If ipiv \((k)>0\), rows and columns \(k\) and ipiv \((k)\) were interchanged and \(D(k, k)\) is a 1-by-1 diagonal block.

If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, rows and columns \(k-1\) and -ipiv(k) were interchanged and \(D(k-1: k, k-1: k)\) is a 2-by-2 diagonal block.

If uplo = 'L' and ipiv(k) =ipiv(k+1) < 0, rows and columns \(k\) +1 and -ipiv(k) were interchanged and \(D(k: k+1, k: k+1)\) is a 2-by-2 diagonal block.

CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact \(={ }^{\prime} F^{\prime}\). It specifies the form of equilibration that was done:

If equed \(=\) 'N', no equilibration was done (always true if fact \(=\) 'N').
if equed \(=\) ' \(Y\) ', both row and column equilibration was done, that is, \(A\) has been replaced by diag(s)*A*diag(s).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size ( \(n\) ). The array \(s\) contains the scale factors for \(A\). If equed \(=' Y ', A\) is multiplied on the left and right by diag ( \(s\) ).
This array is an input argument if fact \(={ }^{\prime} F^{\prime}\) only; otherwise it is an output argument.
If fact \(=\) ' F ' and equed \(=\) 'Y', each element of \(s\) must be positive.
\(I d b\)
\(\operatorname{ldx}\)
n_err_bnds
nparams
params

Each element of \(s\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array \(b ; 1 d b \geq \max (1, n)\).
INTEGER. The leading dimension of the output array \(x ; 1 d x \geq \max (1\), n).

INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in the Output Arguments section below.

INTEGER. Specifies the number of parameters set in params. If \(\leq 0\), the params array is never referenced and default values are used.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0, that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams \(=0\), which prevents the source code from accessing the params argument.
params (1) : Whether to perform iterative refinement or not. Default:
1.0 (for single precision flavors), \(1.0 \mathrm{D}+0\) (for double precision flavors).
\(=0.0 \quad\) No refinement is performed and no error bounds are computed.
\(=1.0\) Use the extra-precise refinement algorithm.
(Other values are reserved for future use.)
params (2) : Maximum number of residual computations allowed for refinement.

Default
Aggressive

\section*{10.0}

Set to 100.0 to permit convergence using approximate factorizations or factorizations other than \(L U\). If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params (3) : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the doubleprecision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

INTEGER. Workspace array, size at least max \((1, n)\); used in real flavors only.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, size at least max \(\left(1,3^{*} n\right.\) ) ; used in complex flavors only.

\section*{Output Parameters}
x
\(a\)
\(a f\)
\(b\)

S
rpvgrw

REAL for ssysvxx
DOUBLE PRECISION for dsysvxx
COMPLEX for csysvxx
DOUBLE COMPLEX for zsysvxx.
Array, size ldx by nrhs).
If info \(=0\), the array \(x\) contains the solution \(n\)-by-nrhs matrix \(X\) to the original system of equations. Note that \(A\) and \(B\) are modified on exit if equed \(\neq\) ' \(N\) ', and the solution to the equilibrated system is:
\(\operatorname{inv}(\operatorname{diag}(s)) \star X\).
If fact \(=\) ' \(E\) ' and equed \(=\) 'Y', overwritten by diag(s)* \(A * \operatorname{diag}(s)\).
If fact \(=\) ' \(N\) ', af is an output argument and on exit returns the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) from the factorization \(A=U^{\star} D^{\star} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\).

If equed \(='^{\prime} N^{\prime}, B\) is not modified.
If equed \(=' Y\) ', \(B\) is overwritten by \(\operatorname{diag}(s) * B\).
This array is an output argument if \(f a c t \neq ' \mathrm{~F}^{\prime}\). Each element of this array is a power of the radix. See the description of \(s\) in Input Arguments section.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Contains the reciprocal pivot growth factor:

\section*{\(\|A|||\mid U \|\)}

If this is much less than 1 , the stability of the \(L U\) factorization of the (equlibrated) matrix \(A\) could be poor. This also means that the solution \(X\), estimated condition numbers, and error bounds could be unreliable. If factorization fails with \(0<i n f o \leq n\), this parameter contains the reciprocal pivot growth factor for the leading info columns of \(A\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least max ( \(1, \mathrm{nrhs}\) ). Contains the componentwise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size nrhs by \(n _e r r _b n d s\). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:
Normwise relative error in the \(i\)-th solution vector


The array is indexed by the type of error information as described below. Up to three pieces of information are returned.

The first index in err_bnds_norm(i,:) corresponds to the \(i\)-th right-hand side.

The second index in err_bnds_norm (: ,err) contains the following three fields:
\begin{tabular}{|c|c|}
\hline err=1 & "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt ( \(n\) ) *slamch ( \(\varepsilon\) ) for single precision flavors and sqrt( \(n\) )*dlamch ( \(\varepsilon\) ) for double precision flavors. \\
\hline err=2 & "Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for double precision flavors. This error bound should only be trusted if the previous boolean is true. \\
\hline
\end{tabular}
err=3

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for single precision flavors and \(\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)\) for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix \(Z\) are:
\[
\|z\|_{6} \cdot\left\|z^{-1}\right\|_{0}
\]

Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1 .
err_bnds_comp

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the \(i\)-th solution vector:
\[
\left.\max _{j} \frac{\mid X^{t r u e}}{j i} 1-X_{j i} \right\rvert\,
\]

The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params (3) \(=0.0\) ), then err_bnds_comp is not accessed. If \(n_{-} e r r_{-}\)bnds \(<3\), then at most the first (:, n_err_bnds) entries are returned.

The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the following three fields:
\(\left.\begin{array}{ll}\text { err=1 } & \begin{array}{l}\text { "Trust/don't trust" boolean. Trust the answer if } \\
\text { the reciprocal condition number is less than the } \\
\text { threshold } \operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon) \text { for } \operatorname{single}\end{array} \\
\text { precision flavors and } \operatorname{sqrt}(n) * d l a m c h(\varepsilon) \text { for } \\
\text { double precision flavors. }\end{array}\right\}\)\begin{tabular}{l} 
"Guaranteed" error bpound. The estimated \\
forward error, almost certainly within a factor of \\
10 of the true error so long as the next entry is \\
greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) \\
for single precision flavors and
\end{tabular}


\footnotetext{
See Also
Matrix Storage Schemes
}
?hesv
Computes the solution to the system of linear equations with a Hermitian matrix \(A\) and multiple right-hand sides.

Syntax
```

call chesv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call zhesv(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call hesv(a, b [,uplo] [,ipiv] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine solves for \(X\) the complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) symmetric matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

The diagonal pivoting method is used to factor \(A\) as \(A=U^{\star} D^{*} U^{H}\) or \(A=L^{\star} D^{\star} L^{H}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}
```

uplo
n
nrhs
a, b, work
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored and how A is factored:
If uplo = 'U', the array a stores the upper triangular part of the matrix A, and A is factored as $U^{*} D^{\star} U^{H}$.
If uplo = 'L', the array a stores the lower triangular part of the matrix A, and A is factored as $L^{\star} D^{\star} L^{H}$.
INTEGER. The order of matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides, the number of columns in B; nrhs ≥ 0.
COMPLEX for chesv
DOUBLE COMPLEX for zhesv.
Arrays: a(size Ida by *), bb(size ldb by *), work(*). The array a contains the upper or the lower triangular part of the Hermitian matrix A (see uplo). The second dimension of a must be at least max $(1, n)$.
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).
work is a workspace array, dimension at least max (1, lwork).

```

Ida
1 db
I work

INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\).
INTEGER. The size of the work array (/work \(\geq 1\) ).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla. See Application Notes below for details and for the suggested value of Iwork.

\section*{Output Parameters}
a
b
ipiv
work(1)
info

If info \(=0, a\) is overwritten by the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\) ) from the factorization of \(A\) as computed by ?hetrf.

If info \(=0, b\) is overwritten by the solution matrix \(X\).
INTEGER.
Array, size at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\), as determined by ?hetrf.
If \(\operatorname{ipiv}(i)=k>0\), then \(d_{i i}\) is a 1-by-1 diagonal block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.

If uplo \(=\) 'U'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and (i-1) -th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo \(=\) 'L'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a \(2-\) by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) ) -th row and column of \(A\) was interchanged with the \(m\)-th row and column.

If info \(=0\), on exit work (1) contains the minimum value of /work required for optimum performance. Use this Iwork for subsequent runs.

INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular, so the solution could not be computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hesv interface are as follows:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((n, n)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
ipiv & Holds the vector of length \(n\).
\end{tabular}
uplo

\section*{Application Notes}

For better performance, try using lwork \(=n \star\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{See Also}

Matrix Storage Schemes
?hesv_aa
Computes the solution to system of linear equations
for HE matrices.
call chesv_aa(uplo, \(n, ~ n r h s, ~ a, ~ l d a, ~ i p i v, ~ b, ~ l d b, ~ w o r k, ~ l w o r k, ~ i n f o) ~\)


\section*{Description}
?hesv_aa computes the solution to a complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) Hermitian matrix and \(X\) and \(B\) are \(n\)-by-nrhs matrices. Aasen's algorithm is used to factor \(A\) as
\(A=U * T * U^{H}\) if uplo = 'U', or
\(A=L * T^{*} L^{H}\) if uplo = 'L',
where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(T\) is Hermitian and tridiagonal. The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}
```

uplo
n
nrhs
a
COMPLEX for chesv_aa
COMPLEX*16 for zhesv_aa
Array of size (Ida, n). On entry, the Hermitian matrix A.

```

Ida
b
\(1 d b\)
lwork

If uplo = ' U ', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced.

If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

INTEGER. The leading dimension of the array a. \(1 \mathrm{~d} a \geq \max (1, n)\).
COMPLEX for chesv_aa
COMPLEX*16 for zhesv_aa
Array of size ( \(1 \mathrm{db}, n r h s\) ). On entry, the \(n\)-by-nrhs right hand side matrix B.

INTEGER. The leading dimension of the array \(b\). \(1 \mathrm{db} \geq \max (1, n)\).
INTEGER. The length of work. lwork \(\geq \max \left(1,2 *_{n}, 3 *_{n}-2\right)\), and for best performance 1 wor \(k \geq \max \left(1, n^{*} n b\right)\), where \(n b\) is the optimal blocksize for ?hetrf.
If 1 work \(<n\), TRS is done with Level BLAS 2. If 1 wor \(k \geq n\), TRS is done with Level BLAS 3.

If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to 1 work is issued by xerbla.

\section*{Output Parameters}
a
ipiv
b
work
info
On exit, if info \(=0\), the tridiagonal matrix \(T\) and the multipliers used to obtain the factor \(U\) or \(L\) from the factorization \(A=U^{*} T^{*} U^{H}\) or \(A=L^{*} T^{*} L^{H}\) as computed by ?hetrf_aa.

INTEGER . Array of size ( \(n\) ) On exit, it contains the details of the interchanges: row and column \(k\) of \(A\) were interchanged with the row and column ipiv(k).

On exit, if info \(=0\), the \(n\)-by-nrhs solution matrix \(X\).
COMPLEX for chesv_aa
COMPLEX*16 for zhesv_aa
Array of size (max(1, lwork)). On exit, if info \(=0\), work (1) returns the optimal lwork.

INTEGER.
If info \(=0\) : successful exit.
If info \(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value.
If info \(>0\) : if info \(=i, D_{i, i}\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, so the solution could not be computed.

\section*{?hesv_rk}
?hesv_rk computes the solution to a system of linear
equations \(A * X=B\) for Hermitian matrices.



\section*{Description}
?hesv_rk computes the solution to a complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) Hermitian matrix and \(X\) and \(B\) are \(n\)-by-nrhs matrices.

The bounded Bunch-Kaufman (rook) diagonal pivoting method is used to factor \(A\) as \(A=P^{*} U^{*} D^{*}\left(U^{H}\right)^{*}\left(P^{\top}\right)\), if uplo \(=\) 'U', or \(A=P^{*} L^{*} D^{*}\left(L^{H}\right) *\left(P^{\top}\right)\), if uplo \(=' L '\), where \(U\) (or \(L\) ) is unit upper (or lower) triangular matrix, \(U^{H}\) (or \(L^{H}\) ) is the conjugate of \(U\) (or \(L\) ), \(P\) is a permutation matrix, \(\mathrm{P}^{\top}\) is the transpose of \(P\), and \(D\) is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
?hetrf_rk is called to compute the factorization of a complex Hermitian matrix. The factored form of \(A\) is then used to solve the system of equations \(A * X=B\) by calling BLAS3 routine ?hetrs_3.

\section*{Input Parameters}
```

uplo
n
nrhs
A
lda
B

```

\section*{CHARACTER*1}
```

Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored:

- = 'U': The upper triangle of A is stored.
- = 'L': The lower triangle of A is stored.
INTEGER
The number of linear equations; that is, the order of the matrix $A . n \geq 0$.

```
```

INTEGER

```
INTEGER
The number of right-hand sides; that is, the number of columns of the matrix B. nrhs \(\geq 0\).
COMPLEX for chesv_rk
COMPLEX*16 for zhesv_rk
Array, dimension (lda,n). On entry, the Hermitian matrix A. If uplo = ' U' : the leading \(n\)-by- \(n\) upper triangular part of \(A\) contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(A\) is not referenced. If uplo \(=\) 'L': the leading \(n\)-by- \(n\) lower triangular part of \(A\) contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(A\) is not referenced.
INTEGER
The leading dimension of the array \(A . I d a \geq \max (1, n)\).
COMPLEX for chesv_rk
COMPLEX*16 for zhesv_rk
On entry, the \(n\)-by-nrhs right-hand side matrix \(B\).
The second dimension of \(B\) must be at least max(1, nrhs).
```


1 db

I work

INTEGER
The leading dimension of the array B. $1 d b \geq \max (1, n)$.
INTEGER
The length of the array work.
If 1 work $=-1$, a workspace query is assumed; the routine calculates only the optimal size of the work array for the factorization stage and returns this value as the first entry of the work array, and no error message related to 1 work is issued by XERBLA.

Output Parameters

A
e

B

COMPLEX for chesv_rk
COMPLEX* 16 for zhesv_rk
On exit, if info $=0$, diagonal of the block diagonal matrix D and factors U or L as computed by ?hetrf_rk:

- Only diagonal elements of the Hermitian block diagonal matrix D on the diagonal of A ; that is, $\mathrm{D}(k, k)=A(k, k)$; (superdiagonal (or subdiagonal) elements of D are stored on exit in array e).
-and-
- If uplo = ' U ', factor U in the superdiagonal part of A . If uplo = 'L', factor L in the subdiagonal part of A.

For more information, see the description of the ?hetrf_rk routine.
COMPLEX for Chesv_rk
COMPLEX*16 for zhesv_rk
Array, dimension (n). On exit, contains the output computed by the factorization routine ?hetrf_rk; that is, the superdiagonal (or subdiagonal) elements of the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks:

- If uplo = ' U ', $\mathrm{e}(i)=\mathrm{D}(i-1, i), i=2: \mathrm{N}, \mathrm{e}(1)$ is set to 0 .
- If uplo = ' L ', $\mathrm{e}(i)=\mathrm{D}(i+1, i), i=1: \mathrm{N}-1, \mathrm{e}(n)$ is set to 0 .

NOTE For a 1-by-1 diagonal block $\mathrm{D}(k)$, where $1 \leq k \leq n$, the element $\mathrm{e}(k)$ is set to 0 in both the uplo = 'U' and uplo = 'L' cases.

For more information, see the description of the ?hetrf_rk routine.
INTEGER
Array, dimension (n). Details of the interchanges and the block structure of D, as determined by ?hetrf_rk.

COMPLEX for chesv_rk
COMPLEX*16 for zhesv_rk
On exit, if info $=0$, the n-by- $n r h s$ solution matrix X.

```
work
info
```

```
COMPLEX for chesv rk
```

COMPLEX for chesv rk
COMPLEX*16 for zhesv_rk
COMPLEX*16 for zhesv_rk
Array, dimension (MAX (1, 1work)). Work array used in the factorization stage. On exit, if info $=0$, work(1) returns the optimal lwork.
INTEGER

- = 0: Successful exit.
- < 0: If info $=-k$, the $k^{\text {th }}$ argument had an illegal value.
- >0: If info $=k$, the matrix A is singular. If uplo = 'U', column k in the upper triangular part of A contains all zeros. If uplo = 'L', column k in the lower triangular part of A contains all zeros. Therefore $D(k, k)$ is exactly zero, and superdiagonal elements of column k of U (or subdiagonal elements of column k of L) are all zeros. The factorization has been completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.

```

NOTE info stores only \(^{\text {s }}\) the first occurrence of a singularity; any subsequent occurrence of singularity is not stored in info even though the factorization always completes.

\section*{?hesv_rook}

Computes the solution to the system of linear equations for Hermitian matrices using the bounded Bunch-Kaufman diagonal pivoting method.

\section*{Syntax}
```

call chesv_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call zhesv_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
call hesv_rook(a, b [,uplo] [,ipiv] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine solves for \(X\) the complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) Hermitian matrix, and \(X\) and \(B\) are n-by-nrhs matrices.

The bounded Bunch-Kaufman ("rook") diagonal pivoting method is used to factor \(A\) as
\(A=U^{*} D^{*} U^{H}\) if uplo = 'U', or
\(A=L^{*} D^{*} L^{H}\) if uplo = 'L',
where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
hetrf_rook is called to compute the factorization of a complex Hermition matrix \(A\) using the bounded BunchKaufman ("rook") diagonal pivoting method.

The factored form of \(A\) is then used to solve the system of equations \(A * X=B\) by calling ?HETRS_ROOK, which uses BLAS level 2 routines.

\section*{Input Parameters}
```

uplo
n
nrhs

```
```

a,b, work

```
```

a,b, work

```

Ida
l db
l work

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored:
If uplo = 'U', the array a stores the upper triangular part of the matrix \(A\).

If uplo = 'L', the array a stores the lower triangular part of the matrix \(A\).

INTEGER. The number of linear equations, which is the order of matrix \(A ; n \geq 0\).

INTEGER. The number of right-hand sides, the number of columns in \(B ; n r h s \geq 0\).

COMPLEX for chesv_rook
COMPLEX* 16 for zhesv_rook.
Arrays: \(a\left(\right.\) size \(\left./ d a \operatorname{by}{ }^{*}\right), b(\) size \(/ d b\) by *), work (*).
The array a contains the Hermitian matrix \(A\). If uplo = 'U', the leading \(n-b y-n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced. The second dimension of a must be at least \(\max (1, n)\).

The array \(b\) contains the \(n\)-by-nrhs right hand side matrix \(B\). The second dimension of \(b\) must be at least max ( \(1, n r h s\) ).
work is a workspace array, dimension at least max ( 1,1 work).
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of \(b ; I d b \geq \max (1, n)\).
INTEGER. The size of the work array (/work \(\geq 1\) ).
If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla. See Application Notes below for details and for the suggested value of Iwork.

\section*{Output Parameters}

If info \(=0, a\) is overwritten by the block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\) ) from the factorization of \(A\) as computed by hetrf_rook.

If info \(=0, b\) is overwritten by the \(n\)-by-nrhs solution matrix \(X\).
ipiv
work(1)
info

INTEGER.
Array, size at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\), as determined by ?hetrf_rook.
- If uplo = 'U':

If ipiv(k) \(>0\), rows and columns \(k\) and ipiv(k) were interchanged and \(D_{k, k}\) is a 1-by-1 diagonal block.
If ipiv(k) < 0 and ipiv(k-1) < 0, rows and columns \(k\) and \(\operatorname{ipiv}(k)\) were interchanged, rows and columns \(k-1\) and -ipiv( \(k\)
- 1) were interchanged, and \(D_{k-1: k, k-1: k}\) is a 2-by-2 diagonal block.
- If uplo = 'L':

If ipiv(k) > 0 , rows and columns \(k\) and ipiv(k) were interchanged and \(D_{k, k}\) is a 1-by-1 diagonal block.
If ipiv(k) < 0 and ipiv( \(k+1\) ) < 0, rows and columns \(k\) and \(\operatorname{ipiv}(k)\) were interchanged, rows and columns \(k+1\) and -ipiv( \(k\) \(+1)\) were interchanged, and \(D_{k: k+1, k: k+1}\) is a 2-by-2 diagonal block.

If info \(=0\), on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, D_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular, so the solution could not be computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hesv_rook interface are as follows:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((n, n)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
ipiv & Holds the vector of length \(n\). \\
uplo & Must be 'U' or 'L'. The default value is 'U'.
\end{tabular}

\section*{See Also \\ Matrix Storage Schemes}
?hesvx
Uses the diagonal pivoting factorization to compute the solution to the complex system of linear equations with a Hermitian coefficient matrix \(A\), and provides error bounds on the solution.

\section*{Syntax}
```

call chesvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, lwork, rwork, info)
call zhesvx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, rcond, ferr,
berr, work, lwork, rwork, info)
call hesvx(a, b, x [,uplo] [,af] [,ipiv] [,fact] [,ferr] [,berr] [,rcond] [,info])

```
Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) Hermitian matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.
Error bounds on the solution and a condition estimate are also provided.
The routine ?hesvx performs the following steps:
1. If fact \(=\) ' \(N\) ', the diagonal pivoting method is used to factor the matrix \(A\). The form of the factorization is \(A=U^{\star} D^{\star} U^{H}\) or \(A=L^{\star} D^{\star} L^{H}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some \(d_{i, i}=0\), so that \(D\) is exactly singular, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(X\) and compute error bounds as described below.
3. The system of equations is solved for \(X\) using the factored form of \(A\).
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{fact} & CHARACTER*1. Must be 'F' or 'N'. \\
\hline & Specifies whether or not the factored form of the matrix \(A\) has been supplied on entry. \\
\hline & If fact \(=\) 'F': on entry, af and ipiv contain the factored form of \(A\). Arrays \(a, a f\), and ipiv are not modified. \\
\hline & If fact \(=\) ' \(N\) ', the matrix \(A\) is copied to af and factored. \\
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored: \\
\hline & If uplo = 'U', the array a stores the upper triangular part of the Hermitian matrix \(A\), and \(A\) is factored as \(U^{\star} D^{\star} U^{H}\). \\
\hline & If uplo = 'L', the array a stores the lower triangular part of the Hermitian matrix \(A\); \(A\) is factored as \(L^{\star} D^{\star} L^{H}\). \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline
\end{tabular}
nrhs
\(a, a f, b\), work
lda
ldaf
1 db
ipiv
\(1 d x\)
lwork
rwork

INTEGER. The number of right-hand sides, the number of columns in B; nrhs \(\geq 0\).

COMPLEX for chesvx
DOUBLE COMPLEX for zhesvx.
Arrays: a(size Ida by *), af(size Idaf by *), b(size Idb by *), work (*).
The array a contains the upper or the lower triangular part of the Hermitian matrix \(A\) (see uplo). The second dimension of a must be at least max \((1, n)\).
The array af is an input argument if fact \(={ }^{\prime} F^{\prime}\). It contains he block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) from the factorization \(A=U^{\star} D^{\star} U^{H}\) or \(A=L^{\star} D^{\star} L^{H}\) as computed by ?hetrf. The second dimension of af must be at least max \((1, n)\).

The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max (1, nrhs).
work (*) is a workspace array of dimension at least max (1, lwork).
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of \(a f ; l d a f \geq \max (1, n)\).
INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\).
INTEGER.
Array, size at least max \((1, n)\). The array ipiv is an input argument if fact \(={ }^{\prime} F^{\prime}\). It contains details of the interchanges and the block structure of \(D\), as determined by ?hetrf.
If \(\operatorname{ipiv}(i)=k>0\), then \(d_{i i}\) is a 1-by-1 diagonal block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.
If uplo \(=\) 'U'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and (i-1) -th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo \(=\) 'L'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a \(2-\) by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) ) -th row and column of \(A\) was interchanged with the \(m\)-th row and column.

INTEGER. The leading dimension of the output array \(x ; 1 d x \geq \max (1\), n).

INTEGER. The size of the work array.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla. See Application Notes below for details and for the suggested value of Iwork.

REAL for chesvx
DOUBLE PRECISION for zhesvx.

Workspace array, size at least max \((1, n)\).

\section*{Output Parameters}

X

\section*{COMPLEX for chesvx}

DOUBLE COMPLEX for zhesvx.
Array, size \(/ d x\) by \(*\).
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(x\) to the system of equations. The second dimension of \(x\) must be at least max (1, nrhs).

These arrays are output arguments if fact \(=\) ' \(N\) '. See the description of af, ipiv in Input Arguments section.

REAL for chesvx
DOUBLE PRECISION for zhesvx.
An estimate of the reciprocal condition number of the matrix \(A\). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).

REAL for chesvx
DOUBLE PRECISION for zhesvx.
Array, size at least max ( \(1, \mathrm{nrhs}\) ). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(X\) ). If \(x\) true is the true solution corresponding to \(x(j)\), ferr \((j)\) is an estimated upper bound for the magnitude of the largest element in ( \(x(j)-x t r u e\) ) divided by the magnitude of the largest element in \(x(j)\). The estimate is as reliable as the estimate for rcon, and is almost always a slight overestimate of the true error.

REAL for chesvx
DOUBLE PRECISION for zhesvx.
Array, size at least max ( \(1, n r h s\) ). Contains the component-wise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.

If info \(=0\), on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and \(i \leq n\), then \(d_{i j}\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.

If info \(=i\), and \(i=n+1\), then \(D\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hesvx interface are as follows:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size ( \(n, n\) ). \\
\hline b & Holds the matrix \(B\) of size ( \(n, n r h s\) ). \\
\hline \(x\) & Holds the matrix \(X\) of size ( \(n, n r h s\) ). \\
\hline af & Holds the matrix \(A F\) of size ( \(n, n\) ). \\
\hline ipiv & Holds the vector of length \(n\). \\
\hline ferr & Holds the vector of length (nrhs). \\
\hline berr & Holds the vector of length (nrhs). \\
\hline uplo & Must be 'U' or 'L'. The default value is 'U'. \\
\hline fact & Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then both arguments af and ipiv must be present; otherwise, an error is returned. \\
\hline
\end{tabular}

\section*{Application Notes}

The value of Iwork must be at least \(2 * n\). For better performance, try using lwork \(=n \star\) blocksize, where blocksize is the optimal block size for ?hetrf.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set
lwork \(=-1\).
If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\author{
See Also \\ Matrix Storage Schemes
}
```

?hesvxx
Uses extra precise iterative refinement to compute the
solution to the system of linear equations with a
Hermitian indefinite coefficient matrix A applying the
diagonal pivoting factorization.
Syntax
call chesvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
rwork, info)
call zhesvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx,
rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work,
rwork, info)

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine uses the diagonal pivoting factorization to compute the solution to a complex/double complex system of linear equations \(A \star X=B\), where \(A\) is an \(n\)-by- \(n\) Hermitian matrix, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

Both normwise and maximum componentwise error bounds are also provided on request. The routine returns a solution with a small guaranteed error ( O (eps), where eps is the working machine precision) unless the matrix is very ill-conditioned, in which case a warning is returned. Relevant condition numbers are also calculated and returned.

The routine accepts user-provided factorizations and equilibration factors; see definitions of the fact and equed options. Solving with refinement and using a factorization from a previous call of the routine also produces a solution with 0 (eps) errors or warnings but that may not be true for general user-provided factorizations and equilibration factors if they differ from what the routine would itself produce.
The routine ?hesvxx performs the following steps:
1. If fact \(=\) ' \(E\) ', scaling factors are computed to equilibrate the system:
\(\operatorname{diag}(s) * A * \operatorname{diag}(s) * i n v(\operatorname{diag}(s)) * X=\operatorname{diag}(s) * B\)
Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\) and \(B\) by \(\operatorname{diag}(s) * B\).
2. If fact \(=\) ' \(N\) ' or ' \(E\) ', the LU decomposition is used to factor the matrix \(A\) (after equilibration if fact = 'E') as
\(A=U^{\star} D^{\star} U^{T}\), if uplo = 'U',
or \(A=L^{\star} D^{\star} L^{T}\), if uplo = 'L',
where \(U\) or \(L\) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is a symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
3. If some \(D(i, i)=0\), so that \(D\) is exactly singular, the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\) (see the rcond parameter). If the reciprocal of the condition number is less than machine precision, the routine still goes on to solve for \(X\) and compute error bounds.
4. The system of equations is solved for \(X\) using the factored form of \(A\).
5. By default, unless params (1) is set to zero, the routine applies iterative refinement to get a small error and error bounds. Refinement calculates the residual to at least twice the working precision.
6. If equilibration was used, the matrix \(X\) is premultiplied by diag( \(r\) ) so that it solves the original system before equilibration.

\section*{Input Parameters}
```

uplo

```
\(n\)
nrhs
a, af, b, work

CHARACTER*1. Must be 'F', 'N', or 'E'.
Specifies whether or not the factored form of the matrix \(A\) is supplied on entry, and if not, whether the matrix \(A\) should be equilibrated before it is factored.

If fact \(=\) ' F ', on entry, af and ipiv contain the factored form of \(A\). If equed is not ' \(N\) ', the matrix \(A\) has been equilibrated with scaling factors given by \(s\). Parameters \(a, a f\), and ipiv are not modified.

If fact \(=\) ' \(N\) ', the matrix \(A\) will be copied to af and factored.
If fact \(=\) ' \(E\) ', the matrix \(A\) will be equilibrated, if necessary, copied to \(a f\) and factored.

CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored:
If uplo = 'U', the upper triangle of \(A\) is stored.
If uplo = 'L', the lower triangle of \(A\) is stored.
INTEGER. The number of linear equations; the order of the matrix \(A\); \(n \geq 0\).

INTEGER. The number of right-hand sides; the number of columns of the matrices \(B\) and \(X ; n r h s \geq 0\).

COMPLEX for chesvxx
DOUBLE COMPLEX for zhesvxx.
Arrays: \(a\left(\right.\) size \(\left.l d a \operatorname{by}{ }^{*}\right)\), \(a f(\operatorname{size} l d a f\) by *), b(ldb, *), work (*).
The array a contains the Hermitian matrix \(A\) as specified by uplo. If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\) and the strictly lower triangular part of \(a\) is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\) and the strictly upper triangular part of \(a\) is not referenced. The second dimension of a must be at least max \((1, n)\).

The array \(a f\) is an input argument if fact \(=\) ' \(F^{\prime}\). It contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) and \(L\) from the factorization \(A=U^{\star} D^{\star} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\) as computed by ?hetrf. The second dimension of af must be at least max \((1, n)\).

The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max ( \(1, n r h s\) ).
work (*) is a workspace array. The dimension of work must be at least max \((1,5 * n)\).
```

lda
ldaf
ipiv

```

INTEGER. The leading dimension of the array \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of the array \(a f ; I d a f \geq \max (1, n)\).
INTEGER.
Array, size at least max \((1, n)\). The array ipiv is an input argument if fact \(={ }^{\prime} \mathrm{F}^{\prime}\). It contains details of the interchanges and the block structure of \(D\) as determined by ?sytrf.

If ipiv(k) > 0 , rows and columns \(k\) and ipiv \((k)\) were interchanged and \(D(k, k)\) is a 1-by-1 diagonal block.

If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, rows and columns \(k-1\) and -ipiv(k) were interchanged and \(D(k-1: k, k-1: k)\) is a 2-by-2 diagonal block.

If uplo = 'L' and ipiv(k) = ipiv(k+1) < 0, rows and columns \(k\) +1 and -ipiv(k) were interchanged and \(D(k: k+1, k: k+1)\) is a 2-by-2 diagonal block.

CHARACTER*1. Must be 'N' or 'Y'.
equed is an input argument if fact \(=\) ' \(F^{\prime}\). It specifies the form of equilibration that was done:

If equed \(=\) 'N', no equilibration was done (always true if fact \(=\) 'N').
if equed = 'Y', both row and column equilibration was done, that is, \(A\) has been replaced by diag( \(s\) * \(A * \operatorname{diag}(s)\).

REAL for chesvxx
DOUBLE PRECISION for zhesvxx.
Array, size ( \(n\) ). The array \(s\) contains the scale factors for \(A\). If equed \(=\) ' \(Y\) ', \(A\) is multiplied on the left and right by diag ( \(s\) ).

This array is an input argument if fact = ' \(\mathrm{F}^{\prime}\) only; otherwise it is an output argument.

If fact \(=\) ' F ' and equed \(=\) 'Y', each element of \(s\) must be positive.
Each element of \(s\) should be a power of the radix to ensure a reliable solution and error estimates. Scaling by powers of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array \(b ; 1 d b \geq \max (1, n)\).
INTEGER. The leading dimension of the output array \(x ; l d x \geq \max (1\), n).

INTEGER. Number of error bounds to return for each right hand side and each type (normwise or componentwise). See err_bnds_norm and err_bnds_comp descriptions in the Output Arguments section below.
nparams
params
rwork

INTEGER. Specifies the number of parameters set in params. If \(\leq 0\), the params array is never referenced and default values are used.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size nparams. Specifies algorithm parameters. If an entry is less than 0.0, that entry is filled with the default value used for that parameter. Only positions up to nparams are accessed; defaults are used for higher-numbered parameters. If defaults are acceptable, you can pass nparams \(=0\), which prevents the source code from accessing the params argument.
params (1) : Whether to perform iterative refinement or not. Default: 1.0 (for single precision flavors), 1.0D+0 (for double precision flavors).
\(=0.0 \quad\) No refinement is performed and no error bounds are computed.
\(=1.0 \quad\) Use the extra-precise refinement algorithm.
(Other values are reserved for future use.)
params (2) : Maximum number of residual computations allowed for refinement.

Default 10
Aggressive Set to 100 to permit convergence using approximate factorizations or factorizations other than \(L U\). If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.
params (3) : Flag determining if the code will attempt to find a solution with a small componentwise relative error in the doubleprecision algorithm. Positive is true, 0.0 is false. Default: 1.0 (attempt componentwise convergence).

REAL for chesvxx
DOUBLE PRECISION for zhesvxx.
Workspace array, size at least max (1, \(3{ }^{*} n\) ) ; used in complex flavors only.
a
af
b
\(S\)
rcond
rpvgrw
berr
err_bnds_norm

If info \(=0\), the array \(x\) contains the solution \(n\)-by-nrhs matrix \(X\) to the original system of equations. Note that \(A\) and \(B\) are modified on exit if equed \(\neq\) ' \(N\) ', and the solution to the equilibrated system is:
inv(diag(s))*X.
If fact \(=\) 'E' and equed \(=\) 'Y', overwritten by diag \((s) * A * \operatorname{diag}(s)\).
If fact \(=\) 'N', af is an output argument and on exit returns the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) from the factorization \(A=U^{\star} D^{\star} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\).

If equed \(=' N\) ', \(B\) is not modified.
If equed \(=' Y\) ', \(B\) is overwritten by \(\operatorname{diag}(s) * B\).
This array is an output argument if \(f a c t \neq ' F^{\prime}\). Each element of this array is a power of the radix. See the description of \(s\) in Input Arguments section.

REAL for chesvxx
DOUBLE PRECISION for zhesvxx.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond \(=0\), the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

REAL for chesvxx
DOUBLE PRECISION for zhesvxx.
Contains the reciprocal pivot growth factor:

\section*{}

If this is much less than 1 , the stability of the \(L U\) factorization of the (equlibrated) matrix \(A\) could be poor. This also means that the solution \(X\), estimated condition numbers, and error bounds could be unreliable. If factorization fails with \(0<i n f o \leq n\), this parameter contains the reciprocal pivot growth factor for the leading info columns of \(A\).

REAL for chesvxx
DOUBLE PRECISION for zhesvxx.
Array, size at least max ( \(1, n r h s\) ). Contains the component-wise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.

REAL for chesvxx
DOUBLE PRECISION for zhesvxx.
Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:
Normwise relative error in the \(i\)-th solution vector


The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

The first index in err_bnds_norm(i,:) corresponds to the \(i\)-th right-hand side.

The second index in err_bnds_norm (: ,err) contains the following three fields:
err=1 \(\quad\) "Trust/don't trust" boolean. Trust the answer if threshold sqrt ( \(n\) ) *slamch ( \(\varepsilon\) ) for chesvxx and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for zhesvxx.
err=2
err=3
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for chesvxx and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for zhesvxx. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for chesvxx and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for zhesvxx to determine if the error estimate is "guaranteed". These reciprocal condition numbers for some appropriately scaled matrix \(Z\) are:
\[
\|z\|_{1} \cdot\left\|z^{-1}\right\|_{0}
\]

Let \(z=s^{*} a\), where \(s\) scales each row by a power of the radix so all absolute row sums of \(z\) are approximately 1.
err_bnds_comp

REAL for chesvxx
DOUBLE PRECISION for zhesvxx.
Array of size nrhs by n_err_bnds. For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the \(i\)-th solution vector:


The array is indexed by the right-hand side \(i\), on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is not requested (params (3) \(=0.0\) ), then err_bnds_comp is not accessed. If n_err_bnds \(<3\), then at most the first (:, \(n_{-} e r r_{-} b n d s\) ) entries are returned.

The first index in err_bnds_comp (i,:) corresponds to the \(i\)-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the following three fields:
\[
\begin{aligned}
& \text { err=1 "Trust/don't trust" boolean. Trust the answer if } \\
& \text { the reciprocal condition number is less than the } \\
& \text { threshold sqrt }(n) * \operatorname{slamch}(\varepsilon) \text { for chesvxx and } \\
& \text { sqrt( } n \text { )*dlamch ( } \varepsilon \text { ) for zhesvxx. } \\
& \text { err=2 } \\
& \text { err=3 } \\
& \text { "Guaranteed" error bpound. The estimated } \\
& \text { forward error, almost certainly within a factor of } \\
& 10 \text { of the true error so long as the next entry is } \\
& \text { greater than the threshold } \operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon) \\
& \text { for chesvxx and } \operatorname{sqrt}(n) * \text { dlamch ( } \varepsilon \text { ) for } \\
& \text { zhesvxx. This error bound should only be } \\
& \text { trusted if the previous boolean is true. } \\
& \text { Reciprocal condition number. Estimated } \\
& \text { componentwise reciprocal condition number. } \\
& \text { Compared with the threshold } \\
& \operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon) \text { for chesvxx and } \\
& \operatorname{sqrt}(n) * d l a m c h(\varepsilon) \text { for zhesvxx to determine } \\
& \text { if the error estimate is "guaranteed". These } \\
& \text { reciprocal condition numbers for some } \\
& \text { appropriately scaled matrix } Z \text { are: }
\end{aligned}
\]

If info \(=-i\), the \(i\)-th parameter had an illegal value.
If \(0<i n f o \leq n: U\) (info,info) is exactly zero. The factorization has been completed, but the factor \(U\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.

If info \(=n+j\) : The solution corresponding to the \(j\)-th right-hand side is not guaranteed. The solutions corresponding to other right-hand sides \(k\) with \(k\) \(>j\) may not be guaranteed as well, but only the first such right-hand side is reported. If a small componentwise error is not requested params (3) = 0.0 , then the \(j\)-th right-hand side is the first with a normwise error bound that is not guaranteed (the smallest \(j\) such that err_bnds_norm \((j, 1)=\) 0.0 or err_bnds_comp \((j, 1)=0.0\). See the definition of err_bnds_norm and err_bnds_comp for err = 1. To get information about all of the righthand sides, check err_bnds_norm or err_bnds_comp.

\section*{See Also \\ Matrix Storage Schemes \\ ?spsv \\ Computes the solution to the system of linear equations with a real or complex symmetric coefficient matrix A stored in packed format, and multiple righthand sides.}

\section*{Syntax}
```

call sspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)
call dspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)
call cspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)
call zspsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)
call spsv(ap, b [,uplo] [,ipiv] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine solves for \(X\) the real or complex system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) symmetric matrix stored in packed format, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.
The diagonal pivoting method is used to factor \(A\) as \(A=U^{\star} D^{*} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}
uplo
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored:
\begin{tabular}{|c|c|}
\hline & If uplo = 'U', the upper triangle of \(A\) is stored. \\
\hline & If uplo = 'L', the lower triangle of \(A\) is stored. \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides, the number of columns in B; nrhs \(\geq 0\). \\
\hline \(a p, b\) & REAL for sspsv \\
\hline & DOUBLE PRECISION for dspsv \\
\hline & COMPLEX for cspsv \\
\hline & DOUBLE COMPLEX for zspsv. \\
\hline & Arrays: \(a p\left(\right.\) size \(\left.^{*}\right), b(\) size \(l d b\) by *). \\
\hline & The dimension of \(a p\) must be at least \(\max (1, n(n+1) / 2)\). The array ap contains the factor \(U\) or \(L\), as specified by uplo, in packed storage (see Matrix Storage Schemes). \\
\hline & The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations. The second dimension of \(b\) must be at least max ( \(1, n r h s\) ). \\
\hline 1 db & INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
ap
b
ipiv
info
The block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\) ) from the factorization of \(A\) as computed by ?sptrf, stored as a packed triangular matrix in the same storage format as \(A\).

If info \(=0, b\) is overwritten by the solution matrix \(X\).
INTEGER.
Array, size at least \(\max (1, n)\). Contains details of the interchanges and the block structure of \(D\), as determined by ?sptrf.
If \(\operatorname{ipiv}(i)=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.

If uplo \(=\) 'U'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and (i-1)-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

If uplo \(=\) 'L'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a \(2-\) by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular, so the solution could not be computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine spsv interface are as follows:
```

ap Holds the array A of size (n* (n+1)/2).
b Holds the matrix B of size (n,nrhs).
ipiv Holds the vector with the number of elements n.
uplo
Must be 'U' or 'L'. The default value is 'U'.

```

\section*{See Also}

Matrix Storage Schemes

\section*{?spsvx}

Uses the diagonal pivoting factorization to compute
the solution to the system of linear equations with a real or complex symmetric coefficient matrix A stored in packed format, and provides error bounds on the solution.

\section*{Syntax}
```

call sspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
iwork, info)
call dspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
iwork, info)
call cspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
rwork, info)
call zspsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
rwork, info)
call spsvx(ap, b, x [,uplo] [,afp] [,ipiv] [,fact] [,ferr] [,berr] [,rcond] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine uses the diagonal pivoting factorization to compute the solution to a real or complex system of linear equations \(A * X=B\), where \(A\) is a \(n\)-by- \(n\) symmetric matrix stored in packed format, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?spsvx performs the following steps:
1. If fact \(=\) ' \(N\) ', the diagonal pivoting method is used to factor the matrix \(A\). The form of the factorization is \(A=U \star D^{\star} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some \(d_{i, i}=0\), so that \(D\) is exactly singular, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(X\) and compute error bounds as described below.
3. The system of equations is solved for \(X\) using the factored form of \(A\).
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

\section*{Input Parameters}
fact


uplo
n
nrhs
ap, afp, b, work

CHARACTER*1. Must be 'F' or 'N'.
Specifies whether or not the factored form of the matrix \(A\) has been supplied on entry.

If fact \(=\) ' F ': on entry, afp and ipiv contain the factored form of \(A\). Arrays ap, afp, and ipiv are not modified.

If fact \(=\) 'N', the matrix \(A\) is copied to afp and factored.
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored:

If uplo = 'U', the array ap stores the upper triangular part of the symmetric matrix \(A\), and \(A\) is factored as \(U^{\star} D \star U^{T}\).

If uplo = 'L', the array ap stores the lower triangular part of the symmetric matrix \(A ; A\) is factored as \(L^{\star} D^{\star} L^{T}\).

INTEGER. The order of matrix \(A ; n \geq 0\).
INTEGER. The number of right-hand sides, the number of columns in B; nrhs \(\geq 0\).

REAL for sspsvx
DOUBLE PRECISION for dspsvx
COMPLEX for cspsvx
DOUBLE COMPLEX for zspsvx.
Arrays: \(a p(\) size \(*), \operatorname{afp}\left(\right.\) size \(\left.^{*}\right), b\left(\right.\) size \(I d b\) by \(\left.{ }^{*}\right)\), work (*).
The array ap contains the upper or lower triangle of the symmetric matrix A in packed storage (see Matrix Storage Schemes).
The array afp is an input argument if fact \(={ }^{\prime} F^{\prime}\). It contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) from the factorization \(A=U \star D^{\star} U^{T}\) or \(A=L^{\star} D^{\star} L^{T}\) as computed by ?sptrf, in the same storage format as \(A\).
The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
work (*) is a workspace array.

The dimension of arrays \(a p\) and \(a f p\) must be at least max \((1, n(n\) \(+1) / 2\) ) ; the second dimension of \(b\) must be at least max ( \(1, n r h s\) ); the dimension of work must be at least \(\max \left(1,3 *_{n}\right)\) for real flavors and \(\max \left(1,2^{*} n\right)\) for complex flavors.

INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\).
INTEGER.
Array, size at least max \((1, n)\). The array ipiv is an input argument if fact \(=\) ' F'. It contains details of the interchanges and the block structure of \(D\), as determined by ?sptrf.

If \(\operatorname{ipiv}(i)=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.

If uplo \(=\) 'U'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and (i-1)-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

If uplo \(=\) 'L'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a \(2-\) by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

INTEGER. The leading dimension of the output array \(x ; 1 d x \geq \max (1\), n).

INTEGER. Workspace array, size at least max \((1, n)\); used in real flavors only.

REAL for cspsvx
DOUBLE PRECISION for zspsvx.
Workspace array, size at least max \((1, n)\); used in complex flavors only.

\section*{Output Parameters}

X
REAL for sspsvx
DOUBLE PRECISION for dspsvx
COMPLEX for cspsvx
DOUBLE COMPLEX for zspsvx.
Array, size \(/ d x\) by *.
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(X\) to the system of equations. The second dimension of \(x\) must be at least max (1, nrhs).

These arrays are output arguments if fact \(={ }^{\prime} N\) '. See the description of afp, ipiv in Input Arguments section.

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
ferr, berr
info
An estimate of the reciprocal condition number of the matrix \(A\). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, size at least max ( \(1, n r h s\) ). Contain the component-wise forward and relative backward errors, respectively, for each solution vector.

INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and \(i \leq n\), then \(d_{i i}\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.

If info \(=i\), and \(i=n+1\), then \(D\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine spsvx interface are as follows:
\begin{tabular}{|c|c|}
\hline \(a p\) & Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\). \\
\hline b & Holds the matrix \(B\) of size ( \(n, n r h s\) ). \\
\hline \(x\) & Holds the matrix \(X\) of size ( \(n, n r h s\) ). \\
\hline afp & Holds the array \(A F\) of size ( \(\left.n^{*}(n+1) / 2\right)\). \\
\hline ipiv & Holds the vector with the number of elements \(n\). \\
\hline ferr & Holds the vector with the number of elements nrhs. \\
\hline berr & Holds the vector with the number of elements nrhs. \\
\hline uplo & Must be 'U' or 'L'. The default value is 'U'. \\
\hline fact & Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then both arguments af and ipiv must be present; otherwise, an error is returned. \\
\hline
\end{tabular}

\section*{See Also}

Matrix Storage Schemes

\section*{?hpsv}

Computes the solution to the system of linear equations with a Hermitian coefficient matrix A stored in packed format, and multiple right-hand sides.

\section*{Syntax}
```

call chpsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)
call zhpsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)
call hpsv(ap, b [,uplo] [,ipiv] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine solves for \(X\) the system of linear equations \(A * X=B\), where \(A\) is an \(n\)-by- \(n\) Hermitian matrix stored in packed format, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

The diagonal pivoting method is used to factor \(A\) as \(A=U^{\star} D^{*} U^{H}\) or \(A=L^{\star} D^{*} L^{H}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
The factored form of \(A\) is then used to solve the system of equations \(A * X=B\).

\section*{Input Parameters}
```

uplo
n
nrhs
ap,b
ldb
CHARACTER*1. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of A is stored:
If uplo = 'U', the upper triangle of A is stored.
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The order of matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; the number of columns in B; nrhs ≥ 0.
COMPLEX for chpsv
DOUBLE COMPLEX for zhpsv.
Arrays: $a p\left(\right.$ size $\left.{ }^{*}\right), b\left(\right.$ size $/ d b$ by $\left.{ }^{*}\right)$.
The dimension of $a p$ must be at least max $(1, n(n+1) / 2)$. The array ap contains the factor U or L, as specified by uplo, in packed storage (see Matrix Storage Schemes).
The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least max (1, nrhs).
INTEGER. The leading dimension of $b ; l d b \geq \max (1, n)$.

```

\section*{Output Parameters}
\(a p\)
The block-diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) (or \(L\) ) from the factorization of \(A\) as computed by ?hptrf, stored as a packed triangular matrix in the same storage format as \(A\).
If info \(=0, b\) is overwritten by the solution matrix \(X\).
INTEGER.
Array, size at least max \((1, n)\). Contains details of the interchanges and the block structure of \(D\), as determined by ?hptrf.

If \(\operatorname{ipiv}(i)=k>0\), then \(d_{i i}\) is a 1 -by- 1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.
If uplo = 'U'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and ( \(i-1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.
If uplo = 'L'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a \(2-\) by -2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

InTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, d_{i i}\) is 0 . The factorization has been completed, but \(D\) is exactly singular, so the solution could not be computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hpsv interface are as follows:
\begin{tabular}{ll} 
ap & Holds the array \(A\) of size \(\left(n^{\star}(n+1) / 2\right)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n r h s)\). \\
ipiv & Holds the vector with the number of elements \(n\). \\
uplo & Must be ' \(U\) ' or ' \(L\) '. The default value is ' \(U\) '.
\end{tabular}

\section*{See Also}

Matrix Storage Schemes
?hpsvx
Uses the diagonal pivoting factorization to compute
the solution to the system of linear equations with a
Hermitian coefficient matrix A stored in packed
format, and provides error bounds on the solution.

\section*{Syntax}
```

call chpsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
rwork, info)

```
```

call zhpsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
rwork, info)
call hpsvx(ap, b, x [,uplo] [,afp] [,ipiv] [,fact] [,ferr] [,berr] [,rcond] [,info])

```
Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations \(A * X=B\), where \(A\) is a \(n\)-by- \(n\) Hermitian matrix stored in packed format, the columns of matrix \(B\) are individual right-hand sides, and the columns of \(X\) are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.
The routine ?hpsvx performs the following steps:
1. If fact \(=\) ' \(N\) ', the diagonal pivoting method is used to factor the matrix \(A\). The form of the factorization is \(A=U^{*} D^{*} U^{H}\) or \(A=L^{*} D^{\star} L^{H}\), where \(U\) (or \(L\) ) is a product of permutation and unit upper (lower) triangular matrices, and \(D\) is a Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2. If some \(d_{i, i}=0\), so that \(D\) is exactly singular, then the routine returns with info \(=i\). Otherwise, the factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, info \(=n+1\) is returned as a warning, but the routine still goes on to solve for \(X\) and compute error bounds as described below.
3. The system of equations is solved for \(X\) using the factored form of \(A\).
4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{fact} & CHARACTER*1. Must be 'F' or 'N'. \\
\hline & Specifies whether or not the factored form of the matrix \(A\) has been supplied on entry. \\
\hline & If fact \(=\) ' \(F\) ': on entry, afp and ipiv contain the factored form of \(A\). Arrays ap, afp, and ipiv are not modified. \\
\hline & If fact \(=\) ' \(N\) ', the matrix \(A\) is copied to afp and factored. \\
\hline \multirow[t]{4}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Indicates whether the upper or lower triangular part of \(A\) is stored and how \(A\) is factored: \\
\hline & If uplo = 'U', the array ap stores the upper triangular part of the Hermitian matrix \(A\), and \(A\) is factored as \(U^{\star} D^{\star} U^{H}\). \\
\hline & If uplo = 'L', the array ap stores the lower triangular part of the Hermitian matrix \(A\), and \(A\) is factored as \(L^{\star} D^{\star} L^{H}\). \\
\hline \(n\) & INTEGER. The order of matrix \(A ; n \geq 0\). \\
\hline nrhs & INTEGER. The number of right-hand sides, the number of columns in B; nrhs \(\geq 0\). \\
\hline ap, afp, b, work & COMPLEX for chpsvx \\
\hline
\end{tabular}

DOUBLE COMPLEX for zhpsvx.
Arrays: \(a p\left(\operatorname{size}^{*}\right), \operatorname{afp}\left(\operatorname{size}^{*}\right), b\left(\operatorname{size} / d b\right.\) by \(\left.{ }^{*}\right)\), work (*).
The array ap contains the upper or lower triangle of the Hermitian matrix \(A\) in packed storage (see Matrix Storage Schemes).

The array afp is an input argument if fact \(={ }^{\prime} \mathrm{F}^{\prime}\). It contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) from the factorization \(A=U \star D * U^{H}\) or \(A=L * D^{*} L^{H}\) as computed by ?hptrf, in the same storage format as \(A\).

The array \(b\) contains the matrix \(B\) whose columns are the right-hand sides for the systems of equations.
work (*) is a workspace array.
The dimension of arrays \(a p\) and \(a f p\) must be at least max ( \(1, n(n\) \(+1) / 2\) ) ; the second dimension of \(b\) must be at least max ( \(1, n r h s\) ) ; the dimension of work must be at least max \((1,2 * n)\).

INTEGER. The leading dimension of \(b ; 1 d b \geq \max (1, n)\).
INTEGER.
Array, size at least max \((1, n)\). The array ipiv is an input argument if fact \(=\) ' \(F^{\prime}\). It contains details of the interchanges and the block structure of \(D\), as determined by ?hptrf.

If ipiv(i) \(=k>0\), then \(d_{i i}\) is a 1-by-1 block, and the \(i\)-th row and column of \(A\) was interchanged with the \(k\)-th row and column.

If uplo \(=\) 'U'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i-1)=-m<0\), then \(D\) has a 2-by-2 block in rows/columns \(i\) and \(i-1\), and (i-1)-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

If uplo \(=\) 'L'and \(\operatorname{ipiv}(i)=\operatorname{ipiv}(i+1)=-m<0\), then \(D\) has a \(2-\) by-2 block in rows/columns \(i\) and \(i+1\), and ( \(i+1\) )-th row and column of \(A\) was interchanged with the \(m\)-th row and column.

INTEGER. The leading dimension of the output array \(x ; 1 d x \geq \max (1\), n).

REAL for chpsvx
DOUBLE PRECISION for zhpsvx.
Workspace array, size at least max \((1, n)\).

\section*{Output Parameters}

\section*{X}

COMPLEX for chpsvx
DOUBLE COMPLEX for zhpsvx.
Array, size \(/ d x\) by *.
If info \(=0\) or info \(=n+1\), the array \(x\) contains the solution matrix \(X\) to the system of equations. The second dimension of \(x\) must be at least max (1, nrhs).
afp, ipiv
rcond
ferr
berr
info

These arrays are output arguments if fact \(=\) ' \(N\) '. See the description of afp, ipiv in Input Arguments section.

REAL for chpsvx
DOUBLE PRECISION for zhpsvx.
An estimate of the reciprocal condition number of the matrix \(A\). If rcond is less than the machine precision (in particular, if rcond \(=0\) ), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).

REAL for chpsvx
DOUBLE PRECISION for zhpsvx.
Array, size at least max ( \(1, n r h s\) ). Contains the estimated forward error bound for each solution vector \(x(j)\) (the \(j\)-th column of the solution matrix \(X\) ). If \(x\) true is the true solution corresponding to \(x(j)\), ferr \((j)\) is an estimated upper bound for the magnitude of the largest element in ( \(x(j)-x t r u e)\) divided by the magnitude of the largest element in \(x(j)\). The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

REAL for chpsvx
DOUBLE PRECISION for zhpsvx.
Array, size at least max ( \(1, n r h s\) ). Contains the component-wise relative backward error for each solution vector \(x(j)\), that is, the smallest relative change in any element of \(A\) or \(B\) that makes \(x(j)\) an exact solution.

INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), and \(i \leq n\), then \(d_{i i}\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular, so the solution and error bounds could not be computed; rcond \(=0\) is returned.
If info \(=i\), and \(i=n+1\), then \(D\) is nonsingular, but rcond is less than machine precision, meaning that the matrix is singular to working precision. Nevertheless, the solution and error bounds are computed because there are a number of situations where the computed solution can be more accurate than the value of rcond would suggest.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hpsvx interface are as follows:
```

ap Holds the array A of size (n* (n+1)/2).
b
Holds the matrix B of size (}n,nrhs)

```
```

x
afp
ipiv
ferr
berr
uplo
fact
Holds the matrix X of size ($n, n r h s$).
Holds the array AF of size $\left(n^{*}(n+1) / 2\right)$.
Holds the vector with the number of elements n.
Holds the vector with the number of elements nrhs.
Holds the vector with the number of elements nrhs.
Must be 'U' or 'L'. The default value is 'U'.
Must be 'N' or 'F'. The default value is 'N'. If fact = 'F', then both arguments af and ipiv must be present; otherwise, an error is returned.

```

\author{
See Also \\ Matrix Storage Schemes
}

\section*{LAPACK Least Squares and Eigenvalue Problem Routines}

This section includes descriptions of LAPACK computational routines and driver routines for solving linear least squares problems, eigenvalue and singular value problems, and performing a number of related computational tasks. For a full reference on LAPACK routines and related information see [LUG].
Least Squares Problems. A typical least squares problem is as follows: given a matrix \(A\) and a vector \(b\), find the vector \(x\) that minimizes the sum of squares \(\Sigma_{i}\left((A x)_{i}-b_{i}\right)^{2}\) or, equivalently, find the vector \(x\) that minimizes the 2-norm \(||A x-b||_{2}\).
In the most usual case, \(A\) is an \(m\)-by- \(n\) matrix with \(m \geq n\) and \(\operatorname{rank}(A)=n\). This problem is also referred to as finding the least squares solution to an overdetermined system of linear equations (here we have more equations than unknowns). To solve this problem, you can use the \(Q R\) factorization of the matrix A (see QR Factorization).
If \(m<n\) and \(\operatorname{rank}(A)=m\), there exist an infinite number of solutions \(x\) which exactly satisfy \(A x=b\), and thus minimize the norm \(||A x-b||_{2}\). In this case it is often useful to find the unique solution that minimizes \(\left||x|_{2_{2}}\right.\). This problem is referred to as finding the minimum-norm solution to an underdetermined system of linear equations (here we have more unknowns than equations). To solve this problem, you can use the \(L Q\) factorization of the matrix \(A\) (see LQ Factorization).
In the general case you may have a rank-deficient least squares problem, with rank \((A)<m i n(m, n)\) : find the minimum-norm least squares solution that minimizes both \(||x||_{2}\) and \(||A x-b||^{2}\). In this case (or when the rank of \(A\) is in doubt) you can use the \(Q R\) factorization with pivoting or singular value decomposition (see Singular Value Decomposition).
Eigenvalue Problems. The eigenvalue problems (from German eigen "own") are stated as follows: given a matrix \(A\), find the eigenvalues \(\lambda\) and the corresponding eigenvectorsz that satisfy the equation
\(A z=\lambda z\) (right eigenvectors \(z\) )
or the equation
\(z^{H} A=\lambda z^{H}\) (left eigenvectors \(z\) ).
If \(A\) is a real symmetric or complex Hermitian matrix, the above two equations are equivalent, and the problem is called a symmetric eigenvalue problem. Routines for solving this type of problems are described in the topic Symmetric Eigenvalue Problems.
Routines for solving eigenvalue problems with nonsymmetric or non-Hermitian matrices are described in the topic Nonsymmetric Eigenvalue Problems.
The library also includes routines that handle generalized symmetric-definite eigenvalue problems: find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(x\) that satisfy one of the following equations:
\(A z=\lambda B z, A B z=\lambda z\), or \(B A z=\lambda z\),
where \(A\) is symmetric or Hermitian, and \(B\) is symmetric positive-definite or Hermitian positive-definite. Routines for reducing these problems to standard symmetric eigenvalue problems are described in the topic Generalized Symmetric-Definite Eigenvalue Problems.
To solve a particular problem, you usually call several computational routines. Sometimes you need to combine the routines of this chapter with other LAPACK routines described in "LAPACK Routines: Linear Equations" as well as with BLAS routines described in "BLAS and Sparse BLAS Routines".
For example, to solve a set of least squares problems minimizing \(\| A x-b| |^{2}\) for all columns \(b\) of a given matrix \(B\) (where \(A\) and \(B\) are real matrices), you can call ? geqre to form the factorization \(A=Q R\), then call ?ormqr to compute \(C=Q^{H} B\) and finally call the BLAS routine ?trsm to solve for \(X\) the system of equations \(R X=C\).
Another way is to call an appropriate driver routine that performs several tasks in one call. For example, to solve the least squares problem the driver routine ?gels can be used.

\section*{LAPACK Least Squares and Eigenvalue Problem Computational Routines}

In the topics that follow, the descriptions of LAPACK computational routines are given. These routines perform distinct computational tasks that can be used for:
Orthogonal Factorizations
Singular Value Decomposition
Symmetric Eigenvalue Problems
Generalized Symmetric-Definite Eigenvalue Problems
Nonsymmetric Eigenvalue Problems
Generalized Nonsymmetric Eigenvalue Problems
Generalized Singular Value Decomposition
See also the respective driver routines.

\section*{Orthogonal Factorizations: LAPACK Computational Routines}

This topic describes the LAPACK routines for the \(Q R(R Q)\) and \(L Q(Q L)\) factorization of matrices. Routines for the \(R Z\) factorization as well as for generalized \(Q R\) and \(R Q\) factorizations are also included.
QR Factorization. Assume that \(A\) is an \(m\)-by- \(n\) matrix to be factored.
If \(m \geq n\), the \(Q R\) factorization is given by
\[
A=Q\binom{R}{0}=\left(Q_{1}, Q_{2}\right)\binom{R}{0}
\]
where \(R\) is an \(n\)-by- \(n\) upper triangular matrix with real diagonal elements, and \(Q\) is an \(m\)-by- \(m\) orthogonal (or unitary) matrix.
You can use the \(Q R\) factorization for solving the following least squares problem: minimize \(||A x-b||^{2}\) where \(A\) is a full-rank \(m\)-by- \(n\) matrix \((m \geq n)\). After factoring the matrix, compute the solution \(x\) by solving \(R x\) \(=\left(Q_{1}\right)^{T} b\).
If \(m<n\), the \(Q R\) factorization is given by
\(A=Q R=Q\left(R_{1} R_{2}\right)\)
where \(R\) is trapezoidal, \(R_{1}\) is upper triangular and \(R_{2}\) is rectangular.
\(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors. Routines are provided to work with \(Q\) in this representation.

LQ Factorization LQ factorization of an \(m\)-by- \(n\) matrix \(A\) is as follows. If \(m \leq n\),
\[
A=(L, 0) Q=(L, 0)\binom{Q_{1}}{Q_{2}}=\left(L Q_{1}\right)
\]
where \(L\) is an \(m\)-by- \(m\) lower triangular matrix with real diagonal elements, and \(Q\) is an \(n\)-by- \(n\) orthogonal (or unitary) matrix.

If \(m>n\), the \(L Q\) factorization is

where \(L_{1}\) is an \(n\)-by- \(n\) lower triangular matrix, \(L_{2}\) is rectangular, and \(Q\) is an \(n\)-by- \(n\) orthogonal (or unitary) matrix.

You can use the \(L Q\) factorization to find the minimum-norm solution of an underdetermined system of linear equations \(A x=b\) where \(A\) is an \(m\)-by- \(n\) matrix of rank \(m(m<n)\). After factoring the matrix, compute the solution vector \(x\) as follows: solve \(L y=b\) for \(y\), and then compute \(x=\left(Q_{1}\right)^{H} y\).
Table "Computational Routines for Orthogonal Factorization" lists LAPACK routines that perform orthogonal factorization of matrices.

Computational Routines for Orthogonal Factorization
\begin{tabular}{lllll}
\hline Matrix type, factorization & \begin{tabular}{l} 
Factorize without \\
pivoting
\end{tabular} & \begin{tabular}{l} 
Factorize with \\
pivoting
\end{tabular} & \begin{tabular}{l} 
Generate \\
matrix Q
\end{tabular} & \begin{tabular}{l} 
Apply \\
matrix Q
\end{tabular} \\
\hline general matrices, QR factorization & geqrf & geqpf & orgqr & ormqr \\
& gear & geqp3 & ungqr & unman \\
& geqrfp & & gemqr \\
\begin{tabular}{l} 
general matrices, blocked QR \\
factorization
\end{tabular} & geqrt & & orgrq & ormrq \\
general matrices, RQ factorization
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Matrix type, factorization & Factorize without pivoting & Factorize with pivoting & Generate matrix \(\mathbf{Q}\) & Apply matrix Q \\
\hline \multirow[t]{3}{*}{general matrices, LQ factorization} & gelqf & & orglq & ormlq \\
\hline & gelq & & unglq & unmlq \\
\hline & & & & gemlq \\
\hline general matrices, blocked LQ factorization & gelqt & & & gemlqt \\
\hline \multirow[t]{2}{*}{general matrices, QL factorization} & geqlf & & orgql & ormql \\
\hline & & & ungql & unmql \\
\hline \multirow[t]{2}{*}{trapezoidal matrices, RZ factorization} & tzrzf & & & ormrz \\
\hline & & & & unmrz \\
\hline pair of matrices, generalized QR factorization & ggqrf & & & \\
\hline pair of matrices, generalized RQ factorization & ggraf & & & \\
\hline triangular-pentagonal matrices, blocked QR factorization & tpqrt & & & tpmqrt \\
\hline triangular-pentagonal matrices, blocked LQ factorization & tplqt & & & tpmlqt \\
\hline
\end{tabular}
```

?geqrf
Computes the QR factorization of a general m-by-n
matrix.
Syntax

```
```

call sgeqrf(m, n, a, lda, tau, work, lwork, info)

```
call sgeqrf(m, n, a, lda, tau, work, lwork, info)
call dgeqrf(m, n, a, lda, tau, work, lwork, info)
call dgeqrf(m, n, a, lda, tau, work, lwork, info)
call cgeqrf(m, n, a, lda, tau, work, lwork, info)
call cgeqrf(m, n, a, lda, tau, work, lwork, info)
call zgeqrf(m, n, a, lda, tau, work, lwork, info)
call zgeqrf(m, n, a, lda, tau, work, lwork, info)
call geqrf(a [, tau] [,info])
```

call geqrf(a [, tau] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine forms the \(Q R\) factorization of a general \(m\)-by-n matrix \(A\) (see Orthogonal Factorizations). No pivoting is performed.
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of min \((m, n)\) elementary reflectors. Routines are provided to work with \(Q\) in this representation.

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}
m
\(n\)
a, work
lda
lwork

INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgeqrf
DOUBLE PRECISION for dgeqrf
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Arrays: \(a(I d a, *)\) contains the matrix \(A\). The second dimension of \(a\) must be at least \(\max (1, n)\).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
INTEGER. The size of the work array ( 1 work \(\geq n\) ).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

\section*{Output Parameters}
\(a\)
tau
work(1)
info
Overwritten by the factorization data as follows:
The elements on and above the diagonal of the array contain the \(\min (m, n)\) -by- \(n\) upper trapezoidal matrix \(R\) ( \(R\) is upper triangular if \(m \geq n\) ); the elements below the diagonal, with the array tau, present the orthogonal matrix \(Q\) as a product of \(\min (m, n)\) elementary reflectors (see Orthogonal Factorizations).

REAL for sgeqrf
DOUBLE PRECISION for dgeqrf
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Array, size at least \(\max (1, \min (m, n))\). Contains scalars that define elementary reflectors for the matrix \(Q\) in its decomposition in a product of elementary reflectors (see Orthogonal Factorizations).

If info \(=0\), on exit work (1) contains the minimum value of /work required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine geqrf interface are the following:
```

a Holds the matrix A of size (m,n).
tau Holds the vector of length min}(m,n

```

\section*{Application Notes}

For better performance, try using lwork \(=n^{\star}\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set /work to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The computed factorization is the exact factorization of a matrix \(A+E\), where
```

||E| | 2 = O(\varepsilon)||A|| |.

```

The approximate number of floating-point operations for real flavors is
\((4 / 3) n^{3}\)
if \(m=n\),
\((2 / 3) n^{2}(3 m-n)\)
if \(m>n\),
\((2 / 3) m^{2}(3 n-m)\)
if \(m<n\).

The number of operations for complex flavors is 4 times greater.
To solve a set of least squares problems minimizing \(\left|\left|A^{*} x^{\prime}-b\right|\right|_{2}\) for all columns \(b\) of a given matrix \(B\), you can call the following:
```

?geqre (this routine) to factorize A = QR;
ormqr to compute C = Q Q*B (for real matrices);
unmqr to compute C = Q Q *B (for complex matrices);
trsm (a BLAS routine) to solve R*X = C.

```
(The columns of the computed \(X\) are the least squares solution vectors \(x\).)
To compute the elements of \(Q\) explicitly, call
orgqr (for real matrices)
ungqr (for complex matrices).
```

See Also
mkl_progress

```

\section*{Matrix Storage Schemes}

\section*{?geqr}
```

Computes a QR factorization of a general matrix, with
best performance for tall and skinny matrices.

```
```

call sgeqr(m, n, a, lda, t, tsize, work, lwork, info)

```
call sgeqr(m, n, a, lda, t, tsize, work, lwork, info)
call dgeqr(m, n, a, lda, t, tsize, work, lwork, info)
call dgeqr(m, n, a, lda, t, tsize, work, lwork, info)
call cgeqr(m, n, a, lda, t, tsize, work, lwork, info)
call cgeqr(m, n, a, lda, t, tsize, work, lwork, info)
call zgeqr(m, n, a, lda, t, tsize, work, lwork, info)
```

call zgeqr(m, n, a, lda, t, tsize, work, lwork, info)

```

\section*{Description}

The ? geqr routine computes a QR factorization of an m-by-n matrix \(A\). If the matrix is tall and skinny ( \(m\) is substantially larger than \(m\) ), a highly scalable algorithm is used to avoid communication overhead.

\section*{NOTE}

The internal format of the elementary reflectors generated by ?geqr is only compatible with the ?gemar routine and not any other QR routines.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & INTEGER. The number of rows of the matrix \(A . m \geq 0\). \\
\hline \(n\) & REAL for sgeqr \\
\hline & INTEGER. The number of columns of the matrix \(A . n \geq 0\). \\
\hline a & DOUBLE PRECISION for dgeqr \\
\hline & COMPLEX for cgeqr \\
\hline & COMPLEX*16 for zgeqr \\
\hline & Array of size ( \(1 \mathrm{da}, n\) ). On entry, the m-by-n matrix \(A\). \\
\hline Ida & INTEGER. The leading dimension of the array \(a . l d a \geq \max (1, m)\). \\
\hline tsize & INTEGER. If tsize \(\geq 5\), the size of the array \(t\). If tsize \(=-1\) or tsize \(=-2\), then the routine performs a workspace query. The routine calculates the sizes required for the \(t\) and work arrays and returns these values as the first entries of the \(t\) and work arrays, without issuing any error message related to \(t\) or work by xerbla. \\
\hline & If \(\operatorname{tsize}=-1\), the routine calculates the optimal size of \(t\) for optimum performance and returns this value in \(t(1)\). \\
\hline & If \(\operatorname{tsize}=-2\), the routine calculates then minimum size required for \(t\) and returns this value in \(t(1)\). \\
\hline
\end{tabular}

INTEGER. The size of the array work. If 1 work \(=-1\) or 1 work \(=-2\), then the routine performs a workspace query. The routine only calculates the sizes of the \(t\) and work arrays and returns these values as the first entries of the \(t\) and work arrays, without issuing any error message related to \(t\) or work by xerbla.

If 1 work \(=-1\), the routine calculates the optimal size of work for optimum performance and returns this value in work(1).

If 1 work \(=-2\), the routine calculates the minimum size required for work and returns this value in work (1).

\section*{Output Parameters}
\(a\)
\(t\)
DOUBLE PRECISION for dgeqr
COMPLEX for cgeqr
COMPLEX*16 for zgeqr
On exit, the elements on and above the diagonal of the array contain the \((\min (m, n))\)-by \(-n\) upper trapezoidal matrix \(R(R\) is upper triangular if \(m \geq n)\); the elements below the diagonal represent \(Q\).

REAL for sgelq
DOUBLE PRECISION for dgelq
COMPLEX for cgelq
COMPLEX*16 for zgelq
Array, size (max (5,tsize)).
If info \(=0, t(1)\) returns the optimal value for tsize. You can specify that it return the minimum required value for tsize instead - see the tsize description for details. The remaining entries of \(t\) contains part of the data structure used to represent \(Q\). To apply or construct \(Q\), you need to retain a and \(t\) and pass them to other routines.

REAL for sgelq
DOUBLE PRECISION for dgelq
COMPLEX for cgelq
COMPLEX*16 for zgelq
Array, size (max (1, lwork)).
If info \(=0\), work (1) contains the optimal value for lwork. You can specify that it return the minimum required value for lwork instead - see the lwork description for details.

INTEGER.
info \(=0\) indicates a successful exit.
info < 0 : if info \(=-i\), the \(i\)-th argument had an illegal value.

\section*{See Also}
? gemar Multiples a matrix \(C\) by a real orthogonal or complex unitary matrix \(Q\), as computed by ?geqr, with best performance for tall and skinny matrices.
```

?geqrfp
Computes the QR factorization of a general m-by-n
matrix with non-negative diagonal elements.
Syntax

```
```

call sgeqrfp(m, n, a, lda, tau, work, lwork, info)

```
call sgeqrfp(m, n, a, lda, tau, work, lwork, info)
call dgeqrfp(m, n, a, lda, tau, work, lwork, info)
call dgeqrfp(m, n, a, lda, tau, work, lwork, info)
call cgeqrfp(m, n, a, lda, tau, work, lwork, info)
call cgeqrfp(m, n, a, lda, tau, work, lwork, info)
call zgeqrfp(m, n, a, lda, tau, work, lwork, info)
```

call zgeqrfp(m, n, a, lda, tau, work, lwork, info)

```

Include Files
- mkl.fi

\section*{Description}

The routine forms the \(Q R\) factorization of a general \(m\)-by-n matrix \(A\) (see Orthogonal Factorizations). No pivoting is performed. The diagonal entries of \(R\) are real and nonnegative.
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors. Routines are provided to work with \(Q\) in this representation.

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & INTEGER. The number of rows in the matrix \(A(m \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns in \(A(n \geq 0)\). \\
\hline \multirow[t]{6}{*}{a, work} & REAL for sgeqrfp \\
\hline & DOUBLE PRECISION for dgeqrfp \\
\hline & COMPLEX for cgeqrfp \\
\hline & DOUBLE COMPLEX for zgeqrfp. \\
\hline & Arrays: a(lda,*) contains the matrix \(A\). The second dimens at least \(\max (1, n)\). \\
\hline & work is a workspace array, its dimension max (1, lwork). \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, m)\). \\
\hline Iwork & INTEGER. The size of the work array ( 1 work \(\geq n\) ). \\
\hline
\end{tabular}

If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

\section*{Output Parameters}
a
Overwritten by the factorization data as follows:
The elements on and above the diagonal of the array contain the \(\min (m, n)\) -by- \(n\) upper trapezoidal matrix \(R\) ( \(R\) is upper triangular if \(m \geq n\) ); the elements below the diagonal, with the array tau, present the orthogonal matrix \(Q\) as a product of \(\min (m, n)\) elementary reflectors (see Orthogonal Factorizations).
The diagonal elements of the matrix \(R\) are real and non-negative.
REAL for sgeqrfp
DOUBLE PRECISION for dgeqrfp
COMPLEX for cgeqrfp
DOUBLE COMPLEX for zgeqrfp.
Array, size at least \(\max (1, \min (m, n))\). Contains scalars that define elementary reflectors for the matrix \(Q\) in its decomposition in a product of elementary reflectors (see Orthogonal Factorizations).
work(1)
info
If info \(=0\), on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine geqrfp interface are the following:
```

a
Holds the matrix A of size (m, n).
Holds the vector of length $\min (m, n)$

```

\section*{Application Notes}

For better performance, try using lwork \(=n \star\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed factorization is the exact factorization of a matrix \(A+E\), where
```

||E|| | = O(\varepsilon)||A| | .

```

The approximate number of floating-point operations for real flavors is
\((4 / 3) n^{3}\)
if \(m=n\),
\((2 / 3) n^{2}(3 m-n)\)
if \(m>n\),
\((2 / 3) m^{2}(3 n-m)\)
if \(m<n\).

The number of operations for complex flavors is 4 times greater.
To solve a set of least squares problems minimizing \(\left|\left|A^{*} X-b\right|\right|_{2}\) for all columns \(b\) of a given matrix \(B\), you can call the following:
```

?geqrfp (this routine) to factorize A = QR;
ormqr
to compute C = Q Q*B (for real matrices);
to compute C = Q Q *B (for complex matrices);
trsm (a BLAS routine)
to solve R*X = C.

```
(The columns of the computed \(X\) are the least squares solution vectors \(x\).)
To compute the elements of \(Q\) explicitly, call
```

orgqr (for real matrices)
ungqr (for complex matrices).

```

\section*{See Also}
mkl_progress

\section*{Matrix Storage Schemes}
?geqrt
Computes a blocked QR factorization of a general real or complex matrix using the compact WY
representation of \(Q\).

\section*{Syntax}
```

call sgeqrt(m, n, nb, a, lda, t, ldt, work, info)
call dgeqre(m, n, nb, a, lda, t, ldt, work, info)
call cgeqrt(m, n, nb, a, lda, t, ldt, work, info)
call zgeqrt(m, n, nb, a, lda, t, ldt, work, info)

```
call geqrt(a, \(t, n b[, i n f o])\)
Include Files
- mkl.fi, lapack.f90

\section*{Description}

The strictly lower triangular matrix \(V\) contains the elementary reflectors \(H(i)\) in the \(i\) th column below the diagonal. For example, if \(m=5\) and \(n=3\), the matrix \(V\) is

where \(v_{i}\) represents one of the vectors that define \(H(i)\). The vectors are returned in the lower triangular part of array \(a\).

\section*{NOTE}

The 1 s along the diagonal of \(V\) are not stored in a.

Let \(k=\min (m, n)\). The number of blocks is \(b=\operatorname{ceiling}(k / n b)\), where each block is of order nb except for the last block, which is of order \(i b=k-(b-1) * n b\). For each of the \(b\) blocks, a upper triangular block reflector factor is computed: \(t 1, t 2, \ldots, t b\). The \(n b-b y-n b\) (and \(i b-b y-i b\) for the last block) \(t\) s are stored in the \(n b-b y-n\) array \(t\) as
```

t = (t1t2 ... tb).

```

\section*{Input Parameters}
m
\(n\)
\(n \cdot b\)
a, work

Ida
Idt

\section*{Output Parameters}
a
\(t\)
info

INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
INTEGER. The block size to be used in the blocked \(Q R(\min (m, n) \geq n b \geq 1)\).
REAL for sgeqrt
DOUBLE PRECISION for dgeqrt
COMPLEX for cgeqrt
COMPLEX*16 for zgeqrt.
Arrays: aDIMENSION (lda, n) contains the m-by-n matrix \(A\).
workDIMENSION ( \(n b, n\) ) is a workspace array.
INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
INTEGER. The leading dimension of \(t\); at least n.b.

Overwritten by the factorization data as follows:
The elements on and above the diagonal of the array contain the \(\min (m, n)\) -by- \(n\) upper trapezoidal matrix \(R\) ( \(R\) is upper triangular if \(m \geq n\) ); the elements below the diagonal, with the array \(t\), present the orthogonal matrix \(Q\) as a product of \(\min (m, n)\) elementary reflectors (see Orthogonal Factorizations).

REAL for sgeqrt
DOUBLE PRECISION for dgeqrt
COMPLEX for cgeqrt
COMPLEX*16 for zgeqrt.
Array, DIMENSION ( \(l d t, \min (m, n)\) ).
The upper triangular block reflector's factors stored as a sequence of upper triangular blocks.

INTEGER.
If info \(=0\), the execution is successful.
If info \(<0\) and info \(=-i\), the \(i\) th argument had an illegal value.
```

?gemqrt
Multiplies a general matrix by the orthogonal/unitary
matrix Q of the QR factorization formed by ?geqrt.

```

\section*{Syntax}
```

call sgemqrt(side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)

```
call sgemqrt(side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
call dgemqrt(side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
call dgemqrt(side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
call cgemqrt(side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
call cgemqrt(side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
call zgemqrt(side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
call zgemqrt(side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
call gemqre( v, t, c, k, nb[, trans][, side][, info])
```

call gemqre(v, t, c, k, nb[, trans][, side][, info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The ? gemqrt routine overwrites the general real or complex m-by-n matrix \(C\) with
\begin{tabular}{lll} 
& side \(=\) 'L' & side \(={ }^{\prime} \mathrm{R}^{\prime}\) \\
trans \(=\) ' N ': & \(Q^{*} C\) & \(C^{*} Q\) \\
trans \(=\) 'T': & \(Q^{\top *} C\) & \(C^{*} Q^{\top}\) \\
trans \(=\) 'C': \(^{\text {T }}\) & \(Q^{H * C}\) & \(C^{*} Q^{H}\)
\end{tabular}
where \(Q\) is a real orthogonal (complex unitary) matrix defined as the product of \(k\) elementary reflectors \(Q=H(1) H(2) \ldots H(k)=I-V^{*} T^{*} V^{\top}\) for real flavors, and \(Q=H(1) H(2) \ldots H(k)=I-V^{*} T^{*} V^{H}\) for complex flavors, generated using the compact WY representation as returned by geqrt. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) ' R '.

\section*{Input Parameters}
k

CHARACTER
\(=\) 'L': apply \(Q, Q^{\top}\), or \(Q^{H}\) from the left.
\(=\) 'R': apply \(Q, Q^{\top}\), or \(Q^{H}\) from the right.
CHARACTER
\(=\) 'N', no transpose, apply \(Q\).
\(=\) 'T', transpose, apply \(Q^{\top}\).
\(=\) 'C', transpose, apply \(Q^{H}\).
INTEGER. The number of rows in the matrix \(C,(m \geq 0)\).
INTEGER. The number of columns in the matrix \(C,(n \geq 0)\).
INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) 'R', \(n \geq k \geq 0\).
\(n b\)
\(t\)

INTEGER.
The block size used for the storage of \(t, k \geq n b \geq 1\). This must be the same value of \(n b\) used to generate \(t\) in geqrt.

REAL for sgemqrt
DOUBLE PRECISION for dgemqrt
COMPLEX for cgemqrt
COMPLEX*16 for zgemqrt.
Array, DIMENSION ( \(1 d v, k\) ).
The ith column must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by geqrt in the first \(k\) columns of its array argument \(a\).

INTEGER. The leading dimension of the array \(v\).
if side \(=\) ' L ', \(I d v\) must be at least max \((1, m)\);
if side \(=\) 'R', ldv must be at least max \((1, n)\).
REAL for sgemqrt
DOUBLE PRECISION for dgemqrt
COMPLEX for cgemqrt
COMPLEX* 16 for zgemqrt.
Array, DIMENSION ( \(1 d t, k\) ).
The upper triangular factors of the block reflectors as returned by geqr.
INTEGER. The leading dimension of the array \(t\). Idt must be at least n.b.
REAL for sgemqrt
DOUBLE PRECISION for dgemqrt
COMPLEX for cgemqrt
COMPLEX*16 for zgemqrt.
The \(m\)-by- \(n\) matrix \(C\).
INTEGER. The leadinng dimension of the array c. Idc must be at least \(\max (1, m)\).

REAL for sgemqrt
DOUBLE PRECISION for dgemqrt
COMPLEX for cgemqrt
COMPLEX* 16 for zgemqrt.
Workspace array.
If side \(=\) 'L' DIMENSION \(n * n b\).
If side \(=\) 'R' DIMENSION \(m^{*} n b\).

\section*{Output Parameters}

C
Overwritten by the product \(Q^{*} C, C^{*} Q, Q^{\top *} C, C^{*} Q^{\top}, Q^{H *} C\), or \(C^{*} Q^{H}\) as specified by side and trans.

INTEGER.
\(=0\) : the execution is successful.
< 0 : if info \(=-i\), the \(i\) th argument had an illegal value.

\section*{?geqpf \\ Computes the QR factorization of a general m-by-n matrix with pivoting.}

\section*{Syntax}
```

call sgeqpf(m, n, a, lda, jpvt, tau, work, info)
call dgeqpf(m, n, a, lda, jpvt, tau, work, info)
call cgeqpf(m, n, a, lda, jpvt, tau, work, rwork, info)
call zgeqpf(m, n, a, lda, jpvt, tau, work, rwork, info)
call geqpf(a, jpvt [,tau] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine is deprecated and has been replaced by routine geqp3.
The routine ? geqpf forms the \(Q R\) factorization of a general \(m\)-by- \(n\) matrix \(A\) with column pivoting: \(A \star P=\) \(Q * R\) (see Orthogonal Factorizations). Here \(P\) denotes an \(n\)-by- \(n\) permutation matrix.

The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of min \((m, n)\) elementary reflectors. Routines are provided to work with \(Q\) in this representation.

\section*{Input Parameters}
m
\(n\)
a, work

Ida

INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgeqpf
DOUBLE PRECISION for dgeqpf
COMPLEX for cgeqpf
DOUBLE COMPLEX for zgeqpf.
Arrays: a (Ida,*) contains the matrix \(A\). The second dimension of a must be at least \(\max (1, n)\).
work (/work) is a workspace array. The size of the work array must be at least \(\max (1,3 * n)\) for real flavors and at least \(\max (1, n)\) for complex flavors.

INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
```

jpvt
rwork
INTEGER. Array, size at least $\max (1, n)$.
On entry, if jpvt (i) > 0 , the i-th column of A is moved to the beginning of $A^{*} P$ before the computation, and fixed in place during the computation.
If jpvt (i) $=0$, the i th column of A is a free column (that is, it may be interchanged during the computation with any other free column).
REAL for cgeqpf
DOUBLE PRECISION for zgeqpf.
A workspace array, DIMENSION at least max (1, 2*n).

```

\section*{Output Parameters}
a
Overwritten by the factorization data as follows:
The elements on and above the diagonal of the array contain the \(\min (m, n)\) -by- \(n\) upper trapezoidal matrix \(R\) ( \(R\) is upper triangular if \(m \geq n\) ); the elements below the diagonal, with the array tau, present the orthogonal matrix \(Q\) as a product of \(\min (m, n)\) elementary reflectors (see Orthogonal Factorizations).

REAL for sgeqpf
DOUBLE PRECISION for dgeqpf
COMPLEX for cgeqpf
DOUBLE COMPLEX for zgeqpf.
Array, size at least max \((1, \min (m, n))\). Contains additional information on the matrix \(Q\).

Overwritten by details of the permutation matrix \(P\) in the factorization \(A * P\) \(=Q \star R\). More precisely, the columns of \(A * P\) are the columns of \(A\) in the following order:
jpvt(1), jpvt(2), ..., jpvt(n).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine geqpf interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((m, n)\). \\
jpvt & Holds the vector of length \(n\). \\
tau & Holds the vector of length \(\min (m, n)\)
\end{tabular}

\section*{Application Notes}

The computed factorization is the exact factorization of a matrix \(A+E\), where
```

||E| | = O(\varepsilon)||A| | .

```

The approximate number of floating-point operations for real flavors is
\((4 / 3) n^{3}\)
if \(m=n\),
\((2 / 3) n^{2}(3 m-n)\)
if \(m>n\),
\((2 / 3) m^{2}(3 n-m)\)
if \(m<n\).

The number of operations for complex flavors is 4 times greater.
To solve a set of least squares problems minimizing \(\left|\left|A^{*} x_{x}-b\right|\right|_{2}\) for all columns \(b\) of a given matrix \(B\), you can call the following:
```

?geqpf (this routine) to factorize }A*P=Q*R
ormqr to compute C = Q Q *B (for real matrices);
unmqr to compute C = Q Q *B (for complex matrices);
trsm (a BLAS routine) to solve R*X=C.

```
(The columns of the computed \(X\) are the permuted least squares solution vectors \(x\); the output array jpvt specifies the permutation order.)

To compute the elements of \(Q\) explicitly, call
\begin{tabular}{ll} 
orgqr & (for real matrices) \\
ungqr & (for complex matrices).
\end{tabular}
?geqp3
Computes the QR factorization of a general m-by-n matrix with column pivoting using level 3 BLAS.

\section*{Syntax}
```

call sgeqp3(m, n, a, lda, jpvt, tau, work, lwork, info)
call dgeqp3(m, n, a, lda, jpvt, tau, work, lwork, info)
call cgeqp3(m, n, a, lda, jpvt, tau, work, lwork, rwork, info)
call zgeqp3(m, n, a, lda, jpvt, tau, work, lwork, rwork, info)
call geqp3(a, jpvt [,tau] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine forms the \(Q R\) factorization of a general \(m\)-by-n matrix \(A\) with column pivoting: \(A \star P=Q^{\star} R\) (see Orthogonal Factorizations) using Level 3 BLAS. Here \(P\) denotes an \(n\)-by-n permutation matrix. Use this routine instead of geqpf for better performance.
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of min \((m, n)\) elementary reflectors. Routines are provided to work with \(Q\) in this representation.

\section*{Input Parameters}
m
\(n\)

Ida
lwork
jpvt
rwork

INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgeqp3
DOUBLE PRECISION for dgeqp3
COMPLEX for cgeqp3
DOUBLE COMPLEX for zgeqp3.
Arrays:
a (Ida,*) contains the matrix \(A\).
The second dimension of \(a\) must be at least \(\max (1, n)\).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of \(a\); at least \(\max (1, m)\).
INTEGER. The size of the work array; must be at least max ( \(1,3 * n+1\) ) for real flavors, and at least \(\max (1, n+1)\) for complex flavors.

If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes below for details.

INTEGER.
Array, size at least max \((1, n)\).
On entry, if \(j p v t(i) \neq 0\), the \(i\)-th column of \(A\) is moved to the beginning of \(A P\) before the computation, and fixed in place during the computation.

If jpvt(i) \(=0\), the \(i\)-th column of \(A\) is a free column (that is, it may be interchanged during the computation with any other free column).

REAL for cgeqp3
DOUBLE PRECISION for zgeqp3.
A workspace array, size at least \(\max (1,2 * n)\). Used in complex flavors only.

\section*{Output Parameters}
a
tau
Overwritten by the factorization data as follows:
The elements on and above the diagonal of the array contain the \(\min (m, n)\) -by- \(n\) upper trapezoidal matrix \(R\) ( \(R\) is upper triangular if \(m \geq n\) ); the elements below the diagonal, with the array tau, present the orthogonal matrix \(Q\) as a product of \(\min (m, n)\) elementary reflectors (see Orthogonal Factorizations).
```

REAL for sgeqp3
DOUBLE PRECISION for dgeqp3
COMPLEX for cgeqp3
DOUBLE COMPLEX for zgeqp3.

```

Array, size at least \(\max (1, \min (m, n))\). Contains scalar factors of the elementary reflectors for the matrix \(Q\).
jpvt
info
Overwritten by details of the permutation matrix \(P\) in the factorization \(A * P\) \(=Q * R\). More precisely, the columns of \(A P\) are the columns of \(A\) in the following order:
jpvt(1), jpvt(2), ..., jpvt(n).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine geqp3 interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((m, n)\). \\
jpvt & Holds the vector of length \(n\). \\
tau & Holds the vector of length \(\min (m, n)\)
\end{tabular}

\section*{Application Notes}

To solve a set of least squares problems minimizing \(\left|\left|A^{*} X-b\right|\right|_{2}\) for all columns \(b\) of a given matrix \(B\), you can call the following:
?geqp3 (this routine)
ormqr
unmqr
trsm (a BLAS routine)
to factorize \(A * P=Q * R\);
to compute \(C=Q^{T} \star_{B}\) (for real matrices);
to compute \(C=Q^{H \star} B\) (for complex matrices);
to solve \(R^{*} X=C\).
(The columns of the computed \(X\) are the permuted least squares solution vectors \(x\); the output array jpvt specifies the permutation order.)

To compute the elements of \(Q\) explicitly, call
\begin{tabular}{ll} 
orgqr & (for real matrices) \\
ungqr & (for complex matrices).
\end{tabular}

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set
lwork \(=-1\).
If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?orgqr}

Generates the real orthogonal matrix \(Q\) of the \(Q R\) factorization formed by ?geqre.

\section*{Syntax}
```

call sorgqr(m, n, k, a, lda, tau, work, lwork, info)
call dorgqr(m, n, k, a, lda, tau, work, lwork, info)
call orgqr(a, tau [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine generates the whole or part of \(m\)-by- \(m\) orthogonal matrix \(Q\) of the \(Q R\) factorization formed by the routine ? geqrf or geqpf. Use this routine after a call to sgeqrf/dgeqrf or sgeqpf/dgeqpf.
Usually \(Q\) is determined from the \(Q R\) factorization of an \(m\) by matrix \(A\) with \(m \geq p\). To compute the whole matrix \(Q\), use:
```

call?orgqr(m, m, p, a, lda, tau, work, lwork, info)

```

To compute the leading \(p\) columns of \(Q\) (which form an orthonormal basis in the space spanned by the columns of \(A\) ):
```

call?orgqr(m, p, p, a, lda, work, lwork, info)

```

To compute the matrix \(Q^{k}\) of the \(Q R\) factorization of leading \(k\) columns of the matrix \(A\) :
```

call?orgqr(m, m, k, a, lda, tau, work, lwork, info)

```

To compute the leading \(k\) columns of \(Q^{k}\) (which form an orthonormal basis in the space spanned by leading \(k\) columns of the matrix \(A\) ):
```

call?orgqr(m, k, k, a, lda, tau, work, lwork, info)

```

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & INTEGER. The order of the orthogonal matrix \(Q(m \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns of \(Q\) to be computed \\
\hline & ( \(0 \leq n \leq m\) ) . \\
\hline k & INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(0 \leq k \leq n)\). \\
\hline a, tau, work & REAL for sorgqr \\
\hline & DOUBLE PRECISION for dorgqr \\
\hline & Arrays: \\
\hline & a(/da,*) and tau(*) are the arrays returned by sgeqrf / dgeqrf or sgeqpf / dgeqpf. \\
\hline
\end{tabular}

The second dimension of \(a\) must be at least \(\max (1, n)\).
The size of tau must be at least \(\max (1, k)\).
work is a workspace array, its dimension max (1, lwork).
Integer. The leading dimension of \(a\); at least \(\max (1, m)\).
Integer. The size of the work array ( 1 work \(\geq\) n).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to /work is issued by xerbla.
See Application Notes for the suggested value of Iwork.

\section*{Output Parameters}
a
work (1)
info

Overwritten by \(n\) leading columns of the \(m\)-by- \(m\) orthogonal matrix \(Q\).
If info \(=0\), on exit work (1) contains the minimum value of /work required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine orgqr interface are the following:
```

a Holds the matrix A of size (m,n).
tau Holds the vector of length (k)

```

\section*{Application Notes}

For better performance, try using lwork \(=n^{*}\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of /work for the first run or set lwork \(=-1\).
If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set lwork \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set /work to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed \(Q\) differs from an exactly orthogonal matrix by a matrix \(E\) such that
\(||E||_{2}=O(\varepsilon)|*| A| |_{2}\) where \(\varepsilon\) is the machine precision.
The total number of floating-point operations is approximately \(4 \star m^{\star} n \star k-2 \star(m+n) \star k^{2}+(4 / 3) \star k^{3}\). If \(n=k\), the number is approximately \((2 / 3) * n^{2 *}(3 m-n)\).

The complex counterpart of this routine is ungqr.

\section*{?ormqr}

Multiplies a real matrix by the orthogonal matrix \(Q\) of the \(Q R\) factorization formed by ?geqre or ?geqpf.

Syntax
```

call sormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call ormqr(a, tau, c [,side] [,trans] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine multiplies a real matrix \(C\) by \(Q\) or \(Q^{T}\), where \(Q\) is the orthogonal matrix \(Q\) of the \(Q R\) factorization formed by the routine ? geqre or ?geqpf.

Depending on the parameters sideleft_right and trans, the routine can form one of the matrix products \(Q^{\star} C, Q^{T \star} C, C^{\star} Q\), or \(C^{\star} Q^{T}\) (overwriting the result on \(C\) ).

\section*{Input Parameters}
side
trans
m
\(n\)
k
a, tau, c, work

CHARACTER*1. Must be either 'L' or 'R'.
If side='L', \(Q\) or \(Q^{T}\) is applied to \(C\) from the left.
If side='R', \(Q\) or \(Q^{T}\) is applied to \(C\) from the right.
CHARACTER*1. Must be either 'N' or 'T'.
If trans='N', the routine multiplies \(C\) by \(Q\).
If trans=' \(T\) ', the routine multiplies \(C\) by \(Q^{T}\).
INTEGER. The number of rows in the matrix \(C(m \geq 0)\).
INTEGER. The number of columns in \(C(n \geq 0)\).
INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
\(0 \leq k \leq m\) if side='L';
\(0 \leq k \leq n\) if side='R'.
REAL for sgeqrf
DOUBLE PRECISION for dgeqrf.
Arrays:
a(Ida,*) and tau(*) are the arrays returned by sgeqrf / dgeqrf or sgeqpf / dgeqpf.

The second dimension of \(a\) must be at least max \((1, k)\).
The size of tau must be at least max \((1, k)\).
\(c(/ d c, *)\) contains the matrix \(C\).
The second dimension of \(c\) must be at least max \((1, n)\)
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of \(a\). Constraints:
if side \(=\) 'L', lda \(\geq \max (1, m)\);
if side \(=\) 'R', Ida \(\geq \max (1, n)\).
INTEGER. The leading dimension of \(c\). Constraint:
\(l d c \geq \max (1, m)\).
INTEGER. The size of the work array. Constraints:
lwork \(\geq \max (1, n)\) if side \(=\) 'L';
lwork \(\geq \max (1, m)\) if side \(=\) 'R'.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

\section*{Output Parameters}
c
work(1)
info
Overwritten by the product \(Q^{\star} C, Q^{T \star} C, C^{\star} Q\), or \(C^{\star} Q^{T}\) (as specified by side and trans).

If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine ormqr interface are the following:
a
Holds the matrix \(A\) of size \((r, k)\).
\(r=m\) if side \(=\) 'L'.
\(r=n\) if side \(=\) 'R'.
Holds the vector of length \((k)\).
```

c Holds the matrix C of size (m,n).
side Must be 'L' or 'R'. The default value is 'L'.
trans Must be 'N' or 'T'. The default value is 'N'.

```

\section*{Application Notes}

For better performance, try using lwork \(=n \star\) blocksize (if side \(=\) 'L') or lwork \(=m^{\star} b l o c k s i z e ~(i f ~\) side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The complex counterpart of this routine is unmqr.

\section*{?gemqr}

Multiples a matrix C by a real orthogonal or complex unitary matrix \(Q\), as computed by ?geqr, with best performance for tall and skinny matrices.
```

call sgemqr(side, trans, m, n, k, a, lda, t, tsize, c, ldc, work, lwork, info)
call dgemqr(side, trans, m, n, k, a, lda, t, tsize, c, ldc, work, lwork, info)
call cgemqr(side, trans, m, n, k, a, lda, t, tsize, c, ldc, work, lwork, info)
call zgemqr(side, trans, m, n, k, a, lda, t, tsize, c, ldc, work, lwork, info)

```

\section*{Description}

The ? gemqr routine multiplies an \(m\)-by-n matrix \(C\) by \(\operatorname{Op}(Q)\), where matrix \(Q\) is the factor from the LQ factorization of matrix \(A\) formed by ?geqs, and
\(\mathrm{Op}(Q)=Q\), or
\(\operatorname{Op}(Q)=Q^{\top}\), or
\(\mathrm{Op}(Q)=Q^{\mathrm{H}}\).

\section*{NOTE}

You must use ?geqr for LQ factorization before calling ? gemqr. ? gemqr is not compatible with QR factorization routines other than ?geqr.

For real flavors, \(C\) is real and \(Q\) is real orthogonal.
For complex flavors, \(C\) is complex and \(Q\) is complex unitary.
If matrix \(A\) is tall and skinny, a highly scalable algorithm is used to avoid communication overhead.
Otherwise, ?ormqr or ?unmqr is used.

\section*{Input Parameters}

\author{
side
}
m
n
k
a
\(t\)
tsize
C

CHARACTER*1.
If side \(=\) 'L': apply \(\operatorname{Op}(Q)\) from the left.
If side \(=\) 'R'': apply \(O p(Q)\) from the right.
CHARACTER*1.
If trans \(=\) 'N': No transpose, \(\mathrm{Op}(Q)=Q\).
If trans \(=\) ' T ': Transpose, \(\mathrm{Op}(Q)=Q^{\top}\).
If trans \(=\) ' C': Conjugate transpose, \(\mathrm{Op}(Q)=Q^{H}\).
INTEGER. The number of rows of the matrix \(A\). \(m \geq 0\).
INTEGER. The number of columns of the matrix C. \(m \geq n \geq 0\).
INTEGER. The number of elementary reflectors whose product defines the matrix Q .
If side \(=\) 'L', \(m \geq k \geq 0\).
if side \(=\) ' R ', \(n \geq k \geq 0\).
REAL for sgemqr
DOUBLE PRECISION for dgemqr
COMPLEX for cgemqr
COMPLEX*16 for zgemqr
Array, size (Ida,k).
Part of the data structure to represent \(Q\) as returned by ? geqr.
INTEGER. The leading dimension of the array \(a\).
If side \(=\) 'L', Ida \(\geq \max (1, m)\).

REAL for sgemlq
DOUBLE PRECISION for dgemlq
COMPLEX for cgemlq
COMPLEX*16 for zgemlq
Array, size (max \((5, t s i z e))\). Part of the data structure to represent \(Q\) as returned by ? geqr.

INTEGER. The size of the array \(t\). tsize \(\geq 5\).
REAL for sgemqr
DOUBLE PRECISION for dgemqr
COMPLEX for cgemqr
COMPLEX*16 for zgemqr
Array of size \((l d c, n)\). On entry, contains the \(m\)-by-n matrix \(C\).
```

ldc
lwork
INTEGER. The leading dimension of the array c. $\operatorname{ldc} \max (1, m)$.
INTEGER. The size of the array work.
If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array and returns this value as work (1) ; no error message related to lwork is issued by xerbla.

```

\section*{Output Parameters}
```

c
On exit,c is overwritten by }\textrm{Op}(Q)*C\mathrm{ or C*}\textrm{Op}(Q)
REAL for sgemlq
DOUBLE PRECISION for dgemlq
COMPLEX for cgemlq
COMPLEX*16 for zgemlq
Workspace array of size (max (1, lwork)).
INTEGER.
info = 0 indicates a successful exit.
info < 0: if info = -i, the i-th argument had an illegal value.

```

\section*{?ungqr}

Generates the complex unitary matrix \(Q\) of the \(Q R\)
factorization formed by ?geqre.

\section*{Syntax}
```

call cungqr(m, n, k, a, lda, tau, work, lwork, info)
call zungqr(m, n, k, a, lda, tau, work, lwork, info)
call ungqr(a, tau [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine generates the whole or part of \(m\)-by- \(m\) unitary matrix \(Q\) of the \(Q R\) factorization formed by the routines ? geqrf or geqpf. Use this routine after a call to cgeqrf/zgeqrf or cgeqpf/zgeqpf.

Usually \(Q\) is determined from the \(Q R\) factorization of an \(m\) by \(p\) matrix \(A\) with \(m \geq p\). To compute the whole matrix \(Q\), use:
```

call?ungqr(m, m, p, a, lda, tau, work, lwork, info)

```

To compute the leading \(p\) columns of \(Q\) (which form an orthonormal basis in the space spanned by the columns of \(A\) ):
```

call?ungqr(m, p, p, a, lda, tau, work, lwork, info)

```

To compute the matrix \(Q^{k}\) of the \(Q R\) factorization of the leading \(k\) columns of the matrix \(A\) :
```

call?ungqr(m, m, k, a, lda, tau, work, lwork, info)

```

To compute the leading \(k\) columns of \(Q^{k}\) (which form an orthonormal basis in the space spanned by the leading \(k\) columns of the matrix \(A\) ):
```

call?ungqr(m, k, k, a, lda, tau, work, lwork, info)

```

\section*{Input Parameters}
```

m
n
k
a, tau, work
lda
lwork
INTEGER. The order of the unitary matrix $Q(m \geq 0)$.
INTEGER. The number of columns of Q to be computed
($0 \leq n \leq m$).
INTEGER. The number of elementary reflectors whose product defines the matrix $Q(0 \leq k \leq n)$.
COMPLEX for cungqr
DOUBLE COMPLEX for zungqr
Arrays: a(Ida,*) and tau(*) are the arrays returned by cgeqrf/zgeqrf or cgeqpf/zgeqpf.
The second dimension of a must be at least $\max (1, n)$.
The size of tau must be at least max $(1, k)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least $\max (1, m)$.
INTEGER. The size of the work array (1 work $\geq n$).
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

```

See Application Notes for the suggested value of Iwork.

\section*{Output Parameters}
a
work(1)
info
If info \(=0\), on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ungqr interface are the following:
a
Holds the matrix \(A\) of size \((m, n)\).
tau Holds the vector of length \((k)\).

\section*{Application Notes}

For better performance, try using lwork \(=n^{\star}\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If \(l_{\text {work }}=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed \(Q\) differs from an exactly unitary matrix by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon) *| | A| |_{2}\), where \(\varepsilon\) is the machine precision.

The total number of floating-point operations is approximately \(16 \star m^{\star} n \star k-8 *(m+n) \star k 2+(16 / 3) * k^{3}\).
If \(n=k\), the number is approximately \((8 / 3) * n^{2} *(3 m-n)\).
The real counterpart of this routine is orgqr.

\section*{?unmqr}

Multiplies a complex matrix by the unitary matrix \(Q\) of the \(Q R\) factorization formed by ?geqre.

Syntax
```

call cunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call zunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call unmqr(a, tau, c [,side] [,trans] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine multiplies a rectangular complex matrix \(C\) by \(Q\) or \(Q^{H}\), where \(Q\) is the unitary matrix \(Q\) of the \(Q R\) factorization formed by the routines ?geqrf or geqpf.

Depending on the parameters side and trans, the routine can form one of the matrix products \(Q^{*} C, Q^{H *} C\), \(C * Q\), or \(C * Q^{H}\) (overwriting the result on \(C\) ).

\section*{Input Parameters}
side
CHARACTER*1. Must be either 'L' or 'R'.
If side \(=\) 'L', \(Q\) or \(Q^{H}\) is applied to \(C\) from the left.
If side \(=\) ' \(\mathrm{R}^{\prime}, Q\) or \(Q^{H}\) is applied to \(C\) from the right.
trans
m
\(n\)
k
a, c, tau, work
lda
ldc
lwork

CHARACTER*1. Must be either 'N' or 'C'.
If trans \(=\) ' \(N\) ', the routine multiplies \(C\) by \(Q\).
If trans \(=\) ' C', the routine multiplies \(C\) by \(Q^{H}\).
INTEGER. The number of rows in the matrix \(C(m \geq 0)\).
INTEGER. The number of columns in \(C(n \geq 0)\).
INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
\(0 \leq k \leq m\) if side \(=\) 'L';
\(0 \leq k \leq n\) if side \(=\) ' R '.
COMPLEX for cgeqrf
DOUBLE COMPLEX for zgeqrf.
Arrays:
a(Ida,*) and tau(*) are the arrays returned by cgeqrf / zgeqrf or cgeqpf / zgeqpf.

The second dimension of \(a\) must be at least max \((1, k)\).
The size of tau must be at least \(\max (1, k)\).
\(c(I d c, *)\) contains the \(m\)-by-n matrix \(C\).
The second dimension of \(c\) must be at least max \((1, n)\)
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of \(a\). Constraints:
lda \(\geq \max (1, m)\) if side = 'L';
lda \(\geq \max (1, n)\) if side \(=\) 'R'.
INTEGER. The leading dimension of \(c\). Constraint:
\(I d c \geq \max (1, m)\).
INTEGER. The size of the work array. Constraints:
lwork \(\geq \max (1, n)\) if side \(=\) 'L';
lwork \(\geq \max (1, m)\) if side \(=\) 'R'.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application notes for the suggested value of Iwork.
Output Parameters

Overwritten by the product \(Q^{*} C, Q^{H *} C, C^{*} Q\), or \(C^{*} Q^{H}\) (as specified by side and trans).
```

work(1)
info

```

If info \(=0\), on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine unmqr interface are the following:
\begin{tabular}{ll} 
a & Holds the matrix \(A\) of size \((r, k)\). \\
& \(r=m\) if side \(=\) ' L '. \\
& \(r=n\) if side \(=^{\prime} R^{\prime}\). \\
tau & Holds the vector of length \((k)\). \\
\(c\) & Holds the matrix \(C\) of size \((m, n)\). \\
side & Must be 'L' or 'R'. The default value is 'L'. \\
trans & Must be ' \(N\) ' or ' \(C\) '. The default value is ' \(N\) '.
\end{tabular}

\section*{Application Notes}

For better performance, try using lwork \(=n^{\star}\) blocksize (if side \(=\) 'L') or 1 work \(=m^{*}\) blocksize (if side \(=\) 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The real counterpart of this routine is ormqr.
```

?gelqf
Computes the LQ factorization of a general m-by-n
matrix.

```

\section*{Syntax}
```

call sgelqf(m, n, a, lda, tau, work, lwork, info)

```
call sgelqf(m, n, a, lda, tau, work, lwork, info)
call dgelqf(m, n, a, lda, tau, work, lwork, info)
call dgelqf(m, n, a, lda, tau, work, lwork, info)
call cgelqf(m, n, a, lda, tau, work, lwork, info)
```

call cgelqf(m, n, a, lda, tau, work, lwork, info)

```
```

call zgelqf(m, n, a, lda, tau, work, lwork, info)
call gelqf(a [, tau] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine forms the \(L Q\) factorization of a general \(m\)-by-n matrix \(A\) (see Orthogonal Factorizations). No pivoting is performed.

The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of min \((m, n)\) elementary reflectors. Routines are provided to work with \(Q\) in this representation.

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}
m
n
a, work

Ida
l work

INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgelqf
DOUBLE PRECISION for dgelqf
COMPLEX for cgelqf
DOUBLE COMPLEX for zgelqf.
Arrays:
Array \(a(I d a, *)\) contains the matrix \(A\).
The second dimension of \(a\) must be at least \(\max (1, n)\).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
INTEGER. The size of the work array; at least max \((1, m)\).
If \(\operatorname{lwork}=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

\section*{Output Parameters}
a
Overwritten by the factorization data as follows:
The elements on and below the diagonal of the array contain the m-by\(\min (m, n)\) lower trapezoidal matrix \(L\) ( \(L\) is lower triangular if \(m \leq n\) ); the elements above the diagonal, with the array tau, represent the orthogonal matrix \(Q\) as a product of elementary reflectors.
```

tau
work(1)
info

```
```

REAL for sgelqf

```
REAL for sgelqf
DOUBLE PRECISION for dgelqf
DOUBLE PRECISION for dgelqf
COMPLEX for cgelqf
COMPLEX for cgelqf
DOUBLE COMPLEX for zgelqf.
DOUBLE COMPLEX for zgelqf.
Array, size at least max \((1, \min (m, n))\).
Contains scalars that define elementary reflectors for the matrix \(Q\) (see Orthogonal Factorizations).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this Iwork for subsequent runs.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
```


LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gelqf interface are the following:

```
a Holds the matrix A of size (m,n).
tau
    Holds the vector of length min}(m,n)
```


Application Notes

For better performance, try using lwork $=m^{\star}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If you set l work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed factorization is the exact factorization of a matrix $A+E$, where
$||E||_{2}=O(\varepsilon) \quad| | A| |_{2}$.
The approximate number of floating-point operations for real flavors is
$(4 / 3) n^{3}$
if $m=n$,
$(2 / 3) n^{2}(3 m-n)$
$(2 / 3) m^{2}(3 n-m)$
if $m>n$,
if $m<n$.

The number of operations for complex flavors is 4 times greater.
To find the minimum-norm solution of an underdetermined least squares problem minimizing $\left|\mid A *_{X}-b \|_{2}\right.$ for all columns b of a given matrix B, you can call the following:

```
?gelqf (this routine) to factorize A = L*Q;
trsm (a BLAS routine) to solve L*Y = B for Y;
ormlq to compute X = (Q ( ) T* (for real matrices);
unmlq to compute X = ( Q ) 'r*Y (for complex matrices).
```

(The columns of the computed X are the minimum-norm solution vectors x. Here A is an m-by- n matrix with $m<n ; Q_{1}$ denotes the first m columns of Q).
To compute the elements of Q explicitly, call

```
orglq (for real matrices)
unglq (for complex matrices).
```


See Also

mkl_progress

Matrix Storage Schemes

?gelq
Computes an LQ factorization of a general matrix.

```
call sgelq(m, n, a, lda, t, tsize, work, lwork, info)
call dgelq(m, n, a, lda, t, tsize, work, lwork, info)
call cgelq(m, n, a, lda, t, tsize, work, lwork, info)
call zgelq(m, n, a, lda, t, tsize, work, lwork, info)
```


Description

The ? gelq routines computes an LQ factorization of an m-by- n matrix A. If the matrix is short and wide (n is substantially larger than m), a highly scalable algorithm is used to avoid communication overhead.

NOTE

The internal format of the elementary reflectors generated by ?gelq is only compatible with the ? gemlq routine and not any other LQ routines.

NOTE

An optimized version of ? gelq is not available.

Input Parameters

m

> INTEGER. The number of rows of the matrix $A . m \geq 0$.
> INTEGER. The number of columns of the matrix $A . n \geq 0$.
> REAL for sgelq

DOUBLE PRECISION for dgelq
COMPLEX for cgelq
COMPLEX*16 for zgelq
Array, size (lda, n). Contains the $m-b y-n$ matrix A.
INTEGER. The leading dimension of the array $a . I d a \geq \max (1, m)$.
INTEGER. If tsize ≥ 5, the size of the array t. If tsize $=-1$ or tsize $=-2$, then the routine performs a workspace query. The routine calculates the sizes required for the t and work arrays and returns these values as the first entries of the t and work arrays, without issuing any error message related to t or work by xerbla.

If tsize $=-1$, the routine calculates the optimal size of t for optimum performance and returns this value in $t(1)$.

If tsize $=-2$, the routine calculates then minimum size required for t and returns this value in $t(1)$.

INTEGER. The size of the array work. If 1 work $=-1$ or 1 work $=-2$, then the routine performs a workspace query. The routine only calculates the sizes of the t and work arrays and returns these values as the first entries of the t and work arrays, without issuing any error message related to t or work by xerbla.

If 1 work $=-1$, the routine calculates the optimal size of work for optimum performance and returns this value in work(1).

If 1 work $=-2$, the routine calculates the minimum size required for work and returns this value in work(1).

Output Parameters

a
t

REAL for sgelq
DOUBLE PRECISION for dgelq
COMPLEX for cgelq
COMPLEX*16 for zgelq
The elements on and below the diagonal of the array contain the lower trapezoidal matrix L (L is lower triangular if $m \leq n$). The elements above the diagonal are used to store part of the internal data structure representing Q.

REAL for sgelq
DOUBLE PRECISION for dgelq
COMPLEX for cgelq
COMPLEX*16 for zgelq
Array, size (max (5,tsize)).

If info $=0, t(1)$ returns the optimal value for tsize. You can specify that it return the minimum required value for tsize instead - see the tsize description for details. The remaining entries of t contains part of the data structure used to represent Q. To apply or construct Q, you need to retain a and t and pass them to other routines.

REAL for sgelq
DOUBLE PRECISION for dgelq
COMPLEX for cgelq
COMPLEX*16 for zgelq
Array, size (max (1, lwork)).
If info $=0$, work (1) contains the optimal value for 1 work. You can specify that it return the minimum required value for lwork instead - see the lwork description for details.

INTEGER.
info $=0$ indicates a successful exit.
info <0 : if info $=-i$, the i-th argument had an illegal value.

See Also

? gemlq Multiples a matrix C by a real orthogonal or complex unitary matrix Q, as computed by ?gelq.

?gelqt

?gelqt computes a blocked LQ factorization of a real or complex m-by-n matrix A using the compact WY representation of Q.

```
call sgelqt(m, n, mb, a, lda, t, ldt, work, info)
call dgelqt(m, n, mb, a, lda, t, ldt, work, info)
call cgelqt(m, n, mb, a, lda, t, ldt, work, info)
call zgelqt(m, n, mb, a, lda, t, ldt, work, info)
```


Description

? gelqt computes a blocked LQ factorization of a real or complex m-by-n matrix A using the compact WY representation of Q.
The matrix V stores the elementary reflectors $H(i)$ in the i-th row above the diagonal. For example, if $m=5$ and $n=3$, the matrix V is

```
v = ( 1 v v vlllll
    ( 1 1 v2 v2 v
    ( 1 1 v3 v
```

where the $v_{i} s$ represent the vectors which define $H(i)$, which are returned in the array a. The 1 elements along the diagonal of V are not stored in a. Let $k=\min (m, n)$. The number of blocks is $b=$ ceiling $(k / m b)$, where each block is of order $m b$ except for the last block, which is of order $i b=k-(b-1) * m b$. For each of the b blocks, a upper triangular block reflector factor is computed: $T 1, T 2, \ldots, T B$. The $m b$-by- $m b$ (and $i b$-by- $i b$ for the last block) T s are stored in the $m b$-by- k matrix T as
$T=(T 1 T 2 \ldots T B)$.

Input Parameters

m	INTEGER. The number of rows of the matrix A. $m \geq 0$.
n	INTEGER. The number of columns of the matrix A. $n \geq 0$.
mb	INTEGER. The block size to be used in the blocked QR. $\min (m, n) \geq m b \geq 1$.
a	REAL for sgelqt
	DOUBLE PRECISION for dgelqt
	COMPLEX for cgelqt
	COMPLEX*16 for zgelqt
	Array of size ($1 \mathrm{da}, n$). On entry, the m-by- n matrix A.
$1 d a$	INTEGER. The leading dimension of the array a. $1 \mathrm{~d} a \geq \max (1, m)$.
$l d t$	INTEGER. The leading dimension of the array t. $1 d t \geq m b$.

Output Parameters

a
t
work
info
On exit, the elements on and below the diagonal of the array contain the m -by-min (m, n) lower trapezoidal matrix $L(L$ is lower triangular if $m \leq n)$; the elements above the diagonal are the rows of V.

REAL for sgelqt
DOUBLE PRECISION for dgelqt
COMPLEX for cgelqt
COMPLEX*16 for zgelqt
Array of size ($1 d t, \min (m, n)$). The upper triangular block reflectors stored in compact form as a sequence of upper triangular blocks. See Description for further details.

REAL for sgelqt
DOUBLE PRECISION for dgelqt
COMPLEX for cgelqt
COMPLEX*16 for zgelqt
Array of size ($m b^{*} n$).
INTEGER.
info $=0$: successful exit.
info < 0 : if info $=-i$, the i-th argument had an illegal value.

?gemlqt

Multiplies a general matrix by the orthogonal/unitary
matrix Q of the $L Q$ factorization formed by ?gelqt.
call sgemlqt(side, trans, $m, n, k, m b, v, l d v, t, l d t, c, l d c$, work, info)
call dgemlqt(side, trans, $m, n, k, m b, ~ v, l v, t, l d t, c, l d c, ~ w o r k, ~ i n f o)$
call cgemlqt(side, trans, $m, n, k, m b, v, l d v, t, l d t, c, l d c$, work, info)

```
call zgemlqt(side, trans, m, n, k, mb, v, ldv, t, ldt, c, ldc, work, info)
```


Description

? gemlqt overwrites the general real m-by-n matrix C with

	side = 'L'	side = 'R'
trans $=$ ' N '	$Q^{*} C$	$C^{*} Q$
trans $=$ 'T'	$Q^{\top *} C$	$C^{*} Q^{\top}$
trans $=$ 'C'	$Q^{\mathrm{H} *} C$	$C^{*} Q^{H}$

where Q is a real or complex orthogonal matrix defined as the product of k elementary reflectors:
$Q=H(k) H(k-1) \ldots H(1)=I-V T V^{\top}$ for real flavors
or
$Q=H(k)^{\mathrm{H}} H(k-1)^{\mathrm{H}} \ldots H(1)^{\mathrm{H}}=I-V T V^{\mathrm{H}}$ for complex flavors
generated using the compact WY representation as returned by ?gelqt.
Q is of order m if side $=$ 'L' and of order n if side = 'R'.

Input Parameters

```
side
trans
CHARACTER*1.
If side= 'L': apply op \((Q)\) from the left;
if side= 'R': apply op \((Q)\) from the right.
CHARACTER*1.
If trans \(=\) ' N ': No transpose, \(\mathrm{op}(Q)=Q\);
if trans \(=\) ' \(T\) ': Transpose, op \((Q)=Q^{\top}\);
if trans= 'C': Transpose, op \((Q)=Q^{H}\).
```

m
INTEGER. The number of rows of the matrix $C . m \geq 0$.
INTEGER. The number of columns of the matrix $C . n \geq 0$.
INTEGER. The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ 'R', $n \geq k \geq 0$.
INTEGER. The block size used for the storage of T. $k \geq m b \geq 1$. This must be the same value of $m b$ used to generate T in ?gelqt.

REAL for sgemlqt
DOUBLE PRECISION for dgemlqt
COMPLEX for cgemlqt
COMPLEX*16 for zgemlqt

```
                            Array of size (ldv,m) if side = 'L' or (ldv,n) if side = 'R'. The i-th row
                        must contain the vector which defines the elementary reflector H(i), for i=
                        1,2,\ldots,k, as returned by ?gelqt in the first k rows of its array argument a.
                        INTEGER. The leading dimension of the array v. ldv\geq max (1,k).
REAL for sgemlqt
DOUBLE PRECISION for dgemlqt
COMPLEX for cgemlqt
COMPLEX*16 for zgemlqt
Array of size (ldt,k). The upper triangular factors of the block reflectors as
returned by ?gelqt, stored as a mb-by-k matrix.
INTEGER. The leading dimension of the array t. ldt\geqmb.
REAL for sgemlqt
DOUBLE PRECISION for dgemlqt
COMPLEX for cgemlqt
COMPLEX*16 for zgemlqt
Array of size (Idc,n). On entry, the m-by-n matrix C.
INTEGER. The leading dimension of the array c. Idc\geq max (1,m).
```


Output Parameters

c
work
info

On exit, c is overwritten by $\mathrm{op}(Q)^{*} C$ or $C^{*} \mathrm{op}(Q)$.
REAL for sgemlqt
DOUBLE PRECISION for dgemlqt
COMPLEX for cgemlqt
COMPLEX*16 for zgemlqt
Array. The size of work is $n^{*} m b$ if $s i d e=$ 'L', or $m^{*} m b$ if side $=$ 'R'.
info $=0$: successful exit.
info <0 : if info $=-i$, the i-th argument had an illegal value.

?orglq

Generates the real orthogonal matrix Q of the $L Q$
factorization formed by ?gelqf.

Syntax

```
call sorglq(m, n, k, a, lda, tau, work, lwork, info)
call dorglq(m, n, k, a, lda, tau, work, lwork, info)
call orglq(a, tau [,info])
```


Include Files

- mkl.fi, lapack.f90

Description

The routine generates the whole or part of n-by- n orthogonal matrix Q of the $L Q$ factorization formed by the routines gelqf. Use this routine after a call to sgelqf/dgelqf.
Usually Q is determined from the $L Q$ factorization of an p-by- n matrix A with $n \geq p$. To compute the whole matrix Q, use:

```
call ?orglq(n, n, p, a, lda, tau, work, lwork, info)
```

To compute the leading p rows of Q, which form an orthonormal basis in the space spanned by the rows of A, use:

```
call ?orglq(p, n, p, a, lda, tau, work, lwork, info)
```

To compute the matrix Q^{k} of the $L Q$ factorization of the leading k rows of A, use:

```
call ?orglq(n, n, k, a, lda, tau, work, lwork, info)
```

To compute the leading k rows of Q^{k}, which form an orthonormal basis in the space spanned by the leading k rows of A, use:

```
call ?orgqr(k, n, k, a, lda, tau, work, lwork, info)
```


Input Parameters

```
m
n
k
a, tau, work
Ida
lwork
INTEGER. The number of rows of \(Q\) to be computed
( \(0 \leq m \leq n\) ).
INTEGER. The order of the orthogonal matrix \(Q(n \geq m)\).
INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(0 \leq k \leq m)\).
```

a, tau, work

Ida
l work

REAL for sorglq
DOUBLE PRECISION for dorglq
Arrays: a(Ida,*) and tau(*) are the arrays returned by sgelqf/dgelqf.
The second dimension of a must be at least $\max (1, n)$.
The size of tau must be at least max $(1, k)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of a; at least $\max (1, m)$.
INTEGER. The size of the work array; at least max $(1, m)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of Iwork.

Output Parameters

a
work(1)
info

Overwritten by m leading rows of the n-by- n orthogonal matrix Q.
If info $=0$, on exit work (1) contains the minimum value of /work required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine orglq interface are the following:

```
a Holds the matrix A of size (m,n).
tau Holds the vector of length (k).
```


Application Notes

For better performance, try using $1 \mathrm{work}=m^{\star}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed Q differs from an exactly orthogonal matrix by a matrix E such that $\left||E|_{2}=O(\varepsilon) *\right||A|_{2}$, where ε is the machine precision.
The total number of floating-point operations is approximately $4{ }^{\star} m^{\star} n \star k-2 *(m+n) \star k^{2}+(4 / 3) * k^{3}$.
If $m=k$, the number is approximately $(2 / 3) * m^{2} *(3 n-m)$.
The complex counterpart of this routine is unglq.

?ormlq

Multiplies a real matrix by the orthogonal matrix Q of the $L Q$ factorization formed by ?gelqf.

Syntax

```
call sormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call dormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call ormlq(a, tau, c [,side] [,trans] [,info])
```


Include Files

- mkl.fi, lapack.f90

Description

The routine multiplies a real m-by- n matrix C by Q or Q^{T}, where Q is the orthogonal matrix Q of the $L Q$ factorization formed by the routine gelqf.
Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{\star} C, Q^{T \star} C$, $C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result on C).

Input Parameters

```
side
```

trans
m
n
k
a, c, tau, work

Ida
$1 d c$
lwork

CHARACTER*1. Must be either 'L' or 'R'.
If side $=$ 'L', Q or Q^{T} is applied to C from the left.
If side $=$ ' R ', Q or Q^{T} is applied to C from the right.
CHARACTER*1. Must be either 'N' or 'T'.
If trans $=$ ' N ', the routine multiplies C by Q.
If trans $=$ ' T ', the routine multiplies C by Q^{T}.
INTEGER. The number of rows in the matrix $C(m \geq 0)$.
INTEGER. The number of columns in $C(n \geq 0)$.
INTEGER. The number of elementary reflectors whose product defines the matrix Q. Constraints:
$0 \leq k \leq m$ if side $=$ 'L';
$0 \leq k \leq n$ if side $=$ 'R'.
REAL for sormlq
DOUBLE PRECISION for dormlq.
Arrays:
$a(I d a, *)$ and $\operatorname{tau}\left(^{*}\right)$ are arrays returned by ?gelqf.
The second dimension of a must be:
at least $\max (1, m)$ if side $=$ 'L';
at least $\max (1, n)$ if side $=$ ' R '.
The dimension of tau must be at least $\max (1, k)$.
$c(I d c, *)$ contains the $m-b y-n$ matrix C.
The second dimension of c must be at least max $(1, n)$
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a ; I d a \geq \max (1, k)$.
INTEGER. The leading dimension of $c ; I d c \geq \max (1, m)$.
INTEGER. The size of the work array. Constraints:

```
lwork\geq max(1, n) if side = 'L';
lwork\geq max(1, m) if side = 'R'.
```

If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

Output Parameters

```
C Overwritten by the product Q* C, Q Q* C, C* Q, or C* Q 'T (as specified by side
    and trans).
    If info = 0, on exit work(1) contains the minimum value of Iwork
    required for optimum performance. Use this Iwork for subsequent runs.
    INTEGER.
    If info = 0, the execution is successful.
    If info = -i, the i-th parameter had an illegal value.
```


LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine ormlq interface are the following:

a	Holds the matrix A of size (k, m).
tau	Holds the vector of length (k).
c	Holds the matrix C of size (m, n).
side	Must be 'L' or 'R'. The default value is ' L '.
trans	Must be 'N' or 'T'. The default value is ' N '.

Application Notes

For better performance, try using lwork $=n^{\star}$ blocksize (if side $=$ 'L') or lwork $=m^{\star} b l o c k s i z e ~(i f ~$ side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork= -1 .

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The complex counterpart of this routine is unmlq.

?gemlq

Multiples a matrix C by a real orthogonal or complex unitary matrix Q, as computed by ?gelq.

Description

The ? gemlq routine multiplies an m-by-n matrix C by $\operatorname{Op}(Q)$, where matrix Q is the factor from the LQ factorization of matrix A formed by ?gelq, and
$\operatorname{Op}(Q)=Q$, or
$O p(Q)=Q^{\top}$, or
$O p(Q)=Q^{H}$.

NOTE

You must use ?gelq for LQ factorization before calling ? gemlq. ?gemlq is not compatible with LQ factorization routines other than ?gelq.

For real flavors, C is real and Q is real orthogonal.
For complex flavors, C is complex and Q is complex unitary.
If matrix A is short and wide, a highly scalable algorithm is used to avoid communication overhead. Otherwise, ?ormlq or ?unmlq is used.

NOTE

An optimized version of ?gemlq is not available.

Input Parameters

```
side
trans
m
n
                                    CHARACTER*1.
                                    If side = 'L': apply Op(Q) from the left.
                                    If side = 'R'': apply Op(Q) from the right.
                                    CHARACTER*1.
                            If trans = 'N': No transpose, Op(Q) = Q.
                            If trans = 'T': Transpose, Op(Q) = Q'.
                            If trans = 'C': Conjugate transpose, Op(Q) = Q H
                            INTEGER. The number of rows of the matrix A. m\geq0.
INTEGER. The number of columns of the matrix \(C . n \geq 0\).
```

k
a

C
$1 d c$
I work

INTEGER. The number of elementary reflectors whose product defines the matrix Q .

If side $=$ 'L', $m \geq k \geq 0$.
if side $=$ 'R', $n \geq k \geq 0$.
REAL for sgemlq
DOUBLE PRECISION for dgemlq
COMPLEX for cgemlq
COMPLEX*16 for zgemlq
Array of size $(I d a, m)$ if side $=$ 'L', or $(I d a, n)$ if side $=$ 'R'.
Part of the data structure to represent Q as returned by ?gelq.
INTEGER . The leading dimension of the array a. $I d a \geq \max (1, k)$.
REAL for sgemlq
DOUBLE PRECISION for dgemlq
COMPLEX for cgemlq
COMPLEX*16 for zgemlq
Array, size (max $(5$, tsize)). Part of the data structure to represent Q as returned by ?gelq.

INTEGER. The size of the array t. tsize ≥ 5.
REAL for sgemlq
DOUBLE PRECISION for dgemlq
COMPLEX for cgemlq
COMPLEX*16 for zgemlq
Array, size $(I d c, n)$. On entry, a contains the m-by- n matrix C.
INTEGER. The leading dimension of the array $c .1 d c \geq \max (1, m)$.
INTEGER. The size of the array work.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array and returns this value as work (1); no error message related to lwork is issued by xerbla.

Output Parameters

c
work
On exit, c is overwritten by $\mathrm{Op}(Q)^{*} C$ or $C^{*} \mathrm{Op}(Q)$.
REAL for sgemlq
DOUBLE PRECISION for dgemlq
COMPLEX for cgemlq
COMPLEX*16 for zgemlq
Workspace array of size (max (1, 1 work)).

```
info INTEGER.
info = 0 indicates a successful exit.
info < 0: if info = -i, the i-th argument had an illegal value.
```

```
?unglq
Generates the complex unitary matrix Q of the LQ
factorization formed by ?gelqf.
```


Syntax

```
call cunglq(m, n, k, a, lda, tau, work, lwork, info)
```

call cunglq(m, n, k, a, lda, tau, work, lwork, info)
call zunglq(m, n, k, a, lda, tau, work, lwork, info)
call zunglq(m, n, k, a, lda, tau, work, lwork, info)
call unglq(a, tau [,info])

```
call unglq(a, tau [,info])
```


Include Files

- mkl.fi, lapack.f90

Description

The routine generates the whole or part of n-by- n unitary matrix Q of the $L Q$ factorization formed by the routines gelqf. Use this routine after a call to cgelqf/zgelqf.

Usually Q is determined from the $L Q$ factorization of an p-by- n matrix A with $n<p$. To compute the whole matrix Q, use:

```
call ?unglq(n, n, p, a, lda, tau, work, lwork, info)
```

To compute the leading p rows of Q, which form an orthonormal basis in the space spanned by the rows of A, use:

```
call ?unglq(p, n, p, a, lda, tau, work, lwork, info)
```

To compute the matrix Q^{k} of the $L Q$ factorization of the leading k rows of A, use:

```
call ?unglq(n, n, k, a, lda, tau, work, lwork, info)
```

To compute the leading k rows of Q^{k}, which form an orthonormal basis in the space spanned by the leading k rows of A, use:

```
call ?ungqr(k, n, k, a, lda, tau, work, lwork, info)
```


Input Parameters

m
$n \quad$ INTEGER. The order of the unitary matrix $Q(n \geq m)$.
$k \quad$ INTEGER. The number of elementary reflectors whose product defines the matrix $Q(0 \leq k \leq m)$.

COMPLEX for cunglq
DOUBLE COMPLEX for zunglq
Arrays: a(Ida,*) and tau(*) are the arrays returned by cgelqf/zgelqf. The second dimension of a must be at least max $(1, n)$.

Ida
l work

The dimension of tau must be at least $\max (1, k)$.
work is a workspace array, its dimension max (1, lwork).
Integer. The leading dimension of a; at least $\max (1, m)$.
integer. The size of the work array; at least max $(1, m)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to /work is issued by xerbla.
See Application Notes for the suggested value of /work.

Output Parameters

a
work (1)
info
Overwritten by m leading rows of the n-by- n unitary matrix Q.
If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine unglq interface are the following:

```
a Holds the matrix A of size (m,n).
tau
    Holds the vector of length (k).
```


Application Notes

For better performance, try using lwork $=m^{*}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed Q differs from an exactly unitary matrix by a matrix E such that $\left.\left||E| I_{2}=O(\varepsilon) *\right||A|\right|_{2}$, where ε is the machine precision.
The total number of floating-point operations is approximately $16 \star m^{\star} n^{\star} k-8^{\star}(m+n) \star k^{2}+(16 / 3) \star k^{3}$.

If $m=k$, the number is approximately $(8 / 3) \star m^{2} *(3 n-m)$.
The real counterpart of this routine is orglq.

?unmlq

Multiplies a complex matrix by the unitary matrix Q of the $L Q$ factorization formed by ?gelqf.

Syntax

```
call cunmlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call zunmlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call unmlq(a, tau, c [,side] [,trans] [,info])
```

Include Files

- mkl.fi, lapack.f90

Description

The routine multiplies a real m-by-n matrix C by Q or Q^{H}, where Q is the unitary matrix Q of the $L Q$ factorization formed by the routine gelqf.
Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{*} C, Q^{H *} C$, $C * Q$, or $C * Q^{H}$ (overwriting the result on C).

Input Parameters

side
trans
m
n
k
a, c, tau, work

CHARACTER*1. Must be either 'L' or 'R'.
If side $=$ 'L', Q or Q^{H} is applied to C from the left.
If side $=$ ' R^{\prime}, Q or Q^{H} is applied to C from the right.
CHARACTER*1. Must be either 'N' or 'C'.
If trans $=$ ' N ', the routine multiplies C by Q.
If trans $=$ ' C ', the routine multiplies C by Q^{H}.
INTEGER. The number of rows in the matrix $C(m \geq 0)$.
INTEGER. The number of columns in $C(n \geq 0)$.
INTEGER. The number of elementary reflectors whose product defines the matrix Q. Constraints:
$0 \leq k \leq m$ if side $=$ 'L';
$0 \leq k \leq n$ if side $=' R^{\prime}$.
COMPLEX for cunmlq
DOUBLE COMPLEX for zunmlq.
Arrays:
$a(I d a, *)$ and $\operatorname{tau}\left(^{*}\right)$ are arrays returned by ?gelqf.
The second dimension of a must be:

	```at least max(1,m) if side = 'L'; at least max(1,n) if side = 'R'.```
	The size of tau must be at least max(1,k).
	$c(l d c, *)$ contains the m-by-n matrix $C$.
	The second dimension of $c$ must be at least max $(1, n)$
	work is a workspace array, its dimension max (1, lwork).
Ida	INTEGER. The leading dimension of $a ; I d a \geq \max (1, k)$.
$1 d c$	INTEGER. The leading dimension of $c$; $I d c \geq \max (1, m)$.
lwork	INTEGER. The size of the work array. Constraints:
	I work $\geq \max (1, n)$ if side $=$ 'L';
	1 Work $\geq \max (1, m)$ if side $=$ 'R'.

If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of lwork.

## Output Parameters

C
Overwritten by the product $Q^{*} C, Q^{H *} C, C^{*} Q$, or $C^{*} Q^{H}$ (as specified by side and trans).

If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine unmlq interface are the following:

a	Holds the matrix $A$ of size $(k, m)$.
tau	Holds the vector of length $(k)$.
$c$	Holds the matrix $C$ of size $(m, n)$.
side	Must be 'L' or ' $R^{\prime}$ '. The default value is ' $L$ '.
trans	Must be ' $N$ ' or ' ' '. The default value is ' $N$ '.

## Application Notes

For better performance, try using lwork $=n^{*}$ blocksize (if side $=$ 'L') or lwork $=m^{\star}$ blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The real counterpart of this routine is ormlq.

```
?geqlf
Computes the QL factorization of a general m-by-n
matrix.
Syntax
```

```
call sgeqlf(m, n, a, lda, tau, work, lwork, info)
```

call sgeqlf(m, n, a, lda, tau, work, lwork, info)
call dgeqlf(m, n, a, lda, tau, work, lwork, info)
call dgeqlf(m, n, a, lda, tau, work, lwork, info)
call cgeqlf(m, n, a, lda, tau, work, lwork, info)
call cgeqlf(m, n, a, lda, tau, work, lwork, info)
call zgeqlf(m, n, a, lda, tau, work, lwork, info)
call zgeqlf(m, n, a, lda, tau, work, lwork, info)
call geqlf(a [, tau] [,info])

```
call geqlf(a [, tau] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine forms the $Q L$ factorization of a general $m$-by-n matrix $A$ (see Orthogonal Factorizations). No pivoting is performed.

The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of $\min (m, n)$ elementary reflectors. Routines are provided to work with $Q$ in this representation.

## NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

## Input Parameters

m
INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.

```
a, work
Ida
l work
```

REAL for sgeqle
DOUBLE PRECISION for dgeqlf
COMPLEX for cgeqlf
DOUBLE COMPLEX for zgeqlf.
Arrays:
Array $a(/ d a, *)$ contains the matrix $A$.
The second dimension of $a$ must be at least $\max (1, n)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a$; at least max $(1, m)$.
INTEGER. The size of the work array; at least max $(1, n)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.
See Application Notes for the suggested value of Iwork.

## Output Parameters

a
Overwritten on exit by the factorization data as follows:
if $m \geq n$, the lower triangle of the subarray $a(m-n+1: m, 1: n)$ contains the $n$ -by- $n$ lower triangular matrix $L$; if $m \leq n$, the elements on and below the ( $n$ $m$ )-th superdiagonal contain the $m$-by- $n$ lower trapezoidal matrix $L$; in both cases, the remaining elements, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors.

REAL for sgeqlf
DOUBLE PRECISION for dgeqle
COMPLEX for cgeqlf
DOUBLE COMPLEX for zgeqle.
Array, size at least $\max (1, \min (m, n))$. Contains scalar factors of the elementary reflectors for the matrix $Q$ (see Orthogonal Factorizations).

If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine geqlf interface are the following:

```
a
tau
Holds the matrix \(A\) of size \((m, n)\).
Holds the vector of length \(\min (m, n)\).
```


## Application Notes

For better performance, try using lwork $=n^{\star}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.
If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If you set $l$ work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set /work to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
Related routines include:

```
orgql to generate matrix Q (for real matrices);
ungql to generate matrix Q (for complex matrices);
ormql to apply matrix Q (for real matrices);
unmql to apply matrix Q (for complex matrices).
```

```
See Also
mkl_progress
```


## Matrix Storage Schemes

?orgal
Generates the real matrix $Q$ of the QL factorization
formed by ?geqle.

## Syntax

```
call sorgql(m, n, k, a, lda, tau, work, lwork, info)
call dorgql(m, n, k, a, lda, tau, work, lwork, info)
call orgql(a, tau [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine generates an $m$-by- $n$ real matrix $Q$ with orthonormal columns, which is defined as the last $n$ columns of a product of $k$ elementary reflectors $H(i)$ of order $m: Q=H(k)$ * $\ldots$ * $H(2) * H(1)$ as returned by the routines geqlf. Use this routine after a call to sgeqlf/dgeqlf.

## Input Parameters

```
m
n
k
a, tau, work
Ida
lwork
```

INTEGER. The number of rows of the matrix $Q(m \geq 0)$.
INTEGER. The number of columns of the matrix $Q(m \geq n \geq 0)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q(n \geq k \geq 0)$.

REAL for sorgql
DOUBLE PRECISION for dorgql
Arrays: $a(/ d a, *), \operatorname{tau}(*)$.
On entry, the $(n-k+i)$ th column of a must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by sgeqlf/dgeqlf in the last $k$ columns of its array argument $a$; tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by sgeqlf/dgeqlf;
The second dimension of $a$ must be at least $\max (1, n)$.
The size of tau must be at least $\max (1, k)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a$; at least max $(1, m)$.
INTEGER. The size of the work array; at least max $(1, n)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

a
work(1)
info
Overwritten by the last $n$ columns of the $m$-by- $m$ orthogonal matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this /work for subsequent runs.

INTEGER.

If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine orgql interface are the following:

a	Holds the matrix $A$ of size $(m, n)$.
tau	Holds the vector of length $(k)$.

## Application Notes

For better performance, try using lwork $=n^{\star}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The complex counterpart of this routine is ungql.
?ungql
Generates the complex matrix $Q$ of the QL
factorization formed by ?geqle.

## Syntax

```
call cungql(m, n, k, a, lda, tau, work, lwork, info)
call zungql(m, n, k, a, lda, tau, work, lwork, info)
call ungql(a, tau [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine generates an $m$-by- $n$ complex matrix $Q$ with orthonormal columns, which is defined as the last $n$ columns of a product of $k$ elementary reflectors $H(i)$ of order $m: Q=H(k) * \ldots * H(2) \star H(1)$ as returned by the routines geqlf/geqlf. Use this routine after a call to cgeqlf/zgeqlf.

## Input Parameters

m	INTEGER. The number of rows of the matrix $Q(m \geq 0)$.
$n$	INTEGER. The number of columns of the matrix $Q(m \geq n \geq 0)$.
k	INTEGER. The number of elementary reflectors whose product defines the matrix $Q(n \geq k \geq 0)$.
a, tau, work	COMPLEX for cungql
	DOUBLE COMPLEX for zungql
	Arrays: a(lda,*), tau(*), work(/work).
	On entry, the ( $n-k+i$ )th column of a must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by cgeqlf/zgeqlf in the last $k$ columns of its array argument $a$;

Ida
l work
tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by cgeqlf/zgeqlf;

The second dimension of $a$ must be at least $\max (1, n)$.
The size of tau must be at least max $(1, k)$.
work is a workspace array, its dimension max ( 1,1 work).
INTEGER. The leading dimension of $a$; at least $\max (1, m)$.
INTEGER. The size of the work array; at least max $(1, n)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

a
work(1)
info

Overwritten by the last $n$ columns of the $m$-by- $m$ unitary matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ungql interface are the following:
a Holds the matrix $A$ of size $(m, n)$.
tau Holds the vector of length $(k)$.

## Application Notes

For better performance, try using lwork $=n \star$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if Iwork is less than the minimal required value and is not equal to -1, then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The real counterpart of this routine is orgql.

## ?ormql

Multiplies a real matrix by the orthogonal matrix $Q$ of the QL factorization formed by ?geqle.

## Syntax

```
call sormql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call dormql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call ormql(a, tau, c [,side] [,trans] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine multiplies a real $m$-by-n matrix $C$ by $Q$ or $Q^{T}$, where $Q$ is the orthogonal matrix $Q$ of the $Q L$ factorization formed by the routine geqlf.
Depending on the parameters side and trans, the routine ormql can form one of the matrix products $Q^{\star} C_{\text {, }}$ $Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result over $C$ ).

Input Parameters
side
trans
m
$n$
k
a, tau, c, work

CHARACTER*1. Must be either 'L' or 'R'.
If side $=$ 'L', $Q$ or $Q^{T}$ is applied to $C$ from the left.
If side $=$ 'R', $Q$ or $Q^{T}$ is applied to $C$ from the right.
CHARACTER*1. Must be either 'N' or 'T'.
If trans $=$ ' $N$ ', the routine multiplies $C$ by $Q$.
If trans $=$ ' $T$ ', the routine multiplies $C$ by $Q^{T}$.
INTEGER. The number of rows in the matrix $C(m \geq 0)$.
INTEGER. The number of columns in $C(n \geq 0)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q$. Constraints:
$0 \leq k \leq m$ if side $=$ 'L';
$0 \leq k \leq n$ if side $=$ ' $R$ '.
REAL for sormql
DOUBLE PRECISION for dormql.
Arrays: $a(/ d a, *), \operatorname{tau}(*), c(/ d c, *)$.
On entry, the ith column of a must contain the vector which defines the elementary reflector $H_{i}$, for $i=1,2, \ldots, k$, as returned by sgeqlf/dgeqlf in the last $k$ columns of its array argument $a$.

The second dimension of $a$ must be at least max $(1, k)$.
tau(i) must contain the scalar factor of the elementary reflector $H_{i}$, as returned by sgeqlf/dgeqlf.

The size of tau must be at least max $(1, k)$.
$c(I d c, *)$ contains the $m$-by- $n$ matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work is a workspace array, its dimension max ( $1, ~ l$ work ).
INTEGER. The leading dimension of $a$;
if side $=$ 'L', lda $\geq \max (1, m)$;
if side $=$ 'R', lda $\geq \max (1, n)$.
INTEGER. The leading dimension of $c ; 1 d c \geq \max (1, m)$.
INTEGER. The size of the work array. Constraints:

```
lwork\geq max(1, n) if side = 'L';
lwork\geq max(1, m) if side = 'R'.
```

If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

c
work(1)
info
Overwritten by the product $Q^{\star} C, Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (as specified by side and trans).

If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ormql interface are the following:
a
Holds the matrix $A$ of size $(r, k)$.

$$
\begin{aligned}
& r=m \text { if side }=' L^{\prime} \\
& r=n \text { if side }=' R^{\prime}
\end{aligned}
$$

tau
C

Holds the vector of length $(k)$.
Holds the matrix $C$ of size $(m, n)$.
side Must be 'L' or 'R'. The default value is 'L'.
trans
Must be 'N' or 'T'. The default value is ' $N$ '.

## Application Notes

For better performance, try using lwork $=n *$ blocksize (if side $=$ 'L') or lwork $=m^{\star} b l o c k s i z e ~(i f ~$ side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set /work to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The complex counterpart of this routine is unmql.

## ?unmql

Multiplies a complex matrix by the unitary matrix $Q$ of the QL factorization formed by ? geqle.

## Syntax

```
call cunmql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call zunmql(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call unmql(a, tau, c [,side] [,trans] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine multiplies a complex $m$-by- $n$ matrix $C$ by $Q$ or $Q^{H}$, where $Q$ is the unitary matrix $Q$ of the $Q L$ factorization formed by the routine geqlf.

Depending on the parameters side and trans, the routine unmql can form one of the matrix products $Q^{*} C$, $Q^{H *} C, C^{*} Q$, or $C^{*} Q^{H}$ (overwriting the result over $C$ ).

## Input Parameters

side
trans
CHARACTER*1. Must be either 'L' or 'R'.
If side $=$ 'L', $Q$ or $Q^{H}$ is applied to $C$ from the left.
If side $=$ ' $\mathrm{R}^{\prime}, Q$ or $Q^{H}$ is applied to $C$ from the right.
CHARACTER*1. Must be either 'N' or 'C'.
If trans $=$ ' $N$ ', the routine multiplies $C$ by $Q$.

```
 If trans = 'C', the routine multiplies C by QH.
 INTEGER. The number of rows in the matrix C (m\geq0).
 INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
 INTEGER. The number of elementary reflectors whose product defines the
 matrix Q. Constraints:
 0 \leqk\leqm if side = 'L';
 0\leqk\leqn if side = 'R'.
COMPLEX for cunmql
DOUBLE COMPLEX for zunmql.
Arrays: a(Ida,*),tau(*), c(/dc,*), work(/work).
On entry, the \(i\)-th column of a must contain the vector which defines the elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by cgeqlf/zgeqlf in the last \(k\) columns of its array argument \(a\).
The second dimension of \(a\) must be at least max \((1, k)\).
tau(i) must contain the scalar factor of the elementary reflector \(H(i)\), as returned by cgeqlf/zgeqlf.
The size of tau must be at least max \((1, k)\).
\(c(I d c, *)\) contains the \(m\)-by- \(n\) matrix \(C\).
The second dimension of \(c\) must be at least \(\max (1, n)\)
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, n)\).
INTEGER. The leading dimension of \(c ; l d c \geq \max (1, m)\).
INTEGER. The size of the work array. Constraints:
lwork \(\geq \max (1, n)\) if side \(=\) 'L';
lwork \(\geq \max (1, m)\) if side \(=\) 'R'.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.
```

See Application Notes for the suggested value of Iwork.

## Output Parameters

C
work(1)
info

Overwritten by the product $Q^{*} C, Q^{H *} C, C^{*} Q$, or $C^{*} Q^{H}$ (as specified by side and trans).

If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.

If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine unmql interface are the following:

```
a Holds the matrix A of size (r,k).
 r = m if side = 'L'.
r = n if side = 'R'.
tau Holds the vector of length (k).
C Holds the matrix C of size (}m,n)\mathrm{ .
side Must be 'L' or 'L'. The default value is 'L'.
trans Must be 'N' or 'C'. The default value is 'N'.
```


## Application Notes

 side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The real counterpart of this routine is ormql.

```
?gerqf
Computes the RQ factorization of a general m-by-n
matrix.
```


## Syntax

```
call sgerqf(m, n, a, lda, tau, work, lwork, info)
```

call sgerqf(m, n, a, lda, tau, work, lwork, info)
call dgerqf(m, n, a, lda, tau, work, lwork, info)
call dgerqf(m, n, a, lda, tau, work, lwork, info)
call cgerqf(m, n, a, lda, tau, work, lwork, info)
call cgerqf(m, n, a, lda, tau, work, lwork, info)
call zgerqf(m, n, a, lda, tau, work, lwork, info)
call zgerqf(m, n, a, lda, tau, work, lwork, info)
call gerqf(a [, tau] [,info])

```
call gerqf(a [, tau] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine forms the $R Q$ factorization of a general $m$-by-n matrix $A$ (see Orthogonal Factorizations). No pivoting is performed.

The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of min $(m, n)$ elementary reflectors. Routines are provided to work with $Q$ in this representation.

## NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

## Input Parameters

```
m
 INTEGER. The number of rows in the matrix A(m\geq0).
 INTEGER. The number of columns in A(n\geq0).
 REAL for sgerqf
 DOUBLE PRECISION for dgerqf
 COMPLEX for cgerqf
 DOUBLE COMPLEX for zgerqf.
```


## Arrays:

```
Array \(a(I d a, *)\) contains the \(m\)-by-n matrix \(A\).
The second dimension of \(a\) must be at least max \((1, n)\).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
INTEGER. The size of the work array;
lwork \(\geq \max (1, m)\).
```

If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

a
Overwritten on exit by the factorization data as follows:
if $m \leq n$, the upper triangle of the subarray
$a(1: m, n-m+1: n)$ contains the $m$-by- $m$ upper triangular matrix $R$;
if $m \geq n$, the elements on and above the ( $m-n$ )th subdiagonal contain the $m$ -by- $n$ upper trapezoidal matrix $R$;
in both cases, the remaining elements, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of $\min (m, n)$ elementary reflectors.

REAL for sgerqf
DOUBLE PRECISION for dgerqf
COMPLEX for cgerqf
DOUBLE COMPLEX for zgerqf.
Array, size at least $\max (1, \min (m, n))$. (See Orthogonal Factorizations.)
Contains scalar factors of the elementary reflectors for the matrix $Q$.
work(1)
info
If info $=0$, on exit work (1) contains the minimum value of /work required for optimum performance.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gerqf interface are the following:
a Holds the matrix $A$ of size $(m, n)$.
tau Holds the vector of length $\min (m, n)$.

## Application Notes

For better performance, try using lwork $=m^{\star}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

Related routines include:

```
orgrq to generate matrix Q (for real matrices);
ungrq to generate matrix Q (for complex matrices);
ormrq to apply matrix Q (for real matrices);
```

```
unmrq to apply matrix Q (for complex matrices).
```


## See Also

mkl_progress
Matrix Storage Schemes

## ?orgra

Generates the real matrix $Q$ of the $R Q$ factorization formed by ?gerqf.

## Syntax

```
call sorgrq(m, n, k, a, lda, tau, work, lwork, info)
call dorgrq(m, n, k, a, lda, tau, work, lwork, info)
call orgrq(a, tau [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine generates an $m$-by- $n$ real matrix with orthonormal rows, which is defined as the last $m$ rows of a product of $k$ elementary reflectors $H(i)$ of order $n: Q=H(1) * H(2) * \ldots * H(k)$ as returned by the routines gerqf. Use this routine after a call to sgerqf/dgerqf.

## Input Parameters

$m$
$n$
$k$
a, tau, work

Ida
1 work

INTEGER. The number of rows of the matrix $Q(m \geq 0)$.
INTEGER. The number of columns of the matrix $Q(n \geq m)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q(m \geq k \geq 0)$.

REAL for sorgrq
DOUBLE PRECISION for dorgrq
Arrays: a(Ida,*), tau(*).
On entry, the ( $m-k+i$ )-th row of a must contain the vector which defines the elementary reflector $H$ ( $i$ ), for $i=1,2, \ldots, k$, as returned by sgerqf/ dgerqf in the last $k$ rows of its array argument $a$;
tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by sgerqf/dgerqf;
The second dimension of $a$ must be at least $\max (1, n)$.
The size of tau must be at least max $(1, k)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a$; at least max $(1, m)$.
INTEGER. The size of the work array; at least max $(1, m)$.

If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

a
work(1)
info

Overwritten by the last $m$ rows of the $n$-by- $n$ orthogonal matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine orgrq interface are the following:
$a \quad$ Holds the matrix $A$ of size $(m, n)$.
tau Holds the vector of length $(k)$.

## Application Notes

For better performance, try using lwork $=m^{\star}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The complex counterpart of this routine is ungrq.

## ?ungrq

Generates the complex matrix $Q$ of the $R Q$
factorization formed by ?gerqf.

## Syntax

```
call cungrq(m, n, k, a, lda, tau, work, lwork, info)
call zungrq(m, n, k, a, lda, tau, work, lwork, info)
```

```
call ungrq(a, tau [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine generates an $m$-by- $n$ complex matrix with orthonormal rows, which is defined as the last $m$ rows of a product of $k$ elementary reflectors $H(i)$ of order $n$ : $Q=H(1)^{H *} H(2)^{H *} \ldots{ }^{*} H(k)^{H}$ as returned by the routines gerqf. Use this routine after a call to cgerqf/zgerqf.

## Input Parameters

```
m
n
k
a, tau, work
```

Ida
lwork

INTEGER. The number of rows of the matrix $Q(m \geq 0)$.
INTEGER. The number of columns of the matrix $Q(n \geq m)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q(m \geq k \geq 0)$.

REAL for cungrq
DOUBLE PRECISION for zungrq
Arrays: a(Ida,*), tau(*), work(Iwork).
On entry, the $(m-k+i)$ th row of a must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by cgerqf/ zgerqf in the last $k$ rows of its array argument $a$;
tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by cgerqf/zgerqf;

The second dimension of $a$ must be at least max $(1, n)$.
The size of tau must be at least max $(1, k)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a$; at least max $(1, m)$.
INTEGER. The size of the work array; at least max $(1, m)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of Iwork.

## Output Parameters

a
work(1)
info

Overwritten by the $m$ last rows of the $n$-by- $n$ unitary matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.

If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ungrq interface are the following:

```
a Holds the matrix A of size (m,n).
tau Holds the vector of length (k).
```


## Application Notes

For better performance, try using lwork $=m^{\star}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The real counterpart of this routine is orgrq.

```
?ormrq
Multiplies a real matrix by the orthogonal matrix Q of
the RQ factorization formed by ?gerqf.
Syntax
call sormrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call dormrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call ormrq(a, tau, c [,side] [,trans] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine multiplies a real $m$-by- $n$ matrix $C$ by $Q$ or $Q^{T}$, where $Q$ is the real orthogonal matrix defined as a product of $k$ elementary reflectors $H_{i}: Q=H_{1} H_{2} \ldots H_{k}$ as returned by the $R Q$ factorization routine gerqf.
Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{\star} C, Q^{T \star} C$, $C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result over $C$ ).

## Input Parameters

trans
m
n
k
a, tau, c, work

Ida
$1 d C$
l work

CHARACTER*1. Must be either 'L' or 'R'.
If side $=$ 'L', $Q$ or $Q^{T}$ is applied to $C$ from the left.
If side $=$ ' $\mathrm{R}^{\prime}, Q$ or $Q^{T}$ is applied to $C$ from the right.
CHARACTER*1. Must be either 'N' or 'T'.
If trans $=$ ' $N$ ', the routine multiplies $C$ by $Q$.
If trans $=$ ' $T$ ', the routine multiplies $C$ by $Q^{T}$.
INTEGER. The number of rows in the matrix $C(m \geq 0)$.
INTEGER. The number of columns in $C(n \geq 0)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q$. Constraints:
$0 \leq k \leq m$, if side $=$ 'L';
$0 \leq k \leq n$, if side $=$ ' $\mathrm{R}^{\prime}$.
REAL for sormrq
DOUBLE PRECISION for dormrq.
Arrays: $a(/ d a, *), \operatorname{tau}(*), c\left(/ d c,{ }^{*}\right)$.
On entry, the $i$ th row of a must contain the vector which defines the elementary reflector $H_{i}$, for $\mathrm{i}=1,2, \ldots, k$, as returned by sgerqf/dgerqf in the last $k$ rows of its array argument $a$.
The second dimension of $a$ must be at least $\max (1, m)$ if side $=$ 'L', and at least $\max (1, n)$ if side $=$ ' $R$ '.
tau(i) must contain the scalar factor of the elementary reflector $H_{i}$, as returned by sgerqf/dgerqf.
The size of tau must be at least max $(1, k)$.
$c(I d c, *)$ contains the $m$-by- $n$ matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work is a workspace array, its dimension max ( 1,1 work).
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, k)$.
INTEGER. The leading dimension of $c ; 1 d c \geq \max (1, m)$.
INTEGER. The size of the work array. Constraints:

```
lwork\geq max(1, n) if side = 'L';
lwork\geq max(1, m) if side = 'R'.
```

If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of Iwork.

## Output Parameters

c
work(1)
info

Overwritten by the product $Q^{\star} C, Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (as specified by side and trans).

If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ormrq interface are the following:

a	Holds the matrix $A$ of size $(k, m)$.
tau	Holds the vector of length $(k)$.
c	Holds the matrix $C$ of size $(m, n)$.
side	Must be 'L' or 'R'. The default value is ' L '.
trans	Must be ' $N$ ' or ' T '. The default value is ' N '.

## Application Notes

For better performance, try using lwork $=n \star$ blocksize (if side $=$ 'L') or lwork $=m^{\star}$ blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The complex counterpart of this routine is unmrq.

## ?unmrq

Multiplies a complex matrix by the unitary matrix $Q$ of the $R Q$ factorization formed by ?gerqf.

Syntax

```
call cunmrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
```

```
call zunmrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call unmrq(a, tau, c [,side] [,trans] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine multiplies a complex m-by-n matrix $C$ by $Q$ or $Q^{H}$, where $Q$ is the complex unitary matrix defined as a product of $k$ elementary reflectors $H(i)$ of order $n: Q=H(1)^{H_{\star}} H(2)^{H_{\star}} \ldots{ }^{\star} H(k)^{H}$ as returned by the $R Q$ factorization routine gerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{*} C, Q^{H *} C$, $C * Q$, or $C^{*} Q^{H}$ (overwriting the result over $C$ ).

## Input Parameters

side
trans
m
n
k
a, tau, c, work

CHARACTER*1. Must be either 'L' or 'R'.
If side $=$ 'L', $Q$ or $Q^{H}$ is applied to $C$ from the left.
If side $=$ ' $\mathrm{R}^{\prime}, Q$ or $Q^{H}$ is applied to $C$ from the right.
CHARACTER*1. Must be either ' N ' or ' C '.
If trans $=$ ' $N$ ', the routine multiplies $C$ by $Q$.
If trans $={ }^{\prime} \mathrm{C}$ ', the routine multiplies $C$ by $Q^{H}$.
INTEGER. The number of rows in the matrix $C(m \geq 0)$.
INTEGER. The number of columns in $C(n \geq 0)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q$. Constraints:
$0 \leq k \leq m$, if side $=$ 'L';
$0 \leq k \leq n$, if side $=$ ' $\mathrm{R}^{\prime}$.
COMPLEX for cunmrq
DOUBLE COMPLEX for zunmrq.
Arrays: a(Ida,*), tau(*), c(Idc,*), work(/work).
On entry, the ith row of a must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by cgerqf/zgerqf in the last $k$ rows of its array argument $a$.

The second dimension of a must be at least max $(1, m)$ if $s i d e=L^{\prime}$ ', and at least $\max (1, n)$ if side $=' R$ '.
tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by cgerqf/zgerqf.

The size of tau must be at least max( $1, k)$.
$c(I d c, *)$ contains the $m$-by- $n$ matrix $C$.
The second dimension of $c$ must be at least max $(1, n)$
work is a workspace array, its dimension max (1, lwork).

Ida
Idc
lwork

INTEGER. The leading dimension of $a ; I d a \geq \max (1, k)$.
INTEGER. The leading dimension of $c ; I d c \geq \max (1, m)$.
INTEGER. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side $=$ 'L';
lwork $\geq \max (1, m)$ if side $=$ 'R'.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

c
work(1)
info

Overwritten by the product $Q^{*} C, Q^{H *} C, C^{*} Q$, or $C^{*} Q^{H}$ (as specified by side and trans).

If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine unmrq interface are the following:

a	Holds the matrix $A$ of size $(k, m)$.
tau	Holds the vector of length $(k)$.
$C$	Holds the matrix $C$ of size $(m, n)$.
side	Must be 'L' or ' $R$ '. The default value is ' L '.
trans	Must be ' $N$ ' or ' $C$ '. The default value is ' $N$ '.

## Application Notes

For better performance, try using lwork $=n \star$ blocksize (if side $=$ 'L') or lwork $=m^{\star} b l o c k s i z e ~(i f ~$ side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The real counterpart of this routine is ormrq.
?tzrzf
Reduces the upper trapezoidal matrix $A$ to upper triangular form.

Syntax

```
call stzrzf(m, n, a, lda, tau, work, lwork, info)
call dtzrzf(m, n, a, lda, tau, work, lwork, info)
call ctzrzf(m, n, a, lda, tau, work, lwork, info)
call ztzrzf(m, n, a, lda, tau, work, lwork, info)
call tzrzf(a [, tau] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine reduces the $m$-by- $n(m \leq n)$ real/complex upper trapezoidal matrix $A$ to upper triangular form by means of orthogonal/unitary transformations. The upper trapezoidal matrix $A=[A 1 A 2]=\left[A_{1: m, 1: m}, A_{1: m}, m\right.$ $+1: n]$ is factored as

```
A = [RO]*Z,
```

where $Z$ is an $n$-by- $n$ orthogonal/unitary matrix, $R$ is an $m$-by- $m$ upper triangular matrix, and 0 is the $m$-by( $n-m$ ) zero matrix.

See larz that applies an elementary reflector returned by ?tzrzf to a general matrix.
The ?tzrzf routine replaces the deprecated ?tzrqf routine.

## Input Parameters

m
n
a, work

INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq m)$.
REAL for stzrzf
DOUBLE PRECISION for dtzrzf
COMPLEX for ctzrzf
DOUBLE COMPLEX for ztzrzf.
Arrays: a(Ida,*) ,work(lwork) .

The leading $m$-by- $n$ upper trapezoidal part of the array a contains the matrix $A$ to be factorized.

The second dimension of $a$ must be at least max $(1, n)$. work is a workspace array, its dimension max (1, lwork).

INTEGER. The leading dimension of $a$; at least max $(1, m)$.
INTEGER. The size of the work array;
lwork $\geq \max (1, m)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

a
Overwritten on exit by the factorization data as follows:
the leading $m$-by- $m$ upper triangular part of a contains the upper triangular matrix $R$, and elements $m+1$ to $n$ of the first $m$ rows of $a$, with the array tau, represent the orthogonal matrix $Z$ as a product of $m$ elementary reflectors.

REAL for stzrzf
DOUBLE PRECISION for dtzrzf
COMPLEX for ctzrzf
DOUBLE COMPLEX for ztzrzf.
Array, size at least max $(1, m)$. Contains scalar factors of the elementary reflectors for the matrix $Z$.

If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine tzrzf interface are the following:

## a

Holds the matrix $A$ of size $(m, n)$.
tau
Holds the vector of length ( $m$ ).

## Application Notes

The factorization is obtained by Householder's method. The $k$-th transformation matrix, $Z(k)$, which is used to introduce zeros into the ( $m-k+1$ )-th row of $A$, is given in the form

where for real flavors

$$
T(k)=I-t a u^{*} u(k)^{*} u(k)^{T}, \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
$$

and for complex flavors

$$
T(k)=I-t a u^{*} u(k)^{*} u(k)^{H}, \quad u(k)=\left[\begin{array}{c}
0 \\
z(k)
\end{array}\right]
$$

tau is a scalar and $z(k)$ is an l-element vector. tau and $z(k)$ are chosen to annihilate the elements of the $k$-th row of $A 2$.
The scalar tau is returned in the $k$-th element of tau and the vector $u(k)$ in the $k$-th row of $A$, such that the elements of $z(k)$ are stored in $a(k, m+1), \ldots, a(k, n)$.
The elements of $R$ are returned in the upper triangular part of $A$.
The matrix $Z$ is given by
$Z=Z(1) * Z(2) * \ldots * Z(m)$.

For better performance, try using lwork $=m^{\star}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

Related routines include:

```
ormrz
unmrz
 to apply matrix Q (for real matrices)
 to apply matrix Q (for complex matrices).
```


## ?ormrz

Multiplies a real matrix by the orthogonal matrix
defined from the factorization formed by ?tzrzf.
Syntax

```
call sormrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)
call dormrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)
call ormrz(a, tau, c, l [, side] [,trans] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The ?ormrz routine multiplies a real $m$-by- $n$ matrix $C$ by $Q$ or $Q^{T}$, where $Q$ is the real orthogonal matrix defined as a product of $k$ elementary reflectors $H(i)$ of order $n$ : $Q=H(1) * H(2) * \ldots * H(k)$ as returned by the factorization routine tzrzf .

Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{\star} C, Q^{T \star} C$, $C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result over $C$ ).
The matrix $Q$ is of order $m$ if side $=$ 'L' and of order $n$ if side = 'R'.
The ?ormrz routine replaces the deprecated ?latzm routine.

## Input Parameters

side
trans

CHARACTER*1. Must be either 'L' or 'R'.
If side $=$ 'L', $Q$ or $Q^{T}$ is applied to $C$ from the left.
If side $=$ 'R', $Q$ or $Q^{T}$ is applied to $C$ from the right.
CHARACTER*1. Must be either 'N' or 'T'.
m

If trans $=$ ' $N$ ', the routine multiplies $C$ by $Q$.
If trans $=$ ' $T$ ', the routine multiplies $C$ by $Q^{T}$.
INTEGER. The number of rows in the matrix $C(m \geq 0)$.
INTEGER. The number of columns in $C(n \geq 0)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q$. Constraints:
$0 \leq k \leq m$, if side $=$ 'L';
$0 \leq k \leq n$, if side $=$ ' $\mathrm{R}^{\prime}$.
INTEGER.
The number of columns of the matrix $A$ containing the meaningful part of the Householder reflectors. Constraints:
$0 \leq 1 \leq m$, if side $=$ 'L';
$0 \leq 1 \leq n$, if side $=$ ' $\mathrm{R}^{\prime}$.
REAL for sormrz
DOUBLE PRECISION for dormrz.
Arrays: a(Ida,*), tau(*), c(/dc,*).
On entry, the ith row of a must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by stzrzf/dtzrzf in the last $k$ rows of its array argument $a$.

The second dimension of a must be at least $\max (1, m)$ if side $=$ 'L', and at least $\max (1, n)$ if side $=$ ' R '.
tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by stzrzf/dtzrzf.

The size of tau must be at least max $(1, k)$.
$c(I d c, *)$ contains the $m$-by- $n$ matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work is a workspace array, its dimension max ( $1, ~ 1$ work).
INTEGER. The leading dimension of $a ; I d a \geq \max (1, k)$.
INTEGER. The leading dimension of $c ; I d c \geq \max (1, m)$.
INTEGER. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side $=$ 'L';
lwork $\geq \max (1, m)$ if side $=$ 'R'.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

c
work(1)
info

Overwritten by the product $Q^{\star} C, Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (as specified by side and trans).

If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ormrz interface are the following:

a	Holds the matrix $A$ of size $(k, m)$.
tau	Holds the vector of length $(k)$.
$c$	Holds the matrix $C$ of size $(m, n)$.
side	Must be 'L' or 'R'. The default value is 'L'.
trans	Must be 'N' or 'T'. The default value is 'N'.

## Application Notes

For better performance, try using lwork $=n \star$ blocksize (if side $=$ 'L') or lwork $=m^{\star}$ blocksize (if side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The complex counterpart of this routine is unmrz.

## ?unmrz

Multiplies a complex matrix by the unitary matrix
defined from the factorization formed by ?tzrzf.
Syntax

```
call cunmrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)
```

```
call zunmrz(side, trans, m, n, k, l, a, lda, tau, c, ldc, work, lwork, info)
call unmrz(a, tau, c, l [,side] [,trans] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine multiplies a complex $m$-by- $n$ matrix $C$ by $Q$ or $Q^{H}$, where $Q$ is the unitary matrix defined as a product of $k$ elementary reflectors $H(i)$ :
$Q=H(1)^{H_{\star}} H(2)^{H_{\star}} \ldots .^{\star} H(k)^{H}$ as returned by the factorization routine tzrzf.
Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{*} C, Q^{H *} C$, $C * Q$, or $C * Q^{H}$ (overwriting the result over $C$ ).

The matrix $Q$ is of order $m$ if side $=$ 'L' and of order $n$ if side $=$ 'R'.

## Input Parameters

side
trans
m
$n$
k

1
a, tau, c, work

CHARACTER*1. Must be either 'L' or 'R'.
If side $=$ 'L', $Q$ or $Q^{H}$ is applied to $C$ from the left.
If side $=$ ' R ', $Q$ or $Q^{H}$ is applied to $C$ from the right.
CHARACTER*1. Must be either 'N' or 'C'.
If trans $=$ ' $N$ ', the routine multiplies $C$ by $Q$.
If trans $=$ ' C', the routine multiplies $C$ by $Q^{H}$.
INTEGER. The number of rows in the matrix $C(m \geq 0)$.
INTEGER. The number of columns in $C(n \geq 0)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q$. Constraints:
$0 \leq k \leq m$, if side $=$ 'L';
$0 \leq k \leq n$, if side $=$ ' $\mathrm{R}^{\prime}$.
INTEGER.
The number of columns of the matrix $A$ containing the meaningful part of the Householder reflectors. Constraints:
$0 \leq l \leq m$, if side $=$ 'L';
$0 \leq l \leq n$, if side $=$ ' $\mathrm{R}^{\prime}$.
COMPLEX for cunmrz
DOUBLE COMPLEX for zunmrz.
Arrays: a(Ida,*), tau(*), c(Idc,*), work(/work).
On entry, the ith row of a must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ctzrzf/ztzrzf in the last $k$ rows of its array argument $a$.

The second dimension of a must be at least $\max (1, m)$ if side $=$ 'L', and at least $\max (1, n)$ if side $=$ ' R '.
tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by ctzrzf/ztzrzf.

The size of tau must be at least $\max (1, k)$.
$c(I d c, *)$ contains the $m$-by- $n$ matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, k)$.
INTEGER. The leading dimension of $c ; l d c \geq \max (1, m)$.
INTEGER. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side $=$ 'L';
lwork $\geq \max (1, m)$ if side $=$ 'R'.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

c
work(1)
info
Overwritten by the product $Q^{*} C, Q^{H *} C, C^{*} Q$, or $C^{*} Q^{H}$ (as specified by side and trans).

If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine unmrz interface are the following:

a	Holds the matrix $A$ of size $(k, m)$.
tau	Holds the vector of length $(k)$.
C	Holds the matrix $C$ of size $(m, n)$.
side	Must be 'L' or 'R'. The default value is ' L '.
trans	Must be ' $N$ ' or ' $C$ '. The default value is ' $N$ '.

## Application Notes

For better performance, try using lwork $=n *$ blocksize (if side $=$ 'L') or lwork $=m^{\star} b l o c k s i z e ~(i f ~$ side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if Iwork is less than the minimal required value and is not equal to -1, then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The real counterpart of this routine is ormrz.

```
?ggqrf
Computes the generalized QR factorization of two
matrices.
```

Syntax

```
call sggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)
call dggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)
call cggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)
call zggqrf(n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)
call ggqrf(a, b [,taua] [,taub] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine forms the generalized $Q R$ factorization of an $n$-by-m matrix $A$ and an $n$-by- $p$ matrix $B$ as $A=$ $Q^{\star} R, B=Q^{\star} T^{\star} Z$, where $Q$ is an $n$-by-n orthogonal/unitary matrix, $Z$ is a $p$-by- $p$ orthogonal/unitary matrix, and $R$ and $T$ assume one of the forms:

$$
R=\begin{gathered}
m\left(\begin{array}{c}
m \\
R_{1 l} \\
0
\end{array}\right), \quad \text { if } n \geq m
\end{gathered}
$$

or

$$
R=n \begin{array}{cr}
n & m-n \\
\left(R_{11}\right. & \left.R_{12}\right)
\end{array} \quad \text { if } n<m
$$

where $R_{11}$ is upper triangular, and

$$
\begin{aligned}
& p-n \quad n \\
& T=n\left(0 \quad T_{12}\right), \text { if } n \leq p, \\
& P \\
& T=n-p\left(\begin{array}{l}
T_{11} \\
p \\
T_{21}
\end{array}\right) \quad, \quad \text { if } n>p,
\end{aligned}
$$

where $T_{12}$ or $T_{21}$ is a $p$-by- $p$ upper triangular matrix.
In particular, if $B$ is square and nonsingular, the $G Q R$ factorization of $A$ and $B$ implicitly gives the $Q R$ factorization of $B^{-1} A$ as:
$B^{-1 \star} A=Z^{T \star}\left(T^{-1 \star} R\right)$ (for real flavors) or $B^{-1 \star} A=Z^{H_{\star}}\left(T^{-1 \star} R\right)$ (for complex flavors).

## Input Parameters

$n$
$m$
$p$
$a, b$, work

Ida

INTEGER. The number of rows of the matrices $A$ and $B(n \geq 0)$.
INTEGER. The number of columns in $A(m \geq 0)$.
INTEGER. The number of columns in $B(p \geq 0)$.
REAL for sggqrf
DOUBLE PRECISION for dggqrf
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.
Arrays: $a(/ d a, *)$ contains the matrix $A$.
The second dimension of $a$ must be at least $\max (1, m)$.
$b(I d b, *)$ contains the matrix $B$.
The second dimension of $b$ must be at least max $(1, p)$.
work is a workspace array, its dimension max ( 1,1 work).
INTEGER. The leading dimension of $a$; at least max $(1, n)$.

1 db
lwork

INTEGER. The leading dimension of $b$; at least max $(1, n)$.
INTEGER. The size of the work array; must be at least max $(1, n, m, p)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

$a, b$
taua, taub
work(1)
info
Overwritten by the factorization data as follows:
on exit, the elements on and above the diagonal of the array a contain the $\min (n, m)$-by- $m$ upper trapezoidal matrix $R$ ( $R$ is upper triangular if $n \geq m$ ); the elements below the diagonal, with the array taua, represent the orthogonal/ unitary matrix $Q$ as a product of $\min (n, m)$ elementary reflectors ;
if $n \leq p$, the upper triangle of the subarray $b(1: n, p-n+1: p)$ contains the $n$ -by-n upper triangular matrix $T$;
if $n>p$, the elements on and above the ( $n-p$ )th subdiagonal contain the $n$ -by- $p$ upper trapezoidal matrix $T$; the remaining elements, with the array taub, represent the orthogonal/unitary matrix $Z$ as a product of elementary reflectors.

REAL for sggqrf
DOUBLE PRECISION for dggqrf
COMPLEX for cggqrf
DOUBLE COMPLEX for zggqrf.
Arrays, size at least $\max (1, \min (n, m))$ for taua and at least max (1, $\min (n, p))$ for taub. The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix $Q$.
The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix $Z$.

If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine ggqrf interface are the following:
a
Holds the matrix $A$ of size $(n, m)$.
Holds the matrix $B$ of size $(n, p)$.

```
taua Holds the vector of length min}(n,m)
taub Holds the vector of length min (}n,p)\mathrm{ .
```


## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(1) H(2) \ldots H(k)$, where $k=\min (\mathrm{n}, \mathrm{m})$.
Each $H(\mathrm{i})$ has the form
$H(i)=I-\tau_{a}{ }^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-\tau_{a}{ }^{\star} V^{\star} V^{H}$ for complex flavors,
where $\tau_{a}$ is a real/complex scalar, and $v$ is a real/complex vector with $v_{j}=0$ for $1 \leq j \leq i-1, v_{i}=1$.
On exit, fori $+1 \leq j \leq n, v_{j}$ is stored in $a\left(i+1: n\right.$, i) and $T_{a}$ is stored in taua(i)
The matrix $Z$ is represented as a product of elementary reflectors
$Z=H(1) H(2) \ldots H(k)$, where $k=\min (\mathrm{n}, \mathrm{p})$.
Each $H(\mathrm{i})$ has the form
$H(i)=I-\tau_{b}{ }^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-\tau_{b}{ }^{\star} V^{\star} V^{H}$ for complex flavors,
where $\tau_{b}$ is a real/complex scalar, and $v$ is a real/complex vector with $v_{p-k+1}=1, v_{j}=0$ for $p-k+1 \leq j \leq p-$ 1, .

On exit, for $1 \leq j \leq p-k+i-1, v_{j}$ is stored in $b(n-k+i, 1: p-k+i-1)$ and $T_{b}$ is stored in taub(i).
For better performance, try using 1 work $\geq \max (n, m, p) * \max (n b 1, n b 2, n b 3)$, where $n b 1$ is the optimal blocksize for the $Q R$ factorization of an $n$-by- $m$ matrix, $n b 2$ is the optimal blocksize for the $R Q$ factorization of an $n$-by- $p$ matrix, and $n b 3$ is the optimal blocksize for a call of ormqr/unmqr.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set
lwork $=-1$.
If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set $l$ work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

## ?ggrqf <br> Computes the generalized $R Q$ factorization of two matrices.

## Syntax

```
call sggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
call dggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
call cggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
call zggrqf (m, p, n, a, lda, taua, b, ldb, taub, work, lwork, info)
```

```
call ggrqf(a, b [,taua] [,taub] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine forms the generalized $R Q$ factorization of an $m$-by-n matrix $A$ and an $p$-by-n matrix $B$ as $A=$ $R^{\star} Q, B=Z^{\star} T^{\star} Q$, where $Q$ is an $n$-by- $n$ orthogonal/unitary matrix, $Z$ is a $p$-by- $p$ orthogonal/unitary matrix, and $R$ and $T$ assume one of the forms:

$$
\left.R=\underset{m}{m} \begin{array}{cc}
n-m & m \\
(0 & R_{12}
\end{array}\right), \quad \text { if } m \leq n
$$

or

$$
\begin{gathered}
m-n \\
n
\end{gathered} \quad \begin{gathered}
n \\
\binom{R_{11}}{R_{21}} \quad, \quad \text { if } m>n, ~
\end{gathered}
$$

where $R_{11}$ or $R_{21}$ is upper triangular, and

$$
\left.T=\begin{array}{c}
n \\
p-n
\end{array} \begin{array}{c}
n \\
T_{11} \\
0
\end{array}\right) \quad, \quad \text { if } p \geq n
$$

or

$$
T=\begin{array}{cc}
p & n-p \\
\left(T_{11}\right. & \left.T_{12}\right) \quad, \quad \text { if } p<n,
\end{array}
$$

where $T_{11}$ is upper triangular.
In particular, if $B$ is square and nonsingular, the $G R Q$ factorization of $A$ and $B$ implicitly gives the $R Q$ factorization of $A^{*} B^{-1}$ as:
$A^{\star} B^{-1}=\left(R^{\star} T^{-1}\right) \star Z^{T}$ (for real flavors) or $A \star B^{-1}=\left(R^{\star} T^{-1}\right) \star Z^{H}$ (for complex flavors).

## Input Parameters

```
m
\(p\)
n
a, b, work
```

Ida
$1 d b$
l work

INTEGER. The number of rows of the matrix $A(m \geq 0)$.
INTEGER. The number of rows in $B(p \geq 0)$.
INTEGER. The number of columns of the matrices $A$ and $B(n \geq 0)$.
REAL for sggrqf
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
DOUBLE COMPLEX for zggrqf.
Arrays:
$a(I d a, *)$ contains the $m$-by-n matrix $A$.
The second dimension of a must be at least max $(1, n)$.
$b(I d b, *)$ contains the $p$-by- $n$ matrix $B$.
The second dimension of $b$ must be at least max $(1, n)$.
work is a workspace array, its dimension max ( 1,1 work).
INTEGER. The leading dimension of $a$; at least $\max (1, m)$.
INTEGER. The leading dimension of $b$; at least max $(1, p)$.
INTEGER. The size of the work array; must be at least max $(1, n, m, p)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

Overwritten by the factorization data as follows:
on exit, if $m \leq n$, the upper triangle of the subarray $a(1: m, n-m+1: n)$ contains the $m$-by- $m$ upper triangular matrix $R$;
if $m>n$, the elements on and above the ( $m-n$ )th subdiagonal contain the $m$-by- $n$ upper trapezoidal matrix $R$;
the remaining elements, with the array taua, represent the orthogonal/ unitary matrix $Q$ as a product of elementary reflectors.
The elements on and above the diagonal of the array $b$ contain the $\min (p, n)$-by- $n$ upper trapezoidal matrix $T$ ( $T$ is upper triangular if $p \geq n$ ); the elements below the diagonal, with the array taub, represent the orthogonal/ unitary matrix $Z$ as a product of elementary reflectors.

REAL for sggrqf
DOUBLE PRECISION for dggrqf
COMPLEX for cggrqf
work(1)
info

DOUBLE COMPLEX for zggrqf.
Arrays, size at least $\max (1, \min (m, n))$ for taua and at least max (1, $\min (p, n)$ ) for taub.

The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix $Q$.
The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix $Z$.

If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ggrqf interface are the following:

a	Holds the matrix $A$ of size $(m, n)$.
$b$	Holds the matrix $A$ of size $(p, n)$.
taua	Holds the vector of length $\min (m, n)$.
taub	Holds the vector of length $\min (p, n)$.

## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(1) H(2) \ldots H(k)$, where $k=\min (m, n)$.
Each $H(\mathrm{i})$ has the form
$H(i)=I-t^{\prime} u^{*} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-\operatorname{taua}^{\star} V^{\star} V^{H}$ for complex flavors,
where taua is a real/complex scalar, and $v$ is a real/complex vector with $v_{n-k+i}=1, v_{n-k+i+1: n}=0$.
On exit, $v_{1: n-k+i-1}$ is stored in a(m-k+i, $\left.1: n-k+i-1\right)$ and taua is stored in taua(i).
The matrix $Z$ is represented as a product of elementary reflectors
$Z=H(1) H(2) \ldots H(k)$, where $k=\min (\mathrm{p}, \mathrm{n})$.
Each $H(i)$ has the form
$H(i)=I-t a u b^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{H}$ for complex flavors,
where taub is a real/complex scalar, and $v$ is a real/complex vector with $v_{1: i-1}=0, v_{i}=1$.
On exit, $v_{i+1: p}$ is stored in b(i+1:p, i) and taub is stored in taub(i).
For better performance, try using

```
lwork\geq max(n,m, p)*max(nb1,nb2,nb3),
```

where $n b 1$ is the optimal blocksize for the $R Q$ factorization of an $m$-by- $n$ matrix, $n b 2$ is the optimal blocksize for the $Q R$ factorization of an $p$-by-n matrix, and $n b 3$ is the optimal blocksize for a call of ?ormrq/?unmrq.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork= -1 .

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set lwork= -1 , the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

```
?tpqrt
Computes a blocked QR factorization of a real or
complex "triangular-pentagonal" matrix, which is
composed of a triangular block and a pentagonal
block, using the compact WY representation for Q.
```


## Syntax

```
call stpqrt(m, n, l, nb, a, lda, b, ldb, t, ldt, work, info)
call dtpqrt(m, n, l, nb, a, lda, b, ldb, t, ldt, work, info)
call ctpqrt(m, n, l, nb, a, lda, b, ldb, t, ldt, work, info)
call ztpqrt(m, n, l, nb, a, lda, b, ldb, t, ldt, work, info)
call tpqrt(a, b, t, nb[, info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The input matrix $C$ is an $(n+m)$-by- $n$ matrix

$$
C=\left[\begin{array}{c}
A \\
B
\end{array}\right] \leftarrow n \times n \times n \text { upper triangular }
$$

where $A$ is an $n$-by- $n$ upper triangular matrix, and $B$ is an $m-b y-n$ pentagonal matrix consisting of an ( $m-1$ )-by-n rectangular matrix $B 1$ on top of an 1 -by-n upper trapezoidal matrix $B 2$ :

$$
B=\left[\begin{array}{c}
B 1 \\
B 2
\end{array}\right] \leftarrow(m-l) \times n \text { rectangular }
$$

The upper trapezoidal matrix $B 2$ consists of the first $l$ rows of an $n$-by- $n$ upper triangular matrix, where $0 \leq$ $l \leq \min (m, n)$. If $l=0, B$ is an $m$-by $n$ rectangular matrix. If $m=l=n, B$ is upper triangular. The elementary reflectors $H(i)$ are stored in the $i$ th column below the diagonal in the $(n+m)$-by- $n$ input matrix $C$. The structure of vectors defining the elementary reflectors is illustrated by:


The elements of the unit matrix $I$ are not stored. Thus, $V$ contains all of the necessary information, and is returned in array $b$.

## NOTE

Note that $V$ has the same form as $B$ :

$$
V=\left[\begin{array}{c}
V 1 \\
V 2
\end{array}\right] \leftarrow(m-l) \times n \text { rectangular }
$$

The columns of $V$ represent the vectors which define the $H(i)$ s.
The number of blocks is $k=$ ceiling $(n / n b)$, where each block is of order $n b$ except for the last block, which is of order $i b=n-(k-1)^{*} n b$. For each of the $k$ blocks, an upper triangular block reflector factor is computed: $T 1, T 2, \ldots, T k$. The $n b$-by-nb (ib-by-ib for the last block) Tis are stored in the $n b-b y-n$ array $t$ as

```
t = [T1T2 ... Tk].
```


## Input Parameters

$m$	INTEGER. The total number of rows in the matrix $B(m \geq 0)$.
$n$	INTEGER. The number of columns in $B$ and the order of the triangular
	matrix $A(n \geq 0)$.

$n b$

```
a,b, work
```

lda
$I d b$
Idt

## Output Parameters

a
b
t
info

INTEGER. The block size to use in the blocked $Q R$ factorization ( $n \geq n b \geq$ 1).

REAL for stpqrt
DOUBLE PRECISION for dtpqrt
COMPLEX for ctpqrt
COMPLEX*16 for ztpqrt.
Arrays: a size ( $1 \mathrm{da}, \mathrm{n}$ ) contains the $n$-by- $n$ upper triangular matrix $A$. $b$ size ( $l d b, n$ ), the pentagonal $m$-by- $n$ matrix $B$. The first ( $m-1$ ) rows contain the rectangular $B 1$ matrix, and the next 1 rows contain the upper trapezoidal $B 2$ matrix.
work size $(n b, n)$ is a workspace array.
INTEGER. The leading dimension of $a$; at least max $(1, n)$.
INTEGER. The leading dimension of $b$; at least $\max (1, m)$.
INTEGER. The leading dimension of $t$; at least $n b$.

The elements on and above the diagonal of the array contain the upper triangular matrix $R$.

The pentagonal matrix $V$.
REAL for stpqrt
DOUBLE PRECISION for dtpqrt
COMPLEX for ctpqrt
COMPLEX*16 for ztpqrt.
Array, size (ldt, n).
The upper triangular block reflectors stored in compact form as a sequence of upper triangular blocks.

INTEGER.
If info $=0$, the execution is successful.
If info $<0$ and info $=-i$, the $i$ th argument had an illegal value.

## ?tpmqrt

Applies a real or complex orthogonal matrix obtained
from a "triangular-pentagonal" complex block reflector
to a general real or complex matrix, which consists of
two blocks.

## Syntax

```
call stpmqrt(side, trans, m, n, k, l, nb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
call dtpmqrt(side, trans, m, n, k, l, nb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
call ctpmqrt(side, trans, m, n, k, l, nb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
```

```
call ztpmqrt(side, trans, m, n, k, l, nb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
call tpmqrt(v, t, a, b, k, nb[, trans][, side][, info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The columns of the pentagonal matrix $V$ contain the elementary reflectors $H(1), H(2), \ldots, H(k) ; V$ is composed of a rectangular block $V 1$ and a trapezoidal block $V 2$ :


The size of the trapezoidal block $V 2$ is determined by the parameter 1 , where $0 \leq 1 \leq k$. $V 2$ is upper trapezoidal, consisting of the first 1 rows of a $k$-by- $k$ upper triangular matrix.

If $l=k, V 2$ is upper triangular;
If $l=0$, there is no trapezoidal block, so $V=V 1$ is rectangular.
If side = 'L':

where $A$ is $k-$ by- $n, B$ is $m-$ by- $n$ and $V$ is $m-b y-k$.
If side = 'R':

where $A$ is $m$-by- $k, B$ is $m$-by- $n$ and $V$ is $n-b y-k$.
The real/complex orthogonal matrix $Q$ is formed from $V$ and $T$.
If trans='N' and side='L', c contains $Q^{*} C$ on exit.
If trans='T' and side='L', $c$ contains $Q^{\top} * C$ on exit.
If trans='C' and side $=$ 'L', $C$ contains $Q^{H} * C$ on exit.
If trans $=$ ' N ' and side='R', $C$ contains $C * Q$ on exit.
If trans $=$ ' $T$ ' and side='R', $C$ contains $C * Q^{\top}$ on exit.

If trans $=$ ' $C$ ' and side $=$ 'R', $C$ contains $C * Q^{H}$ on exit.

## Input Parameters

side
trans
m
$n$
$k$

1
t
ldt

CHARACTER*1
$=$ 'L': apply $Q, Q^{\top}$, or $Q^{H}$ from the left.
$=$ 'R': apply $Q, Q^{\top}$, or $Q^{H}$ from the right.
CHARACTER*1
$=$ 'N', no transpose, apply $Q$.
$=$ ' T ', transpose, apply $Q^{\top}$.
$=$ ' C', transpose, apply $Q^{H}$.
INTEGER. The number of rows in the matrix $B,(m \geq 0)$.
INTEGER. The number of columns in the matrix $B,(n \geq 0)$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q$, $(k \geq 0)$.

INTEGER. The order of the trapezoidal part of $V(k \geq I \geq 0)$.
INTEGER.
The block size used for the storage of $t, k \geq n b \geq 1$. This must be the same value of $n b$ used to generate $t$ in tpqrt.

REAL for stpmqrt
DOUBLE PRECISION for dtpmqrt
COMPLEX for ctpmqrt
COMPLEX*16 for ztpmqrt.
Size ( $I d v, k$ )
The ith column must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by tpqrt in array argument $b$.

INTEGER. The leading dimension of the array $v$.
If side = 'L', Idv must be at least max $(1, m)$;
If side $=$ ' R ', $l d v$ must be at least $\max (1, n)$.
REAL for stpmqrt
DOUBLE PRECISION for dtpmqrt
COMPLEX for ctpmqrt
COMPLEX*16 for ztpmqrt.
Array, size (ldt, $k$ ).
The upper triangular factors of the block reflectors as returned by tpqrt, stored as an nb-by- $k$ matrix.

INTEGER. The leading dimension of the array $t$. ldt must be at least nb.
a

REAL for stpmqrt
DOUBLE PRECISION for dtpmqrt
COMPLEX for ctpmqrt
COMPLEX*16 for ztpmqrt.
If side = 'L', size (lda, $n$ ).
If side = 'R', size (lda, $k$ ).
The $k$-by-n or m-by- $k$ matrix $A$.
INTEGER. The leading dimension of the array $a$.
If side = 'L', lda must be at least max $(1, k)$.
If side $=$ ' R ', lda must be at least max $(1, m)$.
REAL for stpmqrt
DOUBLE PRECISION for dtpmqrt
COMPLEX for ctpmqrt
COMPLEX*16 for ztpmqrt.
Size (ldb, $n$ ).
The $m$-by- $n$ matrix $B$.
INTEGER. The leading dimension of the array $b$. Idb must be at least $\max (1, m)$.

REAL for stpmqrt
DOUBLE PRECISION for dtpmqrt
COMPLEX for ctpmqrt
COMPLEX*16 for ztpmqrt.
Workspace array. If side $=$ 'L' DIMENSION $n * n b$. If side $=$ 'R' DIMENSION $m^{*} n b$.

## Output Parameters

a
b
info

Overwritten by the corresponding block of the product $Q^{*} C, C^{*} Q, Q^{\top *} C$, $C^{*} Q^{\top}, Q^{H *} C$, or $C^{*} Q^{H}$.

Overwritten by the corresponding block of the product $Q^{*} C, C^{*} Q, Q^{\top *} C$, $C^{*} Q^{\top}, Q^{\mathrm{H}} C$, or $C^{*} Q^{\mathrm{H}}$.
(global) INTEGER.
$=0$ : the execution is successful.
$<0$ : if info $=-i$, the $i$ th argument had an illegal value.

## ?tplqt <br> Computes a blocked LQ factorization of a complex <br> "triangular-pentagonal" matrix composed of a triangular block $A$ and pentagonal block $B$, using the compact WY representation for $Q$.

```
call stplqt(m, n, l, mb, a, lda, b, ldb, t, ldt, work, info)
call dtplqt(m, n, l, mb, a, lda, b, ldb, t, ldt, work, info)
call ctplqt(m, n, l, mb, a, lda, b, ldb, t, ldt, work, info)
call ztplqt(m, n, l, mb, a, lda, b, ldb, t, ldt, work, info)
```


## Description

?tplqt computes a blocked LQ factorization of a real or complex "triangular-pentagonal" matrix $C$, which is composed of a triangular block $A$ and pentagonal block $B$, using the compact WY representation for $Q$.
The input matrix $C$ is an $m$-by $-(m+n)$ matrix:
$C=[A][B]$
where $A$ is a lower triangular m-by-m matrix, and $B$ is an $m$-by- $n$ pentagonal matrix consisting of an $m$-by- $(n-$ 1) rectangular matrix $B 1$ to the left of an $m$-by- 1 lower trapezoidal matrix $B 2$ :
$[B]=[B 1][B 2]$
[B1] <- m-by-( $n-1$ ) rectangular
[ B2 ] <- m-by-I lower trapezoidal.
The lower trapezoidal matrix $B 2$ consists of the first 1 columns of an m-by-m lower triangular matrix, where 0 $\leq l \leq \min (m, n)$. If $l=0, b$ is rectangular $m-b y-n$; if $m=l=n, b$ is lower triangular.

The matrix $W$ stores the elementary reflectors $H(i)$ in the $i$-th row above the diagonal (of $A$ ) in the $m$-by-( $m$ $+n$ ) input matrix $C$ :
$[C]=[A][B]$
[ $A$ ] <- lower triangular m-by-m
[ B ] <- m-by-n pentagonal
so that $W$ can be represented as
$[W]=[I][V]$
[ $I$ ] <- m-by-m identity matrix
[ $V$ ] <- m-by-n, same form as $B$.
Thus, all of information needed for $W$ is contained on exit in the array $b$, called $V$ in the preceding. Note that $V$ has the same form as $B$; that is,
[ $V$ ] $=[V 1$ ] [ $V 2$ ]
[ V1 ] <- m-by-( $n-1$ ) rectangular
[ V2 ] <- m-by-I lower trapezoidal.
The rows of $V$ represent the vectors which define the $H(i)$ elementary reflectors .
The number of blocks is $B=$ ceiling $(\mathrm{m} / \mathrm{mb})$, where each block is of order mb except for the last block, which is of order $i b=m-(m-1)^{*} m b$. For each of the $B$ blocks, a upper triangular block reflector factor is computed:
$T 1, T 2, \ldots, T B$.
The mb-by-mb (and $i b$-by- $i b$ for the last block) Tis are stored in the mb-by-n array $t$ as

```
T = [T1T2 ... TB].
```

Input Parameters
m
n
1
$m b$
a
Ida
b
1 db
$l d t$

INTEGER. The number of rows of the matrix $B$, and the order of the triangular matrix $A$. $m \geq 0$.

INTEGER. The number of columns of the matrix $B . n \geq 0$.
INTEGER. The number of rows of the lower trapezoidal part of $B . \min (m, n)$ $\geq 1 \geq 0$.

INTEGER. The block size to be used in the blocked $Q R . m \geq m b \geq 1$.
REAL for stplqt
DOUBLE PRECISION for dtplqt
COMPLEX for ctplqt
COMPLEX*16 for ztplqt
Array of size ( $1 \mathrm{da}, \mathrm{m}$ ). On entry, the lower triangular $m$-by- $m$ matrix $A$.
INTEGER. The leading dimension of the array $a$. Id $a \geq \max (1, m)$.
REAL for stplqt
DOUBLE PRECISION for dtplqt
COMPLEX for ctplqt
COMPLEX*16 for ztplqt
Array of size $(1 d b, n)$. On entry, the pentagonal $m$-by- $n$ matrix $B$. The first $n-$ $I$ columns are rectangular, and the last $I$ columns are lower trapezoidal.

INTEGER. The leading dimension of the array $b$. $1 d b \geq \max (1, m)$.
INTEGER. The leading dimension of the array $t$. $1 d t \geq m b$.

## Output Parameters

a
b
$t$
work
On exit, the elements on and below the diagonal of the array contain the lower triangular matrix $L$.

On exit, $b$ contains the pentagonal matrix $V$.
REAL for stplqt
DOUBLE PRECISION for dtplqt
COMPLEX for ctplqt
COMPLEX*16 for ztplqt
Array of size (ldt,n). The lower triangular block reflectors stored in compact form as a sequence of upper triangular blocks.

REAL for stplqt
DOUBLE PRECISION for dtplqt
COMPLEX for ctplqt

```
COMPLEX*16 for ztplqt
Array of size (mb*m).
INTEGER.
info = 0: successful exit.
info < 0: if info = -i, the i-th argument had an illegal value.
```


## ?tpmlqt

Applies an orthogonal matrix obtained from a "triangular-pentagonal" block reflector to a general matrix.

```
call stpmlqt(side, trans, m, n, k, l, mb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
call dtpmlqt(side, trans, m, n, k, l, mb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
call ctpmlqt(side, trans, m, n, k, l, mb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
call ztpmlqt(side, trans, m, n, k, l, mb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
```


## Description

?tpmlqt applies an orthogonal matrix $Q$ obtained from a "triangular-pentagonal" block reflector $H$ to a general matrix $C$, which consists of two blocks $A$ and $B$.

The columns of the pentagonal matrix $V$ contain the elementary reflectors $H(1), H(2), \ldots, H(k) ; V$ is composed of a rectangular block $V 1$ and a trapezoidal block $V 2$ :
$V=[V 1]$ [V2].
The size of the trapezoidal block $V 2$ is determined by the parameter 1 , where $0 \leq 1 \leq k ; V 2$ is lower trapezoidal, consisting of the first $l$ rows of a $k$-by- $k$ upper triangular matrix. If $l=k, V 2$ is lower triangular; if $l=0$, there is no trapezoidal block, hence $V=V 1$ is rectangular.
If side = 'L':
$C=[A][B]$
where $A$ is $k$-by-n, $B$ is $m$-by-n, and $C$ is $k$-by-m.
If side = 'R':
$C=[A B]$
where $A$ is $m$-by- $k, B$ is $m$-by-n, and $C$ is $k$-by- $n$.
The real orthogonal matrix $Q$ is formed from $V$ and $T$.
If trans='N' and side='L', $C$ is on exit replaced with $Q * C$.
$C$ is on exit replaced with

	side $=$ 'L'	side $=$ 'R'
trans $=$ 'N'	$Q^{*} C$	$C^{*} Q$
trans $=' T '$	$Q^{\top *} C$	$C^{*} Q^{\top}$
trans $={ }^{\top} C^{\prime}$	$Q^{H * C}$	$C^{*} Q^{H}$

## Input Parameters

CHARACTER*1.
= 'L': apply op( $Q$ ) from the left;
= 'R': apply op(Q) from the right.
CHARACTER*1.
$=$ ' N ': No transpose, op $(Q)=Q$;
$=$ ' T ': Transpose, $\operatorname{op}(Q)=Q^{\top}$;
$=$ 'C': Transpose, op $(Q)=Q^{H}$.
INTEGER. The number of rows of the matrix $B . m \geq 0$.
INTEGER. The number of columns of the matrix $B . n \geq 0$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q$.

INTEGER. The order of the trapezoidal part of $V . k \geq 1 \geq 0$.
INTEGER. The block size used for the storage of $T . k \geq m b \geq 1$. This must be the same value of $m b$ used to generate $T$ in ?tplqt.

REAL for stpmlqt
DOUBLE PRECISION for dtpmlqt
COMPLEX for ctpmlqt
COMPLEX*16 for ztpmlqt
Array of size $(l d a, k)$. The $i$-th row must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ?tplqt in $b$.

INTEGER. The leading dimension of the array $v$. If side $=$ ' L ', $l d v \geq \max (1$, $m$ ); if side = 'R', ldv $\max (1, n)$.

REAL for stpmlqt
DOUBLE PRECISION for dtpmlqt
COMPLEX for ctpmlqt
COMPLEX*16 for ztpmlqt
Array of size (ldt,k). The upper triangular factors of the block reflectors as returned by ?tplqt, stored as a mb-by-k matrix.

INTEGER. The leading dimension of the array $t$. $1 d t \geq m b$.
REAL for stpmlqt
DOUBLE PRECISION for dtpmlqt
COMPLEX for ctpmlqt
COMPLEX*16 for ztpmlqt
Array of size $(I d a, n)$ if side $=$ 'L', or size $(I d a, k)$ if side $=$ 'R'.
On entry, the $k$-by- $n$ or $m-b y-k$ matrix $A$.

```
Ida INTEGER. The leading dimension of the array a. If side = 'L', LDC \geq max(1,
 k); if side = 'R', LDC \geq max (1,m).
 REAL for stpmlqt
 DOUBLE PRECISION for dtpmlqt
 COMPLEX for ctpmlqt
 COMPLEX*16 for ztpmlqt
 Array of size (Idb, n). On entry, the m-by-n matrix B.
 INTEGER. The leading dimension of the array b. ldb\geq max (1,m).
```


## Output Parameters

a
On exit, a is overwritten by the corresponding block of op $(Q)^{*} C$ or $C^{*} o p(Q)$ See Description.

REAL for stpmlqt
DOUBLE PRECISION for dtpmlqt
COMPLEX for ctpmlqt
COMPLEX*16 for ztpmlqt
On exit, $b$ is overwritten by the corresponding block of op $(Q)^{*} C$ or $C^{*} \mathrm{op}(Q)$ See Description.
REAL for stpmlqt
DOUBLE PRECISION for dtpmlqt
COMPLEX for ctpmlqt
COMPLEX*16 for ztpmlqt
Array. The size of work is $n^{*} m b$ if side $=$ ' L ', or $m^{*} m b$ if side $=$ ' $\mathbf{R}^{\prime}$.
INTEGER.
info $=0$ : successful exit.
info $<0$ : if info $=-i$, the $i$-th argument had an illegal value.

## Singular Value Decomposition: LAPACK Computational Routines

This topic describes LAPACK routines for computing the singular value decomposition (SVD) of a general m-by-n matrix $A$ :
$A=U \Sigma V^{H}$.
In this decomposition, $U$ and $V$ are unitary (for complex $A$ ) or orthogonal (for real $A$ ); $\Sigma$ is an $m$-by- $n$ diagonal matrix with real diagonal elements $\sigma_{i}$ :
$\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{\min (m, n)} \geq 0$.
The diagonal elements $\sigma_{i}$ are singular values of $A$. The first min ( $m, n$ ) columns of the matrices $U$ and $V$ are, respectively, left and right singular vectors of $A$. The singular values and singular vectors satisfy
$A v_{i}=\sigma_{i} u_{i}$ and $A^{H} u_{i}=\sigma_{i} v_{i}$
where $u_{\mathrm{i}}$ and $v_{\mathrm{i}}$ are the $i$-th columns of $U$ and $V$, respectively.

To find the SVD of a general matrix $A$, call the LAPACK routine ? gebrd or ? gbbrd for reducing $A$ to a bidiagonal matrix $B$ by a unitary (orthogonal) transformation: $A=Q B P^{H}$. Then call ?bdsqr, which forms the SVD of a bidiagonal matrix: $B=U_{1} \Sigma V_{1}{ }^{H}$.
Thus, the sought-for SVD of $A$ is given by $A=U \Sigma V^{H}=\left(Q U_{1}\right) \Sigma\left(V_{1}{ }^{H} P^{H}\right)$.
Table "Computational Routines for Singular Value Decomposition (SVD)" lists LAPACK routines (FORTRAN 77 interface) that perform singular value decomposition of matrices. The corresponding routine names in the Fortran 95 interface are the same except that the first character is removed.
Computational Routines for Singular Value Decomposition (SVD)

Operation	Real matrices	Complex matrices
Reduce $A$ to a bidiagonal matrix $B: A=Q B P^{H}$   (full storage)	?gebrd	?gebrd
Reduce $A$ to a bidiagonal matrix $B: A=Q B P^{H}$   (band storage)	?gbbrd	?gbbrd
Generate the orthogonal (unitary) matrix $Q$ or   P	?orgbr	?ungbr
Apply the orthogonal (unitary) matrix $Q$ or $P$	?ormbr	
Form singular value decomposition of the	?bdsqr ?bdsdc	?unmbr
bidiagonal matrix $B: B=U \Sigma V^{H}$		

## Decision Tree: Singular Value Decomposition



Figure "Decision Tree: Singular Value Decomposition" presents a decision tree that helps you choose the right sequence of routines for SVD, depending on whether you need singular values only or singular vectors as well, whether $A$ is real or complex, and so on.
You can use the SVD to find a minimum-norm solution to a (possibly) rank-deficient least squares problem of minimizing $||A x-b||^{2}$. The effective rank $k$ of the matrix $A$ can be determined as the number of singular values which exceed a suitable threshold. The minimum-norm solution is
$x=V_{k}\left(\Sigma_{k}\right)^{-1} c$
where $\Sigma_{k}$ is the leading $k$-by- $k$ submatrix of $\Sigma$, the matrix $V_{k}$ consists of the first $k$ columns of $V=P V_{1}$, and the vector $c$ consists of the first $k$ elements of $U^{H} b=U_{1}{ }^{H} Q^{H} b$.
?gebrd
Reduces a general matrix to bidiagonal form.

## Syntax

```
call sgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)
call dgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)
call cgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)
call zgebrd(m, n, a, lda, d, e, tauq, taup, work, lwork, info)
```

```
call gebrd(a [, d] [,e] [,tauq] [,taup] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine reduces a general $m$-by- $n$ matrix $A$ to a bidiagonal matrix $B$ by an orthogonal (unitary) transformation.

If $m \geq n$, the reduction is given by $A=Q B P^{H}=\binom{B_{1}}{0} P^{H}=Q_{1} B_{1} P_{H}$,
where $B_{1}$ is an $n$-by-n upper diagonal matrix, $Q$ and $P$ are orthogonal or, for a complex $A$, unitary matrices; $Q_{1}$ consists of the first $n$ columns of $Q$.
If $m<n$, the reduction is given by
$A=Q^{*} B^{\star} P^{H}=Q^{*}\left(B_{1} 0\right) * P^{H}=Q_{1}{ }^{*} B_{1}{ }^{*} P_{1}{ }^{H}$,
where $B_{1}$ is an $m$-by- $m$ lower diagonal matrix, $Q$ and $P$ are orthogonal or, for a complex $A$, unitary matrices; $P_{1}$ consists of the first $m$ columns of $P$.

The routine does not form the matrices $Q$ and $P$ explicitly, but represents them as products of elementary reflectors. Routines are provided to work with the matrices $Q$ and $P$ in this representation:
If the matrix $A$ is real,

- to compute $Q$ and $P$ explicitly, call orgbr.
- to multiply a general matrix by $Q$ or $P$, call ormbr.

If the matrix $A$ is complex,

- to compute $Q$ and $P$ explicitly, call ungbr.
- to multiply a general matrix by $Q$ or $P$, call unmbr.


## Input Parameters

m	INTEGER. The number of rows in the matrix $A(m \geq 0)$.
$n$	INTEGER. The number of columns in $A(n \geq 0)$.
a, work	REAL for sgebrd
	DOUBLE PRECISION for dgebrd
	COMPLEX for cgebrd
	DOUBLE COMPLEX for zgebrd.
	Arrays:
	$a(/ d a, *)$ contains the matrix $A$.
	The second dimension of $a$ must be at least max $(1, n)$.
	work is a workspace array, its dimension max (1, lwork).
Ida	INTEGER. The leading dimension of $a$; at least max $(1, m)$.
lwork	INTEGER.

If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

a
$d$
e
tauq, taup
work(1)
info

If $m \geq n$, the diagonal and first super-diagonal of $a$ are overwritten by the upper bidiagonal matrix $B$. The elements below the diagonal, with the array tauq, represent the orthogonal matrix $Q$ as a product of elementary reflectors, and the elements above the first superdiagonal, with the array taup, represent the orthogonal matrix $P$ as a product of elementary reflectors.
If $m<n$, the diagonal and first sub-diagonal of $a$ are overwritten by the lower bidiagonal matrix $B$. The elements below the first subdiagonal, with the array tauq, represent the orthogonal matrix $Q$ as a product of elementary reflectors, and the elements above the diagonal, with the array taup, represent the orthogonal matrix $P$ as a product of elementary reflectors.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, size at least max $(1, \min (m, n))$.
Contains the diagonal elements of $B$.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, size at least $\max (1, \min (m, n)-1)$. Contains the off-diagonal elements of $B$.

REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays, size at least max $(1, \min (m, n))$. The scalar factors of the elementary reflectors which represent the orthogonal or unitary matrices $P$ and $Q$.

If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this Iwork for subsequent runs.

## INTEGER.

If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gebrd interface are the following:

$a$	Holds the matrix $A$ of size $(m, n)$.
$d$	Holds the vector of length $\min (m, n)$.
$e$	Holds the vector of length $\min (m, n)-1$.
$\operatorname{tanq}$	Holds the vector of length $\min (m, n)$.
$\operatorname{taup}$	Holds the vector of length $\min (m, n)$.

## Application Notes

For better performance, try using lwork $=(m+n) *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrices $Q, B$, and $P$ satisfy $Q B P^{H}=A+E$, where $\left|\left|E\left\|_{2}=C(n) \varepsilon\right\| A\right| \|_{2}, C(n)\right.$ is a modestly increasing function of $n$, and $\varepsilon$ is the machine precision.

The approximate number of floating-point operations for real flavors is

```
(4/3)* n}\mp@subsup{}{2*}{*}(3*m-n) for m\geqn
(4/3)* m}\mp@subsup{}{2}{*}(3*n-m) for m<n
```

The number of operations for complex flavors is four times greater.
If $n$ is much less than $m$, it can be more efficient to first form the $Q R$ factorization of $A$ by calling geqrf and then reduce the factor $R$ to bidiagonal form. This requires approximately $2 \star n^{2} *(m+n)$ floating-point operations.
If $m$ is much less than $n$, it can be more efficient to first form the $L Q$ factorization of $A$ by calling gelqf and then reduce the factor $L$ to bidiagonal form. This requires approximately $2{ }^{*} m^{2} *(m+n)$ floating-point operations.

## ?gbbrd <br> Reduces a general band matrix to bidiagonal form.

## Syntax

```
call sgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc, work,
info)
```

```
call dgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc, work,
info)
call cgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc, work,
rwork, info)
call zgbbrd(vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt, ldpt, c, ldc, work,
rwork, info)
call gbbrd(ab [, c] [,d] [,e] [,q] [,pt] [,kl] [,m] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine reduces an m-by-n band matrix $A$ to upper bidiagonal matrix $B$ : $A=Q^{\star} B^{*} P^{H}$. Here the matrices $Q$ and $P$ are orthogonal (for real $A$ ) or unitary (for complex $A$ ). They are determined as products of Givens rotation matrices, and may be formed explicitly by the routine if required. The routine can also update a matrix $C$ as follows: $C=Q^{H}{ }^{*} C$.

Input Parameters

vect	CHARACTER*1. Must be 'N' or 'Q' or 'P' or 'B'.
	If vect $=$ ' N ', neither $Q$ nor $P^{H}$ is generated.
	If vect $=$ ' $Q$ ', the routine generates the matrix $Q$.
	If vect $=$ ' $P$ ', the routine generates the matrix $P^{H}$.
	If vect $=$ ' B ', the routine generates both $Q$ and $P^{H}$.
m	INTEGER. The number of rows in the matrix $A(m \geq 0)$.
$n$	INTEGER. The number of columns in $A(n \geq 0)$.
ncc	INTEGER. The number of columns in $C$ ( $n C c \geq 0)$.
kl	INTEGER. The number of sub-diagonals within the band of $A(k l \geq 0)$.
ku	INTEGER. The number of super-diagonals within the band of $A(k u \geq 0)$.
ab, c, work	REAL for sgbbrd
	DOUBLE PRECISION for dgbbrd
	COMPLEX for cgbbrd
	DOUBLE COMPLEX for zgbbrd.
	Arrays:
	$a b(/ d a b, *)$ contains the matrix $A$ in band storage (see Matrix Storage Schemes).
	The second dimension of $a$ must be at least max $(1, n)$.
	$c(I d c, *)$ contains an m-by-ncc matrix $C$.
	If $n c c=0$, the array $c$ is not referenced.
	The second dimension of $c$ must be at least max (1, ncc).
	work(*) is a workspace array.

The dimension of work must be at least $2 * \max (m, n)$ for real flavors, or $\max (m, n)$ for complex flavors.

INTEGER. The leading dimension of the array $a b(1 d a b \geq k l+k u+1)$.
INTEGER. The leading dimension of the output array $q$.
$l d q \geq \max (1, m)$ if vect $=$ ' $Q$ ' or ' $B$ ', $1 d q \geq 1$ otherwise.
INTEGER. The leading dimension of the output array pt.
ldpt $\geq \max (1, n)$ if vect $=$ ' $\mathrm{P}^{\prime}$ or ' B ', ldpt $\geq 1$ otherwise.
INTEGER. The leading dimension of the array $c$.
$I d c \geq \max (1, m)$ if $n c c>0 ; 1 d c \geq 1$ if $n c c=0$.
REAL for cgbbrd DOUBLE PRECISION for zgbbrd.
A workspace array, size at least $\max (m, n)$.

## Output Parameters

c

Overwritten by values generated during the reduction.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, size at least $\max (1, \min (m, n))$. Contains the diagonal elements of the matrix $B$.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, size at least $\max (1, \min (m, n)-1)$.
Contains the off-diagonal elements of $B$.
REAL for sgebrd
DOUBLE PRECISION for dgebrd
COMPLEX for cgebrd
DOUBLE COMPLEX for zgebrd.
Arrays:
$q(I d q, *)$ contains the output $m$-by- $m$ matrix $Q$.
The second dimension of $q$ must be at least $\max (1, m)$.
$p\left(l d p t,{ }^{*}\right)$ contains the output $n$-by- $n$ matrix $P^{T}$.
The second dimension of $p t$ must be at least $\max (1, n)$.
Overwritten by the product $Q^{H \star} C$.
$c$ is not referenced if $n c c=0$.
INTEGER.
If info $=0$, the execution is successful.

If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gbbrd interface are the following:

$a b$	Holds the array $A$ of size $(k l+k u+1, n)$.
$c$	Holds the matrix $C$ of size $(m, n c c)$.
$d$	Holds the vector with the number of elements $\min (m, n)$.
$e$	Holds the vector with the number fo elements $\min (m, n)-1$.
$q$	Holds the matrix $Q$ of size $(m, m)$.
$p t$	Holds the matrix $P T$ of size $(n, n)$.
$m$	If omitted, assumed $m=n$.
$k u$	If omitted, assumed $k l=k u$.
$v e c t$	Restored as $k u=I d a-k l-1$.

vect $=$ ' B ', if both $q$ and $p t$ are present,
vect $=$ ' $Q$ ', if $q$ is present and $p t$ omitted, vect $=$ ' $P$ ',
if $q$ is omitted and $p t$ present, vect $=' \mathrm{~N}$ ', if both $q$ and $p t$ are omitted.

## Application Notes

The computed matrices $Q, B$, and $P$ satisfy $Q^{\star} B^{\star} P^{H}=A+E$, where $||E||_{2}=C(n) \varepsilon \| A| |_{2}, C(n)$ is a modestly increasing function of $n$, and $\varepsilon$ is the machine precision.
If $m=n$, the total number of floating-point operations for real flavors is approximately the sum of:
$6 * n^{2} *(k l+k u)$ if vect $='^{\prime} N$ ' and $n c c=0$,
$3 * n^{2}{ }^{*} n C C^{\star}(k l+k u-1) /(k l+k u)$ if $C$ is updated, and
$3^{*} n^{3 *}(k l+k u-1) /(k l+k u)$ if either $Q$ or $P^{H}$ is generated (double this if both).
To estimate the number of operations for complex flavors, use the same formulas with the coefficients 20 and 10 (instead of 6 and 3).
?orgbr
Generates the real orthogonal matrix $Q$ or $P^{T}$ determined by ?gebrd.

## Syntax

```
call sorgbr(vect, m, n, k, a, lda, tau, work, lwork, info)
call dorgbr(vect, m, n, k, a, lda, tau, work, lwork, info)
call orgbr(a, tau [,vect] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine generates the whole or part of the orthogonal matrices $Q$ and $P^{T}$ formed by the routines gebrd. Use this routine after a call to sgebrd/dgebrd. All valid combinations of arguments are described in Input parameters. In most cases you need the following:
To compute the whole $m$-by- $m$ matrix $Q$ :

```
call ?orgbr('Q', m, m, n, a ...)
```

(note that the array a must have at least $m$ columns).
To form the $n$ leading columns of $Q$ if $m>n$ :

```
call ?orgbr('Q', m, n, n, a ...)
```

To compute the whole $n$-by- $n$ matrix $P^{T}$ :

```
call ?orgbr('P', n, n, m, a ...)
```

(note that the array a must have at least $n$ rows).
To form the $m$ leading rows of $P^{T}$ if $m<n$ :

```
call ?orgbr('P', m, n, m, a ...)
```


## Input Parameters

```
vect
m, n
k
a
Ida
tau
CHARACTER*1. Must be 'Q' or 'P'.
If vect = 'Q', the routine generates the matrix Q .
If vect = 'P', the routine generates the matrix PT
INTEGER. The number of rows \((m)\) and columns \((n)\) in the matrix \(Q\) or \(P^{T}\) to be returned (\(m \geq 0, n \geq 0\)).
If vect \(=\) ' \(Q\) ', \(m \geq n \geq \min (m, k)\).
If vect \(=\) ' \(P^{\prime}, n \geq m \geq \min (n, k)\).
If vect \(=\) ' \(Q\) ', the number of columns in the original \(m\)-by- \(k\) matrix reduced by gebrd.
If vect \(=\) ' \(P^{\prime}\), the number of rows in the original \(k\)-by-n matrix reduced by gebrd.
REAL for sorgbr
DOUBLE PRECISION for dorgbr
The vectors which define the elementary reflectors, as returned by gebrd.
INTEGER. The leading dimension of the array \(a . I d a \geq \max (1, m)\).
REAL for sorgbr
DOUBLE PRECISION for dorgbr
```

	Array, size min $(m, k)$ if vect $=$ ' Q ', min $(n, k)$ if vect $=$ ' $P^{\prime}$. Scalar factor of the elementary reflector $H(i)$ or $G(i)$, which determines $Q$ and $P^{T}$ as returned by gebrd in the array tauq or taup.
work	REAL for sorgbr
	DOUBLE PRECISION for dorgbr
	Workspace array, size max (1, 1 work).
lwork	INTEGER. Dimension of the array work. See Application Notes for the suggested value of Iwork.
	If 1 work $=-1$ then the routine performs a workspace query and calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

## Output Parameters

a
work (1)
info
Overwritten by the orthogonal matrix $Q$ or $P^{T}$ (or the leading rows or columns thereof) as specified by vect, $m$, and $n$.

If info $=0$, on exit work (1) contains the minimum value of /work required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine orgbr interface are the following:

```
a Holds the matrix A of size (}m,n)\mathrm{ .
tau
vect Must be 'Q' or 'P'. The default value is 'Q'.
```


## Application Notes

For better performance, try using 1 work $=\min (m, n) *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of /work for the first run or set lwork $=-1$.
If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix $Q$ differs from an exactly orthogonal matrix by a matrix $E$ such that $\left||E|_{2}=O(\varepsilon)\right.$.
The approximate numbers of floating-point operations for the cases listed in Description are as follows:
To form the whole of $Q$ :
$(4 / 3) \star n^{\star}\left(3 m^{2}-3 m^{\star} n+n^{2}\right)$ if $m>n$;
$(4 / 3) * m^{3}$ if $m \leq n$.
To form the $n$ leading columns of $Q$ when $m>n$ :

$$
(2 / 3) * n^{2} *(3 m-n) \text { if } m>n
$$

To form the whole of $P^{T}$ :
$(4 / 3) * n^{3}$ if $m \geq n$;
$(4 / 3) \star m^{\star}\left(3 n^{2}-3 m^{\star} n+m^{2}\right)$ if $m<n$.
To form the $m$ leading columns of $P^{T}$ when $m<n$ :
$(2 / 3) * n^{2} *(3 m-n)$ if $m>n$.
The complex counterpart of this routine is ungbr.
?ormbr
Multiplies an arbitrary real matrix by the real orthogonal matrix $Q$ or $P^{T}$ determined by ?gebrd.

## Syntax

```
call sormbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call dormbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call ormbr(a, tau, c [,vect] [,side] [,trans] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

Given an arbitrary real matrix $C$, this routine forms one of the matrix products $Q^{\star} C, Q^{T \star} C, C^{\star} Q, C^{\star} Q^{T}, P^{\star} C$, $P^{T \star} C, C^{\star} P, C^{\star} P^{T}$, where $Q$ and $P$ are orthogonal matrices computed by a call to gebrd. The routine overwrites the product on $C$.

## Input Parameters

In the descriptions below, $r$ denotes the order of $Q$ or $P^{T}$ :

```
If side = 'L', r = m; if side = 'R', r = n.
```

vect CHARACTER*1. Must be 'Q' or 'P'.
If vect $=$ ' $Q$ ', then $Q$ or $Q^{T}$ is applied to $C$.

	If vect $=$ ' P ', then $P$ or $P_{T}$ is applied to $C$.
side	CHARACTER*1. Must be 'L' or 'R'.
	If side = 'L', multipliers are applied to $C$ from the left.
	If side = 'R', they are applied to $C$ from the right.
trans	CHARACTER*1. Must be 'N' or 'T'.
	If trans $=$ ' N ', then $Q$ or $P$ is applied to $C$.
	If trans $=$ ' T ', then $Q^{T}$ or $P^{T}$ is applied to $C$.
m	INTEGER. The number of rows in $C$.
$n$	INTEGER. The number of columns in $C$.
k	INTEGER. One of the dimensions of $A$ in ? gebrd:
	If vect $=$ ' $Q$ ', the number of columns in $A$;
	If vect $=$ ' P ', the number of rows in $A$.
	Constraints: $m \geq 0, n \geq 0, k \geq 0$.
a, c, work	REAL for sormbr
	DOUBLE PRECISION for dormbr.
	Arrays:
	$a(/ d a, *)$ is the array $a$ as returned by ? gebrd.
	Its second dimension must be at least $\max (1, \min (r, k))$ for vect $=$ ' Q ', or $\max (1, r)$ ) for vect $=$ ' P '.
	$c(/ d c, *)$ holds the matrix $C$.
	Its second dimension must be at least max $(1, n)$.
	work is a workspace array, its dimension max (1, lwork).
lda	INTEGER. The leading dimension of $a$. Constraints:
	$I d a \geq \max (1, r)$ if vect $=$ ' $Q$ ';
	$I d a \geq \max (1, \min (r, k))$ if vect $='^{\prime} \mathrm{I}^{\prime}$.
$1 d c$	INTEGER. The leading dimension of $c$; Id $c \geq \max (1, m)$
tau	REAL for sormbr
	DOUBLE PRECISION for dormbr.
	Array, size at least max $(1, \min (r, k))$.
	For vect = 'Q', the array tauq as returned by ? gebrd. For vect = 'P', the array taup as returned by ? gebrd.
Iwork	INTEGER. The size of the work array. Constraints:
	lwork $\geq$ max $(1, n)$ if side = 'L';
	lwork $\geq \max (1, m)$ if side $=$ 'R'.

If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

C
Overwritten by the product $Q^{\star} C, Q^{T \star} C, C^{\star} Q, C^{\star} Q,{ }^{T}, P^{\star} C, P^{T \star} C, C^{\star} P$, or $C^{\star} P^{T}$, as specified by vect, side, and trans.

If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ormbr interface are the following:

a	Holds the matrix $A$ of size $(r, \min (n q, k))$ where $\begin{aligned} & r=n q, \text { if vect }=' Q^{\prime}, \\ & r=\min (n q, k), \text { if vect = 'P', } \\ & n q=m, \text { if side }=' L ', \\ & n q=n, \text { if side }=' R^{\prime}, \\ & k=m, \text { if vect }=' P^{\prime}, \\ & k=n, \text { if vect }=' Q^{\prime} . \end{aligned}$
tau	Holds the vector of length $\min (n q, k)$.
c	Holds the matrix $C$ of size ( $m, n$ ) .
vect	Must be ' $Q$ ' or ' $\mathrm{P}^{\prime}$ '. The default value is ' Q '.
side	Must be 'L' or 'R'. The default value is 'L'.
trans	Must be 'N' or 'T'. The default value is 'N'.

## Application Notes

For better performance, try using
lwork $=n^{*}$ blocksize for side $=$ 'L', or
lwork $=$ m*blocksize for side = 'R',
where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set $l$ work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed product differs from the exact product by a matrix $E$ such that $||E||_{2}=O(\varepsilon)^{*}| | C| |_{2}$.
The total number of floating-point operations is approximately

```
2*n*k(2*m - k) if side = 'L' and m\geqk;
2*m*k(2*n - k) if side = 'R' and n\geqk;
2* m}\mp@subsup{}{}{2}n\mathrm{ if side = 'L' and m<k;
2* n}\mp@subsup{}{}{2}*m\mathrm{ if side = 'R' and n < k
```

The complex counterpart of this routine is unmbr.

## ?ungbr

Generates the complex unitary matrix $Q$ or $P^{H}$
determined by ?gebrd.

## Syntax

```
call cungbr(vect, m, n, k, a, lda, tau, work, lwork, info)
call zungbr(vect, m, n, k, a, lda, tau, work, lwork, info)
call ungbr(a, tau [,vect] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine generates the whole or part of the unitary matrices $Q$ and $P^{H}$ formed by the routines gebrd. Use this routine after a call to cgebrd/zgebrd. All valid combinations of arguments are described in Input Parameters; in most cases you need the following:
To compute the whole $m$-by- $m$ matrix $Q$, use:

```
call ?ungbr('Q', m, m, n, a ...)
```

(note that the arraya must have at least $m$ columns).
To form the $n$ leading columns of $Q$ if $m>n$, use:

```
call ?ungbr('Q', m, n, n, a ...)
```

To compute the whole $n$-by-n matrix $P^{H}$, use:

```
call ?ungbr('P', n, n, m, a ...)
```

(note that the array a must have at least $n$ rows).

To form the $m$ leading rows of $P^{H}$ if $m<n$, use:

```
call ?ungbr('P', m, n, m, a ...)
```


## Input Parameters

```
vect
m
n
k
```

a, work

Ida

CHARACTER*1. Must be 'Q' or 'P'.
If vect $=$ ' $Q$ ', the routine generates the matrix $Q$.
If vect $=$ ' $P$ ', the routine generates the matrix $P^{H}$.
INTEGER. The number of required rows of $Q$ or $P^{H}$.
INTEGER. The number of required columns of $Q$ or $P^{H}$.
INTEGER. One of the dimensions of $A$ in ? gebrd:
If vect $=$ ' $Q$ ', the number of columns in $A$;
If vect $=' P^{\prime}$, the number of rows in $A$.
Constraints: $m \geq 0, n \geq 0, k \geq 0$.
For vect $=$ ' $Q$ ': $k \leq n \leq m$ if $m>k$, or $m=n$ if $m \leq k$.
For vect $=' P^{\prime}: k \leq m \leq n$ if $n>k$, or $m=n$ if $n \leq k$.

COMPLEX for cungbr
DOUBLE COMPLEX for zungbr.

## Arrays:

$a\left(l d a,^{*}\right)$ is the array $a$ as returned by ?gebrd.
The second dimension of $a$ must be at least $\max (1, n)$.
work is a workspace array, its dimension max (1, Iwork).
INTEGER. The leading dimension of $a$; at least max $(1, m)$.
COMPLEX for cungbr
DOUBLE COMPLEX for zungbr.
For vect $=$ ' $Q$ ', the array tauq as returned by ?gebrd. For vect $=1 P^{\prime}$, the array taup as returned by ?gebrd.

The dimension of tau must be at least $\max (1, \min (m, k))$ for vect $=' Q '$, or $\max (1, \min (m, k))$ for vect $=' P^{\prime}$.

INTEGER. The size of the work array.
Constraint: lwork $<\max (1, \min (m, n))$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

a
Overwritten by the orthogonal matrix $Q$ or $P^{T}$ (or the leading rows or columns thereof) as specified by vect, $m$, and $n$.

If info $=0$, on exit work (1) contains the minimum value of /work required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine ungbr interface are the following:

```
a Holds the matrix A of size (m,n).
tau Holds the vector of length min}(m,k)\mathrm{ where
k=m, if vect = 'P',
k=n, if vect = 'Q'.
```

vect Must be ' $Q$ ' or ' $P^{\prime}$. The default value is ' $Q$ '.

## Application Notes

For better performance, try using lwork $=\min (m, n) * b l o c k s i z e$, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The computed matrix $Q$ differs from an exactly orthogonal matrix by a matrix $E$ such that $||E||_{2}=O(\varepsilon)$.
The approximate numbers of possible floating-point operations are listed below:
To compute the whole matrix $Q$ :
$(16 / 3) n\left(3 m^{2}-3 m^{\star} n+n^{2}\right)$ if $m>n$;
$(16 / 3) m^{3}$ if $m \leq n$.
To form the $n$ leading columns of $Q$ when $m>n$ :
$(8 / 3) n^{2}\left(3 m-n^{2}\right)$.
To compute the whole matrix $P^{H}$ :
$(16 / 3) n^{3}$ if $m \geq n$;
$(16 / 3) m\left(3 n^{2}-3 m^{\star} n+m^{2}\right)$ if $m<n$.
To form the $m$ leading columns of $P^{H}$ when $m<n$ :
$(8 / 3) n^{2}\left(3 m-n^{2}\right)$ if $m>n$.
The real counterpart of this routine is orgbr.

## ?unmbr

Multiplies an arbitrary complex matrix by the unitary matrix $Q$ or $P$ determined by ? gebrd.

## Syntax

```
call cunmbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call zunmbr(vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
call unmbr(a, tau, c [,vect] [,side] [,trans] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

Given an arbitrary complex matrix $C$, this routine forms one of the matrix products $Q^{*} C, Q^{H *} C, C^{*} Q, C^{*} Q^{H}$, $P^{*} C, P^{H *} C, C^{*} P$, or $C^{*} P^{H}$, where $Q$ and $P$ are unitary matrices computed by a call to gebrd/gebrd. The routine overwrites the product on $C$.

## Input Parameters

In the descriptions below, $r$ denotes the order of $Q$ or $P^{H}$ :

```
If side = 'L', r = m; if side = 'R',r = n.
vect CHARACTER*1.Must be 'Q' or 'P'.
 If vect = 'Q', then Q or QH is applied to C.
 If vect = 'P', then P or PH}\mathrm{ is applied to C.
 CHARACTER*1. Must be 'L' or 'R'.
 If side = 'L', multipliers are applied to C from the left.
 If side = 'R', they are applied to C from the right.
 CHARACTER*1. Must be 'N' or 'C'.
 If trans = 'N', then Q or P is applied to C.
 If trans = 'C', then QH}\mathrm{ or PH}\mathrm{ is applied to C.
 INTEGER. The number of rows in C.
 INTEGER. The number of columns in C.
 INTEGER. One of the dimensions of A in ?gebrd:
 If vect = 'Q', the number of columns in A;
```

```
 If vect = 'P', the number of rows in A.
 Constraints: m\geq0, n\geq0,k\geq0.
 COMPLEX for cunmbr
 DOUBLE COMPLEX for zunmbr.
 Arrays:
 a(/da,*) is the array a as returned by ?gebrd.
 Its second dimension must be at least max(1, min}(r,k)) for vect = 'Q', or
 max(1,r)) for vect = 'P'.
 c(Idc,*) holds the matrix C.
 Its second dimension must be at least max(1, n).
 work is a workspace array, its dimension max (1, lwork).
 INTEGER. The leading dimension of a. Constraints:
 Ida\geq max(1,r) if vect = 'Q';
 Ida\geqmax(1, min}(r,k))\mathrm{ if vect = 'P'.
 INTEGER. The leading dimension of c; ldc\geq max (1, m).
COMPLEX for cunmbr
DOUBLE COMPLEX for zunmbr.
Array, size at least \(\max (1, \min (r, k))\).
For vect \(=\) ' \(Q\) ', the array tauq as returned by ?gebrd. For vect \(=\) ' P ', the array taup as returned by ?gebrd.
INTEGER. The size of the work array.
lwork \(\geq \max (1, n)\) if side \(=\) 'L';
lwork \(\geq \max (1, m)\) if side \(=\) 'R'.
lwork \(\geq 1\) if \(n=0\) or \(m=0\).
For optimum performance 1 work \(\geq \max \left(1, n^{\star} n b\right)\) if side \(=\) 'L', and lwork \(\geq \max \left(1, m^{\star} n b\right)\) if side \(=\) ' \(R^{\prime}\), where \(n b\) is the optimal blocksize. (\(n b=0\) if \(m=0\) or \(n=0\).)
If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.
```

See Application Notes for the suggested value of Iwork.

## Output Parameters

c
work(1)
Overwritten by the product $Q^{*} C, Q^{H *} C, C^{*} Q, C^{*} Q^{H}, P^{*} C, P^{H *} C, C * P$, or $C * P^{H}$, as specified by vect, side, and trans.

If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this /work for subsequent runs.

## info

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine unmbr interface are the following:


## Application Notes

For better performance, use
lwork $=n^{\star}$ blocksize for side $=$ 'L', or
lwork $=m^{*}$ blocksize for side = 'R',
where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed product differs from the exact product by a matrix $E$ such that $\left|\left|E \|_{2}=O(\varepsilon)^{*}\right|\right| C\left|\left.\right|_{2}\right.$.
The total number of floating-point operations is approximately

```
8* n* k(2*m - k) if side = 'L' and m\geqk;
8*m*k(2*n - k) if side = 'R' and n\geqk;
8* m}\mp@subsup{}{2}{*}n\mathrm{ if side = 'L' and m<k;
8* n}\mp@subsup{}{}{2}*m\mathrm{ if side = 'R' and n < k.
```

The real counterpart of this routine is ormbr.

## ?bdsqr

Computes the singular value decomposition of a general matrix that has been reduced to bidiagonal form.

## Syntax

```
call sbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work, info)
call dbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work, info)
call cbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, rwork, info)
call zbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, rwork, info)
call rbdsqr(d, e [,vt] [,u] [,c] [,uplo] [,info])
call bdsqr(d, e [,vt] [,u] [,c] [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine computes the singular values and, optionally, the right and/or left singular vectors from the Singular Value Decomposition (SVD) of a real $n$-by- $n$ (upper or lower) bidiagonal matrix $B$ using the implicit zero-shift $Q R$ algorithm. The SVD of $B$ has the form $B=Q^{\star} S^{\star} P^{H}$ where $S$ is the diagonal matrix of singular values, $Q$ is an orthogonal matrix of left singular vectors, and $P$ is an orthogonal matrix of right singular vectors. If left singular vectors are requested, this subroutine actually returns $U * Q$ instead of $Q$, and, if right singular vectors are requested, this subroutine returns $P^{H} * V T$ instead of $P^{H}$, for given real/complex input matrices $U$ and $V T$. When $U$ and $V T$ are the orthogonal/unitary matrices that reduce a general matrix $A$ to bidiagonal form: $A=U^{\star} B^{\star} V T$, as computed by ? gebrd, then

```
A = (U* Q)* * S* (}\mp@subsup{P}{}{H*}VT
```

is the SVD of $A$. Optionally, the subroutine may also compute $Q^{H} * C$ for a given real/complex input matrix $C$. See also lasq1, lasq2, lasq3, lasq4, lasq5, lasq6 used by this routine.

## Input Parameters

```
uplo
n
ncvt
CHARACTER*1. Must be 'U' or 'L'.
 If uplo = 'U', B is an upper bidiagonal matrix.
 If uplo = 'L', B is a lower bidiagonal matrix.
 INTEGER. The order of the matrix B (}n\geq0)\mathrm{ .
INTEGER. The number of columns of the matrix \(V T\), that is, the number of right singular vectors (\(n c v t \geq 0\)).
```

Set $n c v t=0$ if no right singular vectors are required.
INTEGER. The number of rows in $U$, that is, the number of left singular vectors ( $n r u \geq 0$ ).
Set nru $=0$ if no left singular vectors are required.
INTEGER. The number of columns in the matrix $C$ used for computing the product $Q^{H *} C(n c c \geq 0)$. Set $n c c=0$ if no matrix $C$ is supplied.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
$d(*)$ contains the diagonal elements of $B$.
The size of $d$ must be at least max $(1, n)$.
$e(*)$ contains the ( $n-1$ ) off-diagonal elements of $B$.
The size of $e$ must be at least $\max (1, n-1)$.
REAL for sbdsqr
DOUBLE PRECISION for dbdsqr.
work(*) is a workspace array.
The size of work must be at least max $(1,4 * n)$.
REAL for cbdsqr
DOUBLE PRECISION for zbdsqr.
rwork(*) is a workspace array.
The size of rwork must be at least max $\left(1,4 *^{*} n\right)$.
REAL for sbdsqr
DOUBLE PRECISION for dbdsqr
COMPLEX for cbdsqr
DOUBLE COMPLEX for zbdsqr.
Arrays:
$v t$ (ldvt,*) contains an $n$-by-ncvt matrix $V T$.
The second dimension of $v t$ must be at least max (1, ncvt).
$v t$ is not referenced if ncvt $=0$.
$u(I d u, *)$ contains an nru by $n$ matrix $U$.
The second dimension of $u$ must be at least max $(1, n)$.
$u$ is not referenced if $n r u=0$.
$c\left(I d c,{ }^{*}\right)$ contains the $n$-by-ncc matrix $C$ for computing the product $Q^{H *} C$.
The second dimension of $c$ must be at least $\max (1, n c c)$. The array is not referenced if $n c c=0$.

INTEGER. The leading dimension of $v t$. Constraints:

	$l d v t \geq \max (1, n)$ if $n c v t>0 ;$
	$I d v t \geq 1$ if $n c v t=0$.
$I d u \quad$	$I N T E G E R$. The leading dimension of $u$. Constraint:
$I d c \quad$	$I d u \geq \max (1, n r u)$.
	INTEGER. The leading dimension of $c$. Constraints:
	$I d c \geq \max (1, n)$ if $n c c>0 ; I d c \geq 1$ otherwise.

## Output Parameters

$d$
e
c
$v t$
u
info

On exit, if info $=0$, overwritten by the singular values in decreasing order (see info).

On exit, if info $=0, e$ is destroyed. See also info below.
Overwritten by the product $Q^{H *} C$.
On exit, this array is overwritten by $P^{H} * V T$. Not referenced if $n C V t=0$.
On exit, this array is overwritten by $U * Q$. Not referenced if nru $=0$.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info > 0,
If ncvt $=n r u=n c c=0$,

- info $=1$, a split was marked by a positive value in e
- info $=2$, the current block of $z$ not diagonalized after $100 * n$ iterations (in the inner while loop)
- info $=3$, termination criterion of the outer while loop is not met (the program created more than $n$ unreduced blocks).
In all other cases when ncvt, nru, or ncc > 0 , the algorithm did not converge; $d$ and $e$ contain the elements of a bidiagonal matrix that is orthogonally similar to the input matrix $B$; if info $=i, i$ elements of $e$ have not converged to zero.


## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine bdsqr interface are the following:

$d$	Holds the vector of length $(n)$.
$e$	Holds the vector of length $(n)$.
$v t$	Holds the matrix $V T$ of size $(n, n c v t)$.
$u$	Holds the matrix $U$ of size $(n r u, n)$.

```
C Holds the matrix C of size (n,ncc).
uplo
ncvt
nru
ncc
Holds the matrix \(C\) of size (\(n, n c c\)).
Must be 'U' or 'L'. The default value is 'U'.
If argument \(v t\) is present, then ncvt is equal to the number of columns in matrix \(V T\); otherwise, ncvt is set to zero.
If argument \(u\) is present, then nru is equal to the number of rows in matrix \(U\); otherwise, nru is set to zero.
If argument \(c\) is present, then \(n c c\) is equal to the number of columns in matrix \(C\); otherwise, ncc is set to zero.
```

Note that two variants of Fortran 95 interface for bdsqr routine are needed because of an ambiguous choice between real and complex cases appear when $v t, u$, and $c$ are omitted. Thus, the name rbdsqr is used in real cases (single or double precision), and the name bdsqr is used in complex cases (single or double precision).

## Application Notes

Each singular value and singular vector is computed to high relative accuracy. However, the reduction to bidiagonal form (prior to calling the routine) may decrease the relative accuracy in the small singular values of the original matrix if its singular values vary widely in magnitude.

If $s_{i}$ is an exact singular value of $B$, and $s_{i}$ is the corresponding computed value, then
$\left|s_{i}-\sigma_{i}\right| \leq p^{*}(m, n) * \varepsilon^{*} \sigma_{i}$
where $p(m, n)$ is a modestly increasing function of $m$ and $n$, and $\varepsilon$ is the machine precision.
If only singular values are computed, they are computed more accurately than when some singular vectors are also computed (that is, the function $p(m, n)$ is smaller).

If $u_{i}$ is the corresponding exact left singular vector of $B$, and $w_{i}$ is the corresponding computed left singular vector, then the angle $\theta\left(u_{i}, w_{i}\right)$ between them is bounded as follows:
$\theta\left(u_{i}, w_{i}\right) \leq p(m, n) * \varepsilon / \min { }_{i \neq j}\left(|\sigma i-\sigma j| /\left|\sigma_{i}+\sigma j\right|\right)$.
Here $\min _{i \neq j}\left(\left|\sigma_{i}-\sigma_{j}\right| /\left|\sigma_{i}+\sigma_{j}\right|\right)$ is the relative $g a p$ between $\sigma_{i}$ and the other singular values. A similar error bound holds for the right singular vectors.

The total number of real floating-point operations is roughly proportional to $n^{2}$ if only the singular values are computed. About $6 n^{2}$ 泥u additional operations ( $12 n^{2 \star} n r u$ for complex flavors) are required to compute the left singular vectors and about $6 n^{2}$ n $n c v t$ operations ( $12 n^{2} * n c v t$ for complex flavors) to compute the right singular vectors.

```
?bdsdc
Computes the singular value decomposition of a real
bidiagonal matrix using a divide and conquer method.
Syntax
```

```
call sbdsdc(uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work, iwork, info)
```

call sbdsdc(uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work, iwork, info)
call dbdsdc(uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work, iwork, info)
call dbdsdc(uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work, iwork, info)
call bdsdc(d, e [,u] [,vt] [,q] [,iq] [,uplo] [,info])

```
call bdsdc(d, e [,u] [,vt] [,q] [,iq] [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine computes the Singular Value Decomposition (SVD) of a real $n$-by-n (upper or lower) bidiagonal matrix $B$ : $B=U^{\star} \Sigma^{\star} V^{T}$, using a divide and conquer method, where $\Sigma$ is a diagonal matrix with non-negative diagonal elements (the singular values of $B$ ), and $U$ and $V$ are orthogonal matrices of left and right singular vectors, respectively. ?bdsdc can be used to compute all singular values, and optionally, singular vectors or singular vectors in compact form.

This rotuine
uses ?lasd0, ?lasd1, ?lasd2, ?lasd3, ?lasd4, ?lasd5, ?lasd6, ?lasd7, ?lasd8, ?lasd9, ?lasda, ?lasdq, ?lasdt.

Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	If uplo = 'U', $B$ is an upper bidiagonal matrix.
	If uplo = 'L', $B$ is a lower bidiagonal matrix.
compq	CHARACTER*1. Must be 'N', 'P', or 'I'.
	If compq = ' ${ }^{\prime}$ ', compute singular values only.
	If compq $=$ ' $\mathrm{P}^{\prime}$, compute singular values and compute singular vectors in compact form.
	If compq = 'I', compute singular values and singular vectors.
$n$	INTEGER. The order of the matrix $B(n \geq 0)$.
d, e, work	REAL for sbdsdc
	DOUBLE PRECISION for dbdsdc.
	Arrays:
	$d(*)$ contains the $n$ diagonal elements of the bidiagonal matrix $B$. The size of $d$ must be at least max $(1, n)$.
	$e(*)$ contains the off-diagonal elements of the bidiagonal matrix $B$. The size of $e$ must be at least $\max (1, n)$.
	work(*) is a workspace array.
	The dimension of work must be at least:
	max (1, 4*n), if compq = 'N' or compq = ' P ';
	$\max \left(1,3 * n^{2}+4^{*} n\right)$, if compq = 'I'.
$1 d u$	INTEGER. The leading dimension of the output array $u$; $I d u \geq 1$.
	If singular vectors are desired, then $I d u \geq \max (1, n)$.
Idvt	INTEGER. The leading dimension of the output array $v t$; /dvt $\geq 1$.
	If singular vectors are desired, then $/ d v t \geq \max (1, n)$.
iwork	INTEGER. Workspace array, dimension at least max $(1,8 * n)$.

## Output Parameters

$$
d
$$

If info $=0$, overwritten by the singular values of $B$.

```
e \(u, v t, q\)
```

iq
info

On exit, e is overwritten.
REAL for sbdsdc
DOUBLE PRECISION for dbdsdc.
Arrays: $u(I d u, *), v t(I d v t, *), q(*)$.
If compq $=$ 'I', then on exit $u$ contains the left singular vectors of the bidiagonal matrix $B$, unless info $\neq 0$ (seeinfo). For other values of compq, $u$ is not referenced.

The second dimension of $u$ must be at least max $(1, n)$.
if compq $=$ 'I', then on exit $v t^{T}$ contains the right singular vectors of the bidiagonal matrix $B$, unless info $\neq 0$ (seeinfo). For other values of compq, $v t$ is not referenced. The second dimension of $v t$ must be at least max $(1, n)$.

If compq $=$ ' $P$ ', then on exit, if info $=0, q$ and $i q$ contain the left and right singular vectors in a compact form. Specifically, $q$ contains all the REAL (for sbdsdc) or DOUBLE PRECISION (for dbdsdc) data for singular vectors. For other values of compq, $q$ is not referenced.

INTEGER.
Array: iq(*).
If compq $=$ ' $\mathrm{P}^{\prime}$, then on exit, if info $=0, q$ and $i q$ contain the left and right singular vectors in a compact form. Specifically, iq contains all the INTEGER data for singular vectors. For other values of compq, iq is not referenced.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i$, the algorithm failed to compute a singular value. The update process of divide and conquer failed.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine bdsdc interface are the following:

d	Holds the vector of length $n$.
e	Holds the vector of length $n$.
$u$	Holds the matrix $U$ of size ( $n, n$ ).
$v t$	Holds the matrix VT of size ( $n, n$ ).
q	Holds the vector of length ( $/ d q$ ), where
	ldq $\geq n^{*}\left(11+2 * s m l s i z+8 * i n t\left(l_{o g} 2(n /(s m l s i z+1))\right)\right)$ and smlsiz is returned by ilaenv and is equal to the maximum size of the subproblems at the bottom of the computation tree (usually about 25).

Restored based on the presence of arguments $u, v t, q$, and $i q$ as follows:
compq $=$ ' $N$ ', if none of $u, v t, q$, and iq are present,
compq $=$ 'I', if both $u$ and $v t$ are present. Arguments $u$ and $v t$ must either be both present or both omitted,
compq $=$ ' $\mathrm{P}^{\prime}$, if both $q$ and $i q$ are present. Arguments $q$ and iq must either be both present or both omitted.

Note that there will be an error condition if all of $u, v t, q$, and $i q$ arguments are present simultaneously.

## See Also

?lasd0
?lasd1
?lasd2
?lasd3
?lasd4
?lasd5
?lasd6
?lasd7
?lasd8
?lasd9
?lasda
?lasdq
?lasdt

## Symmetric Eigenvalue Problems: LAPACK Computational Routines

Symmetric eigenvalue problems are posed as follows: given an $n$-by- $n$ real symmetric or complex Hermitian matrix $A$, find the eigenvalues $\lambda$ and the corresponding eigenvectors $z$ that satisfy the equation
$A z=\lambda z$ (or, equivalently, $z^{H} A=\lambda z^{H}$ ).
In such eigenvalue problems, all $n$ eigenvalues are real not only for real symmetric but also for complex Hermitian matrices $A$, and there exists an orthonormal system of $n$ eigenvectors. If $A$ is a symmetric or Hermitian positive-definite matrix, all eigenvalues are positive.
To solve a symmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix to tridiagonal form and then solve the eigenvalue problem with the tridiagonal matrix obtained. LAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or unitary) similarity transformation $A=$ $Q T Q^{H}$ as well as for solving tridiagonal symmetric eigenvalue problems. These routines (for FORTRAN 77 interface) are listed in Table "Computational Routines for Solving Symmetric Eigenvalue Problems". The corresponding routine names in the Fortran 95 interface are without the first symbol.
There are different routines for symmetric eigenvalue problems, depending on whether you need all eigenvectors or only some of them or eigenvalues only, whether the matrix $A$ is positive-definite or not, and so on.
These routines are based on three primary algorithms for computing eigenvalues and eigenvectors of symmetric problems: the divide and conquer algorithm, the QR algorithm, and bisection followed by inverse iteration. The divide and conquer algorithm is generally more efficient and is recommended for computing all eigenvalues and eigenvectors. Furthermore, to solve an eigenvalue problem using the divide and conquer algorithm, you need to call only one routine. In general, more than one routine has to be called if the QR algorithm or bisection followed by inverse iteration is used.

The decision tree in Figure "Decision Tree: Real Symmetric Eigenvalue Problems" will help you choose the right routine or sequence of routines for eigenvalue problems with real symmetric matrices. Figure "Decision Tree: Complex Hermitian Eigenvalue Problems" presents a similar decision tree for complex Hermitian matrices.

Decision Tree: Real Symmetric Eigenvalue Problems


Decision Tree: Complex Hermitian Eigenvalue Problems


Computational Routines for Solving Symmetric Eigenvalue Problems

Operation	Real symmetric matrices	Complex Hermitian matrices
Reduce to tridiagonal form $A=Q T Q^{H}$ (full storage)	sytrd syrdb	hetrd herdb
Reduce to tridiagonal form $A=Q T Q^{H}$ (packed storage)	sptrd	hptrd
Reduce to tridiagonal form $A=Q T Q^{H}$ (band storage).	sbtrd	hbtrd
Generate matrix $Q$ (full storage)	orgtr	ungtr
Generate matrix $Q$ (packed storage)	opgtr	upgtr
Apply matrix $Q$ (full storage)	ormtr	unmtr
Multiplies a general matrix by an orthogonal/unitary matrix with a $2 \times 2$ structure.	orm22	unm22
Apply matrix $Q$ (packed storage)	opmtr	upmtr
Find all eigenvalues of a tridiagonal matrix $T$	sterf	
Find all eigenvalues and eigenvectors of a tridiagonal matrix $T$	steqr stedc	steqr stedc
Find all eigenvalues and eigenvectors of a tridiagonal positive-definite matrix $T$.	pteqr	pteqr
Find selected eigenvalues of a tridiagonal matrix $T$	stebz stegr	stegr
Find selected eigenvectors of a tridiagonal matrix $T$	stein stegr	stein stegr
Find selected eigenvalues and eigenvectors of f a real symmetric tridiagonal matrix $T$	stemr	stemr
Compute the reciprocal condition numbers for the eigenvectors	disna	disna

?sytrd
Reduces a real symmetric matrix to tridiagonal form.
Syntax

```
call ssytrd(uplo, n, a, lda, d, e, tau, work, lwork, info)
call dsytrd(uplo, n, a, lda, d, e, tau, work, lwork, info)
call sytrd(a, tau [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90

Description

The routine reduces a real symmetric matrix $A$ to symmetric tridiagonal form $T$ by an orthogonal similarity transformation: $A=Q^{*} T{ }^{*} Q^{T}$. The orthogonal matrix $Q$ is not formed explicitly but is represented as a product of $n-1$ elementary reflectors. Routines are provided for working with $Q$ in this representation (see Application Notes below).

## Input Parameters

uplo
n
a, work
lda
lwork

CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of $A$.
If uplo = 'L', a stores the lower triangular part of $A$.
INTEGER. The order of the matrix $A(n \geq 0)$.
REAL for ssytrd
DOUBLE PRECISION for dsytrd.
a(lda,*) is an array containing either upper or lower triangular part of the matrix $A$, as specified by uplo. If uplo $=$ ' $U$ ', the leading $n$-by- $n$ upper triangular part of a contains the upper triangular part of the matrix $A$, and the strictly lower triangular part of $A$ is not referenced. If uplo $=$ 'L', the leading $n$-by- $n$ lower triangular part of a contains the lower triangular part of the matrix $A$, and the strictly upper triangular part of $A$ is not referenced.

The second dimension of a must be at least max $(1, n)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a$; at least max $(1, n)$.
INTEGER. The size of the work array ( 1 work $\geq n$ ).
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

a
On exit,
if uplo = 'U', the diagonal and first superdiagonal of $A$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements above the first superdiagonal, with the array tau, represent the orthogonal matrix $Q$ as a product of elementary reflectors;
if uplo = 'L', the diagonal and first subdiagonal of $A$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements below the first subdiagonal, with the array tau, represent the orthogonal matrix $Q$ as a product of elementary reflectors.

REAL for ssytrd
DOUBLE PRECISION for dsytrd.

## Arrays:

$d\left({ }^{*}\right)$ contains the diagonal elements of the matrix $T$.
work(1)
info

The size of $d$ must be at least $\max (1, n)$.
$e(*)$ contains the off-diagonal elements of $T$.
The size of $e$ must be at least max(1, $n-1)$.
$\operatorname{tau}(*)$ stores ( $n-1$ ) scalars that define elementary reflectors in decomposition of the orthogonal matrix $Q$ in a product of $n-1$ elementary reflectors. $\operatorname{tau}(n)$ is used as workspace.
The size of tau must be at least $\max (1, n)$.
If info=0, on exit work (1) contains the minimum value of /work required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sytrd interface are the following:

```
a Holds the matrix A of size (n,n).
tau Holds the vector of length (n-1).
uplo Must be 'U' or'L'. The default value is 'U'.
```

Note that diagonal $(d)$ and off-diagonal (e) elements of the matrix $T$ are omitted because they are kept in the matrix $A$ on exit.

## Application Notes

For better performance, try using lwork $=n \star$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix $T$ is exactly similar to a matrix $A+E$, where $\left.\left||E|_{I_{2}}=C(n) * \varepsilon^{\star}\right||A|\right|_{2}, C(n)$ is a modestly increasing function of $n$, and $\varepsilon$ is the machine precision.

The approximate number of floating-point operations is $(4 / 3) n^{3}$.
After calling this routine, you can call the following:
orgtr to form the computed matrix $Q$ explicitly
ormtr to multiply a real matrix by $Q$.
The complex counterpart of this routine is ?hetrd.
?syrdb
Reduces a real symmetric matrix to tridiagonal form with Successive Bandwidth Reduction approach.

## Syntax

```
call ssyrdb(jobz, uplo, n, kd, a, lda, d, e, tau, z, ldz, work, lwork, info)
call dsyrdb(jobz, uplo, n, kd, a, lda, d, e, tau, z, ldz, work, lwork, info)
```


## Include Files

- mkl.fi


## Description

The routine reduces a real symmetric matrix $A$ to symmetric tridiagonal form $T$ by an orthogonal similarity transformation: $A=Q * T * Q^{T}$ and optionally multiplies matrix $Z$ by $Q$, or simply forms $Q$.
This routine reduces a full symmetric matrix $A$ to the banded symmetric matrix $B$, and then to the tridiagonal symmetric matrix $T$ with a Successive Bandwidth Reduction approach after C. Bischof's works (see for instance, [Bischof00]). ?syrdb is functionally close to ?sytrd routine but the tridiagonal form may differ from those obtained by ?sytrd. Unlike ?sytrd, the orthogonal matrix $Q$ cannot be restored from the details of matrix $A$ on exit.

## Input Parameters

```
jobz
 CHARACTER*1. Must be 'N' or 'V'.
 If jobz = 'N', then only A is reduced to T.
 If jobz = 'V', then A is reduced to T and A contains Q on exit.
 If jobz = 'U', then A is reduced to T and Z contains Z*Q on exit.
 CHARACTER*1. Must be 'U' or 'L'.
 If uplo = 'U', a stores the upper triangular part of A.
 If uplo = 'L', a stores the lower triangular part of }A\mathrm{ .
 INTEGER. The order of the matrix A (n\geq0).
 INTEGER. The bandwidth of the banded matrix B (ko\geq 1,kd\leqn-1).
 REAL for ssyrdb.
 DOUBLE PRECISION for dsyrdb.
 a(Ida,*) is an array containing either upper or lower triangular part of the
 matrix }A\mathrm{ , as specified by uplo.
 The second dimension of a must be at least max (1, n).
 z(Idz,*), the second dimension of z must be at least max (1, n).
 If jobz = 'U', then the matrix z is multiplied by Q.
```

	If jobz = 'N' or 'V', then $z$ is not referenced. work(/work) is a workspace array.
lda	INTEGER. The leading dimension of $a$; at least max $(1, n)$.
$1 d z$	INTEGER. The leading dimension of $z$; at least $\max (1, n)$. Not referenced if jobz = 'N'
lwork	INTEGER. The size of the work array (lwork $\geq$ ( $2 k d+1) n+k d)$.
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.
	See Application Notes for the suggested value of Iwork.

## Output Parameters

a
If $j o b z=$ ' $V$ ', then overwritten by $Q$ matrix.
If $j o b z=$ ' $N$ ' or 'U', then overwritten by the banded matrix $B$ and details of the orthogonal matrix $Q_{B}$ to reduce $A$ to $B$ as specified by uplo.

On exit,
if jobz $=$ ' $U$ ', then the matrix $z$ is overwritten by $Z^{*} Q$.
If jobz $=$ ' $N$ ' or ' $V$ ', then $z$ is not referenced.

DOUBLE PRECISION.
Arrays:
$d\left({ }^{*}\right)$ contains the diagonal elements of the matrix $T$.
The dimension of $d$ must be at least $\max (1, n)$.
$e(*)$ contains the off-diagonal elements of $T$.
The dimension of e must be at least $\max (1, n-1)$.
$\operatorname{tau}(*)$ stores further details of the orthogonal matrix $Q$.
The dimension of tau must be at least max $(1, n-k d-1)$.
work(1)
info

If info=0, on exit work(1) contains the minimum value of lwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## Application Notes

For better performance, try using lwork $=n^{*}(3 * k d+3)$.
If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

For better performance, try using $k d$ equal to 40 if $n \leq 2000$ and 64 otherwise.
Try using ?syrdb instead of ?sytrd on large matrices obtaining only eigenvalues - when no eigenvectors are needed, especially in multi-threaded environment. ?syrdb becomes faster beginning approximately with $\mathrm{n}=$ 1000, and much faster at larger matrices with a better scalability than ?sytrd.

Avoid applying ?syrdb for computing eigenvectors due to the two-step reduction, that is, the number of operations needed to apply orthogonal transformations to $Z$ is doubled compared to the traditional one-step reduction. In that case it is better to apply ?sytrd and ?ormtr/?orgtr to obtain tridiagonal form along with the orthogonal transformation matrix $Q$.

```
?herdb
Reduces a complex Hermitian matrix to tridiagonal
form with Successive Bandwidth Reduction approach.
Syntax
call cherdb(jobz, uplo, n, kd, a, lda, d, e, tau, z, ldz, work, lwork, info)
call zherdb(jobz, uplo, n, kd, a, lda, d, e, tau, z, ldz, work, lwork, info)
```


## Include Files

- mkl.fi


## Description

The routine reduces a complex Hermitian matrix $A$ to symmetric tridiagonal form $T$ by a unitary similarity transformation: $A=Q^{*} T * Q^{T}$ and optionally multiplies matrix $Z$ by $Q$, or simply forms $Q$.

This routine reduces a full symmetric matrix $A$ to the banded symmetric matrix $B$, and then to the tridiagonal symmetric matrix $T$ with a Successive Bandwidth Reduction approach after C. Bischof's works (see for instance, [Bischof00]). ?herdb is functionally close to ?hetrd routine but the tridiagonal form may differ from those obtained by ?hetrd. Unlike ?hetrd, the orthogonal matrix $Q$ cannot be restored from the details of matrix $A$ on exit.

## Input Parameters

```
jobz
uplo
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then only A is reduced to T.
If jobz = 'V', then A is reduced to T and A contains Q on exit.
If jobz = 'U', then A is reduced to T and Z contains Z*Q on exit.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of A.
```

```
 If uplo = 'L', a stores the lower triangular part of A.
 INTEGER. The order of the matrix A (n\geq0).
 INTEGER. The bandwidth of the banded matrix B (ka\geq1,kd\leqn-1).
 COMPLEX for cherdb.
 DOUBLE COMPLEX for zherdb.
 a(Ida,*) is an array containing either upper or lower triangular part of the
 matrix }A\mathrm{ , as specified by uplo.
 The second dimension of a must be at least max (1, n).
 z(Idz,*), the second dimension of z must be at least max (1, n).
 If jobz = 'U', then the matrix z is multiplied by Q.
 If jobz = 'N' or 'V', then z is not referenced.
 work(/work) is a workspace array.
 INTEGER. The leading dimension of a; at least max (1, n).
 INTEGER. The leading dimension of z; at least max (1, n). Not referenced if
jobz = 'N'
INTEGER. The size of the work array (1 work \(\geq(2 k d+1) n+k d\)).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.
```

See Application Notes for the suggested value of Iwork.

## Output Parameters

a
z
d, e
If jobz = 'V', then overwritten by $Q$ matrix.
If jobz = 'N' or 'U', then overwritten by the banded matrix $B$ and details of the unitary matrix $Q_{B}$ to reduce $A$ to $B$ as specified by uplo.

On exit,
if $j o b z=' U '$, then the matrix $z$ is overwritten by $z^{\star} Q$.
If jobz = 'N' or 'V', then $z$ is not referenced.
REAL for cherdb.
DOUBLE PRECISION for zherdb.
Arrays:
$d\left({ }^{*}\right)$ contains the diagonal elements of the matrix $T$.
The dimension of $d$ must be at least $\max (1, n)$.
$e(*)$ contains the off-diagonal elements of $T$.
The dimension of $e$ must be at least $\max (1, n-1)$.
$\operatorname{tau}(*)$ stores further details of the orthogonal matrix $Q$.

The dimension of tau must be at least max $(1, n-k d-1)$.
COMPLEX for cherdb.
DOUBLE COMPLEX for zherdb.
Array, size at least $\max (1, n-1)$
Stores further details of the unitary matrix $Q_{B}$. The dimension of tau must be at least $\max (1, n-k d-1)$.
work(1) If info=0, on exit work(1) contains the minimum value of /work required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## Application Notes

For better performance, try using lwork $=n^{*}(3 * k d+3)$.
If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

For better performance, try using $k d$ equal to 40 if $n \leq 2000$ and 64 otherwise.
Try using ?herdb instead of ?hetrd on large matrices obtaining only eigenvalues - when no eigenvectors are needed, especially in multi-threaded environment. ?herdb becomes faster beginning approximately with $\mathrm{n}=$ 1000, and much faster at larger matrices with a better scalability than ?hetrd.

Avoid applying ?herdb for computing eigenvectors due to the two-step reduction, that is, the number of operations needed to apply orthogonal transformations to $Z$ is doubled compared to the traditional one-step reduction. In that case it is better to apply ?hetrd and ?unmtr/?ungtr to obtain tridiagonal form along with the unitary transformation matrix $Q$.

## ?orgtr

Generates the real orthogonal matrix $Q$ determined
by ?sytrd.

## Syntax

```
call sorgtr(uplo, n, a, lda, tau, work, lwork, info)
call dorgtr(uplo, n, a, lda, tau, work, lwork, info)
call orgtr(a, tau [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine explicitly generates the $n$-by-n orthogonal matrix $Q$ formed by ?sytrd when reducing a real symmetric matrix $A$ to tridiagonal form: $A=Q^{*} T^{*} Q^{T}$. Use this routine after a call to ?sytrd.

## Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	Use the same uplo as supplied to ?sytrd.
$n$	INTEGER. The order of the matrix $Q(n \geq 0)$.
a, tau, work	REAL for sorgtr
	DOUBLE PRECISION for dorgtr.
	Arrays:
	$a(/ d a, *)$ is the array $a$ as returned by ?sytrd.
	The second dimension of $a$ must be at least max $(1, n)$.
	tau (*) is the array tau as returned by ?sytrd.
	The size of tau must be at least max $(1, n-1)$.
	work is a workspace array, its dimension max (1, lwork).
Ida	INTEGER. The leading dimension of $a$; at least max $(1, n)$.
lwork	INTEGER. The size of the work array ( 1 work $\geq n$ ).
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

$a$
work(1)
info

Overwritten by the orthogonal matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of /work required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine orgtr interface are the following:
a
Holds the matrix $A$ of size $(n, n)$.

```
tau Holds the vector of length (n-1).
uplo Must be 'U' or 'L'. The default value is 'U'.
```


## Application Notes

For better performance, try using lwork $=(n-1) *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix $Q$ differs from an exactly orthogonal matrix by a matrix $E$ such that $||E||_{2}=O(\varepsilon)$, where $\varepsilon$ is the machine precision.

The approximate number of floating-point operations is $(4 / 3) n^{3}$.
The complex counterpart of this routine is ungtr.

## ?ormtr

Multiplies a real matrix by the real orthogonal matrix $Q$ determined by ?sytrd.

## Syntax

```
call sormtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
call dormtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
call ormtr(a, tau, c [,side] [,uplo] [,trans] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine multiplies a real matrix $C$ by $Q$ or $Q^{T}$, where $Q$ is the orthogonal matrix $Q$ formed by sytrd when reducing a real symmetric matrix $A$ to tridiagonal form: $A=Q^{\star} T^{*} Q^{T}$. Use this routine after a call to ?sytrd.

Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{\star} C, Q^{T \star} C$, $C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result on $C$ ).

## Input Parameters

In the descriptions below, $r$ denotes the order of $Q$ :
If side = 'L', $r=m$; if side $=$ 'R', $r=n$.
side
CHARACTER*1. Must be either 'L' or 'R'.

	If side = 'L', Q or $Q^{T}$ is applied to $C$ from the left.
	If side $=$ 'R', $Q$ or $Q^{T}$ is applied to $C$ from the right.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	Use the same uplo as supplied to ?sytrd.
trans	CHARACTER*1. Must be either 'N' or 'T'.
	If trans $=$ ' $N$ ', the routine multiplies $C$ by $Q$.
	If trans $=$ ' T ', the routine multiplies $C$ by $Q^{T}$.
m	INTEGER. The number of rows in the matrix $C$ ( $m \geq 0$ ).
$n$	INTEGER. The number of columns in $C(n \geq 0)$.
a, c, tau, work	REAL for sormtr
	DOUBLE PRECISION for dormtr
	$a(l d a, *)$ and tau are the arrays returned by ?sytrd.
	The second dimension of $a$ must be at least max $(1, r)$.
	The size of tau must be at least max $(1, r-1)$.
	$c(/ d c, *)$ contains the matrix $C$.
	The second dimension of $c$ must be at least max $(1, n)$
	work is a workspace array, its dimension max (1, lwork).
lda	INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, r)$.
$1 d c$	INTEGER. The leading dimension of $c ; 1 d c \geq \max (1, m)$.
Iwork	INTEGER. The size of the work array. Constraints:
	lwork $\geq$ max $(1, n)$ if side = 'L';
	lwork $\geq \max (1, m)$ if side = 'R'.
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

c
work(1)
info

Overwritten by the product $Q^{\star} C, Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (as specified by side and trans).

If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ormtr interface are the following:

a	Holds the matrix $A$ of size $(r, r)$.
	$r=m$ if side $=$ ' L '.
tau	$r=n$ if side $=^{\prime} R^{\prime}$.
c	Holds the vector of length $(r-1)$.
side	Holds the matrix $C$ of size $(m, n)$.
uplo	Must be 'L' or 'R'. The default value is 'L'.
trans	Must be 'U' or 'L'. The default value is 'U'.
	Must be 'N' or 'T'. The default value is ' $N$ '.

## Application Notes

For better performance, try using lwork $=n \star$ blocksize for side $=$ 'L', or lwork $=m^{\star} b l o c k s i z e ~ f o r ~$ side = 'R', where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed product differs from the exact product by a matrix $E$ such that $||E||_{2}=O(\varepsilon)^{*}| | C| |_{2}$.
The total number of floating-point operations is approximately $2 \star m^{2}{ }^{*} n$, if side $=$ 'L', or $2 \star n^{2} \star m$, if side = 'R'.

The complex counterpart of this routine is unmtr.

## ?hetrd

Reduces a complex Hermitian matrix to tridiagonal
form.
Syntax

```
call chetrd(uplo, n, a, lda, d, e, tau, work, lwork, info)
call zhetrd(uplo, n, a, lda, d, e, tau, work, lwork, info)
call hetrd(a, tau [,uplo] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine reduces a complex Hermitian matrix $A$ to symmetric tridiagonal form $T$ by a unitary similarity transformation: $A=Q^{*} T * Q^{H}$. The unitary matrix $Q$ is not formed explicitly but is represented as a product of $n-1$ elementary reflectors. Routines are provided to work with $Q$ in this representation. (They are described later in this topic.)

## Input Parameters

uplo	CHARACTER*1. Must be 'U' or 'L'.
	If uplo = 'U', a stores the upper triangular part of $A$.
	If uplo = 'L', a stores the lower triangular part of $A$.
$n$	INTEGER. The order of the matrix $A(n \geq 0)$.
a, work	COMPLEX for chetrd
	DOUBLE COMPLEX for zhetrd.
	$a(/ d a, *)$ is an array containing either upper or lower triangular part of the matrix $A$, as specified by uplo. If uplo = 'U', the leading $n$-by- $n$ upper triangular part of a contains the upper triangular part of the matrix $A$, and the strictly lower triangular part of $A$ is not referenced. If uplo = 'L', the leading $n$-by- $n$ lower triangular part of a contains the lower triangular part of the matrix $A$, and the strictly upper triangular part of $A$ is not referenced.
	The second dimension of $a$ must be at least max $(1, n)$.
	work is a workspace array, its dimension max (1, lwork).
Ida	INTEGER. The leading dimension of $a$; at least max $(1, n)$.
lwork	INTEGER. The size of the work array ( 1 work $\geq n$ ).
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

[^5]On exit,
if uplo = 'U', the diagonal and first superdiagonal of $A$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements above the first superdiagonal, with the array tau, represent the orthogonal matrix $Q$ as a product of elementary reflectors;
if uplo = 'L', the diagonal and first subdiagonal of $A$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements below the first subdiagonal, with the array tau, represent the orthogonal matrix $Q$ as a product of elementary reflectors.

```
d,e REAL for chetrd
DOUBLE PRECISION for zhetrd.
```


## Arrays:

```
\(d(*)\) contains the diagonal elements of the matrix \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e\left({ }^{*}\right)\) contains the off-diagonal elements of \(T\).
The dimension of \(e\) must be at least \(\max (1, n-1)\).
COMPLEX for chetrdDOUBLE COMPLEX for zhetrd.
```

Array, size at least $\max (1, n-1)$. Stores $(n-1)$ scalars that define elementary reflectors in decomposition of the unitary matrix $Q$ in a product of $n-1$ elementary reflectors.

If info $=0$, on exit work (1) contains the minimum value of /work required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hetrd interface are the following:

a	Holds the matrix $A$ of size $(n, n)$.
tau	Holds the vector of length $(n-1)$.
uplo	Must be ' $U$ ' or ' L'. The default value is ' $U$ '.

Note that diagonal (d) and off-diagonal (e) elements of the matrix $T$ are omitted because they are kept in the matrix $A$ on exit.

## Application Notes

For better performance, try using lwork $=n^{\star}$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set /work to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix $T$ is exactly similar to a matrix $A+E$, where $\left.\left||E|_{2}=C(n) * \varepsilon^{\star}\right||A|\right|_{2}, C(n)$ is a modestly increasing function of $n$, and $\varepsilon$ is the machine precision.
The approximate number of floating-point operations is $(16 / 3) n^{3}$.
After calling this routine, you can call the following:
ungtr to form the computed matrix $Q$ explicitly
unmtr to multiply a complex matrix by $Q$.
The real counterpart of this routine is ?sytrd.
?ungtr
Generates the complex unitary matrix $Q$ determined
by ?hetrd.

## Syntax

```
call cungtr(uplo, n, a, lda, tau, work, lwork, info)
call zungtr(uplo, n, a, lda, tau, work, lwork, info)
call ungtr(a, tau [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine explicitly generates the $n$-by- $n$ unitary matrix $Q$ formed by ?hetrd when reducing a complex Hermitian matrix $A$ to tridiagonal form: $A=Q^{\star} T^{\star} Q^{H}$. Use this routine after a call to ?hetrd.

## Input Parameters

```
uplo CHARACTER*1.Must be 'U' or 'L'.
 Use the same uplo as supplied to ?hetrd.
 INTEGER. The order of the matrix Q (}n\geq0)\mathrm{ .
 COMPLEX for cungtr
 DOUBLE COMPLEX for zungtr.
```


## Arrays:

```
\(a(I d a, *)\) is the array \(a\) as returned by ?hetrd.
The second dimension of \(a\) must be at least max \((1, n)\).
tau \(\left(^{*}\right)\) is the array tau as returned by ?hetrd.
The dimension of tau must be at least \(\max (1, n-1)\).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of \(a\); at least max \((1, n)\).
INTEGER. The size of the work array (1 work \(\geq n\)).
```

If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

a
work(1)
info

Overwritten by the unitary matrix $Q$.
If info $=0$, on exit work (1) contains the minimum value of /work required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ungtr interface are the following:

a	Holds the matrix $A$ of size $(n, n)$.
tau	Holds the vector of length $(n-1)$.

uplo Must be 'U' or 'L'. The default value is 'U'.

## Application Notes

For better performance, try using lwork $=(n-1) *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix $Q$ differs from an exactly unitary matrix by a matrix $E$ such that $||E||_{2}=O(\varepsilon)$, where $\varepsilon$ is the machine precision.
The approximate number of floating-point operations is $(16 / 3) n^{3}$.
The real counterpart of this routine is orgtr.

## ?unmtr <br> Multiplies a complex matrix by the complex unitary matrix $Q$ determined by ?hetrd.

## Syntax

```
call cunmtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
call zunmtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
call unmtr(a, tau, c [,side] [,uplo] [,trans] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine multiplies a complex matrix $C$ by $Q$ or $Q^{H}$, where $Q$ is the unitary matrix $Q$ formed by ?hetrd when reducing a complex Hermitian matrix $A$ to tridiagonal form: $A=Q^{\star} T^{*} Q^{H}$. Use this routine after a call to ?hetrd.
Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{*} C, Q^{H *} C$, $C^{*} Q$, or $C^{*} Q^{H}$ (overwriting the result on $C$ ).

## Input Parameters

In the descriptions below, $r$ denotes the order of $Q$ :
If side $=$ 'L', $r=m$; if side $=$ 'R', $r=n$.

side	CHARACTER*1. Must be either 'L' or 'R'.
	If side = 'L', $Q$ or $Q^{H}$ is applied to $C$ from the left.
	If side $=$ 'R', $Q$ or $Q^{H}$ is applied to $C$ from the right.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	Use the same uplo as supplied to ?hetrd.
trans	CHARACTER*1. Must be either 'N' or 'T'.
	If trans $=$ ' $N$ ', the routine multiplies $C$ by $Q$.
	If trans $=$ ' C', the routine multiplies $C$ by $Q^{H}$.
m	INTEGER. The number of rows in the matrix $C$ ( $m \geq 0$ ).
$n$	INTEGER. The number of columns in $C(n \geq 0)$.
a, c, tau, work	COMPLEX for cunmtr
	DOUBLE COMPLEX for zunmtr.
	$a(/ d a, *)$ and tau are the arrays returned by ?hetrd.
	The second dimension of $a$ must be at least max $(1, r)$.
	The dimension of tau must be at least max $(1, r-1)$. $c(I d c, *)$ contains the matrix $C$.
	The second dimension of $c$ must be at least max $(1, n)$

work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, r)$.
$\operatorname{INTEGER}$. The leading dimension of $c ; 1 d c \geq \max (1, n)$.
INTEGER. The size of the work array. Constraints:
lwork $\geq \max (1, n)$ if side $=$ 'L';
lwork $\geq \max (1, m)$ if side $=$ 'R'.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

C
Overwritten by the product $Q^{*} C, Q^{H *} C, C^{*} Q$, or $C^{*} Q^{H}$ (as specified by side and trans).

If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine unmtr interface are the following:

a	Holds the matrix $A$ of size $(r, r)$.
	$r=m$ if side $=$ ' L '.
tau	$r=n$ if side $=^{\prime} \mathrm{R}^{\prime}$.
c	Holds the vector of length $(r-1)$.
side	Holds the matrix $C$ of size $(m, n)$.
uplo	Must be 'L' or 'R'. The default value is 'L'.
trans	Must be 'U' or 'L'. The default value is 'U'.
	Must be 'N' or 'C'. The default value is 'N'.

## Application Notes

For better performance, try using lwork = n*blocksize (for side = 'L') or lwork = m*blocksize (for side = 'R') where blocksize is a machine-dependent value (typically, 16 to 64 ) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed product differs from the exact product by a matrix $E$ such that $\left.\left||E|_{2}=O(\varepsilon)^{*}\right||C|\right|_{2}$, where $\varepsilon$ is the machine precision.

The total number of floating-point operations is approximately $8{ }^{*} m^{2}{ }^{*} n$ if side $=$ 'L' or $8 * n^{2}{ }^{2} m$ if side $=$ 'R'.

The real counterpart of this routine is ormtr.

## ?orm22/?unm22

Multiplies a general matrix by an orthogonal/unitary matrix with a $2 \times 2$ structure.

## Syntax

```
call sorm22 (side, trans, m, n, n1, n2, q, ldq, c, ldc, work, lwork, info)
call dorm22 (side, trans, m, n, n1, n2, q, ldq, c, ldc, work, lwork, info)
call cunm22(side, trans, m, n, n1, n2, q, ldq, c, ldc, work, lwork, info)
call zunm22(side, trans, m, n, n1, n2, q, ldq, c, ldc, work, lwork, info)
```

Include Files

- mkl.fi


## Description

?orm22/?unm22 overwrites the general real/complex m-by-n matrix $C$ with

	side $=$ 'L'	side = 'R'
trans $=$ ' N '	$Q * C$	$C * Q$
trans = 'T'   applies to sorm22 and dorm22 only	$Q^{\top} * C$	$C * Q^{\top}$
$\text { trans }=\text { 'C' }$   applies to cunm22 and zunm22 only	$Q^{H *} C$	$C * Q^{H}$

where $Q$ is a real orthogonal/complex unitary matrix of order $n q$, with $n q=m$ if side $=$ ' $L$ ' and $n q=n$ if side $=$ 'R'.
The orthogonal/unitary matrix $Q$ processes a 2-by-2 block structure:
$Q=\left(\begin{array}{ll}Q 11 & Q 12 \\ Q 21 & Q 22\end{array}\right)$
where Q12 is an n1-by-n1 lower triangular matrix and Q21 is an n2-by-n2 upper triangular matrix.

## Input Parameters

side
trans
m
n

CHARACTER*1. = 'L': apply $Q, Q^{\top}$, or $Q^{H}$ from the left;
$=$ 'R': apply $Q, Q^{\top}$, or $Q^{H}$ from the right.
CHARACTER*1. = 'N': apply $Q$ (no transpose);
$=$ ' T ': apply $Q^{\top}$ (transpose) - sorm22 and dorm22 only;
= 'C': apply $Q^{H}$ (conjugate transpose) - cunm22 and zunm22 only.
INTEGER. The number of rows of the matrix $C$.
$m \geq 0$.
INTEGER. The number of columns of the matrix $C$.
$n \geq 0$.
INTEGER. The dimension of Q12.
$n 1 \geq 0$.
The following requirement must be satisfied: $n 1+n 2=m$ if side $=$ 'L' and $n 1+n 2=n$ if side $=$ 'R'.

INTEGER. The dimension of Q21.
$n 2 \geq 0$.
The following requirement must be satisfied: $n 1+n 2=m$ if side $=$ 'L' and $n 1+n 2=n$ if side $=$ 'R'.

REAL for sorm22
DOUBLE PRECISION for dorm22
COMPLEX for cunm22
DOUBLE COMPLEX for zunm22
Array, size $(l d q, m)$ if side $=$ 'L' and $(l d q, n)$ if side $=$ 'R'.
INTEGER. The leading dimension of the array $q$.
$I d q \geq \max (1, m)$ if side $=$ 'L';
$l d q \geq \max (1, n)$ if side $=$ 'R'.
REAL for sorm22
DOUBLE PRECISION for dorm22
COMPLEX for cunm22
DOUBLE COMPLEX for zunm22
Array, size ( $1 d c, n$ )
On entry, the $m$-by- $n$ matrix $C$.
INTEGER. The leading dimension of the array $c$.
$I d c \geq \max (1, m)$.

INTEGER. The dimension of the array work.

$$
\begin{aligned}
& \text { If side }=\text { 'L', I work } \geq \max (1, n) \text {; } \\
& \text { if side }=\text { 'R', I work } \geq \max (1, m) \text {. }
\end{aligned}
$$

For optimum performance 1 work $\geq m^{*}$ n.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

## Output Parameters

c
On exit, $c$ is overwritten by the product:
$Q^{*} C$,
$Q^{\top *} C$,
$Q^{H}{ }^{*} C$,
$C^{*} Q^{\top}$,
$C^{*} Q^{H}$, or
$C^{*} \mathrm{Q}$.
REAL for sorm22
DOUBLE PRECISION for dorm22
COMPLEX for cunm22
DOUBLE COMPLEX for zunm22
Array, size (max(1,1work))
On exit, if info $=0$, work (1) returns the optimal lwork.
INTEGER. $=0$ : successful exit.
$<0$ : if info $=-i$, the $i$-th argument had an illegal value.

## ?sptrd

Reduces a real symmetric matrix to tridiagonal form using packed storage.

## Syntax

```
call ssptrd(uplo, n, ap, d, e, tau, info)
call dsptrd(uplo, n, ap, d, e, tau, info)
call sptrd(ap, tau [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine reduces a packed real symmetric matrix $A$ to symmetric tridiagonal form $T$ by an orthogonal similarity transformation: $A=Q^{*} T^{*} Q^{T}$. The orthogonal matrix $Q$ is not formed explicitly but is represented as a product of $n-1$ elementary reflectors. Routines are provided for working with $Q$ in this representation. See Application Notes below for details.

## Input Parameters

uplo
n
$a p$

CHARACTER*1. Must be 'U' or 'L'.
If uplo $=$ 'U', ap stores the packed upper triangle of $A$.
If uplo $=$ 'L', ap stores the packed lower triangle of $A$.
INTEGER. The order of the matrix $A(n \geq 0)$.
REAL for ssptrd
DOUBLE PRECISION for dsptrd.
Array, size at least $\max (1, n(n+1) / 2)$. Contains either upper or lower triangle of $A$ (as specified by uplo) in the packed form described in Matrix Storage Schemes.

## Output Parameters

ap
d, e, tau
info

Overwritten by the tridiagonal matrix $T$ and details of the orthogonal matrix $Q$, as specified by uplo.

REAL for ssptrd
DOUBLE PRECISION for dsptrd.
Arrays:
$d\left({ }^{*}\right)$ contains the diagonal elements of the matrix $T$.
The dimension of $d$ must be at least $\max (1, n)$.
$e(*)$ contains the off-diagonal elements of $T$.
The dimension of $e$ must be at least $\max (1, n-1)$.
tau(*) Stores ( $n-1$ ) scalars that define elementary reflectors in decomposition of the matrix $Q$ in a product of $n-1$ reflectors.

The dimension of tau must be at least $\max (1, n-1)$.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sptrd interface are the following:
Holds the array $A$ of size $\left(n^{*}(n+1) / 2\right)$.
Holds the vector with the number of elements $n-1$.
uplo Must be 'U' or 'L'. The default value is 'U'.
Note that diagonal (d) and off-diagonal (e) elements of the matrix $T$ are omitted because they are kept in the matrix $A$ on exit.

## Application Notes

The matrix $Q$ is represented as a product of $n-1$ elementary reflectors, as follows :

- If uplo = 'U', $Q=H(n-1) \quad . . . H(2) H(1)$

Each $H(i)$ has the form
$H(i)=I-t a u^{*} V^{\star} V^{T}$
where tau is a real scalar and $v$ is a real vector with $v(i+1: n)=0$ and $v(i)=1$.
On exit, tau is stored in tau(i), and $v(1: i-1)$ is stored in $A P$, overwriting $A(1: i-1, i+1)$.

- If uplo = 'L', $Q=H(1) H(2) \ldots H(n-1)$

Each $H(\mathrm{i})$ has the form
$H(i)=I-t a u^{\star} V^{\star} V^{T}$
where tau is a real scalar and $v$ is a real vector with $v(1: i)=0$ and $v(i+1)=1$.
On exit, tau is stored in tau(i), and $v(i+2: n)$ is stored in $A P$, overwriting $A(i+2: n, i)$.
The computed matrix $T$ is exactly similar to a matrix $A+E$, where $\left.\left||E|_{2}=C(n) \star \varepsilon^{\star}\right||A|\right|_{2}, C(n)$ is a modestly increasing function of $n$, and $\varepsilon$ is the machine precision. The approximate number of floating-point operations is $(4 / 3) n^{3}$.
After calling this routine, you can call the following:

```
opgtr to form the computed matrix Q explicitly
opmtr to multiply a real matrix by Q.
```

The complex counterpart of this routine is hptrd.
?opgtr
Generates the real orthogonal matrix $Q$ determined
by ?sptrd.

## Syntax

```
call sopgtr(uplo, n, ap, tau, q, ldq, work, info)
call dopgtr(uplo, n, ap, tau, q, ldq, work, info)
call opgtr(ap, tau, q [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine explicitly generates the $n$-by- $n$ orthogonal matrix $Q$ formed by sptrd when reducing a packed real symmetric matrix $A$ to tridiagonal form: $A=Q^{*} T Q^{T}$. Use this routine after a call to ?sptrd.

## Input Parameters

uplo
n
ap, tau
ldq
work

CHARACTER*1. Must be 'U' or 'L'. Use the same uplo as supplied to ?sptrd.

INTEGER. The order of the matrix $Q(n \geq 0)$.
REAL for sopgtr
DOUBLE PRECISION for dopgtr.
Arrays ap and tau, as returned by ?sptrd.
The size of ap must be at least $\max (1, n(n+1) / 2)$.
The size of tau must be at least max(1, $n-1)$.
INTEGER. The leading dimension of the output array $q$; at least max $(1, n)$.
REAL for sopgtr
DOUBLE PRECISION for dopgtr.
Workspace array, size at least max $(1, n-1)$.

## Output Parameters

$q$
info

## REAL for sopgtr

DOUBLE PRECISION for dopgtr.
Array, size (/dq,*) .
Contains the computed matrix $Q$.
The second dimension of $q$ must be at least $\max (1, n)$.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine opgtr interface are the following:

```
ap Holds the array A of size (n* (n+1)/2).
tau Holds the vector with the number of elements n-1.
q Holds the matrix Q of size (n,n).
uplo Must be 'U' or 'L'. The default value is 'U'.
```


## Application Notes

The computed matrix $Q$ differs from an exactly orthogonal matrix by a matrix $E$ such that $||E||_{2}=O(\varepsilon)$, where $\varepsilon$ is the machine precision.
The approximate number of floating-point operations is $(4 / 3) n^{3}$.

The complex counterpart of this routine is upgtr.

```
?opmtr
Multiplies a real matrix by the real orthogonal matrix
Q determined by ?sptrd.
```


## Syntax

```
call sopmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)
call dopmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)
call opmtr(ap, tau, c [,side] [,uplo] [,trans] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine multiplies a real matrix $C$ by $Q$ or $Q^{T}$, where $Q$ is the orthogonal matrix $Q$ formed by sptrd when reducing a packed real symmetric matrix $A$ to tridiagonal form: $A=Q^{\star} T^{\star} Q^{T}$. Use this routine after a call to ?sptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{\star} C, Q^{T \star} C$, $C^{\star} Q$, or $C^{\star} Q^{T}$ (overwriting the result on $C$ ).

## Input Parameters

In the descriptions below, $r$ denotes the order of $Q$ :

```
If side = 'L', r = m; if side = 'R', r = n.
side CHARACTER*1. Must be either 'L' or 'R'.
 If side = 'L', Q or Q }\mp@subsup{Q}{}{T}\mathrm{ is applied to C from the left.
 If side = 'R', Q or Q}\mp@subsup{Q}{}{T}\mathrm{ is applied to C from the right.
 CHARACTER*1. Must be 'U' or 'L'.
 Use the same uplo as supplied to ?sptrd.
 CHARACTER*1. Must be either 'N' or 'T'.
 If trans = 'N', the routine multiplies C by Q.
 If trans = 'T', the routine multiplies C by Q'.
 INTEGER. The number of rows in the matrix C(m\geq0).
 INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
 REAL for sopmtr
DOUBLE PRECISION for dopmtr.
ap and tau are the arrays returned by ?sptrd.
The dimension of ap must be at least max(1,r(r+1)/2).
The dimension of tau must be at least max(1,r-1).
c(Idc,*) contains the matrix C.
```

The second dimension of $c$ must be at least max $(1, n)$
work(*) is a workspace array.
The dimension of work must be at least
$\max (1, n)$ if side $=$ 'L';
$\max (1, m)$ if side $='^{\prime}$ '.
INTEGER. The leading dimension of $c ; l d c \geq \max (1, n)$.

## Output Parameters

C
Overwritten by the product $Q^{\star} C, Q^{T \star} C, C^{\star} Q$, or $C^{\star} Q^{T}$ (as specified by side and trans).

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine opmtr interface are the following:
ap $\quad$ Holds the array $A$ of size $\left(r^{*}(r+1) / 2\right)$, where

$$
r=m \text { if side }=\text { 'L'. }
$$

$r=n$ if side $=$ 'R'.

tau	Holds the vector with the number of elements $r-1$.
c	Holds the matrix $C$ of size $(m, n)$.
side	Must be 'L' or ' $R^{\prime}$ '. The default value is 'L'.
uplo	Must be 'U' or 'L'. The default value is ' U '.
trans	Must be 'N', 'C', or 'T'. The default value is 'N'.

## Application Notes

The computed product differs from the exact product by a matrix $E$ such that $\left.\left||E|_{2}=O(\varepsilon)\right||C|\right|_{2}$, where $\varepsilon$ is the machine precision.
The total number of floating-point operations is approximately $2 \star m^{2}{ }^{\star} n$ if side $=$ 'L', or $2 \star n^{2 \star} \mathrm{~m}$ if side $=$ 'R'.

The complex counterpart of this routine is upmtr.
?hptrd
Reduces a complex Hermitian matrix to tridiagonal form using packed storage.

## Syntax

```
call chptrd(uplo, n, ap, d, e, tau, info)
call zhptrd(uplo, n, ap, d, e, tau, info)
call hptrd(ap, tau [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine reduces a packed complex Hermitian matrix $A$ to symmetric tridiagonal form $T$ by a unitary similarity transformation: $A=Q^{\star} T^{*} Q^{H}$. The unitary matrix $Q$ is not formed explicitly but is represented as a product of $n$-1 elementary reflectors. Routines are provided for working with $Q$ in this representation (see Application Notes below).

## Input Parameters

uplo
n
ap

CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangle of $A$.
If uplo = 'L', ap stores the packed lower triangle of $A$.
INTEGER. The order of the matrix $A(n \geq 0)$.
COMPLEX for chptrd
DOUBLE COMPLEX for zhptrd.
Array, size at least $\max (1, n(n+1) / 2)$. Contains either upper or lower triangle of $A$ (as specified by uplo) in the packed form described in "Matrix Storage Schemes.

## Output Parameters

$a p$
$d, e$
tau

Overwritten by the tridiagonal matrix $T$ and details of the unitary matrix $Q$, as specified by uplo.

REAL for chptrd
DOUBLE PRECISION for zhptrd.
Arrays:
$d\left({ }^{*}\right)$ contains the diagonal elements of the matrix $T$.
The size of $d$ must be at least $\max (1, n)$.
$e(*)$ contains the off-diagonal elements of $T$.
The size of $e$ must be at least $\max (1, n-1)$.
COMPLEX for chptrd
DOUBLE COMPLEX for zhptrd.
Array, size at least $\max (1, n-1)$. Stores $(n-1)$ scalars that define elementary reflectors in decomposition of the unitary matrix $Q$ in a product of reflectors.

## info

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hptrd interface are the following:

```
ap Holds the array A of size (n* (n+1)/2).
tau Holds the vector with the number of elements n-1.
uplo Must be 'U' or 'L'. The default value is 'U'.
```

Note that diagonal (d) and off-diagonal (e) elements of the matrix $T$ are omitted because they are kept in the matrix $A$ on exit.

## Application Notes

The computed matrix $T$ is exactly similar to a matrix $A+E$, where $\left.\left||E|_{I_{2}}=C(n) \star \varepsilon^{\star}\right||A|\right|_{2}, C(n)$ is a modestly increasing function of $n$, and $\varepsilon$ is the machine precision.
The approximate number of floating-point operations is $(16 / 3) n^{3}$. After calling this routine, you can call the following:

upgtr	to form the computed matrix $Q$ explicitly
upmtr	to multiply a complex matrix by $Q$.

The real counterpart of this routine is sptrd.
?upgtr
Generates the complex unitary matrix $Q$ determined
by ?hptrd.

## Syntax

```
call cupgtr(uplo, n, ap, tau, q, ldq, work, info)
call zupgtr(uplo, n, ap, tau, q, ldq, work, info)
call upgtr(ap, tau, q [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine explicitly generates the $n$-by-n unitary matrix $Q$ formed by hptrd when reducing a packed complex Hermitian matrix $A$ to tridiagonal form: $A=Q^{*} T^{*} Q^{H}$. Use this routine after a call to ?hptrd.

## Input Parameters

```
uplo
\(n\)
ap, tau
```

$1 d q$
work

CHARACTER*1. Must be 'U' or 'L'. Use the same uplo as supplied to ?hptrd.

INTEGER. The order of the matrix $Q(n \geq 0)$.
COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Arrays ap and tau, as returned by ?hptrd.
The dimension of ap must be at least $\max (1, n(n+1) / 2)$.
The dimension of tau must be at least max $(1, n-1)$.
INTEGER. The leading dimension of the output array $q$;
at least $\max (1, n)$.
COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Workspace array, size at least $\max (1, n-1)$.

## Output Parameters

$q$
info

COMPLEX for cupgtr
DOUBLE COMPLEX for zupgtr.
Array, size (/dq,*) .
Contains the computed matrix $Q$.
The second dimension of $q$ must be at least $\max (1, n)$.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine upgtr interface are the following:

```
ap Holds the array A of size (n*(n+1)/2).
tau Holds the vector with the number of elements n-1.
q Holds the matrix Q of size (}n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.
```


## Application Notes

The computed matrix $Q$ differs from an exactly orthogonal matrix by a matrix $E$ such that $||E||_{2}=O(\varepsilon)$, where $\varepsilon$ is the machine precision.

The approximate number of floating-point operations is $(16 / 3) \mathrm{n} 3$.
The real counterpart of this routine is opgtr.

## ?upmtr

Multiplies a complex matrix by the unitary matrix $Q$ determined by ?hptrd.

## Syntax

```
call cupmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)
call zupmtr(side, uplo, trans, m, n, ap, tau, c, ldc, work, info)
call upmtr(ap, tau, c [,side] [,uplo] [,trans] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine multiplies a complex matrix $C$ by $Q$ or $Q^{H}$, where $Q$ is the unitary matrix formed by hptrd when reducing a packed complex Hermitian matrix $A$ to tridiagonal form: $A=Q^{*} T^{*} Q^{H}$. Use this routine after a call to ?hptrd.

Depending on the parameters side and trans, the routine can form one of the matrix products $Q^{*} C, Q^{H *} C$, $C * Q$, or $C * Q^{H}$ (overwriting the result on $C$ ).

## Input Parameters

In the descriptions below, $r$ denotes the order of $Q$ :

```
If side = 'L', r = m; if side = 'R', r = n.
side CHARACTER*1. Must be either 'L' or 'R'.
 If side = 'L', Q or QH}\mathrm{ is applied to C from the left.
 If side = 'R',Q or QH}\mathrm{ is applied to C from the right.
uplo CHARACTER*1.Must be 'U' or 'L'.
 Use the same uplo as supplied to ?hptrd.
 CHARACTER*1. Must be either 'N' or 'T'.
 If trans ='N', the routine multiplies C by Q.
 If trans = 'T', the routine multiplies C by QH}\mathrm{ .
 INTEGER. The number of rows in the matrix C (m\geq0).
 INTEGER. The number of columns in C (}n\geq0)\mathrm{ .
 COMPLEX for cupmtr
 DOUBLE COMPLEX for zupmtr.
 ap and tau are the arrays returned by ?hptrd.
 The size of ap must be at least max(1,r(r+1)/2).
 The size of tau must be at least max(1,r-1).
```

$c(/ d c, *)$ contains the matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$
work(*) is a workspace array.
The dimension of work must be at least
$\max (1, n)$ if side $=$ 'L';
$\max (1, m)$ if side $='^{\prime}$ '.
INTEGER. The leading dimension of $c ; 1 d c \geq \max (1, m)$.

## Output Parameters

```
C
info
Overwritten by the product \(Q^{*} C, Q^{H *} C, C^{*} Q\), or \(C^{*} Q^{H}\) (as specified by side and trans).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
```


## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine upmtr interface are the following:

$a p$	Holds the array $A$ of size $\left(r^{*}(r+1) / 2\right)$, where
	$r=m$ if side = 'L'.
	$r=n$ if side = 'R'.
tau	Holds the vector with the number of elements $n-1$.
c	Holds the matrix $C$ of size ( $m, n$ ) .
side	Must be 'L' or 'R'. The default value is 'L'.
uplo	Must be 'U' or 'L'.The default value is 'U'.
trans	Must be ' N ' or ' C '. The default value is ' N '.

## Application Notes

The computed product differs from the exact product by a matrix $E$ such that $||E||_{2}=O(\varepsilon) *| | C| |_{2}$, where $\varepsilon$ is the machine precision.

The total number of floating-point operations is approximately $8 \star m^{2} \star n$ if side $=$ 'L' or $8 \star n^{2 \star} m$ if side $=$ 'R'.

The real counterpart of this routine is opmtr.
?sbtrd
Reduces a real symmetric band matrix to tridiagonal form.

## Syntax

```
call ssbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
call dsbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
call sbtrd(ab[, q] [,vect] [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine reduces a real symmetric band matrix $A$ to symmetric tridiagonal form $T$ by an orthogonal similarity transformation: $A=Q^{*} T * Q^{T}$. The orthogonal matrix $Q$ is determined as a product of Givens rotations.
If required, the routine can also form the matrix $Q$ explicitly.

## Input Parameters

vect	CHARACTER*1. Must be 'V', 'N', or 'U'.
	If vect $=$ ' V ', the routine returns the explicit matrix $Q$.
	If vect $=$ ' $N$ ', the routine does not return $Q$.
	If vect $=$ ' U', the routine updates matrix $X$ by forming $X^{*} Q$.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	If uplo = 'U', $a b$ stores the upper triangular part of $A$.
	If uplo = 'L', ab stores the lower triangular part of $A$.
$n$	INTEGER. The order of the matrix $A(n \geq 0)$.
$k d$	INTEGER. The number of super- or sub-diagonals in $A$
	( $k d \geq 0$ ).
ab, q, work	REAL for ssbtrd
	DOUBLE PRECISION for dsbtrd.
	$a b(I d a b, *)$ is an array containing either upper or lower triangular part of the matrix $A$ (as specified by uplo) in band storage format.
	The second dimension of $a b$ must be at least max $(1, n)$.
	$q(I d q, *)$ is an array.
	If vect $=$ ' U', the q array must contain an $n$-by-n matrix $X$.
	If vect $=$ ' N ' or 'V', the q parameter need not be set.
	The second dimension of $q$ must be at least max $(1, n)$.
	work(*) is a workspace array.
	The dimension of work must be at least max $(1, n)$.
Idab	INTEGER. The leading dimension of $a b$; at least $k d+1$.

INTEGER. The leading dimension of $q$. Constraints:
$I d q \geq \max (1, n)$ if vect $=$ 'V' or 'U';
$I d q \geq 1$ if vect $=$ 'N'.

## Output Parameters

$a b$
On exit, the diagonal elements of the array $a b$ are overwritten by the diagonal elements of the tridiagonal matrix $T$. If $k d>0$, the elements on the first superdiagonal (if uplo = 'U') or the first subdiagonal (if uplo = 'L') are ovewritten by the off-diagonal elements of $T$. The rest of ab is overwritten by values generated during the reduction.

```
d,e,q
```

info

REAL for ssbtrd
DOUBLE PRECISION for dsbtrd.
Arrays:
$d\left({ }^{*}\right)$ contains the diagonal elements of the matrix $T$.
The size of $d$ must be at least $\max (1, n)$.
$e(*)$ contains the off-diagonal elements of $T$.
The size of $e$ must be at least max $(1, n-1)$.
$q\left(I d q,{ }^{*}\right)$ is not referenced if vect $='^{\prime}$ '.
If vect $=$ ' V ', $q$ contains the $n$-by-n matrix $Q$.
If vect $=$ 'U', $q$ contains the product $X^{*} Q$.
The second dimension of $q$ must be:
at least $\max (1, n)$ if vect $=$ ' $V$ ';
at least 1 if vect $=$ ' $N$ '.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sbtrd interface are the following:

$a b$	Holds the array $A$ of size ( $k d+1, n)$.
q	Holds the matrix $Q$ of size ( $n, n$ ).
uplo	Must be 'U' or 'L'. The default value is 'U'.
vect	If omitted, this argument is restored based on the presence of argument $q$ as follows: vect = 'V', if $q$ is present, vect $=$ ' $N$ ', if $q$ is omitted.

If present, vect must be equal to ' $V$ ' or ' $U$ ' and the argument $q$ must also be present. Note that there will be an error condition if vect is present and $q$ omitted.

Note that diagonal (d) and off-diagonal (e) elements of the matrix $T$ are omitted because they are kept in the matrix $A$ on exit.

## Application Notes

The computed matrix $T$ is exactly similar to a matrix $A+E$, where $\left.\left||E|_{2}=C(n) * \varepsilon^{\star}\right||A|\right|_{2}, C(n)$ is a modestly increasing function of $n$, and $\varepsilon$ is the machine precision. The computed matrix $Q$ differs from an exactly orthogonal matrix by a matrix $E$ such that $\left|\mid E \|_{2}=O(\varepsilon)\right.$.
The total number of floating-point operations is approximately $6 n^{2 \star} k d$ if vect $=$ ' $N$ ', with $3 n^{3 \star}(k d-1) / k d$ additional operations if vect $=$ ' V '.
The complex counterpart of this routine is hbtrd.
?hbtrd
Reduces a complex Hermitian band matrix to tridiagonal form.

## Syntax

```
call ch.btrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
call zhbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
call hbtrd(ab [, q] [,vect] [,uplo] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine reduces a complex Hermitian band matrix $A$ to symmetric tridiagonal form $T$ by a unitary similarity transformation: $A=Q \star T^{*} Q^{H}$. The unitary matrix $Q$ is determined as a product of Givens rotations.

If required, the routine can also form the matrix $Q$ explicitly.

## Input Parameters

```
vect
uplo
n
kd
 CHARACTER*1. Must be 'V', 'N', or 'U'.
 If vect = 'V', the routine returns the explicit matrix Q
 If vect = 'N', the routine does not return Q
 If vect = 'U', the routine updates matrix X by forming Q*X.
 CHARACTER*1. Must be 'U' or 'L'.
 If uplo = 'U', ab stores the upper triangular part of A.
 If uplo = 'L', ab stores the lower triangular part of }A\mathrm{ .
 INTEGER. The order of the matrix A (n\geq0).
 INTEGER. The number of super- or sub-diagonals in A
```


## ( $k d \geq 0$ ).

ab, work
$q$

I dab
ldq

## Output Parameters

COMPLEX for chbtrd
DOUBLE COMPLEX for zhbtrd.
$a b\left(/ d a b,{ }^{*}\right)$ is an array containing either upper or lower triangular part of the matrix $A$ (as specified by uplo) in band storage format.
The second dimension of $a b$ must be at least max $(1, n)$.
work(*) is a workspace array.
The dimension of work must be at least $\max (1, n)$.
COMPLEX for chbtrd
DOUBLE COMPLEX for zhbtrd.
$q\left(/ d q,{ }^{*}\right)$ is an array.
If vect $=' U '$, the $q$ array must contain an $n$-by- $n$ matrix $X$.
If vect $=$ ' $N$ ' or 'V', the q parameter need not be set.'
INTEGER. The leading dimension of $a b$; at least $k d+1$.
INTEGER. The leading dimension of $q$. Constraints:
$I d q \geq \max (1, n)$ if vect $=' V$ ' or 'U';
$l d q \geq 1$ if vect $='^{\prime} N^{\prime}$.

On exit, the diagonal elements of the array $a b$ are overwritten by the diagonal elements of the tridiagonal matrix $T$. If $k d>0$, the elements on the first superdiagonal (if uplo = 'U') or the first subdiagonal (if uplo = ' $L$ ') are ovewritten by the off-diagonal elements of $T$. The rest of $a b$ is overwritten by values generated during the reduction.

REAL for chbtrd
DOUBLE PRECISION for zhbtrd.
Arrays:
$d\left({ }^{*}\right)$ contains the diagonal elements of the matrix $T$.
The dimension of $d$ must be at least $\max (1, n)$.
$e(*)$ contains the off-diagonal elements of $T$.
The dimension of $e$ must be at least $\max (1, n-1)$.
If vect $=$ ' $N$ ', $q$ is not referenced.
If vect $=$ ' V ', $q$ contains the $n$-by-n matrix $Q$.
If vect $=$ 'U', $q$ contains the product $X^{*} Q$.
The second dimension of $q$ must be:
at least $\max (1, n)$ if vect $=$ ' V ';
at least 1 if vect $=$ ' $N$ '.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hbtrd interface are the following:
$a b \quad$ Holds the array $A$ of size $(k d+1, n)$.
$q \quad$ Holds the matrix $Q$ of size $(n, n)$.
uplo Must be 'U' or 'L'. The default value is 'U'.
vect If omitted, this argument is restored based on the presence of argument $q$ as follows: vect = 'V', if $q$ is present, vect $=$ ' $N$ ', if $q$ is omitted.

If present, vect must be equal to 'V' or ' $U$ ' and the argument $q$ must also be present. Note that there will be an error condition if vect is present and $q$ omitted.

Note that diagonal (d) and off-diagonal (e) elements of the matrix $T$ are omitted because they are kept in the matrix $A$ on exit.

## Application Notes

The computed matrix $T$ is exactly similar to a matrix $A+E$, where $||E||_{2}=c(n) \star \varepsilon^{\star}| | A| |_{2}, C(n)$ is a modestly increasing function of $n$, and $\varepsilon$ is the machine precision. The computed matrix $Q$ differs from an exactly unitary matrix by a matrix $E$ such that $||E||_{2}=O(\varepsilon)$.

The total number of floating-point operations is approximately $20 n^{2} * k d$ if vect $=$ ' $N$ ', with $10 n^{3 *}(k d-1) /$ $k d$ additional operations if vect $=$ ' $V$ '.

The real counterpart of this routine is sbtrd.
?sterf
Computes all eigenvalues of a real symmetric tridiagonal matrix using $Q R$ algorithm.

## Syntax

```
call ssterf(n, d, e, info)
call dsterf(n, d, e, info)
call sterf(d, e [,info])
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes all the eigenvalues of a real symmetric tridiagonal matrix $T$ (which can be obtained by reducing a symmetric or Hermitian matrix to tridiagonal form). The routine uses a square-root-free variant of the $Q R$ algorithm.
If you need not only the eigenvalues but also the eigenvectors, call steqr.

## Input Parameters

```
n INTEGER. The order of the matrix T(n\geq0).
d,e
REAL for ssterf
DOUBLE PRECISION for dsterf.
```

Arrays:
$d\left({ }^{*}\right)$ contains the diagonal elements of $T$.
The dimension of $d$ must be at least $\max (1, n)$.
$e(*)$ contains the off-diagonal elements of $T$.
The dimension of $e$ must be at least $\max (1, n-1)$.

## Output Parameters

d
The $n$ eigenvalues in ascending order, unless info $>0$.
See also info.
On exit, the array is overwritten; see info.
INTEGER.
If info $=0$, the execution is successful.
If info $=i$, the algorithm failed to find all the eigenvalues after $30 n$ iterations:
$i$ off-diagonal elements have not converged to zero. On exit, $d$ and $e$ contain, respectively, the diagonal and off-diagonal elements of a tridiagonal matrix orthogonally similar to $T$.

If info $=-i$, the $i$-th parameter had an illegal value.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.
Specific details for the routine sterf interface are the following:

```
d Holds the vector of length n.
e Holds the vector of length (n-1).
```


## Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix $T+E$ such that $||E||_{2}=O(\varepsilon) *| | T| |_{2}$, where $\varepsilon$ is the machine precision.
If $\lambda_{i}$ is an exact eigenvalue, and $m_{i}$ is the corresponding computed value, then

```
|\mui - \lambdai| \leqc(n)*&*| |T| |
```

where $c(n)$ is a modestly increasing function of $n$.
The total number of floating-point operations depends on how rapidly the algorithm converges. Typically, it is about $14 n^{2}$.

## ?steqr

Computes all eigenvalues and eigenvectors of a symmetric or Hermitian matrix reduced to tridiagonal form (QR algorithm).

## Syntax

```
call ssteqr(compz, n, d, e, z, ldz, work, info)
call dsteqr(compz, n, d, e, z, ldz, work, info)
call csteqr(compz, n, d, e, z, ldz, work, info)
call zsteqr(compz, n, d, e, z, ldz, work, info)
call rsteqr(d, e [,z] [,compz] [,info])
call steqr(d, e [,z] [,compz] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric tridiagonal matrix $T$. In other words, the routine can compute the spectral factorization: $T=Z^{\star} \Lambda^{\star} Z^{T}$. Here $\Lambda$ is a diagonal matrix whose diagonal elements are the eigenvalues $\lambda_{i} ; Z$ is an orthogonal matrix whose columns are eigenvectors. Thus,

```
T* }\mp@subsup{z}{i}{}=\mp@subsup{\lambda}{i}{*}\mp@subsup{z}{i}{}\mathrm{ for i = 1, 2, ..., n.
```

The routine normalizes the eigenvectors so that $\left|\mid z_{i} \|_{2}=1\right.$.
You can also use the routine for computing the eigenvalues and eigenvectors of an arbitrary real symmetric (or complex Hermitian) matrix $A$ reduced to tridiagonal form $T$ : $A=Q \star T^{*} Q^{H}$. In this case, the spectral factorization is as follows: $A=Q^{\star} T^{*} Q^{H}=\left(Q^{\star} Z\right)^{\star} \Lambda^{\star}\left(Q^{\star} Z\right)^{H}$. Before calling ?steqr, you must reduce $A$ to tridiagonal form and generate the explicit matrix $Q$ by calling the following routines:

	for real matrices:	for complex matrices:
full storage	?sytrd, ?orgtr	?hetrd, ?ungtr
packed storage	?sptrd, ?opgtr	?hptrd, ?upgtr
band storage	?sbtrd(vect='V')	?hbtrd(vect='V')

If you need eigenvalues only, it's more efficient to call sterf. If $T$ is positive-definite, pteqr can compute small eigenvalues more accurately than ?steqr.

To solve the problem by a single call, use one of the divide and conquer routines stevd, syevd, spevd, or sbevd for real symmetric matrices or heevd, hpevd, or hbevd for complex Hermitian matrices.

## Input Parameters

compz
n
d, e, work
z
$I d z$

CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz = 'N', the routine computes eigenvalues only.
If compz = 'I', the routine computes the eigenvalues and eigenvectors of the tridiagonal matrix $T$.
If compz = ' V ', the routine computes the eigenvalues and eigenvectors of the original symmetric matrix. On entry, $z$ must contain the orthogonal matrix used to reduce the original matrix to tridiagonal form.

INTEGER. The order of the matrix $T(n \geq 0)$.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
$d\left({ }^{*}\right)$ contains the diagonal elements of $T$.
The size of $d$ must be at least $\max (1, n)$.
$e\left({ }^{*}\right)$ contains the off-diagonal elements of $T$.
The size of $e$ must be at least $\max (1, n-1)$.
work(*) is a workspace array.
The size of work must be:
at least 1 if compz = 'N';
at least $\max \left(1,2^{*} n-2\right)$ if compz $=' V$ ' or 'I'.
REAL for ssteqr
DOUBLE PRECISION for dsteqr
COMPLEX for csteqr
DOUBLE COMPLEX for zsteqr.
Array, size (Idz, *).
If compz = 'N' or 'I', z need not be set.
If vect $=$ ' V ', $z$ must contain the orthogonal matrix used in the reduction to tridiagonal form.

The second dimension of $z$ must be:
at least 1 if compz = 'N';
at least $\max (1, n)$ if compz $=$ 'V' or 'I'.
work (/work) is a workspace array.
INTEGER. The leading dimension of $z$. Constraints:
$l d z \geq 1$ if compz = 'N';
ldz $\geq \max (1, n)$ if compz = 'V' or 'I'.

## Output Parameters

```
d The n eigenvalues in ascending order, unless info > 0.
 See also info.
 On exit, the array is overwritten; see info.
 If info = 0, contains the n-by-n matrix the columns of which are
 orthonormal eigenvectors (the i-th column corresponds to the i-th
 eigenvalue).
 INTEGER.
 If info = 0, the execution is successful.
 If info = i, the algorithm failed to find all the eigenvalues after 30n
 iterations: i off-diagonal elements have not converged to zero. On exit,d
 and e contain, respectively, the diagonal and off-diagonal elements of a
 tridiagonal matrix orthogonally similar to T.
 If info = -i, the i-th parameter had an illegal value.
```


## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine steqr interface are the following:

```
d Holds the vector of length n.
e Holds the vector of length (n-1).
z Holds the matrix Z of size (}n,n)\mathrm{ .
compz If omitted, this argument is restored based on the presence of argument \(z\) as follows:
```

```
compz = 'I', if z is present,
compz = 'N', if z is omitted.
```

If present, compz must be equal to 'I' or 'V' and the argument $z$ must also be present. Note that there will be an error condition if compz is present and $z$ omitted.

Note that two variants of Fortran 95 interface for steqr routine are needed because of an ambiguous choice between real and complex cases appear when $z$ is omitted. Thus, the name rsteqr is used in real cases (single or double precision), and the name steqr is used in complex cases (single or double precision).

## Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix $T+E$ such that $||E||_{2}=O(\varepsilon) *| | T| |_{2}$, where $\varepsilon$ is the machine precision.
If $\lambda_{i}$ is an exact eigenvalue, and $\mu_{i}$ is the corresponding computed value, then
$\left|\mu_{i}-\lambda_{i}\right| \leq c(n) \star \varepsilon^{\star}| | T| |_{2}$
where $c(n)$ is a modestly increasing function of $n$.
If $z_{i}$ is the corresponding exact eigenvector, and $w_{i}$ is the corresponding computed vector, then the angle $\theta\left(z_{i}, w_{i}\right)$ between them is bounded as follows:

```
0(zi, wi
```

The total number of floating-point operations depends on how rapidly the algorithm converges. Typically, it is about
$24 n^{2}$ if compz = 'N';
$7 n^{3}$ (for complex flavors, $14 n^{3}$ ) if compz $=$ 'V' or 'I'.

## ?stemr

Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.

## Syntax

```
call sstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, tryrac,
work, lwork, iwork, liwork, info)
call dstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, tryrac,
work, lwork, iwork, liwork, info)
call cstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, tryrac,
work, lwork, iwork, liwork, info)
call zstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, tryrac,
work, lwork, iwork, liwork, info)
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix $T$. Any such unreduced matrix has a well defined set of pairwise different real eigenvalues, the corresponding real eigenvectors are pairwise orthogonal.

The spectrum may be computed either completely or partially by specifying either an interval (vl, vu] or a range of indices il:iu for the desired eigenvalues.

Depending on the number of desired eigenvalues, these are computed either by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are computed by the use of various suitable $L^{*} D^{*} L^{T}$ factorizations near clusters of close eigenvalues (referred to as RRRs, Relatively Robust Representations). An informal sketch of the algorithm follows.
For each unreduced block (submatrix) of $T$,
a. Compute $T-\operatorname{sigma}^{\star} I=L^{\star} D^{\star} L^{T}$, so that $L$ and $D$ define all the wanted eigenvalues to high relative accuracy. This means that small relative changes in the entries of $L$ and $D$ cause only small relative changes in the eigenvalues and eigenvectors. The standard (unfactored) representation of the tridiagonal matrix $T$ does not have this property in general.
b. Compute the eigenvalues to suitable accuracy. If the eigenvectors are desired, the algorithm attains full accuracy of the computed eigenvalues only right before the corresponding vectors have to be computed, see steps c and d.
C. For each cluster of close eigenvalues, select a new shift close to the cluster, find a new factorization, and refine the shifted eigenvalues to suitable accuracy.
d. For each eigenvalue with a large enough relative separation compute the corresponding eigenvector by forming a rank revealing twisted factorization. Go back to step c for any clusters that remain.
Normal execution of ?stemr may create NaNs and infinities and may abort due to a floating point exception in environments that do not handle NaNs and infinities in the IEEE standard default manner.
For more details, see: [Dhillon04], [Dhillon04-02], [Dhillon97]

## Input Parameters

jobz
range
n
$d$
e

CHARACTER*1. Must be 'N' or 'V'.
If jobz = ' N ', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range $=$ ' A ', the routine computes all eigenvalues.
If range $=$ ' V ', the routine computes all eigenvalues in the half-open interval: ( $\mathrm{vl}, \mathrm{vu}$.

If range = 'I', the routine computes eigenvalues with indices il to iu.
INTEGER. The order of the matrix $T(n \geq 0)$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size ( $n$ ).
Contains $n$ diagonal elements of the tridiagonal matrix $T$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size $n$.
Contains ( $n-1$ ) off-diagonal elements of the tridiagonal matrix $T$ in elements 1 to $n-1$ of $e$. e(n) need not be set on input, but is used internally as workspace.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues. Constraint: vl<vu.
If range = 'A' or 'I', vl and vu are not referenced.
INTEGER.
If range = 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$.
If range = 'A' or 'V', il and $i u$ are not referenced.
integer. The leading dimension of the output array $z$.
if $j o b z=' V '$, then $I d z \geq \max (1, n)$;
$I d z \geq 1$ otherwise.
INTEGER. The number of eigenvectors to be held in the array $z$.
If range $=$ ' $A$ ', then $n z c \geq \max (1, n)$;
If range $=$ ' $V$ ', then $n z c$ is greater than or equal to the number of eigenvalues in the half-open interval: ( $v 1, \mathrm{vu}$ ].

If range $=$ 'I', then $n z c \geq i u-i l+1$.
If $n z c=-1$, then a workspace query is assumed; the routine calculates the number of columns of the array $z$ that are needed to hold the eigenvectors.

This value is returned as the first entry of the array $z$, and no error message related to $n z c$ is issued by the routine xerbla.

LOGICAL.
If tryrac= .TRUE. is true, it indicates that the code should check whether the tridiagonal matrix defines its eigenvalues to high relative accuracy. If so, the code uses relative-accuracy preserving algorithms that might be (a bit) slower depending on the matrix. If the matrix does not define its eigenvalues to high relative accuracy, the code can uses possibly faster algorithms.

If tryrac= .FALSE. is not true, the code is not required to guarantee relatively accurate eigenvalues and can use the fastest possible techniques.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, size (/work).
INTEGER.
The dimension of the array work,
lwork $\geq \max (1,18 * n)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

INTEGER.
Workspace array, size (liwork).
INTEGER.
The dimension of the array iwork.
lwork $\geq \max \left(1,10 *_{n}\right)$ if the eigenvectors are desired, and lwork $\geq \max (1$, $8^{*} n$ ) if only the eigenvalues are to be computed.

If liwork=-1, then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued by xerbla.

## Output Parameters

On exit, the array $d$ is overwritten.
On exit, the array $e$ is overwritten.

## INTEGER.

The total number of eigenvalues found, $0 \leq m \leq n$.
If range $=$ ' $A$ ', then $m=n$, and if range $=' I$ ', then m=iu-il+1.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size ( $n$ ).
The first $m$ elements contain the selected eigenvalues in ascending order.
REAL for sstemr
DOUBLE PRECISION for dstemr
COMPLEX for cstemr
DOUBLE COMPLEX for zstemr.
Array $z(I d z, *)$, the second dimension of $z$ must be at least max $(1, m)$.
If jobz $=$ ' $V$ ', and info $=0$, then the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix $T$ corresponding to the selected eigenvalues, with the i-th column of $z$ holding the eigenvector associated with w(i).

If jobz = 'N', then $z$ is not referenced.
Note: you must ensure that at least max $(1, m)$ columns are supplied in the array $z$; if range $=$ ' $V$ ', the exact value of $m$ is not known in advance and can be computed with a workspace query by setting $n z c=-1$, see description of the parameter $n z c$.

INTEGER.
Array, size ( $2 \star_{\max }(1, m)$ ).
The support of the eigenvectors in $z$, that is the indices indicating the nonzero elements in $z$. The i-th computed eigenvector is nonzero only in elements $i \operatorname{suppz}(2 * i-1)$ through $i \operatorname{suppz}(2 * i)$. This is relevant in the case when the matrix is split. isuppz is only accessed when jobz = ' V ' and $n>0$.

On exit, TRUE. tryrac is set to .FALSE. if the matrix does not define its eigenvalues to high relative accuracy.

On exit, if info $=0$, then work (1) returns the optimal (and minimal) size of Iwork.

On exit, if info $=0$, then iwork (1) returns the optimal size of liwork.
INTEGER.
If $=0$, the execution is successful.

If info $=-i$, the i-th parameter had an illegal value.
If info $=1$, internal error in ?larre occurred,
if info = 2, internal error in ?larrv occurred.
?stedc
Computes all eigenvalues and eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.

## Syntax

```
call sstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
call dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
call cstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
call zstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
call rstedc(d, e [,z] [,compz] [,info])
call stedc(d, e [,z] [,compz] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes all the eigenvalues and (optionally) all the eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method. The eigenvectors of a full or band real symmetric or complex Hermitian matrix can also be found if sytrd/hetrd or sptrd/hptrd or sbtrd/hbtrd has been used to reduce this matrix to tridiagonal form.
See also laed0, laed1, laed2, laed3, laed4, laed5, laed6, laed7, laed8, laed9, and laeda used by this function.

## Input Parameters

```
compz
n
d, e, rwork
```

CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz $=$ ' N ', the routine computes eigenvalues only.
If compz = 'I', the routine computes the eigenvalues and eigenvectors of the tridiagonal matrix.

If compz = 'V', the routine computes the eigenvalues and eigenvectors of original symmetric/Hermitian matrix. On entry, the array $z$ must contain the orthogonal/unitary matrix used to reduce the original matrix to tridiagonal form.

INTEGER. The order of the symmetric tridiagonal matrix ( $n \geq 0$ ).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
$d(*)$ contains the diagonal elements of the tridiagonal matrix.

The dimension of $d$ must be at least $\max (1, n)$.
$e\left({ }^{*}\right)$ contains the subdiagonal elements of the tridiagonal matrix.
The dimension of $e$ must be at least $\max (1, n-1)$.
rwork is a workspace array, its dimension max (1, lrwork).
REAL for sstedc
DOUBLE PRECISION for dstedc
COMPLEX for cstedc
DOUBLE COMPLEX for zstedc.
Arrays: $z(I d z, *)$, work(*).
If compz = ' V ', then, on entry, $z$ must contain the orthogonal/unitary matrix used to reduce the original matrix to tridiagonal form.
The second dimension of $z$ must be at least $\max (1, n)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $z$. Constraints:
$I d z \geq 1$ if compz = 'N';
$l d z \geq \max (1, n)$ if $c o m p z=' V$ ' or 'I'.
INTEGER. The dimension of the array work.
For real functions sstedc and dstedc:

- If compz $=$ 'N'or $n \leq 1$, Iwork must be at least 1 .
- If compz $=$ ' $V$ ' and $n>1$, Iwork must be at least $1+3 *_{n}+$ $2 \star n \star \log _{2}(n)+4 \star n^{2}$, where $\log _{2}(n)$ is the smallest integer $k$ such that $2^{k} \geq n$.
- If compz $=$ 'I' and $n>1$ then /work must be at least $1+4 * n+n^{2}$ Note that for compz = 'I' or 'V' and if $n$ is less than or equal to the minimum divide size, usually 25 , then Iwork need only be max (1, 2* ( $n-1$ )) .

For complex functions cstedc and zstedc:

- If compz $=$ 'N'or 'I', or $n \leq 1$, lwork must be at least 1 .
- If compz $=$ 'V' and $n>1$, lwork must be at least $n^{2}$.

Note that for compz = 'V', and if $n$ is less than or equal to the minimum divide size, usually 25 , then Iwork need only be 1 .

If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for the required value of lwork.

INTEGER. The dimension of the array rwork (used for complex flavors only).
If compz $=$ 'N', or $n \leq 1$, Irwork must be at least 1 .

If compz $=$ ' $V$ ' and $n>1$, Irwork must be at least $(1+3 * n+$ $\left.2 \star n \star \log _{2}(n)+4 \star n^{2}\right)$, where $\log _{2}(n)$ is the smallest integer $k$ such that $2^{k} \geq$ n.

If compz $=$ 'I' and $n>1$, Irwork must be at least $\left(1+4 \star_{n}+2 \star^{2}\right)$.
Note that for compz = 'V'or 'I', and if $n$ is less than or equal to the minimum divide size, usually 25 , then Irwork need only be max (1, 2* ( $n-1$ ) ).
If Irwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for the required value of Irwork.

INTEGER. Workspace array, its dimension max (1, liwork).
INTEGER. The dimension of the array iwork.
If $\operatorname{compz}=' \mathrm{~N}$ ', or $n \leq 1$, liwork must be at least 1 .
If compz $=$ ' $V$ ' and $n>1$, liwork must be at least $\left(6+6{ }^{*} n+\right.$ $\left.5{ }^{\star} n^{\star} \log _{2}(n)\right)$, where $\log _{2}(n)$ is the smallest integer $k$ such that $2^{k} \geq n$.

If compz $=$ 'I' and $n>1$, liwork must be at least $(3+5 * n)$.
Note that for compz = 'V'or 'I', and if $n$ is less than or equal to the minimum divide size, usually 25 , then liwork need only be 1 .

If liwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for the required value of liwork.

## Output Parameters

d
e

Z
work(1)
rwork(1)
iwork(1)
info

The $n$ eigenvalues in ascending order, unless info $\neq 0$.
See also info.
On exit, the array is overwritten; see info.
If info $=0$, then if compz $=$ ' V ', $z$ contains the orthonormal eigenvectors of the original symmetric/Hermitian matrix, and if compz = 'I', z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If compz $=' N$ ', $z$ is not referenced.

On exit, if info $=0$, then work(1) returns the optimal /work.
On exit, if info $=0$, then rwork(1) returns the optimal Irwork (for complex flavors only).

On exit, if info $=0$, then iwork(1) returns the optimal liwork.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

If $\operatorname{info}=i$, the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns $i /(n+1)$ through $\bmod (i, n+1)$.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine stedc interface are the following:
d Holds the vector of length $n$.
$e \quad$ Holds the vector of length ( $n-1$ ).
$z \quad$ Holds the matrix $Z$ of size $(n, n)$.
compz
If omitted, this argument is restored based on the presence of argument $z$ as follows: compz = 'I', if $z$ is present, compz = 'N', if $z$ is omitted.

If present, compz must be equal to 'I' or 'V' and the argument $z$ must also be present. Note that there will be an error condition if compz is present and $z$ omitted.

Note that two variants of Fortran 95 interface for stedc routine are needed because of an ambiguous choice between real and complex cases appear when $z$ and work are omitted. Thus, the name rstedc is used in real cases (single or double precision), and the name stedc is used in complex cases (single or double precision).

## Application Notes

The required size of workspace arrays must be as follows.
For sstedc/dstedc:
If compz $=$ ' $N$ ' or $n \leq 1$ then /work must be at least 1 .
If compz $=$ ' $V$ ' and $n>1$ then /work must be at least $\left(1+3 n+2 n \cdot \log _{2} n+4 n^{2}\right)$, where $\log _{2}(n)=$ smallest integer $k$ such that $2^{k} \geq n$.
If compz $=$ 'I' and $n>1$ then Iwork must be at least $\left(1+4 n+n^{2}\right)$.
If compz $=$ ' $N$ ' or $n \leq 1$ then liwork must be at least 1 .
If compz $=$ 'V' and $n>1$ then liwork must be at least $\left(6+6 n+5 n \cdot \log _{2} n\right)$.
If compz $=$ 'I' and $n>1$ then liwork must be at least $(3+5 n)$.
For cstedc/zstedc:
If compz $=$ ' $N$ ' or 'I', or $n \leq 1$, Iwork must be at least 1 .
If compz $=$ ' $V$ ' and $n>1$, Iwork must be at least $n^{2}$.
If compz = ' $N$ ' or $n \leq 1$, Irwork must be at least 1 .
If compz $=$ ' $V$ ' and $n>1$, Irwork must be at least $\left(1+3 n+2 n \cdot \log _{2} n+4 n^{2}\right)$, where $\log _{2}(n)=$ smallest integer $k$ such that $2^{k} \geq n$.

If compz $=$ 'I' and $n>1$, Irwork must be at least $\left(1+4 n+2 n^{2}\right)$.
The required value of liwork for complex flavors is the same as for real flavors.

If Iwork (or liwork or Irwork, if supplied) is equal to -1 , then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.
Note that if Iwork (liwork, Irwork) is less than the minimal required value and is not equal to -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
?stegr
Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.

## Syntax

```
call sstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work,
lwork, iwork, liwork, info)
call dstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work,
lwork, iwork, liwork, info)
call cstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work,
lwork, iwork, liwork, info)
call zstegr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work,
lwork, iwork, liwork, info)
call rstegr(d, e, w [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol] [,info])
call stegr(d, e, w [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix $T$.

The spectrum may be computed either completely or partially by specifying either an interval (vl, vu] or a range of indices il:iu for the desired eigenvalues.
?stegr is a compatibility wrapper around the improved stemr routine. See its description for further details.
Note that the abstol parameter no longer provides any benefit and hence is no longer used.
See also auxiliary lasq2lasq5, lasq6, used by this routine.

## Input Parameters

jobz
range

CHARACTER*1. Must be 'N' or 'V'.
If job $=$ ' $N$ ', then only eigenvalues are computed.
If job $=$ ' $V$ ', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range $=$ ' A ', the routine computes all eigenvalues.
If range $=$ ' $V$ ', the routine computes eigenvalues $w(i)$ in the half-open interval:

	$v l<w(i) \leq v u$.
	If range = 'I', the routine computes eigenvalues with indices il to iu.
$n$	INTEGER. The order of the matrix $T(n \geq 0)$.
d, e, work	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	Arrays:
	$d(*)$ contains the diagonal elements of $T$.
	The dimension of $d$ must be at least max $(1, n)$.
	$e\left({ }^{*}\right)$ contains the subdiagonal elements of $T$ in elements 1 to $n-1$; e(n) need not be set on input, but it is used as a workspace.
	The dimension of e must be at least max $(1, n)$.
	work(lwork) is a workspace array.
vl, vu	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	If range = 'V', the lower and upper bounds of the interval to be searched for eigenvalues.
	Constraint: vl< vu.
	If range $=$ 'A' or 'I', v/ and vu are not referenced.
il, iu	INTEGER.
	If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
	Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$.
	If range $=$ ' A ' or ' V ', il and $i u$ are not referenced.
abstol	REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	Unused. Was the absolute error tolerance for the eigenvalues/eigenvectors in previous versions.
$1 d z$	INTEGER. The leading dimension of the output array z. Constraints:
	$l d z \geq 1$ if jobz = 'N';
	$l d z \geq \max (1, n)$ if jobz = 'V'.
Iwork	INTEGER.
	The dimension of the array work,
	1 work $\geq \max (1,18 * n)$ if jobz = 'V', and
	1 work $\geq$ max $(1,12 * n)$ if jobz = 'N'.

iwork
liwork

If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes below for details.

INTEGER.
Workspace array, size (liwork).
INTEGER.
The dimension of the array iwork, liwork $\geq \max \left(1,10 *_{n}\right)$ if the eigenvectors are desired, and $\operatorname{liwork} \geq \max \left(1,8^{\star} n\right)$ if only the eigenvalues are to be computed..
If liwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued by xerbla. See Application Notes below for details.

## Output Parameters

$d, e$
m

W
z
isuppz

On exit, $d$ and $e$ are overwritten.
INTEGER. The total number of eigenvalues found,
$0 \leq m \leq n$.
If range $=$ 'A', $m=n$, and if range $=$ 'I', $m=i u-i l+1$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least $\max (1, n)$.
The selected eigenvalues in ascending order, stored in $w(1)$ to $w(m)$.
REAL for sstegr
DOUBLE PRECISION for dstegr
COMPLEX for cstegr
DOUBLE COMPLEX for zstegr.
Array $z(I d z, *)$, the second dimension of $z$ must be at least max $(1, m)$.
If jobz $=$ ' $V$ ', and if info $=0$, the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix $T$ corresponding to the selected eigenvalues, with the $i$-th column of $z$ holding the eigenvector associated with w(i).

If jobz = 'N', then $z$ is not referenced.
Note: if range $=$ ' $V$ ', the exact value of $m$ is not known in advance and an upper bound must be used. Using $n=m$ is always safe.

INTEGER.
Array, size at least $(2 * \max (1, m))$.

The support of the eigenvectors in $z$, that is the indices indicating the nonzero elements in $z$. The $i$-th computed eigenvector is nonzero only in elements $i \operatorname{suppz}(2 * i-1)$ through $i \operatorname{suppz}(2 * i)$. This is relevant in the case when the matrix is split. isuppz is only accessed when jobz = 'V', and $n>0$.
work(1)
iwork(1)
info

On exit, if info $=0$, then work(1) returns the required minimal size of Iwork.

On exit, if info $=0$, then $\operatorname{iwork}(1)$ returns the required minimal size of liwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info = 1x, internal error in ?larre occurred,
If info $=2 x$, internal error in ?larrv occurred. Here the digit $x=$ abs (iinfo) < 10, where iinfo is the non-zero error code returned by ? larre or ?larrv, respectively.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine stegr interface are the following:

d	Holds the vector of length $n$.
e	Holds the vector of length $n$.
w	Holds the vector of length $n$.
z	Holds the matrix $Z$ of size ( $n, m$ ).
isuppz	Holds the vector of length ( $2 * m$ ).
vl	Default value for this argument is vl $=-\operatorname{HUGE}(v l)$ where $\operatorname{HUGE}(a)$ means the largest machine number of the same precision as argument $a$.
vu	Default value for this argument is vu = HUGE (vl).
il	Default value for this argument is $i 1=1$.
iu	Default value for this argument is $i u=n$.
abstol	Default value for this argument is abstol $=0.0 \_\mathrm{WP}$.
jobz	Restored based on the presence of the argument $z$ as follows:
	jobz = 'V', if $z$ is present,
	$j o b z=' N ', ~ i f ~ z i s ~ o m i t t e d . ~$

Restored based on the presence of arguments $v l, v u, i l, i u$ as follows:
range $=$ ' $V$ ', if one of or both $v /$ and $v u$ are present,

> range $=$ 'I', if one of or both $i l$ and $i u$ are present, range $=$ 'A', if none of $v /, v u, i l, i u$ is present,

Note that there will be an error condition if one of or both $v /$ and $v u$ are present and at the same time one of or both il and iu are present.

Note that two variants of Fortran 95 interface for stegr routine are needed because of an ambiguous choice between real and complex cases appear when $z$ is omitted. Thus, the name rstegr is used in real cases (single or double precision), and the name stegr is used in complex cases (single or double precision).

## Application Notes

?stegr works only on machines which follow IEEE-754 floating-point standard in their handling of infinities and NaNs. Normal execution of ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not conform to the IEEE-754 standard.
If it is not clear how much workspace to supply, use a generous value of Iwork (or liwork) for the first run, or set 1 work $=-1$ (liwork $=-1$ ).

If Iwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.
If lwork $=-1$ (liwork $=-1$ ), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if Iwork (liwork) is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

```
?pteqr
Computes all eigenvalues and (optionally) all
eigenvectors of a real symmetric positive-definite
tridiagonal matrix.
```

Syntax

```
call spteqr(compz, n, d, e, z, ldz, work, info)
call dpteqr(compz, n, d, e, z, ldz, work, info)
call cpteqr(compz, n, d, e, z, ldz, work, info)
call zpteqr(compz, n, d, e, z, ldz, work, info)
call rpteqr(d, e [,z] [,compz] [,info])
call pteqr(d, e [,z] [,compz] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine computes all the eigenvalues and (optionally) all the eigenvectors of a real symmetric positivedefinite tridiagonal matrix $T$. In other words, the routine can compute the spectral factorization: $T=$ $Z^{\star} \Lambda \star Z^{T}$.

Here $\Lambda$ is a diagonal matrix whose diagonal elements are the eigenvalues $\lambda_{i} ; Z$ is an orthogonal matrix whose columns are eigenvectors. Thus,
$T^{\star} z_{i}=\lambda_{i}{ }^{\star} z_{i}$ for $i=1,2, \ldots, n$.
(The routine normalizes the eigenvectors so that $\left|\left|z_{i}\right|\right|_{2}=1$.)
You can also use the routine for computing the eigenvalues and eigenvectors of real symmetric (or complex Hermitian) positive-definite matrices $A$ reduced to tridiagonal form $T: A=Q^{*} T^{*} Q^{H}$. In this case, the spectral factorization is as follows: $A=Q^{*} T^{*} Q^{H}=(Q Z)^{*} \Lambda^{*}(Q Z)^{H}$. Before calling ?pteqr, you must reduce $A$ to tridiagonal form and generate the explicit matrix $Q$ by calling the following routines:

	for real matrices:	for complex matrices:
full storage	?sytrd, ?orgtr	?hetrd, ?ungtr
packed storage	?sptrd, ?opgtr	?hptrd, ?upgtr
band storage	?sbtrd(vect='V')	?hbtrd(vect='V')

The routine first factorizes $T$ as $L^{*} D^{*} L^{H}$ where $L$ is a unit lower bidiagonal matrix, and $D$ is a diagonal matrix. Then it forms the bidiagonal matrix $B=L^{\star} D^{1 / 2}$ and calls ?bdsqr to compute the singular values of $B$, which are the square roots of the eigenvalues of $T$.

## Input Parameters

```
compz
n
d, e, work
z
CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz = 'N', the routine computes eigenvalues only.
If compz = 'I', the routine computes the eigenvalues and eigenvectors of the tridiagonal matrix \(T\).
If compz = ' V ', the routine computes the eigenvalues and eigenvectors of \(A\) (and the array \(z\) must contain the matrix \(Q\) on entry).
INTEGER. The order of the matrix \(T(n \geq 0)\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
\(d\left({ }^{*}\right)\) contains the diagonal elements of \(T\).
The size of \(d\) must be at least \(\max (1, n)\).
\(e(*)\) contains the off-diagonal elements of \(T\).
The size of \(e\) must be at least \(\max (1, n-1)\).
work(*) is a workspace array.
The dimension of work must be:
at least 1 if compz = ' N ';
at least max (1, \(\left.4^{*} n-4\right)\) if compz \(=\) 'V' or 'I'.
REAL for spteqr
DOUBLE PRECISION for dpteqr
COMPLEX for cpteqr
```

```
 DOUBLE COMPLEX for zpteqr.
 Array, size (Idz,*)
 If compz = 'N' or 'I', z need not be set.
 If compz = 'V', z must contain the orthogonal matrix used in the
 reduction to tridiagonal form..
 The second dimension of z must be:
 at least 1 if compz = 'N';
 at least max (1,n) if compz = 'V' or 'I'.
 INTEGER. The leading dimension of z. Constraints:
 Idz\geq 1 if compz = 'N';
 Idz\geqmax(1,n) if compz = 'V' or'I'.
```


## Output Parameters

The $n$ eigenvalues in descending order, unless info $>0$.
See also info.
On exit, the array is overwritten.
If info $=0$, contains an $n$-byn matrix the columns of which are orthonormal eigenvectors. (The $i$-th column corresponds to the $i$-th eigenvalue.)

INTEGER.
If info $=0$, the execution is successful.
If info $=i$, the leading minor of order $i$ (and hence $T$ itself) is not positive-definite.
If info $=n+i$, the algorithm for computing singular values failed to converge; $i$ off-diagonal elements have not converged to zero.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine pteqr interface are the following:

```
d Holds the vector of length n.
e Holds the vector of length (n-1).
z Holds the matrix Z of size (}n,n)\mathrm{ .
compz If omitted, this argument is restored based on the presence of argument \(z\) as follows:
```

```
compz = 'I', if z is present,
compz = 'N', if z is omitted.
```

If present, compz must be equal to 'I' or 'V' and the argument $z$ must also be present. Note that there will be an error condition if compz is present and $z$ omitted.

Note that two variants of Fortran 95 interface for pteqr routine are needed because of an ambiguous choice between real and complex cases appear when $z$ is omitted. Thus, the name rpteqr is used in real cases (single or double precision), and the name pteqr is used in complex cases (single or double precision).

## Application Notes

If $\lambda_{i}$ is an exact eigenvalue, and $\mu_{i}$ is the corresponding computed value, then

$$
\left|\mu_{i}-\lambda_{i}\right| \leq c(n) \star \varepsilon^{\star} K^{\star} \lambda_{i}
$$

where $c(n)$ is a modestly increasing function of $n, \varepsilon$ is the machine precision, and $K=||D T D||_{2} *| |$ $(D T D)^{-1}| |_{2}, D$ is diagonal with $d_{i i}=t_{i i}^{-1 / 2}$.

If $z_{i}$ is the corresponding exact eigenvector, and $w_{i}$ is the corresponding computed vector, then the angle $\theta\left(z_{i}\right.$, $w_{i}$ ) between them is bounded as follows:
$\theta\left(u_{i}, w_{i}\right) \leq c(n) \varepsilon K / \min _{i \neq j}\left(\left|\lambda_{i}-\lambda_{j}\right| /\left|\lambda_{i}+\lambda_{j}\right|\right)$.
Here $\min _{i \neq j}\left(\left|\lambda_{i}-\lambda_{j}\right| /\left|\lambda_{i}+\lambda_{j}\right|\right)$ is the relative gap between $\lambda_{i}$ and the other eigenvalues.
The total number of floating-point operations depends on how rapidly the algorithm converges.
Typically, it is about
$30 n^{2}$ if compz = 'N';
$6 n^{3}$ (for complex flavors, $12 n^{3}$ ) if compz $=$ 'V' or 'I'.

## ?stebz

Computes selected eigenvalues of a real symmetric
tridiagonal matrix by bisection.

## Syntax

```
call sstebz (range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w, iblock, isplit,
work, iwork, info)
call dstebz (range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w, iblock, isplit,
work, iwork, info)
call stebz(d, e, m, nsplit, w, iblock, isplit [, order] [,vl] [,vu] [,il] [,iu] [,abstol]
[,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes some (or all) of the eigenvalues of a real symmetric tridiagonal matrix $T$ by bisection. The routine searches for zero or negligible off-diagonal elements to see if $T$ splits into block-diagonal form $T$ $=\operatorname{diag}\left(T_{1}, T_{2}, \ldots\right)$. Then it performs bisection on each of the blocks $T_{i}$ and returns the block index of each computed eigenvalue, so that a subsequent call to stein can also take advantage of the block structure.

See also laebz.

## Input Parameters

d, e, work

```
range
order
n
vl, vu
il,iu
abstol
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range \(=\) ' A ', the routine computes all eigenvalues.
If range \(=\) ' V ', the routine computes eigenvalues \(w(i)\) in the half-open interval: vl < w(i) \(\leq v u\).
If range \(=\) 'I', the routine computes eigenvalues with indices il to iu.
CHARACTER*1. Must be 'B' or 'E'.
If order = 'B', the eigenvalues are to be ordered from smallest to largest within each split-off block.
If order = 'E', the eigenvalues for the entire matrix are to be ordered from smallest to largest.
INTEGER. The order of the matrix \(T(n \geq 0)\).
REAL for sstebz
DOUBLE PRECISION for dstebz.
If range \(=\) ' \(V\) ', the routine computes eigenvalues \(w(i)\) in the half-open interval:
vl < w(i)) \(\leq v u\).
If range \(=\) 'A' or 'I', vl and \(v u\) are not referenced.
INTEGER. Constraint: \(1 \leq i l \leq i u \leq n\).
If range \(=\) 'I', the routine computes eigenvalues \(w(i)\) such that \(i l \leq i \leq i u\) (assuming that the eigenvalues \(w(i)\) are in ascending order).
If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced.
REAL for sstebz
DOUBLE PRECISION for dstebz.
```

The absolute tolerance to which each eigenvalue is required. An eigenvalue (or cluster) is considered to have converged if it lies in an interval of width abstol.

If abstol $\leq 0.0$, then the tolerance is taken as eps* $|T|$, where eps is the machine precision, and $|T|$ is the 1-norm of the matrix $T$.

REAL for sstebz
DOUBLE PRECISION for dstebz.
Arrays:
$d\left({ }^{*}\right)$ contains the diagonal elements of $T$.
The size of $d$ must be at least $\max (1, n)$.
$e(*)$ contains the off-diagonal elements of $T$.
The size of e must be at least max(1, $n-1)$.
work(*) is a workspace array.

The dimension of work must be at least max $(1,4 n)$.
INTEGER. Workspace.
Array, size at least $\max (1,3 n)$.

## Output Parameters

m
nsplit
w
iblock, isplit
info
INTEGER. The actual number of eigenvalues found.
INTEGER. The number of diagonal blocks detected in $T$.
REAL for sstebz
DOUBLE PRECISION for dstebz.
Array, size at least $\max (1, n)$. The computed eigenvalues, stored in w(1) to $w(m)$.

INTEGER.
Arrays, size at least $\max (1, n)$.
A positive value iblock $(i)$ is the block number of the eigenvalue stored in $w(i)$ (see also info).
The leading nsplit elements of isplit contain points at which $T$ splits into blocks $T_{i}$ as follows: the block $T_{1}$ contains rows/columns 1 to isplit(1); the block $T_{2}$ contains rows/columns isplit(1)+1 to isplit(2), and so on.

INTEGER.
If info $=0$, the execution is successful.
If info $=1$, for range $=$ ' A ' or ' V ', the algorithm failed to compute some of the required eigenvalues to the desired accuracy; iblock(i)<0 indicates that the eigenvalue stored in $w(i)$ failed to converge.
If info $=2$, for range $=$ 'I', the algorithm failed to compute some of the required eigenvalues. Try calling the routine again with range = 'A'.

If info $=3$ :
for range $=$ 'A' or 'V', same as info $=1$;
for range $=$ 'I', same as info $=2$.
If info $=4$, no eigenvalues have been computed. The floating-point arithmetic on the computer is not behaving as expected.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine stebz interface are the following:
d
Holds the vector of length $n$.

$i u$ is present, Note that there will be an error condition if one of or both $v /$ and $v u$ are present and at the same time one of or both il and iu are present.

## Application Notes

The eigenvalues of $T$ are computed to high relative accuracy which means that if they vary widely in magnitude, then any small eigenvalues will be computed more accurately than, for example, with the standard $Q R$ method. However, the reduction to tridiagonal form (prior to calling the routine) may exclude the possibility of obtaining high relative accuracy in the small eigenvalues of the original matrix if its eigenvalues vary widely in magnitude.

## ?stein

Computes the eigenvectors corresponding to specified eigenvalues of a real symmetric tridiagonal matrix.

## Syntax

```
call sstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)
call dstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)
call cstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)
call zstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifailv, info)
call stein(d, e, w, iblock, isplit, z [,ifailv] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes the eigenvectors of a real symmetric tridiagonal matrix $T$ corresponding to specified eigenvalues, by inverse iteration. It is designed to be used in particular after the specified eigenvalues have been computed by ?stebz with order = 'B', but may also be used when the eigenvalues have been computed by other routines.
If you use this routine after ?stebz, it can take advantage of the block structure by performing inverse iteration on each block $T_{i}$ separately, which is more efficient than using the whole matrix $T$.
If $T$ has been formed by reduction of a full symmetric or Hermitian matrix $A$ to tridiagonal form, you can transform eigenvectors of $T$ to eigenvectors of $A$ by calling ?ormtr or ? opmtr (for real flavors) or by calling ?unmtr or ?upmtr (for complex flavors).

## Input Parameters

```
n INTEGER. The order of the matrix T(n\geq0).
 INTEGER. The number of eigenvectors to be returned.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
```


## Arrays:

```
\(d\left({ }^{*}\right)\) contains the diagonal elements of \(T\).
The size of \(d\) must be at least \(\max (1, n)\).
\(e\left({ }^{*}\right)\) contains the sub-diagonal elements of \(T\) stored in elements 1 to \(n-1\)
The size of \(e\) must be at least max \((1, n-1)\).
\(w\left({ }^{*}\right)\) contains the eigenvalues of \(T\), stored in \(w(1)\) to \(w(m)\) (as returned by stebz). Eigenvalues of \(T_{1}\) must be supplied first, in non-decreasing order; then those of \(T_{2}\), again in non-decreasing order, and so on. Constraint:
```

```
if iblock(i) = iblock(i+1),w(i) \leqw(i+1).
```

if iblock(i) = iblock(i+1),w(i) \leqw(i+1).
The size of $w$ must be at least $\max (1, n)$.
INTEGER.
Arrays, size at least $\max (1, n)$. The arrays iblock and isplit, as returned by ?stebz with order $=$ ' B'.
If you did not call ?stebz with order = 'B', set all elements of iblock to 1 , and isplit(1) to $n$.)
INTEGER. The leading dimension of the output array $z ; l d z \geq \max (1, n)$.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Workspace array, size at least max $(1,5 n)$.
INTEGER.
Workspace array, size at least $\max (1, n)$.

```

\section*{Output Parameters}
z
REAL for sstein
DOUBLE PRECISION for dstein
\begin{tabular}{ll}
& COMPLEX for cstein \\
& DOUBLE COMPLEX for zstein. \\
& Array, size \((I d z, *)\). \\
& If info \(=0, z\) contains an \(n\)-by- \(n\) matrix the columns of which are \\
orthonormal eigenvectors. (The \(i\)-th column corresponds to the \(i\) th \\
eigenvalue. \()\)
\end{tabular}

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine stein interface are the following:
\begin{tabular}{ll}
\(d\) & Holds the vector of length \(n\). \\
\(e\) & Holds the vector of length \(n\). \\
\(w\) & Holds the vector of length \(n\). \\
iblock & Holds the vector of length \(n\). \\
isplit & Holds the vector of length \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, m)\). \\
ifailv & Holds the vector of length \((m)\).
\end{tabular}

\section*{Application Notes}

Each computed eigenvector \(z_{i}\) is an exact eigenvector of a matrix \(T+E_{i}\), where \(\left|\left|E_{i}\right|\right|_{2}=O(\varepsilon) *| | T| |_{2}\). However, a set of eigenvectors computed by this routine may not be orthogonal to so high a degree of accuracy as those computed by ?steqr.
?disna
Computes the reciprocal condition numbers for the eigenvectors of a symmetric/ Hermitian matrix or for the left or right singular vectors of a general matrix.

Syntax
```

call sdisna(job, m, n, d, sep, info)

```
```

call ddisna(job, m, n, d, sep, info)
call disna(d, sep [,job] [,minmn] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine computes the reciprocal condition numbers for the eigenvectors of a real symmetric or complex Hermitian matrix or for the left or right singular vectors of a general \(m\)-by- \(n\) matrix.

The reciprocal condition number is the 'gap' between the corresponding eigenvalue or singular value and the nearest other one.

The bound on the error, measured by angle in radians, in the \(i\)-th computed vector is given by
```

?lamch('E')*(anorm/sep(i))

```
where anorm \(=||A||_{2}=\max (|d(j)|) . \operatorname{sep}(i)\) is not allowed to be smaller than slamch('E')*anorm in order to limit the size of the error bound.
?disna may also be used to compute error bounds for eigenvectors of the generalized symmetric definite eigenproblem.

\section*{Input Parameters}
job
m
\(n\)
d

Output Parameters
sep

CHARACTER*1. Must be 'E','L', or 'R'. Specifies for which problem the reciprocal condition numbers should be computed:
\(j o b=\) ' E ': for the eigenvectors of a symmetric/Hermitian matrix;
\(j o b=\) 'L': for the left singular vectors of a general matrix;
\(j o b=\) 'R': for the right singular vectors of a general matrix.
INTEGER. The number of rows of the matrix (\(m \geq 0\)).
INTEGER.
If job \(=\) 'L', or 'R', the number of columns of the matrix \((n \geq 0)\). Ignored if job = 'E'.

REAL for sdisna
DOUBLE PRECISION for ddisna.
Array, dimension at least \(\max (1, m)\) if \(j o b=' E\) ', and at least max(1, \(\min (m, n)\)) if job \(=\) 'L' or 'R'.

This array must contain the eigenvalues (if job = 'E') or singular values (if job = 'L' or 'R') of the matrix, in either increasing or decreasing order.

If singular values, they must be non-negative.

REAL for sdisna
DOUBLE PRECISION for ddisna.

Array, dimension at least \(\max (1, m)\) if \(j o b=' E\) ', and at least max \((1\), \(\min (m, n))\) if \(j o b=\) 'L' or ' \(R\) '. The reciprocal condition numbers of the vectors.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine disna interface are the following:
```

d Holds the vector of length min}(m,n)
sep Holds the vector of length min}(m,n)
job Must be 'E','L', or 'R'. The default value is 'E'.
minmn
Indicates which of the values $m$ or $n$ is smaller. Must be either 'M' or 'N', the default is 'M'.
If job = 'E', this argument is superfluous, If job = 'L' or 'R', this argument is used by the routine.

```

\section*{Generalized Symmetric-Definite Eigenvalue Problems: LAPACK Computational Routines}

Generalized symmetric-definite eigenvalue problems are as follows: find the eigenvalues \(\lambda\) and the corresponding eigenvectors \(z\) that satisfy one of these equations:
\(A z=\lambda B z, A B z=\lambda z\), or \(B A z=\lambda z\),
where \(A\) is an \(n\)-by-n symmetric or Hermitian matrix, and \(B\) is an \(n\)-by- \(n\) symmetric positive-definite or Hermitian positive-definite matrix.
In these problems, there exist \(n\) real eigenvectors corresponding to real eigenvalues (even for complex Hermitian matrices \(A\) and \(B\)).

Routines described in this topic allow you to reduce the above generalized problems to standard symmetric eigenvalue problem \(C y=\lambda y\), which you can solve by calling LAPACK routines described earlier in this chapter (see Symmetric Eigenvalue Problems).
Different routines allow the matrices to be stored either conventionally or in packed storage. Prior to reduction, the positive-definite matrix \(B\) must first be factorized using either potrf or pptrf.
The reduction routine for the banded matrices \(A\) and \(B\) uses a split Cholesky factorization for which a specific routine pbstf is provided. This refinement halves the amount of work required to form matrix \(C\).

Table "Computational Routines for Reducing Generalized Eigenproblems to Standard Problems" lists LAPACK routines that can be used to solve generalized symmetric-definite eigenvalue problems. The corresponding routine names in the Fortran 95 interface are without the first symbol.
Computational Routines for Reducing Generalized Eigenproblems to Standard Problems
?sygst
Reduces a real symmetric-definite generalized
eigenvalue problem to the standard form.
Syntax
```

call ssygst(itype, uplo, n, a, lda, b, ldb, info)
call dsygst(itype, uplo, n, a, lda, b, ldb, info)
call sygst(a, b [,itype] [,uplo] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine reduces real symmetric-definite generalized eigenproblems
```

A*}z=\lambda*\mp@subsup{B}{}{\star}z, A* B* z = \lambda\star z, or B* A* z = \lambda*

```
to the standard form \(C^{\star} y=\lambda^{\star} y\). Here \(A\) is a real symmetric matrix, and \(B\) is a real symmetric positivedefinite matrix. Before calling this routine, call ?potrf to compute the Cholesky factorization: \(B=U^{T *} U\) or \(B\) \(=L^{\star} L^{T}\).

\section*{Input Parameters}
```

itype
uplo
INTEGER. Must be 1 or 2 or 3.
If itype $=1$, the generalized eigenproblem is $A \star_{z}=\operatorname{lambda} \star^{*}{ }^{\star} Z$
for uplo = 'U':C $=\operatorname{inv}\left(U^{T}\right) \star A * \operatorname{inv}(U), z=\operatorname{inv}(U)^{*} y$;
for uplo $=$ 'L': $C=\operatorname{inv}(L) * A * \operatorname{inv}\left(L^{T}\right), z=\operatorname{inv}\left(L^{T}\right) * y$.
If itype $=2$, the generalized eigenproblem is $A^{\star} B^{\star} z=\operatorname{lambda}{ }^{\star} z$
for uplo $=$ 'U':C $=U^{\star} A^{\star} U^{T}, z=\operatorname{inv}(U) * y$;
for uplo $=$ 'L': $C=L^{T \star} A \star L, z=\operatorname{inv}\left(L^{T}\right) \star y$.
If itype $=3$, the generalized eigenproblem is $B^{\star} A^{\star} z=\operatorname{lambda}{ }^{\star} z$
for uplo = 'U': $C=U^{\star} A^{\star} U^{T}, z=U^{T \star} y$;
for uplo $=$ 'L': $C=L^{T \star} A \star L, z=L^{\star} y$.

	If uplo = 'U', the array a stores the upper triangle of $A$; you must supply $B$ in the factored form $B=U^{T} * U$.
	If uplo = 'L', the array a stores the lower triangle of $A$; you must supply $B$ in the factored form $B=L^{\star} L^{T}$.
$n$	InTEGER. The order of the matrices $A$ and $B$ ( $n \geq 0$ ).
$a, b$	REAL for ssygst
	DOUBLE PRECISION for dsygst.
	Arrays:
	$a(l d a, *)$ contains the upper or lower triangle of $A$.
	The second dimension of $a$ must be at least max $(1, n)$.
	$b(I d b, *)$ contains the Cholesky-factored matrix B:
	$B=U^{T} * U$ or $B=L^{*} L^{T}$ (as returned by ?potrf).
	The second dimension of $b$ must be at least $\max (1, n)$.
lda	INTEGER. The leading dimension of $a$; at least max $(1, n)$.
$1 d b$	Integer. The leading dimension of $b$; at least max $(1, n)$.

## Output Parameters

a
info
The upper or lower triangle of $A$ is overwritten by the upper or lower triangle of $C$, as specified by the arguments itype and uplo.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine sygst interface are the following:

$a$	Holds the matrix $A$ of size $(n, n)$.
$b$	Holds the matrix $B$ of size $(n, n)$.
itype	Must be 1,2, or 3 . The default value is 1.
uplo	Must be ' U ' or ' L '. The default value is ' U '.

## Application Notes

Forming the reduced matrix $C$ is a stable procedure. However, it involves implicit multiplication by inv ( $B$ ) (if itype $=1$ ) or $B$ (if itype $=2$ or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is $n^{3}$.

```
?hegst
Reduces a complex Hermitian positive-definite
generalized eigenvalue problem to the standard form.
```


## Syntax

```
call chegst(itype, uplo, n, a, lda, b, ldb, info)
```

call chegst(itype, uplo, n, a, lda, b, ldb, info)
call zhegst(itype, uplo, n, a, lda, b, ldb, info)
call zhegst(itype, uplo, n, a, lda, b, ldb, info)
call hegst(a, b [,itype] [,uplo] [,info])

```
call hegst(a, b [,itype] [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine reduces a complex Hermitian positive-definite generalized eigenvalue problem to standard form.

itype	Problem	Result
1	$A^{\star} X=\lambda^{\star} B^{\star} X$	$A$ overwritten by inv $\left(U^{\mathrm{H}}\right) \star A^{\star}$ inv $(U)$ or
2	$A^{\star} B^{\star} X=\lambda^{\star} X$	inv $(L)^{\star} A^{\star} \operatorname{inv}\left(L^{\mathrm{H}}\right)$

Before calling this routine, you must call ?potrf to compute the Cholesky factorization: $B=U^{H} * U$ or $B=$ $L \star L^{H}$.

## Input Parameters

itype
uplo
n

INTEGER. Must be 1 or 2 or 3.
If itype $=1$, the generalized eigenproblem is $A{ }^{\star} z=\operatorname{lambda}{ }^{\star} B^{\star} z$
for uplo $=$ 'U': $C=\left(U^{H}\right)^{-1 \star} A^{\star} U^{-1}$;
for uplo $=$ 'L': $C=L^{-1 \star} A^{\star}\left(L^{H}\right)^{-1}$.
If itype $=2$, the generalized eigenproblem is $A^{\star} B^{\star} z=\operatorname{lambda} z$
for uplo $=$ 'U': C = $U^{\star} A^{\star} U^{H}$;
for uplo $=$ 'L': C $=L^{H \star} A^{\star} L$.
If itype $=3$, the generalized eigenproblem is $B^{\star} A^{\star} z=\operatorname{lambda} z$
for uplo = 'U': C = $U^{\star} A^{\star} U^{H}$;
for uplo $=$ 'L': $C=L^{H \star} A^{\star} L$.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', the array a stores the upper triangle of $A$; you must supply $B$ in the factored form $B=U^{H *} U$.

If uplo = 'L', the array a stores the lower triangle of $A$; you must supply $B$ in the factored form $B=L^{\star} L^{H}$.

INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.

```
a,b
lda
ldb
```


## Output Parameters

a
info
The upper or lower triangle of $A$ is overwritten by the upper or lower triangle of $C$, as specified by the arguments itype and uplo.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hegst interface are the following:

a	Holds the matrix $A$ of size $(n, n)$.
b	Holds the matrix $B$ of size $(n, n)$.
itype	Must be 1,2 , or 3 . The default value is 1.
uplo	Must be 'U' or ' $L$ '. The default value is ' $U$ '.

## Application Notes

Forming the reduced matrix $C$ is a stable procedure. However, it involves implicit multiplication by $B^{-1}$ (if itype $=1$ ) or $B$ (if itype $=2$ or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is $n^{3}$.

## ?spgst

Reduces a real symmetric-definite generalized
eigenvalue problem to the standard form using packed storage.

## Syntax

```
call sspgst(itype, uplo, n, ap, bp, info)
```

```
call dspgst(itype, uplo, n, ap, bp, info)
call spgst(ap, bp [,itype] [,uplo] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine reduces real symmetric-definite generalized eigenproblems

to the standard form $C^{\star} y=\lambda^{\star} y$, using packed matrix storage. Here $A$ is a real symmetric matrix, and $B$ is a real symmetric positive-definite matrix. Before calling this routine, call ?pptrf to compute the Cholesky factorization: $B=U^{T} * U$ or $B=L^{\star} L^{T}$.

## Input Parameters

```
itype INTEGER. Must be 1 or 2 or 3.
 If itype = 1, the generalized eigenproblem is A* z = lambda* B*z
 for uplo = 'U':C = inv(UT)*A*inv(U),z = inv(U)*y;
 foruplo = 'L':C = inv(L)*A*inv(L'T), z = inv(LIT)*y.
 If itype = 2, the generalized eigenproblem is A\star B\star z = lambda*z
 foruplo = 'U':C = U*A* UT,z = inv(U)*y;
 foruplo = 'L':C = L'T\starA\star L, z = inv (L'T)*y.
 If itype = 3, the generalized eigenproblem is B*A*z = lambda*z
 for uplo = 'U':C = U\starA\star UT, z = U'* Y';
 foruplo = 'L':C = L'**A\star L, z = L* y.
 CHARACTER*1. Must be 'U' or 'L'.
 If uplo = 'U',ap stores the packed upper triangle of A;
 you must supply }B\mathrm{ in the factored form B = U'*
 If uplo = 'L', ap stores the packed lower triangle of A;
 you must supply B in the factored form B = L* 'LT
 INTEGER. The order of the matrices A and B(n\geq0).
 REAL for sspgst
 DOUBLE PRECISION for dspgst.
```

    Arrays:
    \(a p(*)\) contains the packed upper or lower triangle of \(A\).
    The dimension of ap must be at least max \(\left(1, n^{*}(n+1) / 2\right)\).
    \(b p(*)\) contains the packed Cholesky factor of \(B\) (as returned by ?pptrf
    with the same uplo value).
    The dimension of \(b p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
    
## Output Parameters

## ap

info
The upper or lower triangle of $A$ is overwritten by the upper or lower triangle of $C$, as specified by the arguments itype and uplo.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine spgst interface are the following:

```
ap Holds the array A of size (n* (n+1)/2).
bp Holds the array B of size (n*(n+1)/2).
itype Must be 1, 2, or 3. The default value is 1.
uplo Must be 'U' or 'L'. The default value is 'U'.
```


## Application Notes

Forming the reduced matrix $C$ is a stable procedure. However, it involves implicit multiplication by inv ( $B$ ) (if itype $=1$ ) or $B$ (if itype $=2$ or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is $n^{3}$.

```
?hpgst
Reduces a generalized eigenvalue problem with a
Hermitian matrix to a standard eigenvalue problem
using packed storage.
Syntax
call chpgst(itype, uplo, n, ap, bp, info)
call zhpgst(itype, uplo, n, ap, bp, info)
call hpgst(ap, bp [,itype] [,uplo] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine reduces generalized eigenproblems with Hermitian matrices

$$
A^{\star} z=\lambda^{\star} B^{\star} z, A^{\star} B^{\star} z=\lambda^{\star} z \text {, or } B^{\star} A^{\star} z=\lambda^{\star} z .
$$

to standard eigenproblems $C^{\star} y=\lambda^{\star} y$, using packed matrix storage. Here $A$ is a complex Hermitian matrix, and $B$ is a complex Hermitian positive-definite matrix. Before calling this routine, you must call ?pptrf to compute the Cholesky factorization: $B=U^{H} * U$ or $B=L \star L^{H}$.

## Input Parameters

itype
uplo
n
$a p, b p$

INTEGER. Must be 1 or 2 or 3.
If itype $=1$, the generalized eigenproblem is $A * z=\operatorname{lambda}{ }^{*} B{ }^{*} z$
for uplo = 'U': C = inv( $\left.U^{H}\right) \star A * \operatorname{inv}(U), z=\operatorname{inv(U)*y;~}$
for uplo $=$ 'L': $C=\operatorname{inv}(L) * A * \operatorname{inv}\left(L^{H}\right), z=\operatorname{inv}\left(L^{H}\right) * y$.
If itype $=2$, the generalized eigenproblem is $A^{\star} B^{\star} Z=\operatorname{lambda}{ }_{Z}$
for uplo = 'U':C $=U^{\star} A^{\star} U^{H}, z=\operatorname{inv}(U)^{*} y$;
for uplo $=$ 'L': $C=L^{H \star} A^{\star} L, z=\operatorname{inv}\left(L^{H}\right) \star y$.
If itype $=3$, the generalized eigenproblem is $B^{\star} A^{\star} Z=\operatorname{lambda}{ }_{z}$
for uplo = 'U': $C=U^{\star} A^{\star} U^{H}, z=U^{H \star} y$;
for uplo $=$ 'L': $C=L^{H \star} A^{\star} L, z=L^{\star} y$.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangle of $A$; you must supply $B$ in the factored form $B=U^{H} * U$.

If uplo = 'L', ap stores the packed lower triangle of $A$; you must supply $B$ in the factored form $\mathrm{B}=L^{\star} L^{H}$.

INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.
COMPLEX for chpgstDOUBLE COMPLEX for zhpgst.
Arrays:
$a p(*)$ contains the packed upper or lower triangle of $A$.
The dimension of $a$ must be at least $\max \left(1, n^{*}(n+1) / 2\right)$.
$b p(*)$ contains the packed Cholesky factor of $B$ (as returned by ?pptrf with the same uplo value).
The dimension of $b$ must be at least $\max \left(1, n^{*}(n+1) / 2\right)$.

## Output Parameters

$a p$
info

The upper or lower triangle of $A$ is overwritten by the upper or lower triangle of $C$, as specified by the arguments itype and uplo.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hpgst interface are the following:

ap	Holds the array $A$ of size $\left(n^{*}(n+1) / 2\right)$.
bp	Holds the array $B$ of size $\left(n^{*}(n+1) / 2\right)$.
itype	Must be 1,2 , or 3 . The default value is 1.
uplo	Must be 'U' or 'L'. The default value is ' $U^{\prime}$ '.

## Application Notes

Forming the reduced matrix $C$ is a stable procedure. However, it involves implicit multiplication by inv( $B$ ) (if itype $=1$ ) or $B$ (if itype $=2$ or 3 ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion.
The approximate number of floating-point operations is $n^{3}$.

## ?sbgst

Reduces a real symmetric-definite generalized eigenproblem for banded matrices to the standard form using the factorization performed by ?pbste.

## Syntax

```
call ssbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)
call dsbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)
call sbgst(ab, bb [,x] [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

To reduce the real symmetric-definite generalized eigenproblem $A^{\star} z=\lambda \star B^{\star} z$ to the standard form $C^{\star} y=\lambda^{\star} y$, where $A, B$ and $C$ are banded, this routine must be preceded by a call to pbstf, which computes the split Cholesky factorization of the positive-definite matrix $B$ : $B=S^{T \star} S$. The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be approximately halved.
This routine overwrites $A$ with $C=X^{T} \star A \star X$, where $X=\operatorname{inv}(S) * Q$ and $Q$ is an orthogonal matrix chosen (implicitly) to preserve the bandwidth of $A$. The routine also has an option to allow the accumulation of $X$, and then, if $z$ is an eigenvector of $C, X^{\star} z$ is an eigenvector of the original system.

## Input Parameters

vect	CHARACTER*1. Must be 'N' or 'V'.
	If vect $=$ ' N ', then matrix $X$ is not returned;
	If vect $=$ ' V ', then matrix $X$ is returned.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	If uplo = 'U', $a b$ stores the upper triangular part of $A$.
	If uplo = 'L', $a b$ stores the lower triangular part of $A$.

n
ka
$k b$
ab, bb, work

I dab
1 dbb
$1 d x$

## Output Parameters

$a b$
x
info

INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.
INTEGER. The number of super- or sub-diagonals in $A$ ( $k a \geq 0$ ).

INTEGER. The number of super- or sub-diagonals in $B$ $(k a \geq k b \geq 0)$.

REAL for ssbgst
DOUBLE PRECISION for dsbgst
$a b(/ d a b, *)$ is an array containing either upper or lower triangular part of the symmetric matrix $A$ (as specified by uplo) in band storage format.
The second dimension of the array $a b$ must be at least max $(1, n)$.
$b b(/ d b b, *)$ is an array containing the banded split Cholesky factor of $B$ as specified by uplo, $n$ and $k b$ and returned by pbstf/pbstf.
The second dimension of the array $b b$ must be at least $\max (1, n)$. work(*) is a workspace array, dimension at least max (1, $2^{*} n$ )

INTEGER. The leading dimension of the array $a b ;$ must be at least $k a+1$. INTEGER. The leading dimension of the array $b b ;$ must be at least $k b+1$.

The leading dimension of the output array $x$. Constraints: if vect $={ }^{\prime} N^{\prime}$, then $1 d x \geq 1$;
if vect $=$ ' $V$ ', then $I d x \geq \max (1, n)$.

On exit, this array is overwritten by the upper or lower triangle of $C$ as specified by uplo.

REAL for ssbgst
DOUBLE PRECISION for dsbgst
Array.
If vect $=$ ' V ', then $x\left(I d x,{ }^{*}\right)$ contains the $n$-by-n matrix $X=\operatorname{inv}(S) * Q$.
If vect $=$ ' $N$ ', then $x$ is not referenced.
The second dimension of $x$ must be:
at least $\max (1, n)$, if vect $=' \mathrm{~V}$ ';
at least 1 , if vect $=' N$ '.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sbgst interface are the following:

$a b$	Holds the array $A$ of size $(k a+1, n)$.
bb	Holds the array $B$ of size $(k b+1, n)$.
uplo	Holds the matrix $X$ of size $(n, n)$.
vect	Must be ' $U$ ' or ' $L$ '. The default value is ' $U$ '.
	Restored based on the presence of the argument $x$ as follows:
	vect $=' V$ ', if $x$ is present,
	vect $=' N$ ', if $x$ is omitted.

## Application Notes

Forming the reduced matrix $C$ involves implicit multiplication by inv ( $B$ ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion.

If $k a$ and $k b$ are much less than $n$ then the total number of floating-point operations is approximately $6 n^{2} * k b$, when vect $=' N^{\prime}$. Additional $(3 / 2) n^{3 *}(k b / k a)$ operations are required when vect $=' V^{\prime}$.

```
?hbgst
Reduces a complex Hermitian positive-definite
generalized eigenproblem for banded matrices to the
standard form using the factorization performed
by ?pbstf.
```

Syntax

```
call chbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork, info)
call zhbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, rwork, info)
call h.bgst(ab, bb [,x] [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

To reduce the complex Hermitian positive-definite generalized eigenproblem $A^{\star} z=\lambda \star B^{\star} z$ to the standard form $C^{\star}{ }_{x}=\lambda^{\star} y$, where $A, B$ and $C$ are banded, this routine must be preceded by a call to pbstf/pbstf, which computes the split Cholesky factorization of the positive-definite matrix $B$ : $B=S^{H \star}$. The split Cholesky factorization, compared with the ordinary Cholesky factorization, allows the work to be approximately halved.

This routine overwrites $A$ with $C=X^{H} \star^{A} * X$, where $X=\operatorname{inv}(S) * Q$, and $Q$ is a unitary matrix chosen (implicitly) to preserve the bandwidth of $A$. The routine also has an option to allow the accumulation of $X$, and then, if $z$ is an eigenvector of $C, X^{*} z$ is an eigenvector of the original system.

## Input Parameters

vect
uplo
$n$
kb
ab, bb, work

Idab
1 dbb
$1 d x$
rwork

CHARACTER*1. Must be 'N' or 'V'.
If vect $=$ ' $N$ ', then matrix $X$ is not returned;
If vect $=$ ' V ', then matrix $X$ is returned.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', $a b$ stores the upper triangular part of $A$.
If uplo = 'L', ab stores the lower triangular part of $A$.
INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.
INTEGER. The number of super- or sub-diagonals in $A$
( $k a \geq 0$ ).
INTEGER. The number of super- or sub-diagonals in $B$
$(k a \geq k b \geq 0)$.
COMPLEX for chbgstDOUBLE COMPLEX for zhbgst
$a b(I d a b, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix $A$ (as specified by uplo) in band storage format.
The second dimension of the array $a b$ must be at least max $(1, n)$.
$b b(I d b b, *)$ is an array containing the banded split Cholesky factor of $B$ as specified by uplo, $n$ and $k b$ and returned by pbstf/pbstf.

The second dimension of the array $b b$ must be at least max $(1, n)$.
work(*) is a workspace array, dimension at least max $(1, n)$
INTEGER. The leading dimension of the array $a b ;$ must be at least $k a+1$.
INTEGER. The leading dimension of the array $b b ;$ must be at least $k b+1$.
The leading dimension of the output array $x$. Constraints:
if vect $=$ ' $N$ ', then $I d x \geq 1$;
if vect $=' \mathrm{~V}$ ', then $I d x \geq \max (1, n)$.
REAL for chbgst
DOUBLE PRECISION for zhbgst
Workspace array, dimension at least max(1, n)

## Output Parameters

On exit, this array is overwritten by the upper or lower triangle of $C$ as specified by uplo.

COMPLEX for chbgst
DOUBLE COMPLEX for zh.bgst

## Array.

If vect $=$ ' $V$ ', then $x(I d x, *)$ contains the $n$-by-n matrix $X=\operatorname{inv}(S) * Q$.

```
If vect = 'N', then x is not referenced.
The second dimension of x must be:
at least max(1,n), if vect = 'V';
at least 1, if vect = 'N'.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
```


## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hbgst interface are the following:

ab	Holds the array $A$ of size $(k a+1, n)$.
bb	Holds the array $B$ of size $(k b+1, n)$.
$x$	Holds the matrix $X$ of size $(n, n)$.
uplo	Must be ' $U$ ' or 'L'. The default value is ' U '.
vect	Restored based on the presence of the argument $x$ as follows: vect $='^{\prime} \mathrm{V}$ ', if $x$   is present, vect $=$

## Application Notes

Forming the reduced matrix $C$ involves implicit multiplication by inv ( $B$ ). When the routine is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if $B$ is ill-conditioned with respect to inversion. The total number of floating-point operations is approximately $20 n^{2} \star k b$, when vect $=' \mathrm{~N}$ '. Additional $5 n^{3} *(k b / k a)$ operations are required when vect $=$ ' $V$ '. All these estimates assume that both $k a$ and $k b$ are much less than $n$.

## ?pbstf

Computes a split Cholesky factorization of a real symmetric or complex Hermitian positive-definite banded matrix used in ?sbgst/?hbgst.

## Syntax

```
call spbstf(uplo, n, k.b, bb, ldbb, info)
call dpbstf(uplo, n, kb, bb, ldbb, info)
call cpbstf(uplo, n, kb, bb, ldbb, info)
call zpbstf(uplo, n, kb, bb, ldbb, info)
call pbstf(bb [, uplo] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes a split Cholesky factorization of a real symmetric or complex Hermitian positivedefinite band matrix $B$. It is to be used in conjunction with sbgst/hbgst.
The factorization has the form $B=S^{T} \star S$ (or $B=S^{H} \star S$ for complex flavors), where $S$ is a band matrix of the same bandwidth as $B$ and the following structure: $S$ is upper triangular in the first $(n+k b) / 2$ rows and lower triangular in the remaining rows.

## Input Parameters

```
uplo
```

n
$k b$
bb

1 dbb

## Output Parameters

bb
info

CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', bb stores the upper triangular part of $B$.
If uplo = 'L', bb stores the lower triangular part of $B$.
INTEGER. The order of the matrix $B(n \geq 0)$.
INTEGER. The number of super- or sub-diagonals in $B$
$(k b \geq 0)$.
REAL for spbstf
DOUBLE PRECISION for dpbstf
COMPLEX for cpbstf
DOUBLE COMPLEX for zpbstf.
$b b(/ d b b, *)$ is an array containing either upper or lower triangular part of the matrix $B$ (as specified by uplo) in band storage format.

The second dimension of the array $b b$ must be at least $\max (1, n)$.
INTEGER. The leading dimension of $b b ;$ must be at least $k b+1$.

On exit, this array is overwritten by the elements of the split Cholesky factor $S$.

INTEGER.
If info $=0$, the execution is successful.
If info $=i$, then the factorization could not be completed, because the updated element $b_{i i}$ would be the square root of a negative number; hence the matrix $B$ is not positive-definite.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine pbstf interface are the following:
bb
Holds the array $B$ of size $(k b+1, n)$.
uplo
Must be 'U' or 'L'. The default value is 'U'.

## Application Notes

The computed factor $S$ is the exact factor of a perturbed matrix $B+E$, where

$$
|E| \leq c(k b+1) \varepsilon\left|S^{H}\right||S|,\left|e_{i j}\right| \leq c(k b+1) \varepsilon \sqrt{b_{i i} b_{j j}}
$$

$c(n)$ is a modest linear function of $n$, and $\varepsilon$ is the machine precision.
The total number of floating-point operations for real flavors is approximately $n(k b+1)^{2}$. The number of operations for complex flavors is 4 times greater. All these estimates assume that $k b$ is much less than $n$.

After calling this routine, you can call sbgst/hbgst to solve the generalized eigenproblem $A z=\lambda B z$, where $A$ and $B$ are banded and $B$ is positive-definite.

## Nonsymmetric Eigenvalue Problems: LAPACK Computational Routines

This topic describes LAPACK routines for solving nonsymmetric eigenvalue problems, computing the Schur factorization of general matrices, as well as performing a number of related computational tasks.
A nonsymmetric eigenvalue problem is as follows: given a nonsymmetric (or non-Hermitian) matrix $A$, find the eigenvalues $\lambda$ and the corresponding eigenvectorsz that satisfy the equation
$A z=\lambda z$ (right eigenvectors $z$ )
or the equation
$z^{H} A=\lambda z^{H}$ (left eigenvectors $z$ ).
Nonsymmetric eigenvalue problems have the following properties:

- The number of eigenvectors may be less than the matrix order (but is not less than the number of distinct eigenvalues of $A$ ).
- Eigenvalues may be complex even for a real matrix $A$.
- If a real nonsymmetric matrix has a complex eigenvalue $a+b i$ corresponding to an eigenvector $z$, then $a-$ bi is also an eigenvalue. The eigenvalue a-bi corresponds to the eigenvector whose elements are complex conjugate to the elements of $z$.
To solve a nonsymmetric eigenvalue problem with LAPACK, you usually need to reduce the matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg matrix obtained. Table "Computational Routines for Solving Nonsymmetric Eigenvalue Problems" lists LAPACK routines to reduce the matrix to the upper Hessenberg form by an orthogonal (or unitary) similarity transformation $A=Q H Q^{H}$ as well as routines to solve eigenvalue problems with Hessenberg matrices, forming the Schur factorization of such matrices and computing the corresponding condition numbers. The corresponding routine names in the Fortran 95 interface are without the first symbol.
The decision tree in Figure "Decision Tree: Real Nonsymmetric Eigenvalue Problems" helps you choose the right routine or sequence of routines for an eigenvalue problem with a real nonsymmetric matrix. If you need to solve an eigenvalue problem with a complex non-Hermitian matrix, use the decision tree shown in Figure "Decision Tree: Complex Non-Hermitian Eigenvalue Problems".


## Computational Routines for Solving Nonsymmetric Eigenvalue Problems

Operation performed	Routines for real matrices	Routines for complex matrices
Reduce to Hessenberg form   $A=Q H Q^{H}$	?gehrd,	?gehrd
Generate the matrix Q	?orghr	?unghr
Apply the matrix Q	?ormhr	?unmhr


Operation performed	Routines for real matrices	Routines for complex matrices
Balance matrix	?gebal	?gebal
Transform eigenvectors of   balanced matrix to those of   the original matrix	?gebak	?gebak
Find eigenvalues and Schur   factorization (QR algorithm)	?hseqr	
Find eigenvectors from   Hessenberg form (inverse   iteration)	?hsein	?hseqr
Find eigenvectors from   Schur factorization	?trevc	?hsein
Estimate sensitivities of   eigenvalues and   eigenvectors	?trsna	?trsna
Reorder Schur factorization	?trexc	?trexc
Reorder Schur factorization,   find the invariant subspace   and estimate sensitivities   Solves Sylvester's equation.	?trsen	?trsyl

Decision Tree: Real Nonsymmetric Eigenvalue Problems


Decision Tree: Complex Non-Hermitian Eigenvalue Problems


Is $A$ an upper
Hessenberg matrix?
yes no
?GEBAL ?GEHRD
?HSEQR ?HSEIN
?UNMHR ?GEBAK

## ?gehrd

Reduces a general matrix to upper Hessenberg form.
Syntax
call sgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)

```
call dgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)
call cgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)
call zgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)
call gehrd(a [, tau] [,ilo] [,ihi] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine reduces a general matrix $A$ to upper Hessenberg form $H$ by an orthogonal or unitary similarity transformation $A=Q^{\star} H^{\star} Q^{H}$. Here $H$ has real subdiagonal elements.

The routine does not form the matrix $Q$ explicitly. Instead, $Q$ is represented as a product of elementary reflectors. Routines are provided to work with $Q$ in this representation.

## Input Parameters

$n$
ilo, ihi
a, work

Ida
lwork

INTEGER. The order of the matrix $A(n \geq 0)$.
INTEGER. If $A$ is an output by ?gebal, then ilo and ihi must contain the values returned by that routine. Otherwise ilo $=1$ and $i h i=n$. (If $n>$ 0 , then $1 \leq i l o \leq i h i \leq n ;$ if $n=0$, ilo $=1$ and ihi $=0$.)

REAL for sgehrd
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
Arrays:
$a(/ d a, *)$ contains the matrix $A$.
The second dimension of $a$ must be at least max $(1, n)$.
work (/work) is a workspace array.
INTEGER. The leading dimension of $a$; at least max $(1, n)$.
INTEGER. The size of the work array; at least max $(1, n)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

a
The elements on and above the subdiagonal contain the upper Hessenberg matrix $H$. The subdiagonal elements of $H$ are real. The elements below the subdiagonal, with the array tau, represent the orthogonal matrix $Q$ as a product of $n$ elementary reflectors.

```
tau
work(1)
info
```

```
REAL for sgehrd
```

REAL for sgehrd
DOUBLE PRECISION for dgehrd
DOUBLE PRECISION for dgehrd
COMPLEX for cgehrd
COMPLEX for cgehrd
DOUBLE COMPLEX for zgehrd.
DOUBLE COMPLEX for zgehrd.
Array, size at least max (1, n-1).
Contains scalars that define elementary reflectors for the matrix Q.
If info = 0, on exit work(1) contains the minimum value of Iwork
required for optimum performance. Use this Iwork for subsequent runs.
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.

```

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gehrd interface are the following:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
tau & Holds the vector of length \((n-1)\). \\
ilo & Default value for this argument is \(i l o=1\). \\
ihi & Default value for this argument is \(i h i=n\).
\end{tabular}

\section*{Application Notes}

For better performance, try using lwork \(=n \star\) blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed Hessenberg matrix \(H\) is exactly similar to a nearby matrix \(A+E\), where \(\left||E| \|_{2}<C(n) \varepsilon\right| \mid\) \(\left.A\right|_{2}, C(n)\) is a modestly increasing function of \(n\), and \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations for real flavors is (2/3)*(ihi -ilo) \({ }^{2}(2 i h i+2 i l o\) \(+3 n\)) ; for complex flavors it is 4 times greater.

\section*{?orghr}

Generates the real orthogonal matrix \(Q\) determined by ?gehrd.

\section*{Syntax}
```

call sorghr(n, ilo, ihi, a, lda, tau, work, lwork, info)
call dorghr(n, ilo, ihi, a, lda, tau, work, lwork, info)
call orghr(a, tau [,ilo] [,ihi] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine explicitly generates the orthogonal matrix \(Q\) that has been determined by a preceding call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal similarity transformation, \(A=Q^{\star} H^{\star} Q^{T}\), and represents the matrix \(Q\) as a product of ihiiloelementary reflectors. Here ilo and ihi are values determined by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, ilo \(=1\) and ihi \(=n\).)
The matrix \(Q\) generated by ?orghr has the structure:

where \(Q_{22}\) occupies rows and columns ilo to ihi.
Input Parameters
n
ilo, ihi

INTEGER. The order of the matrix \(Q(n \geq 0)\).
INTEGER. These must be the same parameters ilo and ihi, respectively, as supplied to ?gehrd. (If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\); if \(n=0\), ilo \(=1\) and ihi = 0.)
```

a, tau, work
Ida
l work

```

REAL for sorghr
DOUBLE PRECISION for dorghr
Arrays: \(a(/ d a, *)\) contains details of the vectors which define the elementary reflectors, as returned by ?gehrd.

The second dimension of a must be at least max \((1, n)\).
\(\operatorname{tau}\left({ }^{*}\right)\) contains further details of the elementary reflectors, as returned by ?gehrd.
The dimension of tau must be at least max \((1, n-1)\).
work is a workspace array, its dimension max (\(1, ~ 1\) work).
INTEGER. The leading dimension of \(a\); at least \(\max (1, n)\).
INTEGER. The size of the work array;
lwork \(\geq \max (1\), ihi-ilo).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.
See Application Notes for the suggested value of Iwork.

\section*{Output Parameters}
a
work(1)
info
Overwritten by the \(n\)-by-n orthogonal matrix \(Q\).
If info \(=0\), on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this lwork for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine orghr interface are the following:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
tau & Holds the vector of length \((n-1)\). \\
\(i l o\) & Default value for this argument is \(i l o=1\). \\
ihi & Default value for this argument is \(i h i=n\).
\end{tabular}

\section*{Application Notes}
 value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set \(l\) work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is \((4 / 3)(i h i-i l o)^{3}\).
The complex counterpart of this routine is unghr.

\section*{?ormhr}

Multiplies an arbitrary real matrix C by the real orthogonal matrix \(Q\) determined by ?gehrd.

\section*{Syntax}
```

call sormhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork, info)
call dormhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork, info)
call ormhr(a, tau, c [,ilo] [,ihi] [,side] [,trans] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine multiplies a matrix \(C\) by the orthogonal matrix \(Q\) that has been determined by a preceding call to sgehrd/dgehrd. (The routine ?gehrd reduces a real general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal similarity transformation, \(A=Q^{\star} H^{\star} Q^{T}\), and represents the matrix \(Q\) as a product of ihiiloelementary reflectors. Here ilo and ihi are values determined by sgebal/dgebal when balancing the matrix; if the matrix has not been balanced, \(i l o=1\) and \(i h i=n\).)
With ?ormhr, you can form one of the matrix products \(Q^{\star} C, Q^{T \star} C, C^{\star} Q\), or \(C^{\star} Q^{T}\), overwriting the result on \(C\) (which may be any real rectangular matrix).
A common application of ?ormhr is to transform a matrix \(V\) of eigenvectors of \(H\) to the matrix \(Q V\) of eigenvectors of \(A\).

Input Parameters
```

side
trans
CHARACTER*1. Must be 'L' or 'R'.
If side= 'L', then the routine forms Q*C or Q Q* C.
If side= 'R', then the routine forms C*Q or C* QT.
CHARACTER*1. Must be 'N' or 'T'.

```
```

If trans= 'N', then $Q$ is applied to $C$.
If trans $=$ ' $T$ ', then $Q^{T}$ is applied to $C$.
INTEGER. The number of rows in $C(m \geq 0)$.
INTEGER. The number of columns in $C(n \geq 0)$.
INTEGER. These must be the same parameters ilo and ihi, respectively, as supplied to ?gehrd.
If $m>0$ and side $=$ 'L', then $1 \leq i l o \leq i h i \leq m$.
If $m=0$ and side $=$ 'L', then ilo $=1$ and ihi $=0$.
If $n>0$ and side $=$ 'R', then $1 \leq i l o \leq i h i \leq n$.
If $n=0$ and side $=$ 'R', then ilo $=1$ and ihi $=0$.
REAL for sormhr
DOUBLE PRECISION for dormhr
Arrays:
$a(I d a, *)$ contains details of the vectors which define the elementary reflectors, as returned by ? gehrd.
The second dimension of $a$ must be at least $\max (1, m)$ if side $=$ ' L' and at least $\max (1, n)$ if side $=$ ' R '.
tau(*) contains further details of the elementary reflectors, as returned by ? gehrd.
The dimension of tau must be at least max $(1, m-1)$ if side $=$ 'L' and at least max $(1, n-1)$ if side $=$ ' R '.
$c(I d c, *)$ contains the $m$ by $n$ matrix $C$.
The second dimension of $c$ must be at least $\max (1, n)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a$; at least $\max (1, m)$ if side $=$ 'L' and at least max $(1, n)$ if side $=' R '$.
INTEGER. The leading dimension of $c$; at least max $(1, m)$.
INTEGER. The size of the work array.
If side $=$ 'L', Iwork $\geq \max (1, n)$.
If side $=$ 'R', Iwork $\geq \max (1, m)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

```

See Application Notes for the suggested value of Iwork.

\section*{Output Parameters}
```

C
C is overwritten by product Q* }C,\mp@subsup{Q}{}{T*}C,\mp@subsup{C}{}{\star}Q\mathrm{ , or C}\mp@subsup{C}{}{\star}\mp@subsup{Q}{}{T}\mathrm{ as specified by side and trans.
If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this Iwork for subsequent runs.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

```

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ormhr interface are the following:
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{a} & Holds the matrix \(A\) of size (\(r, r\)) . \\
\hline & \(r=m\) if side = 'L'. \\
\hline & \(r=n\) if side \(={ }^{\prime} \mathrm{R}^{\prime}\). \\
\hline tau & Holds the vector of length (\(r-1\)). \\
\hline c & Holds the matrix \(C\) of size (\(m, n\)). \\
\hline ilo & Default value for this argument is ilo \(=1\). \\
\hline ihi & Default value for this argument is ihi \(=n\). \\
\hline side & Must be 'L' or 'R'. The default value is 'L'. \\
\hline trans & Must be ' N ' or 'T'. The default value is ' N '. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, Iwork should be at least \(n *\) blocksize if side \(=\) 'L' and at least \(m *\) blocksize if side \(=\) 'R', where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(||E||_{2}=O(\varepsilon)|*| C| |_{2}\), where \(\varepsilon\) is the machine precision.

The approximate number of floating-point operations is
```

2n(ihi-ilo)2 if side = 'L';
2m(ihi-ilo)}\mp@subsup{}{}{2}\mathrm{ if side = 'R'.

```

The complex counterpart of this routine is unmhr.

\section*{?unghr}

Generates the complex unitary matrix \(Q\) determined
by ? gehrd.

\section*{Syntax}
```

call cunghr(n, ilo, ihi, a, lda, tau, work, lwork, info)
call zunghr(n, ilo, ihi, a, lda, tau, work, lwork, info)
call unghr(a, tau [,ilo] [,ihi] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine is intended to be used following a call to cgehrd/zgehrd, which reduces a complex matrix \(A\) to upper Hessenberg form \(H\) by a unitary similarity transformation: \(A=Q^{\star} H^{\star} Q^{H}\). ? gehrd represents the matrix \(Q\) as a product of ihi-iloelementary reflectors. Here ilo and ihi are values determined by cgebal/zgebal when balancing the matrix; if the matrix has not been balanced, ilo = 1 and \(i h i=n\).
Use the routine unghr to generate \(Q\) explicitly as a square matrix. The matrix \(Q\) has the structure:

where \(Q_{22}\) occupies rows and columns ilo to ihi.

\section*{Input Parameters}
n
ilo, ihi
a, tau, work

Ida
lwork
INTEGER. The order of the matrix \(Q(n \geq 0)\).
INTEGER. These must be the same parameters ilo and ihi, respectively, as supplied to ?gehrd. (If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\). If \(n=0\), then ilo \(=\) 1 and ihi \(=0\).)

COMPLEX for cunghr
DOUBLE COMPLEX for zunghr.
Arrays:
a(/da,*) contains details of the vectors which define the elementary reflectors, as returned by ?gehrd.

The second dimension of \(a\) must be at least max \((1, n)\).
tau(*) contains further details of the elementary reflectors, as returned by ?gehrd.

The dimension of tau must be at least max \((1, n-1)\).
work is a workspace array, its dimension max (\(1, ~ l\) work \()\).
INTEGER. The leading dimension of \(a\); at least max \((1, n)\).
INTEGER. The size of the work array;
Iwork \(\geq \max (1\), ihi-ilo).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

\section*{Output Parameters}
\(a\)
work(1)
info
Overwritten by the \(n\)-by-n unitary matrix \(Q\).
If info \(=0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine unghr interface are the following:
a
Holds the matrix \(A\) of size \((n, n)\).
Holds the vector of length (\(n-1\)).
```

ilo Default value for this argument is ilo = 1.
ihi Default value for this argument is ihi = n.

```

\section*{Application Notes}

For better performance, try using lwork \(=(\) ihi-ilo)*blocksize, where blocksize is a machinedependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(\left||E|_{2}=O(\varepsilon)\right.\), where \(\varepsilon\) is the machine precision.

The approximate number of real floating-point operations is (16/3)(ihi-ilo) \({ }^{3}\).
The real counterpart of this routine is orghr.

\section*{?unmhr \\ Multiplies an arbitrary complex matrix \(C\) by the complex unitary matrix \(Q\) determined by ?gehrd.}

\section*{Syntax}
```

call cunmhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork, info)
call zunmhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork, info)
call unmhr(a, tau, c [,ilo] [,ihi] [,side] [,trans] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine multiplies a matrix \(C\) by the unitary matrix \(Q\) that has been determined by a preceding call to cgehrd/zgehrd. (The routine ?gehrd reduces a real general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal similarity transformation, \(A=Q^{\star} H * Q^{H}\), and represents the matrix \(Q\) as a product of ihi-ilo elementary reflectors. Here ilo and ihi are values determined by cgebal/zgebal when balancing the matrix; if the matrix has not been balanced, ilo \(=1\) and \(i h i=n\).)

With ?unmhr, you can form one of the matrix products \(Q^{*} C, Q^{H *} C, C^{*} Q\), or \(C^{*} Q^{H}\), overwriting the result on \(C\) (which may be any complex rectangular matrix). A common application of this routine is to transform a matrix \(V\) of eigenvectors of \(H\) to the matrix \(Q V\) of eigenvectors of \(A\).

\section*{Input Parameters}
side
trans
m
\(n\)
ilo, ihi
a, tau, c, work

Ida

Idc
lwork

CHARACTER*1. Must be 'L' or 'R'.
If side \(=\) 'L', then the routine forms \(Q^{*} C\) or \(Q^{H *} C\).
If side \(=\) ' \(R\) ', then the routine forms \(C^{*} Q\) or \(C^{*} Q^{H}\).
CHARACTER*1. Must be 'N' or 'C'.
If \(\operatorname{trans}=\) ' \(N\) ', then \(Q\) is applied to \(C\).
If trans \(=\) 'T', then \(Q^{H}\) is applied to \(C\).
INTEGER. The number of rows in \(C(m \geq 0)\).
INTEGER. The number of columns in \(C(n \geq 0)\).
INTEGER. These must be the same parameters ilo and ihi, respectively, as supplied to ?gehrd.

If \(m>0\) and side \(=\) 'L', then \(1 \leq i l o \leq i h i \leq m\).
If \(m=0\) and side \(=\) 'L', then ilo = 1 and \(i h i=0\).
If \(n>0\) and side \(=\) 'R', then \(1 \leq i l o \leq i h i \leq n\).
If \(n=0\) and side \(=\) 'R', then ilo =1 and ihi \(=0\).
COMPLEX for cunmhr
DOUBLE COMPLEX for zunmhr.
Arrays:
\(a(/ d a, *)\) contains details of the vectors which define the elementary reflectors, as returned by ? gehrd.
The second dimension of \(a\) must be at least \(\max (1, m)\) if side \(=\) ' \(L\) ' and at least \(\max (1, n)\) if side \(=\) ' R '.
tau (*) contains further details of the elementary reflectors, as returned by ?gehrd.
The dimension of tau must be at least max (1, m-1)
if side \(=\) 'L' and at least max \((1, n-1)\) if side \(=\) ' \(R\) '.
\(c(I d c, *)\) contains the \(m\)-by-n matrix \(C\).
The second dimension of \(c\) must be at least \(\max (1, n)\).
work is a workspace array, its dimension max (1,1 work).
INTEGER. The leading dimension of \(a\); at least \(\max (1, m)\) if side \(=\) 'L' and at least max \((1, n)\) if side \(=\) ' \(R\) '.

INTEGER. The leading dimension of \(c\); at least \(\max (1, m)\).
INTEGER. The size of the work array.
If side = 'L', lwork \(\geq \max (1, n)\).
If side \(=\) 'R', lwork \(\geq \max (1, m)\).

If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

\section*{Output Parameters}

C
\(C\) is overwritten by \(Q^{*} C\), or \(Q^{H *} C\), or \(C^{*} Q^{H}\), or \(C^{*} Q\) as specified by side and trans.

If info \(=0\), on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine unmhr interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size (\(r, r\)) . \\
\hline & \(r=m\) if side = 'L'. \\
\hline & \(r=n\) if side \(=\) ' \(\mathrm{R}^{\prime}\). \\
\hline tau & Holds the vector of length (\(r-1\)). \\
\hline c & Holds the matrix \(C\) of size (\(m, n\)) . \\
\hline ilo & Default value for this argument is ilo \(=1\). \\
\hline ihi & Default value for this argument is ihi \(=n\). \\
\hline side & Must be 'L' or 'R'. The default value is 'L'. \\
\hline trans & Must be ' N ' or ' C '. The default value is ' N '. \\
\hline
\end{tabular}

\section*{Application Notes}

For better performance, Iwork should be at least \(n^{*}\) blocksize if side \(=\) 'L' and at least \(m^{*}\) blocksize if side \(=\) 'R', where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if Iwork is less than the minimal required value and is not equal to -1, then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The computed matrix \(Q\) differs from the exact result by a matrix \(E\) such that \(\left.\left||E|_{I_{2}}=O(\varepsilon) *\right||C|\right|_{2}\), where \(\varepsilon\) is the machine precision.
The approximate number of floating-point operations is
\(8 n(i h i-i l o)^{2}\) if side \(=\) 'L';
\(8 m(i h i-i l o)^{2}\) if side \(=\) 'R'. \(^{\text {R }}\)
The real counterpart of this routine is ormhr.
```

?gebal
Balances a general matrix to improve the accuracy of
computed eigenvalues and eigenvectors.
Syntax
call sgebal(job, n, a, lda, ilo, ihi, scale, info)
call dgebal(job, n, a, lda, ilo, ihi, scale, info)
call cgebal(job, n, a, lda, ilo, ihi, scale, info)
call zgebal(job, n, a, lda, ilo, ihi, scale, info)
call gebal(a [, scale] [,ilo] [,ihi] [,job] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine balances a matrix \(A\) by performing either or both of the following two similarity transformations:
(1) The routine first attempts to permute \(A\) to block upper triangular form:
\[
P A P^{T}=A^{\prime}=\left[\begin{array}{ccc}
A_{11}^{\prime} & A_{12}^{\prime} & A_{13}^{\prime} \\
0 & A_{22}^{\prime} & A_{23}^{\prime} \\
0 & 0 & A_{33}^{\prime}
\end{array}\right]
\]
where \(P\) is a permutation matrix, and \(A^{\prime}{ }_{11}\) and \(A^{\prime}{ }_{33}\) are upper triangular. The diagonal elements of \(A^{\prime}{ }_{11}\) and \(A^{\prime}{ }_{33}\) are eigenvalues of \(A\). The rest of the eigenvalues of \(A\) are the eigenvalues of the central diagonal block \(A^{\prime}{ }_{22}\), in rows and columns ilo to ihi. Subsequent operations to compute the eigenvalues of \(A\) (or its Schur factorization) need only be applied to these rows and columns; this can save a significant amount of work if ilo > 1 and ihi < n.

If no suitable permutation exists (as is often the case), the routine sets ilo \(=1\) and ihi \(=n\), and \(A_{22}^{\prime}\) is the whole of \(A\).
(2) The routine applies a diagonal similarity transformation to \(A^{\prime}\), to make the rows and columns of \(A^{\prime} 22\) as close in norm as possible:
\[
A^{\prime \prime}=D A^{\prime} D^{-1}=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & D_{22} & 0 \\
0 & 0 & I
\end{array}\right] \times\left[\begin{array}{ccc}
A_{11}^{\prime} & A_{12}^{\prime} & A_{13}^{\prime} \\
0 & A_{22}^{\prime} & A_{23}^{\prime} \\
0 & 0 & A_{33}^{\prime}
\end{array}\right] \times\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & D_{22}^{-1} & 0 \\
0 & 0 & I
\end{array}\right]
\]

This scaling can reduce the norm of the matrix (that is, \(\left|\left|A^{\prime} '_{22}\right|\right|<\| A^{\prime}{ }_{22}| |\)), and hence reduce the effect of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

\section*{Input Parameters}
job
n
a

Ida

\section*{Output Parameters}
a
ilo, ihi
scale

CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'.
If job = 'N', then \(A\) is neither permuted nor scaled (but ilo, ihi, and scale get their values).
If job \(=\) ' \(P^{\prime}\), then \(A\) is permuted but not scaled.
If job \(=\) ' \(S\) ', then \(A\) is scaled but not permuted.
If job \(=\) ' \(B\) ', then \(A\) is both scaled and permuted.
integer. The order of the matrix \(A(n \geq 0)\).
REAL for sgebal
DOUBLE PRECISION for dgebal
COMPLEX for cgebal
DOUBLE COMPLEX for zgebal.
Array a(Ida,*) contains the matrix \(A\).
The second dimension of \(a\) must be at least \(\max (1, n) . a\) is not referenced if job = 'N'.

INTEGER. The leading dimension of \(a\); at least \(\max (1, n)\).

Overwritten by the balanced matrix (\(a\) is not referenced if job \(={ }^{\prime} N^{\prime}\)).
INTEGER. The values ilo and ihi such that on exit \(a(i, j)\) is zero if \(i>j\) and
\(1 \leq j<i l o\) or ihi \(<j \leq n\).
If job \(=\) 'N' or 'S', then ilo \(=1\) and ihi \(=n\).
REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors

Array, size at least max \((1, n)\).
Contains details of the permutations and scaling factors.
More precisely, if \(p_{j}\) is the index of the row and column interchanged with row and column \(j\), and \(d_{j}\) is the scaling factor used to balance row and column \(j\), then
\(\operatorname{scale}(j)=p_{j}\) for \(j=1,2, \ldots\) ilo-1, ihi+1,..., \(n\);
```

scale(j) = djfor j = ilo, ilo + 1,..., ihi.

```

The order in which the interchanges are made is \(n\) to \(i h i+1\), then 1 to ilo-1.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gebal interface are the following:
```

a Holds the matrix A of size (n,n).
scale Holds the vector of length n.
ilo Default value for this argument is ilo = 1.
ihi Default value for this argument is ihi = n.
job Must be 'B','S','P', or 'N'. The default value is 'B'.

```

\section*{Application Notes}

The errors are negligible, compared with those in subsequent computations.
If the matrix \(A\) is balanced by this routine, then any eigenvectors computed subsequently are eigenvectors of the matrix \(A^{\prime \prime}\) and hence you must call gebak to transform them back to eigenvectors of \(A\).
If the Schur vectors of \(A\) are required, do not call this routine with job \(=\) ' \(S\) ' or ' \(B\) ', because then the balancing transformation is not orthogonal (not unitary for complex flavors).

If you call this routine with job \(=\) ' \(\mathrm{P}^{\prime}\), then any Schur vectors computed subsequently are Schur vectors of the matrix \(A^{\prime \prime}\), and you need to call gebak (with side \(=\) 'R') to transform them back to Schur vectors of \(A\).

The total number of floating-point operations is proportional to \(n^{2}\).

\section*{?gebak}

Transforms eigenvectors of a balanced matrix to those of the original nonsymmetric matrix.

Syntax
```

call sgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)
call dgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)
call cgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)
call zgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)
call gebak(v, scale [,ilo] [,ihi] [,job] [,side] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine is intended to be used after a matrix \(A\) has been balanced by a call to ? gebal, and eigenvectors of the balanced matrix \(A^{\prime \prime} 22\) have subsequently been computed. For a description of balancing, see gebal. The balanced matrix \(A^{\prime \prime}\) is obtained as \(A^{\prime}=D^{*} P^{\star} A * P^{T} \star \operatorname{inv}(D)\), where \(P\) is a permutation matrix and \(D\) is a diagonal scaling matrix. This routine transforms the eigenvectors as follows:
if \(x\) is a right eigenvector of \(A^{\prime \prime}\), then \(P^{T *} \operatorname{inv}(D) * x\) is a right eigenvector of \(A\); if \(y\) is a left eigenvector of \(A^{\prime \prime}\), then \(P^{T} D^{\star} y\) is a left eigenvector of \(A\).

\section*{Input Parameters}
```

job
side

```
n

\section*{Output Parameters}

CHARACTER*1. Must be 'N' or 'P' or 'S' or 'B'. The same parameter job as supplied to ? gebal.

CHARACTER*1. Must be 'L' or 'R'.
If side = 'L', then left eigenvectors are transformed.
If side = 'R', then right eigenvectors are transformed.
INTEGER. The number of rows of the matrix of eigenvectors \((n \geq 0)\).
INTEGER. The values ilo and ihi, as returned by ?gebal. (If \(n>0\), then 1 silosihisn;
if \(n=0\), then ilo \(=1\) and ihi \(=0\).)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors
Array, size at least max \((1, n)\).
Contains details of the permutations and/or the scaling factors used to balance the original general matrix, as returned by ?gebal.

INTEGER. The number of columns of the matrix of eigenvectors (\(m \geq 0\)).
REAL for sgebak
DOUBLE PRECISION for dgebak
COMPLEX for cgebak
DOUBLE COMPLEX for zgebak.
Arrays:
\(v(I d v, *)\) contains the matrix of left or right eigenvectors to be transformed.
The second dimension of \(v\) must be at least \(\max (1, m)\).
INTEGER. The leading dimension of \(v\); at least \(\max (1, n)\).

V
info

Overwritten by the transformed eigenvectors.
INTEGER.
If info \(=0\), the execution is successful.

If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine gebak interface are the following:
```

v Holds the matrix V of size ( }n,m\mathrm{ ).
scale Holds the vector of length n.
ilo Default value for this argument is ilo = 1.
ihi Default value for this argument is ihi = n.
job Must be 'B','S','P', or 'N'. The default value is 'B'.
side Must be 'L' or 'R'. The default value is 'L'.

```

\section*{Application Notes}

The errors in this routine are negligible.
The approximate number of floating-point operations is approximately proportional to \(m \star n\).
```

?hseqr
Computes all eigenvalues and (optionally) the Schur
factorization of a matrix reduced to Hessenberg form.
Syntax
call shseqr(job, compz, n, ilo, ihi, h, ldh, wr, wi, z, ldz, work, lwork, info)
call dhseqr(job, compz, n, ilo, ihi, h, ldh, wr, wi, z, ldz, work, lwork, info)
call chseqr(job, compz, n, ilo, ihi, h, ldh, w, z, ldz, work, lwork, info)
call zhseqr(job, compz, n, ilo, ihi, h, ldh, w, z, ldz, work, lwork, info)
call hseqr(h, wr, wi [,ilo] [,ihi] [,z] [,job] [,compz] [,info])
call hseqr(h, w [,ilo] [,ihi] [,z] [,job] [,compz] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally the Schur factorization, of an upper Hessenberg matrix \(H\) : \(H=Z^{\star} T^{\star} Z^{H}\), where \(T\) is an upper triangular (or, for real flavors, quasi-triangular) matrix (the Schur form of \(H\)), and \(Z\) is the unitary or orthogonal matrix whose columns are the Schur vectors \(z_{i}\).
You can also use this routine to compute the Schur factorization of a general matrix \(A\) which has been reduced to upper Hessenberg form \(H\) :
\(A=Q^{\star} H^{\star} Q^{H}\), where \(Q\) is unitary (orthogonal for real flavors);
\(A=(Q Z) * T^{*}(Q Z)^{H}\).

In this case, after reducing \(A\) to Hessenberg form by gehrd, call orghr to form \(Q\) explicitly and then pass \(Q\) to \(? \mathrm{hseqr}\) with \(\mathrm{compz}=\) ' V '.
You can also call gebal to balance the original matrix before reducing it to Hessenberg form by ?hseqr, so that the Hessenberg matrix \(H\) will have the structure:

where \(H_{11}\) and \(H_{33}\) are upper triangular.
If so, only the central diagonal block \(\mathrm{H}_{22}\) (in rows and columns ilo to ihi) needs to be further reduced to Schur form (the blocks \(H_{12}\) and \(H_{23}\) are also affected). Therefore the values of ilo and ihi can be supplied to ?hseqr directly. Also, after calling this routine you must call gebak to permute the Schur vectors of the balanced matrix to those of the original matrix.

If ? gebal has not been called, however, then ilo must be set to 1 and ihi to \(n\). Note that if the Schur factorization of \(A\) is required, ? gebal must not be called with job \(=\) 'S' or ' \(B\) ', because the balancing transformation is not unitary (for real flavors, it is not orthogonal).
?hseqr uses a multishift form of the upper Hessenberg \(Q R\) algorithm. The Schur vectors are normalized so that \(\left|\left|z_{i}\right|\right|_{2}=1\), but are determined only to within a complex factor of absolute value 1 (for the real flavors, to within a factor \(\pm 1\)).

\section*{Input Parameters}
job

CHARACTER*1. Must be 'E' or 'S'.
If job = 'E', then eigenvalues only are required.
If job \(=\) ' \(S\) ', then the Schur form \(T\) is required.
CHARACTER*1. Must be 'N' or 'I' or 'V'.
If compz = ' \(N\) ', then no Schur vectors are computed (and the array \(z\) is not referenced).

If compz = ' I ', then the Schur vectors of \(H\) are computed (and the array \(z\) is initialized by the routine).
\(n\)
ilo, ihi
h, z, work
ldh
\(1 d z\)
lwork

If compz \(=\) ' \(V\) ', then the Schur vectors of \(A\) are computed (and the array \(z\) must contain the matrix \(Q\) on entry).

INTEGER. The order of the matrix \(H(n \geq 0)\).
INTEGER. If \(A\) has been balanced by ?gebal, then ilo and ihi must contain the values returned by ?gebal. Otherwise, ilo must be set to 1 and ihi to \(n\).

REAL for shseqr
DOUBLE PRECISION for dhseqr
COMPLEX for chseqr
DOUBLE COMPLEX for zhseqr.
Arrays:
\(h(I d h, *)\)) The \(n\)-by-n upper Hessenberg matrix \(H\).
The second dimension of \(h\) must be at least \(\max (1, n)\).
\(z(I d z, *)\)
If compz \(=\) ' \(V\) ', then \(z\) must contain the matrix \(Q\) from the reduction to Hessenberg form.

If compz = 'I', then \(z\) need not be set.
If compz = 'N', then \(z\) is not referenced.
The second dimension of \(z\) must be
at least \(\max (1, n)\) if compz \(=\) 'V' or 'I';
at least 1 if compz = ' N '.
work(/work) is a workspace array.
The dimension of work must be at least max \((1, n)\).
INTEGER. The leading dimension of \(h\); at least max \((1, n)\).
INTEGER. The leading dimension of \(z\);
If compz = 'N', then \(l d z \geq 1\).
If \(c o m p z=' V\) ' or 'I', then \(l d z \geq \max (1, n)\).
INTEGER. The dimension of the array work.
lwork \(\geq \max (1, n)\) is sufficient and delivers very good and sometimes optimal performance. However, Iwork as large as \(11 *_{n}\) may be required for optimal performance. A workspace query is recommended to determine the optimal workspace size.

If 1 work \(=-1\), then a workspace query is assumed; the routine only estimates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}

Array, size at least max \((1, n)\). Contains the computed eigenvalues, unless info>0. The eigenvalues are stored in the same order as on the diagonal of the Schur form \(T\) (if computed).

REAL for shseqr
DOUBLE PRECISION for dhseqr
Arrays, size at least max \((1, n)\) each.
Contain the real and imaginary parts, respectively, of the computed eigenvalues, unless info >0. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first. The eigenvalues are stored in the same order as on the diagonal of the Schur form \(T\) (if computed).

If info \(=0\) and job \(=\) 'S', h contains the upper quasi-triangular matrix \(T\) from the Schur decomposition (the Schur form).

If info \(=0\) and job \(=\) 'E', the contents of \(h\) are unspecified on exit. (The output value of \(h\) when info \(>0\) is given under the description of info below.)

If compz \(=\) ' \(V\) ' and info \(=0\), then \(z\) contains \(Q^{\star} Z\).
If compz = 'I' and info \(=0\), then \(z\) contains the unitary or orthogonal matrix \(Z\) of the Schur vectors of \(H\).

If compz \(=\) ' \(N\) ', then \(z\) is not referenced.
On exit, if info \(=0\), then work(1) returns the optimal /work.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), ?hseqr failed to compute all of the eigenvalues. Elements \(1,2, \ldots\), ilo-1 and \(i+1, i+2, \ldots, n\) of the eigenvalue arrays (\(w r\) and wi for real flavors and \(w\) for complex flavors) contain the real and imaginary parts of those eigenvalues that have been successfully found.

If info > 0 , and job = 'E', then on exit, the remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix rows and columns ilo through info of the final output value of \(H\).

If info \(>0\), and job \(=\) 'S', then on exit (initial value of \(H\)) \({ }^{*} U=U^{*}\) (final value of \(H\)), where \(U\) is a unitary matrix. The final value of \(H\) is upper Hessenberg and triangular in rows and columns info+1 through ihi.

If info \(>0\), and \(c o m p z=' V '\), then on exit (final value of \(Z\)) \(=\) (initial value of \(Z\)) \(* U\), where \(U\) is the unitary matrix (regardless of the value of job).
If info \(>0\), and compz \(=\) 'I', then on exit (final value of \(Z\)) \(=U\), where \(U\) is the unitary matrix (regardless of the value of \(j o b\)).
If info \(>0\), and compz \(=\) ' \(N\) ', then \(Z\) is not accessed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hseqr interface are the following:
\begin{tabular}{|c|c|}
\hline h & Holds the matrix \(H\) of size (\(n, n\)). \\
\hline wr & Holds the vector of length \(n\). Used in real flavors only. \\
\hline wi & Holds the vector of length \(n\). Used in real flavors only. \\
\hline w & Holds the vector of length \(n\). Used in complex flavors only. \\
\hline z & Holds the matrix \(Z\) of size (\(n, n\)). \\
\hline job & Must be 'E' or 'S'. The default value is 'E'. \\
\hline compz & If omitted, this argument is restored based on the presence of argument \(z\) as follows: compz = 'I', if \(z\) is present, compz = 'N', if \(z\) is omitted. \\
\hline
\end{tabular}

If present, compz must be equal to 'I' or 'V' and the argument \(z\) must also be present. Note that there will be an error condition if compz is present and \(z\) omitted.

\section*{Application Notes}

The computed Schur factorization is the exact factorization of a nearby matrix \(H+E\), where \(\left||E|_{2}<O(\varepsilon)\right.\) \(||H||_{2} / s_{i}\), and \(\varepsilon\) is the machine precision.

If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then \(\left|\lambda_{i}-\mu_{i}\right| \leq C(n) * \varepsilon^{\star}| | H| |_{2} / s_{i}\), where \(c(n)\) is a modestly increasing function of \(n\), and \(s_{i}\) is the reciprocal condition number of \(\lambda_{i}\). The condition numbers \(s_{i}\) may be computed by calling trsna.
The total number of floating-point operations depends on how rapidly the algorithm converges; typical numbers are as follows.

If only eigenvalues are computed: \(\quad 7 n^{3}\) for real flavors
\(25 n^{3}\) for complex flavors.
If the Schur form is computed: \(\quad 10 n^{3}\) for real flavors
\(35 n^{3}\) for complex flavors.
If the full Schur factorization is computed:
\(20 n^{3}\) for real flavors
\(70 n^{3}\) for complex flavors.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork \(=-1\).
If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?hsein}

Computes selected eigenvectors of an upper
Hessenberg matrix that correspond to specified eigenvalues.

\section*{Syntax}
```

call shsein(side, eigsrc, initv, select, n, h, ldh, wr, wi, vl, ldvl, vr, ldvr, mm, m,
work, ifaill, ifailr, info)
call dhsein(side, eigsrc, initv, select, n, h, ldh, wr, wi, vl, ldvl, vr, ldvr, mm, m,
work, ifaill, ifailr, info)
call chsein(side, eigsrc, initv, select, n, h, ldh, w, vl, ldvl, vr, ldvr, mm, m, work,
rwork, ifaill, ifailr, info)
call zhsein(side, eigsrc, initv, select, n, h, ldh, w, vl, ldvl, vr, ldvr, mm, m, work,
rwork, ifaill, ifailr, info)
call hsein(h, wr, wi, select [, vl] [,vr] [,ifaill] [,ifailr] [,initv] [,eigsrc] [,m]
[,info])
call hsein(h, w, select [,vl] [,vr] [,ifaill] [,ifailr] [,initv] [,eigsrc] [,m] [,info])

```
Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes left and/or right eigenvectors of an upper Hessenberg matrix \(H\), corresponding to selected eigenvalues.
The right eigenvector \(x\) and the left eigenvector \(y\), corresponding to an eigenvalue \(\lambda\), are defined by: \(H^{\star} x=\) \(\lambda^{\star} x\) and \(y^{H \star} H=\lambda \star y^{H}\) (or \(H^{H \star} y=\lambda^{\star}{ }^{\star} y\)). Here \(\lambda^{*}\) denotes the conjugate of \(\lambda\).

The eigenvectors are computed by inverse iteration. They are scaled so that, for a real eigenvector \(x, \max \mid\) \(x_{i} \mid=1\), and for a complex eigenvector, max \(\left(\left|\operatorname{Re} x_{i}\right|+\left|\operatorname{Im} x_{i}\right|\right)=1\).
If \(H\) has been formed by reduction of a general matrix \(A\) to upper Hessenberg form, then eigenvectors of \(H\) may be transformed to eigenvectors of \(A\) by ormhr or unmhr.

\section*{Input Parameters}
```

side
eigsrc
CHARACTER*1. Must be 'R' or 'L' or 'B'.
If side = 'R', then only right eigenvectors are computed.
If side = 'L', then only left eigenvectors are computed.
If side = 'B', then all eigenvectors are computed.
CHARACTER*1. Must be 'Q' or 'N'.

```

If eigsrc = 'Q', then the eigenvalues of \(H\) were found using hseqr; thus if \(H\) has any zero sub-diagonal elements (and so is block triangular), then the \(j\)-th eigenvalue can be assumed to be an eigenvalue of the block containing
initv
select
\(n\)
\(h, v l, v r, w o r k\)
the \(j\)-th row/column. This property allows the routine to perform inverse iteration on just one diagonal block. If eigsrc \(=\) ' \(N\) ', then no such assumption is made and the routine performs inverse iteration using the whole matrix.

CHARACTER*1. Must be 'N' or 'U'.
If initv = 'N', then no initial estimates for the selected eigenvectors are supplied.

If initv = 'U', then initial estimates for the selected eigenvectors are supplied in vl and/or vr.

LOGICAL.
Array, size at least max \((1, n)\). Specifies which eigenvectors are to be computed.

For real flavors:
To obtain the real eigenvector corresponding to the real eigenvalue wr \((j)\), set select(\(j\)) to . TRUE.

To select the complex eigenvector corresponding to the complex eigenvalue (\(w r(j)\), wi \((j)\)) with complex conjugate \((w r(j+1), w i(j+1))\), set select \((j)\) and/or select \((j+1)\) to .TRUE.; the eigenvector corresponding to the first eigenvalue in the pair is computed.
For complex flavors:
To select the eigenvector corresponding to the eigenvalue \(w(j)\), set \(\operatorname{select}(j)\) to .TRUE.

INTEGER. The order of the matrix \(H(n \geq 0)\).
REAL for shsein
DOUBLE PRECISION for dhsein
COMPLEX for chsein
DOUBLE COMPLEX for zhsein.

\section*{Arrays:}
\(h(I d h, *)\) The \(n\)-by- \(n\) upper Hessenberg matrix \(H\). If an NAN value is detected in \(h\), the routine returns with info \(=-6\).

The second dimension of \(h\) must be at least max \((1, n)\).
vl(Idvl,*)
If initv = 'V' and side \(=\) 'L' or 'B', then vl must contain starting vectors for inverse iteration for the left eigenvectors. Each starting vector must be stored in the same column or columns as will be used to store the corresponding eigenvector.
If initv = 'N', then \(v /\) need not be set.
The second dimension of \(v /\) must be at least \(\max (1, m m)\) if side \(=\) 'L' or 'B' and at least 1 if side = 'R'.

The array \(v /\) is not referenced if side \(=\) ' \(R\) '.
\(v r(I d v r, *)\)

If initv \(=\) 'V' and side \(=\) 'R' or 'B', then vr must contain starting vectors for inverse iteration for the right eigenvectors. Each starting vector must be stored in the same column or columns as will be used to store the corresponding eigenvector.

If initv = 'N', then vr need not be set.
The second dimension of \(v r\) must be at least \(\max (1, m m)\) if side \(=\) ' \(R\) ' or 'B' and at least 1 if side = 'L'.

The array \(v r\) is not referenced if side \(=\) 'L'.
work(*) is a workspace array.
size at least max \(\left(1, n^{*}(n+2)\right)\) for real flavors and at least max \(\left(1, n^{*} n\right)\) for complex flavors.

INTEGER. The leading dimension of \(h\); at least \(\max (1, n)\).
COMPLEX for chsein
DOUBLE COMPLEX for zhsein.
Array, size at least max \((1, n)\).
Contains the eigenvalues of the matrix \(H\).
If eigsrc = ' \(Q\) ', the array must be exactly as returned by ?hseqr.
REAL for shsein
DOUBLE PRECISION for dhsein
Arrays, size at least max \((1, n)\) each.
Contain the real and imaginary parts, respectively, of the eigenvalues of the matrix \(H\). Complex conjugate pairs of values must be stored in consecutive elements of the arrays. If eigsrc = 'Q', the arrays must be exactly as returned by ?hseqr.

INTEGER. The leading dimension of \(v /\).
If side \(=\) 'L' or 'B', \(I d v I \geq \max (1, n)\).
If side = 'R', ldvl \(\geq 1\).
INTEGER. The leading dimension of vr.
If side = 'R' or 'B', ldvr \(\geq \max (1, n)\).
If side = 'L', Idvr \(\geq 1\).
INTEGER. The number of columns in \(v /\) and/or \(v r\).
Must be at least \(m\), the actual number of columns required (see Output Parameters below).

For real flavors, \(m\) is obtained by counting 1 for each selected real eigenvector and 2 for each selected complex eigenvector (see select).
For complex flavors, \(m\) is the number of selected eigenvectors (see select).

\section*{Constraint:}
\(0 \leq m m \leq n\).

REAL for chsein
DOUBLE PRECISION for zhsein.
Array, size at least max \((1, n)\).

\section*{Output Parameters}
```

select
W
wr
vl, vr

```
m
ifaill, ifailr
info

Overwritten for real flavors only.
If a complex eigenvector was selected as specified above, then select \((j)\) is set to .TRUE. and \(\operatorname{select}(j+1)\) to .FALSE .

The real parts of some elements of \(w\) may be modified, as close eigenvalues are perturbed slightly in searching for independent eigenvectors.

Some elements of wr may be modified, as close eigenvalues are perturbed slightly in searching for independent eigenvectors.

If side = 'L' or 'B', v/ contains the computed left eigenvectors (as specified by select).

If side = 'R' or 'B', vr contains the computed right eigenvectors (as specified by select).

The eigenvectors treated column-wise form a rectangular n-by-mm matrix.
For real flavors: a real eigenvector corresponding to a real eigenvalue occupies one column of the matrix; a complex eigenvector corresponding to a complex eigenvalue occupies two columns: the first column holds the real part of the eigenvector and the second column holds the imaginary part of the eigenvector. The matrix is stored in a one-dimensional array as described by matrix_layout (using either column major or row major layout).

INTEGER. For real flavors: the number of columns of \(v /\) and/or vr required to store the selected eigenvectors.
For complex flavors: the number of selected eigenvectors.
INTEGER.
Arrays, size at least \(\max (1, \mathrm{~mm})\) each.
ifaill(i) \(=0\) if the \(i\) th column of \(v /\) converged;
ifaill(i) \(=j>0\) if the eigenvector stored in the \(i\)-th column of \(v /\) (corresponding to the \(j\) th eigenvalue) failed to converge.
ifailr(i) \(=0\) if the ith column of \(v r\) converged;
ifailr(i) \(=j>0\) if the eigenvector stored in the \(i\)-th column of \(v r\) (corresponding to the \(j\) th eigenvalue) failed to converge.
For real flavors: if the \(i\) th and \((i+1)\) th columns of \(v /\) contain a selected complex eigenvector, then ifaill(i) and ifaill(i+1) are set to the same value. A similar rule holds for vr and ifailr.

The array ifaill is not referenced if side = 'R'. The array ifailr is not referenced if side \(=\) 'L'.

INTEGER.

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0 , then \(i\) eigenvectors (as indicated by the parameters ifaill and/or ifailr above) failed to converge. The corresponding columns of vl and/or vr contain no useful information.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hsein interface are the following:
\begin{tabular}{|c|c|}
\hline h & Holds the matrix \(H\) of size (\(n, n\)). \\
\hline wr & Holds the vector of length \(n\). Used in real flavors only. \\
\hline wi & Holds the vector of length \(n\). Used in real flavors only. \\
\hline w & Holds the vector of length \(n\). Used in complex flavors only. \\
\hline select & Holds the vector of length \(n\). \\
\hline vl & Holds the matrix VL of size (\(n, m m\)). \\
\hline vr & Holds the matrix VR of size (\(n, m m\)). \\
\hline ifaill & Holds the vector of length (mm). Note that there will be an error condition if ifaill is present and \(v /\) is omitted. \\
\hline ifailr & Holds the vector of length (mm). Note that there will be an error condition if ifailr is present and \(v r\) is omitted. \\
\hline initv & Must be 'N' or 'U'. The default value is 'N'. \\
\hline eigsrc & Must be ' N ' or ' Q '. The default value is ' N '. \\
\hline \multirow[t]{5}{*}{side} & Restored based on the presence of arguments v/ and vr as follows: \\
\hline & side \(=\) ' \(B\) ', if both \(v /\) and \(v r\) are present, \\
\hline & side \(=\) 'L', if \(v /\) is present and \(v r\) omitted, \\
\hline & side = 'R', if \(v /\) is omitted and \(v r\) present, \\
\hline & Note that there will be an error condition if both v/ and vr are omitted. \\
\hline
\end{tabular}

\section*{Application Notes}

Each computed right eigenvector \(x i\) is the exact eigenvector of a nearby matrix \(A+E_{i}\), such that \(\left|\left|E_{i}\right|\right|<\) \(O(\varepsilon)||A||\). Hence the residual is small:
\(\left|\left|A x_{i}-\lambda_{i} x_{i}\right|\right|=O(\varepsilon)| | A| |\).
However, eigenvectors corresponding to close or coincident eigenvalues may not accurately span the relevant subspaces.

Similar remarks apply to computed left eigenvectors.
```

?trevc
Computes selected eigenvectors of an upper (quasi-)
triangular matrix computed by ?hseqr.

```

\section*{Syntax}
```

call strevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, info)

```
call strevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, info)
call dtrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, info)
call dtrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, info)
call ctrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, rwork,
call ctrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, rwork,
info)
info)
call ztrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, rwork,
call ztrevc(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, rwork,
info)
info)
call trevc(t [, howmny] [,select] [,vl] [,vr] [,m] [,info])
```

call trevc(t [, howmny] [,select] [,vl] [,vr] [,m] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes some or all of the right and/or left eigenvectors of an upper triangular matrix \(T\) (or, for real flavors, an upper quasi-triangular matrix \(T\)). Matrices of this type are produced by the Schur factorization of a general matrix: \(A=Q^{\star} T^{\star} Q^{H}\), as computed by hseqr.

The right eigenvector \(x\) and the left eigenvector \(y\) of \(T\) corresponding to an eigenvalue \(w\), are defined by: \(T^{\star} X=W^{\star} X, y^{H \star} T=W^{\star} y^{H}\), where \(y^{H}\) denotes the conjugate transpose of \(y\).

The eigenvalues are not input to this routine, but are read directly from the diagonal blocks of \(T\).
This routine returns the matrices \(X\) and/or \(Y\) of right and left eigenvectors of \(T\), or the products \(Q^{*} X\) and/or \(Q^{*} Y\), where \(Q\) is an input matrix.

If \(Q\) is the orthogonal/unitary factor that reduces a matrix \(A\) to Schur form \(T\), then \(Q^{*} X\) and \(Q^{*} Y\) are the matrices of right and left eigenvectors of \(A\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{side} & CHARACTER*1. Must be 'R' or 'L' or 'B'. \\
\hline & If side = 'R', then only right eigenvectors are computed. \\
\hline & If side = 'L', then only left eigenvectors are computed. \\
\hline & If side = 'B', then all eigenvectors are computed. \\
\hline \multirow[t]{4}{*}{howmny} & CHARACTER*1. Must be 'A' or 'B' or 'S'. \\
\hline & If howmny = 'A', then all eigenvectors (as specified by side) are computed. \\
\hline & If howmny = 'B', then all eigenvectors (as specified by side) are computed and backtransformed by the matrices supplied in \(v /\) and \(v r\). \\
\hline & If howmny = 'S', then selected eigenvectors (as specified by side and select) are computed. \\
\hline \multirow[t]{2}{*}{select} & LOGICAL. \\
\hline & Array, size at least max \((1, n)\). \\
\hline
\end{tabular}

If howmny \(=\) 'S', select specifies which eigenvectors are to be computed.
If howmny = 'A' or 'B', select is not referenced.
For real flavors:
If omega(\(j\)) is a real eigenvalue, the corresponding real eigenvector is computed if select \((j)\) is .TRUE..

If omega \((j)\) and omega \((j+1)\) are the real and imaginary parts of a complex eigenvalue, the corresponding complex eigenvector is computed if either \(\operatorname{select}(j)\) or \(\operatorname{select}(j+1)\) is .TRUE., and on exit select \((j)\) is set to .TRUE. and \(\operatorname{select}(j+1)\) is set to .FALSE..
For complex flavors:
The eigenvector corresponding to the \(j\)-th eigenvalue is computed if select \((j)\) is . TRUE..

INTEGER. The order of the matrix \(T(n \geq 0)\).
REAL for strevc
DOUBLE PRECISION for dtrevc
COMPLEX for ctrevc
DOUBLE COMPLEX for ztrevc.

\section*{Arrays:}
\(t(/ d t, *)\) contains the \(n\)-by- \(n\) matrix \(T\) in Schur canonical form. For complex flavors ctrevc and ztrevc, contains the upper triangular matrix \(T\).

The second dimension of \(t\) must be at least max \((1, n)\).
vl(Idv/,*)
If howmny \(=\) ' B ' and side \(=\) 'L' or ' B ', then \(v /\) must contain an \(n\)-by-n matrix \(Q\) (usually the matrix of Schur vectors returned by ?hseqr).

If howmny = 'A' or 'S', then vl need not be set.
The second dimension of \(v /\) must be at least \(\max (1, m m)\) if side \(=\) 'L' or 'B' and at least 1 if side = 'R'.

The array \(v /\) is not referenced if side \(=\) ' \(R\) '.
```

vr(/dvr,*)

```

If howmny \(=\) ' B ' and side \(=\) ' R ' or ' B ', then \(v r\) must contain an \(n\)-by-n matrix \(Q\) (usually the matrix of Schur vectors returned by ?hseqr). .
If howmny = 'A' or 'S', then vr need not be set.
The second dimension of \(v r\) must be at least \(\max (1, m m)\) if side \(=\) ' \(\mathrm{R}^{\prime}\) or 'B' and at least 1 if side = 'L'.

The array \(v r\) is not referenced if side \(=\) 'L'.
work(*) is a workspace array.
size at least max \(\left(1,3^{*} n\right)\) for real flavors and at least max \((1,2 * n)\) for complex flavors.

INTEGER. The leading dimension of \(t\); at least \(\max (1, n)\).

IdvI

Idvr
mm
rwork

\section*{Output Parameters}
```

select
select

```
\(t\)
vl, vr
m
\(t\)
vl, vr

INTEGER. The leading dimension of \(\mathrm{v} /\).
If side \(=\) 'L' or 'B', ldvl \(\geq n\).
If side = 'R', \(I d v l \geq 1\).
INTEGER. The leading dimension of \(v r\).
If side \(=\) ' R ' or 'B', Idvr \(\geq n\).
If side = 'L', Idvr \(\geq 1\).
INTEGER. The number of columns in the arrays vl and/or vr. Must be at least \(m\) (the precise number of columns required).

If howmny = 'A' or 'B', mm \(=n\).
If howmny = 'S': for real flavors, \(m m\) is obtained by counting 1 for each selected real eigenvector and 2 for each selected complex eigenvector;
for complex flavors, \(m m\) is the number of selected eigenvectors (see select).
Constraint: \(0 \leq m m \leq n\).
REAL for ctrevc
DOUBLE PRECISION for ztrevc.
Workspace array, size at least max \((1, n)\).

If a complex eigenvector of a real matrix was selected as specified above, then select \((j)\) is set to .TRUE. and \(\operatorname{select}(j+1)\) to .FALSE.

COMPLEX for ctrevc
DOUBLE COMPLEX for ztrevc.
ctrevc/ztrevc modify the \(t(I d t, *)\) array, which is restored on exit.
If side \(=\) 'L' or 'B', vl contains the computed left eigenvectors (as specified by howmny and select).
If side \(=\) ' R ' or ' B ', vr contains the computed right eigenvectors (as specified by howmny and select).
The eigenvectors treated column-wise form a rectangular \(n\)-by-mm matrix.
For real flavors: a real eigenvector corresponding to a real eigenvalue occupies one column of the matrix; a complex eigenvector corresponding to a complex eigenvalue occupies two columns: the first column holds the real part of the eigenvector and the second column holds the imaginary part of the eigenvector. The matrix is stored in a one-dimensional array as described by matrix_layout (using either column major or row major layout).

\section*{INTEGER.}

For complex flavors: the number of selected eigenvectors.
If howmny = 'A' or ' B ', \(m\) is set to \(n\).

For real flavors: the number of columns of \(v /\) and/or \(v r\) actually used to store the selected eigenvectors.

If howmny \(=\) ' \(A\) ' or ' \(B\) ', \(m\) is set to \(n\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine trevc interface are the following:
```

Holds the matrix T of size ( }n,n)\mathrm{ .
select Holds the vector of length n.
vl Holds the matrix VL of size ( }n,mm\mathrm{ ).
vr Holds the matrix VR of size ( }n,mm\mathrm{ ).
side If omitted, this argument is restored based on the presence of arguments v/ and
vr as follows:
side = 'B', if both vl and vr are present,
side = 'L', if vr is omitted,
side = 'R', if v/ is omitted.

```

Note that there will be an error condition if both \(v /\) and \(v r\) are omitted.
If omitted, this argument is restored based on the presence of argument select as follows:
howmny \(=\) ' \(V\) ', if \(q\) is present,
howmny = 'N', if \(q\) is omitted.
If present, vect \(=\) ' \(V\) ' or ' U ' and the argument \(q\) must also be present.
Note that there will be an error condition if both select and howmny are present.

\section*{Application Notes}

If \(x_{i}\) is an exact right eigenvector and \(y_{i}\) is the corresponding computed eigenvector, then the angle \(\theta\) (\(y_{i}\), \(x_{i}\)) between them is bounded as follows: \(\theta\left(y_{i}, x_{i}\right) \leq\left(c(n) \varepsilon| | T| |_{2}\right) / \operatorname{sep}_{i}\) where sep is the reciprocal condition number of \(x_{i}\). The condition number sep may be computed by calling ?trsna.
?trevc3
Computes selected eigenvectors of an upper (quasi-)
triangular matrix computed by ?hseqr using Level 3
BLAS
Syntax
```

call strevc3(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, lwork,
info)

```
```

call dtrevc3(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, lwork,
info)
call ctrevc3(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, lwork,
rwork, lrwork, info)
call ztrevc3(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, lwork,
rwork, lrwork, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

This routine computes some or all of the right and left eigenvectors of an upper triangular matrix \(T\) (or, for real flavors, an upper quasi-triangular matrix \(T\)) using Level 3 BLAS. Matrices of this type are produced by the Schur factorization of a general matrix: \(A=Q * T * Q H\), as computed by hseqr.

The right eigenvector \(x\) and the left eigenvector \(y\) of \(T\) corresponding to an eigenvalue \(w\) are defined by the following:
```

T*x = w*x, y }\mp@subsup{}{}{H}*T=\mp@subsup{w}{}{*}\mp@subsup{y}{}{H

```
where \(y^{H}\) denotes the conjugate transpose of \(y\).
The eigenvalues are not passed to this routine but are read directly from the diagonal blocks of \(T\).
This routine returns one or both of the matrices \(X\) and \(Y\) of the right and left eigenvectors of \(T\), or one or both of the products \(Q^{*} X\) and \(Q^{*} Y\), where \(Q\) is an input matrix.

If \(Q\) is the orthogonal/unitary factor that reduces a matrix \(A\) to Schur form \(T\), then \(Q * X\) and \(Q * Y\) are the matrices of the right and left eigenvectors of \(A\).

\section*{Input Parameters}
```

side

```
howmny
select

CHARACTER*1
Must be 'R', 'L', or 'B'.
- If side \(=\) ' R ', only right eigenvectors are computed.
- If side \(=\) 'L', only left eigenvectors are computed.
- If side \(=\) 'B', all eigenvectors are computed.

CHARACTER*1
Must be 'A', 'B', or 'S'.
- If howmny \(=\) ' \(A\) ', all eigenvectors (as specified by side) are computed.
- If howmny = ' B ', all eigenvectors (as specified by side) are computed and back-transformed by the matrices supplied in vl and vr.
- If howmny = 'S', selected eigenvectors (as specified by side and select) are computed.

Array with a size of at least max (1, n)
If howmny \(=\) 'S', select specifies which eigenvectors are to be computed. If howmny \(=\) ' A ' or howmny \(=\) ' B ', select is not referenced.
For real flavors:
- If omega (\(j\)) is a real eigenvalue and select(\(j\)) is .TRUE., the corresponding real eigenvector is computed.
- If omega (\(j\)) and omega (\(j+1\)) are the real and imaginary parts of a complex eigenvalue and either select (\(j\)) or select (\(j+1\)) is .TRUE., the corresponding complex eigenvector is computed, and on exit select (\(j\)) is set to .TRUE. and select (\(j+1\)) is set to .FALSE..

\section*{For complex flavors:}
- If select (\(j\)) is .TRUE., the eigenvector corresponding to the \(j^{\text {th }}\) eigenvalue is computed.
```

INTEGER

```

The order of the matrix \(T \quad(n \geq 0)\).
t, vl, vr, work
lwork

REAL for strevc3
- DOUBLE PRECISION for dtrevc3
- COMPLEX for ctrevc3
- DOUBLE COMPLEX for ztrevc3

Arrays:
- t(ldt,*) contains the \(n\)-by-n matrix \(T\) in Schur canonical form. For complex flavors ctrevc3 and ztrevc3, the array contains the upper triangular matrix \(T\).
The second dimension of \(t\) must be at least max \((1, n)\).
- vl(ldvl,*)

If howmny \(=\) ' B ' and side \(=\) 'L' or ' B ', then vl must contain an \(n\)-by-n matrix \(Q\) (usually the matrix of Schur vectors returned by ?hseqr).

If howmny = 'A' or 'S', vl need not be set.
The second dimension of \(v l\) must be at least max (\(1, \mathrm{~mm}\)) if side \(=\) 'L' or 'B', and at least 1 if side = 'R'.

The array \(v l\) is not referenced if side \(=\) ' \(R\) '.
- vr(ldvr,*)

If howmny = 'B' and side = 'R' or 'B', vr must contain an n-by\(n\) matrix \(Q\) (usually the matrix of Schur vectors returned by ?hseqr).

If howmny = 'A' or 'S', vr need not be set.
The second dimension of vr must be at least max (\(1, \mathrm{~mm}\)) if side \(=\) 'R' or 'B', and at least 1 if side = 'L'.

The array \(v r\) is not referenced if side = 'L'.
- work (*) is a workspace array, and its dimension is max (1, lwork).

INTEGER
The size of the work array. Must be at least max (1, \(3 *_{n}\)) for real flavors, and at least max \(\left(1,2 \star_{n}\right)\) for complex flavors.

If 1 work \(=-1\), a workspace query is assumed; the routine calculates only the optimal size of the work array and returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. For details, see "Application Notes" below.

INTEGER
The leading dimension of \(t\). It is at least max \((1, n)\).
INTEGER
The leading dimension of \(v l\).
- If side \(=\) 'L' or 'B', ldvl \(\geq\) n.
- If side = 'R', ldvl \(\geq 1\).

INTEGER
The leading dimension of vr.
- If side \(=\) 'R' or 'B', ldvr \(\geq n\).
- If side = 'L', ldvr \(\geq 1\).

\section*{INTEGER}

The number of columns in one or both of the arrays vi and vr. Must be at least \(m\) (the precise number of columns required).
- If howmny = 'A' or 'B', mm = n .
- If howmny = 'S': for real flavors, mm is obtained by counting 1 for each selected real eigenvector and 2 for each selected complex eigenvector; for complex flavors, mm is the number of selected eigenvectors (see select).

Constraint: \(0 \leq m m \leq n\).
- REAL for ctrevc3
- DOUBLE PRECISION for ztrevc3

The workspace array is used in complex flavors only. Its dimensionis max (1, lrwork).

INTEGER
The size of the rwork array. It must be at least max \((1, \mathrm{n})\).
If lrwork \(=-1\), a workspace query is assumed; the routine calculates only the optimal size of the work array and returns this value as the first entry of the rwork array, and no error message related to lrwork is issued by xerbla. For details, see "Application Notes" below.

\section*{Output Parameters}
```

select

```
t
If a complex eigenvector of a real matrix was selected as specified
 to .FALSE..

COMPLEX for ctrevc3
DOUBLE COMPLEX for ztrevc3
ctrevc3 or ztrevc3 modifies the \(t(l d t, *)\) array, which is restored on exit.

If side = 'L' or 'B', vl contains the computed left eigenvectors (as specified by howmny and select).
If side = 'R' or 'B', vr contains the computed right eigenvectors (as specified by howmny and select).
Treated column-wise, the eigenvectors form a rectangular \(n\)-by-mm matrix.

For real flavors A real eigenvector corresponding to a real eigenvalue occupies one column of the matrix; a complex eigenvector corresponding to a complex eigenvalue occupies two columns. The first column holds the real part of the eigenvector, and the second column holds the imaginary part of the eigenvector. The matrix is stored in a one-dimensional array as described by matrix_layout (using either column major or row major layout).
m
INTEGER
For complex flavors The number of selected eigenvectors. If howmy \(=\) ' A ' or ' B ', \(m\) is set to \(n\).

For real flavors The number of columns of one or both of \(v l\) and \(v r\) actually used to store the selected eigenvectors. If howmny = 'A' or ' \(B\) ', \(m\) is set to \(n\).

On exit, if info \(=0\), work (1) returns the required optimal size of Iwork.

On exit, if info \(=0\), then rwork (1) returns the required optimal size of Irwork.

INTEGER
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i^{\text {th }}\) parameter contained an illegal value.

\section*{Application Notes}

If \(x i\) is an exact right eigenvector and \(y i\) is the corresponding computed eigenvector, the angle \(\theta\) (\(y i\), \(x i\)) between them is bounded as follows:
```

0(yi,xi)\leq(c(n)\varepsilon||T|| )/sepi

```
where sepi is the reciprocal condition number of xi. You can compute the condition number sepi by calling ?trsna.

\section*{See Also}

Matrix Storage Schemes
?trsna
Estimates condition numbers for specified eigenvalues and right eigenvectors of an upper (quasi-) triangular matrix.

\section*{Syntax}
```

call strsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm, m, work,
ldwork, iwork, info)
call dtrsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm, m, work,
Idwork, iwork, info)
call ctrsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm, m, work,
ldwork, rwork, info)
call ztrsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm, m, work,
ldwork, rwork, info)
call trsna(t [, s] [,sep] [,vl] [,vr] [,select] [,m] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine estimates condition numbers for specified eigenvalues and/or right eigenvectors of an upper triangular matrix \(T\) (or, for real flavors, upper quasi-triangular matrix \(T\) in canonical Schur form). These are the same as the condition numbers of the eigenvalues and right eigenvectors of an original matrix \(A=\) \(Z * T * Z^{H}\) (with unitary or, for real flavors, orthogonal \(Z\)), from which \(T\) may have been derived.
The routine computes the reciprocal of the condition number of an eigenvalue \(\lambda_{i}\) as \(s_{i}=\left|v^{T} \star u\right| /\left(||u||_{E}| |\right.\) \(v\left|\left.\right|_{E}\right.\)) for real flavors and \(s_{i}=\left|v^{H_{\star}} u\right| /\left(||u||_{E}| | v| |_{E}\right)\) for complex flavors,
where:
- \(\quad u\) and \(v\) are the right and left eigenvectors of \(T\), respectively, corresponding to \(\lambda_{i}\).
- \(v^{T} / v^{H}\) denote transpose/conjugate transpose of \(v\), respectively.

This reciprocal condition number always lies between zero (ill-conditioned) and one (well-conditioned).
An approximate error estimate for a computed eigenvalue \(\lambda_{i}\) is then given by \(\varepsilon^{\star}| | T| | / s_{i}\), where \(\varepsilon\) is the machine precision.

To estimate the reciprocal of the condition number of the right eigenvector corresponding to \(\lambda_{i}\), the routine first calls trexc to reorder the diagonal elements of matrix \(T\) so that \(\lambda_{i}\) is in the leading position:

The reciprocal condition number of the eigenvector is then estimated as sep \({ }_{i}\), the smallest singular value of the matrix \(T_{22}-\lambda_{i}{ }^{*} I\).
An approximate error estimate for a computed right eigenvector u corresponding to \(\lambda_{i}\) is then given by \(\varepsilon^{\star}\) ।। Tl|/ sep \(_{i}\).

\section*{Input Parameters}

> job

CHARACTER*1. Must be 'E' or 'V' or 'B'.
If job \(=\) ' \(E\) ', then condition numbers for eigenvalues only are computed.
If job \(=\) ' V ', then condition numbers for eigenvectors only are computed.
If job \(=\) ' \(B\) ', then condition numbers for both eigenvalues and eigenvectors are computed.

CHARACTER*1. Must be 'A' or 'S'.
If howmny = 'A', then the condition numbers for all eigenpairs are computed.
If howmny = 'S', then condition numbers for selected eigenpairs (as specified by select) are computed.

LOGICAL.
Array, size at least max \((1, n)\) if howmny \(=\) ' \(S\) ' and at least 1 otherwise.
Specifies the eigenpairs for which condition numbers are to be computed if howmny= 'S'.

For real flavors:
To select condition numbers for the eigenpair corresponding to the real eigenvalue \(\lambda_{j}\), select \((j)\) must be set . TRUE.;
to select condition numbers for the eigenpair corresponding to a complex conjugate pair of eigenvalues \(\lambda_{j}\) and \(\left.\lambda_{j+1}\right)\), \(\operatorname{select}(j)\) and/or \(\operatorname{select}(j+1)\) must be set . TRUE.

\section*{For complex flavors}

To select condition numbers for the eigenpair corresponding to the eigenvalue \(\lambda_{j}\), select \((j)\) must be set . TRUE . select is not referenced if howmny = 'A'.

INTEGER. The order of the matrix \(T(n \geq 0)\).
REAL for strsna
DOUBLE PRECISION for dtrsna
COMPLEX for ctrsna
DOUBLE COMPLEX for ztrsna.
Arrays:
\(t(I d t, *)\) contains the \(n\)-by- \(n\) matrix \(T\).
The second dimension of \(t\) must be at least \(\max (1, n)\).
vl(IdvI,*)

If job \(=\) ' E ' or ' B ', then vl must contain the left eigenvectors of \(T\) (or of any matrix \(Q^{*} T^{*} Q^{H}\) with \(Q\) unitary or orthogonal) corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of \(v l\), as returned by trevc or hsein.

The second dimension of \(v /\) must be at least \(\max (1, m m)\) if job \(=\) ' \(E\) ' or 'B' and at least 1 if job = 'V'.

The array \(v /\) is not referenced if job \(=\) ' V '.
\[
v r(I d v r, *)
\]

If job = 'E' or 'B', then vr must contain the right eigenvectors of \(T\) (or of any matrix \(Q^{*} T^{*} Q^{H}\) with \(Q\) unitary or orthogonal) corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of \(v r\), as returned by trevc or hsein.
The second dimension of \(v r\) must be at least \(\max (1, m m)\) if job \(=' E\) ' or ' \(B\) ' and at least 1 if job = 'V'.
The array \(v r\) is not referenced if job \(=' \mathrm{~V}\) '.
work is a workspace array, its dimension (ldwork, \(n+6\)).
The array work is not referenced if job = 'E'.
INTEGER. The leading dimension of \(t\); at least max \((1, n)\).
INTEGER. The leading dimension of \(v /\).
If job \(=\) ' \(E\) ' or ' \(B\) ', ldvl \(\geq \max (1, n)\).
If job \(=\) 'V', ldvl 1.
INTEGER. The leading dimension of \(v r\).
If job \(=\) 'E' or 'B', ldvr \(\geq \max (1, n)\).
If job = 'R', ldvr \(\geq 1\).
INTEGER. The number of elements in the arrays \(s\) and sep, and the number of columns in \(v /\) and \(v r\) (if used). Must be at least \(m\) (the precise number required).
If howmny = 'A', mm = n;
if howmny = 'S', for real flavorsmm is obtained by counting 1 for each selected real eigenvalue and 2 for each selected complex conjugate pair of eigenvalues.
for complex flavorsmm is the number of selected eigenpairs (see select). Constraint:
\(0 \leq m m \leq n\).
INTEGER. The leading dimension of work.
If job = 'V' or 'B', ldwork \(\geq \max (1, n)\).
If job \(=\) 'E', ldwork \(\geq 1\).
REAL for ctrsna, ztrsna.
Array, size at least max \((1, n)\). The array is not referenced if \(j o b=' E '\).
```

iwork

```

INTEGER for strsna, dtrsna.
Array, size at least max \(\left(1,2^{*}(n-1)\right)\). The array is not referenced if job \(=\) 'E'.

\section*{Output Parameters}

S

\section*{REAL for single-precision flavors}

DOUBLE PRECISION for double-precision flavors.
Array, size at least \(\max (1, \mathrm{~mm})\) if \(j o b=\) ' E ' or ' B ' and at least 1 if job \(=\) 'V'.

Contains the reciprocal condition numbers of the selected eigenvalues if job \(=\) ' E ' or ' B ', stored in consecutive elements of the array. Thus \(s(j), \operatorname{sep}(j)\) and the \(j\)-th columns of \(v /\) and \(v r\) all correspond to the same eigenpair (but not in general the \(j\) th eigenpair unless all eigenpairs have been selected).
For real flavors: for a complex conjugate pair of eigenvalues, two consecutive elements of \(s\) are set to the same value. The array \(s\) is not referenced if job \(=\) ' \(V\) '.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, size at least \(\max (1, m m)\) if \(j o b=' V\) ' or \(' B\) ' and at least 1 if job \(=\) 'E'. Contains the estimated reciprocal condition numbers of the selected right eigenvectors if job \(=\) ' \(V\) ' or ' B ', stored in consecutive elements of the array.

For real flavors: for a complex eigenvector, two consecutive elements of sep are set to the same value; if the eigenvalues cannot be reordered to compute \(\operatorname{sep}(j)\), then \(\operatorname{sep}(j)\) is set to zero; this can only occur when the true value would be very small anyway. The array sep is not referenced if job \(=\) 'E'.

INTEGER.
For complex flavors: the number of selected eigenpairs.
If howmny = ' \(A\) ', \(m\) is set to \(n\).
For real flavors: the number of elements of \(s\) and/or sep actually used to store the estimated condition numbers.

If howmny = ' \(A\) ', \(m\) is set to \(n\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine trsna interface are the following:
```

H Holds the matrix T of size ( }n,n)\mathrm{ .
S
sep Holds the vector of length (mm).
vl Holds the matrix VL of size ( }n,mm\mathrm{ ).
vr Holds the matrix VR of size (n,mm).
select Holds the vector of length n.
job
howmny
Holds the matrix $T$ of size $(n, n)$.
Holds the vector of length ( mm ).
Holds the vector of length ( mm ).
Holds the matrix VL of size ( $n, m m$ ).
Holds the matrix $V R$ of size $(n, m m)$.
Holds the vector of length $n$.
Restored based on the presence of arguments $s$ and sep as follows:
job $=$ ' B ', if both $s$ and sep are present,
job $=$ 'E', if $s$ is present and sep omitted,
job $=$ ' $V$ ', if $s$ is omitted and sep present.
Note an error condition if both $s$ and sep are omitted.
Restored based on the presence of the argument select as follows:
howmny = 'S', if select is present,
howmny = 'A', if select is omitted.

```

Note that the arguments \(s, v l\), and \(v r\) must either be all present or all omitted.
Otherwise, an error condition is observed.

\section*{Application Notes}

The computed values \(\operatorname{sep}_{i}\) may overestimate the true value, but seldom by a factor of more than 3 .
?trexc
Reorders the Schur factorization of a general matrix.

\section*{Syntax}
```

call strexc(compq, n, t, ldt, q, ldq, ifst, ilst, work, info)
call dtrexc(compq, n, t, ldt, q, ldq, ifst, ilst, work, info)
call ctrexc(compq, n, t, ldt, q, ldq, ifst, ilst, info)
call ztrexc(compq, n, t, ldt, q, ldq, ifst, ilst, info)
call trexc(t, ifst, ilst [,q] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine reorders the Schur factorization of a general matrix \(A=Q^{*} T^{*} Q^{H}\), so that the diagonal element or block of \(T\) with row index ifst is moved to row ilst.

The reordered Schur form \(S\) is computed by an unitary (or, for real flavors, orthogonal) similarity transformation: \(S=Z^{H} * T * Z\). Optionally the updated matrix \(P\) of Schur vectors is computed as \(P=Q^{*} Z\), giving \(A=P^{\star} S \star P^{H}\).

\section*{Input Parameters}
compq
n
\(t, q\)
\(I d t\)
ldq
ifst, ilst
work

CHARACTER*1. Must be 'V' or 'N'.
If compq \(=\) ' V ', then the Schur vectors \((Q)\) are updated.
If compq \(=\) ' N ', then no Schur vectors are updated.
Integer. The order of the matrix \(T(n \geq 0)\).
REAL for strexc
DOUBLE PRECISION for dtrexc
COMPLEX for ctrexc
DOUBLE COMPLEX for ztrexc.
Arrays:
\(t(/ d t, *)\) contains the \(n\)-by-n matrix \(T\).
The second dimension of \(t\) must be at least \(\max (1, n)\).
\(q(I d q, *)\)
If compq = ' V ', then \(q\) must contain \(Q\) (Schur vectors).
If compq \(=\) ' N ', then \(q\) is not referenced.
The second dimension of \(q\) must be at least \(\max (1, n)\) if compq \(=\) ' \(V\) ' and at least 1 if compq = 'N'.
integer. The leading dimension of \(t\); at least \(\max (1, n)\).
INTEGER. The leading dimension of \(q\);
If compq \(=\) ' N ', then \(1 d q \geq 1\).
If compq \(=\) ' \(V\) ', then \(l d q \geq \max (1, n)\).
INTEGER. \(1 \leq i f s t \leq n ; 1 \leq i l s t \leq n\).
Must specify the reordering of the diagonal elements (or blocks, which is possible for real flavors) of the matrix \(T\). The element (or block) with row index ifst is moved to row ilst by a sequence of exchanges between adjacent elements (or blocks).

REAL for strexc
DOUBLE PRECISION for dtrexc.
Array, size at least max \((1, n)\).

Overwritten by the updated matrix \(S\).
If compq \(=\) ' \(V\) ', \(q\) contains the updated matrix of Schur vectors.
Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on entry, it is changed to point to the first row; ilst always points to the first row of the block in its final position (which may differ from its input value by \(\pm 1\)).

\section*{INTEGER.}

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine trexc interface are the following:
```

Holds the matrix T of size (n,n).
q Holds the matrix Q of size ( }n,n)\mathrm{ .
compq
Restored based on the presence of the argument $q$ as follows:

```
```

compq = 'V', if q is present,

```
compq = 'V', if q is present,
compq = 'N', if q is omitted.
```


## Application Notes

The computed matrix $S$ is exactly similar to a matrix $T+E$, where $\left||E|_{2}=O(\varepsilon) *\right||T|_{2}$, and $\varepsilon$ is the machine precision.

Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are in general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of complex eigenvalues to become purely real.
The approximate number of floating-point operations is

```
for real flavors:
for complex flavors:
```

```
6n(ifst-ilst) if compq = 'N';
```

6n(ifst-ilst) if compq = 'N';
12n(ifst-ilst) if compq = 'V';
12n(ifst-ilst) if compq = 'V';
20n(ifst-ilst) if compq = 'N';
20n(ifst-ilst) if compq = 'N';
40n(ifst-ilst) if compq = 'V'.

```
 40n(ifst-ilst) if compq = 'V'.
```


## ?trsen

Reorders the Schur factorization of a matrix and (optionally) computes the reciprocal condition numbers for the selected cluster of eigenvalues and respective invariant subspace.

## Syntax

```
call strsen(job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s, sep, work, lwork, iwork,
liwork, info)
call dtrsen(job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s, sep, work, lwork, iwork,
liwork, info)
call ctrsen(job, compq, select, n, t, ldt, q, ldq, w, m, s, sep, work, lwork, info)
call ztrsen(job, compq, select, n, t, ldt, q, ldq, w, m, s, sep, work, lwork, info)
call trsen(t, select [,wr] [,wi] [,m] [,s] [,sep] [,q] [,info])
```

```
call trsen(t, select [,w] [,m] [,s] [,sep] [,q] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine reorders the Schur factorization of a general matrix $A=Q^{*} T^{*} Q^{T}$ (for real flavors) or $A=Q^{*} T^{*} Q^{H}$ (for complex flavors) so that a selected cluster of eigenvalues appears in the leading diagonal elements (or, for real flavors, diagonal blocks) of the Schur form. The reordered Schur form $R$ is computed by a unitary (orthogonal) similarity transformation: $R=Z^{H}{ }^{*} T^{*} Z$. Optionally the updated matrix $P$ of Schur vectors is computed as $P=Q^{*} Z$, giving $A=P^{*} R^{*} P^{H}$.

Let

where the selected eigenvalues are precisely the eigenvalues of the leading $m$-by- $m$ submatrix $T_{11}$. Let $P$ be correspondingly partitioned as $\left(Q_{1} Q_{2}\right)$ where $Q_{1}$ consists of the first $m$ columns of $Q$. Then $A^{*} Q_{1}=Q_{1} * T_{11}$, and so the $m$ columns of $Q_{1}$ form an orthonormal basis for the invariant subspace corresponding to the selected cluster of eigenvalues.

Optionally the routine also computes estimates of the reciprocal condition numbers of the average of the cluster of eigenvalues and of the invariant subspace.

## Input Parameters

```
job
```

If job $=$ ' $N$ ', then no condition numbers are required.
If job = 'E', then only the condition number for the cluster of eigenvalues is computed.

If job = 'V', then only the condition number for the invariant subspace is computed.

If job = 'B', then condition numbers for both the cluster and the invariant subspace are computed.

CHARACTER*1. Must be 'V' or 'N'.
If compq $=$ ' V ', then $Q$ of the Schur vectors is updated.

	If compq $=$ ' N ', then no Schur vectors are updated. LOGICAL.
select	Array, size at least max ( $1, n$ ).
	Specifies the eigenvalues in the selected cluster. To select an eigenvalue $\lambda_{j}$, select( $j$ ) must be . TRUE.
	For real flavors: to select a complex conjugate pair of eigenvalues $\lambda_{j}$ and $\lambda_{j}$ +1 (corresponding 2 by 2 diagonal block), select $(j)$ and/or select $(j+1$ ) must be .TRUE.; the complex conjugate $\lambda_{j}$ and $\lambda_{j+1}$ must be either both included in the cluster or both excluded.
$n$	integer. The order of the matrix $T(n \geq 0)$.
t, q, work	REAL for strsen
	DOUBLE PRECISION for dtrsen
	COMPLEX for ctrsen
	DOUBLE COMPlex for ztrsen.
	Arrays:
	$t(/ d t, *)$ Theupper quasi-triangular $n$-by-n matrix $T$, in Schur canonical form.
	The second dimension of $t$ must be at least max $(1, n)$.
	$q(I d q, *)$
	If compq $=$ ' V ', then $q$ must contain the matrix $Q$ of Schur vectors.
	If compq $=$ ' N ', then $q$ is not referenced.
	The second dimension of $q$ must be at least $\max (1, n)$ if compq $=' V$ ' and at least 1 if compq = 'N'.
	work is a workspace array, its dimension max (1, lwork).
$1 d t$	INTEGER. The leading dimension of $t$; at least $\max (1, n)$.
$1 d q$	INTEGER. The leading dimension of $q$;
	If compq = 'N', then 1 dq $\geq 1$.
	If compq $=$ ' V ', then $1 d q \geq \max (1, n)$.
Iwork	Integer. The dimension of the array work.
	If job $=$ 'V' or 'B', 1 work $\mathrm{max}\left(1,2 * \mathrm{~m}^{\star}(\mathrm{n}-\mathrm{m})\right.$ ).
	If job = 'E', then lwork $\max \left(1, m^{*}(n-m)\right.$ )
	If job = 'N', then 1 work $\geq 1$ for complex flavors and 1 work $\geq \max (1, n)$ for real flavors.
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to /work is issued by xerbla. See Application Notes for details.
iwork	Integer.iwork(liwork) is a workspace array. The array iwork is not referenced if job = 'N' or 'E'.

The actual amount of workspace required cannot exceed $n^{2} / 2$ if $j o b={ }^{\prime} V^{\prime}$ or 'B'.

INTEGER.
The dimension of the array iwork.
If job $=$ 'V' or 'B', liwork $\geq \max (1,2 m(n-m))$.
If job $=$ 'E' or 'E', liwork $\geq 1$.
If liwork = -1 , then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued by xerbla. See Application Notes for details.

## Output Parameters

$t$
$q$

Overwritten by the reordered matrix $R$ in Schur canonical form with the selected eigenvalues in the leading diagonal blocks.

If compq = 'V', $q$ contains the updated matrix of Schur vectors; the first m columns of the $Q$ form an orthogonal basis for the specified invariant subspace.

COMPLEX for ctrsen
DOUBLE COMPLEX for ztrsen.
Array, size at least $\max (1, n)$. The recorded eigenvalues of $R$. The eigenvalues are stored in the same order as on the diagonal of $R$.

REAL for strsen
DOUBLE PRECISION for dtrsen
Arrays, size at least $\max (1, n)$. Contain the real and imaginary parts, respectively, of the reordered eigenvalues of $R$. The eigenvalues are stored in the same order as on the diagonal of $R$. Note that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly from its value before reordering.

## INTEGER.

For complex flavors: the dimension of the specified invariant subspaces, which is the same as the number of selected eigenvalues (see select).
For real flavors: the dimension of the specified invariant subspace. The value of $m$ is obtained by counting 1 for each selected real eigenvalue and 2 for each selected complex conjugate pair of eigenvalues (see select).

Constraint: $0 \leq m \leq n$.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
If job $=$ ' $E$ ' or ' $B$ ', $s$ is a lower bound on the reciprocal condition number of the average of the selected cluster of eigenvalues.
If $m=0$ or $n$, then $s=1$.

For real flavors: if info $=1$, then $s$ is set to zero.s is not referenced if job $='^{\prime}$ or 'V'.

REAL for single-precision flavors DOUBLE PRECISION for double-precision flavors.
If job $=$ ' $V$ ' or ' $B$ ', sep is the estimated reciprocal condition number of the specified invariant subspace.
If $m=0$ or $n$, then $\operatorname{sep}=|T|$.
For real flavors: if info $=1$, then sep is set to zero.
sep is not referenced if job $=$ ' $N$ ' or 'E'.
work(1)
iwork(1)
info

On exit, if info $=0$, then work (1) returns the optimal size of Iwork.
On exit, if info $=0$, then iwork (1) returns the optimal size of liwork.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=1$, the reordering of $T$ failed because some eigenvalues are too close to separate (the problem is very ill-conditioned); $T$ may have been partially reordered, and $w r$ and wi contain the eigenvalues in the same order as in $T$; $s$ and $s e p$ (if requested) are set to zero.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine trsen interface are the following:

t	Holds the matrix $T$ of size ( $n, n$ ).
select	Holds the vector of length $n$.
wr	Holds the vector of length $n$. Used in real flavors only.
wi	Holds the vector of length $n$. Used in real flavors only.
w	Holds the vector of length $n$. Used in complex flavors only.
q	Holds the matrix $Q$ of size ( $n, n$ ).
compq	Restored based on the presence of the argument $q$ as follows: compq $=$ ' $V$ ', if $q$ is present, compq $=$ ' $N$ ', if $q$ is omitted.
job	Restored based on the presence of arguments $s$ and sep as follows:
	job = 'B', if both s and sep are present,
	job $=$ ' E ', if $s$ is present and sep omitted,
	$j o b=' V '$, if $s$ is omitted and sep present,
	job = 'N', if both $s$ and sep are omitted.

## Application Notes

The computed matrix $R$ is exactly similar to a matrix $T+E$, where $\left.\left||E|_{2}=O(\varepsilon) \star\right||T|\right|_{2}$, and $\varepsilon$ is the machine precision. The computed $s$ cannot underestimate the true reciprocal condition number by more than a factor of $(\min (m, n-m))_{1 / 2}$; sep may differ from the true value by $\left(m^{*} n-m^{2}\right)_{1 / 2}$. The angle between the computed invariant subspace and the true subspace is $O(\varepsilon) *||A||_{2} / \mathrm{sep}$. Note that if a 2-by-2 diagonal block is involved in the re-ordering, its off-diagonal elements are in general changed; the diagonal elements and the eigenvalues of the block are unchanged unless the block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is possible for a 2-by-2 block to break into two 1-by-1 blocks, that is, for a pair of complex eigenvalues to become purely real.

If it is not clear how much workspace to supply, use a generous value of Iwork (or liwork) for the first run or set 1 work $=-1$ (liwork $=-1$ ).

If Iwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If $l_{\text {work }}=-1$ (liwork $=-1$ ), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if Iwork (liwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

```
?trsyl
Solves Sylvester equation for real quasi-triangular or
complex triangular matrices.
Syntax
```

```
call strsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)
```

call strsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)
call dtrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)
call dtrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)
call ctrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)
call ctrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)
call ztrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)
call ztrsyl(trana, tranb, isgn, m, n, a, lda, b, ldb, c, ldc, scale, info)
call trsyl(a, b, c, scale [, trana] [,tranb] [,isgn] [,info])

```
call trsyl(a, b, c, scale [, trana] [,tranb] [,isgn] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine solves the Sylvester matrix equation $o p(A) * X \pm X^{\star} \circ p(B)=\alpha^{\star} C$, where op $(A)=A$ or $A^{H}$, and the matrices $A$ and $B$ are upper triangular (or, for real flavors, upper quasi-triangular in canonical Schur form); $\alpha \leq$ 1 is a scale factor determined by the routine to avoid overflow in $X ; A$ is $m$-by- $m, B$ is $n$-by- $n$, and $C$ and $X$ are both $m$-by- $n$. The matrix $X$ is obtained by a straightforward process of back substitution.

The equation has a unique solution if and only if $\alpha_{i} \pm \beta_{i} \neq 0$, where $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i}\right\}$ are the eigenvalues of $A$ and $B$, respectively, and the sign (+ or - ) is the same as that used in the equation to be solved.

## Input Parameters

trana

> CHARACTER*1. Must be 'N' or 'T' or 'C'.
> If trana $=' N^{\prime}$, then op $(A)=A$.

```
 If trana = 'T', then op (A) = AT}\mathrm{ (real flavors only).
 If trana = 'C' then op (A) = A' .
 CHARACTER*1. Must be 'N' or 'T' or 'C'.
 If tranb = 'N', then op (B) = B.
 If tranb = 'T', then op (B) = 徝 (real flavors only).
 If tranb = 'C', then op (B) = B'.
 INTEGER. Indicates the form of the Sylvester equation.
 If isgn = +1,op (A)*X + X*op (B) = alpha* }C\mathrm{ .
 If isgn = -1,op (A)*X - X*op (B) = alpha*C.
 INTEGER. The order of A, and the number of rows in X and C(m\geq0).
 INTEGER. The order of B, and the number of columns in X and C (}n\geq0)\mathrm{ .
 REAL for strsyl
 DOUBLE PRECISION for dtrsyl
 COMPLEX for ctrsyl
 DOUBLE COMPLEX for ztrsyl.
 Arrays:
 a(/da,*) contains the matrix A.
 The second dimension of a must be at least max(1,m).
 b(/db,*) contains the matrix B.
 The second dimension of b must be at least max (1, n).
 c(/dc,*) contains the matrix C.
 The second dimension of c must be at least max(1,n).
 INTEGER. The leading dimension of a; at least max(1,m).
 INTEGER. The leading dimension of b; at least max(1,n).
 INTEGER. The leading dimension of c; at least max(1,m).
```


## Output Parameters

c
scale
info

Overwritten by the solution matrix $X$.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
The value of the scale factor $\alpha$.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

If info $=1, A$ and $B$ have common or close eigenvalues; perturbed values were used to solve the equation.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine trsyl interface are the following:

```
a Holds the matrix A of size (m,m).
b Holds the matrix B of size (}n,n)\mathrm{ .
c Holds the matrix C of size (m,n).
trana Must be 'N','C', or 'T'. The default value is 'N'.
tranb Must be 'N','C', or'T'. The default value is 'N'.
isgn Must be +1 or -1. The default value is +1.
```


## Application Notes

Let $X$ be the exact, $Y$ the corresponding computed solution, and $R$ the residual matrix: $R=C-(A Y \pm Y B)$. Then the residual is always small:

```
| |R| | F =O(\varepsilon)*(| |A| | F +||B| | F * | |Y| | F.
```

However, $Y$ is not necessarily the exact solution of a slightly perturbed equation; in other words, the solution is not backwards stable.

For the forward error, the following bound holds:

```
| | - X| | }\mp@subsup{F}{F}{\leq||}|R|\mp@subsup{|}{F}{}/\operatorname{sep}(A,B
```

but this may be a considerable overestimate. See [Golub96] for a definition of $\operatorname{sep}(A, B)$.
The approximate number of floating-point operations for real flavors is $m^{\star} n^{\star}(m+n)$. For complex flavors it is 4 times greater.

## Generalized Nonsymmetric Eigenvalue Problems: LAPACK Computational Routines

This topic describes LAPACK routines for solving generalized nonsymmetric eigenvalue problems, reordering the generalized Schur factorization of a pair of matrices, as well as performing a number of related computational tasks.

A generalized nonsymmetric eigenvalue problem is as follows: given a pair of nonsymmetric (or nonHermitian) $n$-by- $n$ matrices $A$ and $B$, find the generalized eigenvalues $\lambda$ and the corresponding generalized eigenvectorsx and $y$ that satisfy the equations
$A x=\lambda B x$ (right generalized eigenvectors $x$ )
and
$y^{H} A=\lambda y^{H} B$ (left generalized eigenvectors $y$ ).
Table "Computational Routines for Solving Generalized Nonsymmetric Eigenvalue Problems" lists LAPACK routines (FORTRAN 77 interface) used to solve the generalized nonsymmetric eigenvalue problems and the generalized Sylvester equation. The corresponding routine names in the Fortran 95 interface are without the first symbol.

Computational Routines for Solving Generalized Nonsymmetric Eigenvalue Problems	
Routine   name	Operation performed
gghrd	Reduces a pair of matrices to generalized upper Hessenberg form using orthogonal/   unitary transformations.
ggbal	Balances a pair of general real or complex matrices.
ggbak	Forms the right or left eigenvectors of a generalized eigenvalue problem.   gghd3
hgeqz	Implements the QZ method for finding the generalized eigenvalues of the matrix pair   (H,T).   Computes some or all of the right and/or left generalized eigenvectors of a pair of upper   triangular matrices
tgexc	Reorders the generalized Schur decomposition of a pair of matrices (A,B) so that one   diagonal block of (A,B) moves to another row index.
tgsen	Reorders the generalized Schur decomposition of a pair of matrices (A,B) so that a   selected cluster of eigenvalues appears in the leading diagonal blocks of (A,B).   Solves the generalized Sylvester equation.
tgsyl	Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a   pair of matrices in generalized real Schur canonical form.

## ?gghrd

Reduces a pair of matrices to generalized upper
Hessenberg form using orthogonal/unitary
transformations.

## Syntax

```
call sgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)
call dgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)
call cgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)
call zgghrd(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)
call gghrd(a, b [,ilo] [,ihi] [,q] [,z] [,compq] [,compz] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine reduces a pair of real/complex matrices $(A, B)$ to generalized upper Hessenberg form using orthogonal/unitary transformations, where $A$ is a general matrix and $B$ is upper triangular. The form of the generalized eigenvalue problem is $A^{\star} X=\lambda{ }^{\star} B^{\star}{ }^{x}$, and $B$ is typically made upper triangular by computing its $Q R$ factorization and moving the orthogonal matrix $Q$ to the left side of the equation.

This routine simultaneously reduces $A$ to a Hessenberg matrix $H$ :

```
Q H* A* Z = H
```

and transforms $B$ to another upper triangular matrix $T$ :
$Q^{H \star} B^{\star} Z=T$
in order to reduce the problem to its standard form $H^{\star} y=\lambda^{\star} T^{\star} y$, where $y=Z^{H \star} x$.
The orthogonal/unitary matrices $Q$ and $Z$ are determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices $Q_{1}$ and $Z_{1}$, so that

```
Q1*A* Z Z }\mp@subsup{}{}{H}=(\mp@subsup{Q}{1}{*}Q)*\mp@subsup{H}{}{*}(\mp@subsup{Z}{1}{*}*Z)\mp@subsup{}{}{H
```



If $Q_{1}$ is the orthogonal/unitary matrix from the $Q R$ factorization of $B$ in the original equation $A^{\star} X=\lambda^{\star} B^{\star}{ }_{X}$, then the routine ? gghrd reduces the original problem to generalized Hessenberg form.

## Input Parameters

```
compq
compz
n
ilo, ihi
a,b,q, z
CHARACTER*1. Must be 'N','I', or 'V'.
If compq= 'N', matrix Q is not computed.
If compq = 'I',Q is initialized to the unit matrix, and the orthogonal/
unitary matrix Q is returned;
If compq = 'V', \(Q\) must contain an orthogonal/unitary matrix \(Q_{1}\) on entry, and the product \(Q_{1}{ }^{*} Q\) is returned.
CHARACTER*1. Must be 'N', 'I', or 'V'.
If compz \(=\) ' \(N\) ', matrix \(Z\) is not computed.
If compz = 'I', \(Z\) is initialized to the unit matrix, and the orthogonal/ unitary matrix \(Z\) is returned;
If compz \(=\) ' \(V\) ', \(Z\) must contain an orthogonal/unitary matrix \(Z_{1}\) on entry, and the product \(Z_{1} * Z\) is returned.
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
INTEGER. ilo and ihi mark the rows and columns of \(A\) which are to be reduced. It is assumed that \(A\) is already upper triangular in rows and columns 1:ilo-1 and ihi+1:n. Values of ilo and ihi are normally set by a previous call to ggbal; otherwise they should be set to 1 and \(n\) respectively.
Constraint:
If \(n>0\), then \(1 \leq i l o \leq i h i \leq n ;\)
if \(n=0\), then ilo \(=1\) and ihi \(=0\).
REAL for sgghrd
DOUBLE PRECISION for dgghrd
COMPLEX for cgghrd
DOUBLE COMPLEX for zgghrd.
```


## Arrays:

```
\(a(I d a, *)\) contains the \(n\)-by- \(n\) general matrix \(A\).
The second dimension of a must be at least max \((1, n)\).
\(b(I d b, *)\) contains the \(n\)-by- \(n\) upper triangular matrix \(B\).
The second dimension of \(b\) must be at least max \((1, n)\).
```

```
 q(Idq,*)
 If compq = 'N', then q}\mathrm{ is not referenced.
 If compq = 'V', then q must contain the orthogonal/unitary matrix }\mp@subsup{Q}{1}{}\mathrm{ ,
 typically from the QR factorization of }B\mathrm{ .
 The second dimension of q must be at least max(1,n).
 z(Idz,*)
 If compz='N', then z is not referenced.
 If compz = 'V', then z must contain the orthogonal/unitary matrix }\mp@subsup{Z}{1}{}\mathrm{ .
 The second dimension of z must be at least max (1,n).
 INTEGER. The leading dimension of a; at least max (1, n).
 INTEGER. The leading dimension of b; at least max(1,n).
 INTEGER. The leading dimension of q;
 If compq = 'N', then Idq\geq 1.
 If compq = 'I'or 'V', then Idq\geq max(1,n).
 INTEGER. The leading dimension of z;
 If compz = 'N', then Idz\geq 1.
 If compz = 'I'or 'V', then Idz\geq max(1,n).
```


## Output Parameters

a
b
q
z
info

On exit, the upper triangle and the first subdiagonal of $A$ are overwritten with the upper Hessenberg matrix $H$, and the rest is set to zero.

On exit, overwritten by the upper triangular matrix $T=Q^{H *} B^{*} Z$. The elements below the diagonal are set to zero.

If compq $=$ 'I', then $q$ contains the orthogonal/unitary matrix $Q$, ;
If compq $=$ ' V ', then $q$ is overwritten by the product $Q_{1} * Q$.
If compz = 'I', then $z$ contains the orthogonal/unitary matrix $Z$;
If compz $=$ ' V ', then $z$ is overwritten by the product $Z_{1} * Z$.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine gghrd interface are the following:
a
Holds the matrix $A$ of size $(n, n)$.

b	Holds the matrix $B$ of size ( $n, n$ ).
q	Holds the matrix $Q$ of size ( $n, n$ ).
$z$	Holds the matrix $Z$ of size ( $n, n$ ).
ilo	Default value for this argument is $i l 0=1$.
ihi	Default value for this argument is ihi $=n$.
compq	If omitted, this argument is restored based on the presence of argument $q$ as follows: compq = 'I', if $q$ is present, compq = ' N ', if $q$ is omitted.
	If present, compq must be equal to 'I' or ' $V$ ' and the argument $q$ must also be present. Note that there will be an error condition if compq is present and $q$ omitted.
compz	If omitted, this argument is restored based on the presence of argument $z$ as follows: compz $=$ ' I ', if $z$ is present, compz $=$ ' N ', if $z$ is omitted.
	If present, compz must be equal to 'I' or ' V ' and the argument $z$ must also be present. Note that there will be an error condition if compz is present and $z$ omitted.

?ggbal
Balances a pair of general real or complex matrices.

## Syntax

```
call sggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)
call dggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)
call cggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)
call zggbal(job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale, work, info)
call ggbal(a, b [,ilo] [,ihi] [,lscale] [,rscale] [,job] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine balances a pair of general real/complex matrices $(A, B)$. This involves, first, permuting $A$ and $B$ by similarity transformations to isolate eigenvalues in the first 1 to ilo-1 and last ihi+1 to $n$ elements on the diagonal;and second, applying a diagonal similarity transformation to rows and columns ilo to ihi to make the rows and columns as close in norm as possible. Both steps are optional. Balancing may reduce the 1-norm of the matrices, and improve the accuracy of the computed eigenvalues and/or eigenvectors in the generalized eigenvalue problem $A^{\star} x=\lambda^{\star} B^{\star} x$.

## Input Parameters

job
CHARACTER*1. Specifies the operations to be performed on $A$ and $B$. Must be 'N' or 'P' or 'S' or 'B'.

If job = ' N ', then no operations are done; simply set ilo =1, ihi=n, Iscale(i) $=1.0$ and rscale(i) $=1.0$ for

```
 i = 1,..., n.
 If job = 'P', then permute only.
 If job = 'S', then scale only.
 If job = 'B', then both permute and scale.
 INTEGER. The order of the matrices A and B (}n\geq0)\mathrm{ .
 REAL for sggbal
 DOUBLE PRECISION for dggbal
 COMPLEX for cggbal
 DOUBLE COMPLEX for zggbal.
 Arrays:
 a(/da,*) contains the matrix A. The second dimension of a must be at least
 max(1, n).
 b(/db,*) contains the matrix B. The second dimension of b must be at least
 max(1, n).
 If job = 'N', a and b are not referenced.
 INTEGER. The leading dimension of a; at least max(1,n).
 INTEGER. The leading dimension of b; at least max(1,n).
 REAL for single precision flavors
 DOUBLE PRECISION for double precision flavors.
 Workspace array, size at least max (1, 6n) when job = 'S'or 'B', or at
 least 1 when job = 'N'or 'P'.
```


## Output Parameters

$a, b$
ilo, ihi

Iscale, rscale

Overwritten by the balanced matrices $A$ and $B$, respectively.
INTEGER. ilo and ihi are set to integers such that on exit $A_{i, j}=0$ and $B_{i, j}=$ 0 if $i>j$ and $j=1, \ldots, i l o-1$ or $i=i h i+1, \ldots, n$.

If job $=$ 'N'or 'S', then ilo $=1$ and ihi $=n$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, size at least $\max (1, n)$.
Iscale contains details of the permutations and scaling factors applied to the left side of $A$ and $B$.

If $P_{j}$ is the index of the row interchanged with row $j$, and $D_{j}$ is the scaling factor applied to row $j$, then

Iscale $(j)=P_{j}$, for $j=1, \ldots$ ilo-1
$=D_{j}$, for $j=i l o, \ldots, i h i$
$=P_{j}$, for $j=i h i+1, \ldots, n$.
rscale contains details of the permutations and scaling factors applied to the right side of $A$ and $B$.

If $P_{j}$ is the index of the column interchanged with column $j$, and $D_{j}$ is the scaling factor applied to column $j$, then

```
rscale(j) = Pj, for j = 1,..., ilo-1
```

$=D_{j}$, for $j=i l o, \ldots$, ihi
$=P_{j}$, for $j=i h i+1, \ldots, n$
The order in which the interchanges are made is $n$ to $i h i+1$, then 1 to ilo-1.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ggbal interface are the following:

a	Holds the matrix $A$ of size $(n, n)$.
b	Holds the matrix $B$ of size $(n, n)$.
lscale	Holds the vector of length $(n)$.
rscale	Holds the vector of length $(n)$.
ilo	Default value for this argument is $i l o=1$.
ihi	Default value for this argument is $i h i=n$.
job	Must be 'B', 'S', 'P', or ' $N$ '. The default value is 'B'.

## ?ggbak

Forms the right or left eigenvectors of a generalized eigenvalue problem.

## Syntax

```
call sggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
call dggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
call cggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
call zggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)
call ggbak(v [, ilo] [,ihi] [,lscale] [,rscale] [,job] [,info])
```

Include Files

- mkl.fi, lapack.f90

Description

The routine forms the right or left eigenvectors of a real/complex generalized eigenvalue problem $A^{\star} X=\lambda{ }^{\star} B^{\star} X$
by backward transformation on the computed eigenvectors of the balanced pair of matrices output by ggbal.

## Input Parameters

job CHARACTER*1. Specifies the type of backward transformation required. Must be 'N', 'P', 'S', or 'B'.
If job $=$ ' $N$ ', then no operations are done; return.
If job $=$ ' $\mathrm{P}^{\prime}$, then do backward transformation for permutation only.
If job $=$ 'S', then do backward transformation for scaling only.
If job = 'B', then do backward transformation for both permutation and scaling. This argument must be the same as the argument job supplied to ? ggbal.

CHARACTER*1. Must be 'L' or 'R'.
If side $=$ 'L', then $v$ contains left eigenvectors.
If side = 'R', then $v$ contains right eigenvectors.
INTEGER. The number of rows of the matrix $V(n \geq 0)$.
INTEGER. The integers ilo and ihi determined by ?gebal. Constraint:
If $n>0$, then $1 \leq i l o \leq i h i \leq n$;
if $n=0$, then ilo $=1$ and ihi $=0$.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, size at least $\max (1, n)$.
The array Iscale contains details of the permutations and/or scaling factors applied to the left side of $A$ and $B$, as returned by ?ggbal.
The array rscale contains details of the permutations and/or scaling factors applied to the right side of $A$ and $B$, as returned by ?ggbal.

INTEGER. The number of columns of the matrix $V$
( $m \geq 0$ ).
REAL for sggbak
DOUBLE PRECISION for dggbak
COMPLEX for cggbak
DOUBLE COMPLEX for zggbak.
Array $v(/ d v, *)$. Contains the matrix of right or left eigenvectors to be transformed, as returned by tgevc.
The second dimension of $v$ must be at least max $(1, m)$.
INTEGER. The leading dimension of $v$; at least $\max (1, n)$.

## Output Parameters

## V <br> info

Overwritten by the transformed eigenvectors
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine ggbak interface are the following:

V	Holds the matrix $V$ of size $(n, m)$.
Iscale	Holds the vector of length $n$.
rscale	Holds the vector of length $n$.
ilo	Default value for this argument is $i l o=1$.
ihi	Default value for this argument is ihi $=n$.
job	Must be 'B', 'S', 'P', or 'N'. The default value is ' $\mathrm{B}^{\prime}$ '.
side	If omitted, this argument is restored based on the presence of arguments Iscale and rscale as follows:
	side $=$ 'L', if Iscale is present and rscale omitted,   side $=$ 'R', if Iscale is omitted and rscale present.
	Note that there will be an error condition if both Iscale and rscale are present or if they both are omitted.

## ?gghd3

Reduces a pair of matrices to generalized upper
Hessenberg form.
Syntax

```
call sgghd3 (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, work, lwork,
info)
call dgghd3 (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, work, lwork,
info)
call cgghd3 (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, work, lwork,
info)
call zgghd3 (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, work, lwork,
info)
```

Include Files

- mkl.fi


## Description

? gghd3 reduces a pair of real or complex matrices $(A, B)$ to generalized upper Hessenberg form using orthogonal/unitary transformations, where $A$ is a general matrix and $B$ is upper triangular. The form of the generalized eigenvalue problem is
$A^{*} x=\lambda^{*} B^{*} x$,
and $B$ is typically made upper triangular by computing its $Q R$ factorization and moving the orthogonal/unitary matrix $Q$ to the left side of the equation.
This subroutine simultaneously reduces $A$ to a Hessenberg matrix $H$ :
$Q^{\top} * A^{*} Z=H$ for real flavors
or
$Q^{\top *} A^{*} Z=H$ for complex flavors
and transforms $B$ to another upper triangular matrix $T$ :
$Q^{\top *} B^{*} Z=T$ for real flavors
or
$Q^{\top *} B^{*} Z=T$ for complex flavors
in order to reduce the problem to its standard form
$H^{*} y=\lambda^{*} T^{*} y$
where $y=Z^{\top} *_{x}$ for real flavors
or
$y=Z^{\top * x}$ for complex flavors.
The orthogonal/unitary matrices $Q$ and $Z$ are determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices $Q_{1}$ and $Z_{1}$, so that
for real flavors:
$Q_{1} * A * Z_{1}^{\top}=\left(Q_{1} * Q\right) * H *\left(Z_{1} * Z\right)^{\top}$
$Q_{1} * B * Z_{1}^{\top}=\left(Q_{1} * Q\right) * T *\left(Z_{1} * Z\right)^{\top}$
for complex flavors:
$Q_{1} * A * Z_{1}{ }^{H}=\left(Q_{1} * Q\right) * H *\left(Z_{1} * Z\right)^{\top}$
$Q_{1} * B * Z_{1}^{\top}=\left(Q_{1} * Q\right) * T *\left(Z_{1} * Z\right)^{\top}$
If $Q_{1}$ is the orthogonal/unitary matrix from the $Q R$ factorization of $B$ in the original equation $A^{*} x=\lambda^{*} B^{*} x$, then ?gghd3 reduces the original problem to generalized Hessenberg form.

This is a blocked variant of ?gghrd, using matrix-matrix multiplications for parts of the computation to enhance performance.

## Input Parameters

compq
compz

CHARACTER*1. = ' N ': do not compute $q$;
$=$ 'I': $q$ is initialized to the unit matrix, and the orthogonal/unitary matrix $Q$ is returned;
$=$ ' V ': q must contain an orthogonal/unitary matrix $Q_{1}$ on entry, and the product $Q_{1} * q$ is returned.

CHARACTER*1. = ' N ': do not compute $z$;
$n$
a
$=$ 'I': $z$ is initialized to the unit matrix, and the orthogonal/unitary matrix $Z$ is returned;
$=$ ' V ': z must contain an orthogonal/unitary matrix $Z_{1}$ on entry, and the product $Z_{1} *_{z}$ is returned.

INTEGER. The order of the matrices $A$ and $B$.
$n \geq 0$.
INTEGER. ilo and ihi mark the rows and columns of a which are to be reduced. It is assumed that a is already upper triangular in rows and columns 1:ilo-1 and ihi +1 :n. ilo and ihi are normally set by a previous call to ?ggbal; otherwise they should be set to 1 and $n$, respectively.
$1 \leq i l o \leq i h i \leq n$, if $n>0$; ilo=1 and ihi=0, if $n=0$.
REAL for sgghd3
DOUBLE PRECISION for dgghd3
COMPLEX for cgghd3
DOUBLE COMPLEX for zgghd3
Array, size (lda, $n$ ).
On entry, the $n-b y-n$ general matrix to be reduced.
INTEGER. The leading dimension of the array $a$.
$I d a \geq \max (1, n)$.
REAL for sgghd3
DOUBLE PRECISION for dgghd3
COMPLEX for cgghd3
DOUBLE COMPLEX for zgghd3
Array, (ldb, $n$ ).
On entry, then-by-n upper triangular matrix $B$.
INTEGER. The leading dimension of the array $b$.
$l d b \geq \max (1, n)$.
REAL for sgghd3
DOUBLE PRECISION for dgghd3
COMPLEX for cgghd3
DOUBLE COMPLEX for zgghd3
Array, size ( $1 d q, n$ ).
On entry, if compq = 'V', the orthogonal/unitary matrix $Q_{1}$, typically from the QR factorization of $b$.

INTEGER. The leading dimension of the array $q$.
$I d q \geq n$ if compq='V' or 'I'; $I d q \geq 1$ otherwise.
z

Idz

REAL for sgghd3
DOUBLE PRECISION for dgghd3
COMPLEX for cgghd3
DOUBLE COMPLEX for zgghd3
Array, size ( $1 d z, n$ ).
On entry, if compz $=$ ' $V$ ', the orthogonal/unitary matrix $Z_{1}$.
Not referenced if compz='N'.
INTEGER. The leading dimension of the array $z$. $1 d z \geq n$ if compz='V' or 'I'; $I d z \geq 1$ otherwise.

REAL for sgghd3
DOUBLE PRECISION for dgghd3
COMPLEX for cgghd3
DOUBLE COMPLEX for zgghd3
Array, size (lwork)
INTEGER. The length of the array work.
lwork $\geq 1$.
For optimum performance 1 wor $k \geq 6^{*} n^{*} N B$, where $N B$ is the optimal blocksize.

If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

## Output Parameters

a
b
$q$
z
work
info

On exit, the upper triangle and the first subdiagonal of a are overwritten with the upper Hessenberg matrix $H$, and the rest is set to zero.

On exit, the upper triangular matrix $T=Q^{\top} B Z$ for real flavors or $T=$ $Q^{H} B Z$ for complex flavors. The elements below the diagonal are set to zero.

On exit, if compq='I', the orthogonal/unitary matrix $Q$, and if compq $=$ ' V ', the product $Q_{1}{ }^{*} Q$.
Not referenced if compq='N'.
On exit, if $\operatorname{compz}=$ 'I', the orthogonal/unitary matrix $Z$, and if $c o m p z=$ ' $V$ ', the product $Z_{1} * Z$.
Not referenced if compz='N'.
On exit, if info $=0$, work(1) returns the optimal lwork.
INTEGER. $=0$ : successful exit.

$$
<0 \text { : if info }=-i \text {, the } i \text {-th argument had an illegal value. }
$$

## Application Notes

This routine reduces $A$ to Hessenberg form and maintains $B$ in using a blocked variant of Moler and Stewart's original algorithm, as described by Kagstrom, Kressner, Quintana-Orti, and Quintana-Orti (BIT 2008).
?hgeqz
Implements the QZ method for finding the generalized eigenvalues of the matrix pair $(H, T)$.

## Syntax

```
call shgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar, alphai, beta, q, ldq,
z, ldz, work, lwork, info)
call dhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar, alphai, beta, q, ldq,
z, ldz, work, lwork, info)
call chgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha, beta, q, ldq, z, ldz,
work, lwork, rwork, info)
call zhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha, beta, q, ldq, z, ldz,
work, lwork, rwork, info)
call hgeqz(h, t [,ilo] [,ihi] [,alphar] [,alphai] [,beta] [,q] [,z] [,job] [,compq]
[,compz] [,info])
call hgeqz(h, t [,ilo] [,ihi] [,alpha] [,beta] [,q] [,z] [,job] [,compq] [, compz]
[,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes the eigenvalues of a real/complex matrix pair $(H, T)$, where $H$ is an upper Hessenberg matrix and $T$ is upper triangular, using the double-shift version (for real flavors) or single-shift version (for complex flavors) of the $Q Z$ method. Matrix pairs of this type are produced by the reduction to generalized upper Hessenberg form of a real/complex matrix pair $(A, B)$ :
$A=Q_{1}{ }^{\star} H^{\star} Z_{1}{ }^{H}, B=Q_{1}{ }^{\star} T^{\star} Z_{1}{ }^{H}$,
as computed by ?gghrd.

## For real flavors:

If job = 'S', then the Hessenberg-triangular pair $(H, T)$ is reduced to generalized Schur form,
$H=Q^{\star} S^{\star} Z^{T}, T=Q^{\star} P^{\star} Z^{T}$,
where $Q$ and $Z$ are orthogonal matrices, $P$ is an upper triangular matrix, and $S$ is a quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal blocks. The 1-by-1 blocks correspond to real eigenvalues of the matrix pair ( $H, T$ ) and the 2-by-2 blocks correspond to complex conjugate pairs of eigenvalues.
Additionally, the 2-by-2 upper triangular diagonal blocks of $P$ corresponding to 2-by-2 blocks of $S$ are reduced to positive diagonal form, that is, if $S_{j+1, j}$ is non-zero, then $P_{j+1, j}=P_{j, j+1}=0, P_{j}, j>0$, and $P_{j}+$ 1, $j+1>0$.

## For complex flavors:

If job = 'S', then the Hessenberg-triangular pair $(H, T)$ is reduced to generalized Schur form,

```
H= Q* S* Z
```

where $Q$ and $Z$ are unitary matrices, and $S$ and $P$ are upper triangular.

## For all function flavors:

Optionally, the orthogonal/unitary matrix $Q$ from the generalized Schur factorization may be post-multiplied by an input matrix $Q_{1}$, and the orthogonal/unitary matrix $Z$ may be post-multiplied by an input matrix $Z_{1}$.

If $Q_{1}$ and $Z_{1}$ are the orthogonal/unitary matrices from ? gghrd that reduced the matrix pair $(A, B)$ to generalized upper Hessenberg form, then the output matrices $Q_{1} Q$ and $Z_{1} Z$ are the orthogonal/unitary factors from the generalized Schur factorization of $(A, B)$ :
$A=\left(Q_{1} Q\right) * S *\left(Z_{1} Z\right)^{H}, B=\left(Q_{1} Q\right) * P^{\star}\left(Z_{1} Z\right)^{H}$.
To avoid overflow, eigenvalues of the matrix pair $(H, T)$ (equivalently, of $(A, B)$ ) are computed as a pair of values (alpha,beta). For chgeqz/zhgeqz, alpha and beta are complex, and for shgeqz/dhgeqz, alpha is complex and beta real. If beta is nonzero, $\lambda=$ alpha/beta is an eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)

```
A* }X=\lambda*\mp@subsup{B}{}{*}\mp@subsup{X}{}{\prime
```

and if alpha is nonzero, $\mu=$ beta/alpha is an eigenvalue of the alternate form of the GNEP
$\mu^{\star} A^{\star} y=B^{\star} y$.
Real eigenvalues (for real flavors) or the values of alpha and beta for the i-th eigenvalue (for complex flavors) can be read directly from the generalized Schur form:
alpha $=S_{i, ~ i, ~ b e t a ~}=P_{i, i}$.
Input Parameters
job
compq
compz
n

CHARACTER*1. Specifies the operations to be performed. Must be 'E' or 'S'.

If job = 'E', then compute eigenvalues only;
If job = 'S', then compute eigenvalues and the Schur form.
CHARACTER*1. Must be 'N', 'I', or 'V'.
If compq $=$ ' $N$ ', left Schur vectors $(q)$ are not computed;
If compq $=$ ' I', $q$ is initialized to the unit matrix and the matrix of left Schur vectors of $(H, T)$ is returned;
If compq $=$ ' V ', $q$ must contain an orthogonal/unitary matrix $Q_{1}$ on entry and the product $Q_{1}{ }^{*} Q$ is returned.

CHARACTER*1. Must be 'N', 'I', or 'V'.
If compz = ' N ', right Schur vectors ( $z$ ) are not computed;
If compz = 'I', $z$ is initialized to the unit matrix and the matrix of right Schur vectors of $(H, T)$ is returned;

If compz = 'V', z must contain an orthogonal/unitary matrix $Z_{1}$ on entry and the product $Z_{1} * Z$ is returned.

INTEGER. The order of the matrices $H, T, Q$, and $Z$
( $n \geq 0$ ).
ilo, ihi
$h, t, q, z$, work
$I d h$
Idt
$1 d q$
$1 d z$
lwork

INTEGER. ilo and ihi mark the rows and columns of $H$ which are in Hessenberg form. It is assumed that $H$ is already upper triangular in rows and columns 1:ilo-1 and ihi+1:n.

Constraint:
If $n>0$, then $1 \leq i l o \leq i h i \leq n ;$
if $n=0$, then ilo $=1$ and ihi $=0$.
REAL for shgeqz
DOUBLE PRECISION for dhgeqz
COMPLEX for chgeqz
DOUBLE COMPLEX for zhgeqz.
Arrays:
On entry, $h\left(I d h,^{*}\right)$ contains the $n$-by- $n$ upper Hessenberg matrix $H$.
The second dimension of $h$ must be at least $\max (1, n)$.
On entry, $t(I d t, *)$ contains the $n$-by- $n$ upper triangular matrix $T$.
The second dimension of $t$ must be at least $\max (1, n)$.
$q(I d q, *):$
On entry, if compq = ' $V$ ', this array contains the orthogonal/unitary matrix $Q_{1}$ used in the reduction of $(A, B)$ to generalized Hessenberg form.
If compq $=$ ' $N$ ', then $q$ is not referenced.
The second dimension of $q$ must be at least $\max (1, n)$.
$z(I d z, *)$ :
On entry, if compz = 'V', this array contains the orthogonal/unitary matrix $Z_{1}$ used in the reduction of $(A, B)$ to generalized Hessenberg form.
If compz $=$ ' $N$ ', then $z$ is not referenced.
The second dimension of $z$ must be at least $\max (1, n)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $h$; at least max $(1, n)$.
INTEGER. The leading dimension of $t$; at least max $(1, n)$.
INTEGER. The leading dimension of $q$;
If compq $=$ ' $N$ ', then $I d q \geq 1$.
If compq $=$ 'I'or 'V', then $I d q \geq \max (1, n)$.
INTEGER. The leading dimension of $z$;
If compq $=$ ' $N$ ', then $l d z \geq 1$.
If compq $=$ 'I'or ' $V$ ', then $I d z \geq \max (1, n)$.
INTEGER. The dimension of the array work.
lwork $\geq \max (1, n)$.

If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes for details.

REAL for chgeqz
DOUBLE PRECISION for zhgeqz.
Workspace array, size at least max $(1, n)$. Used in complex flavors only.

## Output Parameters

h
t
alphar, alphai
alpha

For real flavors:
If job $=$ 'S', then on exit $h$ contains the upper quasi-triangular matrix $S$ from the generalized Schur factorization.
If job $=$ ' $E$ ', then on exit the diagonal blocks of $h$ match those of $S$, but the rest of $h$ is unspecified.
For complex flavors:
If job = 'S', then, on exit, $h$ contains the upper triangular matrix $S$ from the generalized Schur factorization.

If job $=$ ' $E$ ', then on exit the diagonal of $h$ matches that of $S$, but the rest of $h$ is unspecified.

If job $=$ ' S ', then, on exit, $t$ contains the upper triangular matrix $P$ from the generalized Schur factorization.

For real flavors:
2-by-2 diagonal blocks of $P$ corresponding to 2-by-2 blocks of $S$ are reduced to positive diagonal form, that is, if $h(j+1, j)$ is non-zero, then $t(j$ $+1, j)=t(j, j+1)=0$ and $t(j, j)$ and $t(j+1, j+1)$ will be positive.

If job $=$ ' $E$ ', then on exit the diagonal blocks of $t$ match those of $P$, but the rest of $t$ is unspecified.
For complex flavors:
if job $=$ ' $E$ ', then on exit the diagonal of $t$ matches that of $P$, but the rest of $t$ is unspecified.

REAL for shgeqz;
DOUBLE PRECISION for dhgeqz.
Arrays, size at least max $(1, n)$. The real and imaginary parts, respectively, of each scalar alpha defining an eigenvalue of GNEP.
If alphai $(j)$ is zero, then the $j$-th eigenvalue is real; if positive, then the $j$-th and $(j+1)$-th eigenvalues are a complex conjugate pair, with
alphai(j+1) = -alphai(j).
COMPLEX for chgeqz;
DOUBLE COMPLEX for zhgeqz.
Array, size at least max $(1, n)$.

The complex scalars alpha that define the eigenvalues of GNEP. alphai(i) $=S_{i, ~}$ in the generalized Schur factorization.

REAL for shgeqz
DOUBLE PRECISION for dhgeqz
COMPLEX for chgeqz
DOUBLE COMPLEX for zhgeqz.
Array, size at least $\max (1, n)$.
For real flavors:
The scalars beta that define the eigenvalues of GNEP.
Together, the quantities alpha $=(\operatorname{alphar}(j)$, alphai(j)) and beta $=$ beta $(j)$ represent the $j$-th eigenvalue of the matrix pair $(A, B)$, in one of the forms lambda $=$ alpha/beta or $m u=$ beta/alpha. Since either lambda or mu may overflow, they should not, in general, be computed.

## For complex flavors:

The real non-negative scalars beta that define the eigenvalues of GNEP. $\operatorname{beta}(i)=P_{i}, i$ in the generalized Schur factorization. Together, the quantities alpha $=$ alpha $(j)$ and beta $=\operatorname{beta}(j)$ represent the $j$-th eigenvalue of the matrix pair $(A, B)$, in one of the forms lambda $=$ alphal beta or $m u=$ beta/alpha. Since either lambda or mu may overflow, they should not, in general, be computed.

On exit, if compq = 'I', $q$ is overwritten by the orthogonal/unitary matrix of left Schur vectors of the pair $(H, T)$, and if compq $=$ ' V ', $q$ is overwritten by the orthogonal/unitary matrix of left Schur vectors of $(A, B)$.

On exit, if compz = 'I', $z$ is overwritten by the orthogonal/unitary matrix of right Schur vectors of the pair $(H, T)$, and if compz = ' V ', $z$ is overwritten by the orthogonal/unitary matrix of right Schur vectors of ( $A, B$ ).

If info $\geq 0$, on exit, work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=1, \ldots, n$, the $Q Z$ iteration did not converge.
$(H, T)$ is not in Schur form, but alphar(i), alphai(i) (for real flavors), alpha(i) (for complex flavors), and beta(i), i=infot1,..., $n$ should be correct.

If info $=n+1, \ldots, 2 n$, the shift calculation failed.
$(H, T)$ is not in Schur form, but alphar(i), alphai(i) (for real flavors), alpha(i) (for complex flavors), and beta(i), $i=i n f o-n+1, \ldots, n$ should be correct.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hgeqz interface are the following:

h	Holds the matrix $H$ of size ( $n, n$ ).
t	Holds the matrix $T$ of size ( $n, n$ ).
alphar	Holds the vector of length $n$. Used in real flavors only.
alphai	Holds the vector of length $n$. Used in real flavors only.
alpha	Holds the vector of length $n$. Used in complex flavors only.
beta	Holds the vector of length $n$.
q	Holds the matrix $Q$ of size ( $n, n$ ).
z	Holds the matrix $Z$ of size ( $n, n$ ).
ilo	Default value for this argument is ilo $=1$.
ihi	Default value for this argument is ihi $=n$.
job	Must be 'E' or 'S'. The default value is 'E'.
compq	If omitted, this argument is restored based on the presence of argument $q$ as follows:
	compq = 'I', if $q$ is present,   compq $=$ ' $N$ ', if $q$ is omitted.

If present, compq must be equal to 'I' or 'V' and the argument $q$ must also be present.
Note that there will be an error condition if compq is present and $q$ omitted.
If omitted, this argument is restored based on the presence of argument $z$ as follows:
compz = 'I', if $z$ is present,
compz $=$ ' $N$ ', if $z$ is omitted.
If present, compz must be equal to 'I' or 'V' and the argument $z$ must also be present.
Note an error condition if compz is present and $z$ is omitted.

## Application Notes

If you are in doubt how much workspace to supply, use a generous value of /work for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
?tgevc
Computes some or all of the right and/or left generalized eigenvectors of a pair of upper triangular matrices.

## Syntax

```
call stgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work,
info)
call dtgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work,
info)
call ctgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work,
rwork, info)
call ztgevc(side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr, ldvr, mm, m, work,
rwork, info)
call tgevc(s, p [,howmny] [,select] [,vl] [,vr] [,m] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine computes some or all of the right and/or left eigenvectors of a pair of real/complex matrices $(S, P)$, where $S$ is quasi-triangular (for real flavors) or upper triangular (for complex flavors) and $P$ is upper triangular.

Matrix pairs of this type are produced by the generalized Schur factorization of a real/complex matrix pair $(A, B)$ :
$A=Q^{\star} S^{\star} Z^{H}, B=Q^{\star} P^{\star} Z^{H}$
as computed by ?gghrd plus ?hgeqz.
The right eigenvector $x$ and the left eigenvector $y$ of $(S, P)$ corresponding to an eigenvalue $w$ are defined by:

$$
S^{\star} x=w^{\star} P^{\star} x, y^{H \star} S=w^{\star} y^{H \star} P
$$

The eigenvalues are not input to this routine, but are computed directly from the diagonal blocks or diagonal elements of $S$ and $P$.
This routine returns the matrices $X$ and/or $Y$ of right and left eigenvectors of $(S, P)$, or the products $Z^{*} X$ and/or $Q^{*} Y$, where $Z$ and $Q$ are input matrices.

If $Q$ and $Z$ are the orthogonal/unitary factors from the generalized Schur factorization of a matrix pair $(A, B)$, then $Z^{*} X$ and $Q^{*} Y$ are the matrices of right and left eigenvectors of $(A, B)$.

## Input Parameters

```
 If side = 'L', compute left eigenvectors only.
 If side = 'B',compute both right and left eigenvectors.
CHARACTER*1. Must be 'A','B', or 'S'.
 If howmny = 'A', compute all right and/or left eigenvectors.
 If howmny = 'B', compute all right and/or left eigenvectors,
 backtransformed by the matrices in vr and/or v/.
 If howmny = 'S', compute selected right and/or left eigenvectors, specified
 by the logical array select.
 LOGICAL.
Array, size at least max \((1, n)\).
If howmny \(=\) 'S', select specifies the eigenvectors to be computed.
If howmny = 'A'or 'B', select is not referenced.
For real flavors:
If \(w(j)\) is a real eigenvalue, the corresponding real eigenvector is computed if select \((j)\) is .TRUE..
If \(w(j)\) and omega \((j+1)\) are the real and imaginary parts of a complex eigenvalue, the corresponding complex eigenvector is computed if either \(\operatorname{select}(j)\) or \(\operatorname{select}(j+1)\) is .TRUE., and on exit \(\operatorname{select}(j)\) is set to .TRUE. and \(\operatorname{select}(j+1)\) is set to .FALSE..
For complex flavors:
The eigenvector corresponding to the \(j\)-th eigenvalue is computed if select \((j)\) is . TRUE..
INTEGER. The order of the matrices \(S\) and \(P(n \geq 0)\).
REAL for stgevc
DOUBLE PRECISION for dtgevc
COMPLEX for ctgevc
DOUBLE COMPLEX for ztgevc.
```


## Arrays:

```
\(s(I d s, *)\) contains the matrix \(S\) from a generalized Schur factorization as computed by ?hgeqz. This matrix is upper quasi-triangular for real flavors, and upper triangular for complex flavors.
The second dimension of \(s\) must be at least \(\max (1, n)\).
\(p(I d p, *)\) contains the upper triangular matrix \(P\) from a generalized Schur factorization as computed by ?hgeqz.
For real flavors, 2-by-2 diagonal blocks of \(P\) corresponding to 2-by-2 blocks of \(S\) must be in positive diagonal form.
For complex flavors, \(P\) must have real diagonal elements. The second dimension of \(p\) must be at least \(\max (1, n)\).
```

If side $=$ 'L' or ' B ' and howmny $=$ ' B ', $v /(I d v /, *)$ must contain an $n$-by$n$ matrix $Q$ (usually the orthogonal/unitary matrix $Q$ of left Schur vectors returned by ?hgeqz). The second dimension of $v /$ must be at least max(1, mm ).

If side = 'R', v/ is not referenced.
If side $=$ ' R ' or ' B ' and howmny $=$ ' B ', $v r(/ d v r, *)$ must contain an $n$-by$n$ matrix $Z$ (usually the orthogonal/unitary matrix $Z$ of right Schur vectors returned by ?hgeqz). The second dimension of vr must be at least max(1, mm ).

If side = 'L', vr is not referenced.
work(*) is a workspace array.
size at least max $(1,6 * n)$ for real flavors and at least max $(1,2 * n)$ for complex flavors.

INTEGER. The leading dimension of $s$; at least max $(1, n)$.
INTEGER. The leading dimension of $p$; at least max $(1, n)$.
INTEGER. The leading dimension of $v /$;
If side $=$ 'L' or 'B', then $l d v l \geq n$.
If side $=$ 'R', then $|d v| \geq 1$.
INTEGER. The leading dimension of $v r$;
If side $=$ ' R ' or ' B ', then $l d v r \geq n$.
If side $=$ 'L', then $/ d v r \geq 1$.
INTEGER. The number of columns in the arrays $v /$ and/or $v r$ ( $m m \geq m$ ).
REAL for ctgevc DOUBLE PRECISION for ztgevc. Workspace array, size at least max $(1,2 * n)$. Used in complex flavors only.

## Output Parameters

On exit, if side $=$ 'L' or 'B', v/ contains:
if howmny $=$ ' $A$ ', the matrix $Y$ of left eigenvectors of $(S, P)$;
if howmny $=$ ' B ', the matrix $Q^{*} Y$;
if howmny $=$ ' $S$ ', the left eigenvectors of $(S, P)$ specified by select, stored consecutively in the columns of $v l$, in the same order as their eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part, and the second the imaginary part.

On exit, if side $=$ ' R ' or ' B ', vr contains:
if howmny $=$ ' $A$ ', the matrix $X$ of right eigenvectors of $(S, P)$;
if howmny $=$ ' $\mathrm{B}^{\prime}$, the matrix $Z^{*} X$;
if howmny = ' S ', the right eigenvectors of $(S, P)$ specified by select, stored consecutively in the columns of $v r$, in the same order as their eigenvalues.

For real flavors:
A complex eigenvector corresponding to a complex eigenvalue is stored in two consecutive columns, the first holding the real part, and the second the imaginary part.

INTEGER. The number of columns in the arrays $v /$ and/or vr actually used to store the eigenvectors.

If howmny = 'A' or 'B', $m$ is set to $n$.
For real flavors:
Each selected real eigenvector occupies one column and each selected complex eigenvector occupies two columns.
For complex flavors:
Each selected eigenvector occupies one column.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
For real flavors:
if info $=i>0$, the 2 -by- 2 block $(i: i+1)$ does not have a complex eigenvalue.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine tgevc interface are the following:

$s$	Holds the matrix $S$ of size ( $n, n$ ).
$p$	Holds the matrix $P$ of size ( $n, n$ ).
select	Holds the vector of length $n$.
vl	Holds the matrix VL of size ( $n, m m$ ).
vr	Holds the matrix $V R$ of size ( $n, m m$ ).
side	Restored based on the presence of arguments $v /$ and $v r$ as follows:
	side $=$ ' B ', if both $v /$ and $v r$ are present,
	side $=$ 'L', if $v /$ is present and $v r$ omitted,
	side = 'R', if vl is omitted and vr present,
	Note that there will be an error condition if both $v /$ and $v r$ are omitted.
howmny	If omitted, this argument is restored based on the presence of argument select as follows:
	howmny = 'S', if select is present,

howmny = 'A', if select is omitted.
If present, howmny must be equal to 'A' or ' B ' and the argument select must be omitted.

Note that there will be an error condition if both howmny and select are present.
?tgexc
Reorders the generalized Schur decomposition of a pair of matrices $(A, B)$ so that one diagonal block of $(A, B)$ moves to another row index.

## Syntax

```
call stgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, work, lwork,
info)
call dtgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, work, lwork,
info)
call ctgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)
call ztgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)
call tgexc(a, b [,ifst] [,ilst] [,z] [,q] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix pair $(A, B)$ using an orthogonal/unitary equivalence transformation

$$
(A, B)=Q^{\star}(A, B) \star Z^{H}
$$

so that the diagonal block of $(A, B)$ with row index ifst is moved to row ilst. Matrix pair $(A, B)$ must be in a generalized real-Schur/Schur canonical form (as returned by gges), that is, $A$ is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks and $B$ is upper triangular. Optionally, the matrices $Q$ and $Z$ of generalized Schur vectors are updated.

$$
\begin{aligned}
& Q_{\text {in }} * A_{\text {in }} * Z_{\text {in }}^{T}=Q_{\text {out }} * A_{\text {out }} * Z_{\text {out }}{ }^{T} \\
& Q_{\text {in }} * B_{\text {in }} * Z_{\text {in }}{ }^{T}=Q_{\text {out }} * B_{\text {out }} * Z_{\text {out }}
\end{aligned}
$$

## Input Parameters

```
wantq, wantz
n
a,b,q,z
```

LOGICAL.
If wantq $=$.TRUE., update the left transformation matrix $Q$;
If wantq $=$.FALSE., do not update $Q$;
If wantz $=$.TRUE., update the right transformation matrix $Z$;
If wantz $=$.FALSE., do not update $Z$.
INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.
REAL for stgexc

	DOUBLE PRECISION for dtgexc
	COMPLEX for ctgexc
	DOUBLE COMPLEX for ztgexc.
	Arrays:
	$a(/ d a, *)$ contains the matrix $A$.
	The second dimension of $a$ must be at least max $(1, n)$.
	$b(I d b, *)$ contains the matrix $B$. The second dimension of $b$ must be at least $\max (1, n)$.
	$q(I d q, *)$
	If want $q=$. FALSE., then $q$ is not referenced.
	If want $q=$. TRUE., then $q$ must contain the orthogonal/unitary matrix $Q$.
	The second dimension of $q$ must be at least max $(1, n)$.
	$z(I d z, *)$
	If wantz = .FALSE., then $z$ is not referenced.
	If wantz = .TRUE., then z must contain the orthogonal/unitary matrix $Z$.
	The second dimension of $z$ must be at least max $(1, n)$.
Ida	INTEGER. The leading dimension of $a$; at least max $(1, n)$.
1 db	INTEGER. The leading dimension of $b$; at least max $(1, n)$.
$1 d q$	INTEGER. The leading dimension of $q$;
	If wantq $=$.FALSE., then $/ d q \geq 1$.
	If wantq $=. \operatorname{TRUE} .$, then $I d q \geq \max (1, n)$.
1 dz	INTEGER. The leading dimension of $z$;
	If wantz = .FALSE., then $I d z \geq 1$.
	If wantz $=$. TRUE., then $I d z \geq \max (1, n)$.
ifst, ilst	INTEGER. Specify the reordering of the diagonal blocks of $(A, B)$. The block with row index ifst is moved to row ilst, by a sequence of swapping between adjacent blocks. Constraint: $1 \leq i f s t, i l s t \leq n$.
work	REAL for stgexc;
	DOUBLE PRECISION for dtgexc.
	Workspace array, size (/work). Used in real flavors only.
Iwork	INTEGER. The dimension of work; must be at least $4 n+16$.
	If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. See Application Notes for details.

## Output Parameters

```
a,b,q,z
ifst, ilst
```

info

Overwritten by the updated matrices $A, B, Q$, and $Z$ respectively.
Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on entry, it is changed to point to the first row; ilst always points to the first row of the block in its final position (which may differ from its input value by $\pm 1$ ).

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=1$, the transformed matrix pair $(A, B)$ would be too far from generalized Schur form; the problem is ill-conditioned. $(A, B)$ may have been partially reordered, and ilst points to the first row of the current position of the block being moved.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine tgexc interface are the following:

```
a Holds the matrix A of size (}n,n)\mathrm{ .
b Holds the matrix B of size (}n,n)\mathrm{ .
z Holds the matrix Z of size (}n,n)\mathrm{ .
q Holds the matrix Q of size (}n,n)\mathrm{ .
wantq
wantz
Restored based on the presence of the argument z as follows:
wantz = .TRUE, if z is present,
wantz =. FALSE, if z is omitted.
```


## Application Notes

If it is not clear how much workspace to supply, use a generous value of lwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

## ?tgsen

Reorders the generalized Schur decomposition of a pair of matrices $(A, B)$ so that a selected cluster of eigenvalues appears in the leading diagonal blocks of $(A, B)$.

## Syntax

```
call stgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar, alphai, beta, q, ldq,
z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)
call dtgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar, alphai, beta, q, ldq,
z, ldz, m, pl, pr, dif, work, lwork, iwork, liwork, info)
call ctgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha, beta, q, ldq, z, ldz,
m, pl, pr, dif, work, lwork, iwork, liwork, info)
call ztgsen(ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha, beta, q, ldq, z, ldz,
m, pl, pr, dif, work, lwork, iwork, liwork, info)
call tgsen(a, b, select [,alphar] [,alphai] [,beta] [,ijob] [,q] [,z] [,pl] [,pr] [,dif]
[,m] [,info])
call tgsen(a, b, select [,alpha] [,beta] [,ijob] [,q] [,z] [,pl] [,pr] [, dif] [,m]
[,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine reorders the generalized real-Schur/Schur decomposition of a real/complex matrix pair $(A, B)$ (in terms of an orthogonal/unitary equivalence transformation $Q^{T_{\star}}(A, B) \star Z$ for real flavors or $Q^{H_{\star}}(A, B) \star Z$ for complex flavors), so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the pair $(A, B)$. The leading columns of $Q$ and $Z$ form orthonormal/unitary bases of the corresponding left and right eigenspaces (deflating subspaces).
$(A, B)$ must be in generalized real-Schur/Schur canonical form (as returned by gges), that is, $A$ and $B$ are both upper triangular.
?tgsen also computes the generalized eigenvalues
$\omega_{j}=(\operatorname{alphar}(j)+\operatorname{alphai}(j) * i) / \operatorname{beta}(j)$ (for real flavors)
$\omega_{j}=\operatorname{alpha}(j) /$ beta $(j)$ (for complex flavors)
of the reordered matrix pair $(A, B)$.
Optionally, the routine computes the estimates of reciprocal condition numbers for eigenvalues and eigenspaces. These are $\operatorname{Difu}\left[\left(A_{11}, B_{11}\right),\left(A_{22}, B_{22}\right)\right]$ and $\operatorname{Difl}\left[\left(A_{11}, B_{11}\right),\left(A_{22}, B_{22}\right)\right]$, that is, the separation(s) between the matrix pairs $\left(A_{11}, B_{11}\right)$ and ( $A_{22}, B_{22}$ ) that correspond to the selected cluster and the eigenvalues outside the cluster, respectively, and norms of "projections" onto left and right eigenspaces with respect to the selected cluster in the (1,1)-block.

## Input Parameters

ijob
INTEGER. Specifies whether condition numbers are required for the cluster of eigenvalues ( $p /$ and $p r$ ) or the deflating subspaces Difu and Difl.

If ijob $=0$, only reorder with respect to select;

If $i$ job $=1$, reciprocal of norms of "projections" onto left and right eigenspaces with respect to the selected cluster ( $p /$ and $p r$ );

If ijob $=2$, compute upper bounds on Difu and Difl, using F-norm-based estimate (dif (1:2));

If ijob $=3$, compute estimate of Difu and Difl, using 1-norm-based estimate (dif (1:2)). This option is about 5 times as expensive as ijob $=2$;
If ijob $=4,>$ compute $p l$, pr and dif (i.e., options 0,1 and 2 above). This is an economic version to get it all;
If ijob $=5$, compute $p l$, pr and dif (i.e., options 0,1 and 3 above).
LOGICAL.
If wantq $=$.TRUE., update the left transformation matrix $Q$;
If wantq $=$.FALSE., do not update $Q$;
If wantz = .TRUE., update the right transformation matrix $Z$;
If wantz $=$.FALSE., do not update $Z$.
LOGICAL.
Array, size at least max $(1, n)$. Specifies the eigenvalues in the selected cluster.

To select an eigenvalue $\omega_{j}$, select $(j)$ must be .TRUE. For real flavors: to select a complex conjugate pair of eigenvalues $\omega_{j}$ and $\omega_{j+1}$ (corresponding 2 by 2 diagonal block), select $(j)$ and/or $\operatorname{select}(j+1)$ must be set to .TRUE. ; the complex conjugate $\omega_{j}$ and $\omega_{j+1}$ must be either both included in the cluster or both excluded.

INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.
REAL for stgsen
DOUBLE PRECISION for dtgsen
COMPLEX for ctgsen
DOUBLE COMPLEX for ztgsen.

## Arrays:

$a(/ d a, *)$ contains the matrix $A$.
For real flavors: $A$ is upper quasi-triangular, with $(A, B)$ in generalized real Schur canonical form.

For complex flavors: $A$ is upper triangular, in generalized Schur canonical form.

The second dimension of a must be at least max $(1, n)$.
$b(I d b, *)$ contains the matrix $B$.
For real flavors: $B$ is upper triangular, with $(A, B)$ in generalized real Schur canonical form.

For complex flavors: $B$ is upper triangular, in generalized Schur canonical form. The second dimension of $b$ must be at least $\max (1, n)$.
$q(I d q, *)$

If want $q=$. TRUE., then $q$ is an $n$-by- $n$ matrix;
If want $q=$.FALSE., then $q$ is not referenced.
The second dimension of $q$ must be at least max $(1, n)$.
$z(I d z, *)$
If want $z=$.TRUE., then $z$ is an $n$-by-n matrix;
If want $z=$.FALSE., then $z$ is not referenced.
The second dimension of $z$ must be at least $\max (1, n)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a$; at least max $(1, n)$.
INTEGER. The leading dimension of $b$; at least max $(1, n)$.
INTEGER. The leading dimension of $q$; $I d q \geq 1$.
If want $q=. \operatorname{TRUE} .$, then $I d q \geq \max (1, n)$.
INTEGER. The leading dimension of $z ; I d z \geq 1$.
If wantz $=$.TRUE., then $I d z \geq \max (1, n)$.
INTEGER. The dimension of the array work.
For real flavors:
If ijob $=1,2$, or 4,1 wor $k \geq \max (4 n+16,2 m(n-m))$.
If ijob $=3$ or 5 , 1 work $\geq \max (4 n+16,4 m(n-m))$.
For complex flavors:
If ijob $=1,2$, or 4, 1 work $\geq \max (1,2 m(n-m))$.
If ijob $=3$ or 5,1 work $\geq \max (1,4 m(n-m))$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla. See Application Notes for details.

INTEGER. Workspace array, its dimension max (1, liwork).
INTEGER. The dimension of the array iwork.
For real flavors:
If ijob $=1,2$, or 4 , liwork $\geq n+6$.
If ijob $=3$ or 5, liwork $\geq \max (n+6,2 m(n-m))$.
For complex flavors:
If ijob $=1,2$, or 4 , liwork $\geqq n+2$.
If ijob $=3$ or 5 , liwork $\geq \max (n+2,2 m(n-m))$.
If liwork = -1 , then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued by xerbla. See Application Notes for details.

## Output Parameters

```
a,b
alphar, alphai
```

alpha

Overwritten by the reordered matrices $A$ and $B$, respectively.
REAL for stgsen;
DOUBLE PRECISION for dtgsen.
Arrays, size at least $\max (1, n)$. Contain values that form generalized eigenvalues in real flavors.
See beta.
COMPLEX for ctgsen;
DOUBLE COMPLEX for ztgsen.
Array, size at least $\max (1, n)$. Contain values that form generalized eigenvalues in complex flavors.

See beta.
REAL for stgsen
DOUBLE PRECISION for dtgsen
COMPLEX for ctgsen
DOUBLE COMPLEX for ztgsen.
Array, size at least max $(1, n)$.
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), $j=1, \ldots, n$, will be the generalized eigenvalues.
alphar $(j)+\operatorname{alphai}(j) * i$ and beta( $j), j=1, \ldots, n$ are the diagonals of the complex Schur form $(S, T)$ that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of $(A, B)$ were further reduced to triangular form using complex unitary transformations.
If alphai( $j$ ) is zero, then the $j$-th eigenvalue is real; if positive, then the $j$ th and $(j+1)$-st eigenvalues are a complex conjugate pair, with alphai ( $j$ + 1) negative.

For complex flavors:
The diagonal elements of $A$ and $B$, respectively, when the pair $(A, B)$ has been reduced to generalized Schur form. alpha(i)/beta(i), $i=1, \ldots, n$ are the generalized eigenvalues.

If wantq $=$.TRUE., then, on exit, $Q$ has been postmultiplied by the left orthogonal transformation matrix which reorder $(A, B)$. The leading $m$ columns of $Q$ form orthonormal bases for the specified pair of left eigenspaces (deflating subspaces).

If wantz = .TRUE., then, on exit, $Z$ has been postmultiplied by the left orthogonal transformation matrix which reorder $(A, B)$. The leading $m$ columns of $Z$ form orthonormal bases for the specified pair of left eigenspaces (deflating subspaces).

INTEGER.

```
pl, pr
```

dif
work(1)
iwork(1)
info

The dimension of the specified pair of left and right eigen-spaces (deflating subspaces); $0 \leq m \leq n$.

REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If $i$ job $=1,4$, or $5, p l$ and $p r$ are lower bounds on the reciprocal of the norm of "projections" onto left and right eigenspaces with respect to the selected cluster.
$0<p l, p r \leq 1$. If $m=0$ or $m=n, p l=p r=1$.
If ijob $=0,2$ or $3, p l$ and $p r$ are not referenced
REAL for single precision flavors;DOUBLE PRECISION for double precision flavors.

Array, size (2).
If $i j o b \geq 2, \operatorname{dif}(1: 2)$ store the estimates of Difu and Difl.
If $i$ job $=2$ or $4, \operatorname{dif}(1: 2)$ are F-norm-based upper bounds on Difu and Difl.

If ijob $=3$ or 5, $\operatorname{dif}(1: 2)$ are 1-norm-based estimates of Difu and Difl.
If $m=0$ or $m=n$, $\operatorname{dif}(1: 2)=\mathrm{F}-\operatorname{norm}([A, B])$.
If $i$ job $=0$ or 1 , dif is not referenced.
If ijob is not 0 and info $=0$, on exit, work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

If ijob is not 0 and info $=0$, on exit, iwork (1) contains the minimum value of liwork required for optimum performance. Use this liwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=1$, Reordering of $(A, B)$ failed because the transformed matrix pair $(A, B)$ would be too far from generalized Schur form; the problem is very ill-conditioned. $(A, B)$ may have been partially reordered.
If ijob $>0,0$ is returned in dif, pl and pr.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine tgsen interface are the following:

```
a Holds the matrix A of size (n,n).
b Holds the matrix B of size (}n,n)\mathrm{ .
select Holds the vector of length n.
```

alphar	Holds the vector of length $n$. Used in real flavors only.
alphai	Holds the vector of length $n$. Used in real flavors only.
alpha	Holds the vector of length $n$. Used in complex flavors only.
beta	Holds the vector of length $n$.
q	Holds the matrix $Q$ of size ( $n, n$ ).
$z$	Holds the matrix $Z$ of size ( $n, n$ ).
dif	Holds the vector of length (2).
ijob	Must be $0,1,2,3,4$, or 5 . The default value is 0 .
wantq	Restored based on the presence of the argument $q$ as follows:   wantq $=$. TRUE, if $q$ is present,   want $q=$. FALSE, if $q$ is omitted.
wantz	Restored based on the presence of the argument $z$ as follows:   wantz $=$. TRUE, if $z$ is present,   wantz $=$. FALSE, if $z$ is omitted.

## Application Notes

If it is not clear how much workspace to supply, use a generous value of Iwork (or liwork) for the first run or set lwork $=-1$ (liwork $=-1$ ).

If Iwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If $\operatorname{lwork}=-1$ (liwork $=-1$ ), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if Iwork (liwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
?tgsyl
Solves the generalized Sylvester equation.
Syntax

```
call stgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale,
dif, work, lwork, iwork, info)
call dtgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale,
dif, work, lwork, iwork, info)
call ctgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale,
dif, work, lwork, iwork, info)
call ztgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale,
dif, work, lwork, iwork, info)
call tgsyl(a, b, c, d, e, f [,ijob] [,trans] [,scale] [,dif] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine solves the generalized Sylvester equation:

```
A*R-L\star}B=scale*
D*}R-\mp@subsup{L}{}{\star}E=scale* F
```

where $R$ and $L$ are unknown $m$-by- $n$ matrices, $(A, D),(B, E)$ and $(C, F)$ are given matrix pairs of size $m$-by$m, n$-by- $n$ and $m$-by- $n$, respectively, with real/complex entries. $(A, D)$ and $(B, E)$ must be in generalized realSchur/Schur canonical form, that is, $A, B$ are upper quasi-triangular/triangular and $D, E$ are upper triangular.

The solution $(R, L)$ overwrites $(C, F)$. The factor scale, $0 \leq s c a l e \leq 1$, is an output scaling factor chosen to avoid overflow.

In matrix notation the above equation is equivalent to the following: solve $Z^{{ }^{*}}{ }_{x}=s c a l{ }^{\star} b$, where $Z$ is defined as

$$
Z=\left(\begin{array}{ll}
\operatorname{kron}\left(I_{n}, A\right) & -\operatorname{kron}\left(B^{T}, I_{m}\right) \\
\operatorname{kron}\left(I_{n}, D\right) & -\operatorname{kron}\left(E^{T}, I_{m}\right)
\end{array}\right)
$$

Here $I_{k}$ is the identity matrix of size $k$ and $X^{\top}$ is the transpose/conjugate-transpose of $X . k r o n(X, Y)$ is the Kronecker product between the matrices $X$ and $Y$.
If trans = 'T' (for real flavors), or trans = 'C' (for complex flavors), the routine ?tgsyl solves the transposed/conjugate-transposed system $Z^{T} * y=s c a l e * b$, which is equivalent to solve for $R$ and $L$ in
$A^{\mathrm{T}} \star R+D^{\mathrm{T}} \star L=$ scale ${ }^{*} C$
$R^{\star} B^{T}+L^{\star} E^{\mathrm{T}}=$ scale $^{\star}(-F)$
This case (trans = 'T' for stgsyl/dtgsyl or trans = 'C' for ctgsyl/ztgsyl) is used to compute an one-norm-based estimate of $\operatorname{Dif}[(A, D),(B, E)]$, the separation between the matrix pairs $(A, D)$ and $(B, E)$, using lacon/lacon.
If ijob $\geq 1$, ? tgsyl computes a Frobenius norm-based estimate of $\operatorname{Dif}[(A, D),(B, E)]$. That is, the reciprocal of a lower bound on the reciprocal of the smallest singular value of $Z$. This is a level 3 BLAS algorithm.

## Input Parameters

trans	CHARACTER*1. Must be 'N', 'T', or 'C'.
	If trans = 'N', solve the generalized Sylvester equation.
	If trans = 'T', solve the 'transposed' system (for real flavors only).
	If trans = 'C', solve the ' conjugate transposed' system (for complex flavors only).
ijob	INTEGER. Specifies what kind of functionality to be performed:
	If $i$ job $=0$, solve the generalized Sylvester equation only;


	If $i$ job $=1$, perform the functionality of $i j o b=0$ and ijob $=3$;
	If $i$ job $=2$, perform the functionality of $i j o b=0$ and $i j o b=4$;
	If $i$ job $=3$, only an estimate of $\operatorname{Dif}[(A, D),(B, E)]$ is computed (look ahead strategy is used);
	If ijob $=4$, only an estimate of $\operatorname{Dif}[(A, D),(B, E)]$ is computed (?gecon on sub-systems is used). If trans $=' T$ ' or ' C ', ijob is not referenced.
m	INTEGER. The order of the matrices $A$ and $D$, and the row dimension of the matrices $C, F, R$ and $L$.
$n$	INTEGER. The order of the matrices $B$ and $E$, and the column dimension of the matrices $C, F, R$ and $L$.
$a, b, c, d, e, f$, work	REAL for stgsyl
	DOUBLE PRECISION for dtgsyl
	COMPLEX for ctgsyl
	DOUBLE COMPLEX for ztgsyl.
	Arrays:
	$a(I d a, *)$ contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix $A$.
	The second dimension of a must be at least max $(1, m)$.
	$b(I d b, *)$ contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix $B$. The second dimension of $b$ must be at least $\max (1, n)$.
	$c\left(/ d c,{ }^{*}\right)$ contains the right-hand-side of the first matrix equation in the generalized Sylvester equation (as defined by trans)
	The second dimension of $c$ must be at least max $(1, n)$.
	$d(I d d, *)$ contains the upper triangular matrix $D$.
	The second dimension of $d$ must be at least max $(1, m)$.
	$e(/ d e, *)$ contains the upper triangular matrix $E$.
	The second dimension of $e$ must be at least max $(1, n)$.
	$f(I d f, *)$ contains the right-hand-side of the second matrix equation in the generalized Sylvester equation (as defined by trans)
	The second dimension of $f$ must be at least max $(1, n)$.
	work is a workspace array, its dimension max ( 1,1 work).
Ida	INTEGER. The leading dimension of $a$; at least max $(1, m)$.
1 db	INTEGER. The leading dimension of $b$; at least max $(1, n)$.
$1 d c$	INTEGER. The leading dimension of $c$; at least max $(1, m)$
ldd	INTEGER. The leading dimension of $d$; at least max $(1, m)$.
lde	INTEGER. The leading dimension of $e$; at least max $(1, n)$.
$1 d f$	INTEGER. The leading dimension of $f$; at least max $(1, m)$

```
l work
```

iwork

## Output Parameters

C
f
work(1)
info

INTEGER.
The dimension of the array work. 1 work $\geq 1$.
If $i$ job $=1$ or 2 and trans $=' N^{\prime}$, lwork $\geq \max \left(1,2 * m^{*} n\right)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla. See Application Notes for details.

INTEGER. Workspace array, size at least $(m+n+6)$ for real flavors, and at least $(m+n+2)$ for complex flavors.

If ijob=0, 1 , or 2 , overwritten by the solution $R$.
If $i j o b=3$ or 4 and trans $=' N$ ', $c$ holds $R$, the solution achieved during the computation of the Dif-estimate.

If $i$ job $=0,1$, or 2 , overwritten by the solution $L$.
If $i j o b=3$ or 4 and trans $=$ ' $N$ ', $f$ holds $L$, the solution achieved during the computation of the Dif-estimate.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
On exit, dif is the reciprocal of a lower bound of the reciprocal of the Diffunction, that is, dif is an upper bound of $\operatorname{Dif}[(A, D),(B, E)]=$ sigma_min( $Z$ ), where $Z$ as defined in the description.
If $i$ job $=0$, or trans $=$ ' $T$ ' (for real flavors), or trans $=' C$ ' (for complex flavors), dif is not touched.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
On exit, scale is the scaling factor in the generalized Sylvester equation.
If $0<$ scale $<1, c$ and $f$ hold the solutions $R$ and $L$, respectively, to a slightly perturbed system but the input matrices $A, B, D$ and $E$ have not been changed.

If scale $=0, c$ and $f$ hold the solutions $R$ and $L$, respectively, to the homogeneous system with $C=F=0$. Normally, scale $=1$.

If info $=0$, work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $>0,(A, D)$ and $(B, E)$ have common or close eigenvalues.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine tgsyl interface are the following:

$a$	Holds the matrix $A$ of size $(m, m)$.
$b$	Holds the matrix $B$ of size $(n, n)$.
$c$	Holds the matrix $C$ of size $(m, n)$.
$d$	Holds the matrix $D$ of size $(m, m)$.
$e$	Holds the matrix $E$ of size $(n, n)$.
$f$	Holds the matrix $F$ of size $(m, n)$.
ijob	Must be $0,1,2,3$, or 4. The default value is 0.
trans	Must be ' $\mathrm{N}^{\prime}$ or ' T '. The default value is ' N '.

## Application Notes

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

## ?tgsna <br> Estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a pair of matrices in generalized real Schur canonical form.

## Syntax

```
call stgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, ldvr, s, dif, mm, m,
work, lwork, iwork, info)
call dtgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, ldvr, s, dif, mm, m,
work, lwork, iwork, info)
call ctgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, ldvr, s, dif, mm, m,
work, lwork, iwork, info)
call ztgsna(job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr, ldvr, s, dif, mm, m,
work, lwork, iwork, info)
call tgsna(a, b [,s] [,dif] [,vl] [,vr] [,select] [,m] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The real flavors stgsna/dtgsna of this routine estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair $(A, B)$ in generalized real Schur canonical form (or of any matrix pair $\left(Q^{*} A^{*} Z^{\top}, Q^{*} B^{*} Z^{T}\right)$ with orthogonal matrices $Q$ and $Z$.
$(A, B)$ must be in generalized real Schur form (as returned by gges/gges), that is, $A$ is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular.

The complex flavors ctgsna/ztgsna estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair $(A, B) .(A, B)$ must be in generalized Schur canonical form, that is, $A$ and $B$ are both upper triangular.

## Input Parameters

job	CHARACTER*1. Specifies whether condition numbers are required for eigenvalues or eigenvectors. Must be 'E' or 'V' or 'B'.
	If job = 'E', for eigenvalues only (compute s).
	If job $=$ 'V', for eigenvectors only (compute dif ).
	If job $=$ ' B ', for both eigenvalues and eigenvectors (compute both $s$ and dif).
howmny	CHARACTER*1. Must be 'A' or 'S'.
	If howmny = 'A', compute condition numbers for all eigenpairs.
	If howmny = 'S', compute condition numbers for selected eigenpairs specified by the logical array select.
select	LOGICAL.
	Array, size at least max $(1, n)$.
	If howmny = 'S', select specifies the eigenpairs for which condition numbers are required.
	If howmny = 'A', select is not referenced.
	For real flavors:
	To select condition numbers for the eigenpair corresponding to a real eigenvalue $\omega_{j}$, select $(j)$ must be set to .TRUE.; to select condition numbers corresponding to a complex conjugate pair of eigenvalues $\omega_{j}$ and $\omega_{j+1}$, either select $(j)$ or $\operatorname{select}(j+1)$ must be set to .TRUE.
	For complex flavors:
	To select condition numbers for the corresponding $j$-th eigenvalue and/or eigenvector, select(j) must be set to .TRUE..
$n$	INTEGER. The order of the square matrix pair ( $A, B$ )
	( $n \geq 0$ ).
$a, b, v l, v r, w o r k$	REAL for stgsna

DOUBLE PRECISION for dtgsna
COMPLEX for ctgsna
DOUBLE COMPLEX for ztgsna.

## Arrays:

$a(/ d a, *)$ contains the upper quasi-triangular (for real flavors) or upper triangular (for complex flavors) matrix $A$ in the pair ( $A, B$ ).
The second dimension of a must be at least $\max (1, n)$.
$b(I d b, *)$ contains the upper triangular matrix $B$ in the pair $(A, B)$. The second dimension of $b$ must be at least $\max (1, n)$.

If job = 'E' or 'B', v/(Idvl,*) must contain left eigenvectors of ( $A, B$ ), corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of $v /$, as returned by ?tgevc.

If job = ' V ', v l is not referenced. The second dimension of vl must be at least $\max (1, m)$.
If job = 'E' or 'B', vr(Idvr,*) must contain right eigenvectors of ( $A, B$ ), corresponding to the eigenpairs specified by howmny and select. The eigenvectors must be stored in consecutive columns of $v r$, as returned by ?tgevc.
If job $=$ ' $v$ ', $v r$ is not referenced. The second dimension of $v r$ must be at least $\max (1, m)$.
work is a workspace array, its dimension max (1, lwork).
If job = 'E', work is not referenced.
integer. The leading dimension of $a$; at least $\max (1, n)$.
integer. The leading dimension of $b$; at least $\max (1, n)$.
INTEGER. The leading dimension of $v / ; 1 d v l \geq 1$.
If job $=$ ' E ' or ' B ', then $\mid d v \geq \max (1, n)$.
INTEGER. The leading dimension of $v r ; 1 d v r \geq 1$.

INTEGER. The number of elements in the arrays $s$ and $\operatorname{dif}(m m \geq m$ ).
INTEGER. The dimension of the array work.
lwork $\geq \max (1, n)$.
If job $=$ 'V' or 'B', lwork $2{ }^{*} n^{*}(n+2)+16$ for real flavors, and 1 work $\geq$ $\max \left(1, \quad 2 \star n^{\star} n\right)$ for complex flavors.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to /work is issued by xerbla. See Application Notes for details.

Integer. Workspace array, size at least ( $n+6$ ) for real flavors, and at least $(n+2)$ for complex flavors.

If job = 'E', iwork is not referenced.

## Output Parameters

S

## REAL for single-precision flavors

DOUBLE PRECISION for double-precision flavors.
Array, size (mm ).
If job $=$ ' $E$ ' or ' $B$ ', contains the reciprocal condition numbers of the selected eigenvalues, stored in consecutive elements of the array.
If job $=' \mathrm{~V}$ ', $s$ is not referenced.
For real flavors:
For a complex conjugate pair of eigenvalues two consecutive elements of $s$ are set to the same value. Thus, $s(j), \operatorname{dif}(j)$, and the $j$-th columns of $v /$ and $v r$ all correspond to the same eigenpair (but not in general the $j$-th eigenpair, unless all eigenpairs are selected).

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, size (mm ).
If job $=$ ' $V$ ' or ' $B^{\prime}$ ', contains the estimated reciprocal condition numbers of the selected eigenvectors, stored in consecutive elements of the array.

If the eigenvalues cannot be reordered to compute $\operatorname{dif}(j)$, $\operatorname{dif}(j)$ is set to 0 ; this can only occur when the true value would be very small anyway.
If job $=$ ' $E$ ', dif is not referenced.
For real flavors:
For a complex eigenvector, two consecutive elements of dif are set to the same value.

For complex flavors:
For each eigenvalue/vector specified by select, dif stores a Frobenius normbased estimate of Difl.

INTEGER. The number of elements in the arrays $s$ and dif used to store the specified condition numbers; for each selected eigenvalue one element is used.

If howmny $=$ ' $A$ ', $m$ is set to $n$.
work(1)
If job is not 'E' and info $=0$, on exit, work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine tgsna interface are the following:

```
a Holds the matrix A of size (}n,n)\mathrm{ .
b Holds the matrix B of size (}n,n)\mathrm{ .
s Holds the vector of length (mm).
dif Holds the vector of length (mm).
vl Holds the matrix VL of size (}n,mm\mathrm{).
vr Holds the matrix VR of size (}n,mm\mathrm{).
select Holds the vector of length n.
howmny Restored based on the presence of the argument select as follows: howmny =
 'S', if select is present, howmny = 'A', if select is omitted.
job
Restored based on the presence of arguments s and dif as follows: job = 'B',
if both s and dif are present, job = 'E', if s is present and dif omitted, job =
 'V', if s is omitted and dif present, Note that there will be an error condition if
both s and dif are omitted.
```


## Application Notes

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if Iwork is less than the minimal required value and is not equal to -1, then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

## Generalized Singular Value Decomposition: LAPACK Computational Routines

This topic describes LAPACK computational routines used for finding the generalized singular value decomposition (GSVD) of two matrices $A$ and $B$ as
$U^{H} A Q=D_{1} *(0 R)$,
$V^{H} B Q=D_{2}^{*}\left(\begin{array}{ll}0 & R\end{array}\right)$,
where $U, V$, and $Q$ are orthogonal/unitary matrices, $R$ is a nonsingular upper triangular matrix, and $D_{1}, D_{2}$ are "diagonal" matrices of the structure detailed in the routines description section.

Table "Computational Routines for Generalized Singular Value Decomposition" lists LAPACK routines (FORTRAN 77 interface) that perform generalized singular value decomposition of matrices. The corresponding routine names in the Fortran 95 interface are without the first symbol.

Computational Routines for Generalized Singular Value Decomposition

Routine name	Operation performed
ggsvp	Computes the preprocessing decomposition for the generalized SVD
ggsvp3	Performs preprocessing for a generalized SVD.
ggsvd3	Computes generalized SVD.   tgsja

You can use routines listed in the above table as well as the driver routine ggsvd to find the GSVD of a pair of general rectangular matrices.

## ?ggsvp <br> Computes the preprocessing decomposition for the generalized SVD (deprecated).

## Syntax

```
call sggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv,
q, ldq, iwork, tau, work, info)
call dggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv,
q, ldq, iwork, tau, work, info)
call cggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv,
q, ldq, iwork, rwork, tau, work, info)
call zggsvp(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv,
q, ldq, iwork, rwork, tau, work, info)
call ggsvp(a, b, tola, tolb [, k] [,l] [,u] [,v] [,q] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

This routine is deprecated; use ggsvp3.
The routine computes orthogonal matrices $U, V$ and $Q$ such that

$$
\begin{aligned}
& n-k-1 \quad k \quad l \\
& U^{H} A Q=\begin{array}{r}
k\left(\begin{array}{ccc}
0 & A_{12} & A_{13} \\
1 \\
0 & 0 & A_{23} \\
0 & 0 & 0
\end{array}\right), \quad \text { if } m-k-I \geq 0
\end{array} \\
& n-k-1 \quad k \quad 1 \\
& =m-k\left(\begin{array}{ccc}
0 & A_{12} & A_{13} \\
0 & 0 & A_{23}
\end{array}\right), \quad \text { if } m-k-I<0
\end{aligned}
$$


where the $k$-by- $k$ matrix $A_{12}$ and $/$-by-/ matrix $B_{13}$ are nonsingular upper triangular; $A_{23}$ is $/$-by-/ upper triangular if $m-k-1 \geq 0$, otherwise $A_{23}$ is $(m-k)$-by-l upper trapezoidal. The sum $k+l$ is equal to the effective numerical rank of the $(m+p)$-by-n matrix $\left(A^{H}, B^{H}\right)^{H}$.

This decomposition is the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see subroutine ?tgsja.

Input Parameters

```
jobu CHARACTER*1.Must be 'U' or 'N'.
 If jobu = 'U', orthogonal/unitary matrix U is computed.
 If jobu = 'N',U is not computed.
 CHARACTER*1. Must be 'V' or 'N'.
 If jobv = 'V', orthogonal/unitary matrix V is computed.
 If jobv = 'N',V is not computed.
 CHARACTER*1. Must be 'Q' or 'N'.
 If jobq = 'Q', orthogonal/unitary matrix Q is computed.
 If jobq = 'N',Q is not computed.
 INTEGER. The number of rows of the matrix A (m\geq0).
 INTEGER. The number of rows of the matrix B(p\geq0).
 INTEGER. The number of columns of the matrices A and B (n\geq0).
REAL for sggsvp
DOUBLE PRECISION for dggsvp
COMPLEX for cggsvp
DOUBLE COMPLEX for zggsvp.
Arrays:
```

$a(I d a, *)$ contains the $m$-by-n matrix $A$.
The second dimension of $a$ must be at least $\max (1, n)$.
$b(I d b, *)$ contains the $p$-by-n matrix $B$.
The second dimension of $b$ must be at least max $(1, n)$.
$\operatorname{tau}\left({ }^{*}\right)$ is a workspace array.
The dimension of tau must be at least $\max (1, n)$.

```
Ida
```

1 db
tola, tolb
$1 d u$
$I d v$
$1 d q$
iwork
rwork
work(*) is a workspace array.
The dimension of work must be at least $\max (1,3 n, m, p)$.
INTEGER. The leading dimension of $a$; at least max $(1, m)$.
INTEGER. The leading dimension of $b$; at least max $(1, p)$.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
tola and tolb are the thresholds to determine the effective numerical rank of matrix $B$ and a subblock of $A$. Generally, they are set to

```
tola = max (m, n)*||A||*MACHEPS,
tolb = max (p, n)* | | | | *MACHEPS.
```

The size of tola and tolb may affect the size of backward errors of the decomposition.

INTEGER. The leading dimension of the output array $u . l d u \geq \max (1, m)$ if jobu = 'U'; Idu 1 otherwise.

INTEGER. The leading dimension of the output array $v . l d v \geq \max (1, p)$ if jobv = 'V'; Idvz 1 otherwise.

INTEGER. The leading dimension of the output array $q \cdot I d q \geq \max (1, n)$ if $j o b q=$ 'Q'; ldq 1 otherwise.

INTEGER. Workspace array, size at least max $(1, n)$.
REAL for cggsvp
DOUBLE PRECISION for zggsvp.
Workspace array, size at least max $(1,2 n)$. Used in complex flavors only.

## Output Parameters

## $a$

b
$k$, 1
$u, v, q$
Overwritten by the triangular (or trapezoidal) matrix described in the Description section.

Overwritten by the triangular matrix described in the Description section.
INTEGER. On exit, $k$ and $/$ specify the dimension of subblocks. The sum $k+I$ is equal to effective numerical rank of $\left(A^{H}, B^{H}\right)^{H}$.

REAL for sggsvp
DOUBLE PRECISION for dggsvp
COMPLEX for cggsvp
DOUBLE COMPLEX for zggsvp.
Arrays:
If jobu = 'U', $u(/ d u, *)$ contains the orthogonal/unitary matrix $U$.
The second dimension of $u$ must be at least max $(1, m)$.
If jobu = ' $N$ ', $u$ is not referenced.

## info

If jobv $=$ ' V ', $v(I d v, *)$ contains the orthogonal/unitary matrix $V$.
The second dimension of $v$ must be at least max $(1, m)$.
If jobv $=$ ' $N$ ', $v$ is not referenced.
If jobq = ' $Q$ ', $q\left(/ d q,^{*}\right)$ contains the orthogonal/unitary matrix $Q$.
The second dimension of $q$ must be at least $\max (1, n)$.
If jobq $=$ ' $N^{\prime}, q$ is not referenced.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine ggsvp interface are the following:

$a$	Holds the matrix $A$ of size $(m, n)$.
$b$	Holds the matrix $B$ of size $(p, n)$.
$u$	Holds the matrix $U$ of size $(m, m)$.
$v$	Holds the matrix $V$ of size $(p, m)$.
jobu	Holds the matrix $Q$ of size $(n, n)$.
	Restored based on the presence of the argument $u$ as follows:
	jobu $=' U '$, if $u$ is present,
jobu $=' N^{\prime}$, if $u$ is omitted.	

jobv Restored based on the presence of the argument $v$ as follows:
jobz $=$ 'V', if $v$ is present,
jobz $={ }^{\prime} N$ ', if $v$ is omitted.
jobq Restored based on the presence of the argument $q$ as follows:
jobz = 'Q', if $q$ is present,
jobz = 'N', if $q$ is omitted.
?ggsvp3
Performs preprocessing for a generalized SVD.

## Syntax

```
call sggsvp3 (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v,
ldv, q, ldq, iwork, tau, work, lwork, info)
call dggsvp3 (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v,
ldv, q, ldq, iwork, tau, work, lwork, info)
```

```
call cggsvp3 (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v,
ldv, q, ldq, iwork, rwork, tau, work, lwork, info)
call zggsvp3 (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v,
ldv, q, ldq, iwork, rwork, tau, work, lwork, info)
```

Include Files

- mkl_lapack.fi


## Include Files

- mkl.fi


## Description

? ggsvp3 computes orthogonal or unitary matrices $U, V$, and $Q$ such that for real flavors:

$$
\begin{aligned}
& n-k-l k l \\
& U^{T} A Q=\begin{array}{c}
k \\
l \\
m-k-l \\
0
\end{array}\left(\begin{array}{ccc}
0 & A 12 & A 13 \\
0 & 0 & A 23 \\
0 & 0 & 0
\end{array}\right) \text { if } m-k-l \geq 0 ; \\
& U^{T} A Q=\underset{m-k}{k}\left(\begin{array}{ccc}
0 & n-k-l k l \\
0 & 0 & A 23
\end{array}\right) \text { if } m-k-1<0 \text {; } \\
& n-k-l k l \\
& V^{T} B Q=\begin{array}{l}
l \\
p-l
\end{array} \quad\left(\begin{array}{ccc}
0 & 0 & B 13 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

for complex flavors:

$$
\begin{aligned}
& n-k-l k l \\
& U^{H} A Q=\begin{array}{c}
k \\
l \\
m-k-l
\end{array}\left(\begin{array}{ccc}
0 & A 12 & A 13 \\
0 & 0 & A 23 \\
0 & 0 & 0
\end{array}\right) \text { if } m-k-1 \geq 0 ; \\
& U^{H} A Q=\begin{array}{c}
n-k-l k l \\
m-k
\end{array}\left(\begin{array}{ccc}
0 & A 12 & A 13 \\
0 & 0 & A 23
\end{array}\right) \text { if } m-k-1<0 ; \\
& V^{H} B Q=\begin{array}{c}
n-k-l k l \\
p-l
\end{array} \begin{array}{c}
\left.n-\begin{array}{ccc}
0 & 0 & B 13 \\
0 & 0 & 0
\end{array}\right)
\end{array}
\end{aligned}
$$

where the $k$-by- $k$ matrix $A 12$ and l-by-1 matrix $B 13$ are nonsingular upper triangular; $A 23$ is l-by-l upper triangular if $m-k-1 \geq 0$, otherwise $A 23$ is ( $m$ - $k$-by- 1 upper trapezoidal. $k+1=$ the effective numerical rank of the $(m+p)$-by- $n$ matrix $\left(A^{\top}, B^{\top}\right)^{\top}$ for real flavors or $\left(A^{\mathrm{H}}, B^{\mathrm{H}}\right)^{\mathrm{H}}$ for complex flavors.

This decomposition is the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see ?ggsvd3.

## Input Parameters

jobu
CHARACTER*1. = 'U': Orthogonal/unitary matrix $U$ is computed;
$=$ ' N ': $U$ is not computed.
jobv
jobq
m
p
$n$
a
lda
b
$1 d b$
tola, tolb

CHARACTER*1. = 'V': Orthogonal/unitary matrix $V$ is computed;
$=$ ' N ': $V$ is not computed.
CHARACTER*1. = 'Q': Orthogonal/unitary matrix $Q$ is computed;
$=$ ' N ': $Q$ is not computed.
INTEGER. The number of rows of the matrix $A$.
$m \geq 0$.
INTEGER. The number of rows of the matrix $B$.
$p \geq 0$.
INTEGER. The number of columns of the matrices $A$ and $B$.
$n \geq 0$.
REAL for sggsvp3
DOUBLE PRECISION for dggsvp3
COMPLEX for cggsvp3
DOUBLE COMPLEX for zggsvp3
Array, size (lda, n).
On entry, the $m-b y-n$ matrix $A$.
INTEGER. The leading dimension of the array $a$.
$l d a \geq \max (1, m)$.
REAL for sggsvp3
DOUBLE PRECISION for dggsvp3
COMPLEX for cggsvp3
DOUBLE COMPLEX for zggsvp3
Array, size ( $1 \mathrm{db}, \mathrm{n}$ ).
On entry, the $p-b y-n$ matrix $B$.
INTEGER. The leading dimension of the array $b$.
$1 d b \geq \max (1, p)$.
REAL for sggsvp3
DOUBLE PRECISION for dggsvp3
REAL for cggsvp3
DOUBLE PRECISION for zggsvp3
tola and tolb are the thresholds to determine the effective numerical rank of matrix $B$ and a subblock of $A$. Generally, they are set to

```
tola = max (m,n)*norm(a)*MACHEPS,
tolb = max(p,n)*\operatorname{norm}(b)*MACHEPS.
```

	The size of tola and tolb may affect the size of backward errors of the decomposition.
$1 d u$	INTEGER. The leading dimension of the array $u$.
	$I d u \geq \max (1, m)$ if jobu $=$ ' $U$ '; $I d u \geq 1$ otherwise.
$I d v$	INTEGER. The leading dimension of the array $v$.
	$l d v \geq \max (1, p)$ if jobv $=$ ' $V$ '; $l d v \geq 1$ otherwise.
$1 d q$	INTEGER. The leading dimension of the array $q$.
	$I d q \geq \max (1, n)$ if jobq = ' $\mathrm{Q}^{\prime} ; 1 \mathrm{ldq}$ ( 1 otherwise.
iwork	INTEGER. Array, size ( $n$ ).
rwork	for sggsvp3
	for dggsvp 3
	REAL for cggsvp3
	DOUBLE PRECISION for zggsvp3
	Array, size ( $2 *_{n}$ ).
tau	REAL for sggsvp3
	DOUBLE PRECISION for dggsvp3
	COMPLEX for cggsvp3
	DOUBLE COMPLEX for zggsvp3
	Array, size ( $n$ ).
	The scalar factors of the elementary reflectors.
work	REAL for sggsvp3
	DOUBLE PRECISION for dggsvp3
	COMPLEX for cggsvp3
	DOUBLE COMPLEX for zggsvp3
	Array, size (MAX(1, I work)).
I work	INTEGER. The dimension of the array work.
	If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

## Output Parameters

a
b

On exit, a contains the triangular (or trapezoidal) matrix described in the Description section.

On exit, $b$ contains the triangular matrix described in the Description section.
$k, I$
u

V
$q$
work
info

INTEGER. On exit, $k$ and $l$ specify the dimension of the subblocks described in Description section.
$k+I=$ effective numerical rank of $\left(A^{\top}, B^{\top}\right)^{\top}$ for real flavors or $\left(A^{\mathrm{H}}, B^{\mathrm{H}}\right)^{\mathrm{H}}$ for complex flavors.

REAL for sggsvp3
DOUBLE PRECISION for dggsvp3
COMPLEX for cggsvp3
DOUBLE COMPLEX for zggsvp3
Array, size ( $1 d u, m$ ).
If jobu = 'U', u contains the orthogonal/unitary matrix $U$.
If jobu = ' $N$ ', $u$ is not referenced.
REAL for sggsvp3
DOUBLE PRECISION for dggsvp3
COMPLEX for cggsvp3
DOUBLE COMPLEX for zggsvp3
Array, size ( $1 d v, p$ ).
If jobv $=$ ' $V$ ', $v$ contains the orthogonal/unitary matrix $V$.
If jobv = ' N ', $v$ is not referenced.
REAL for sggsvp3
DOUBLE PRECISION for dggsvp3
COMPLEX for cggsvp3
DOUBLE COMPLEX for zggsvp3
Array, size ( $1 d q, n$ ).
If jobq = 'Q', q contains the orthogonal/unitary matrix $Q$.
If jobq = ' N ', $q$ is not referenced.
On exit, if info $=0$, work(1) returns the optimal lwork.
INTEGER. $=0$ : successful exit.
< 0 : if info $=-i$, the $i$-th argument had an illegal value.

## Application Notes

The subroutine uses LAPACK subroutine ? geqp3 for the QR factorization with column pivoting to detect the effective numerical rank of the $A$ matrix. It may be replaced by a better rank determination strategy.
? ggsvp3 replaces the deprecated subroutine ? ggsvp.
? gg svd3
Computes generalized SVD.

## Syntax

```
call sggsvd3(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v,
ldv, q, ldq, work, lwork, iwork, info)
call dggsvd3(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v,
ldv, q, ldq, work, lwork, iwork, info)
call cggsvd3(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v,
ldv, q, ldq, work, lwork, rwork, iwork, info)
call zggsvd3(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v,
ldv, q, ldq, work, lwork, rwork, iwork, info)
```


## Include Files

- mkl.fi


## Description

? $9 g s v d 3$ computes the generalized singular value decomposition (GSVD) of an m-by- $n$ real or complex matrix $A$ and $p$-by- $n$ real or complex matrix $B$ :
$U^{\top *} A^{*} Q=D_{1}{ }^{*}(0 R), V^{\top *} B^{*} Q=D_{2}{ }^{*}(0 R)$ for real flavors
or
$U^{H *} A^{*} Q=D_{1}{ }^{*}(0 R), V^{H *} B^{*} Q=D_{2}^{*}(0 R)$ for complex flavors
where $U, V$ and $Q$ are orthogonal/unitary matrices.
Let $k+l=$ the effective numerical rank of the matrix $\left(A^{\top} B^{\top}\right)^{\top}$ for real flavors or the matrix $\left(A^{\mathrm{H}}, B^{\mathrm{H}}\right)^{\mathrm{H}}$ for complex flavors, then $R$ is a $(k+l)$-by- $(k+1)$ nonsingular upper triangular matrix, $D_{1}$ and $D_{2}$ are m-by- $(k+$ l) and $p$-by- $(k+1)$ "diagonal" matrices and of the following structures, respectively:

If $m-k-1 \geq 0$,
$\left.D_{1}=\begin{array}{c}k \\ l \\ m-k-l\end{array} \begin{array}{c}k \\ l \\ I \\ 0 \\ 0\end{array} C^{2} \begin{array}{l}l\end{array}\right)$
$\left.D_{2}=\begin{array}{c}k \\ p-l \\ l\end{array} \begin{array}{ll}0 & l \\ 0 & 0\end{array}\right)$
$(0 R)=k\left(\begin{array}{ccc}0 & n-k-l k l \\ l & R 11 & R 12 \\ 0 & 0 & R 22\end{array}\right)$
where
$C=\operatorname{diag}(\operatorname{alpha}(k+1), \ldots, \operatorname{alpha}(k+1))$,
$S=\operatorname{diag}(\operatorname{beta}(k+1), \ldots, \operatorname{beta}(k+1))$,
$C^{2}+S^{2}=I$.
If $m-k-1<0$,
$k m-k k+l-m$
$D_{1}=\begin{gathered}k \\ m-k\end{gathered}\left(\begin{array}{lll}I & 0 & 0 \\ 0 & C & 0\end{array}\right)$

$$
\begin{aligned}
& D_{2}=\begin{array}{c} 
\\
m-k \\
k+l-m-k k+l-m \\
p-l
\end{array}\left(\begin{array}{lll}
0 & S & 0 \\
0 & 0 & I \\
0 & 0 & 0
\end{array}\right) \\
& (0 R)=\begin{array}{c} 
\\
k-k \\
k+l-m \\
k+k-l k m-k k+l-m \\
0
\end{array}\left(\begin{array}{cccc}
0 & R 11 & R 12 & R 13 \\
0 & 0 & R 22 & R 23 \\
0 & 0 & 0 & R 33
\end{array}\right)
\end{aligned}
$$

where
$C=\operatorname{diag}(a l p h a(k+1), \ldots$, alpha $(m))$,
$S=\operatorname{diag}(\operatorname{beta}(k+1), \ldots, \operatorname{beta}(m))$,
$C^{2}+S^{2}=I$.
The routine computes $C, S, R$, and optionally the orthogonal/unitary transformation matrices $U, V$ and $Q$.
In particular, if $B$ is an $n$-by- $n$ nonsingular matrix, then the GSVD of $A$ and $B$ implicitly gives the SVD of $A^{*} \operatorname{inv}(B)$ :
$A^{*} \operatorname{inv}(B)=U^{*}\left(D_{1} * \operatorname{inv}\left(D_{2}\right)\right)^{*} V^{\top}$ for real flavors
or
$A^{*} \operatorname{inv}(B)=U^{*}\left(D_{1} * \operatorname{inv}\left(D_{2}\right)\right)^{*} V^{H}$ for complex flavors.
If $\left(A^{\top}, B^{\top}\right)^{\top}$ for real flavors or $\left(A^{H}, B^{H}\right)^{\mathrm{H}}$ for complex flavors has orthonormal columns, then the GSVD of $A$ and $B$ is also equal to the CS decomposition of $A$ and $B$. Furthermore, the GSVD can be used to derive the solution of the eigenvalue problem:
$A^{\top *} A X=\lambda^{*} B^{\top *} B X$ for real flavors
or
$A^{\mathrm{H} *} A X=\lambda^{*} B^{\mathrm{H} *} B X$ for complex flavors
In some literature, the GSVD of $A$ and $B$ is presented in the form
$U^{\top *} A * X=\left(0 D_{1}\right), V^{\top *} B^{*} X=\left(0 D_{2}\right)$ for real $(A, B)$
or
$U^{H *} A^{*} X=\left(0 D_{1}\right), V^{H *} B^{*} X=\left(0 D_{2}\right)$ for complex $(A, B)$
where $U$ and $V$ are orthogonal and $X$ is nonsingular, $D_{1}$ and $D_{2}$ are "diagonal". The former GSVD form can be converted to the latter form by taking the nonsingular matrix $X$ as
$X=Q *\left(\begin{array}{l}I \\ 0 \\ 0 \\ \operatorname{inv}(R)\end{array}\right)$
Input Parameters
jobu
jobv
jobq

CHARACTER*1. = 'U': Orthogonal/unitary matrix $U$ is computed; $=$ ' N ': $U$ is not computed.

CHARACTER*1. = 'V': Orthogonal/unitary matrix $V$ is computed; $=$ ' N ': $V$ is not computed.

CHARACTER*1. = 'Q': Orthogonal/unitary matrix $Q$ is computed; $=$ ' N ': $Q$ is not computed.
m
n
$p$
a
lda
$b$

1 db
$I d u$

INTEGER. The number of rows of the matrix $A$.
$m \geq 0$.
INTEGER. The number of columns of the matrices $A$ and $B$.
$n \geq 0$.
INTEGER. The number of rows of the matrix $B$.
$p \geq 0$.
REAL for sggsvd3
DOUBLE PRECISION for dggsvd3
COMPLEX for cggsvd3
DOUBLE COMPLEX for zggsvd3
Array, size (lda, n).
On entry, the $m-b y-n$ matrix $A$.
INTEGER. The leading dimension of the array $a$.
$I d a \geq \max (1, m)$.
REAL for sggsvd3
DOUBLE PRECISION for dggsvd3
COMPLEX for cggsvd3
DOUBLE COMPLEX for zggsvd3
Array, size ( $1 \mathrm{db}, \mathrm{n}$ ).
On entry, the $p-b y-n$ matrix $B$.
INTEGER. The leading dimension of the array $b$.
$l d b \geq \max (1, p)$.
INTEGER. The leading dimension of the array $u$.
$I d u \geq \max (1, m)$ if jobu $=$ 'U'; ldu$\geq 1$ otherwise.
INTEGER. The leading dimension of the array $v$.
$I d v \geq \max (1, p)$ if $j o b v=' V$ '; $I d v \geq 1$ otherwise.
INTEGER. The leading dimension of the array $q$.
$I d q \geq \max (1, n)$ if $j o b q=$ ' $Q$ '; $l d q \geq 1$ otherwise.
REAL for sggsvd3
DOUBLE PRECISION for dggsvd3
COMPLEX for cggsvd3
DOUBLE COMPLEX for zggsvd3
Array, size (max(1,lwork)).
INTEGER. The dimension of the array work.

If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
rwork
iwork

## Output Parameters

k, 1
a
b
beta
for sggsvd3
for dggsvd3
REAL for cggsvd3
DOUBLE PRECISION for zggsvd3
Array, size $\left(2 *_{n}\right)$.
INTEGER. Array, size (n).

INTEGER. On exit, $k$ and $l$ specify the dimension of the subblocks described in the Description section.
$k+I=$ effective numerical rank of $\left(A^{\top}, B^{\top}\right)^{\top}$ for real flavors or $\left(A^{\mathrm{H}}, B^{\mathrm{H}}\right)^{\mathrm{H}}$ for complex flavors.

On exit, a contains the triangular matrix $R$, or part of $R$.
If $m-k-1 \geq 0, R$ is stored in $a(1: k+1, n-k-1+1: n)$.
If $m-k-1<0,\left(\begin{array}{ccc}R 11 & R 12 & R 13 \\ 0 & R 22 & R 23\end{array}\right)$ is stored in $a(1: m, n-k-1+$
$1: n)$, and $R 33$ is stored in $b(m-k+1: 1, n+m-k-1+1: n)$ on exit.

On exit, $b$ contains part of the triangular matrix $R$ if $m-k-l<0$.
See Description for details.
REAL for sggsvd3
DOUBLE PRECISION for dggsvd3
REAL for cggsvd3
DOUBLE PRECISION for zggsvd3
Array, size ( $n$ )
REAL for sggsvd3
DOUBLE PRECISION for dggsvd3
REAL for cggsvd3
DOUBLE PRECISION for zggsvd3
Array, size ( $n$ )
On exit, alpha and beta contain the generalized singular value pairs of $a$ and $b$;
alpha(1: k) = 1,
$\operatorname{beta}(1: k)=0$,
and if $m-k-1 \geq 0$,
alpha( $k+1: k+1)=C$,
$\operatorname{beta}(k+1: k+1)=S$,
or if $m-k-1<0$,
$\operatorname{alpha}(k+1: m)=C, \operatorname{alpha}(m+1: k+1)=0$
$\operatorname{beta}(k+1: m)=S, \operatorname{beta}(m+1: k+1)=1$
and
$\operatorname{alpha}(k+1+1: n)=0$
beta $(k+1+1: n)=0$
REAL for sggsvd3
DOUBLE PRECISION for dggsvd3
COMPLEX for cggsvd3
DOUBLE COMPLEX for zggsvd3
Array, size ( $I d u, m$ ).
If jobu = 'U', u contains the m-by-m orthogonal/unitary matrix $U$.
If jobu = ' N ', $u$ is not referenced.
REAL for sggsvd3
DOUBLE PRECISION for dggsvd3
COMPLEX for cggsvd3
DOUBLE COMPLEX for zggsvd3
Array, size ( $1 d v, p$ ).
If jobv $=$ ' $V$ ', $v$ contains the $p-b y-p$ orthogonal/unitary matrix $V$.
If jobv $=$ ' N ', $v$ is not referenced.
REAL for sggsvd3
DOUBLE PRECISION for dggsvd3
COMPLEX for cggsvd3
DOUBLE COMPLEX for zggsvd3
Array, size ( 1 dq, $n$ ).
If jobq = 'Q', q contains the $n$-by- $n$ orthogonal/unitary matrix $Q$.
If $j o b q=$ ' N ', $q$ is not referenced.
work
iwork

On exit, if info $=0, \operatorname{work}(1)$ returns the optimal lwork.
On exit, iwork stores the sorting information. More precisely, the following loop uses iwork to sort alpha:

```
for I = k+1, min(m,k + l)
 swap alpha(I) and alpha(iwork(I))
endfor
```

such that alpha(1) $\geq$ alpha $(2) \geq \ldots \geq$ alpha $(n)$.
info
INTEGER. $=0$ : successful exit.
< 0 : if info $=-i$, the $i$-th argument had an illegal value.
$>0$ : if info $=1$, the Jacobi-type procedure failed to converge.
For further details, see subroutine ?tgsja.

## Application Notes

? ggsvd3 replaces the deprecated subroutine ? ggsvd.

## ?tgsja <br> Computes the generalized SVD of two upper triangular or trapezoidal matrices.

## Syntax

```
call stgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u,
ldu, v, ldv, q, ldq, work, ncycle, info)
call dtgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u,
ldu, v, ldv, q, ldq, work, ncycle, info)
call ctgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u,
ldu, v, ldv, q, ldq, work, ncycle, info)
call ztgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u,
ldu, v, ldv, q, ldq, work, ncycle, info)
call tgsja(a, b, tola, tolb, k, l [,u] [,v] [,q] [,jobu] [,jobv] [,jobq] [,alpha] [,beta]
[,ncycle] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes the generalized singular value decomposition (GSVD) of two real/complex upper triangular (or trapezoidal) matrices $A$ and $B$. On entry, it is assumed that matrices $A$ and $B$ have the following forms, which may be obtained by the preprocessing subroutine ggsvp from a general m-by-n matrix $A$ and $p$ -by-n matrix $B$ :

$$
\begin{aligned}
& n-k-1 \quad k \quad 1 \\
& \left.A=\begin{array}{rcc}
k\left(\begin{array}{l}
0 \\
\\
m-k-1 \\
0
\end{array}\right. & A_{12} & A_{13} \\
0 & 0 & A_{23} \\
m
\end{array}\right), \quad \text { if } m-k-I \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& n-k-1 \quad k \quad 1
\end{aligned}
$$

$$
\begin{aligned}
& n-k-1 \\
& \text { k } \\
& 1
\end{aligned}
$$

where the $k$-by- $k$ matrix $A_{12}$ and $l$-by-/ matrix $B_{13}$ are nonsingular upper triangular; $A_{23}$ is $/$-by-/ upper triangular if $m-k-l \geq 0$, otherwise $A_{23}$ is $(m-k)$-by-l upper trapezoidal.

On exit,

$$
U^{H \star} A \star Q=D_{1} \star\left(\begin{array}{ll}
0 & R
\end{array}\right), V^{H \star} B^{\star} Q=D_{2}^{*}\left(\begin{array}{ll}
0 & R
\end{array}\right),
$$

where $U, V$ and $Q$ are orthogonal/unitary matrices, $R$ is a nonsingular upper triangular matrix, and $D_{1}$ and $D_{2}$ are "diagonal" matrices, which are of the following structures:
If $m-k-l \geq 0$,


where
$C=\operatorname{diag}(a l p h a(k+1), \ldots, a l p h a(k+l))$
$S=\operatorname{diag}(\operatorname{beta}(k+1), \ldots, \operatorname{beta}(k+1))$
$C^{2}+S^{2}=I$
$R$ is stored in $a(1: k+l, n-k-l+1: n)$ on exit.
If $m-k-1<0$,

$$
\begin{aligned}
& k \\
& m-k \\
& k+l-m \\
& D_{2}=\begin{array}{c}
m-k \\
k+l-m \\
p-l
\end{array} \\
& n-k-1 k \\
& m-k \\
& k+1-m \\
& (0 R)=\begin{array}{r}
k\left(\begin{array}{c}
0 \\
m-k \\
k+I-m
\end{array}\right. \\
0
\end{array} \begin{array}{c}
R_{11} \\
0
\end{array} \\
& \begin{array}{c}
R_{12} \\
R_{22} \\
0
\end{array}
\end{aligned}
$$

where

```
C = diag(alpha(k+1),...,alpha(m)),
S = diag(beta(k+1),...,beta(m)),
C
```

On exit,

$$
\left(\begin{array}{ccc}
R_{11} & R_{12} & R_{13} \\
0 & R_{22} & R_{23}
\end{array}\right)
$$

is stored in $a(1: m, n-k-l+1: n)$ and $R_{33}$ is stored in $b(m-k+1: /, n+m-k-l+1: n)$.
The computation of the orthogonal/unitary transformation matrices $U, V$ or $Q$ is optional. These matrices may either be formed explicitly, or they may be postmultiplied into input matrices $U_{1}, V_{1}$, or $Q_{1}$.

## Input Parameters

```
jobu
jobv
jobq
CHARACTER*1. Must be 'U','I', or 'N'.
 If jobu = 'U', u must contain an orthogonal/unitary matrix U U on entry.
 If jobu = 'I', }u\mathrm{ is initialized to the unit matrix.
 If jobu = 'N',u is not computed.
 CHARACTER*1. Must be 'V','I', or 'N'.
 If jobv = 'V', v must contain an orthogonal/unitary matrix }\mp@subsup{V}{1}{}\mathrm{ on entry.
 If jobv = 'I',v is initialized to the unit matrix.
 If jobv = 'N', v is not computed.
 CHARACTER*1. Must be 'Q','I', or 'N'.
```

If jobq = ' $Q$ ', $q$ must contain an orthogonal/unitary matrix $Q_{1}$ on entry. If jobq = 'I', $q$ is initialized to the unit matrix.

If $j o b q=$ ' $N$ ', $q$ is not computed.
INTEGER. The number of rows of the matrix $A(m \geq 0)$.
INTEGER. The number of rows of the matrix $B(p \geq 0)$.
INTEGER. The number of columns of the matrices $A$ and $B(n \geq 0)$.
INTEGER. Specify the subblocks in the input matrices $A$ and $B$, whose GSVD is computed.

REAL for stgsja
DOUBLE PRECISION for dtgsja
COMPLEX for ctgsja
DOUBLE COMPLEX for ztgsja.
Arrays:
$a(I d a, *)$ contains the $m$-by-n matrix $A$.
The second dimension of $a$ must be at least $\max (1, n)$.
$b(I d b, *)$ contains the $p$-by- $n$ matrix $B$.
The second dimension of $b$ must be at least $\max (1, n)$.
If jobu = 'U', $u(I d u, *)$ must contain a matrix $U_{1}$ (usually the orthogonal/ unitary matrix returned by ?ggsvp).
The second dimension of $u$ must be at least $\max (1, m)$.
If jobv $=$ ' $V$ ', $v(/ d v, *)$ must contain a matrix $V_{1}$ (usually the orthogonal/ unitary matrix returned by ?ggsvp).

The second dimension of $v$ must be at least max $(1, p)$.
If jobq = 'Q', $q\left(I d q,^{*}\right)$ must contain a matrix $Q_{1}$ (usually the orthogonal/ unitary matrix returned by ?ggsvp).

The second dimension of $q$ must be at least max $(1, n)$. work(*) is a workspace array.
The dimension of work must be at least $\max (1,2 n)$.
INTEGER. The leading dimension of $a$; at least $\max (1, m)$.
INTEGER. The leading dimension of $b$; at least max $(1, p)$.
INTEGER. The leading dimension of the array $u$.
$I d u \geq \max (1, m)$ if jobu $=$ 'U'; Idu $\geq 1$ otherwise.
INTEGER. The leading dimension of the array $v$.
$l d v \geq \max (1, p)$ if jobv $=' V$ '; $l d v \geq 1$ otherwise.
INTEGER. The leading dimension of the array $q$.
$l d q \geq \max (1, n)$ if $j o b q=$ ' $Q$ '; $l d q \geq 1$ otherwise.

```
tola, tolb
```

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz iteration procedure. Generally, they are the same as used in ?ggsvp:

```
tola}=max(m,n)*|A|*MACHEPS
tolb = max (p,n)* | B|*MACHEPS.
```


## Output Parameters

a
b
alpha, beta
u

V
$q$

On exit, $a(n-k+1: n, 1: \min (k+l, m))$ contains the triangular matrix $R$ or part of $R$.

On exit, if necessary, $b(m-k+1: I, n+m-k-I+1: n))$ contains a part of $R$.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, size at least max $(1, n)$. Contain the generalized singular value pairs of $A$ and $B$ :

```
alpha(1:k)=1,
beta(1:k)=0,
and if m-k-1\geq0,
alpha(k+1:k+l)=diag(C),
beta(k+1:k+1)=diag(S),
or if m-k-1<0,
alpha(k+1:m)=\operatorname{diag}(C), alpha}(m+1:k+1)=
beta(k+1:m)= diag(S),
beta(m+1:k+1)=1.
```

Furthermore, if $k+1<n$,
alpha $(k+1+1: n)=0$ and
$\operatorname{beta}(k+1+1: n)=0$.
If jobu = 'I', $u$ contains the orthogonal/unitary matrix $U$.
If jobu $=$ 'U', $u$ contains the product $U_{1} * U$.
If jobu = 'N', $u$ is not referenced.
If jobv = 'I', $V$ contains the orthogonal/unitary matrix $U$.
If jobv $=' \mathrm{~V}$ ', $v$ contains the product $V_{1} * V$.
If jobv = 'N', $v$ is not referenced.
If jobq $=$ 'I', $q$ contains the orthogonal/unitary matrix $U$.
If jobq $=' Q ', q$ contains the product $Q_{1}{ }^{*} Q$.
If jobq = 'N', $q$ is not referenced.

```
ncycle
info
INTEGER. The number of cycles required for convergence.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1\), the procedure does not converge after MAXIT cycles.
```


## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine tgsja interface are the following:

```
a Holds the matrix A of size (m,n).
b Holds the matrix B of size (}p,n\mathrm{).
u Holds the matrix U of size (}m,m\mathrm{).
v Holds the matrix V of size (p,p).
q Holds the matrix Q of size (}n,n)\mathrm{ .
alpha Holds the vector of length n.
beta
jobu
Holds the matrix \(A\) of size \((m, n)\).
Holds the matrix \(B\) of size \((p, n)\).
Holds the matrix \(U\) of size \((m, m)\).
Holds the matrix \(V\) of size \((p, p)\).
Holds the matrix \(Q\) of size \((n, n)\).
Holds the vector of length \(n\).
Holds the vector of length \(n\).
If omitted, this argument is restored based on the presence of argument \(u\) as follows:
jobu = 'U', if \(u\) is present,
jobu = 'N', if \(u\) is omitted.
```

jobv
jobq

If present, jobu must be equal to 'I' or 'U' and the argument $u$ must also be present.
Note that there will be an error condition if jobu is present and $u$ omitted.
If omitted, this argument is restored based on the presence of argument $v$ as follows:
jobv = 'v', if $v$ is present,
jobv = ' $N$ ', if $v$ is omitted.
If present, jobv must be equal to 'I' or ' $V$ ' and the argument $v$ must also be present.
Note that there will be an error condition if jobv is present and $v$ omitted.
If omitted, this argument is restored based on the presence of argument $q$ as follows:
jobq = 'Q', if $q$ is present,
jobq = 'N', if $q$ is omitted.
If present, jobq must be equal to 'I' or ' $Q$ ' and the argument $q$ must also be present.

Note that there will be an error condition if $j o b q$ is present and $q$ omitted.

## Cosine-Sine Decomposition: LAPACK Computational Routines

This topic describes LAPACK computational routines for computing the cosine-sine decomposition (CS decomposition) of a partitioned unitary/orthogonal matrix. The algorithm computes a complete 2-by-2 CS decomposition, which requires simultaneous diagonalization of all the four blocks of a unitary/orthogonal matrix partitioned into a 2-by-2 block structure.
The computation has the following phases:

1. The matrix is reduced to a bidiagonal block form.
2. The blocks are simultaneously diagonalized using techniques from the bidiagonal SVD algorithms.

Table "Computational Routines for Cosine-Sine Decomposition (CSD)" lists LAPACK routines that perform CS decomposition of matrices. The corresponding routine names in the Fortran 95 interface are without the first symbol.
Computational Routines for Cosine-Sine Decomposition (CSD)

Operation	Real matrices	Complex matrices
Compute the CS decomposition of an   orthogonal/unitary matrix in bidiagonal-block   form	bbcsd/bbcsd	bbcsd/bbcsd
Simultaneously bidiagonalize the blocks of a   partitioned orthogonal matrix	orbdb unbdb	
Simultaneously bidiagonalize the blocks of a   partitioned unitary matrix		orbdb unbdb

## See Also <br> CS Driver Routine

?bbcsd
Computes the CS decomposition of an orthogonal/ unitary matrix in bidiagonal-block form.

## Syntax

```
call sbbcsd(jobul, jobu2, jobv1t, jobv2t, trans, m, p, q, theta, phi, ul, ldul, u2,
Idu2, v1t, Idv1t, v2t, ldv2t, b11d, bl1e, b12d, b12e, b21d, b21e, b21e, b22e, work,
lwork, info)
call dbbcsd(jobul, jobu2, jobv1t, jobv2t, trans, m, p, q, theta, phi, ul, ldul, u2,
ldu2, v1t, ldv1t, v2t, ldv2t, bl1d, b11e, b12d, b12e, b21d, b21e, b21e, b22e, work,
lwork, info)
call cbbcsd(jobul, jobu2, jobv1t, jobv2t, trans, m, p, q, theta, phi, ul, ldul, u2,
ldu2, v1t, ldv1t, v2t, ldv2t, b11d, b11e, b12d, b12e, b21d, b21e, b21e, b22e, rwork,
rlwork, info)
call zbbcsd(jobul, jobu2, jobv1t, jobv2t, trans, m, p, q, theta, phi, ul, ldul, u2,
ldu2, v1t, ldv1t, v2t, Idv2t, b11d, blle, b12d, b12e, b21d, b21e, b21e, b22e, rwork,
rlwork, info)
call bbcsd(theta,phi,u1,u2,v1t,v2t[,b11d][,b11e][,b12d][,b12e][,b21d][,b21e][,b22d]
[,b22e][,jobu1][,jobu2][,jobv1t][,jobv2t][,trans][,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

 bidiagonal-block form:

$$
X=\left(\begin{array}{ccc}
b_{11} \mid b_{12} & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline b_{21} \mid b_{22} & 0 & 0 \\
0 \mid 0 & 0 & I
\end{array}\right)=\left(\begin{array}{lll}
u_{1} & \mid \\
\hline & \mid & u_{2}
\end{array}\right)\left(\begin{array}{c|ccc}
C & -S & 0 & 0 \\
0 & 0 & -I & 0 \\
\hline S & C & 0 & 0 \\
0 & 0 & 0 & I
\end{array}\right)\left(\begin{array}{lll}
v_{1} & \mid & \\
\hline & \mid & v_{2}
\end{array}\right)^{T}
$$

or

$$
X=\left(\begin{array}{ccc}
b_{11} \mid b_{12} & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline b_{21} \mid b_{22} & 0 & 0 \\
0 \mid 0 & 0 & I
\end{array}\right)=\left(\begin{array}{lll}
u_{1} & \mid \\
\hline & \mid & u_{2}
\end{array}\right)\left(\begin{array}{c|ccc}
C \mid-S & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline S \mid C & 0 & 0 \\
0 & 0 & 0 & I
\end{array}\right)\left(\begin{array}{lll}
v_{1} & \mid & \\
\hline & \mid & v_{2}
\end{array}\right)^{H}
$$

respectively.
$x$ is $m$-by- $m$ with the top-left block $p$-by- $q$. Note that $q$ must not be larger than $p, m-p$, or $m-q$. If $q$ is not the smallest index, $x$ must be transposed and/or permuted in constant time using the trans option. See ?orcsd/?uncsd for details.

The bidiagonal matrices $b_{11}, b_{12}, b_{21}$, and $b_{22}$ are represented implicitly by angles theta(1:q) and phi(1:q-1).
The orthogonal/unitary matrices $u_{1}, u_{2}, v_{1}{ }^{t}$, and $v_{2}{ }^{t}$ are input/output. The input matrices are pre- or postmultiplied by the appropriate singular vector matrices.

## Input Parameters

jobul
jobu2
jobv1t
jobv2t
trans
m
$p$

CHARACTER. If equals $Y$, then $u_{1}$ is updated. Otherwise, $u_{1}$ is not updated. CHARACTER. If equals $Y$, then $u_{2}$ is updated. Otherwise, $u_{2}$ is not updated. CHARACTER. If equals $Y$, then $v_{1}{ }^{t}$ is updated. Otherwise, $v_{1}{ }^{t}$ is not updated. CHARACTER. If equals $Y$, then $v_{2}{ }^{t}$ is updated. Otherwise, $v_{2}{ }^{t}$ is not updated. CHARACTER
$=' T ': \quad x, u_{1}, u_{2}, v_{1}{ }^{t}, v_{2}{ }^{t}$ are stored in row-major order.
otherwise $\quad x, u_{1}, u_{2}, v_{1}{ }^{t}, v_{2}{ }^{t}$ are stored in column-major order.

INTEGER. The number of rows and columns of the orthogonal/unitary matrix $X$ in bidiagonal-block form.

INTEGER. The number of rows in the top-left block of $x .0 \leq p \leq m$.
$\leq$
$q$
theta
ldu2
v1t

INTEGER. The number of columns in the top-left block of $x .0$ qumin $(p, m-$ $p, m-q)$.

REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
Array, size ( $q$ ).
On entry, the angles theta(1), ..., theta(q) that, along with phi(1), ..., phi ( $q-1$ ), define the matrix in bidiagonal-block form as returned by orbdb/unbdb.

REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
Array, size $(q-1)$.
The angles phi (1), ..., phi(q-1) that, along with theta(1), ..., theta (q), define the matrix in bidiagonal-block form as returned by orbdb/unbdb.

REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
Array, size ( 1 du1,p).
On entry, a $p$-by- $p$ matrix.
INTEGER. The leading dimension of the array $u_{1}, I d u 1 \leq \max (1, p)$.
REAL for sbbecsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
Array, size ( $1 d u 2, m-p$ ).
On entry, an ( $m-p$ )-by-( $m-p$ ) matrix.
INTEGER. The leading dimension of the array $u_{2}, I d u 2 \leq \max (1, m-p)$.
REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd

Array, size (ldv1t,q).
On entry, a $q$-by- $q$ matrix.
INTEGER. The leading dimension of the array $v 1 t, 1 d v 1 t \leq \max (1, q)$.
REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
Array, size ( $1 d v 2 t, m-q$ ).
On entry, an (m-q)-by-(m-q) matrix.
INTEGER. The leading dimension of the array $v 2 t, l d v 2 t \leq \max (1, m-q)$.
REAL for sbbecsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
Workspace array, size (max (1, lwork)).
INTEGER. The size of the work array. Iwork? max (1, 8*q)
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

## Output Parameters

theta

DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
On exit, the angles whose cosines and sines define the diagonal blocks in the CS decomposition.

REAL for sbbecsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
On exit, $u 1$ is postmultiplied by the left singular vector matrix common to [ b11 ; 0 ] and [ b12 00 ; 0 -I 0 ].

REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd

	DOUBLE COMPLEX for zbbcsd
	On exit, u2 is postmultiplied by the left singular vector matrix common to [ b21 ; 0 ] and [ b22 00 ; 0 I ].
v1t	REAL for sbbcsd
	DOUBLE PRECISION for dbbcsd
	COMPLEX for cbbcsd
	DOUBLE COMPLEX for zbbcsd
	Array, size (q).
	On exit, v1t is premultiplied by the transpose of the right singular vector matrix common to [ b11 ; 0 ] and [ b21 ; 0 ].
$v 2 t$	REAL for sbbcsd
	DOUBLE PRECISION for dbbcsd
	COMPLEX for cbbcsd
	DOUBLE COMPLEX for zbbcsd
	On exit, $v 2 t$ is premultiplied by the transpose of the right singular vector matrix common to [ b12 00 ; 0 -I 0 ] and [ b22 00 ; 00 I ].
b11d	REAL for sbbcsd
	DOUBLE PRECISION for dbbcsd
	COMPLEX for cbbcsd
	DOUBLE COMPLEX for zbbcsd
	Array, size (q).
	When ?bbcsd converges, b11d contains the cosines of theta(1), ..., theta (q). If ?bbcsd fails to converge, b11d contains the diagonal of the partially reduced top left block.
blle	REAL for sbbcsd
	DOUBLE PRECISION for dbbcsd
	COMPLEX for cbbcsd
	DOUBLE COMPLEX for zbbcsd
	Array, size ( $q-1$ ).
	When ?bbcsd converges, blle contains zeros. If ?bbcsd fails to converge, blle contains the superdiagonal of the partially reduced top left block.
b12d	REAL for sbbcsd
	DOUBLE PRECISION for dbbcsd
	COMPLEX for cbbcsd
	DOUBLE COMPLEX for zbbcsd
	Array, size (q).

When ?bbcsd converges, b12d contains the negative sines of theta(1), ..., theta(q). If ?bbcsd fails to converge, b12d contains the diagonal of the partially reduced top right block.
b12e
info

REAL for sbbcsd
DOUBLE PRECISION for dbbcsd
COMPLEX for cbbcsd
DOUBLE COMPLEX for zbbcsd
Array, size ( $q-1$ ).
When ?bbcsd converges, b12e contains zeros. If ?bbcsd fails to converge, blle contains the superdiagonal of the partially reduced top right block.

INTEGER.
$=0$ : successful exit
$<0$ : if info $=-i$, the $i$-th argument has an illegal value
> 0: if ?bbcsd did not converge, info specifies the number of nonzero entries in phi, and blld, blle, etc. contain the partially reduced matrix.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ?bbcsd interface are as follows:
theta Holds the vector of length $q$.
phi Holds the vector of length $q-1$.
$u 1 \quad$ Holds the matrix of size $(p, p)$.
u2 Holds the matrix of size ( $m-p, m-p$ ).
v1t Holds the matrix of size $(q, q)$.
v2t Holds the matrix of size $(m-q, m-q)$.
b11d
b11e
b12d
b12e
b21d
b21e
b22d
b22e
jobsul

Holds the vector of length $q$.
Holds the vector of length $q-1$.
Holds the vector of length $q$.
Holds the vector of length $q-1$.
Holds the vector of length $q$.
Holds the vector of length $q-1$.
Holds the vector of length $q$.
Holds the vector of length $q-1$.
Indicates whether $u_{1}$ is computed. Must be 'Y' or 'O'.

jobsu2	Indicates whether $u_{2}$ is computed. Must be 'Y' or 'O'.
jobv1t	Indicates whether $v_{1}{ }^{t}$ is computed. Must be 'Y' or 'O'.
jobv2t	Indicates whether $v_{2}{ }^{t}$ is computed. Must be 'Y' or 'O'.
trans	Must be 'N' or 'T'.

## See Also

?orcsd/?uncsd
xerbla

## ?orbdb/?unbdb

Simultaneously bidiagonalizes the blocks of a partitioned orthogonal/unitary matrix.

## Syntax

```
call sorbdb(trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22,
theta, phi, taup1, taup2, tauq1, tauq2, work, lwork, info)
call dorbdb(trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22,
theta, phi, taup1, taup2, tauq1, tauq2, work, lwork, info)
call cunbdb(trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22,
theta, phi, taup1, taup2, tauq1, tauq2, work, lwork, info)
call zunbdb(trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22,
theta, phi, taup1, taup2, tauq1, tauq2, work, lwork, info)
call orbdb(x11,x12,x21,x22,theta,phi,taup1,taup2,tauq1,tauq2[,trans][,signs][,info])
call unbdb(x11,x12,x21,x22,theta,phi,taup1,taup2,tauq1,tauq2[,trans][,signs][,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routines ?orbdb/?unbdb simultaneously bidiagonalizes the blocks of an $m$-by- $m$ partitioned orthogonal matrix $X$ :

$$
X=\left(\begin{array}{lll}
x_{11} & x_{12} \\
\hline x_{21} & x_{22}
\end{array}\right)=\left(\begin{array}{lll}
p_{1} & \mid \\
\hline & \mid & p_{2}
\end{array}\right)\left(\begin{array}{ccc}
b_{11} \mid b_{12} & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline b_{21} \mid b_{22} & 0 & 0 \\
0 \mid 0 & 0 & I
\end{array}\right)\left(\begin{array}{lll}
q_{1} & \mid \\
\hline & \mid q_{2}
\end{array}\right)^{T}
$$

or unitary matrix:

$$
X=\left(\begin{array}{lll}
x_{11} & x_{12} \\
\hline x_{21} & \mid & x_{22}
\end{array}\right)=\left(\begin{array}{ll}
p_{1} & \mid \\
\hline & \mid
\end{array} p_{2}\right)\left(\begin{array}{ccc}
b_{11} \mid b_{12} & 0 & 0 \\
0 \mid 0 & -I & 0 \\
\hline b_{21} \mid b_{22} & 0 & 0 \\
0| | 0 & 0 & I
\end{array}\right)\left(\begin{array}{ll}
q_{1} & \mid \\
\hline & \mid \\
q_{2}
\end{array}\right)^{H}
$$

$x_{11}$ is $p$-by- $q$. $q$ must not be larger than $p, m-p$, or $m-q$. Otherwise, $x$ must be transposed and/or permuted in constant time using the trans and signs options.

The orthogonal/unitary matrices $p_{1}, p_{2}, q_{1}$, and $q_{2}$ are $p$-by- $p,(m-p)$-by- $(m-p), q$-by- $q,(m-q)$-by- $(m-q)$, respectively. They are represented implicitly by Housholder vectors.
The bidiagonal matrices $b_{11}, b_{12}, b_{21}$, and $b_{22}$ are $q$-by- $q$ bidiagonal matrices represented implicitly by angles theta(1), ... theta(q) and phi (1), ..., phi $(q-1) . b_{11}$ and $b_{12}$ are upper bidiagonal, while $b_{21}$ and $b_{22}$ are lower bidiagonal. Every entry in each bidiagonal band is a product of a sine or cosine of theta with a sine or cosine of phi. See [Sutton09] for details.
$p_{1}, p_{2}, q_{1}$, and $q_{2}$ are represented as products of elementary reflectors. .

## Input Parameters

trans
signs
m
$p$
$q$
$1 d x 11$
$x 12$

CHARACTER
$=' T ': \quad x, u_{1}, u_{2}, v_{1}{ }^{t}, v_{2}{ }^{t}$ are stored in row-major order.
otherwise $\quad x, u_{1}, u_{2}, v_{1}{ }^{t}, v_{2}{ }^{t}$ are stored in column-major order.

CHARACTER
$=$ ' O ':
otherwise

The lower-left block is made nonpositive (the "other" convention).
The upper-right block is made nonpositive (the "default" convention).

INTEGER. The number of rows and columns of the matrix $X$.
INTEGER. The number of rows in $x_{11}$ and $x_{12} .0 \leq p \leq m$.
INTEGER. The number of columns in $x_{11}$ and $x_{21} .0 \leq q \leq \min (p, m-p, m-q)$.
REAL for sorbdb
DOUBLE PRECISION for dorbdb
COMPLEX for cunbdb
DOUBLE COMPLEX for zunbdb
Array, size (Idx11,*) .
On entry, the top-left block of the orthogonal/unitary matrix to be reduced.
INTEGER. The leading dimension of the array $X_{11}$. If trans $=$ ' $T$ ', $1 d x 11 \geq p$. Otherwise, $1 d \times 11 \geq q$.

REAL for sorbdb
DOUBLE PRECISION for dorbdb
COMPLEX for cunbdb
DOUBLE COMPLEX for zunbdb
Array, size ( $/ d x 12, m-q$ ).
On entry, the top-right block of the orthogonal/unitary matrix to be reduced.

```
ldx12 INTEGER. The leading dimension of the array }\mp@subsup{X}{12}{}\mathrm{ . If trans = 'N', ldxl2 mp.
 Otherwise, ldx12\geqm-q.
 REAL for sorbdb
 DOUBLE PRECISION for dorbdb
 COMPLEX for cunbdb
 DOUBLE COMPLEX for zunbdb
 Array, size (Idx21,q).
On entry, the bottom-left block of the orthogonal/unitary matrix to be reduced.
INTEGER. The leading dimension of the array \(X_{21}\). If trans \(=\) ' N ', \(1 d \times 21 \geq m-\) p. Otherwise, \(1 d \times 21 \geq q\).
REAL for sorbdb
DOUBLE PRECISION for dorbdb
COMPLEX for cunbdb
DOUBLE COMPLEX for zunbdb
Array, size (\(/ d \times 22, m-q\)).
On entry, the bottom-right block of the orthogonal/unitary matrix to be reduced.
INTEGER. The leading dimension of the array \(X_{21}\). If \(\operatorname{trans}=\) ' \(N\) ', ldx22 \(\geq m-\) p. Otherwise, \(1 d \times 22 \geq m-q\).
REAL for sorbdb
DOUBLE PRECISION for dorbdb
COMPLEX for cunbdb
DOUBLE COMPLEX for zunbdb
Workspace array, size (lwork).
INTEGER. The size of the work array. lwork \(\geq m-q\)
If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
```


## Output Parameters

On exit, the form depends on trans:

If $\operatorname{trans}=$ ' N ',	the columns of the lower triangle of $x 11$ specify reflectors for $p_{1}$, the rows of the upper triangle of x11(1:q-1, q:q-1) specify reflectors for $q_{1}$
otherwise   trans='T',	the rows of the upper triangle of $x 11$ specify reflectors for $p_{1}$, the columns of the lower triangle of $x 11(1: q-$ $1, q: q-1$ ) specify reflectors for $q_{1}$

```
x12
x21
x22
On exit, the form depends on trans:
If trans=' N ', the columns of the upper triangle of \(x 12\) specify the first \(p\) reflectors for \(q_{2}\)
otherwise the columns of the lower triangle of \(x 12\) specify the first trans \(=\) 'T', \(\quad p\) reflectors for \(q_{2}\)
On exit, the form depends on trans:
\begin{tabular}{ll}
If \(\operatorname{trans}=\) ' N ', & \begin{tabular}{l}
the columns of the lower triangle of \(x 21\) specify the \\
reflectors for \(p_{2}\)
\end{tabular} \\
otherwise & \begin{tabular}{l}
the columns of the upper triangle of \(x 21\) specify the
\end{tabular} \\
trans='T', & reflectors for \(p_{2}\)
\end{tabular}
On exit, the form depends on trans:
If trans \(=\) ' N ', the rows of the upper triangle of \(x 22(q+1: m-p, p+1: m-\) \(q\)) specify the last \(m-p-q\) reflectors for \(q_{2}\)
otherwise the columns of the lower triangle of \(x 22(p+1: m-q, q\) trans \(=\) ' T ', \(\quad+1: m-p\)) specify the last \(m-p-q\) reflectors for \(p_{2}\)
REAL for sorbdb
DOUBLE PRECISION for dorbdb
COMPLEX for cunbdb
DOUBLE COMPLEX for zunbdb
Array, size \((q)\). The entries of bidiagonal blocks \(b_{11}, b_{12}, b_{21}\), and \(b_{22}\) can be computed from the angles theta and phi. See the Description section for details.
REAL for sorbdb
DOUBLE PRECISION for dorbdb
COMPLEX for cunbdb
DOUBLE COMPLEX for zunbdb
Array, size \((q-1)\). The entries of bidiagonal blocks \(b_{11}, b_{12}, b_{21}\), and \(b_{22}\) can be computed from the angles theta and phi. See the Description section for details.
REAL for sorbdb
DOUBLE PRECISION for dorbdb
COMPLEX for cunbdb
DOUBLE COMPLEX for zunbdb
Array, size (\(p\)).
Scalar factors of the elementary reflectors that define \(p_{1}\).
REAL for sorbdb
DOUBLE PRECISION for dorbdb
COMPLEX for cunbdb
```

```
DOUBLE COMPLEX for zunbdb
Array, size (m-p).
Scalar factors of the elementary reflectors that define }\mp@subsup{p}{2}{}\mathrm{ .
tauq1
tauq2
info
```

tauq2
info

```
REAL for sorbdb
DOUBLE PRECISION for dorbdb
COMPLEX for cunbdb
DOUBLE COMPLEX for zunbdb
Array, size (\(q\)).
Scalar factors of the elementary reflectors that define \(q_{1}\).
```

REAL for sorbdb
DOUBLE PRECISION for dorbdb
COMPLEX for cunbdb
DOUBLE COMPLEX for zunbdb
Array, size $(m-q)$.
Scalar factors of the elementary reflectors that define $q_{2}$.
INTEGER.
= 0 : successful exit
$<0$ : if info $=-i$, the $i$-th argument has an illegal value.

## Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ? orbdb/?unbdb interface are as follows:

x11	Holds the block of matrix $X$ of size $(p, q)$.
x12	Holds the block of matrix $X$ of size $(p, m-q)$.
$x 21$	Holds the block of matrix $X$ of size $(m-p, q)$.
x22	Holds the block of matrix $X$ of size $(m-p, m-q)$.
theta	Holds the vector of length $q$.
phi	Holds the vector of length $q-1$.
taup1	Holds the vector of length $p$.
taup2	Holds the vector of length $m-p$.
tauq1	Holds the vector of length $q$.
taupq2	Holds the vector of length $m-q$.
trans	Must be 'N' or ' T '.
signs	Must be ' $\mathrm{O}^{\prime}$ ' or ' D '.

## See Also

?orcsd/?uncsd
?orgqr
?ungqr
?orglq
?unglq
xerbla

## LAPACK Least Squares and Eigenvalue Problem Driver Routines

Each of the LAPACK driver routines solves a complete problem. To arrive at the solution, driver routines typically call a sequence of appropriate computational routines.
Driver routines are described in the following topics :
Linear Least Squares (LLS) Problems
Generalized LLS Problems
Symmetric Eigenproblems
Nonsymmetric Eigenproblems
Singular Value Decomposition
Cosine-Sine Decomposition
Generalized Symmetric Definite Eigenproblems
Generalized Nonsymmetric Eigenproblems

## Linear Least Squares (LLS) Problems: LAPACK Driver Routines

This topic describes LAPACK driver routines used for solving linear least squares problems. Table "Driver Routines for Solving LLS Problems" lists all such routines for the FORTRAN 77 interface. The corresponding routine names in the Fortran 95 interface are without the first symbol.
Driver Routines for Solving LLS Problems

Routine Name	Operation performed
gels	Uses QR or LQ factorization to solve a overdetermined or underdetermined linear   system with full rank matrix.
gelsy	Computes the minimum-norm solution to a linear least squares problem using a   complete orthogonal factorization of A.
gelss	Computes the minimum-norm solution to a linear least squares problem using the   singular value decomposition of A.
getsls	Computes the minimum-norm solution to a linear least squares problem using the   singular value decomposition of A and a divide and conquer method.   Solves overdetermined or underdetermined real linear systems involving a matrix or   its transpose using a tall skinny QR or short wide LQ factorization.

```
?gels
Uses QR or LQ factorization to solve a overdetermined
or underdetermined linear system with full rank
matrix.
Syntax
call sgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
```

```
call dgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call cgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call zgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call gels(a, b [,trans] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine solves overdetermined or underdetermined real/ complex linear systems involving an m-by- $n$ matrix $A$, or its transpose/ conjugate-transpose, using a $Q R$ or $L Q$ factorization of $A$. It is assumed that $A$ has full rank.

The following options are provided:

1. If $\operatorname{trans}=$ ' $N$ ' and $m \geq n$ : find the least squares solution of an overdetermined system, that is, solve the least squares problem
minimize ||b - $A^{\star} x| |_{2}$
2. If trans $={ }^{\prime} N^{\prime}$ ' and $m<n$ : find the minimum norm solution of an underdetermined system $A^{\star} X=B$.
3. If trans $=$ ' $T$ ' or ' $C$ ' and $m \geq n$ : find the minimum norm solution of an undetermined system $A^{\mathrm{H}} * X=B$.
4. If trans $=$ ' $T$ ' or ' $C$ ' and $m<n$ : find the least squares solution of an overdetermined system, that is, solve the least squares problem
minimize ||b $-A^{H *} x| |_{2}$
Several right hand side vectors $b$ and solution vectors $x$ can be handled in a single call; they are formed by the columns of the right hand side matrix $B$ and the solution matrix $X$ (when coefficient matrix is $A, B$ is $m$ -by-nrhs and $X$ is $n$-by-nrhs; if the coefficient matrix is $A^{\top}$ or $A^{\mathrm{H}}, B$ isn-by-nrhs and $X$ is $m$-by-nrhs.

## Input Parameters

trans	CHARACTER*1. Must be 'N', 'T', or 'C'.
	If trans = 'N', the linear system involves matrix $A$;
	If trans $=$ ' $T$ ', the linear system involves the transposed matrix $A^{T}$ (for real flavors only);
	If trans = 'C', the linear system involves the conjugate-transposed matrix $A^{H}$ (for complex flavors only).
m	INTEGER. The number of rows of the matrix $A(m \geq 0)$.
$n$	INTEGER. The number of columns of the matrix $A$
	( $n \geq 0$ ).
nrhs	INTEGER. The number of right-hand sides; the number of columns in $B$ ( $n r h s \geq 0$ ).
$a, b$, work	REAL for sgels
	DOUBLE PRECISION for dgels
	COMPLEX for cgels

DOUBLE COMPLEX for zgels.
Arrays:
$a(I d a, *)$ contains the $m$-by-n matrix $A$.
The second dimension of $a$ must be at least $\max (1, n)$.
$b(/ d b, *)$ contains the matrix $B$ of right hand side vectors.
The second dimension of $b$ must be at least max(1, nrhs).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a$; at least max $(1, m)$.
INTEGER. The leading dimension of $b$; must be at least $\max (1, m, n)$.
INTEGER. The size of the work array; must be at least min $(m, n)+\max (1$, $m, n, n r h s)$.

If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

On exit, overwritten by the factorization data as follows:
if $m \geq n$, array a contains the details of the $Q R$ factorization of the matrix $A$ as returned by ?geqrf;
if $m<n$, array a contains the details of the $L Q$ factorization of the matrix $A$ as returned by ?gelqf.

If info $=0, b$ overwritten by the solution vectors, stored columnwise:
if trans $=$ ' $N$ ' and $m \geq n$, rows 1 to $n$ of $b$ contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of modulus of elements $n+1$ to $m$ in that column;
if trans $=$ ' $N$ ' and $m<n$, rows 1 to $n$ of $b$ contain the minimum norm solution vectors;
if trans $=$ ' $T$ ' or ' $C$ ' and $m \geq n$, rows 1 to $m$ of $b$ contain the minimum norm solution vectors;
if trans $=$ 'T' or 'C' and $m<n$, rows 1 to $m$ of $b$ contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of modulus of elements $m+1$ to $n$ in that column.

If info $=0$, on exit work (1) contains the minimum value of lwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

If info $=i$, the $i$-th diagonal element of the triangular factor of $A$ is zero, so that $A$ does not have full rank; the least squares solution could not be computed.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine gels interface are the following:

```
a Holds the matrix A of size (m,n).
b Holds the matrix of size max(m,n)-by-nrhs.
 If trans = 'N', then, on entry, the size of b is m-by-nrhs,
 If trans = 'T', then, on entry, the size of b is n-by-nrhs,
trans Must be 'N' or 'T'. The default value is 'N'.
```


## Application Notes

For better performance, try using lwork $=\min (m, n)+\max (1, m, n, n r h s) *$ blocksize, where blocksize is a machine-dependent value (typically, 16 to 64) required for optimum performance of the blocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of /work for the first run or set $l_{\text {work }}=-1$.
If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set lwork $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set /work to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

## ?gelsy

Computes the minimum-norm solution to a linear least squares problem using a complete orthogonal factorization of $A$.

## Syntax

```
call sgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, info)
call dgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, info)
call cgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, rwork, info)
call zgelsy(m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work, lwork, rwork, info)
call gelsy(a, b [,rank] [,jpvt] [,rcond] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The ?gelsy routine computes the minimum-norm solution to a real/complex linear least squares problem:

```
minimize ||b - A*x||
```

using a complete orthogonal factorization of $A$. $A$ is an $m$-by-n matrix which may be rank-deficient. Several right hand side vectors $b$ and solution vectors $x$ can be handled in a single call; they are stored as the columns of the $m$-by-nrhs right hand side matrix $B$ and the $n$-by-nrhs solution matrix $X$.
The routine first computes a $Q R$ factorization with column pivoting:

with $R_{11}$ defined as the largest leading submatrix whose estimated condition number is less than $1 / r c o n d$. The order of $R_{11}$, rank, is the effective rank of $A$. Then, $R_{22}$ is considered to be negligible, and $R_{12}$ is annihilated by orthogonal/unitary transformations from the right, arriving at the complete orthogonal factorization:


The minimum-norm solution is then

$$
X=P Z^{\mathrm{T}}\binom{T_{11}^{-1} Q_{1}^{\mathrm{T}} B}{0}
$$

for real flavors and

$$
X=P Z^{\mathrm{H}}\binom{T_{11}^{-1} Q_{1}{ }^{\mathrm{H}}}{0}
$$

for complex flavors,
where $Q_{1}$ consists of the first rank columns of $Q$.

The ?gelsy routine is identical to the original deprecated ?gelsx routine except for the following differences:

- The call to the subroutine ? geqpf has been substituted by the call to the subroutine ?geqp3, which is a BLAS-3 version of the $Q R$ factorization with column pivoting.
- The matrix $B$ (the right hand side) is updated with BLAS-3.
- The permutation of the matrix $B$ (the right hand side) is faster and more simple.


## Input Parameters

```
m
\(n\)
nrhs
\(a, b\), work
```

Ida
1 db
jpvt
rcond
l work

INTEGER. The number of rows of the matrix $A(m \geq 0)$.
INTEGER. The number of columns of the matrix $A$
( $n \geq 0$ ).
INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).

REAL for sgelsy
DOUBLE PRECISION for dgelsy
COMPLEX for cgelsy
DOUBLE COMPLEX for zgelsy.
Arrays:
$a(I d a, *)$ contains the $m$-by-n matrix $A$.
The second dimension of a must be at least max $(1, n)$.
$b(I d b, *)$ contains the $m$-by-nrhs right hand side matrix $B$.
The second dimension of $b$ must be at least max(1, nrhs).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a$; at least $\max (1, m)$.
INTEGER. The leading dimension of $b$; must be at least $\max (1, m, n)$.
INTEGER.
Array, size at least $\max (1, n)$.
On entry, if $j p v t(i) \neq 0$, the $i$-th column of $A$ is permuted to the front of $A P$, otherwise the $i$-th column of $A$ is a free column.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
rcond is used to determine the effective rank of $A$, which is defined as the order of the largest leading triangular submatrix $R_{11}$ in the $Q R$ factorization with pivoting of $A$, whose estimated condition number $<1 /$ rcond.

INTEGER. The size of the work array.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla. See Application Notes for the suggested value of Iwork.
rwork

## Output Parameters

a
$b$
jpvt
rank
info

REAL for cgelsy DOUBLE PRECISION for zgelsy. Workspace array, size at least max $(1,2 n)$. Used in complex flavors only.

On exit, overwritten by the details of the complete orthogonal factorization of $A$.

Overwritten by the $n$-by-nrhs solution matrix $X$.
On exit, if $j p v t(i)=k$, then the $i$-th column of $A P$ was the $k$-th column of $A$.
INTEGER. The effective rank of $A$, that is, the order of the submatrix $R_{11}$. This is the same as the order of the submatrix $T_{11}$ in the complete orthogonal factorization of $A$.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine gelsy interface are the following:

```
a Holds the matrix A of size (m,n).
b Holds the matrix of size max(m,n)-by-nrhs. On entry, contains the m-by-nrhs
 right hand side matrix B, On exit,overwritten by the n-by-nrhs solution matrix }X\mathrm{ .
 Holds the vector of length n. Default value for this element is jpvt(i) = 0.
 Default value for this element is rcond = 100*EPSILON(1.0_WP).
```


## Application Notes

For real flavors:
The unblocked strategy requires that:
I work $\geq \max (m n+3 n+1,2 * m n+n r h s)$,
where $m n=\min (m, n)$.
The block algorithm requires that:

```
lwork\geq max(mn+2n+nb*(n+1), 2*mn+nb*nrhs),
```

where $n b$ is an upper bound on the blocksize returned by ilaenv for the routines sgeqp3/dgeqp3, stzrzf/ dtzrzf, stzrqf/dtzrqf, sormqr/dormqr, and sormrz/dormrz.

For complex flavors:
The unblocked strategy requires that:

```
lwork\geqmn + max(2*mn, n+1, mn + nrhs),
where mn = min(m,n).
```

The block algorithm requires that:

```
lwork < mn + max(2*mn, nb* (n+1), mn+mn*nb, mn+ nb*nrhs),
```

where $n b$ is an upper bound on the blocksize returned by ilaenv for the routines cgeqp $3 / z g e q p 3$, ctzrzf/ ztzrzf, ctzrqf/ztzrqf, cunmqr/zunmqr, and cunmrz/zunmrz.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set /work to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

## ?gelss

Computes the minimum-norm solution to a linear least squares problem using the singular value decomposition of $A$.

Syntax

```
call sgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, info)
call dgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, info)
call cgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, info)
call zgelss(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, info)
call gelss(a, b [,rank] [,s] [,rcond] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine computes the minimum norm solution to a real linear least squares problem:

```
minimize ||b - A*x||
```

using the singular value decomposition (SVD) of $A$. $A$ is an $m$-by-n matrix which may be rank-deficient. Several right hand side vectors $b$ and solution vectors $x$ can be handled in a single call; they are stored as the columns of the $m$-by-nrhs right hand side matrix $B$ and the $n$-by-nrhs solution matrix $X$. The effective rank of $A$ is determined by treating as zero those singular values which are less than rcond times the largest singular value.

## Input Parameters

m
INTEGER. The number of rows of the matrix $A(m \geq 0)$.
INTEGER. The number of columns of the matrix $A$

$$
(n \geq 0)
$$

```
nrhs
a,b, work
lda
I db
rcond
l work
rwork
```

INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).

REAL for sgelss
DOUBLE PRECISION for dgelss
COMPLEX for cgelss
DOUBLE COMPLEX for zgelss.
Arrays:
$a(I d a, *)$ contains the $m$-by-n matrix $A$.
The second dimension of $a$ must be at least max $(1, n)$.
$b(I d b, *)$ contains the $m$-by-nrhs right hand side matrix $B$.
The second dimension of $b$ must be at least max(1, nrhs).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a$; at least $\max (1, m)$.
INTEGER. The leading dimension of $b$; must be at least $\max (1, m, n)$.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
rcond is used to determine the effective rank of $A$. Singular values $s(i)$ srcond ${ }^{*} s(1)$ are treated as zero.

If rcond $<0$, machine precision is used instead.
INTEGER. The size of the work array; lwork $\geq 1$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.
REAL for cgelss
DOUBLE PRECISION for zgelss.
Workspace array used in complex flavors only. size at least max (1, 5*min(m, n)).

On exit, the first $\min (m, n)$ rows of a are overwritten with the matrix of right singular vectors of $A$, stored row-wise.

Overwritten by the $n$-by-nrhs solution matrix $X$.
If $m \geq n$ and rank $=n$, the residual sum-of-squares for the solution in the $i$ th column is given by the sum of squares of modulus of elements $n+1: m$ in that column.

REAL for single precision flavors

## Output Parameters

a
b

S

	DOUBLE PRECISION for double precision flavors.
	Array, size at least $\max (1, \min (m, n))$. The singular values of $A$ in decreasing order. The condition number of $A$ in the 2 -norm is
	$k_{2}(A)=s(1) / s(\min (m, n))$.
rank	INTEGER. The effective rank of $A$, that is, the number of singular values which are greater than rcond ${ }^{s} s(1)$.
work(1)	If info $=0$, on exit, work (1) contains the minimum value of Iwork required for optimum performance. Use this /work for subsequent runs.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the $i$-th parameter had an illegal value.
	If info $=i$, then the algorithm for computing the SVD failed to converge; $i$ indicates the number of off-diagonal elements of an intermediate bidiagonal form which did not converge to zero.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine gelss interface are the following:

$a$	Holds the matrix $A$ of size $(m, n)$.
$b$	Holds the matrix of size $\max (m, n)$-by- $n r h s$. On entry, contains the $m$-by- $n r h s$   right hand side matrix $B$, On exit, overwritten by the $n$-by- $n r h s$ solution matrix $X$.
$s$	Holds the vector of length $\min (m, n)$.
rcond	Default value for this element is $r c o n d=100 * E P S I L O N\left(1.0 \_W P\right)$.

## Application Notes

## For real flavors:

```
lwork\geq 3*min(m, n)+ max(2*min(m, n), max(m, n), nrhs)
```

For complex flavors:
lwork $\geq 2 * \min (m, n)+\max (m, n, n r h s)$
For good performance, Iwork should generally be larger.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work(1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

```
?gelsd
Computes the minimum-norm solution to a linear least
squares problem using the singular value
decomposition of A and a divide and conquer method.
Syntax
```

```
call sgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info)
```

call sgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info)
call dgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info)
call dgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info)
call cgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork, info)
call cgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork, info)
call zgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork, info)
call zgelsd(m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork, info)
call gelsd(a, b [,rank] [,s] [,rcond] [,info])

```
call gelsd(a, b [,rank] [,s] [,rcond] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine computes the minimum-norm solution to a real linear least squares problem:

```
minimize ||b - A*X||
```

using the singular value decomposition (SVD) of $A . A$ is an $m$-by-n matrix which may be rank-deficient.
Several right hand side vectors $b$ and solution vectors $x$ can be handled in a single call; they are stored as the columns of the $m$-by-nrhs right hand side matrix $B$ and the $n$-by-nrhs solution matrix $X$.

The problem is solved in three steps:

1. Reduce the coefficient matrix $A$ to bidiagonal form with Householder transformations, reducing the original problem into a "bidiagonal least squares problem" (BLS).
2. Solve the BLS using a divide and conquer approach.
3. Apply back all the Householder transformations to solve the original least squares problem.

The effective rank of $A$ is determined by treating as zero those singular values which are less than rcond times the largest singular value.

The routine uses auxiliary routines lals0 and Ialsa.

## Input Parameters

m
INTEGER. The number of rows of the matrix $A(m \geq 0)$.
INTEGER. The number of columns of the matrix $A$
( $n \geq 0$ ).
nrhs
a, b, work
INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).

REAL for sgelsd
DOUBLE PRECISION for dgelsd
COMPLEX for cgelsd

DOUBLE COMPLEX for zgelsd.
Arrays:
$a(I d a, *)$ contains the $m$-by-n matrix $A$.
The second dimension of $a$ must be at least $\max (1, n)$.
$b\left(/ d b,{ }^{*}\right)$ contains the $m$-by-nrhs right hand side matrix $B$.
The second dimension of $b$ must be at least max(1, nrhs).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a$; at least max $(1, m)$.
INTEGER. The leading dimension of $b$; must be at least $\max (1, m, n)$.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
rcond is used to determine the effective rank of $A$. Singular values $s(i)$ $\leq r c o n d{ }^{s}(1)$ are treated as zero. If rconds 0 , machine precision is used instead.

INTEGER. The size of the work array; lwork $\geq 1$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the array work and the minimum sizes of the arrays rwork and iwork, and returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork is issued by xerbla.
See Application Notes for the suggested value of Iwork.
integer. Workspace array. See Application Notes for the suggested dimension of iwork.

REAL for cgelsd
DOUBLE PRECISION for zgelsd.
Workspace array, used in complex flavors only. See Application Notes for the suggested dimension of rwork.

## Output Parameters

a
b

S

On exit, $A$ has been overwritten.
Overwritten by the $n$-by-nrhs solution matrix $X$.
If $m \geq n$ and rank $=n$, the residual sum-of-squares for the solution in the $i$ th column is given by the sum of squares of modulus of elements $n+1: m$ in that column.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, size at least $\max (1, \min (m, n))$. The singular values of $A$ in decreasing order. The condition number of $A$ in the 2 -norm is
$k_{2}(A)=s(1) / s(\min (m, n))$.
rank INTEGER. The effective rank of $A$, that is, the number of singular values which are greater than rcond ${ }^{*} s(1)$.

If info $=0$, on exit, work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

If info $=0$, on exit, rwork (1) returns the minimum size of the workspace array $i w o r k$ required for optimum performance.

If info $=0$, on exit, iwork (1) returns the minimum size of the workspace array iwork required for optimum performance.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i$, then the algorithm for computing the SVD failed to converge; $i$ indicates the number of off-diagonal elements of an intermediate bidiagonal form that did not converge to zero.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine gelsd interface are the following:

```
a Holds the matrix A of size (m,n).
b Holds the matrix of size max (m,n)-by-nrhs. On entry, contains the m-by-nrhs
 right hand side matrix B, On exit, overwritten by the n-by-nrhs solution matrix }X\mathrm{ .
 Holds the vector of length min}(m,n)
 Default value for this element is rcond = 100*EPSILON(1.0_WP).
```


## Application Notes

The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

The exact minimum amount of workspace needed depends on $m, n$ and $n r h s$. The size Iwork of the workspace array work must be as given below.
For real flavors:
If $m \geq n$,
lwork $\geq 12 n+2 n^{\star}$ smlsiz $+8 n^{\star} n l v l+n^{\star} n r h s+(s m l s i z+1)^{2}$;
If $m<n$,
lwork $\geq 12 m+2 m^{\star} \operatorname{smlsiz}+8 m^{\star} n l v l+m^{\star} n r h s+(s m l s i z+1)^{2}$;
For complex flavors:
If $m \geq n$,
lwork< $2 n+n * n r h s ;$

```
If m<n,
lwork\geq 2m + m^nrhs;
```

where smlsiz is returned by ilaenv and is equal to the maximum size of the subproblems at the bottom of the computation tree (usually about 25), and

```
nlvl = INT(log}2(\operatorname{min}(m,n)/(smlsiz+1))) + 1.
```

For good performance, lwork should generally be larger.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The dimension of the workspace array iwork must be at least

```
3*min(m,n)*nlvl + 11*min(m,n).
```

The dimension of the workspace array iwork (for complex flavors) must be at least max (1, lrwork).

```
lrwork\geq 10n + 2n*smlsiz + 8n*nlvl + 3*smlsiz*nrhs + (smlsiz+1)2 if m\geqn, and
lrwork\geq 10m + 2m*smlsiz + 8m*nlvl + 3*smlsiz*nrhs + (smlsiz+1)}\mp@subsup{}{}{2}\mathrm{ if m < n.
```


## ?getsls

Uses $Q R$ or $L Q$ factorization to solve an overdetermined or underdetermined linear system with full rank matrix, with best performance for tall and skinny matrices.

```
call sgetsls(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call dgetsls(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call cgetsls(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
call zgetsls(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
```


## Description

The routine solves overdetermined or underdetermined real/ complex linear systems involving an m-by-n matrix $A$, or its transpose/conjugate-transpose, using a ? geqr or ? gelq factorization of $A$. It is assumed that $A$ has full rank.

The following options are provided:

1. If $\operatorname{trans}=$ ' $N$ ' and $m \geq n$ : find the least squares solution of an overdetermined system, that is, solve the least squares problem
minimize ||b - $A^{\star} x| |_{2}$
2. If trans $=$ ' $N$ ' and $m<n$ : find the minimum norm solution of an underdetermined system $A^{\star} X=B$.
3. If trans $=$ ' $T$ ' or 'C' and $m \geq n$ : find the minimum norm solution of an undetermined system $A^{\mathrm{H}} * X=B$.
4. If trans $=$ ' $T$ ' or ' $C$ ' and $m<n$ : find the least squares solution of an overdetermined system, that is, solve the least squares problem
```
minimize ||b - A A
```

Several right hand side vectors $b$ and solution vectors $x$ can be handled in a single call; they are formed by the columns of the right hand side matrix $B$ and the solution matrix $X$ (when coefficient matrix is $A, B$ is $m$ -by-nrhs and $X$ is $n$-by-nrhs; if the coefficient matrix is $A^{\top}$ or $A^{H}, B$ isn-by-nrhs and $X$ is $m$-by-nrhs.

## Input Parameters

trans
m
$n$
a
lda
b

1 db
lwork

CHARACTER*1. Must be 'N', 'T', or 'C'.
If trans $=$ ' $N$ ', the linear system involves matrix $A$;
If trans $=$ ' $T$ ', the linear system involves the transposed matrix $A^{T}$ (for real flavors only);

If trans = 'C', the linear system involves the conjugate-transposed matrix $A^{H}$ (for complex flavors only).

INTEGER. The number of rows of the matrix $A . m \geq 0$.
INTEGER. The number of columns of the matrix $A . n \geq 0$.
INTEGER. The number of right-hand sides; the number of columns in $B$ (nrhs $\geq 0$ ).

REAL for sgetsls
DOUBLE PRECISION for dgetsls
COMPLEX for cgetsls
COMPLEX*16 for zgetsls
Array a(Ida,*) contains the m-by-n matrix $A$.
The second dimension of $a$ must be at least $\max (1, n)$.
INTEGER. The leading dimension of the array $a$. $1 d a \geq \max (1, m)$.
REAL for sgetsls
DOUBLE PRECISION for dgetsls
COMPLEX for cgetsls
COMPLEX*16 for zgetsls
Array $b(/ d b, *)$ contains the matrix $B$ of right hand side vectors.
The second dimension of $b$ must be at least max(1, nrhs).
INTEGER. The leading dimension of the array b. $1 d b \geq \max (1, m, n)$.
INTEGER. The size of the work array; must be at least min $(m, n)+\max (1$, $m, n, n r h s)$.

If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

a
b
work(1)
info

On exit, overwritten by the factorization data as follows:
if $m \geq n$, array a contains the details of the $Q R$ factorization of the matrix $A$ as returned by ?geqr;
if $m<n$, array a contains the details of the $L Q$ factorization of the matrix $A$ as returned by ?gelq.

If info $=0, b$ overwritten by the solution vectors, stored columnwise:
if trans $=$ ' $N$ ' and $m \geq n$, rows 1 to $n$ of $b$ contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of modulus of elements $n+1$ to $m$ in that column;
if trans $=$ ' $N$ ' and $m<n$, rows 1 to $n$ of $b$ contain the minimum norm solution vectors;
if trans $=$ ' $T$ ' or ' $C$ ' and $m \geq n$, rows 1 to $m$ of $b$ contain the minimum norm solution vectors;
if trans $=$ ' $T$ ' or ' $C$ ' and $m<n$, rows 1 to $m$ of $b$ contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of modulus of elements $m+1$ to $n$ in that column.

If info $=0$, on exit work (1) contains the minimum value of Iwork required for optimum performance. Use this Iwork for subsequent runs.

INTEGER.
If $\operatorname{info}=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i$, the $i$-th diagonal element of the triangular factor of $A$ is zero, so that $A$ does not have full rank; the least squares solution could not be computed.

## Generalized Linear Least Squares (LLS) Problems: LAPACK Driver Routines

This topic describes LAPACK driver routines used for solving generalized linear least squares problems. Table "Driver Routines for Solving Generalized LLS Problems" lists all such routines. The corresponding routine names in the Fortran 95 interface are without the first symbol.
Driver Routines for Solving Generalized LLS Problems

Routine Name	Operation performed
gglse	Solves the linear equality-constrained least squares problem using a generalized RQ   factorization.
ggglm	Solves a general Gauss-Markov linear model problem using a generalized QR   factorization.

## ?gglse

Solves the linear equality-constrained least squares problem using a generalized $R Q$ factorization.

## Syntax

```
call sgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)
call dgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)
call cgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)
call zgglse(m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)
call gglse(a, b, c, d, x [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine solves the linear equality-constrained least squares (LSE) problem:

```
minimize ||C - A\star X|| }\mp@subsup{}{}{2}\mathrm{ subject to }\mp@subsup{B}{}{\star}X=
```

where $A$ is an $m$-by- $n$ matrix, $B$ is a $p$-by- $n$ matrix, $c$ is a given $m$-vector, andd is a given $p$-vector. It is assumed that $p \leq n \leq m+p$, and


These conditions ensure that the LSE problem has a unique solution, which is obtained using a generalized $R Q$ factorization of the matrices ( $B, A$ ) given by

```
B=(0}R|)*Q,A=\mp@subsup{Z}{}{*}\mp@subsup{T}{}{*}
```


## Input Parameters

$m$	INTEGER. The number of rows of the matrix $A(m \geq 0)$.
$p$	INTEGER. The number of columns of the matrices $A$ and $B(n \geq 0)$.
$a, b, c, d$, work	INTEGER. The number of rows of the matrix $B$
	$(0 \leq p \leq n \leq m+p)$.
	REAL for sgglse
	DOUBLE PRECISION for dgglse
	COMPLEX for cgglse
	DOUBLE COMPLEX for zgglse.
	Arrays:
	$a(I d a, *)$ contains the $m$-by- $n$ matrix $A$.
	The second dimension of $a$ must be at least max $(1, n)$.
	$b(I d b, *)$ contains the $p-b y-n m a t r i x ~$

Ida

1 db

I work

The second dimension of $b$ must be at least max $(1, n)$.
$c(*)$, size at least $\max (1, m)$, contains the right hand side vector for the least squares part of the LSE problem.
$d\left({ }^{*}\right)_{,}$, size at least $\max (1, p)$, contains the right hand side vector for the constrained equation.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of $a$; at least max $(1, m)$.
INTEGER. The leading dimension of $b$; at least max $(1, p)$.
INTEGER. The size of the work array;
lwork $\geq \max (1, m+n+p)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

a

X
b
$d$

C
work(1)
info

The elements on and above the diagonal contain the $\min (m, n)$-by- $n$ upper trapezoidal matrix $T$ as returned by ?ggrqf.

REAL for sgglse
The solution of the LSE problem.
On exit, the upper right triangle of the subarray $b(1: p, n-p+1: n)$ contains the $p$-by- $p$ upper triangular matrix $R$ as returned by ?ggrqf.

On exit, $d$ is destroyed.
On exit, the residual sum-of-squares for the solution is given by the sum of squares of elements $n-p+1$ to $m$ of vector $c$.

If info $=0$, on exit, work (1) contains the minimum value of Iwork required for optimum performance. Use this /work for subsequent runs.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=1$, the upper triangular factor $R$ associated with $B$ in the generalized RQ factorization of the pair ( $B, A$ ) is singular, so that rank ( $B$ ) $<p$; the least squares solution could not be computed.

If info $=2$, the $(n-p)-b y-(n-p)$ part of the upper trapezoidal factor $T$ associated with $A$ in the generalized RQ factorization of the pair ( $B, A$ ) is singular, so that

; the least squares solution could not be computed.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gglse interface are the following:

$a$	Holds the matrix $A$ of size $(m, n)$.
$b$	Holds the matrix $B$ of size $(p, n)$.
$c$	Holds the vector of length $(m)$.
$d$	Holds the vector of length $(p)$.
$x$	Holds the vector of length $n$.

## Application Notes

For optimum performance, use
lwork $\geq p+\min (m, n)+\max (m, n) * n b$,
where $n b$ is an upper bound for the optimal blocksizes for ?geqrf, ?gerqf, ?ormqr/?unmqr
and ?ormrq/?unmrq.
You may set /work to -1 . The routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

## ?ggglm

Solves a general Gauss-Markov linear model problem
using a generalized QR factorization.

## Syntax

```
call sggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)
call dggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)
call cggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)
```

```
call zggglm(n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)
call ggglm(a, b, d, x, y [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine solves a general Gauss-Markov linear model (GLM) problem:

```
minimize}x|y|\mp@subsup{|}{2}{}\mathrm{ subject to }d=A*x + B*
```

where $A$ is an $n$-by- $m$ matrix, $B$ is an $n$-by- $p$ matrix, and $d$ is a given $n$-vector. It is assumed that $m \leq n \leq m+p$, and $\operatorname{rank}(A)=m$ and $\operatorname{rank}(A B)=n$.

Under these assumptions, the constrained equation is always consistent, and there is a unique solution $x$ and a minimal 2-norm solution $y$, which is obtained using a generalized $Q R$ factorization of the matrices ( $A, B$ ) given by

$$
A=Q\binom{R}{0} ; \quad B=Q * T * Z .
$$

In particular, if matrix $B$ is square nonsingular, then the problem GLM is equivalent to the following weighted linear least squares problem

```
minimize
```


## Input Parameters

```
n
m
p
a,b, d, work
```

INTEGER. The number of rows of the matrices $A$ and $B(n \geq 0)$.
INTEGER. The number of columns in $A(m \geq 0)$.
INTEGER. The number of columns in $B(p \geq n-m)$.
REAL for sggglm
DOUBLE PRECISION for dggglm
COMPLEX for cggglm
DOUBLE COMPLEX for $\mathrm{zg} g \mathrm{glm}$.
Arrays:
$a(I d a, *)$ contains the $n$-by-m matrix $A$.
The second dimension of $a$ must be at least $\max (1, m)$.
$b(I d b, *)$ contains the $n$-by- $p$ matrix $B$.
The second dimension of $b$ must be at least max $(1, p)$.
$d(*)$, size at least $\max (1, n)$, contains the left hand side of the GLM equation.
work is a workspace array, its dimension max (1, lwork).

```
lda
ldb
lwork
```

INTEGER. The leading dimension of $a$; at least max $(1, n)$.
INTEGER. The leading dimension of $b$; at least max $(1, n)$.
INTEGER. The size of the work array; 1 work $\geq \max (1, n+m+p)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

$x, y$
REAL for sggglm
DOUBLE PRECISION for dggglm
COMPLEX for cggglm
DOUBLE COMPLEX for zggglm.
Arrays $x\left({ }^{*}\right), y\left({ }^{*}\right)$. size at least $\max (1, m)$ for $x$ and at least $\max (1, p)$ for $y$. On exit, $x$ and $y$ are the solutions of the GLM problem.

On exit, the upper triangular part of the array a contains the m-by-m upper triangular matrix $R$.

On exit, if $n \leq p$, the upper right triangle of the subarray $b(1: n, p-n+1: p)$ contains the $n-b y-n$ upper triangular matrix $T$ as returned by ?ggrqf; if $n>$ $p$, the elements on and above the $(n-p)$-th subdiagonal contain the $n$-by- $p$ upper trapezoidal matrix $T$.

On exit, $d$ is destroyed
If info $=0$, on exit, work (1) contains the minimum value of Iwork required for optimum performance.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=1$, the upper triangular factor $R$ associated with $A$ in the generalized QR factorization of the pair ( $A, B$ ) is singular, so that rank ( $A$ ) $<m$; the least squares solution could not be computed.

If info $=2$, the bottom $(n-m)$-by- $(n-m)$ part of the upper trapezoidal factor $T$ associated with $B$ in the generalized QR factorization of the pair ( $A$, $B$ ) is singular, so that $\operatorname{rank}(A B)<n$; the least squares solution could not be computed.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ggglm interface are the following:

```
a Holds the matrix }A\mathrm{ of size (}n,m)\mathrm{ .
b Holds the matrix B of size (}n,p)\mathrm{ .
d Holds the vector of length n.
x Holds the vector of length (m).
y Holds the vector of length (p).
```


## Application Notes

For optimum performance, use
$l$ work $\geq m+\min (n, p)+\max (n, p) * n b$,
where $n b$ is an upper bound for the optimal blocksizes for ? geqrf, ?gerqf, ?ormqr/?unmqr
and ?ormrq/?unmrq.
You may set lwork to -1 . The routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

## Symmetric Eigenvalue Problems: LAPACK Driver Routines

This topic describes LAPACK driver routines used for solving symmetric eigenvalue problems. See also computational routines that can be called to solve these problems. Table "Driver Routines for Solving Symmetric Eigenproblems" lists all such driver routines for the FORTRAN 77 interface. The corresponding routine names in the Fortran 95 interface are without the first symbol.
Driver Routines for Solving Symmetric Eigenproblems

Routine Name	Operation performed
syev/heev	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix.
syevd/heevd	Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric / Hermitian matrix using divide and conquer algorithm.
syevx/heevx	Computes selected eigenvalues and, optionally, eigenvectors of a symmetric / Hermitian matrix.
syevr/heevr	Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix using the Relatively Robust Representations.
spev/hpev	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix in packed storage.
spevd/hpevd	Uses divide and conquer algorithm to compute all eigenvalues and (optionally) all eigenvectors of a real symmetric / Hermitian matrix held in packed storage.
spevx/hpevx	Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian matrix in packed storage.
sbev /hbev	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric / Hermitian band matrix.
sbevd/hbevd	Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric / Hermitian band matrix using divide and conquer algorithm.


Routine Name	Operation performed
sbevx/hbevx	Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric /   Hermitian band matrix.
stev	Computes all eigenvalues and, optionally, eigenvectors of a real symmetric   tridiagonal matrix.
stevd	Computes all eigenvalues and (optionally) all eigenvectors of a real symmetric   tridiagonal matrix using divide and conquer algorithm.
stevr	Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal   matrix.
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric   tridiagonal matrix using the Relatively Robust Representations.	

## ?syev <br> Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix.

## Syntax

```
call ssyev(jobz, uplo, n, a, lda, w, work, lwork, info)
call dsyev(jobz, uplo, n, a, lda, w, work, lwork, info)
call syev(a, w [,jobz] [,uplo] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix $A$.
Note that for most cases of real symmetric eigenvalue problems the default choice should be syevr function as its underlying algorithm is faster and uses less workspace.

## Input Parameters

```
jobz
uplo
n
a, work
CHARACTER*1. Must be 'N' or 'V'.
 If jobz = 'N', then only eigenvalues are computed.
 If jobz = 'V', then eigenvalues and eigenvectors are computed.
 CHARACTER*1. Must be 'U' or 'L'.
 If uplo = 'U', a stores the upper triangular part of A.
 If uplo = 'L', a stores the lower triangular part of }A\mathrm{ .
 INTEGER. The order of the matrix A (n\geq0).
REAL for ssyev
DOUBLE PRECISION for dsyev
a(Ida,*) is an array containing either upper or lower triangular part of the
symmetric matrix }A\mathrm{ , as specified by uplo.
```

Ida

I work

The second dimension of $a$ must be at least $\max (1, n)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of the array $a$.
Must be at least $\max (1, n)$.
INTEGER.
The dimension of the array work.
Constraint: lwork $\geq \max (1,3 n-1)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.

## Output Parameters

a
w
work(1)
info

On exit, if $j o b z=$ ' $V$ ', then if info $=0$, array a contains the orthonormal eigenvectors of the matrix $A$.
If jobz = ' $N$ ', then on exit the lower triangle
(if uplo = 'L') or the upper triangle (if uplo = 'U') of $A$, including the diagonal, is overwritten.

REAL for ssyev
DOUBLE PRECISION for dsyev
Array, size at least max $(1, n)$.
If info $=0$, contains the eigenvalues of the matrix $A$ in ascending order.
On exit, if Iwork > 0, then work(1) returns the required minimal size of Iwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i$, then the algorithm failed to converge; $i$ indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine syev interface are the following:
a
w Holds the vector of length $n$.

```
job Must be 'N' or 'V'. The default value is 'N'.
uplo
```

```
Must be 'U' or 'L'. The default value is 'U'.
```

```
Must be 'U' or 'L'. The default value is 'U'.
```


## Application Notes

For optimum performance set 1 work $\geq(n b+2){ }^{*} n$, where $n b$ is the blocksize for ?sytrd returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork $=-1$.

If Iwork has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array on exit. Use this value (work (1)) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array work. This operation is called a workspace query.

Note that if Iwork is less than the minimal required value and is not equal to -1, then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
?heev
Computes all eigenvalues and, optionally, eigenvectors of a Hermitian matrix.

Syntax

```
call cheev(jobz, uplo, n, a, lda, w, work, lwork, rwork, info)
call zheev(jobz, uplo, n, a, lda, w, work, lwork, rwork, info)
call heev(a, w [,jobz] [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90

Description

The routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix $A$.
Note that for most cases of complex Hermitian eigenvalue problems the default choice should be heevr function as its underlying algorithm is faster and uses less workspace.

## Input Parameters

CHARACTER*1. Must be 'N' or 'V'.
If $j o b z=$ ' N ', then only eigenvalues are computed.
If jobz = ' V ', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', a stores the upper triangular part of $A$.
If uplo = 'L', a stores the lower triangular part of $A$.
integer. The order of the matrix $A(n \geq 0)$.
COMPLEX for cheev
DOUBLE COMPLEX for zheev
Arrays:
$a(I d a, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix $A$, as specified by uplo.
The second dimension of $a$ must be at least $\max (1, n)$.
work is a workspace array, its dimension max ( 1,1 work).
InTEGER. The leading dimension of the array $a$. Must be at least $\max (1, n)$.
INTEGER.
The dimension of the array work. C
onstraint: 1 work $\geq \max (1,2 n-1)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to /work is issued by xerbla.
See Application Notes for the suggested value of /work.
REAL for cheev
DOUBLE PRECISION for zheev.
Workspace array, size at least max(1, 3n-2).

## Output Parameters

a

W
On exit, if jobz = 'V', then if info $=0$, array a contains the orthonormal eigenvectors of the matrix $A$.
If jobz = 'N', then on exit the lower triangle
(if uplo = 'L') or the upper triangle (if uplo = 'U') of $A$, including the diagonal, is overwritten.

REAL for cheev
DOUBLE PRECISION for zheev
Array, size at least $\max (1, n)$.

If info $=0$, contains the eigenvalues of the matrix $A$ in ascending order.
work(1)
info

On exit, if Iwork $>0$, then work(1) returns the required minimal size of Iwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i$, then the algorithm failed to converge; $i$ indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine heev interface are the following:

$a$	Holds the matrix $A$ of size $(n, n)$.
w	Holds the vector of length $n$.
job	Must be ' $N$ ' or ' $V$ '. The default value is ' N '.
uplo	Must be 'U' or 'L'. The default value is ' U '.

## Application Notes

For optimum performance use
lwork $\geq(n b+1) * n$,
where $n b$ is the blocksize for ?hetrd returned by ilaenv.
If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

```
?syevd
Computes all eigenvalues and, optionally, all
eigenvectors of a real symmetric matrix using divide
and conquer algorithm.
Syntax
```

```
call ssyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
```

call ssyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
call dsyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)

```
call dsyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
```

```
call syevd(a, w [,jobz] [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric matrix $A$. In other words, it can compute the spectral factorization of $A$ as: $A=Z \star \lambda \star Z^{T}$.

Here $\Lambda$ is a diagonal matrix whose diagonal elements are the eigenvalues $\lambda_{i}$, and $Z$ is the orthogonal matrix whose columns are the eigenvectors $z_{i}$. Thus,

```
A*}\mp@subsup{z}{i}{}=\mp@subsup{\lambda}{i}{*}\mp@subsup{z}{i}{}\mathrm{ for i = 1, 2, ..., n.
```

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the $Q L$ or $Q R$ algorithm.
Note that for most cases of real symmetric eigenvalue problems the default choice should be syevr function as its underlying algorithm is faster and uses less workspace. ?syevd requires more workspace but is faster in some cases, especially for large matrices.

## Input Parameters

```
jobz
uplo
n
a
lda
work
lwork
CHARACTER*1. Must be 'N' or 'V'.
 If jobz = 'N', then only eigenvalues are computed.
 If jobz = 'V', then eigenvalues and eigenvectors are computed.
 CHARACTER*1. Must be 'U' or 'L'.
 If uplo = 'U', a stores the upper triangular part of A.
 If uplo = 'L', a stores the lower triangular part of }A\mathrm{ .
 INTEGER. The order of the matrix A (n\geq0).
 REAL for ssyevd
 DOUBLE PRECISION for dsyevd
 Array, size (/da, *).
 a(Ida,*) is an array containing either upper or lower triangular part of the
 symmetric matrix }A\mathrm{ , as specified by uplo.
 The second dimension of a must be at least max (1,n).
 INTEGER. The leading dimension of the array a.
 Must be at least max(1,n).
 REAL for ssyevd
 DOUBLE PRECISION for dsyevd.
 Workspace array, size at least /work.
 INTEGER.
 The dimension of the array work.
```


## Constraints:

if $n \leq 1$, then lwork $\geq 1$;
if jobz $=$ 'N' and $n>1$, then $\operatorname{lwork} \geq 2 * n+1$;
if jobz $=$ 'V' and $n>1$, then lwork $\geq 2^{\star} n^{2}+6 \star n+1$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.
iwork
liwork

INTEGER.
Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array iwork.
Constraints:
if $n \leq 1$, then liwork $\geq 1$;
if jobz $=$ ' $N$ ' and $n>1$, then liwork $\geq 1$;
if jobz $=$ 'V' and $n>1$, then liwork $\geq 5 * n+3$.
If liwork $=-1$, then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.

## Output Parameters

w
a
work(1)
iwork(1)
info

REAL for ssyevd
DOUBLE PRECISION for dsyevd
Array, size at least $\max (1, n)$.
If info $=0$, contains the eigenvalues of the matrix $A$ in ascending order. See also info.

If jobz = 'V', then on exit this array is overwritten by the orthogonal matrix $Z$ which contains the eigenvectors of $A$.

On exit, if Iwork > 0, then work(1) returns the required minimal size of Iwork.

On exit, if liwork $>0$, then iwork(1) returns the required minimal size of liwork.

INTEGER.
If info $=0$, the execution is successful.
If info = $i$, and $j o b z=' N$ ', then the algorithm failed to converge; $i$ indicates the number of off-diagonal elements of an intermediate tridiagonal form which did not converge to zero.

If info = i, and jobz = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns infol $(n+1)$ through mod (info, $n+1)$.

If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine syevd interface are the following:

```
a Holds the matrix A of size (}n,n)\mathrm{ .
w Holds the vector of length n.
jobz Must be 'N' or 'V'. The default value is 'N'.
uplo Must be 'U' or 'L'. The default value is 'U'.
```


## Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix $A+E$ such that $||E||_{2}=O(\varepsilon) *| | A| |_{2}$, where $\varepsilon$ is the machine precision.

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run, or set lwork $=-1$ (liwork $=-1$ ).

If Iwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1)) for subsequent runs.
If 1 work $=-1$ (liwork $=-1$ ), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if Iwork (liwork) is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The complex analogue of this routine is heevd

## ?heevd

Computes all eigenvalues and, optionally, all eigenvectors of a complex Hermitian matrix using divide and conquer algorithm.

## Syntax

```
call cheevd(jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork, info)
call zheevd(jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork, info)
call heevd(a, w [,job] [,uplo] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix $A$. In other words, it can compute the spectral factorization of $A$ as: $A=Z^{\star} \Lambda^{\star} Z^{H}$.

Here $\Lambda$ is a real diagonal matrix whose diagonal elements are the eigenvalues $\lambda_{i}$, and $Z$ is the (complex) unitary matrix whose columns are the eigenvectors $z_{i}$. Thus,

```
A*}\mp@subsup{z}{i}{}=\mp@subsup{\lambda}{i}{*}\mp@subsup{z}{i}{}\mathrm{ for i = 1, 2, ..., n.
```

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the $Q L$ or $Q R$ algorithm.

Note that for most cases of complex Hermetian eigenvalue problems the default choice should be heevr function as its underlying algorithm is faster and uses less workspace. ?heevd requires more workspace but is faster in some cases, especially for large matrices.

## Input Parameters

jobz	CHARACTER*1. Must be 'N' or 'V'.
	If jobz = 'N', then only eigenvalues are computed.
	If jobz = 'V', then eigenvalues and eigenvectors are computed.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	If uplo = 'U', a stores the upper triangular part of $A$.
	If uplo = 'L', a stores the lower triangular part of $A$.
$n$	INTEGER. The order of the matrix $A(n \geq 0)$.
a	COMPLEX for cheevd
	DOUBLE COMPLEX for zheevd
	Array, size (/da, *).
	$a(I d a, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix $A$, as specified by uplo.
	The second dimension of $a$ must be at least max $(1, n)$.
Ida	INTEGER. The leading dimension of the array $a$. Must be at least max $(1, n)$.
work	COMPLEX for cheevd
	DOUBLE COMPLEX for zheevd.
	Workspace array, size max (1, lwork).
lwork	INTEGER.
	The dimension of the array work. Constraints:
	if $n \leq 1$, then 1 work $\geq 1$;
	if jobz = ' N ' and $n>1$, then 1 wor $k \geq n+1$;
	if jobz $=$ 'V' and $n>1$, then 1 work $\geq n^{2}+2 * n$.

rwork
lrwork
iwork

Iiwork

If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

REAL for cheevd
DOUBLE PRECISION for zheevd
Workspace array, size at least Irwork.

```
INTEGER.
```

The dimension of the array rwork. Constraints:
if $n \leq 1$, then lrwork $\geq 1$;
if job $=$ ' $N$ ' and $n>1$, then lrwork $\geq n$;
if job $=$ 'V' and $n>1$, then lrwork $\geq 2 * n^{2}+5 * n+1$.
If lrwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

```
INTEGER. Workspace array, its dimension max(1, liwork).
INTEGER.
```

The dimension of the array iwork. Constraints: if $n \leq 1$, then liwork $\geq 1$;
if jobz $=$ ' $N$ ' and $n>1$, then liwork $\geq 1$;
if jobz $=$ 'V' and $n>1$, then liwork $\geq 5 * n+3$.
If liwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

## Output Parameters

w
a
work(1)

REAL for cheevd
DOUBLE PRECISION for zheevd
Array, size at least $\max (1, n)$.
If info $=0$, contains the eigenvalues of the matrix $A$ in ascending order. See also info.

If jobz = ' $V$ ', then on exit this array is overwritten by the unitary matrix $Z$ which contains the eigenvectors of $A$.

On exit, if lwork > 0 , then the real part of work (1) returns the required minimal size of Iwork.
rwork(1)
iwork(1)
info

On exit, if lrwork > 0 , then rwork (1) returns the required minimal size of Irwork.

On exit, if liwork > 0, then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=i$, and $j o b z=$ ' $N$ ', then the algorithm failed to converge; $i$ offdiagonal elements of an intermediate tridiagonal form did not converge to zero;
if info $=i$, and $j o b z=$ ' $V$ ', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns infol $(n+1)$ through mod (info, $n+1)$.

If info $=-i$, the $i$-th parameter had an illegal value.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine heevd interface are the following:

a	Holds the matrix $A$ of size $(n, n)$.
w jobz	Holds the vector of length $(n)$.
uplo	Must be 'N' or ' $V$ '. The default value is ' $N$ '.
Must be 'U' or 'L'. The default value is ' U '.	

## Application Notes

The computed eigenvalues and eigenvectors are exact for a matrix $A+E$ such that $||E||_{2}=O(\varepsilon) *| | A| |_{2}$, where $\varepsilon$ is the machine precision.
If you are in doubt how much workspace to supply, use a generous value of Iwork (liwork or Irwork) for the first run or set 1 work $=-1$ (liwork $=-1$, lrwork $=-1$ ).
If you choose the first option and set any of admissible Iwork (liwork or Irwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork) on exit. Use this value (work(1), iwork(1), rwork(1)) for subsequent runs.

If you set $\operatorname{lwork}=-1$ (liwork $=-1$, lrwork $=-1$ ), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.
Note that if you set Iwork (liwork, Irwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The real analogue of this routine is syevd. See also hpevd for matrices held in packed storage, and hbevd for banded matrices.
?syevx
Computes selected eigenvalues and, optionally, eigenvectors of a symmetric matrix.

## Syntax

```
call ssyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work,
lwork, iwork, ifail, info)
call dsyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work,
lwork, iwork, ifail, info)
call syevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix $A$. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Note that for most cases of real symmetric eigenvalue problems the default choice should be syevr function as its underlying algorithm is faster and uses less workspace. ?syevx is faster for a few selected eigenvalues.

## Input Parameters

```
jobz
range
uplo
n
a, work
CHARACTER*1. Must be 'N' or 'V'.
If jobz = ' N ', then only eigenvalues are computed.
If jobz = ' \(V\) ', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'A', 'V', or 'I'.
If range \(=\) 'A', all eigenvalues will be found.
If range \(=\) ' \(V\) ', all eigenvalues in the half-open interval \((v /, v u\)] will be found.
If range \(=\) 'I', the eigenvalues with indices il through iu will be found.
CHARACTER*1. Must be 'U' or 'L'.
If uplo \(=\) 'U', a stores the upper triangular part of \(A\).
If uplo \(=\) 'L', a stores the lower triangular part of \(A\).
INTEGER. The order of the matrix \(A(n \geq 0)\).
REAL for ssyevx
DOUBLE PRECISION for dsyevx.
Arrays:
```

$a(/ d a, *)$ is an array containing either upper or lower triangular part of the symmetric matrix $A$, as specified by uplo.

The second dimension of $a$ must be at least $\max (1, n)$.

Ida

## Output Parameters

a
m

W
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of the array $a$. Must be at least max $(1, n)$.
REAL for ssyevx
DOUBLE PRECISION for dsyevx.
If range $=$ ' $V$ ', the lower and upper bounds of the interval to be searched for eigenvalues; $v l \leq v u$. Not referenced if range $=$ 'A'or 'I'.

INTEGER.
If range $=$ 'I', the indices of the smallest and largest eigenvalues to be returned.

Constraints: $1 \leq i l \leq i u \leq n$, if $n>0$;
il $=1$ and $i u=0$, if $n=0$.
Not referenced if range $=$ 'A'or 'V'.
REAL for ssyevx
DOUBLE PRECISION for dsyevx.
The absolute error tolerance for the eigenvalues. See Application Notes for more information.

INTEGER. The leading dimension of the output array $z ; I d z \geq 1$.
If $\operatorname{jobz}=' \mathrm{~V}$ ', then $l d z \geq \max (1, n)$.
INTEGER.
The dimension of the array work.
If $n \leq 1$ then 1 work $\geq 1$, otherwise $\operatorname{lwork}=8{ }^{*} n$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.
INTEGER. Workspace array, size at least max $(1,5 n)$.

On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = ' $U$ ') of $A$, including the diagonal, is overwritten.

INTEGER. The total number of eigenvalues found;
$0 \leq m \leq n$.
If range $=$ 'A', $m=n$, and if range $=$ 'I', $m=i u-i l+1$.
REAL for ssyevx
DOUBLE PRECISION for dsyevx
z
work(1)
ifail
info

Array, size at least $\max (1, n)$. The first $m$ elements contain the selected eigenvalues of the matrix $A$ in ascending order.

REAL for ssyevx
DOUBLE PRECISION for dsyevx.
Array $z(I d z, *)$ contains eigenvectors.
The second dimension of $z$ must be at least $\max (1, m)$.
If jobz $=$ ' $V$ ', then if info $=0$, the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix $A$ corresponding to the selected eigenvalues, with the i-th column of $z$ holding the eigenvector associated with $w(\mathrm{i})$.
If an eigenvector fails to converge, then that column of $z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

If jobz = 'N', then $z$ is not referenced.
Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array $z$; if range $=$ ' $V$ ', the exact value of $m$ is not known in advance and an upper bound must be used.

On exit, if 1 work $>0$, then work (1) returns the required minimal size of Iwork.

INTEGER.
Array, size at least $\max (1, n)$.
If jobz = 'V', then if info $=0$, the first $m$ elements of ifail are zero; if info > 0 , then ifail contains the indices of the eigenvectors that failed to converge.

If jobz = 'V', then ifail is not referenced.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i$, then $i$ eigenvectors failed to converge; their indices are stored in the array ifail.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine syevx interface are the following:

```
a Holds the matrix }A\mathrm{ of size (}n,n)\mathrm{ .
w Holds the vector of length n.
a Holds the matrix A of size (m,n).
ifail Holds the vector of length n.
```

```
uplo Must be 'U' or 'L'. The default value is 'U'.
vl
vU
il
iu
abstol
jobz
range
Must be 'U' or 'L'. The default value is 'U'.
Default value for this element is \(v /=-\operatorname{HUGE}(v /)\).
Default value for this element is \(v u=\operatorname{HUGE}(v /)\).
Default value for this argument is \(i l=1\).
Default value for this argument is \(i u=n\).
Default value for this element is abstol \(=0.0 _W P\).
Restored based on the presence of the argument \(z\) as follows: jobz = 'V', if \(z\) is present, \(j \circ b z=\) ' \(N\) ', if \(z\) is omitted Note that there will be an error condition if ifail is present and \(z\) is omitted.
Restored based on the presence of arguments \(v /\), vu, il, iu as follows: range \(=\) ' \(V\) ', if one of or both \(v /\) and \(v u\) are present, range \(=\) 'I', if one of or both il and \(i u\) are present, range \(=\) 'A', if none of \(v l, v u, i l\), \(i u\) is present, Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both il and iu are present.
```


## Application Notes

For optimum performance use 1 work $\geq(n b+3){ }^{*} n$, where $n b$ is the maximum of the blocksize for ?sytrd and ?ormtr returned by ilaenv.

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If Iwork has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1) ) for subsequent runs.

If 1 work $=-1$, then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array work. This operation is called a workspace query.

Note that if Iwork is less than the minimal required value and is not equal to -1, then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ $\varepsilon^{\star} \max (|a|,|b|)$, where $\varepsilon$ is the machine precision.

If abstol is less than or equal to zero, then $\left.\varepsilon^{\star}| | T \mid\right\}$ is used as tolerance, where $||T||$ is the 1 -norm of the tridiagonal matrix obtained by reducing $A$ to tridiagonal form. Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero.

If this routine returns with info $>0$, indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

## ?heevx

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix.

## Syntax

```
call cheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work,
lwork, rwork, iwork, ifail, info)
```

```
call zheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work,
lwork, rwork, iwork, ifail, info)
call heevx(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix $A$. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Note that for most cases of complex Hermetian eigenvalue problems the default choice should be heevr function as its underlying algorithm is faster and uses less workspace. ?heevx is faster for a few selected eigenvalues.

## Input Parameters

jobz	CHARACTER*1. Must be 'N' or 'V'.
	If jobz $=$ ' N ', then only eigenvalues are computed.
	If jobz ${ }^{\prime}$ ' $V$ ', then eigenvalues and eigenvectors are computed.
range	CHARACTER*1. Must be 'A', 'V', or 'I'.
	If range $=$ 'A', all eigenvalues will be found.
	If range $=$ ' $V$ ', all eigenvalues in the half-open interval $(v /, v u]$ will be found.
	If range $=$ 'I', the eigenvalues with indices il through iu will be found.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	If uplo $=$ 'U', a stores the upper triangular part of $A$.
	If uplo $=$ 'L', a stores the lower triangular part of $A$.
$n$	INTEGER. The order of the matrix $A(n \geq 0)$.
a, work	COMPLEX for cheevx
	DOUBLE COMPLEX for zheevx.
	Arrays:
	$a(I d a, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix $A$, as specified by uplo.
	The second dimension of $a$ must be at least max $(1, n)$.
	work is a workspace array, its dimension max (1, 1 work).
Ida	INTEGER. The leading dimension of the array $a$. Must be at least max $(1, n)$.
vl, vu	REAL for cheevx
	DOUBLE PRECISION for zheevx.

If range $=$ ' $V$ ', the lower and upper bounds of the interval to be searched for eigenvalues; $v l \leq v u$. Not referenced if range $=$ 'A'or 'I'.

INTEGER.
If range $=$ 'I', the indices of the smallest and largest eigenvalues to be returned. Constraints:
$1 \leq i l \leq i u \leq n$, if $n>0 ; i l=1$ and $i u=0$, if $n=0$. Not referenced if range $=$ 'A'or 'V'.

REAL for cheevx
DOUBLE PRECISION for zheevx. The absolute error tolerance for the eigenvalues. See Application Notes for more information.

INTEGER. The leading dimension of the output array $z ; I d z \geq 1$.
If $\operatorname{jobz}=$ ' $V$ ', then $l d z \geq \max (1, n)$.
INTEGER.
The dimension of the array work.
1 work $\geq 1$ if $n \leq 1$; otherwise at least $2{ }^{*} n$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.
REAL for cheevx
DOUBLE PRECISION for zheevx.
Workspace array, size at least max(1,7n).
INTEGER. Workspace array, size at least max(1,5n).

## Output Parameters

$a$
$m$

W

Z

On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = ' $U$ ') of $A$, including the diagonal, is overwritten.

INTEGER. The total number of eigenvalues found; $0 \leq m \leq n$.
If range $=$ 'A', $m=n$, and if range $=$ ' I', $m=i u-i l+1$.
REAL for cheevx
DOUBLE PRECISION for zheevx
Array, size $\max (1, n)$. The first $m$ elements contain the selected eigenvalues of the matrix $A$ in ascending order.

COMPLEX for cheevx
DOUBLE COMPLEX for zheevx.
Array $z(I d z, *)$ contains eigenvectors.
The second dimension of $z$ must be at least $\max (1, m)$.
work(1)
ifail
info

If jobz $=$ ' $V$ ', then if info $=0$, the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix $A$ corresponding to the selected eigenvalues, with the i-th column of $z$ holding the eigenvector associated with $w(\mathrm{i})$.

If an eigenvector fails to converge, then that column of $z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz = 'N', then $z$ is not referenced. Note: you must ensure that at least $\max (1, m)$ columns are supplied in the array $z$; if range $=' \mathrm{~V}$ ', the exact value of $m$ is not known in advance and an upper bound must be used.

On exit, if lwork > 0, then work(1) returns the required minimal size of Iwork.

INTEGER.
Array, size at least max $(1, n)$.
If jobz $=$ ' $V$ ', then if info $=0$, the first $m$ elements of ifail are zero; if info > 0, then ifail contains the indices of the eigenvectors that failed to converge.

If jobz = 'V', then ifail is not referenced.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info = i, then $i$ eigenvectors failed to converge; their indices are stored in the array ifail.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine heevx interface are the following:

$a$	Holds the matrix $A$ of size $(n, n)$.
$w$	Holds the vector of length $n$.
$z$	Holds the matrix $Z$ of size $(n, n)$.
ifail	Holds the vector of length $n$.
$v I$	Must be ' $U$ ' or ' $L$ '. The default value is ' $U$ '.
$v u$	Default value for this element is $v /=-H U G E(v /)$.
$i l$	Default value for this element is $v u=H U G E(v /)$.
$i u$	Default value for this argument is $i l=1$.
Default value for this argument is $i u=n$.	

```
abstol Default value for this element is abstol = 0.0_WP.
jobz
range
Default value for this element is abstol \(=0.0 _W P\).
Restored based on the presence of the argument \(z\) as follows: jobz = 'V', if \(z\) is present, \(j 0 b z=\) ' \(N\) ', if \(z\) is omitted Note that there will be an error condition if ifail is present and \(z\) is omitted.
Restored based on the presence of arguments \(v /\), \(v u\), \(i l\), iu as follows: range \(=\) 'V', if one of or both \(v /\) and \(v u\) are present, range \(=\) 'I', if one of or both il and \(i u\) are present, range \(=\) 'A', if none of \(v /, v u, i l, i u\) is present, Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both il and iu are present.
```


## Application Notes

For optimum performance use 1 work $\geq(n b+1){ }^{*} n$, where $n b$ is the maximum of the blocksize for ?hetrd and ?unmtr returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to $a b s t o l+\varepsilon^{\star} \max (|a|,|b|)$, where $\varepsilon$ is the machine precision.

If $a b s t o l$ is less than or equal to zero, then $\varepsilon^{\star}| | T| |$ will be used in its place, where $||T||$ is the 1 -norm of the tridiagonal matrix obtained by reducing $A$ to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2 *? lamch('S'), not zero.

If this routine returns with info $>0$, indicating that some eigenvectors did not converge, try setting abstol to $2^{*}$ ? lamch('S').

```
?syevr
Computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric matrix using the
Relatively Robust Representations.
```

Syntax

```
call ssyevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz,
work, lwork, iwork, liwork, info)
call dsyevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz,
work, lwork, iwork, liwork, info)
call syevr(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix $A$. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.
The routine first reduces the matrix $A$ to tridiagonal form $T$. Then, whenever possible, ?syevr calls stemr to compute the eigenspectrum using Relatively Robust Representations. stemr computes eigenvalues by the $d q d s$ algorithm, while orthogonal eigenvectors are computed from various "good" $L^{*} D^{*} L^{T}$ representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the each unreduced block of $T$ :
a. Compute $T-\sigma^{\star} I=L^{\star} D^{\star} L^{T}$, so that $L$ and $D$ define all the wanted eigenvalues to high relative accuracy. This means that small relative changes in the entries of $D$ and $L$ cause only small relative changes in the eigenvalues and eigenvectors. The standard (unfactored) representation of the tridiagonal matrix $T$ does not have this property in general.
b. Compute the eigenvalues to suitable accuracy. If the eigenvectors are desired, the algorithm attains full accuracy of the computed eigenvalues only right before the corresponding vectors have to be computed, see Steps c) and d).
c. For each cluster of close eigenvalues, select a new shift close to the cluster, find a new factorization, and refine the shifted eigenvalues to suitable accuracy.
d. For each eigenvalue with a large enough relative separation, compute the corresponding eigenvector by forming a rank revealing twisted factorization. Go back to Step c) for any clusters that remain.
The desired accuracy of the output can be specified by the input parameter abstol.
The routine ?syevr calls stemr when the full spectrum is requested on machines that conform to the IEEE-754 floating point standard. ?syevr calls stebz and stein on non-IEEE machines and when partial spectrum requests are made.

Normal execution of ? dsyevr may create NaNs and infinities and may abort due to a floating point exception in environments that do not handle NaNs and infinities in the IEEE standard default manner.

Note that ? syevr is preferable for most cases of real symmetric eigenvalue problems as its underlying algorithm is fast and uses less workspace.

## Input Parameters

jobz	CHARACTER*1. Must be 'N' or 'V'.
	If jobz $=$ ' N ', then only eigenvalues are computed.
	If jobz = 'V', then eigenvalues and eigenvectors are computed.
range	CHARACTER*1. Must be 'A' or 'V' or 'I'.
	If range $=$ ' $A$ ', the routine computes all eigenvalues.
	If range $=$ ' $V$ ', the routine computes eigenvalues $w(i)$ in the half-open interval:
	$v l<w(i) \leq v u$.
	If range $=$ 'I', the routine computes eigenvalues with indices il to iu.
	For range $=$ 'V'or 'I' and iu-il < n-1, sstebz/dstebz and sstein/ dstein are called.
uplo	CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', a stores the upper triangular part of $A$. If uplo = 'L', a stores the lower triangular part of $A$.

INTEGER. The order of the matrix $A(n \geq 0)$.
REAL for ssyevr
DOUBLE PRECISION for dsyevr.

## Arrays:

$a(I d a, *)$ is an array containing either upper or lower triangular part of the symmetric matrix $A$, as specified by uplo.
The second dimension of $a$ must be at least max $(1, n)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of the array $a$. Must be at least max $(1, n)$.
REAL for ssyevr
DOUBLE PRECISION for dsyevr.
If range $=$ ' $V$ ', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl< vu.
If range $=$ 'A' or 'I', vl and $v u$ are not referenced.
INTEGER.
If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.

## Constraint:

$1 \leq i l \leq i u \leq n$, if $n>0$;
$i l=1$ and $i u=0$, if $n=0$.
If range $=$ ' A ' or ' V ', il and $i u$ are not referenced.
REAL for ssyevr
DOUBLE PRECISION for dsyevr. The absolute error tolerance to which each eigenvalue/eigenvector is required.
If $j o b z=$ ' $V$ ', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by abstol.

If abstol < $n * e p s *||T||$, then $n * e p s *||T||$ is used instead, where eps is the machine precision, and $||T||$ is the 1 -norm of the matrix $T$. The eigenvalues are computed to an accuracy of eps*||T|| irrespective of abstol.

If high relative accuracy is important, set abstol to ?lamch('S').
INTEGER. The leading dimension of the output array $z$.
Constraints:
$\operatorname{ldz} \geq 1$ if $j o b z=$ 'N' and

	$I d z \geq \max (1, n)$ if $j o b z=' \mathrm{~V} '$.
Iwork	INTEGER.

The dimension of the array work.
Constraint: 1 work $\geq \max (1,26 n)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to /work is issued by xerbla.

See Application Notes for the suggested value of /work.
INTEGER. Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array iwork, 1 work $\geq \max (1,10 n)$.
If liwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued by xerbla.

## Output Parameters

a
m
On exit, the lower triangle (if uplo = ' L ') or the upper triangle (if uplo = ' $U$ ') of $A$, including the diagonal, is overwritten.

INTEGER. The total number of eigenvalues found, $0 \leq m \leq n$.
If range $=$ ' A ', $m=n$, if range $=$ 'I', $m=i u-i 1+1$, and if range $=$ ' $V$ ' the exact value of $m$ is not known in advance.

REAL for ssyevr
DOUBLE PRECISION for dsyevr.

## Arrays:

$w(*)$, size at least $\max (1, n)$, contains the selected eigenvalues in ascending order, stored in $w(1)$ to $w(m)$;
$z(I d z, *)$, the second dimension of $z$ must be at least $\max (1, m)$.
If jobz $=$ ' $V$ ', then if info $=0$, the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix $A$ corresponding to the selected eigenvalues, with the $i$-th column of $z$ holding the eigenvector associated with w(i).
If jobz = ' N ', then $z$ is not referenced. Note that you must ensure that at least $\max (1, m)$ columns are supplied in the array $z$; if range $=$ ' $V$ ', the exact value of $m$ is not known in advance and an upper bound must be used.

INTEGER.
Array, size at least $2 * \max (1, m)$.

The support of the eigenvectors in $z$, i.e., the indices indicating the nonzero elements in $z$. The $i$-th eigenvector is nonzero only in elements isuppz ( $2 i-1$ ) through isuppz ( $2 i$ ). Referenced only if eigenvectors are needed $(j \circ b z=' V ')$ and all eigenvalues are needed, that is, range $=$ ' A ' or range $=$ ' I' and $i l=1$ and $i u=n$.
work(1)
iwork(1)
info

On exit, if info $=0$, then work(1) returns the required minimal size of Iwork.

On exit, if info $=0$, then iwork(1) returns the required minimal size of liwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i$, an internal error has occurred.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine syevr interface are the following:

a	Holds the matrix $A$ of size ( $n, n$ ).
w	Holds the vector of length $n$.
z	Holds the matrix $Z$ of size ( $n, n$ ), where the values $n$ and $m$ are significant.
isuppz	Holds the vector of length $(2 * m)$, where the values $(2 * m)$ are significant.
uplo	Must be 'U' or 'L'. The default value is 'U'.
vl	Default value for this element is $v /=-\operatorname{HUGE}(v /)$.
vu	Default value for this element is $v u=\operatorname{HUGE}(v /)$.
il	Default value for this argument is $i 1=1$.
iu	Default value for this argument is iu $=n$.
abstol	Default value for this element is abstol $=0.0 \_W P$.
jobz	Restored based on the presence of the argument $z$ as follows: jobz $=$ ' V ', if $z$ is present, $j o b z=$ ' $N$ ', if $z$ is omitted Note that there will be an error condition if isuppz is present and $z$ is omitted.
range	Restored based on the presence of arguments $v /, v u, i l, i u$ as follows: range $=$ ' V ', if one of or both $v /$ and $v u$ are present, range $=$ 'I', if one of or both il and $i u$ are present, range $=$ ' $A$ ', if none of $v l, v u, i l, i u$ is present, Note that there will be an error condition if one of or both $v /$ and $v u$ are present and at the same time one of or both il and iu are present.

## Application Notes

For optimum performance use 1 work $\geq(n b+6){ }^{*} n$, where $n b$ is the maximum of the blocksize for ?sytrd and ?ormtr returned by ilaenv.

If it is not clear how much workspace to supply, use a generous value of Iwork (or liwork) for the first run or set 1 work $=-1$ (liwork $=-1$ ).

If Iwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork(1)) for subsequent runs.

If 1 work $=-1$ (liwork $=-1$ ), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if Iwork (liwork) is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

## ?heevr <br> Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix using the Relatively Robust Representations.

## Syntax

```
call cheevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz,
work, lwork, rwork, lrwork, iwork, liwork, info)
call zheevr(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz,
work, lwork, rwork, lrwork, iwork, liwork, info)
call heevr(a, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix $A$. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.
The routine first reduces the matrix $A$ to tridiagonal form $T$ with a call to hetrd. Then, whenever possible, ?heevr calls stegr to compute the eigenspectrum using Relatively Robust Representations. ?stegr computes eigenvalues by the $d q d s$ algorithm, while orthogonal eigenvectors are computed from various "good" $L^{*} D^{*} L^{T}$ representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For each unreduced block (submatrix) of $T$ :
a. Compute $T-\sigma^{\star} I=L^{\star} D^{\star} L^{T}$, so that $L$ and $D$ define all the wanted eigenvalues to high relative accuracy. This means that small relative changes in the entries of $D$ and $L$ cause only small relative changes in the eigenvalues and eigenvectors. The standard (unfactored) representation of the tridiagonal matrix $T$ does not have this property in general.
b. Compute the eigenvalues to suitable accuracy. If the eigenvectors are desired, the algorithm attains full accuracy of the computed eigenvalues only right before the corresponding vectors have to be computed, see Steps c) and d).
c. For each cluster of close eigenvalues, select a new shift close to the cluster, find a new factorization, and refine the shifted eigenvalues to suitable accuracy.
d. For each eigenvalue with a large enough relative separation, compute the corresponding eigenvector by forming a rank revealing twisted factorization. Go back to Step c) for any clusters that remain.
The desired accuracy of the output can be specified by the input parameter abstol.
The routine ?heevr calls stemr when the full spectrum is requested on machines which conform to the IEEE-754 floating point standard, or stebz and stein on non-IEEE machines and when partial spectrum requests are made.
Note that the routine ?heevr is preferable for most cases of complex Hermitian eigenvalue problems as its underlying algorithm is fast and uses less workspace.

## Input Parameters

jobz	CHARACTER*1. Must be 'N' or 'V'.
	If job = 'N', then only eigenvalues are computed.
	If job = 'V', then eigenvalues and eigenvectors are computed.
range	CHARACTER*1. Must be 'A' or 'V' or 'I'.
	If range = 'A', the routine computes all eigenvalues.
	If range = ' V ', the routine computes eigenvalues lambda(i) in the halfopen interval: vl< lambda(i) $\leq v u$.
	If range = 'I', the routine computes eigenvalues with indices il to iu.
	For range = 'V'or 'I', sstebz/dstebz and cstein/zstein are called.
uplo	CHARACTER*1. Must be 'U' or 'L'.
	If uplo = 'U', a stores the upper triangular part of $A$.
	If uplo = 'L', a stores the lower triangular part of $A$.
n	Integer. The order of the matrix $A(n \geq 0)$.
a, work	COMPLEX for cheevr
	DOUBLE COMPLEX for zheevr.
	Arrays:
	$a(I d a, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix $A$, as specified by uplo.
	The second dimension of $a$ must be at least max $(1, n)$.
	work is a workspace array, its dimension max ( $1, ~ 1$ work).
lda	INTEGER. The leading dimension of the array $a$.
	Must be at least max $(1, n)$.
vi, vu	REAL for cheevr
	DOUBLE PRECISION for zheevr.

If range $=$ ' $V$ ', the lower and upper bounds of the interval to be searched for eigenvalues.

Constraint: vl< vu.
If range $=$ ' $A$ ' or 'I', $v /$ and $v u$ are not referenced.
INTEGER.
If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.

Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; $i l=1$ and $i u=0$ if $n=0$.
If range $=$ 'A' or ' $V$ ', il and $i u$ are not referenced.
REAL for cheevr
DOUBLE PRECISION for zheevr.
The absolute error tolerance to which each eigenvalue/eigenvector is required.

If $j o b z=$ ' $V$ ', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by abstol.

If abstol < n *eps*||T||, then $n * e p s *||T||$ is used instead, where eps is the machine precision, and $||T||$ is the 1-norm of the matrix $T$. The eigenvalues are computed to an accuracy of eps*||T|| irrespective of abstol.

If high relative accuracy is important, set abstol to ?lamch('S').
INTEGER. The leading dimension of the output array z. Constraints:
$l d z \geq 1$ if $j o b z=' N ' ;$
$l d z \geq \max (1, n)$ if $j o b z=' V '$.
INTEGER.
The dimension of the array work.
Constraint: lwork $\geq \max (1,2 n)$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or Irwork or liwork is issued by xerbla.
See Application Notes for the suggested value of Iwork.
REAL for cheevr
DOUBLE PRECISION for zheevr.
Workspace array, size max (1, lwork).
INTEGER.
The dimension of the array rwork;
Iwork $\geq \max (1,24 n)$.

If Irwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or Irwork or liwork is issued by xerbla.
iwork
liwork

INTEGER. Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array iwork,
lwork $\geq \max (1,10 n)$.
If liwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla.

## Output Parameters

$a$
m

W

Z
isuppz

On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = ' $U$ ') of $A$, including the diagonal, is overwritten.

INTEGER. The total number of eigenvalues found,
$0 \leq m \leq n$.
If range $=$ ' $A$ ', $m=n$, if range $=$ 'I', $m=i u-i l+1$, and if range $=$ ' $V$ ' the exact value of $m$ is not known in advance.

REAL for cheevr
DOUBLE PRECISION for zheevr.
Array, size at least max $(1, n)$, contains the selected eigenvalues in ascending order, stored in $w(1)$ to $w(m)$.

COMPLEX for cheevr
DOUBLE COMPLEX for zheevr.
Array $z(I d z, *)$, the second dimension of $z$ must be at least max $(1, m)$.
If jobz $=$ ' $V$ ', then if info $=0$, the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix $A$ corresponding to the selected eigenvalues, with the $i$-th column of $z$ holding the eigenvector associated with w(i).

If $j o b z=$ ' $N$ ', then $z$ is not referenced.
Note: you must ensure that at least max $(1, m)$ columns are supplied in the array $z$; if range $=$ ' $V$ ', the exact value of $m$ is not known in advance and an upper bound must be used.

INTEGER.
Array, size at least $2 * \max (1, m)$.
work(1)
rwork(1)
iwork(1)
info

The support of the eigenvectors in $z$, i.e., the indices indicating the nonzero elements in $z$. The $i$-th eigenvector is nonzero only in elements isuppz ( $2 i-1$ ) through isuppz ( $2 i$ ). Referenced only if eigenvectors are needed $(j \circ b z=' V ')$ and all eigenvalues are needed, that is, range $=$ ' A ' or range $=$ ' I' and $i l=1$ and $i u=n$.

On exit, if info $=0$, then work(1) returns the required minimal size of Iwork.

On exit, if info $=0$, then rwork(1) returns the required minimal size of Irwork.

On exit, if info $=0$, then iwork(1) returns the required minimal size of liwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i$, an internal error has occurred.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine heevr interface are the following:

a	Holds the matrix $A$ of size ( $n, n$ ).
w	Holds the vector of length $n$.
$z$	Holds the matrix $Z$ of size ( $n, n$ ), where the values $n$ and $m$ are significant.
isuppz	Holds the vector of length ( $2 * n$ ), where the values ( $2 * m$ ) are significant.
uplo	Must be 'U' or 'L'. The default value is 'U'.
vl	Default value for this element is $v l=-\operatorname{HUGE}(v /)$.
vu	Default value for this element is $v u=\operatorname{HUGE}(v /)$.
il	Default value for this argument is il $=1$.
iu	Default value for this argument is $i u=n$.
abstol	Default value for this element is abstol $=0.0 \_W P$.
jobz	Restored based on the presence of the argument $z$ as follows: jobz $=$ ' $V$ ', if $z$ is present, jobz = 'N', if $z$ is omitted Note that there will be an error condition if isuppz is present and $z$ is omitted.
range	Restored based on the presence of arguments $v /, v u, i l, i u$ as follows: range $=$ 'V', if one of or both $v /$ and $v u$ are present, range $=$ 'I', if one of or both il and $i u$ are present, range $=$ ' $A$ ', if none of $v l, v u, i l, i u$ is present, Note that there will be an error condition if one of or both $v /$ and $v u$ are present and at the same time one of or both il and iu are present.

## Application Notes

For optimum performance use 1 work $\geq(n b+1){ }^{*} n$, where $n b$ is the maximum of the blocksize for ?hetrd and ?unmtr returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of Iwork (or Irwork, or liwork) for the first run or set lwork $=-1$ (lrwork $=-1$, liwork $=-1$ ).

If you choose the first option and set any of admissible Iwork (or Irwork, liwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, rwork, iwork) on exit. Use this value (work(1), rwork(1), iwork(1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, rwork, iwork). This operation is called a workspace query.
Note that if you set Iwork (lrwork, liwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
Normal execution of ?stemr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the IEEE standard default manner.

For more details, see ?stemr and these references:

- Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices," Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, 2004. Also LAPACK Working Note 154.
- Inderjit Dhillon: "A new $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem", Computer Science Division Technical Report No. UCB/CSD-97-971, UC Berkeley, May 1997.


## ?spev

Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix in packed storage.

Syntax

```
call sspev(jobz, uplo, n, ap, w, z, ldz, work, info)
call dspev(jobz, uplo, n, ap, w, z, ldz, work, info)
call spev(ap, w [,uplo] [,z] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix $A$ in packed storage.

## Input Parameters

jobz
CHARACTER*1. Must be 'N' or 'V'.
If job = 'N', then only eigenvalues are computed.
uplo
n
ap, work
$I d z$

## Output Parameters

$$
w, z
$$

$a p$

If job $=$ ' $V$ ', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular part of $A$.
If uplo = 'L', ap stores the packed lower triangular part of $A$.
INTEGER. The order of the matrix $A(n \geq 0)$.
REAL for sspev
DOUBLE PRECISION for dspev
Arrays:
Array $a p$ (*) contains the packed upper or lower triangle of symmetric matrix $A$, as specified by uplo.

The size of $a p$ must be at least $\max \left(1, n^{*}(n+1) / 2\right)$.
work $\left({ }^{*}\right)$ is a workspace array, size at least $\max (1,3 n)$.
INTEGER. The leading dimension of the output array $z$. Constraints:
if jobz = 'N', then $1 d z \geq 1$;
if jobz $=$ ' $V$ ', then $l d z \geq \max (1, n)$.

REAL for sspev
DOUBLE PRECISION for dspev
Arrays:
$w(*)$, size at least $\max (1, n)$.
If info $=0, w$ contains the eigenvalues of the matrix $A$ in ascending order. $z(I d z, *)$. The second dimension of $z$ must be at least $\max (1, n)$.
If jobz $=$ ' $V$ ', then if info $=0, z$ contains the orthonormal eigenvectors of the matrix $A$, with the $i$-th column of $z$ holding the eigenvector associated with w(i).

If jobz = 'N', then $z$ is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i$, then the algorithm failed to converge; $i$ indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine spev interface are the following:

ap	Holds the array $A$ of size $\left(n^{*}(n+1) / 2\right)$.
w	Holds the vector with the number of elements $n$.
$z$	Holds the matrix $Z$ of size ( $n, n$ ).
uplo	Must be 'U' or 'L'. The default value is 'U'.
jobz	Restored based on the presence of the argument $z$ as follows: $j o b z=$ ' $V$ ', if $z$ is present, $j \circ b z=' N$ ', if $z$ is omitted.

```
?hpev
Computes all eigenvalues and, optionally,
eigenvectors of a Hermitian matrix in packed storage.
Syntax
```

```
call chpev(jobz, uplo, n, ap, w, z, ldz, work, rwork, info)
```

call chpev(jobz, uplo, n, ap, w, z, ldz, work, rwork, info)
call zhpev(jobz, uplo, n, ap, w, z, ldz, work, rwork, info)
call zhpev(jobz, uplo, n, ap, w, z, ldz, work, rwork, info)
call hpev(ap, w [,uplo] [,z] [,info])

```
call hpev(ap, w [,uplo] [,z] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix $A$ in packed storage.

## Input Parameters

```
jobz
uplo
n
ap
CHARACTER*1. Must be 'N' or 'V'.
 If job = 'N', then only eigenvalues are computed.
 If job = 'V', then eigenvalues and eigenvectors are computed.
 CHARACTER*1. Must be 'U' or 'L'.
 If uplo = 'U',ap stores the packed upper triangular part of A.
 If uplo = 'L', ap stores the packed lower triangular part of }A\mathrm{ .
 INTEGER. The order of the matrix A (n\geq0).
 COMPLEX for chpev
 DOUBLE COMPLEX for zhpev.
```

work

## Output Parameters

w
z
ap
info

Array $a p(*)$ contains the packed upper or lower triangle of Hermitian matrix A, as specified by uplo.

The size of $a p$ must be at least $\max \left(1, n^{*}(n+1) / 2\right)$.
COMPLEX for chpev
DOUBLE COMPLEX for zhpev.
$\left(^{*}\right)$ is a workspace array, size at least $\max (1,2 n-1)$.
INTEGER. The leading dimension of the output array $z$.
Constraints:
if jobz = 'N', then $1 d z \geq 1$;
if jobz $=$ ' $V$ ', then $I d z \geq \max (1, n)$.
REAL for chpev
DOUBLE PRECISION for zhpev.
Workspace array, size at least $\max (1,3 n-2)$.

REAL for chpev
DOUBLE PRECISION for zhpev.
Array, size at least $\max (1, n)$.
If info $=0, w$ contains the eigenvalues of the matrix $A$ in ascending order.
COMPLEX for chpev
DOUBLE COMPLEX for zhpev.
Array $z(I d z, *)$.
The second dimension of $z$ must be at least max $(1, n)$.
If $j o b z=$ ' $V$ ', then if info $=0, z$ contains the orthonormal eigenvectors of the matrix $A$, with the $i$-th column of $z$ holding the eigenvector associated with w(i).

If jobz $={ }^{\prime} N$ ', then $z$ is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i$, then the algorithm failed to converge; $i$ indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hpev interface are the following:

$a p$	Holds the array $A$ of size $\left(n^{*}(n+1) / 2\right)$.
$w$	Holds the vector with the number of elements $n$.
$z$	Holds the matrix $Z$ of size $(n, n)$.
joblo	Must be 'U' or 'L'. The default value is ' $U^{\prime}$.
	Restored based on the presence of the argument $z$ as follows:
	$j o b z=' V '$, if $z$ is present,
	$j o b z=' N '$, if $z$ is omitted.

## ?spevd

Uses divide and conquer algorithm to compute all eigenvalues and (optionally) all eigenvectors of a real symmetric matrix held in packed storage.

## Syntax

```
call sspevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)
call dspevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)
call spevd(ap, w [,uplo] [,z] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric matrix $A$ (held in packed storage). In other words, it can compute the spectral factorization of $A$ as:
$A=Z^{\star} \Lambda^{\star} Z^{T}$.
Here $\Lambda$ is a diagonal matrix whose diagonal elements are the eigenvalues $\lambda_{i}$, and $Z$ is the orthogonal matrix whose columns are the eigenvectors $z_{i}$. Thus,
$A^{\star} z_{i}=\lambda_{i}{ }^{\star} z_{i}$ for $i=1,2, \ldots, n$.
If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the $Q L$ or $Q R$ algorithm.

Input Parameters
jobz
CHARACTER*1. Must be 'N' or 'V'.
If jobz = ' N ', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.

```
uplo
n
ap, work
ldz
l work
iwork
liwork
CHARACTER*1. Must be 'U' or 'L'.
 If uplo = 'U', ap stores the packed upper triangular part of A.
 If uplo = 'L',ap stores the packed lower triangular part of }A\mathrm{ .
 INTEGER. The order of the matrix A(}n\geq0)\mathrm{ .
 REAL for sspevd
 DOUBLE PRECISION for dspevd
```


## Arrays:

```
\(a p(*)\) contains the packed upper or lower triangle of symmetric matrix \(A\), as specified by uplo.
The dimension of ap must be max \(\left(1, n^{*}(n+1) / 2\right)\)
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of the output array \(z\).
```


## Constraints:

```
if jobz = 'N', then \(1 d z \geq 1\);
if \(j o b z=' V\) ', then \(I d z \geq \max (1, n)\).
INTEGER.
The dimension of the array work.
```


## Constraints:

```
if \(n \leq 1\), then lwork \(\geq 1\);
if jobz \(=\) ' \(N\) ' and \(n>1\), then 1 work \(\geq 2 \star_{n}\);
if jobz \(=\) 'V' and \(n>1\), then
lwork \(\geq n^{2}+6 * n+1\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.
```

```
INTEGER. Workspace array, its dimension max(1, liwork).
```

INTEGER. Workspace array, its dimension max(1, liwork).
INTEGER.
INTEGER.
The dimension of the array iwork.
Constraints:
if $n \leq 1$, then liwork $\geq 1$;
if jobz = 'N' and $n>1$, then liwork $\geq 1$;
if jobz $=$ 'V' and $n>1$, then liwork $\geq 5 *_{n+3}$.

```

If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}

W, Z
\(a p\)
work(1)
iwork(1)
info

REAL for sspevd
DOUBLE PRECISION for dspevd
Arrays:
\(w(*)\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info.
\(z(/ d z, *)\).
The second dimension of \(z\) must be: at least 1 if jobz \(={ }^{\prime} N\) '; at least \(\max (1, n)\) if jobz \(=\) ' \(V\) '.

If jobz \(={ }^{\prime} V^{\prime}\), then this array is overwritten by the orthogonal matrix \(Z\) which contains the eigenvectors of \(A\). If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

On exit, if info \(=0\), then work (1) returns the required /work.
On exit, if info \(=0\), then iwork (1) returns the required liwork.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine spevd interface are the following:
\begin{tabular}{ll}
ap & Holds the array \(A\) of size \((n *(n+1) / 2)\). \\
\(w\) & Holds the vector with the number of elements \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\). \\
uplo & Must be 'U' or 'L'. The default value is ' \(U\) '.
\end{tabular}
```

jobz
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

```
Restored based on the presence of the argument \(z\) as follows:

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(A+E\) such that \(||E||_{2}=O(\varepsilon) *| | A| |_{2}\), where \(\varepsilon\) is the machine precision.
If it is not clear how much workspace to supply, use a generous value of Iwork (or liwork) for the first run or set 1 work \(=-1\) (liwork \(=-1\)).

If Iwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork(1)) for subsequent runs.
If lwork \(=-1\) (liwork \(=-1\)), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if Iwork (liwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The complex analogue of this routine is hpevd.
See also syevd for matrices held in full storage, and sbevd for banded matrices.
?hpevd
Uses divide and conquer algorithm to compute all
eigenvalues and, optionally, all eigenvectors of a
complex Hermitian matrix held in packed storage.

\section*{Syntax}
```

call chpevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork,
info)
call zhpevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork,
info)
call hpevd(ap, w [,uplo] [,z] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix \(A\) (held in packed storage). In other words, it can compute the spectral factorization of \(A\) as: \(A=Z^{\star} \Lambda^{\star} Z^{H}\).

Here \(\Lambda\) is a real diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the (complex) unitary matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\(A^{\star} z_{i}=\lambda_{i}{ }^{\star} z_{i}\) for \(i=1,2, \ldots, n\).
If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
jobz
uplo
n
ap, work
\(I d z\)
l work
rwork

Irwork

CHARACTER*1. Must be 'N' or 'V'.
If \(j o b z=\) ' \(N\) ', then only eigenvalues are computed.
If \(j o b z=' \mathrm{~V}\) ', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular part of \(A\).
If uplo = 'L', ap stores the packed lower triangular part of \(A\).
INTEGER. The order of the matrix \(A(n \geq 0)\).
COMPLEX for chpevd
DOUBLE COMPLEX for zhpevd
Arrays:
\(a p(*)\) contains the packed upper or lower triangle of Hermitian matrix \(A\), as specified by uplo.
The dimension of \(a p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
work is a workspace array, its dimension max (1,1 work).
INTEGER. The leading dimension of the output array \(z\).
Constraints:
if jobz \(=\) ' \(N\) ', then \(I d z \geq 1\);
if \(j o b z=' V\) ', then \(I d z \geq \max (1, n)\).
INTEGER.
The dimension of the array work.
Constraints:
if \(n \leq 1\), then lwork \(\geq 1\);
if jobz \(=\) 'N' and \(n>1\), then 1 wor \(k \geq n\);
if jobz \(=\) 'V' and \(n>1\), then \(l\) work \(\geq 2 \star_{n}\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

REAL for chpevd
DOUBLE PRECISION for zhpevd
Workspace array, its dimension max (1, lrwork).
INTEGER.
The dimension of the array rwork. Constraints:
if \(n \leq 1\), then lrwor \(k \geq 1\);
if jobz \(=\) ' \(N\) ' and \(n>1\), then \(\operatorname{Irwork\geq n;~}\)
iwork
liwork
if jobz \(=\) 'V' and \(n>1\), then lrwork \(\geq 2 \star_{n}{ }^{2}+5 \star_{n}+1\).
If lrwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

INTEGER. Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array iwork.
Constraints:
if \(n \leq 1\), then liwork \(\geq 1\);
if jobz \(=\) ' \(N\) ' and \(n>1\), then liwork \(\geq 1\);
if jobz \(=\) ' \(V\) ' and \(n>1\), then liwork \(\geq 5 \star_{n+3}\).
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}

W

Z
\(a p\)
work(1)

REAL for chpevd
DOUBLE PRECISION for zhpevd
Array, size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info.

COMPLEX for chpevd
DOUBLE COMPLEX for zhpevd
Array, size (ldz,*).
The second dimension of \(z\) must be:
at least 1 if jobz = 'N';
at least \(\max (1, n)\) if \(j o b z=' V '\).
If jobz = ' \(V\) ', then this array is overwritten by the unitary matrix \(Z\) which contains the eigenvectors of \(A\).
If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

On exit, if info \(=0\), then work (1) returns the required minimal size of Iwork.
rwork(1)
iwork(1)
info

On exit, if info \(=0\), then rwork (1) returns the required minimal size of Irwork.

On exit, if info \(=0\), then \(\operatorname{iwork}(1)\) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hpevd interface are the following:
```

ap Holds the array A of size (n*(n+1)/2).
w Holds the vector with the number of elements n.
z Holds the matrix }Z\mathrm{ of size ( }n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.
jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

```

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(A+E\) such that \(||E||_{2}=O(\varepsilon) *| | A| |_{2}\), where \(\varepsilon\) is the machine precision.
If you are in doubt how much workspace to supply, use a generous value of /work (liwork or Irwork) for the first run or set lwork \(=-1\) (liwork \(=-1\), lrwork \(=-1\)).
If you choose the first option and set any of admissible Iwork (liwork or Irwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork) on exit. Use this value (work(1), iwork(1), rwork(1)) for subsequent runs.

If you set \(\operatorname{lwork}=-1\) (liwork \(=-1\), lrwork \(=-1\)), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.

Note that if you set Iwork (liwork, Irwork) to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The real analogue of this routine is spevd.
See also heevd for matrices held in full storage, and hbevd for banded matrices.
```

?spevx
Computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric matrix in packed
storage.
Syntax

```
```

call sspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,

```
call sspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info)
ifail, info)
call dspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
call dspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info)
ifail, info)
call spevx(ap, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol] [,info])
```

call spevx(ap, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
```

jobz
range
uplo
n
ap, work
vl, vu
CHARACTER*1. Must be 'N' or 'V'.
If job $=$ ' $N$ ', then only eigenvalues are computed.
If job $=$ ' V ', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range $=$ ' A ', the routine computes all eigenvalues.
If range $=$ ' $V$ ', the routine computes eigenvalues $w(i)$ in the half-open interval: vl< w(i) $\leq v u$.
If range $=$ 'I', the routine computes eigenvalues with indices il to iu.
uplo CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular part of $A$.
If uplo = 'L', ap stores the packed lower triangular part of $A$.
INTEGER. The order of the matrix $A(n \geq 0)$.
REAL for sspevx
DOUBLE PRECISION for dspevx
Arrays:
Array $a p\left({ }^{*}\right)$ contains the packed upper or lower triangle of the symmetric matrix $A$, as specified by uplo.
The size of $a p$ must be at least max(1, $\left.n^{*}(n+1) / 2\right)$.
work $\left(^{*}\right)$ is a workspace array, size at least max $(1,8 n)$.
REAL for sspevx

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{} & DOUBLE PRECISION for dspevx \\
\hline & If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) 'A' or 'I', v/ and vu are not referenced. \\
\hline \multirow[t]{5}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0 ; i l=1\) and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range \(=\) ' A ' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{3}{*}{abstol} & REAL for sspevx \\
\hline & DOUBLE PRECISION for dspevx \\
\hline & The absolute error tolerance to which each eigenvalue is required. See Application notes for details on error tolerance. \\
\hline \multirow[t]{4}{*}{\(1 d z\)} & INTEGER. The leading dimension of the output array \(z\). \\
\hline & Constraints: \\
\hline & if jobz \(=\) ' \(N^{\prime}\) ', then \(1 d z \geq 1\); \\
\hline & if jobz \(=\) ' \(\mathrm{V}^{\prime}\), then \(1 \mathrm{dz} \geq \max (1, n)\). \\
\hline iwork & INTEGER. Workspace array, size at least max \((1,5 n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a p\)
m

W, Z

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

INTEGER. The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=\) 'A', \(m=n\), if range \(=\) 'I', \(m=i u-i l+1\), and if range \(=\) ' \(V\) ' the exact value of \(m\) is not known in advance..

REAL for sspevx
DOUBLE PRECISION for dspevx
Arrays:
\(w\left({ }^{*}\right)\), size at least \(\max (1, n)\).
If info \(=0\), contains the selected eigenvalues of the matrix \(A\) in ascending order.
z(Idz,*).
The second dimension of \(z\) must be at least \(\max (1, m)\).

If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w(i).

If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

If jobz = 'N', then \(z\) is not referenced.
Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

INTEGER.
Array, size at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices the eigenvectors that failed to converge.
If jobz \(=\) ' \(N\) ', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine spevx interface are the following:
\begin{tabular}{ll}
ap & Holds the array \(A\) of size \((n *(n+1) / 2)\). \\
\(w\) & Holds the vector with the number of elements \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\), where the values \(n\) and \(m\) are significant. \\
ifail & Holds the vector with the number of elements \(n\). \\
uplo & Must be 'U' or 'L'. The default value is ' U'. \\
\(v l\) & Default value for this element is \(v l=-H U G E(v l)\). \\
\(v u\) & Default value for this element is \(v u=H U G E(v l)\). \\
\(i l\) & Default value for this argument is \(i l=1\). \\
\(i u\) & Default value for this argument is \(i u=n\). \\
abstol & Default value for this element is abstol \(=0.0 _W P\). \\
jobz & Restored based on the presence of the argument \(z\) as follows:
\end{tabular}
jobz = 'V', if \(z\) is present,
jobz \(=\) ' \(N\) ', if \(z\) is omitted
Note that there will be an error condition if ifail is present and \(z\) is omitted.
Restored based on the presence of arguments \(v l, v u, i l, i u\) as follows:
range \(=\) ' \(V\) ', if one of or both \(v /\) and \(v u\) are present,
range \(=\) 'I', if one of or both il and iu are present,
range \(=\) ' \(A\) ', if none of \(v l, v u, i l, i u\) is present,
Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both il and iu are present.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|\mathrm{a}|,|\mathrm{b}|)\), where \(\varepsilon\) is the machine precision.

If \(a b s t o l\) is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? lamch('S'), not zero.
If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').
```

?hpevx
Computes selected eigenvalues and, optionally,
eigenvectors of a Hermitian matrix in packed storage.
Syntax
call chpevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork,
iwork, ifail, info)
call zhpevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork,
iwork, ifail, info)
call hpevx(ap, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol] [,info])

```
Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix \(A\) in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
jobz
CHARACTER*1. Must be 'N' or 'V'.
If job \(=\) ' N ', then only eigenvalues are computed.
If job \(=\) ' V ', then eigenvalues and eigenvectors are computed.
```

range
uplo
n
ap, work
vl, vu
il, iu
abstol
ldz
rwork
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range = 'A', the routine computes all eigenvalues.
If range = ' V ', the routine computes eigenvalues $\mathrm{w}(\mathrm{i})$ in the half-open interval: vl< w(i) $\leq v u$.
If range = 'I', the routine computes eigenvalues with indices il to iu.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ap stores the packed upper triangular part of $A$.
If uplo = 'L', ap stores the packed lower triangular part of $A$.
integer. The order of the matrix $A(n \geq 0)$.
COMPLEX for chpevx
DOUBLE COMPLEX for zhpevx
Arrays:
Array $a p\left({ }^{*}\right)$ contains the packed upper or lower triangle of the Hermitian matrix $A$, as specified by uplo.
The size of $a p$ must be at least $\max \left(1, n^{*}(n+1) / 2\right)$.
work(*) is a workspace array, size at least $\max (1,2 n)$.
REAL for chpevx
DOUBLE PRECISION for zhpevx
If range = ' V ', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', v/ and $v u$ are not referenced.
INTEGER.
If range = 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: $1 \leq i l \leq i u \leq n$, if $n>0 ; i l=1$ and $i u=0$ if $n=0$.
If range = 'A' or ' V ', il and $i u$ are not referenced.
REAL for chpevx
DOUBLE PRECISION for zhpevx
The absolute error tolerance to which each eigenvalue is required. See Application notes for details on error tolerance.
integer. The leading dimension of the output array $z$.
Constraints:
if $j 0 b z=$ 'N', then $l d z \geq 1$;
if $j o b z=' V '$, then $l d z \geq \max (1, n)$.
REAL for chpevx
DOUBLE PRECISION for zhpevx

```

Workspace array, size at least max (1, 7n).
INTEGER. Workspace array, size at least \(\max (1,5 n)\).

\section*{Output Parameters}
\(a p\)
m

W

Z
ifail
info

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the offdiagonal of the tridiagonal matrix overwrite the corresponding elements of A.

INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\).
\(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), if range \(=\) 'I', \(m=i u-i l+1\), and if range \(=\) ' \(V\) ' the exact value of \(m\) is not known in advance..

REAL for chpevx
DOUBLE PRECISION for zhpevx
Array, size at least \(\max (1, n)\).
If info \(=0\), contains the selected eigenvalues of the matrix \(A\) in ascending order.

COMPLEX for chpevx
DOUBLE COMPLEX for zhpevx
Array \(\mathrm{z}(/ d z, *)\).
The second dimension of \(z\) must be at least \(\max (1, m)\).
If \(j o b z=' V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\).

If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.
Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

INTEGER.
Array, size at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices the eigenvectors that failed to converge.

If jobz \(=\) ' \(N\) ', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

If info = i, then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hpevx interface are the following:
```

ap Holds the array A of size (n* (n+1)/2).
w Holds the vector with the number of elements n.
Z
ifail
uplo Must be 'U' or 'L'. The default value is 'U'.
vI Default value for this element is vl = - HUGE(v/).
vu Default value for this element is vu = HUGE (vl).
il Default value for this argument is il = 1.
iu Default value for this argument is iu = n.
abstol
jobz
range
molds the array $A$ of size $\left(n^{*}(n+1) / 2\right)$.
Holds the vector with the number of elements $n$.
Holds the matrix $Z$ of size $(n, n)$, where the values $n$ and $m$ are significant.
Holds the vector with the number of elements $n$.
Must be 'U' or 'L'. The default value is 'U'.
Default value for this element is $v /=-\operatorname{HUGE}(v /)$.
Default value for this element is $v u=\operatorname{HUGE}(v /)$.
Default value for this argument is $i 1=1$.
Default value for this argument is iu $=n$.
Default value for this element is abstol $=0.0 \_\mathrm{WP}$.
Restored based on the presence of the argument $z$ as follows:
jobz = 'V', if $z$ is present,
jobz = 'N', if $z$ is omitted
Note that there will be an error condition if ifail is present and $z$ is omitted.
Restored based on the presence of arguments $v l, v u, i l, i u$ as follows:
range $=$ ' V ', if one of or both $v /$ and $v u$ are present,
range $=$ 'I', if one of or both il and iu are present,
range $=$ 'A', if none of $v l, v u, i l$, iu is present,

```

Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both \(i l\) and \(i u\) are present.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to \(a b s t o l+\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If \(a b s t o l\) is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ?lamch('S'), not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try setting abstol to 2*?lamch('S').
```

?sbev
Computes all eigenvalues and, optionally,
eigenvectors of a real symmetric band matrix.
Syntax

```
```

call ssbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)

```
call ssbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)
call dsbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)
call dsbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, info)
call sbev(ab, w [,uplo] [,z] [,info])
```

call sbev(ab, w [,uplo] [,z] [,info])

```
Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix \(A\).

\section*{Input Parameters}
```

jobz

```
uplo
n
\(k d\)
ab, work

Idab
Idz
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If \(j o b z=' V\) ', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', \(a b\) stores the upper triangular part of \(A\).
If uplo = 'L', ab stores the lower triangular part of \(A\).
INTEGER. The order of the matrix \(A(n \geq 0)\).
INTEGER. The number of super- or sub-diagonals in \(A\)
(\(k a \geq 0\)).
REAL for ssbev
DOUBLE PRECISION for dsbev.
Arrays:
\(a b(/ d a, *)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format.
The second dimension of \(a b\) must be at least \(\max (1, n)\).
work (*) is a workspace array.
The dimension of work must be at least max \((1,3 n-2)\).
INTEGER. The leading dimension of \(a b\); must be at least \(k d+1\).
INTEGER. The leading dimension of the output array \(z\).
Constraints:
if jobz = 'N', then \(1 d z \geq 1\);
if \(j o b z=' V\) ', then \(I d z \geq \max (1, n)\).

\section*{Output Parameters}
```

w, z
ab
info

```

\section*{W, Z}
\(a b\)
info

REAL for ssbev
DOUBLE PRECISION for dsbev
Arrays:
\(w(*)\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order.
z (/dz,*).
The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with w(i).

If \(j o b z=' N\) ', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form (see the description of ?sbtrd).

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine sbev interface are the following:
\begin{tabular}{ll}
\(a b\) & Holds the array \(A\) of size \((k d+1, n)\). \\
\(w\) & Holds the vector with the number of elements \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\). \\
joblo & Must be 'U' or 'L'. The default value is 'U'. \\
& Restored based on the presence of the argument \(z\) as follows: \\
& \(j o b z=' V '\), if \(z\) is present, \\
& \(j o b z=' N '\), if \(z\) is omitted.
\end{tabular}
?hbev
Computes all eigenvalues and, optionally,
eigenvectors of a Hermitian band matrix.
Syntax
```

call chbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)

```
```

call zhbev(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, rwork, info)
call hbev(ab, w [,uplo] [,z] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix \(A\).

\section*{Input Parameters}
jobz
\(n\)
\(k d\)
ab, work

Idab
\(I d z\)
rwork

CHARACTER*1. Must be 'N' or 'V'.
If \(j o b z=\) ' \(N\) ', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', \(a b\) stores the upper triangular part of \(A\).
If uplo = 'L', \(a b\) stores the lower triangular part of \(A\).
INTEGER. The order of the matrix \(A(n \geq 0)\).
INTEGER. The number of super- or sub-diagonals in \(A\)
(\(k a \geq 0\)).
COMPLEX for chbev
DOUBLE COMPLEX for zhbev.
Arrays:
\(a b(/ d a, *)\) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format.

The second dimension of \(a b\) must be at least \(\max (1, n)\).
work (*) is a workspace array.
The dimension of work must be at least max \((1, n)\).
INTEGER. The leading dimension of \(a b\); must be at least \(k d+1\).
INTEGER. The leading dimension of the output array \(z\).
Constraints:
if jobz = 'N', then \(1 d z \geq 1\);
if jobz \(=\) ' \(V\) ', then \(I d z \geq \max (1, n)\).
REAL for chbev
DOUBLE PRECISION for zhbev
Workspace array, size at least \(\max (1,3 n-2)\).

\section*{Output Parameters}
w
REAL for chbev
DOUBLE PRECISION for zhbev
Array, size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.

COMPLEX for chbev
DOUBLE COMPLEX for zhbev.
Array \(z(/ d z, *)\).
The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with w(i).

If \(j o b z=\) 'N', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form(see the description of hbtrd).

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge;
\(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hbev interface are the following:
ab Holds the array \(A\) of size \((k d+1, n)\).
w Holds the vector with the number of elements \(n\).
\(z \quad\) Holds the matrix \(Z\) of size \((n, n)\).
uplo Must be 'U' or 'L'. The default value is 'U'.
jobz Restored based on the presence of the argument \(z\) as follows:
\(j o b z=\) 'V', if \(z\) is present,
\(j o b z=\) 'N', if \(z\) is omitted.
?sbevd
Computes all eigenvalues and, optionally, all eigenvectors of a real symmetric band matrix using divide and conquer algorithm.

\section*{Syntax}
```

call ssbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
call dsbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
call sbevd(ab, w [,uplo] [,z] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric band matrix \(A\). In other words, it can compute the spectral factorization of \(A\) as:
\(A=Z^{\star} \Lambda^{\star} Z^{T}\)
Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the orthogonal matrix whose columns are the eigenvectors \(z_{i}\). Thus,
```

A*}\mp@subsup{z}{i}{}=\mp@subsup{\lambda}{i}{*}\mp@subsup{z}{i}{}\mathrm{ for i = 1, 2, ..., n.

```

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobz = 'N', then only eigenvalues are computed. \\
\hline & If \(\mathrm{jobz}=\) ' V ', then eigenvalues and eigenvectors are computed. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', \(a b\) stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', \(a b\) stores the lower triangular part of \(A\). \\
\hline \(n\) & INTEGER. The order of the matrix \(A(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{\(k d\)} & INTEGER. The number of super- or sub-diagonals in \(A\) \\
\hline & (\(k \Delta \geq 0\)). \\
\hline \multirow[t]{6}{*}{ab, work} & REAL for ssbevd \\
\hline & DOUBLE PRECISION for dsbevd. \\
\hline & Arrays: \\
\hline & \(a b\left(/ d a,^{*}\right)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of \(a b\) must be at least max \((1, n)\). \\
\hline & work is a workspace array, its dimension max (1, lwork). \\
\hline Idab & INTEGER. The leading dimension of \(a b ;\) must be at least \(k d+1\). \\
\hline \(I d z\) & INTEGER. The leading dimension of the output array \(z\). \\
\hline
\end{tabular}
```

    Constraints:
    if jobz = 'N', then ldz\geq 1;
    if jobz = 'V', then Idz\geq max(1,n).
    INTEGER.
    The dimension of the array work.
Constraints:
if $n \leq 1$, then lwork $\geq 1$;
if jobz = 'N' and $n>1$, then lwork $\geq 2 n$;
if jobz $=$ 'V' and $n>1$, then lwork $\geq 2 * n^{2}+5 * n+1$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.
INTEGER. Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array iwork. Constraints: if $n \leq 1$, then liwork $<1$; if job $=$ ' $N$ ' and $n>1$, then liwork < 1; if job $=' V$ ' and $n>1$, then liwork < $5 *_{n+3}$.
If liwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.

```

\section*{Output Parameters}

\section*{w, z}

REAL for ssbevd
DOUBLE PRECISION for dsbevd
Arrays:
\(w\left({ }^{*}\right)\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info.
\(z(I d z, *)\).
The second dimension of \(z\) must be:
at least 1 if job = 'N';
at least \(\max (1, n)\) if job \(=\) ' \(V\) '.
If job \(=\) ' \(V\) ', then this array is overwritten by the orthogonal matrix \(Z\) which contains the eigenvectors of \(A\). The \(i\)-th column of \(Z\) contains the eigenvector which corresponds to the eigenvalue \(w(i)\).
If job \(={ }^{\prime} N^{\prime}\), then \(z\) is not referenced.
\begin{tabular}{|c|c|}
\hline \(a b\) & On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. \\
\hline work(1) & On exit, if 1 work \(>0\), then work (1) returns the required minimal size of Iwork. \\
\hline iwork(1) & On exit, if liwork \(>0\), then iwork (1) returns the required minimal size of liwork. \\
\hline info & INTEGER. \\
\hline & If info \(=0\), the execution is successful. \\
\hline & If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero. \\
\hline & If info \(=-i\), the \(i\)-th parameter had an illegal value. \\
\hline
\end{tabular}

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine sbevd interface are the following:
\begin{tabular}{ll}
ab & Holds the array \(A\) of size \((k d+1, n)\). \\
\(w\) & Holds the vector with the number of elements \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\). \\
uplo \begin{tabular}{ll}
Mobz & Must be 'U' or 'L'. The default value is 'U'. \\
& Restored based on the presence of the argument \(z\) as follows: \\
& jobz \(=' V\) ', if \(z\) is present, \\
& \(j o b z=' N '\), if \(z\) is omitted.
\end{tabular}
\end{tabular}

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(A+E\) such that \(||E||_{2}=O(\varepsilon) *| | A| |_{2}\), where \(\varepsilon\) is the machine precision.

If it is not clear how much workspace to supply, use a generous value of Iwork (or liwork) for the first run or set lwork = -1 (liwork = -1).

If any of admissible Iwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1)) for subsequent runs.

If \(l_{\text {work }}=-1\) (liwork \(=-1\)), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if work (liwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The complex analogue of this routine is hbevd.
See also syevd for matrices held in full storage, and spevd for matrices held in packed storage.
?hbevd
Computes all eigenvalues and, optionally, all eigenvectors of a complex Hermitian band matrix using divide and conquer algorithm.

\section*{Syntax}
```

call chbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, rwork, lrwork, iwork,
liwork, info)
call zhbevd(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, rwork, lrwork, iwork,
liwork, info)
call hbevd(ab, w [,uplo] [,z] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian band matrix \(A\). In other words, it can compute the spectral factorization of \(A\) as: \(A=Z * \Lambda^{*} Z^{H}\).

Here \(\Lambda\) is a real diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the (complex) unitary matrix whose columns are the eigenvectors \(z_{i}\). Thus,
```

A* z

```

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

\section*{Input Parameters}
```

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L', ab stores the lower triangular part of A.
INTEGER. The order of the matrix A ( }n\geq0)\mathrm{ .
INTEGER. The number of super- or sub-diagonals in A
(ka\geq0).
COMPLEX for chbevd
DOUBLE COMPLEX for zhbevd.
Arrays:

```
\(a b(/ d a, *)\) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format.

The second dimension of \(a b\) must be at least \(\max (1, n)\).
work (*) is a workspace array, its dimension max (1, lwork).

Idab
\(1 d z\)
lwork
iwork
liwork

INTEGER. The leading dimension of \(a b\); must be at least \(k d+1\).
INTEGER. The leading dimension of the output array \(z\).
Constraints:
if jobz = 'N', then \(1 d z \geq 1\);
if \(j o b z=' V '\), then \(I d z \geq \max (1, n)\).
INTEGER.
The dimension of the array work.
Constraints:
if \(n \leq 1\), then lwork \(\geq 1\);
if jobz \(=\) ' \(N\) ' and \(n>1\), then 1 wor \(k \geq n\);
if jobz \(=\) 'V' and \(n>1\), then lwork \(\geq 2 * n^{2}\).
If \(\operatorname{lwork}=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

REAL for chbevd
DOUBLE PRECISION for zhbevd
Workspace array, size at least Irwork.
INTEGER.
The dimension of the array rwork.
Constraints:
if \(n \leq 1\), then lrwork \(\geq 1\);
if jobz \(=\) ' \(N\) ' and \(n>1\), then lrwork \(\geq n\);
if jobz \(=\) 'V' and \(n>1\), then lrwork \(\geq 2 * n^{2}+5 * n+1\).
If lrwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.
```

INTEGER. Workspace array, size max(1, liwork).
INTEGER.

```

The dimension of the array iwork.
Constraints:
if jobz = 'N' or \(n \leq 1\), then liwork \(\geq 1\);
if jobz \(=\) 'V' and \(n>1\), then liwork \(\geq 5^{*} n+3\).

If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}
w
z
\(a b\)
work(1)
rwork(1)
iwork(1)
info

REAL for chbevd
DOUBLE PRECISION for zhbevd
Array, size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order. See also info.

COMPLEX for chbevd
DOUBLE COMPLEX for zhbevd
Array, size (\(/ d z, *)\).
The second dimension of \(z\) must be:
at least 1 if jobz = ' \(N\) ';
at least \(\max (1, n)\) if \(j o b z={ }^{\prime} V^{\prime}\).
If jobz \(=\) ' \(V\) ', then this array is overwritten by the unitary matrix \(Z\) which contains the eigenvectors of \(A\). The \(i\)-th column of \(Z\) contains the eigenvector which corresponds to the eigenvalue \(w(i)\).

If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.
On exit, this array is overwritten by the values generated during the reduction to tridiagonal form.

On exit, if \(l\) work \(>0\), then the real part of work (1) returns the required minimal size of lwork.

On exit, if lrwork \(>0\), then rwork (1) returns the required minimal size of Irwork.

On exit, if liwork \(>0\), then \(\operatorname{iwork}(1)\) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=i\), then the algorithm failed to converge; \(i\) indicates the number of elements of an intermediate tridiagonal form which did not converge to zero.

If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hbevd interface are the following:
```

ab Holds the array A of size (kd+1,n).
Holds the vector with the number of elements n.
Holds the matrix }Z\mathrm{ of size ( }n,n)\mathrm{ .
Must be 'U' or 'L'. The default value is 'U'.
Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

```

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(A+E\) such that \(||E||_{2}=O(\varepsilon)| | A| |_{2}\), where \(\varepsilon\) is the machine precision.

If you are in doubt how much workspace to supply, use a generous value of Iwork (liwork or Irwork) for the first run or set lwork \(=-1\) (liwork \(=-1\), lrwork \(=-1\)).

If you choose the first option and set any of admissible Iwork (liwork or Irwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork) on exit. Use this value (work(1), iwork(1), rwork(1)) for subsequent runs.
If you set \(\operatorname{lwork}=-1\) (liwork \(=-1\), lrwork \(=-1\)), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.

Note that if you set Iwork (liwork, Irwork) to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The real analogue of this routine is sbevd.
See also heevd for matrices held in full storage, and hpevd for matrices held in packed storage.

\section*{?sbevx}

Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix.

\section*{Syntax}
```

call ssbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info)
call dsbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info)
call sbevx(ab, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q] [,abstol]
[,info])

```

Include Files
- mkl.fi, lapack.f90

Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
```

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues w(i) in the half-open
interval: vl<w(i)\leqvu.
If range = 'I', the routine computes eigenvalues with indices in range il
to iu.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', ab stores the upper triangular part of A.
If uplo = 'L',ab stores the lower triangular part of A.
INTEGER. The order of the matrix A (n\geq0).
INTEGER. The number of super- or sub-diagonals in A
(ka\geq0).
REAL for ssbevx
DOUBLE PRECISION for dsbevx.
Arrays:
Arrays:
Array }ab(/da,*) contains either upper or lower triangular part of th
symmetric matrix A (as specified by uplo) in band storage format.
The second dimension of ab must be at least max (1,n).
work (*) is a workspace array.
The dimension of work must be at least max(1,7n).
INTEGER. The leading dimension of ab; must be at least kd +1.
REAL for ssbevx
DOUBLE PRECISION for dsbevx.
If range = 'V', the lower and upper bounds of the interval to be searched
for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', v/ and vu are not referenced.
INTEGER.

```

If range \(=\) ' I', the indices in ascending order of the smallest and largest eigenvalues to be returned.

Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); \(i l=1\) and \(i u=0\)
if \(n=0\).
If range = 'A' or 'v', il and iu are not referenced.
REAL for chpevx
DOUBLE PRECISION for zhpevx
The absolute error tolerance to which each eigenvalue is required. See Application notes for details on error tolerance.

INTEGER. The leading dimensions of the output arrays \(q\) and \(z\), respectively.
Constraints:
\(l d q \geq 1, \quad l d z \geq 1 ;\)
If \(j o b z=' \mathrm{~V}\) ', then \(l d q \geq \max (1, n)\) and \(l d z \geq \max (1, n)\).
INTEGER. Workspace array, size at least \(\max (1,5 n)\).

\section*{Output Parameters}
q
m
REAL for ssbevxDOUBLE PRECISION for dsbevx.
Array, size (ldz,n).
If jobz = 'V', the \(n\)-by-n orthogonal matrix is used in the reduction to tridiagonal form.
If jobz = 'N', the array \(q\) is not referenced.
INTEGER. The total number of eigenvalues found, \(0 \leq m \leq n\).
If range \(=\) 'A', \(m=n\), if range \(=\) 'I', \(m=i u-i l+1\), and if range \(=\) ' V ', the exact value of \(m\) is not known in advance.

REAL for ssbevx
DOUBLE PRECISION for dsbevx
Arrays:
\(w(*)\), size at least \(\max (1, n)\). The first \(m\) elements of \(w\) contain the selected eigenvalues of the matrix \(A\) in ascending order.
z(Idz,*).
The second dimension of \(z\) must be at least \(\max (1, m)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w(i).

If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
\(a b\)
ifail
info

Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form.
If uplo = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix \(T\) are returned in rows \(k d\) and \(k d+1\) of \(a b\), and if uplo = 'L', the diagonal and first subdiagonal of \(T\) are returned in the first two rows of \(a b\).
```

INTEGER.

```

Array, size at least max \((1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices the eigenvectors that failed to converge.
If jobz \(=\) ' \(N\) ', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sbevx interface are the following:
\begin{tabular}{|c|c|}
\hline \(a b\) & Holds the array \(A\) of size (\(k d+1, n\)). \\
\hline w & Holds the vector with the number of elements \(n\). \\
\hline \(z\) & Holds the matrix \(Z\) of size (\(n, n\)), where the values \(n\) and \(m\) are significant. \\
\hline ifail & Holds the vector with the number of elements \(n\). \\
\hline q & Holds the matrix \(Q\) of size (\(n, n\)). \\
\hline uplo & Must be 'U' or 'L'. The default value is 'U'. \\
\hline vl & Default value for this element is \(v /=-\operatorname{HUGE}(v /)\). \\
\hline vu & Default value for this element is \(v u=\operatorname{HUGE}(v /)\). \\
\hline il & Default value for this argument is il \(=1\). \\
\hline iu & Default value for this argument is iu \(=n\). \\
\hline abstol & Default value for this element is abstol \(=0.0{ }^{\text {a }} \mathrm{WP}\). \\
\hline jobz & Restored based on the presence of the argument \(z\) as follows: \\
\hline & jobz = 'V', if \(z\) is present, \\
\hline
\end{tabular}
jobz \(=\) 'N', if \(z\) is omitted
Note that there will be an error condition if either ifail or \(q\) is present and \(z\) is omitted.

Restored based on the presence of arguments \(v l, v u, i l, i u\) as follows:
range \(=\) ' \(V\) ', if one of or both \(v /\) and \(v u\) are present,
range \(=\) 'I', if one of or both il and \(i u\) are present,
range \(=\) 'A', if none of \(v l, v u, i l, i u\) is present,
Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both il and iu are present.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to \(a b s t o l+\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If abstol is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) is used as tolerance, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').
?hbevx
Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian band matrix.

Syntax
```

call chbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol, m, w, z,
ldz, work, rwork, iwork, ifail, info)
call zhbevx(jobz, range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il, iu, abstol, m, w, z,
ldz, work, rwork, iwork, ifail, info)
call hbevx(ab, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q] [,abstol]
[,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
jobz
CHARACTER*1. Must be 'N' or 'V'.
If job \(=\) ' N ', then only eigenvalues are computed.
If job \(=\) ' \(V\) ', then eigenvalues and eigenvectors are computed.
```

range
uplo
n
kd
ab, work
Idab
vl,vu
il, iu
abstol
ldq, ldz
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range $=$ ' $A$ ', the routine computes all eigenvalues.
If range $=$ ' $V$ ', the routine computes eigenvalues $w(i)$ in the half-open interval: vl< w(i) $\leq v u$.
If range = 'I', the routine computes eigenvalues with indices il to iu.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', $a b$ stores the upper triangular part of $A$.
If uplo = 'L', $a b$ stores the lower triangular part of $A$.
INTEGER. The order of the matrix $A(n \geq 0)$.
INTEGER. The number of super- or sub-diagonals in $A$
( $k d \geq 0$ ).
COMPLEX for chbevx
DOUBLE COMPLEX for zhbevx.
Arrays:
$a b(/ d a, *)$ is an array containing either upper or lower triangular part of the Hermitian matrix $A$ (as specified by uplo) in band storage format.
The second dimension of $a b$ must be at least $\max (1, n)$.
work (*) is a workspace array.
The dimension of work must be at least $\max (1, n)$.
INTEGER. The leading dimension of $a b ;$ must be at least $k d+1$.
REAL for chbevx
DOUBLE PRECISION for zhbevx.
If range $=$ ' $V$ ', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl< vu.
If range $=$ 'A' or 'I', v/ and $v u$ are not referenced.
INTEGER.
If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: $1 \leq i l \leq i u \leq n$, if $n>0$; $i l=1$ and $i u=0$ if $n=0$.
If range $=$ 'A' or ' V ', il and $i u$ are not referenced.
REAL for chbevx
DOUBLE PRECISION for zhbevx.
The absolute error tolerance to which each eigenvalue is required. See Application notes for details on error tolerance.
INTEGER. The leading dimensions of the output arrays $q$ and $z$, respectively.

```

\section*{Constraints:}
\(1 d q \geq 1, \quad l d z \geq 1 ;\)
If \(j o b z=' V '\), then \(l d q \geq \max (1, n)\) and \(l d z \geq \max (1, n)\).
REAL for chbevx
DOUBLE PRECISION for zhbevx
Workspace array, size at least max (1, 7n).
INTEGER. Workspace array, size at least max (1, 5n).

\section*{Output Parameters}

COMPLEX for chbevxDOUBLE COMPLEX for zhbevx.
Array, size (Idz,n).
If jobz = 'V', the \(n\)-by-n unitary matrix is used in the reduction to tridiagonal form.

If jobz = 'N', the array \(q\) is not referenced.
INTEGER. The total number of eigenvalues found,
\(0 \leq m \leq n\).
If range \(=\) 'A', \(m=n\), if range \(=\) 'I', \(m=i u-i l+1\), and if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance..

REAL for chbevx
DOUBLE PRECISION for zhbevx
Array, size at least \(\max (1, n)\). The first \(m\) elements contain the selected eigenvalues of the matrix \(A\) in ascending order.

COMPLEX for chbevx
DOUBLE COMPLEX for zhbevx.
Array \(\mathrm{z}(/ d z, *)\).
The second dimension of \(z\) must be at least \(\max (1, m)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w(i).

If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz = 'N', then \(z\) is not referenced.
Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form.

If uplo = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix \(T\) are returned in rows \(k d\) and \(k d+1\) of \(a b\), and if uplo = 'L', the diagonal and first subdiagonal of \(T\) are returned in the first two rows of \(a b\).

INTEGER.
Array, size at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.

If jobz \(=\) ' \(N\) ', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If \(\operatorname{info}=i\), then \(i\) eigenvectors failed to converge; their indices are stored in the array ifail.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hbevx interface are the following:
ab Holds the array \(A\) of size \((k d+1, n)\).
\(w \quad\) Holds the vector with the number of elements \(n\).

Z
ifail
q
uplo
vl

VU
il
iu
abstol
jobz
range
Holds the matrix \(Z\) of size \((n, n)\), where the values \(n\) and \(m\) are significant.
Holds the vector with the number of elements \(n\).
Holds the matrix \(Q\) of size \((n, n)\).
Must be 'U' or 'L'. The default value is 'U'.
Default value for this element is \(v l=-\operatorname{HUGE}(v /)\).
Default value for this element is \(v u=\operatorname{HUGE}(v /)\).
Default value for this argument is \(i l=1\).
Default value for this argument is \(i u=n\).
Default value for this element is abstol \(=0.0 _W P\).
Restored based on the presence of the argument \(z\) as follows:
jobz = 'V', if \(z\) is present,
jobz \(=\) 'N', if \(z\) is omitted
Note that there will be an error condition if either ifail or \(q\) is present and \(z\) is omitted.

Restored based on the presence of arguments \(v /, v u, i l, i u\) as follows:
\[
\begin{aligned}
& \text { range }=\text { ' } \mathrm{V} \text { ', if one of or both } v / \text { and } v u \text { are present, } \\
& \text { range }=\text { 'I', if one of or both } i l \text { and } i u \text { are present, } \\
& \text { range }=\text { 'A', if none of } v l, v u, i l, i u \text { is present, }
\end{aligned}
\]

Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both il and iu are present.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol \(+\varepsilon * \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If \(a b s t o l\) is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) ? lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').
?stev
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix.

Syntax
```

call sstev(jobz, n, d, e, z, ldz, work, info)
call dstev(jobz, n, d, e, z, ldz, work, info)
call stev(d, e [,z] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(A\).

\section*{Input Parameters}
```

jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
INTEGER. The order of the matrix A (n\geq0).
REAL for sstev
DOUBLE PRECISION for dstev.

```
 Arrays:
 Array \(d(*)\) contains the \(n\) diagonal elements of the tridiagonal matrix \(A\).
 The size of \(d\) must be at least \(\max (1, n)\).

\section*{\(1 d z\)}

Array \(e(*)\) contains the \(n-1\) subdiagonal elements of the tridiagonal matrix A.

The size of \(e\) must be at least \(\max (1, n)\). The \(n\)-th element of this array is used as workspace.
work(*) is a workspace array.
The dimension of work must be at least max(1, \(2 n-2\)).
If \(j o b z=\) ' \(N\) ', work is not referenced.
INTEGER. The leading dimension of the output array \(z ; l d z \geq 1\). If jobz \(=\) 'V' then \(l d z \geq \max (1, n)\).

\section*{Output Parameters}
d
z
e
info

On exit, if info \(=0\), contains the eigenvalues of the matrix \(A\) in ascending order.

REAL for sstev
DOUBLE PRECISION for dstev
Array, size (ldz,*).
The second dimension of \(z\) must be at least \(\max (1, n)\).
If \(j o b z=' V\) ', then if info \(=0, z\) contains the orthonormal eigenvectors of the matrix \(A\), with the \(i\)-th column of \(z\) holding the eigenvector associated with the eigenvalue returned in \(d(i)\).

If job \(=\) ' \(N\) ', then \(z\) is not referenced.
On exit, this array is overwritten with intermediate results.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then the algorithm failed to converge;
\(i\) elements of \(e\) did not converge to zero.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine stev interface are the following:
\begin{tabular}{ll}
\(d\) & Holds the vector of length \(n\). \\
\(e\) & Holds the vector of length \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\). \\
jobz & Restored based on the presence of the argument \(z\) as follows: \\
& jobz \(=' \mathrm{~V} '\), if \(z\) is present,
\end{tabular}
jobz \(=\) ' \(N\) ', if \(z\) is omitted.
?stevd
Computes all eigenvalues and, optionally, all eigenvectors of a real symmetric tridiagonal matrix using divide and conquer algorithm.

Syntax
```

call sstevd(jobz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
call dstevd(jobz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
call stevd(d, e [,z] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric tridiagonal matrix \(T\). In other words, the routine can compute the spectral factorization of \(T\) as: \(T=Z^{\star} \Lambda^{\star} Z^{T}\).

Here \(\Lambda\) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_{i}\), and \(Z\) is the orthogonal matrix whose columns are the eigenvectors \(z_{i}\). Thus,
```

T* 访 = \lambdai

```

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the \(Q L\) or \(Q R\) algorithm.

There is no complex analogue of this routine.

\section*{Input Parameters}
jobz
n
d, e, work

CHARACTER*1. Must be 'N' or 'V'.
If \(j o b z=' N\) ', then only eigenvalues are computed.
If jobz \(=\) ' \(V\) ', then eigenvalues and eigenvectors are computed.
INTEGER. The order of the matrix \(T(n \geq 0)\).
REAL for sstevd
DOUBLE PRECISION for dstevd.
Arrays:
\(d(*)\) contains the \(n\) diagonal elements of the tridiagonal matrix \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e(*)\) contains the \(n-1\) off-diagonal elements of \(T\).
The dimension of \(e\) must be at least \(\max (1, n)\). The \(n\)-th element of this array is used as workspace.
work(*) is a workspace array.
\(1 d z\)

The dimension of work must be at least Iwork.
INTEGER. The leading dimension of the output array \(z\). Constraints:
\(l d z \geq 1\) if job = 'N';
\(l d z \geq \max (1, n)\) if job \(=\) 'V'.
INTEGER.
The dimension of the array work.

\section*{Constraints:}
if jobz \(=\) ' \(N\) ' or \(n \leq 1\), then lwork \(\geq 1\);
if jobz \(=\) ' \(V\) ' and \(n>1\), then 1 work \(\geq n^{2}+4 \star n+1\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.

INTEGER. Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array iwork.
Constraints:
if jobz \(=\) 'N' or \(n \leq 1\), then liwork \(\geq 1\);
if jobz \(=\) 'V' and \(n>1\), then liwork \(\geq 5 \star_{n+3}\).
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}
d
z
On exit, if info \(=0\), contains the eigenvalues of the matrix \(T\) in ascending order.

See also info.
REAL for sstevd
DOUBLE PRECISION for dstevd
Array, size (\(/ d z, *)\).
The second dimension of \(z\) must be:
at least 1 if jobz = 'N';
at least \(\max (1, n)\) if jobz \(=\) ' \(V\) '.
If jobz = 'V', then this array is overwritten by the orthogonal matrix \(Z\) which contains the eigenvectors of \(T\).
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
```

e On exit, this array is overwritten with intermediate results.
work(1) On exit, if lwork > 0, then work (1) returns the required minimal size of
lwork.
On exit, if liwork > 0, then iwork(1) returns the required minimal size of
liwork.
INTEGER.
If info = 0, the execution is successful.
If info = i, then the algorithm failed to converge; i indicates the number
of elements of an intermediate tridiagonal form which did not converge to
zero.
If info = -i, the i-th parameter had an illegal value.

```

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine stevd interface are the following:
\begin{tabular}{ll}
\(d\) & Holds the vector of length \(n\). \\
\(e\) & Holds the vector of length \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\). \\
jobz & Restored based on the presence of the argument \(z\) as follows: \\
& \(j o b z=' \mathrm{~V} '\), if \(z\) is present, \\
& \(j \circ b z=' \mathrm{~N}^{\prime}\), if \(z\) is omitted.
\end{tabular}

\section*{Application Notes}

The computed eigenvalues and eigenvectors are exact for a matrix \(T+E\) such that \(||E||_{2}=O(\varepsilon) *| | T| |_{2}\), where \(\varepsilon\) is the machine precision.

If \(\lambda_{i}\) is an exact eigenvalue, and \(\mu_{i}\) is the corresponding computed value, then
\[
\left|\mu_{i}-\lambda_{i}\right| \leq c(n) \star \varepsilon^{\star}| | T| |_{2}
\]
where \(c(n)\) is a modestly increasing function of \(n\).
If \(z_{i}\) is the corresponding exact eigenvector, and \(w_{i}\) is the corresponding computed vector, then the angle \(\theta\left(z_{i}, w_{i}\right)\) between them is bounded as follows:
\(\theta\left(z_{i}, w_{i}\right) \leq c(n) \star \varepsilon^{\star}| | T| |_{2} / \min _{i \neq j}\left|\lambda_{i}-\lambda_{j}\right|\).
Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the other eigenvalues.

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run, or set 1 work \(=-1\) (liwork \(=-1\)).

If Iwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work(1), iwork(1)) for subsequent runs.

If 1 work \(=-1\) (liwork \(=-1\)), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if Iwork (liwork) is less than the minimal required value and is not equal to -1, then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
?stevx
Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.

Syntax
```

call sstevx(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info)
call dstevx(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,
ifail, info)
call stevx(d, e, w [, z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(A\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
```

jobz
range
n
d, e, work
CHARACTER*1. Must be 'N' or 'V'.
If job $=$ ' $N$ ', then only eigenvalues are computed.
If job $=$ ' $V$ ', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range $=$ ' A ', the routine computes all eigenvalues.
If range $=$ ' $V$ ', the routine computes eigenvalues $w(i)$ in the half-open interval: vl<w(i) $\leq v u$.
If range $=$ 'I', the routine computes eigenvalues with indices il to iu.
INTEGER. The order of the matrix $A(n \geq 0)$.
REAL for sstevx
DOUBLE PRECISION for dstevx.

```

Arrays:
\(d(*)\) contains the \(n\) diagonal elements of the tridiagonal matrix \(A\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e(*)\) contains the \(n-1\) subdiagonal elements of \(A\).

The dimension of \(e\) must be at least \(\max (1, n-1)\). The \(n\)-th element of this array is used as workspace.
work(*) is a workspace array.
The dimension of work must be at least max \((1,5 n)\).
REAL for sstevx
DOUBLE PRECISION for dstevx.
If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues.

Constraint: vl< vu.
If range \(=\) 'A' or 'I', vl and \(v u\) are not referenced.
INTEGER.
If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.

Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) if \(n=0\).
If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced.
REAL for sstevx
DOUBLE PRECISION for dstevx. The absolute error tolerance to which each eigenvalue is required. See Application notes for details on error tolerance.

INTEGER. The leading dimensions of the output array \(z ; l d z \geq 1\). If jobz \(=\) ' \(V\) ', then \(l d z \geq \max (1, n)\).

INTEGER. Workspace array, size at least max(1,5n).

INTEGER. The total number of eigenvalues found,
\(0 \leq m \leq n\).
If range \(=\) ' \(A\) ', \(m=n\), if range \(=' I ', m=i u-i l+1\), and if range \(=\) ' \(V\) ' the exact value of \(m\) is unknown.

REAL for sstevx
DOUBLE PRECISION for dstevx.
Arrays:
\(W(*)\), size at least \(\max (1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues of the matrix \(A\) in ascending order.
\(z(I d z, *)\).
The second dimension of \(z\) must be at least \(\max (1, m)\).
If \(j o b z=' V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w(i).
```

d,e
ifail
info
On exit, these arrays may be multiplied by a constant factor chosen to avoid overflow or underflow in computing the eigenvalues.
INTEGER.
Array, size at least max $(1, n)$.
If $j o b z=$ ' $V$ ', then if info $=0$, the first $m$ elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info = i, then $i$ eigenvectors failed to converge; their indices are stored in the array ifail.

```

If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

If jobz = 'N', then \(z\) is not referenced.
Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine stevx interface are the following:
\begin{tabular}{ll}
\(d\) & Holds the vector of length \(n\). \\
\(e\) & Holds the vector of length \(n\). \\
\(w\) & Holds the vector of length \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\), where the values \(n\) and \(m\) are significant. \\
ifail & Holds the vector of length \(n\). \\
\(v l\) & Default value for this element is \(v l=-\operatorname{HUGE}(v /)\). \\
\(v u\) & Default value for this element is \(v u=\operatorname{HUGE}(v /)\). \\
\(i l\) & Default value for this argument is \(i l=1\). \\
\(i u\) & Default value for this argument is \(i u=n\). \\
abstol & Default value for this element is abstol \(=0.0 _W P\). \\
jobz & Restored based on the presence of the argument \(z\) as follows: \\
& jobz \(=\) 'V', if \(z\) is present,
\end{tabular}
jobz \(=\) 'N', if \(z\) is omitted
Note that there will be an error condition if ifail is present and \(z\) is omitted.
Restored based on the presence of arguments \(v /, v u, i l, i u\) as follows:
range \(=\) ' V ', if one of or both \(v /\) and \(v u\) are present,
range \(=\) 'I', if one of or both il and iu are present,
range \(=\) ' \(A\) ', if none of \(v l, v u, i l\), iu is present,
Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both il and iu are present.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If \(a b s t o l\) is less than or equal to zero, then \(\varepsilon^{\star}|A|_{1}\) is used instead. Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, set abstol to 2*? lamch('S').
?stevr
Computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix using the Relatively Robust Representations.

Syntax
```

call sstevr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work,
lwork, iwork, liwork, info)
call dstevr(jobz, range, n, d, e, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work,
lwork, iwork, liwork, info)
call stevr(d, e, w [, z] [,vl] [,vu] [,il] [,iu] [,m] [,isuppz] [,abstol] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(T\). Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.
Whenever possible, the routine calls stemr to compute the eigenspectrum using Relatively Robust Representations. stegr computes eigenvalues by the dqds algorithm, while orthogonal eigenvectors are computed from various "good" \(L^{*} D^{*} L^{T}\) representations (also known as Relatively Robust Representations). Gram-Schmidt orthogonalization is avoided as far as possible. More specifically, the various steps of the algorithm are as follows. For the \(i\)-th unreduced block of \(T\) :
a. Compute \(T-\sigma_{i}=L_{i} * D_{i} * L_{i}{ }^{T}\), such that \(L_{i} * D_{i} * L_{i}{ }^{T}\) is a relatively robust representation.
b. Compute the eigenvalues, \(\lambda_{j}\), of \(L_{i}{ }^{*} D_{i}{ }^{*} L_{i}{ }^{T}\) to high relative accuracy by the \(d q d s\) algorithm.
C. If there is a cluster of close eigenvalues, "choose" \(\sigma_{i}\) close to the cluster, and go to Step (a).
d. Given the approximate eigenvalue \(\lambda_{j}\) of \(L_{i}{ }^{*} D_{i}{ }^{*} L_{i}{ }^{T}\), compute the corresponding eigenvector by forming a rank-revealing twisted factorization.
The desired accuracy of the output can be specified by the input parameter abstol.
The routine ?stevr calls stemr when the full spectrum is requested on machines which conform to the IEEE-754 floating point standard. ?stevr calls stebz and stein on non-IEEE machines and when partial spectrum requests are made.

\section*{Input Parameters}
jobz
range
n
d, e, work
vl, vu
il, iu

CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then only eigenvalues are computed.
If jobz = ' V ', then eigenvalues and eigenvectors are computed.
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range = 'A', the routine computes all eigenvalues.
If range \(=\) ' \(V\) ', the routine computes eigenvalues \(w(i)\) in the half-open interval:
vl<w(i) \(\leq v u\).
If range = 'I', the routine computes eigenvalues with indices il to iu.
For range = 'V'or 'I' and iu-il < n-1, sstebz/dstebz and sstein/ dstein are called.
integer. The order of the matrix \(T(n \geq 0)\).
REAL for sstevr
DOUBLE PRECISION for dstevr.
Arrays:
\(d\left({ }^{*}\right)\) contains the \(n\) diagonal elements of the tridiagonal matrix \(T\).
The dimension of \(d\) must be at least \(\max (1, n)\).
\(e(*)\) contains the \(n-1\) subdiagonal elements of \(A\).
The dimension of \(e\) must be at least \(\max (1, n-1)\). The \(n\)-th element of this array is used as workspace.
work is a workspace array, its dimension max (1, lwork).
REAL for sstevr
DOUBLE PRECISION for dstevr.
If range = ' V ', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', v/ and \(v u\) are not referenced.
INTEGER.
If range \(=\) ' I', the indices in ascending order of the smallest and largest eigenvalues to be returned.

Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0 ; i l=1\) and \(i u=0\) if \(n=0\).

If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced.
abstol
\(1 d z\)
lwork
iwork
liwork

REAL for sstevr
DOUBLE PRECISION for dstevr.
The absolute error tolerance to which each eigenvalue/eigenvector is required.

If \(j o b z=\) ' \(V\) ', the eigenvalues and eigenvectors output have residual norms bounded by abstol, and the dot products between different eigenvectors are bounded by abstol. If abstol < n *eps*||T||, then \(n\) *eps*||T|| will be used in its place, where eps is the machine precision, and \(||T||\) is the 1 -norm of the matrix \(T\). The eigenvalues are computed to an accuracy of eps*||T|| irrespective of abstol.

If high relative accuracy is important, set abstol to ? lamch('S').
INTEGER. The leading dimension of the output array \(z\).
Constraints:
\(I d z \geq 1\) if \(j o b z=\) 'N';
\(l d z \geq \max (1, n)\) if \(j o b z=' V '\).
INTEGER.
The dimension of the array work. Constraint:
lwork \(\geq \max (1,20 * n)\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.

INTEGER.
Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array iwork,
lwork \(\geq \max (1,10 * n)\).
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}
m
w, z

INTEGER. The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), if range \(=\) 'I', \(m=i u-i l+1\), and if range \(=\) ' \(V\) ' the exact value of \(m\) is unknown..

REAL for sstevr

DOUBLE PRECISION for dstevr.
Arrays:
w(*), size at least max \((1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues of the matrix \(T\) in ascending order.
\[
z(l d z, *) .
\]

The second dimension of \(z\) must be at least max \((1, m)\).
If jobz = 'V', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with w(i).

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.
\(d, e\)
isuppz
work(1)
iwork(1)
info

On exit, these arrays may be multiplied by a constant factor chosen to avoid overflow or underflow in computing the eigenvalues.

INTEGER.
Array, size at least 2 *max \((1, m)\).
The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The \(i\)-th eigenvector is nonzero only in elements isuppz(2i-1) through isuppz(2i).

Implemented only for range \(=\) 'A' or 'I' and iu-il \(=n-1\).
On exit, if info \(=0\), then work (1) returns the required minimal size of Iwork.

On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), an internal error has occurred.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine stevr interface are the following:
```

d Holds the vector of length n.
e Holds the vector of length n.
w Holds the vector of length n.

```
```

z Holds the matrix Z of size ( }n,n)\mathrm{ , where the values }n\mathrm{ and m}\mathrm{ are significant.
isuppz
vl
VU
il
iu
abstol
jobz
range
Holds the matrix $Z$ of size $(n, n)$, where the values $n$ and $m$ are significant.
Holds the vector of length $\left(2^{*} n\right)$, where the values $\left(2^{*} m\right)$ are significant.
Default value for this element is $v l=-\operatorname{HUGE}(v /)$.
Default value for this element is $v u=\operatorname{HUGE}(v /)$.
Default value for this argument is il $=1$.
Default value for this argument is iu $=n$.
Default value for this element is abstol $=0.0 \_\mathrm{WP}$.
Restored based on the presence of the argument $z$ as follows:
jobz = 'V', if $z$ is present,
jobz $=$ ' $N$ ', if $z$ is omitted
Note that there will be an error condition if ifail is present and $z$ is omitted.
Restored based on the presence of arguments $v /, v u, i l, i u$ as follows:
range $=$ ' $V$ ', if one of or both $v /$ and $v u$ are present,
range $=$ 'I', if one of or both il and iu are present,
range $=$ 'A', if none of $v /, v u, i l$, iu is present,

```

Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both il and iu are present.

\section*{Application Notes}

Normal execution of the routine ?stegr may create NaNs and infinities and hence may abort due to a floating point exception in environments which do not handle NaNs and infinities in the IEEE standard default manner.

If it is not clear how much workspace to supply, use a generous value of lwork (or liwork) for the first run, or set lwork \(=-1\) (liwork \(=-1\)).

If Iwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork(1)) for subsequent runs.

If \(\operatorname{lwork}=-1\) (liwork \(=-1\)), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if Iwork (liwork) is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{Nonsymmetric Eigenvalue Problems: LAPACK Driver Routines}

This topic describes LAPACK driver routines used for solving nonsymmetric eigenproblems. See also computational routines that can be called to solve these problems.

Table "Driver Routines for Solving Nonsymmetric Eigenproblems" lists all such driver routines for the FORTRAN 77 interface. The corresponding routine names in the Fortran 95 interface are without the first symbol.

Driver Routines for Solving Nonsymmetric Eigenproblems
\begin{tabular}{ll}
\hline Routine Name & Operation performed \\
\hline gees & \begin{tabular}{l}
Computes the eigenvalues and Schur factorization of a general matrix, and orders \\
the factorization so that selected eigenvalues are at the top left of the Schur form.
\end{tabular} \\
geesx & \begin{tabular}{l}
Computes the eigenvalues and Schur factorization of a general matrix, orders the \\
factorization and computes reciprocal condition numbers.
\end{tabular} \\
geevx & \begin{tabular}{l}
Computes the eigenvalues and left and right eigenvectors of a general matrix.
\end{tabular} \\
\begin{tabular}{l}
Computes the eigenvalues and left and right eigenvectors of a general matrix, with \\
preliminary matrix balancing, and computes reciprocal condition numbers for the \\
eigenvalues and right eigenvectors.
\end{tabular} \\
\hline
\end{tabular}

\section*{?gees \\ Computes the eigenvalues and Schur factorization of a general matrix, and orders the factorization so that selected eigenvalues are at the top left of the Schur form.}

\section*{Syntax}
```

call sgees(jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs, work, lwork, bwork,
info)
call dgees(jobvs, sort, select, n, a, lda, sdim, wr, wi, vs, ldvs, work, lwork, bwork,
info)
call cgees(jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs, work, lwork, rwork, bwork,
info)
call zgees(jobvs, sort, select, n, a, lda, sdim, w, vs, ldvs, work, lwork, rwork, bwork,
info)
call gees(a, wr, wi [,vs] [,select] [,sdim] [,info])
call gees(a, w [,vs] [,select] [,sdim] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine computes for an \(n\)-by- \(n\) real/complex nonsymmetric matrix \(A\), the eigenvalues, the real Schur form \(T\), and, optionally, the matrix of Schur vectors \(Z\). This gives the Schur factorization \(A=Z^{\star} T^{\star} Z^{H}\).

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that selected eigenvalues are at the top left. The leading columns of \(Z\) then form an orthonormal basis for the invariant subspace corresponding to the selected eigenvalues.
A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form

where \(b^{*} c<0\). The eigenvalues of such a block are
\[
a \pm i \sqrt{b c}
\]

A complex matrix is in Schur form if it is upper triangular.

\section*{Input Parameters}
jobvs
sort
select

CHARACTER*1. Must be 'N' or 'V'.
If jobvs = 'N', then Schur vectors are not computed.
If jobvs = 'V', then Schur vectors are computed.
CHARACTER*1. Must be 'N' or 'S'. Specifies whether or not to order the eigenvalues on the diagonal of the Schur form.

If sort = 'N', then eigenvalues are not ordered.
If sort = 'S', eigenvalues are ordered (see select).
LOGICAL FUNCTION of two REAL arguments for real flavors.
LOGICAL FUNCTION of one COMPLEX argument for complex flavors.
select must be declared EXTERNAL in the calling subroutine.

If sort = 'S', select is used to select eigenvalues to sort to the top left of the Schur form.

If sort \(=\) 'N', select is not referenced.
For real flavors:
An eigenvalue \(w r(\mathrm{j})+\operatorname{sqrt}(-1) * w i(\mathrm{j})\) is selected if \(\operatorname{select}(w r(\mathrm{j}), w i(\mathrm{j}))\) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.
For complex flavors:
An eigenvalue \(w(\mathrm{j})\) is selected if \(\operatorname{select}(w(\mathrm{j})\) is true.
Note that a selected complex eigenvalue may no longer satisfy select(wr(j), \(w i(\mathrm{j}))=\). TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info may be set to \(n+2\) (see info below).

INTEGER. The order of the matrix \(A(n \geq 0)\).
REAL for sgees
DOUBLE PRECISION for dgees
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Arrays:
\(a(I d a, *)\) is an array containing the \(n\)-by- \(n\) matrix \(A\).
The second dimension of \(a\) must be at least max \((1, n)\).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of the array \(a\). Must be at least max \((1, n)\).
INTEGER. The leading dimension of the output array vs. Constraints:
Idvs \(\geq 1\);
\(I d v s \geq \max (1, n)\) if jobvs = 'V'.
INTEGER.
The dimension of the array work.

\section*{Constraint:}
lwork \(\geq \max (1,3 n)\) for real flavors;
\(l_{\text {work }} \geq \max (1,2 n)\) for complex flavors.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

REAL for cgees
DOUBLE PRECISION for zgees
Workspace array, size at least max \((1, n)\). Used in complex flavors only.
```

bwork

```

\section*{Output Parameters}

\section*{a}

LOGICAL. Workspace array, size at least \(\max (1, n)\). Not referenced if sort \(='^{\prime}\) '.

On exit, this array is overwritten by the real-Schur/Schur form \(T\).
INTEGER.
If sort \(=\) 'N', sdim= 0 .
If sort = 'S', sdim is equal to the number of eigenvalues (after sorting) for which select is true.

Note that for real flavors complex conjugate pairs for which select is true for either eigenvalue count as 2 .

REAL for sgees
DOUBLE PRECISION for dgees
Arrays, size at least max \((1, n)\) each. Contain the real and imaginary parts, respectively, of the computed eigenvalues, in the same order that they appear on the diagonal of the output real-Schur form \(T\). Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.

COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Array, size at least \(\max (1, n)\). Contains the computed eigenvalues. The eigenvalues are stored in the same order as they appear on the diagonal of the output Schur form \(T\).
REAL for sgees
DOUBLE PRECISION for dgees
COMPLEX for cgees
DOUBLE COMPLEX for zgees.
Array \(v s(I d v s, *)\); the second dimension of \(v s\) must be at least \(\max (1, n)\).
If jobvs = 'V', vs contains the orthogonal/unitary matrix \(Z\) of Schur vectors.

If jobvs = 'N', vs is not referenced.
On exit, if info \(=0\), then work(1) returns the required minimal size of Iwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), and
\(i \leq n\) :
the \(Q R\) algorithm failed to compute all the eigenvalues; elements 1:ilo-1 and \(i+1\) :n of \(w r\) and \(w i\) (for real flavors) or \(w\) (for complex flavors) contain those eigenvalues which have converged; if jobvs = 'V', vs contains the matrix which reduces \(A\) to its partially converged Schur form;
\(i=n+1\) :
the eigenvalues could not be reordered because some eigenvalues were too close to separate (the problem is very ill-conditioned);
\(i=n+2\) :
after reordering, round-off changed values of some complex eigenvalues so that leading eigenvalues in the Schur form no longer satisfy select
\(=\). TRUE . . This could also be caused by underflow due to scaling.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine gees interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size (\(n, n\)). \\
\hline wr & Holds the vector of length \(n\). Used in real flavors only. \\
\hline wi & Holds the vector of length \(n\). Used in real flavors only. \\
\hline w & Holds the vector of length \(n\). Used in complex flavors only. \\
\hline vs & Holds the matrix VS of size (\(n, n\)). \\
\hline jobvs & Restored based on the presence of the argument vs as follows: jobvs = 'V', if \(v s\) is present, \\
\hline & jobvs = 'N', if vs is omitted. \\
\hline \multirow[t]{2}{*}{sort} & Restored based on the presence of the argument select as follows: sort \(=\) 'S', if select is present, \\
\hline & sort \(=\) ' N ', if select is omitted. \\
\hline
\end{tabular}

\section*{Application Notes}

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set
lwork \(=-1\).
If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
```

?geesx
Computes the eigenvalues and Schur factorization of a general matrix, orders the factorization and computes reciprocal condition numbers.

```

\section*{Syntax}
```

call sgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs, ldvs, rconde,
rcondv, work, lwork, iwork, liwork, bwork, info)
call dgeesx(jobvs, sort, select, sense, n, a, lda, sdim, wr, wi, vs, ldvs, rconde,
rcondv, work, lwork, iwork, liwork, bwork, info)
call cgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs, ldvs, rconde, rcondv,
work, lwork, rwork, bwork, info)
call zgeesx(jobvs, sort, select, sense, n, a, lda, sdim, w, vs, ldvs, rconde, rcondv,
work, lwork, rwork, bwork, info)
call geesx(a, wr, wi [,vs] [,select] [,sdim] [,rconde] [,rcondev] [,info])
call geesx(a, w [,vs] [,select] [,sdim] [,rconde] [,rcondev] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes for an \(n\)-by- \(n\) real/complex nonsymmetric matrix \(A\), the eigenvalues, the real-Schur/ Schur form \(T\), and, optionally, the matrix of Schur vectors \(Z\). This gives the Schur factorization \(A=Z^{\star} T^{\star} Z^{H}\).

Optionally, it also orders the eigenvalues on the diagonal of the real-Schur/Schur form so that selected eigenvalues are at the top left; computes a reciprocal condition number for the average of the selected eigenvalues (rconde); and computes a reciprocal condition number for the right invariant subspace corresponding to the selected eigenvalues (rcondv). The leading columns of \(Z\) form an orthonormal basis for this invariant subspace.

For further explanation of the reciprocal condition numbers rconde and rcondv, see [LUG], Section 4.10 (where these quantities are called \(s\) and sep respectively).

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form

where \(b^{*} c<0\). The eigenvalues of such a block are
\[
a \pm i \sqrt{b c}
\]

A complex matrix is in Schur form if it is upper triangular.

\section*{Input Parameters}
jobvs
sort
select

CHARACTER*1. Must be 'N' or 'V'.
If jobvs = 'N', then Schur vectors are not computed.
If jobvs \(=\) ' V ', then Schur vectors are computed.
CHARACTER*1. Must be 'N' or 'S'. Specifies whether or not to order the eigenvalues on the diagonal of the Schur form.

If sort \(=\) ' \(N\) ', then eigenvalues are not ordered.
If sort = 'S', eigenvalues are ordered (see select).
LOGICAL FUNCTION of two REAL arguments for real flavors.
LOGICAL FUNCTION of one COMPLEX argument for complex flavors.
select must be declared EXTERNAL in the calling subroutine.

If sort = 'S', select is used to select eigenvalues to sort to the top left of the Schur form.

If sort \(=\) 'N', select is not referenced.
For real flavors:
An eigenvalue \(w r(\mathrm{j})+\operatorname{sqrt}(-1) * w i(\mathrm{j})\) is selected if \(\operatorname{select}(w r(\mathrm{j}), w i(\mathrm{j}))\) is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.
For complex flavors:
An eigenvalue \(w(\mathrm{j})\) is selected if \(\operatorname{select}(w(\mathrm{j}))\) is true.
Note that a selected complex eigenvalue may no longer satisfy select(wr(j), \(w i(\mathrm{j}))=\). TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info may be set to \(n+2\) (see info below).
\(n\)

CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed.

If sense = 'N', none are computed;
If sense = 'E', computed for average of selected eigenvalues only;
If sense \(=\) 'V', computed for selected right invariant subspace only;
If sense \(=\) ' B ', computed for both.
If sense is ' E ', ' V ', or ' \(\mathrm{B}^{\prime}\), then sort must equal 'S'.
INTEGER. The order of the matrix \(A(n \geq 0)\).
REAL for sgeesx
DOUBLE PRECISION for dgeesx
COMPLEX for cgeesx
DOUBLE COMPLEX for zgeesx.
Arrays:
\(a(I d a, *)\) is an array containing the \(n\)-by- \(n\) matrix \(A\).
The second dimension of \(a\) must be at least \(\max (1, n)\).
work is a workspace array, its dimension max (1,1 work).
INTEGER. The leading dimension of the array \(a\). Must be at least max \((1, n)\).
INTEGER. The leading dimension of the output array vs. Constraints:
\(1 d v s \geq 1 ;\)
\(I d v s \geq \max (1, n)\) if jobvs \(=' \mathrm{~V}\) '.
INTEGER.
The dimension of the array work. Constraint:
lwork \(\geq \max (1,3 n)\) for real flavors;
lwork \(\geq \max (1,2 n)\) for complex flavors.
Also, if sense \(=\) ' \(E\) ', 'V', or 'B', then
iwork
liwork
rwork
bwork

\section*{Output Parameters}
a sdim
wr, wi
lwork \(\geq n+2 *\) sdim* (\(n\)-sdim) for real flavors;
lwork \(\geq 2 *\) sdim* (\(n\)-sdim) for complex flavors;
where sdim is the number of selected eigenvalues computed by this routine.
Note that \(2 * \operatorname{sdim}^{\star}(n-s d i m) \leq n * n / 2\). Note also that an error is only returned if 1 work \(<\max \left(1,2 * n\right.\)), but if sense \(=' E\) ', or ' \(V^{\prime}\) ', or ' \(\mathrm{B}^{\prime}\) this may not be large enough.

For good performance, Iwork must generally be larger.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates upper bound on the optimal size of the array work, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

INTEGER.
Workspace array, size (liwork). Used in real flavors only. Not referenced if sense \(=\) 'N' or 'E'.

INTEGER.
The dimension of the array iwork. Used in real flavors only.
Constraint:
liwork \(\geq\) 1;
if sense \(=\) 'V' or 'B', liwork \(\geq\) sdim*(\(n\)-sdim).
REAL for cgeesx
DOUBLE PRECISION for zgeesx
Workspace array, size at least max \((1, n)\). Used in complex flavors only.
LOGICAL. Workspace array, size at least \(\max (1, n)\). Not referenced if sort \(=\) 'N'.

On exit, this array is overwritten by the real-Schur/Schur form \(T\).
INTEGER.
If sort \(=\) 'N', sdim \(=0\).
If sort \(=\) 'S', sdim is equal to the number of eigenvalues (after sorting) for which select is true.

Note that for real flavors complex conjugate pairs for which select is true for either eigenvalue count as 2.

REAL for sgeesx
DOUBLE PRECISION for dgeesx
Arrays, size at least max \((1, n)\) each. Contain the real and imaginary parts, respectively, of the computed eigenvalues, in the same order that they appear on the diagonal of the output real-Schur form \(T\). Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.
w

VS
work(1)
info

COMPLEX for cgeesx
DOUBLE COMPLEX for zgeesx.
Array, size at least \(\max (1, n)\). Contains the computed eigenvalues. The eigenvalues are stored in the same order as they appear on the diagonal of the output Schur form \(T\).

REAL for sgeesx
DOUBLE PRECISION for dgeesx
COMPLEX for cgeesx
DOUBLE COMPLEX for zgeesx.
Array \(v s(/ d v s, *)\); the second dimension of \(v s\) must be at least max \((1, n)\).
If jobvs = 'V', vs contains the orthogonal/unitary matrix \(Z\) of Schur vectors.
If jobvs = 'N', vs is not referenced.
REAL for single precision flavors DOUBLE PRECISION for double precision flavors.

If sense \(=\) ' E ' or ' B ', rconde contains the reciprocal condition number for the average of the selected eigenvalues.
If sense \(=\) ' \(N\) ' or ' V ', rconde is not referenced.
If sense \(=\) ' \(V\) ' or ' B ', rcond \(v\) contains the reciprocal condition number for the selected right invariant subspace.
If sense \(=\) 'N' or 'E', rcondv is not referenced.
On exit, if info \(=0\), then work(1) returns the required minimal size of Iwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), and
\(i \leq n\) :
the \(Q R\) algorithm failed to compute all the eigenvalues; elements 1 :ilo-1 and \(i+1\) :n of \(w r\) and \(w i\) (for real flavors) or \(w\) (for complex flavors) contain those eigenvalues which have converged; if jobvs = 'V', vs contains the transformation which reduces \(A\) to its partially converged Schur form;
\(i=n+1\) :
the eigenvalues could not be reordered because some eigenvalues were too close to separate (the problem is very ill-conditioned);

\section*{\(i=n+2\) :}
after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the Schur form no longer satisfy select
\(=\).TRUE. . This could also be caused by underflow due to scaling.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine geesx interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size (\(n, n\)). \\
\hline wr & Holds the vector of length (\(n\)). Used in real flavors only. \\
\hline wi & Holds the vector of length (\(n\)). Used in real flavors only. \\
\hline w & Holds the vector of length (\(n\)). Used in complex flavors only. \\
\hline vs & Holds the matrix VS of size (\(n, n\)). \\
\hline jobvs & \begin{tabular}{l}
Restored based on the presence of the argument vs as follows: \\
jobvs = 'v', if vs is present, \\
jobvs = 'N', if vs is omitted.
\end{tabular} \\
\hline sort & \begin{tabular}{l}
Restored based on the presence of the argument select as follows: \\
sort \(=\) 'S', if select is present, \\
sort \(=\) 'N', if select is omitted.
\end{tabular} \\
\hline sense & \begin{tabular}{l}
Restored based on the presence of arguments rconde and rcondv as follows: \\
sense \(=\) ' B ', if both rconde and rcondv are present, \\
sense \(=\) ' E ', if rconde is present and rcondv omitted, \\
sense \(=\) ' \(V\) ', if rconde is omitted and rcondv present, \\
sense \(=\) ' N ', if both rconde and rcondv are omitted.
\end{tabular} \\
\hline
\end{tabular}

\section*{Application Notes}

If you are in doubt how much workspace to supply, use a generous value of Iwork (or liwork) for the first run or set lwork = - (liwork = -1).

If you choose the first option and set any of admissible lwork (or liwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if you set Iwork (liwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
```

?geev
Computes the eigenvalues and left and right
eigenvectors of a general matrix.
Syntax

```
```

call sgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork, info)

```
call sgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork, info)
call dgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork, info)
```

call dgeev(jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork, info)

```
```

call cgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork, info)
call zgeev(jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork, info)
call geev(a, wr, wi [,vl] [,vr] [,info])
call geev(a, w [,vl] [,vr] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes for an \(n\)-by- \(n\) real/complex nonsymmetric matrix \(A\), the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector \(v\) of \(A\) satisfies
\(A^{*} V=\lambda^{*} V\)
where \(\lambda\) is its eigenvalue.
The left eigenvector \(u\) of \(A\) satisfies
\[
u^{\mathrm{H}} \star A=\lambda^{\star} u^{\mathrm{H}}
\]
where \(u^{H}\) denotes the conjugate transpose of \(u\). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

\section*{Input Parameters}
```

jobvl CHARACTER*1.Must be 'N' or 'V'.
If jobvl = 'N', then left eigenvectors of A are not computed.
If jobvl = 'V', then left eigenvectors of A are computed.
CHARACTER*1. Must be 'N' or 'V'.
If jobvr = 'N', then right eigenvectors of A are not computed.
If jobvr = 'V', then right eigenvectors of A are computed.
INTEGER. The order of the matrix A ( }n\geq0)\mathrm{ .
REAL for sgeev
DOUBLE PRECISION for dgeev
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.

```

\section*{Arrays:}
```

$a(I d a, *)$ is an array containing the $n-b y-n$ matrix $A$.
The second dimension of $a$ must be at least max $(1, n)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of the array $a$. Must be at least max (1, n).
INTEGER. The leading dimensions of the output arrays $v l$ and $v r$, respectively.

```
```

Constraints:
ldvl\geq 1; ldvr\geq 1.
If jobvl = 'V', ldvl\geq max(1, n);
If jobvr = 'V', ldvr\geq max(1, n).
INTEGER.
The dimension of the array work.
Constraint for real lwork\geq max (1, 3n). If computing eigenvectors
flavors: (jobvl = 'V' or jobvr = 'V'), lwork\geq
max(1, 4n).
Constraint for complex lwork\geq max(1, 2n).
flavors:
For good performance, lwork must generally be larger.
If lwork = -1, then a workspace query is assumed; the routine only
calculates the optimal size of the work array, returns this value as the first
entry of the work array, and no error message related to lwork is issued by
xerbla.
REAL for cgeev
DOUBLE PRECISION for zgeev
Workspace array, size at least max (1, 2n). Used in complex flavors only.

```

\section*{Output Parameters}
a

W
vl, vr
```

On exit, this array is overwritten.
REAL for sgeev
DOUBLE PRECISION for dgeev
Arrays, size at least max $(1, n)$ each.
Contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Array, size at least max $(1, n)$.
Contains the computed eigenvalues.
REAL for sgeev
DOUBLE PRECISION for dgeev
COMPLEX for cgeev
DOUBLE COMPLEX for zgeev.
Arrays:
$v l\left(\mid d v I_{,} *\right)$; the second dimension of $v l$ must be at least max $(1, n)$.

```

If jobvl = 'N', vl is not referenced.

\section*{For real flavors:}

If the \(j\)-th eigenvalue is real, then \(u_{j}=v l(:, j)\), the \(j\)-th column of \(v l\).
If the \(j\)-th and \((j+1)\)-st eigenvalues form a complex conjugate pair, then for \(i=\operatorname{sqrt}(-1), u_{j}=v l(:, j)+i * v l(:, j+1)\) and \(u_{j}+1=v l(:, j)-\) i*vl(:,j+1).

For complex flavors:
\(u_{j}=v l(:, j)\), the \(j\)-th column of \(v l\).
\(v r(I d v r, *)\); the second dimension of \(v r\) must be at least max \((1, n)\).
If jobvr = ' \(N\) ', vr is not referenced.
For real flavors:
If the \(j\)-th eigenvalue is real, then \(v_{j}=\operatorname{vr}(:, j)\), the \(j\)-th column of \(v r\).
If the \(j\)-th and \((j+1)\)-st eigenvalues form a complex conjugate pair, then for \(i=\operatorname{sqrt}(-1), v_{j}=\operatorname{vr}(:, j)+i \star \operatorname{vr}(:, j+1)\) and \(v_{j}+1=\operatorname{vr}(:, j)-\) \(i^{*} \operatorname{vr}(:, j+1)\).

For complex flavors:
\(v_{j}=v r(:, j)\), the \(j\)-th column of \(v r\).
work(1)
info
On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th parameter had an illegal value.
If info \(=i\), the QR algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements \(i+1: n\) of wr and wi (for real flavors) or w (for complex flavors) contain those eigenvalues which have converged.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine geev interface are the following:
\begin{tabular}{ll}
a & Holds the matrix \(A\) of size \((n, n)\). \\
\(w r\) & Holds the vector of length \(n\). Used in real flavors only. \\
wi & Holds the vector of length \(n\). Used in real flavors only. \\
\(w\) & Holds the vector of length \(n\). Used in complex flavors only. \\
vl & Holds the matrix VL of size \((n, n)\). \\
Holds the matrix \(V R\) of size \((n, n)\).
\end{tabular}
```

jobvl Restored based on the presence of the argument vl as follows:
jobvl = 'V', if vl is present,
jobvl = 'N', if vl is omitted.
jobvr Restored based on the presence of the argument vr as follows:
jobvr = 'v', if vr is present,
jobvr = 'N', if vr is omitted.

```

\section*{Application Notes}

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork = -1.

If you choose the first option and set any of admissible lwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set 1 work to less than the minimal required value and not -1 , the routine exits immediately with an error and does not provide any information on the recommended workspace.

\section*{?geevx}

Computes the eigenvalues and left and right eigenvectors of a general matrix, with preliminary matrix balancing, and computes reciprocal condition numbers for the eigenvalues and right eigenvectors.

\section*{Syntax}
```

call sgeevx(balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, ilo, ihi,
scale, abnrm, rconde, rcondv, work, lwork, iwork, info)
call dgeevx(balanc, jobvl, jobvr, sense, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, ilo, ihi,
scale, abnrm, rconde, rcondv, work, lwork, iwork, info)
call cgeevx(balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl, vr, ldvr, ilo, ihi,
scale, abnrm, rconde, rcondv, work, lwork, rwork, info)
call zgeevx(balanc, jobvl, jobvr, sense, n, a, lda, w, vl, ldvl, vr, ldvr, ilo, ihi,
scale, abnrm, rconde, rcondv, work, lwork, rwork, info)
call geevx(a, wr, wi [,vl] [,vr] [,balanc] [,ilo] [,ihi] [,scale] [,abnrm] [, rconde]
[,rcondv] [,info])
call geevx(a, w [,vl] [,vr] [,balanc] [,ilo] [,ihi] [,scale] [,abnrm] [,rconde] [,
rcondv] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes for an \(n\)-by- \(n\) real/complex nonsymmetric matrix \(A\), the eigenvalues and, optionally, the left and/or right eigenvectors.
Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ilo, ihi, scale, and abnrm), reciprocal condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).

The right eigenvector \(v\) of \(A\) satisfies
\(A \cdot v=\lambda \cdot v\)
where \(\lambda\) is its eigenvalue.
The left eigenvector \(u\) of \(A\) satisfies
\(u^{H} A=\lambda u^{H}\)
where \(u^{H}\) denotes the conjugate transpose of \(u\). The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
Balancing a matrix means permuting the rows and columns to make it more nearly upper triangular, and applying a diagonal similarity transformation \(D^{*} A * \operatorname{inv}(D)\), where \(D\) is a diagonal matrix, to make its rows and columns closer in norm and the condition numbers of its eigenvalues and eigenvectors smaller. The computed reciprocal condition numbers correspond to the balanced matrix. Permuting rows and columns will not change the condition numbers in exact arithmetic) but diagonal scaling will. For further explanation of balancing, see [LUG], Section 4.10.

\section*{Input Parameters}
balanc
jobvl
jobvr

CHARACTER*1. Must be 'N', 'P', 'S', or 'B'. Indicates how the input matrix should be diagonally scaled and/or permuted to improve the conditioning of its eigenvalues.
If balanc \(=\) 'N', do not diagonally scale or permute;
If balanc = 'P', perform permutations to make the matrix more nearly upper triangular. Do not diagonally scale;
If balanc \(=\) 'S', diagonally scale the matrix, i.e. replace \(A\) by \(D^{*} A^{*}\) inv (\(D\)), where \(D\) is a diagonal matrix chosen to make the rows and columns of \(A\) more equal in norm. Do not permute;
If balanc \(=\) ' \(B\) ', both diagonally scale and permute \(A\).
Computed reciprocal condition numbers will be for the matrix after balancing and/or permuting. Permuting does not change condition numbers (in exact arithmetic), but balancing does.

CHARACTER*1. Must be 'N' or 'V'.
If jobvl = 'N', left eigenvectors of \(A\) are not computed;
If jobvl \(=\) ' \(V\) ', left eigenvectors of \(A\) are computed.
If sense = 'E' or 'B', then jobvl must be 'V'.
CHARACTER*1. Must be 'N' or 'V'.
If jobvr = ' N ', right eigenvectors of \(A\) are not computed;
If jobvr \(=\) ' V ', right eigenvectors of \(A\) are computed.
If sense = 'E' or 'B', then jobvr must be 'V'.
```

sense
n
a, work
lda
ldvl, ldvr
lwork

```

If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

REAL for cgeevx
DOUBLE PRECISION for zgeevx
Workspace array, size at least max \((1,2 n)\). Used in complex flavors only.
INTEGER.
Workspace array, size at least max(1, \(2 n-2\)). Used in real flavors only. Not referenced if sense \(=\) ' \(N\) ' or 'E'.

\section*{Output Parameters}
a
wr, wi
w
vl, vr

On exit, this array is overwritten.
If jobvl = 'V' or jobvr = 'V', it contains the real-Schur/Schur form of the balanced version of the input matrix \(A\).

REAL for sgeevx
DOUBLE PRECISION for dgeevx
Arrays, size at least max \((1, n)\) each. Contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.

COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.
Array, size at least \(\max (1, n)\). Contains the computed eigenvalues.
REAL for sgeevx
DOUBLE PRECISION for dgeevx
COMPLEX for cgeevx
DOUBLE COMPLEX for zgeevx.

\section*{Arrays:}
\(v l\left(\mid d v / I^{*}\right)\); the second dimension of \(v l\) must be at least max \((1, n)\).
If jobvl = 'N', vl is not referenced.
For real flavors:
If the \(j\)-th eigenvalue is real, then \(u_{j}=v l(:, j)\), the \(j\)-th column of \(v l\).
If the \(j\)-th and \((j+1)\)-st eigenvalues form a complex conjugate pair, then for \(i=\operatorname{sqrt}(-1), u_{j}=v l(:, j)+i * v l(:, j+1)\) and \(u_{j}+1=v l(:, j)-\) \(i^{*} v l(:, j+1)\).
For complex flavors:
\(u_{j}=v l(:, j)\), the \(j\)-th column of \(v l\).
\(v r(/ d v r, *)\); the second dimension of \(v r\) must be at least max \((1, n)\).
ilo, ihi
scale
abnrm
rconde, rcondv
work(1)
info

If jobvr = 'N', vr is not referenced.
For real flavors:
If the \(j\)-th eigenvalue is real, then \(v_{j}=\operatorname{vr}(:, j)\), the \(j\)-th column of \(v r\).
If the \(j\)-th and \((j+1)\)-st eigenvalues form a complex conjugate pair, then for \(i=\operatorname{sqrt}(-1), v_{j}=\operatorname{vr}(:, j)+i * v r(:, j+1)\) and \(v_{j}+1=\operatorname{vr}(:, j)-\) i*vr(:,j+1).

\section*{For complex flavors:}
\(v_{j}=v r(:, j)\), the \(j\)-th column of \(v r\).
INTEGER. ilo and ihi are integer values determined when \(A\) was balanced.
The balanced \(A(i, j)=0\) if \(i>j\) and \(j=1, \ldots\), ilo-1 or \(i=\) ihi +1,..., \(n\).

If balanc \(=\) 'N' or 'S', ilo \(=1\) and ihi \(=n\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, size at least \(\max (1, n)\). Details of the permutations and scaling factors applied when balancing \(A\).
If \(P(j)\) is the index of the row and column interchanged with row and column \(j\), and \(D(j)\) is the scaling factor applied to row and column \(j\), then
scale(j) \(=P(j)\), for \(j=1, \ldots, i l o-1\)
\(=D(j)\), for \(j=i l o, \ldots, i h i\)
\(=P(j)\) for \(j=i h i+1, \ldots, n\).
The order in which the interchanges are made is \(n\) to \(i h i+1\), then 1 to ilo-1.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
The one-norm of the balanced matrix (the maximum of the sum of absolute values of elements of any column).

REAL for single precision flavors DOUBLE PRECISION for double precision flavors.

Arrays, size at least \(\max (1, n)\) each.
rconde \((j)\) is the reciprocal condition number of the \(j\)-th eigenvalue.
\(r \operatorname{cond} v(j)\) is the reciprocal condition number of the \(j\)-th right eigenvector.
On exit, if info \(=0\), then work(1) returns the required minimal size of Iwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the ith parameter had an illegal value.

If info \(=i\), the \(Q R\) algorithm failed to compute all the eigenvalues, and no eigenvectors or condition numbers have been computed; elements 1:ilo-1 and \(i+1\) : \(n\) of \(w r\) and \(w i\) (for real flavors) or \(w\) (for complex flavors) contain eigenvalues which have converged.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine geevx interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size (\(n, n\)). \\
\hline wr & Holds the vector of length \(n\). Used in real flavors only. \\
\hline wi & Holds the vector of length \(n\). Used in real flavors only. \\
\hline w & Holds the vector of length \(n\). Used in complex flavors only. \\
\hline v1 & Holds the matrix VL of size (\(n, n\)). \\
\hline vr & Holds the matrix VR of size (\(n, n\)). \\
\hline scale & Holds the vector of length \(n\). \\
\hline rconde & Holds the vector of length \(n\). \\
\hline rcondv & Holds the vector of length \(n\). \\
\hline balanc & Must be 'N', 'B', 'P' or 'S'. The default value is 'N'. \\
\hline jobvl & Restored based on the presence of the argument vl as follows: jobvl = 'V', if \(v /\) is present, \\
\hline & jobvl = 'N', if \(v /\) is omitted. \\
\hline
\end{tabular}
jobvr Restored based on the presence of the argument vr as follows:
jobvr = 'V', if \(v r\) is present,
jobvr = 'N', if \(v r\) is omitted.
sense
Restored based on the presence of arguments rconde and rcondv as follows:
sense \(=\) ' B ', if both rconde and rcondv are present,
sense \(=\) ' E ', if rconde is present and rcondv omitted,
sense \(=\) 'V', if rconde is omitted and rcondv present,
sense \(=\) ' N ', if both rconde and rcondv are omitted.

\section*{Application Notes}

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{Singular Value Decomposition: LAPACK Driver Routines}

Table "Driver Routines for Singular Value Decomposition" lists the LAPACK driver routines that perform singular value decomposition for the FORTRAN 77 interface. The corresponding routine names in the Fortran 95 interface are the same except that the first character is removed.
Driver Routines for Singular Value Decomposition
\begin{tabular}{ll}
\hline Routine Name & Operation performed \\
\hline ?gesvd & Computes the singular value decomposition of a general rectangular matrix. \\
?gesdd & \begin{tabular}{l}
Computes the singular value decomposition of a general rectangular matrix using a \\
divide and conquer method.
\end{tabular} \\
?gejsv & \begin{tabular}{l}
Computes the singular value decomposition of a real matrix using a preconditioned \\
Jacobi SVD method.
\end{tabular} \\
?ggsvd & \begin{tabular}{l}
Computes the singular value decomposition of a real matrix using Jacobi plane \\
rotations.
\end{tabular} \\
?gesvdx & \begin{tabular}{l}
Computes the generalized singular value decomposition of a pair of general \\
rectangular matrices.
\end{tabular} \\
?bdsvdx & Computes the SVD and left and right singular vectors for a matrix. \\
Computes the SVD of a bidiagonal matrix.
\end{tabular}

Singular Value Decomposition - LAPACK Computational Routines
?gesvd
Computes the singular value decomposition of a general rectangular matrix.

\section*{Syntax}
```

call sgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, info)
call dgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, info)
call cgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, info)
call zgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, info)
call gesvd(a, s [,u] [,vt] [,ww] [,job] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes the singular value decomposition (SVD) of a real/complex m-by-n matrix \(A\), optionally computing the left and/or right singular vectors. The SVD is written as
\(A=U^{\star} \Sigma^{\star} V^{T}\) for real routines
\(A=U^{\star} \Sigma^{\star} V^{H}\) for complex routines
where \(\Sigma\) is an \(m\)-by- \(n\) matrix which is zero except for its \(\min (m, n)\) diagonal elements, \(U\) is an \(m\)-by- \(m\) orthogonal/unitary matrix, and \(V\) is an \(n\)-by- \(n\) orthogonal/unitary matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\); they are real and non-negative, and are returned in descending order. The first min \((m\), \(n\)) columns of \(U\) and \(V\) are the left and right singular vectors of \(A\).

The routine returns \(V^{T}\) (for real flavors) or \(V^{H}\) (for complex flavors), not \(V\).

\section*{Input Parameters}
jobu
jobvt
m
\(n\)
a, work
lda
ldu, ldvt

CHARACTER*1. Must be 'A', 'S', 'O', or 'N'. Specifies options for computing all or part of the matrix \(U\).

If jobu = 'A', all \(m\) columns of \(U\) are returned in the array \(u\);
if jobu = 'S', the first \(\min (m, n)\) columns of \(U\) (the left singular vectors) are returned in the array \(u\);
if jobu = ' \(O^{\prime}\) ', the first \(\min (m, n)\) columns of \(U\) (the left singular vectors) are overwritten on the array \(a\);
if jobu = 'N', no columns of \(U\) (no left singular vectors) are computed.
CHARACTER*1. Must be 'A', 'S', 'O', or 'N'. Specifies options for computing all or part of the matrix \(V^{\top} / V^{H}\).
If jobvt \(=\) ' \(A\) ', all \(n\) rows of \(V^{\top} / V^{H}\) are returned in the array \(v t\);
if jobvt \(=\) ' \(S^{\prime}\), the first \(\min (m, n)\) rows of \(V^{T} / V^{H}\) (the right singular vectors) are returned in the array \(v t\);
if jobvt \(=\) ' \(O^{\prime}\), the first \(\min (m, n)\) rows of \(V^{T} / V^{H}\)) (the right singular vectors) are overwritten on the array \(a\);
if jobvt \(=\) ' \(N^{\prime}\), no rows of \(V^{T} / V^{H}\) (no right singular vectors) are computed.
jobvt and jobu cannot both be 'O'.
INTEGER. The number of rows of the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgesvd
DOUBLE PRECISION for dgesvd
COMPLEX for cgesvd
DOUBLE COMPLEX for zgesvd.
Arrays:
\(a(I d a, *)\) is an array containing the \(m\)-by- \(n\) matrix \(A\).
The second dimension of \(a\) must be at least \(\max (1, n)\).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of the array \(a\).
Must be at least \(\max (1, m)\).
INTEGER. The leading dimensions of the output arrays \(u\) and \(v t\), respectively.

Constraints:
```

    Idu\geq 1; Idvt\geq 1.
    If jobu = 'A'or 'S', Idu\geqm;
    If jobvt = 'A', ldvt\geqn;
    If jobvt = 'S', ldvt\geq min(m,n).
    INTEGER.
    The dimension of the array work.
Constraints:
IWork $\geq 1$
I Work $\geq \max (3 * \min (m, n)+\max (m, n), \quad 5 * \min (m, n))$ (for real flavors);
I work $\geq 2 * \min (m, n)+\max (m, n)$ (for complex flavors).
For good performance, Iwork must generally be larger.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla. See Application Notes for details.
REAL for cgesvd
DOUBLE PRECISION for zgesvd
Workspace array, size at least max(1,5*min(m,n)). Used in complex flavors only.

```

\section*{Output Parameters}
a

S
\(u, v t\)

On exit,
If jobu = 'O', \(a\) is overwritten with the first \(\min (m, n)\) columns of \(U\) (the left singular vectors stored columnwise);
If jobvt \(=\) ' \(O^{\prime}\) ', a is overwritten with the first \(\min (m, n)\) rows of \(V^{T} / V^{H}\) (the right singular vectors stored rowwise);
If jobuキ'O' and jobvtキ'O', the contents of a are destroyed.
REAL for single precision flavors DOUBLE PRECISION for double precision flavors.

Array, size at least \(\max (1, \min (m, n))\). Contains the singular values of \(A\) sorted so that \(s(i) \geq s(i+1)\).

REAL for sgesvd
DOUBLE PRECISION for dgesvd
COMPLEX for cgesvd
DOUBLE COMPLEX for zgesvd.
Arrays:
\(u(I d u, *)\); the second dimension of \(u\) must be at least \(\max (1, m)\) if jobu \(=\) ' A ', and at least \(\max (1, \min (m, n))\) if jobu \(=\) 'S'.

If jobu = 'A', \(u\) contains the \(m\)-by- \(m\) orthogonal/unitary matrix \(U\).

If jobu = 'S', \(u\) contains the first \(\min (m, n)\) columns of \(U\) (the left singular vectors stored column-wise).

If jobu = 'N' or 'O', \(u\) is not referenced.
\(v t(I d v t, *)\); the second dimension of \(v t\) must be at least \(\max (1, n)\).
If jobvt = 'A', vt contains the \(n\)-by-n orthogonal/unitary matrix \(V^{T} / V^{H}\).
If jobvt \(=\) ' S ', vt contains the first \(\min (m, n)\) rows of \(V^{T} / V^{H}\) (the right singular vectors stored row-wise).
If jobvt = 'N'or 'O', vt is not referenced.
On exit, if info \(=0\), then work(1) returns the required minimal size of lwork.

For real flavors:
If info > 0 , \(\operatorname{work}(2: \min (m, n))\) contains the unconverged superdiagonal elements of an upper bidiagonal matrix \(B\) whose diagonal is in \(s\) (not necessarily sorted). \(B\) satisfies \(A=u^{\star} B^{\star} v t\), so it has the same singular values as \(A\), and singular vectors related by \(u\) and \(v t\).

On exit (for complex flavors), if info > \(0, \operatorname{rwork}(1: \min (m, n)-1)\) contains the unconverged superdiagonal elements of an upper bidiagonal matrix \(B\) whose diagonal is in \(s\) (not necessarily sorted). \(B\) satisfies \(A=\) \(u^{\star} B^{\star} v t\), so it has the same singular values as \(A\), and singular vectors related by \(u\) and \(v t\).

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i\), then if ?bdsqr did not converge, \(i\) specifies how many superdiagonals of the intermediate bidiagonal form \(B\) did not converge to zero (see the description of the work and rwork parameters for details).

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine gesvd interface are the following:
\begin{tabular}{ll}
\(a\) \\
\(s\) & Holds the matrix \(A\) of size \((m, n)\). \\
\(u\) & Holds the vector of length \(\min (m, n)\). \\
If present and is a square \(m\)-by- \(m\) matrix, on exit contains the \(m\)-by- \(m\) \\
orthogonal/unitary matrix \(U\). \\
& \begin{tabular}{l}
Otherwise, if present, on exit contains the first min \((m, n)\) columns of the matrix \\
\(U\) (left singular vectors stored column-wise).
\end{tabular} \\
& \begin{tabular}{l}
If present and is a square \(n\)-by- \(n\) matrix, on exit contains the \(n\)-by- \(n\) orthogonal/ \\
unitary matrix \(V^{\prime T} / V^{\prime H}\).
\end{tabular} \\
& \begin{tabular}{l}
Otherwise, if present, on exit contains the first min \((m, n)\) rows of the matrix \(V^{\prime T} /\) \\
\(V^{\prime H}\) (right singular vectors stored row-wise).
\end{tabular}
\end{tabular}

Holds the vector of length \(\min (m, n)-1\). \(w w\) contains the unconverged superdiagonal elements of an upper bidiagonal matrix \(B\) whose diagonal is in \(s\) (not necessarily sorted). \(B\) satisfies \(A=U^{\star} B^{\star} V T\), so it has the same singular values as \(A\), and singular vectors related by \(U\) and \(V T\).

Must be either 'N', or 'U', or 'V'. The default value is 'N'.
If job \(=\) 'U', and \(u\) is not present, then \(u\) is returned in the array \(a\).
If job \(=\) ' \(V\) ', and \(v t\) is not present, then \(v t\) is returned in the array \(a\).

\section*{Application Notes}

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
```

?gesdd
Computes the singular value decomposition of a
general rectangular matrix using a divide and conquer
method.

```

\section*{Syntax}
```

call sgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, iwork, info)

```
call sgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, iwork, info)
call dgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, iwork, info)
call dgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, iwork, info)
call cgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork, info)
call cgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork, info)
call zgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork, info)
call zgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork, info)
call gesdd(a, s [,u] [,vt] [,jobz] [,info])
```

call gesdd(a, s [,u] [,vt] [,jobz] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes the singular value decomposition (SVD) of a real/complex m-by-n matrix \(A\), optionally computing the left and/or right singular vectors.
If singular vectors are desired, it uses a divide-and-conquer algorithm. The SVD is written
\(A=U^{\star} \Sigma^{\star} V^{\mathbb{T}}\) for real routines,
\(A=U^{\star} \Sigma^{\star} V^{\text {H }}\) for complex routines,
where \(\Sigma\) is an \(m\)-by- \(n\) matrix which is zero except for its \(\min (m, n)\) diagonal elements, \(U\) is an \(m\)-by- \(m\) orthogonal/unitary matrix, and \(V\) is an \(n\)-by- \(n\) orthogonal/unitary matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\); they are real and non-negative, and are returned in descending order. The first min \((m\), \(n\)) columns of \(U\) and \(V\) are the left and right singular vectors of \(A\).
Note that the routine returns \(v t=V^{\top}\) (for real flavors) or \(v t=V^{H}\) (for complex flavors), not \(V\).

\section*{Input Parameters}
jobz
m
\(n\)

CHARACTER*1. Must be 'A', 'S', 'O', or 'N'.
Specifies options for computing all or part of the matrices \(U\) and \(V\).
If jobz = 'A', all \(m\) columns of \(U\) and all \(n\) rows of \(V^{\top}\) or \(V^{H}\) are returned in the arrays \(u\) and \(v t\);
if jobz = 'S', the first \(\min (m, n)\) columns of \(U\) and the first \(\min (m, n)\) rows of \(V^{\top}\) or \(V^{H}\) are returned in the arrays \(u\) and \(v t\);
if jobz = 'O', then
if \(m \geq n\), the first \(n\) columns of \(U\) are overwritten in the array \(a\) and all rows of \(V^{\top}\) or \(V^{H}\) are returned in the array \(v t\);
if \(m<n\), all columns of \(U\) are returned in the array \(u\) and the first \(m\) rows of \(V^{\top}\) or \(V^{\mathrm{H}}\) are overwritten in the array \(a\);
if jobz \(=\) ' \(N^{\prime}\), no columns of \(U\) or rows of \(V^{\top}\) or \(V^{H}\) are computed.
INTEGER. The number of rows of the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgesdd
DOUBLE PRECISION for dgesdd
COMPLEX for cgesdd
DOUBLE COMPLEX for zgesdd.

\section*{Arrays:}
\(a\left(/ d a,^{*}\right)\) is an array containing the \(m\)-by-n matrix \(A\).
The second dimension of \(a\) must be at least \(\max (1, n)\).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of the array \(a\). Must be at least max \((1, m)\).
INTEGER. The leading dimensions of the output arrays \(u\) and \(v t\), respectively.

Constraints:
\(\operatorname{ldu} \geq 1 ; I d v t \geq 1\).
If jobz = 'S' or 'A', or jobz = 'O' and \(m<n\),
then \(I d u \geq m ;\)
If jobz = 'A' or jobz = 'O' and \(m \geq n\),
then \(1 d v t \geq n\);
If jobz = 'S', ldvt \(\geq \min (m, n)\).
```

IWOrk

```
rwork
iwork

\section*{Output Parameters}
a
\(s\)
\(u, v t\)

INTEGER.
The dimension of the array work; lwork \(\geq 1\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the work (1), and no error message related to /work is issued by xerbla.

See Application Notes for the theoretical minimum value of /work when a workspace query is not performed.

REAL for cgesdd
DOUBLE PRECISION for zgesdd
Workspace array, size at least max (1, \(7 \star \min (m, n)\)) if jobz \(={ }^{\prime} N^{\prime}\).
Otherwise, the dimension of rwork must be at least
\(\max (1, \min (m, n) * \max (5 * \min (m, n)+7,2 * \max (m, n)+2 * \min (m, n)+1))\).
This array is used in complex flavors only.
\(\operatorname{INTEGER}\). Workspace array, size at least max \((1,8 * \min (m, n))\).

On exit:
If jobz \(=\) ' \(\circ\) ', then if \(m \geq n, a\) is overwritten with the first \(n\) columns of \(U\) (the left singular vectors, stored columnwise). If \(m<n, a\) is overwritten with the first \(m\) rows of \(V^{\top}\) (the right singular vectors, stored rowwise); If \(j o b z \neq ' O^{\prime}\), the contents of \(a\) are destroyed.

REAL for single precision flavors DOUBLE PRECISION for double precision flavors.
Array, size at least \(\max (1, \min (m, n))\). Contains the singular values of \(A\) sorted so that \(s(i) \geq s(i+1)\).

REAL for sgesdd
DOUBLE PRECISION for dgesdd
COMPLEX for cgesdd
DOUBLE COMPLEX for zgesdd.

\section*{Arrays:}
\(u(I d u, *)\); the second dimension of \(u\) must be at least \(\max (1, m)\) if \(j o b z=\) 'A' or jobz = 'O' and \(m<n\).
If jobz \(=\) ' S ', the second dimension of \(u\) must be at least \(\max (1, \min (m\), n)).

If jobz = 'A'or jobz = 'O' and \(m<n, u\) contains the \(m\)-by- \(m\) orthogonal/unitary matrix \(U\).
If jobz = 'S', \(u\) contains the first \(\min (m, n)\) columns of \(U\) (the left singular vectors, stored columnwise).
If jobz = 'O' and \(m \geq n\), or jobz = 'N', \(u\) is not referenced.
\(v t(I d v t, *)\); the second dimension of \(v t\) must be at least \(\max (1, n)\).

If jobz = 'A'or jobz = 'O' and \(m \geq n\), vt contains the \(n\)-by- \(n\) orthogonal/ unitary matrix \(V^{\top}\).
If \(j o b z=\) 'S', vt contains the first \(\min (m, n)\) rows of \(V^{T}\) (the right singular vectors, stored rowwise).

If jobz \(=\) 'O' and \(m<n\), or jobz = 'N', vt is not referenced.
work (1)
info

On exit, if info \(=0\), then work(1) returns the optimal size of Iwork.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=-4, A\) had a NAN entry.
If info \(=i\), then ? bdsdc did not converge, updating process failed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine gesdd interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size (\(m, n\)). \\
\hline s & Holds the vector of length \(\min (m, n)\). \\
\hline \multirow[t]{3}{*}{\(u\)} & Holds the matrix \(U\) of size \\
\hline & \begin{tabular}{l}
- \((m, m)\) if jobz='A' or jobz='O' and \(m<n\) \\
- \((m, \min (m, n))\) if jobz='S'
\end{tabular} \\
\hline & \(u\) is not referenced if jobz is not supplied or if jobz='N' or jobz='O' and mın. \\
\hline \multirow[t]{3}{*}{vt} & Holds the matrix VT of size \\
\hline & \begin{tabular}{l}
- (\(n, n\)) if jobz='A' or jobz='O' and \(m \geq n\) \\
- \((\min (m, n), n)\) if jobz='S'
\end{tabular} \\
\hline & vt is not referenced if jobz is not supplied or if jobz='N' or jobz='O' and \(m<\) \(n\). \\
\hline job & Must be 'N', 'A', 'S', or 'O'. The default value is 'N'. \\
\hline
\end{tabular}

\section*{Application Notes}

The theoretical minimum value for lwork depends on the flavor of the routine.
For real flavors:
```

If jobz = 'N', lwork= 3*min(m, n) + max (max (m,n), 6*min(m, n));
If jobz = 'O', lwork= 3* (min(m, n) )}\mp@subsup{}{}{2}+\operatorname{max (max (m, n), 5* (min(m, n) )}\mp@subsup{}{}{2}+4*\operatorname{min}(m,n))
If jobz = 'S' or 'A', lwork= min(m, n)* (6 + 4*min(m, n)) + max (m, n);

```

For complex flavors:
```

If jobz = 'N', lwork= 2*min(m, n) + max (m, n);

```
```

If jobz = 'O', lwork= 2*(min(m,n) )}\mp@subsup{}{}{2}+\operatorname{max}(m,n) + 2*min(m,n)
If jobz = 'S' or 'A', lwork= (min (m, n) )}\mp@subsup{}{}{2}+\operatorname{max}(m,n)+2*\operatorname{min}(m,n)

```

The optimal value of 1 work returned by a workspace query generally provides better performance than the theoretical minimum value. The value of 1 work returned by a workspace query is generally larger than the theoretical minimum value, but for very small matrices it can be smaller. The absolute minimum value of lwork is the minimum of the workspace query result and the theoretical minimum.

If you set 1 work to a value less than the absolute minimum value and not equal to -1 , the routine returns immediately with an error exit and does not provide information on the recommended workspace size.

\section*{?gejsv}

Computes the singular value decomposition using a preconditioned Jacobi SVD method.

\section*{Syntax}
```

call sgejsv(joba, jobu, jobv, jobr, jobt, jobp, m, n, a, lda, sva, u, ldu, v, ldv, work,
lwork, iwork, info)
call dgejsv(joba, jobu, jobv, jobr, jobt, jobp, m, n, a, lda, sva, u, ldu, v, ldv, work,
lwork, iwork, info)
call cgejsv (joba, jobu, jobv, jobr, jobt, jobp, m, n, a, lda, sva, u, ldu, v, ldv,
cwork, lwork, rwork, lrwork, iwork, info )
call zgejsv (joba, jobu, jobv, jobr, jobt, jobp, m, n, a, lda, sva, u, ldu, v, ldv,
cwork, lwork, rwork, lrwork, iwork, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine computes the singular value decomposition (SVD) of a real/complex \(m\)-by- \(n\) matrix \(A\), where \(m \geq n\).
The SVD is written as
\(A=U^{\star} \Sigma^{\star} V^{T}\), for real routines
\(A=U^{\star} \Sigma^{\star} V^{H}\), for complex routines
where \(\Sigma\) is an m-by-n matrix which is zero except for its \(n\) diagonal elements, \(U\) is an \(m\)-by- \(n\) (or m-by- \(m\)) orthonormal matrix, and \(V\) is an \(n\)-by- \(n\) orthogonal matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\); the columns of \(U\) and \(V\) are the left and right singular vectors of \(A\), respectively. The matrices \(U\) and \(V\) are computed and stored in the arrays \(u\) and \(v\), respectively. The diagonal of \(\Sigma\) is computed and stored in the array sva.

The ?gejsv routine can sometimes compute tiny singular values and their singular vectors much more accurately than other SVD routines.

The routine implements a preconditioned Jacobi SVD algorithm. It uses ?geqp3, ?geqrf, and ?gelqf as preprocessors and preconditioners. Optionally, an additional row pivoting can be used as a preprocessor, which in some cases results in much higher accuracy. An example is matrix \(A\) with the structure \(A=D 1 * C\) * D2, where D1, D2 are arbitrarily ill-conditioned diagonal matrices and \(C\) is a well-conditioned matrix. In that case, complete pivoting in the first QR factorizations provides accuracy dependent on the condition number of C, and independent of D1, D2. Such higher accuracy is not completely understood theoretically, but it works well in practice.

If \(A\) can be written as \(A=B * D\), with well-conditioned \(B\) and some diagonal \(D\), then the high accuracy is guaranteed, both theoretically and in software, independent of \(D\). For more details see [Drmac08-1], [Drmac08-2].
The computational range for the singular values can be the full range (UNDERFLOW,OVERFLOW), provided that the machine arithmetic and the BLAS and LAPACK routines called by ?gejsv are implemented to work in that range. If that is not the case, the restriction for safe computation with the singular values in the range of normalized IEEE numbers is that the spectral condition number kappa (A) =sigma_max (A)/sigma_min(A) does not overflow. This code (?gejsv) is best used in this restricted range, meaning that singular values of magnitude below ||A||_2 / slamch('O') (for single precision) or \| |A||_2 / dlamch('O') (for double precision) are returned as zeros. See jobr for details on this.

This implementation is slower than the one described in [Drmac08-1], [Drmac08-2] due to replacement of some non-LAPACK components, and because the choice of some tuning parameters in the iterative part (?gesvj) is left to the implementer on a particular machine.
The rank revealing QR factorization (in this code: ?geqp3) should be implemented as in [Drmac08-3].
If \(m\) is much larger than \(n\), it is obvious that the inital QRF with column pivoting can be preprocessed by the QRF without pivoting. That well known trick is not used in ?gejsv because in some cases heavy row weighting can be treated with complete pivoting. The overhead in cases \(m\) much larger than \(n\) is then only due to pivoting, but the benefits in accuracy have prevailed. You can incorporate this extra QRF step easily and also improve data movement (matrix transpose, matrix copy, matrix transposed copy) - this implementation of ?gejsv uses only the simplest, naive data movement.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
joba
CHARACTER*1. Must be 'C', 'E', ' \(\mathrm{F}^{\prime}\), ' \(\mathrm{G}^{\prime}\), 'A', or 'R'.
Specifies the level of accuracy:
If joba \(=\) ' \(C\) ', high relative accuracy is achieved if \(A=B^{\star} D\) with wellconditioned \(B\) and arbitrary diagonal matrix \(D\). The accuracy cannot be spoiled by column scaling. The accuracy of the computed output depends on the condition of \(B\), and the procedure aims at the best theoretical accuracy. The relative error max_\{i=1:N\}|d sigma_i| / sigma_i is bounded by \(f(M, N)\) *epsilon* cond (B), independent of \(D\). The input matrix is preprocessed with the QRF with column pivoting. This initial preprocessing and preconditioning by a rank revealing QR factorization is common for all values of joba. Additional actions are specified as follows:

If joba \(=\) ' \(E\) ', computation as with ' \(C\) ' with an additional estimate of the condition number of \(B\). It provides a realistic error bound.

If joba \(=\) ' F ', accuracy higher than in the ' C ' option is achieved, if \(A=\) \(D 1 * C^{\star} D 2\) with ill-conditioned diagonal scalings \(D 1, D 2\), and a well-
conditioned matrix \(C\). This option is advisable, if the structure of the input matrix is not known and relative accuracy is desirable. The input matrix \(A\) is preprocessed with QR factorization with full (row and column) pivoting.
jobu
jobv
jobr

If joba \(=\) ' G', computation as with ' F ' with an additional estimate of the condition number of \(B\), where \(A=B^{\star} D\). If \(A\) has heavily weighted rows, using this condition number gives too pessimistic error bound.

If joba = 'A', small singular values are the noise and the matrix is treated as numerically rank defficient. The error in the computed singular values is bounded by \(f(m, n) *\) epsilon*||A||. The computed SVD A \(=U * S * V * * t\) (for real flavors) or \(A=U * S * V * * H\) (for complex flavors) restores \(A\) up to \(f(m, n) * e p s i l o n *||A||\). This enables the procedure to set all singular values below \(n * e p s i l o n *||A||\) to zero.

If joba = 'R', the procedure is similar to the 'A' option. Rank revealing property of the initial QR factorization is used to reveal (using triangular
 numerical rank is declared to be \(r\). The SVD is computed with absolute error bounds, but more accurately than with 'A'.

CHARACTER*1. Must be 'U', 'F', 'W', or 'N'.
Specifies whether to compute the columns of the matrix \(U\) :
If jobu \(=\) ' \(U\) ', \(n\) columns of \(U\) are returned in the array \(u\)
If jobu = ' \(\mathrm{F}^{\prime}\), a full set of \(m\) left singular vectors is returned in the array \(u\).
If jobu = 'W', u may be used as workspace of length \(m^{*} n\). See the description of \(u\).

If jobu = 'N', \(u\) is not computed.
CHARACTER*1. Must be 'V', 'J', 'W', or 'N'.
Specifies whether to compute the matrix \(V\) :
If jobv \(=\) ' \(V\) ', \(n\) columns of \(V\) are returned in the array \(v\); Jacobi rotations are not explicitly accumulated.

If jobv = 'J', n columns of \(V\) are returned in the array \(v\) but they are computed as the product of Jacobi rotations. This option is allowed only if jobu \(\neq{ }^{\prime}{ }^{\prime}\) '

If jobv = 'W', v may be used as workspace of length \(n * n\). See the description of \(v\).

If jobv = 'N', vis not computed.
CHARACTER*1. Must be 'N' or 'R'.
Specifies the range for the singular values. If small positive singular values are outside the specified range, they may be set to zero. If \(A\) is scaled so that the largest singular value of the scaled matrix is around sqrt (big), big = ?lamch('O'), the function can remove columns of \(A\) whose norm in the scaled matrix is less than sqrt (?lamch('S')) (for jobr = 'R'), or less than small = ?lamch('S')/?lamch('E').

If jobr = 'N', the function does not remove small columns of the scaled matrix. This option assumes that BLAS and QR factorizations and triangular solvers are implemented to work in that range. If the condition of \(A\) if greater that big, use ?gesvj.

If jobr = 'R', restricted range for singular values of the scaled matrix \(A\) is [sqrt(?lamch('S'), sqrt(big)], roughly as described above. This option is recommended.

For computing the singular values in the full range [?lamch('S'), big], use ?gesvj.

CHARACTER*1. Must be 'T' or 'N'.
If the matrix is square, the procedure may determine to use a transposed \(A\) if \(A^{\mathrm{T}}\) (for real flavors) or \(A^{\mathrm{H}}\) (for complex flavors) seems to be better with respect to convergence. If the matrix is not square, jobt is ignored.

The decision is based on two values of entropy over the adjoint orbit of \(A^{T} *\) \(A\) (for real flavors) or \(A^{\mathrm{H}} * A\) (for complex flavors). See the descriptions of work (6) and work (7).

If jobt = 'T', the function performs transposition if the entropy test indicates possibly faster convergence of the Jacobi process, if \(A\) is taken as input. If \(A\) is replaced with \(A^{\mathrm{T}}\) or \(A^{\mathrm{H}}\), the row pivoting is included automatically.
If jobt = 'N', the functions attempts no speculations. This option can be used to compute only the singular values, or the full SVD (\(u\), sigma, and \(v\)). For only one set of singular vectors (\(u\) or \(v\)), the caller should provide both \(u\) and \(v\), as one of the arrays is used as workspace if the matrix \(A\) is transposed. The implementer can easily remove this constraint and make the code more complicated. See the descriptions of \(u\) and \(v\).

\section*{Caution}

The jobt = 'T' option is experimental and its effect might not be the same in subsequent releases. Consider using the jobt \(=\) 'N' instead.

\footnotetext{
CHARACTER*1. Must be 'P' or 'N'.
Enables structured perturbations of denormalized numbers. This option should be active if the denormals are poorly implemented, causing slow computation, especially in cases of fast convergence. For details, see [Drmac08-1], [Drmac08-2]. For simplicity, such perturbations are included only when the full SVD or only the singular values are requested. You can add the perturbation for the cases of computing one set of singular vectors.
If jobp = ' P ', the function introduces perturbation.
If jobp \(=\) ' \(N\) ', the function introduces no perturbation.
INTEGER. The number of rows of the input matrix \(A ; m \geq 0\).
INTEGER. The number of columns in the input matrix \(A ; m \geq n \geq 0\).
REAL for sgejsv
DOUBLE PRECISION for dgejsv.
COMPLEX for cgejsv
DOUBLE COMPLEX for zgejsv
}

Array \(a(/ d a, n)\) is an array containing the \(m-b y-n\) matrix \(A\).
\(u\) is a workspace array, its size is (Idu,*); the second dimension of \(u\) must be \(m\) if jobu \(=\) ' \(F\) ' and \(n\) otherwise, . When jobt \(=' T\) ' and \(m=n\), u must be provided even though jobu \(=\) ' \(N\) '.
\(v\) is a workspace array, its size is \((I d v, n)\). When jobt \(=\) ' \(T\) ' and \(m=n, v\) must be provided even though jobv = ' N '.

INTEGER. The leading dimension of the array \(a\). Must be at least max (1, m) .

REAL for sgejsv
DOUBLE PRECISION for dgejsv.
REAL for cgejsv
DOUBLE PRECISION for zgejsv
sva is a workspace array, its size is \(n\).
INTEGER. The leading dimension of the array \(u ; I d u \geq 1\).
jobu = 'U' or 'F' or 'W', Idu \(\geq m\) for column major layout.
INTEGER. The leading dimension of the array \(v ; I d v \geq 1\).
jobv = 'V' or 'J' or 'w', Idvミn.
REAL for sgejsv
DOUBLE PRECISION for dgejsv.
work is a workspace array, its dimension max (7, lwork).
INTEGER.
For real flavors:
Length of work to confirm proper allocation of work space. lwork depends on the task performed:
If only sigma is needed (jobu = 'N', jobv = 'N') and
- no scaled condition estimate is required, then 1 work \(\geq \max \left(2 \star_{m+n}, 4{ }^{\star} n\right.\) \(+1,7)\). This is the minimal requirement. For optimal performance (blocked code) the optimal value is 1 wor \(k \geq \max (2 * m+n, 3 * n+(n\) \(+1) * n b, 7)\). Here \(n b\) is the optimal block size for ?geqp3/?geqrf.
In general, the optimal length lwork is computed as
```

lwork\geq max(2*m+n,n+lwork(sgeqp3),n+lwork(sgeqrf),7) for
sgejsv
lwork\geq max(2*m+n,n+lwork(dgeqp3),n+lwork(dgeqrf),7) for
dgejsv

- ... an estimate of the scaled condition number of $A$ is required (joba = 'E', 'G'). In this case, lwork is the maximum of the above and $n * n$ $+4 \star n$, that is, 1 work $\geq \max (2 \star m+n, n \star n+4 \star n, 7)$. For optimal performance (blocked code) the optimal value is 1 work $\geq \max (2 * m$ $+n, 3 * n+(n+1) * n b, \quad n \star n+4 * n, 7)$.

```

In general, the optimal length lwork is computed as
```

lwork\geq max(2*m+n,n+lwork(sgeqp3),n+lwork(sgeqrf),n+n* n
+lwork(spocon, 7) for sgejsv
lwork\geq max(2*m+n,n+lwork(dgeqp3),n+lwork(dgeqrf),n+n*n
+lwork(dpocon, 7) for dgejsv

```

If sigma and the right singular vectors are needed (jobv = ' V '),
- the minimal requirement is 1 work \(\geq \max (2 * m+n, 4 * n+1,7)\).
- for optimal performance, 1 work \(\geq \max (2 * m+n, 3 * n+(n+1) \star n b, 7)\), where \(n b\) is the optimal block size for ?geqp3, ?geqrf, ?gelqf, ?ormlq. In general, the optimal length lwork is computed as
```

lwork\geq max(2*m+n, n+lwork(sgeqp3), n+lwork(spocon), n
+lwork(sgelqf), 2*n+lwork(sgeqrf), n+lwork(sormlq) for
sgejsv
lwork\geq max(2*m+n, n+lwork(dgeqp3), n+lwork(dpocon), n
+lwork(dgelqf), 2*n+lwork(dgeqrf), n+lwork(dormlq) for
dgejsv

```

If sigma and the left singular vectors are needed
- the minimal requirement is 1 work \(\geq \max (2 * n+m, 4 * n+1,7)\).
- for optimal performance,
```

if jobu = 'U':: lwork\geq max (2*m+n,3*n+(n+1)*nb, 7),
if jobu = 'F':: lwork\geq max (2*m+n,3* n+(n+1)* nb, n+m*nb, 7),

```
where \(n b\) is the optimal block size for ?geqp3, ?geqrf, ?ormlq. In general, the optimal length lwork is computed as
lwork \(\geq \max (2 * m+n, n+l w o r k(s g e q p 3), n+l w o r k(s p o c o n), 2 * n\)
+lwork(sgeqrf), n+lwork(sormlq) for sgejsv
lwork \(\geq \max (2 * m+n, n+l w o r k(d g e q p 3), n+l w o r k(d p o c o n), 2 * n\)
+lwork(dgeqrf), n+lwork(dormlq) for dgejsv
Here Iwork(?ormlq) equals \(n \star n b\) (for jobu = 'U') or \(m^{\star} n b\) (for jobu = 'F')
If full SVD is needed (jobu = 'U' or 'F') and
- if jobv = 'V',
the minimal requirement is 1 work \(\geq \max (2 * m+n, 6 * n+2 * n * n)\)
- if jobv = 'J',
the minimal requirement is 1 work \(\geq \max (2 * m+n, 4 * n+n \star n, 2 * n+n \star n\) +6)
- For optimal performance, Iwork should be additionally larger than \(n\) \(+m^{\star} n b\), where \(n b\) is the optimal block size for ?ormlq.

For complex flavors:
Length of cwork to confirm proper allocation of workspace. The value of lwork depends on the job:
- If only sigma is needed (jobu.EQ.'N', jobv.EQ.'N') and
- no scaled condition estimate is required: 1 wor \(k \geq 2 * n+1\). This is the minimal requirement. For optimal performance (blocked code) the optimal value is \(l\) work \(\geq n+(n+1) * n b\). Here \(n b\) is the optimal block size for ?geqp3 and ?geqrf. In general, optimal lwork is computed as lwork \(\geq\) max(n+lwork(?geqp3), n+lwork(?geqrf), lwork(?gesvj)).
- an estimate of the scaled condition number of \(a\) is required (joba='E' or 'G'). In this case, the minimal requirement is 1 work \(\geq n^{\star} n+2 * n\). For optimal performance (blocked code) the optimal value is 1 work \(\geq \max \left(n+(n+1) * n b, \quad n^{\star} n+3 * n\right)=n^{2}+2 *_{n}\). In general, the optimal length 1 work is computed as 1 work \(\geq \max (n\) +lwork(?geqp3), n+lwork(?geqrf), lwork(?gesvj), \(n+n^{\star} n\) +lwork(?pocon)).
- If sigma and the right singular vectors are needed (jobv.EQ.'V' or jobu.EQ.'N') and
- no scaled condition estimate is requested (jobe .EQ. 'N'), then the minimal requirement is 1 work \(\geq 3^{*} n\). For optimal performance, 1 work \(\geq \max (n+(n+1) * n b, \quad 2 * n+n * n b)=2 * n+n * n b\), where \(n b\) is the optimal block size for ?geqp 3 , ?geqrf, ?gelq, ?unmlq.
In general, the optimal length 1 work is computed as 1 work \(\geq \max (n\) +lwork(?geqp3), n+lwork(?gesvj), n+lwork(?gelqf), 2*n +lwork(?geqrf), n+lwork(?unmlq)).
- an estimate of the scaled condition number of \(a\) is required (joba='E' or 'G'), then the minimal requirement is 1 work \(\geq 3 * n\). For optimal performance, 1 work \(\geq \max (n+(n+1) * n b, 2 * n, 2 * n\) \(\left.+n^{\star} n b\right)=2 \star n+n^{\star} n b\), where \(n b\) is the optimal block size for ? geqp3, ?geqrf, ?gelq, ?unmlq
In general, the optimal length 1 work is computed as 1 work \(\geq \max (n\) +lwork(?geqp3), n+lwork(?pocon), n+lwork(?gesvj), n +lwork(?gelqf), 2*n+lwork(?geqrf), n+lwork(?unmlq))
- If sigma and the left singular vectors are needed and
- no scaled condition estimate is requested (jobe .EQ.'N'), then the minimal requirement is 1 work \(\geq 3^{\star} n\).

For optimal performance: if jobu.EQ.'U' :: lwork \(\geq \max (3 * n, n\) \(+(n+1) * n b, 2 * n+n * n b)=2 * n+n * n b\), where \(n b\) is the optimal block size for ?geqp3, ?geqrf, ?unmqr. In general, the optimal length lwork is computed as lwork \(\geq\) max (\(n+1\) work (?geqp3), \(2 * n\) +lwork(?geqrf), n+lwork(?unmqr)).
- an estimate of the scaled condition number of \(a\) is required (joba='E' or 'G'), then the minimal requirement is 1 work \(\geq 3 * n\).

For optimal performance: if jobu.EQ.'U' :: lwork \(\max (3 * n, n\) \(\left.+(n+1) * n b, 2{ }^{*} n+n \star n b\right)=2 * n+n \star n b\), where \(n b\) is the optimal block size for ? geqp 3 , ?geqrf, ? unmqr. In general, the optimal length
lwork is computed as 1 work \(\geq \max (n+1\) work (? geqp 3), \(n\)
+lwork(?pocon), \(2 *_{n+l \text { work (?geqrf), }}\) n+lwork(?unmqr)).
then the minimal requirement is 1 work \(\geq 3 * n\). For optimal performance:
if jobu.EQ.'U' : : \(\quad 1\) work \(\geq \max (3 * n, n+(n+1) * n b, 2 * n+n * n b)\), where \(n b\) is the optimal block size for ? geqp3, ?geqrf, ?unmqr. In general, the optimal length lwork is computed as lwork \(\geq \max (n\) +lwork(?geqp3), n+lwork(?pocon), \(2 * n+l\) work(?geqrf), \(n\) +lwork(?unmqr)).
- If the full SVD is needed: (jobu.EQ.'U' or jobu.EQ.'F') and
- if jobv.EQ.'V' the minimal requirement is 1 work \(\geq 5{ }^{*} n+2{ }^{\star} n \star n\).
- if jobv.EQ.'J' the minimal requirement is 1 work \(\geq 4^{\star} n+n \star n\). In both cases, the allocated cwork can accommodate blocked runs of ?geqp3, ?geqrf, ?gelqf, ?unmqr, ?unmlq.

If the call to ? gejsv is a workspace query (indicated by lwork \(=-1\) or lrwork \(=-1\)), then on exit cwork (1) contains the required length of cwork for the job parameters used in the call.

COMPLEX for cgejsv
DOUBLE COMPLEX for zgejsv
cwork is a workspace array of size max (2, lwork).
If the call to ? gejsv is a workspace query (indicated by lwork \(=-1\) or lrwork \(=-1\)), then on exit cwork (1) contains the required length of cwork for the job parameters used in the call.

REAL for cgejsv
DOUBLE PRECISION for zgejsv
rwork is an array of size at least max(7, lrwork) for real flavors and at least max(7, lwork) for complex flavors.

INTEGER. Length of rwork to confirm proper allocation of workspace. lrwork depends on the job:
1. If only singular values are requested i.e. if Isame (jobu, 'N') . AND. lsame (jobv,'N') then:
- If lsame(jobt,'T') .OR. lsame(joba,'F') .OR. lsame(joba,'G'), then lrwork \(=\max (7,2 * m)\).
- Otherwise, lrwork \(=\max (7, n)\).
2. If singular values with the right singular vectors are requested i.e. if
(lsame(jobv,'V').OR.lsame(jobv,'J')) .AND. .NOT.
(lsame(jobu,'U').OR.Isame (jobu,'F')) then:
- If lsame (jobt,'T') . OR. Isame(joba,'F') . OR. lsame (joba, 'G'), then lrwork \(=\max (7,2 * m)\).
- Otherwise, lrwork \(=\max (7, n)\).
3. If singular values with the left singular vectors are requested, i.e. if (lsame (jobu,'U'). OR. lsame (jobu,'F')) .AND. .NOT.
(lsame(jobv,'V').OR.lsame (jobv,'J')) then:
- If lsame (jobt,'T') . OR. lsame(joba,'F') . OR. lsame (joba, 'G'), then lrwork \(=\max (7,2 * m)\).
- Otherwise, lrwork \(=\max (7, n)\).
4. If singular values with both the left and the right singular vectors are requested, i.e. if (lsame (jobu,'U').OR.lsame(jobu,'F')) .AND.
(lsame(jobv,'V').OR.lsame (jobv,'J')) then:
- If lsame (jobt,'T') . OR. lsame(joba,'F') . OR.
lsame(joba,'G'), then lrwork \(=\max (7,2 * m)\).
- Otherwise, lrwork \(=\max (7, n)\).

For complex flavors, if the call to ?gejsv is a workspace query (indicated by lwork \(=-1\) or lrwork \(=-1\)), then on exit rwork (1) contains the required length of rwork for the job parameters used in the call.

INTEGER. Workspace array, of size
For real flavors:
).
\(\max (3, m+3 * \max (3,2 * n+m)\).
For complex flavors, the size depends on the job but is at least 4:
- If only the singular values are requested and lsame (jobt,'T') . OR. lsame (joba, 'F') . OR. Isame (joba, 'G'), then the length of iwork is \(n+m\); otherwise the length of iwork is \(n\).
- If the singular values and the right singular vectors are requested and lsame(jobt,'T') . OR. Isame(joba,'F') .OR. Isame(joba,'G'), then the length of iwork is \(n+m\); otherwise the length of iwork is \(n\).
- If the singular values and the left singular vectors are requested and lsame(jobt,'T') .OR. Isame(joba,'F') .OR. lsame(joba,'G'), then the length of \(i\) work is \(n+m\); otherwise the length of \(i\) work is \(n\).
- If the singular values and both the left and the right singular vectors are requested and
- if lsame (jobv,'J'), if lsame (jobt,'T') . OR. lsame (joba,' \(\mathrm{F}^{\prime}\)) . OR. Isame (joba, 'G'), then the length of \(i\) work is \(n+m\); otherwise the length of iwork is \(n\).
- if lsame (jobv,'V') , if lsame (jobt,'T') . OR. lsame (joba,'F') .OR. lsame (joba,'G'), then the length of \(i\) iwork is \(2 *_{n}+m\); otherwise the length of iwork is \(2 *_{n}\).
and lsame(jobt,'T') .OR. Isame(joba,'F') .OR.
lsame (joba,' 'G'), then the length of iwork is \(n+m\); otherwise the length of iwork is \(n\).

\section*{Output Parameters}

On exit:
For work (1)/work (2) = one: the singular values of \(A\). During the computation sva contains Euclidean column norms of the iterated matrices in the array \(a\).
For work (1) \(=\) work (2): the singular values of \(A\) are (work (1)/work (2)) * \(\operatorname{sva}(1: n)\). This factored form is used if sigma_max \((A)\) overflows or if small singular values have been saved from underflow by scaling the input matrix A.
jobr = 'R', some of the singular values may be returned as exact zeros obtained by 'setting to zero' because they are below the numerical rank threshold or are denormalized numbers.

On exit:
If jobu = 'U', contains the m-by-n matrix of the left singular vectors.
If jobu = ' F ', contains the \(m\)-by-m matrix of the left singular vectors, including an orthonormal basis of the orthogonal complement of the range of \(A\).

If jobu = 'W' and jobv = 'V', jobt = 'T', and \(m=n\), then \(u\) is used as workspace if the procedure replaces \(A\) with \(A^{\top}\) (for real flavors) or \(A^{\mathrm{H}}\) (for complex flavors). In that case, \(v\) is computed in \(u\) as left singular vectors of \(A^{\top}\) or \(A^{\mathrm{H}}\) and copied back to the \(v\) array. This ' \(W\) ' option is just a reminder to the caller that in this case \(u\) is reserved as workspace of length \(n{ }^{*}{ }_{n}\).

If jobu = 'N', u is not referenced.
On exit:
If jobv = 'V' or 'J', contains the \(n\)-by-n matrix of the right singular vectors.

If jobv = 'W' and jobu = 'U', jobt = 'T', and \(m=n\), then \(v\) is used as workspace if the procedure replaces \(A\) with \(A^{\top}\) (for real flavors) or \(A^{\mathrm{H}}\) (for complex flavors). In that case, \(u\) is computed in \(v\) as right singular vectors of \(A^{\top}\) or \(A^{H}\) and copied back to the \(u\) array. This ' \(W\) ' option is just a reminder to the caller that in this case \(v\) is reserved as workspace of length \(n^{*} n\).

If jobv = 'N', v is not referenced.
On exit,
\(\operatorname{work}(1)=\) scale \(=\operatorname{work}(2) / \operatorname{work}(1)\) is the scaling factor such that scale*sva(1:n) are the computed singular values of \(A\). See the description of sva().
work (2) = see the description of work (1).
work (3) = sconda is an estimate for the condition number of column equilibrated \(A\). If joba \(=\) ' \(E\) ' or 'G', sconda is an estimate of sqrt (।| \((R * * t * R) * *(-1)\left|\mid _1\right)\). It is computed using ?pocon. It holds \(n^{* *}(-1 / 4) *\) sconda \(\leq\left|\left|R^{* *}(-1)\right|\right| _2 \leq n^{* *}(1 / 4) *\) sconda, where \(R\) is the triangular factor from the QRF of \(A\). However, if \(R\) is truncated and the numerical rank is determined to be strictly smaller than \(n\), sconda is returned as -1 , indicating that the smallest singular values might be lost.
If full SVD is needed, the following two condition numbers are useful for the analysis of the algorithm. They are provided for a user who is familiar with the details of the method.
work (4) = an estimate of the scaled condition number of the triangular factor in the first QR factorization.
work (5) = an estimate of the scaled condition number of the triangular factor in the second QR factorization.

The following two parameters are computed if jobt \(=\) ' \(T\) '. They are provided for a user who is familiar with the details of the method.
work (6) \(=\) the entropy of \(A * * t * A::\) this is the Shannon entropy of diag \((A * * t * A) / \operatorname{Trace}(A * * t * A)\) taken as point in the probability simplex.
work (7) \(=\) the entropy of \(A^{*} A^{* *} \mathrm{t}\).
On exit,
rwork (1) determines the scaling factor scale = rwork (2) / rwork (1) such that scale*sva(1:n) are the computed singular values of a. (See the description of sva().)
rwork (2) = see the description of rwork (1).
rwork (3) = sconda is an estimate for the condition number of column equilibrated \(A\). If joba \(=\) ' \(E\) ' or 'G', sconda is an estimate of \(S Q R T(|\mid\) \(\left.\left(R^{\wedge \star} \star R\right)^{\wedge}(-1)| | _1\right)\). It is computed using ? pocon. It holds \(n^{\wedge}(-1 / 4)\) * sconda \(\leq\left|R^{\wedge}(-1)\right| \mid _2 \leq n^{\wedge}(1 / 4) *\) sconda where \(R\) is the triangular factor from the QRF of \(A\). However, if R is truncated and the numerical rank is determined to be strictly smaller than \(n\), sconda is returned as -1 , thus indicating that the smallest singular values might be lost.
If full SVD is needed, the following two condition numbers are useful for the analysis of the algorithm. They are provided for a user who is familiar with the details of the method.
rwork (4) = an estimate of the scaled condition number of the triangular factor in the first QR factorization.
rwork (5) = an estimate of the scaled condition number of the triangular factor in the second QR factorization.
The following two parameters are computed if jobt = 'T'. They are provided for a user who is familiar with the details of the method.
rwork (6) \(=\) the entropy of \(A^{\wedge *} * A:\) : this is the Shannon entropy of \(\operatorname{diag}\left(A^{\wedge} * * A\right) / \operatorname{Trace}\left(A^{\wedge \star} * A\right)\) taken as point in the probability simplex.
rwork (7) \(=\) the entropy of \(A * A^{\wedge} *\). (See the description of rwork (6).)
For complex flavors, if the call to ?gejsv is a workspace query (indicated by lwork \(=-1\) or lrwork \(=-1\)), then on exit rwork (1) contains the required length of rwork for the job parameters used in the call.

INTEGER. On exit,
iwork (1) = the numerical rank determined after the initial QR factorization with pivoting. See the descriptions of joba and jobr.
iwork (2) = the number of the computed nonzero singular value.
iwork (3) = if nonzero, a warning message. If iwork (3) =1, some of the column norms of \(A\) were denormalized floats. The requested high accuracy is not warranted by the data.
For complex flavors, iwork (4) = 1 or -1 . If iwork (4) \(=1\), then the procedure used \(A^{\mathrm{H}}\) to do the job as specified by the job parameters.

For complex flavors, if the call to ?gejsv is a workspace query (indicated by lwork \(=-1\) or lrwork \(=-1\)), then on exit iwork (1) contains the required length of \(i\) work for the job parameters used in the call.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0 , the function did not converge in the maximal number of sweeps. The computed values may be inaccurate.

\section*{See Also}
?geqp3
?geqrf
?gelqf
?gesvj
?lamch
?pocon
?ormlq

\section*{?gesvj}

Computes the singular value decomposition of a real matrix using Jacobi plane rotations.

\section*{Syntax}
```

call sgesvj(joba, jobu, jobv, m, n, a, lda, sva, mv, v, ldv, work, lwork, info)
call dgesvj(joba, jobu, jobv, m, n, a, lda, sva, mv, v, ldv, work, lwork, info)
call cgesvj(joba, jobu, jobv, m, n, a, lda, sva, mv, v, ldv, cwork, lwork, rwork, lrwork,
info )
call zgesvj(joba, jobu, jobv, m, n, a, lda, sva, mv, v, ldv, cwork, lwork, rwork, lrwork,
info )

```

Include Files
- mkl.fi

\section*{Description}

The routine computes the singular value decomposition (SVD) of a real or complex m-by-n matrix \(A\), where \(m \geq n\).

The SVD of \(A\) is written as
\(A=U^{\star} \Sigma^{\star} V^{\mathbb{T}}\) for real flavors, or
\(A=U^{\star} \Sigma^{\star} V^{H}\) for complex flavors,
where \(\Sigma\) is an \(m\)-by- \(n\) diagonal matrix, \(U\) is an \(m\)-by- \(n\) orthonormal matrix, and \(V\) is an \(n\)-by- \(n\) orthogonal/ unitary matrix. The diagonal elements of \(\Sigma\) are the singular values of \(A\); the columns of \(U\) and \(V\) are the left and right singular vectors of \(A\), respectively. The matrices \(U\) and \(V\) are computed and stored in the arrays \(u\) and \(v\), respectively. The diagonal of \(\Sigma\) is computed and stored in the array sva.
The ?gesvj routine can sometimes compute tiny singular values and their singular vectors much more accurately than other SVD routines.

The \(n\)-by-n orthogonal matrix \(V\) is obtained as a product of Jacobi plane rotations. The rotations are implemented as fast scaled rotations of Anda and Park [AndaPark94]. In the case of underflow of the Jacobi angle, a modified Jacobi transformation of Drmac ([Drmac08-4]) is used. Pivot strategy uses column interchanges of de Rijk ([deRijk98]). The relative accuracy of the computed singular values and the accuracy of the computed singular vectors (in angle metric) is as guaranteed by the theory of Demmel and Veselic [Demmel92]. The condition number that determines the accuracy in the full rank case is essentially
where \(\kappa(\).\() is the spectral condition number. The best performance of this Jacobi SVD procedure is achieved if\) used in an accelerated version of Drmac and Veselic [Drmac08-1], [Drmac08-2].
The computational range for the nonzero singular values is the machine number interval (UNDERFLOW,OVERFLOW). In extreme cases, even denormalized singular values can be computed with the corresponding gradual loss of accurate digit.

\section*{Input Parameters}
```

joba CHARACTER*1.Must be 'L', 'U' or 'G'.
Specifies the structure of A:
If joba = 'L', the input matrix A is lower triangular.
If joba = 'U', the input matrix A is upper triangular.
If joba = 'G', the input matrix A is a general m-by-n,m\geqn.
CHARACTER*1. Must be 'U', 'C' or 'N'.

```

Specifies whether to compute the left singular vectors (columns of \(U\)):
If jobu = 'U', the left singular vectors corresponding to the nonzero singular values are computed and returned in the leading columns of \(A\). See more details in the description of \(a\). The default numerical orthogonality threshold is set to approximately TOL=CTOL*EPS, CTOL=sqrt (m), EPS = ?lamch('E')

If jobu = 'C', analogous to jobu = 'U', except that you can control the level of numerical orthogonality of the computed left singular vectors. TOL can be set to TOL=CTOL*EPS, where CTOL is given on input in the array work. No CTOL smaller than ONE is allowed. CTOL greater than 1 / EPS is meaningless. The option ' C ' can be used if \(m \star E P S\) is satisfactory orthogonality of the computed left singular vectors, so CTOL=m could save a few sweeps of Jacobi rotations. See the descriptions of a and work (1).

If jobu = 'N', u is not computed. However, see the description of \(a\).
CHARACTER*1. Must be 'V', 'A' or 'N'.
Specifies whether to compute the right singular vectors, that is, the matrix \(V\) :

If jobv \(=\) ' V ', the matrix \(V\) is computed and returned in the array V .

If jobv = 'A', the Jacobi rotations are applied to the \(m v\)-by \(n\) array \(v\). In other words, the right singular vector matrix \(V\) is not computed explicitly, instead it is applied to an mv-byn matrix initially stored in the first mv rows of \(V\).

If jobv \(=\) ' \(N\) ', the matrix \(V\) is not computed and the array \(v\) is not referenced.

INTEGER. The number of rows of the input matrix \(A\).
1/slamch('E')> \(m \geq 0\) for sgesvj.
1/dlamch('E')> \(m \geq 0\) for dgesvj.
INTEGER. The number of columns in the input matrix \(A ; m \geq n \geq 0\).
REAL for sgesvj
DOUBLE PRECISION for dgesvj.
COMPLEX for cgesvj
DOUBLE COMPLEX for zgesvj
Array \(a(/ d a, n)\) is an array containing the \(m\)-by- \(n\) matrix \(A\).
Array \(v\) is a workspace array, its dimension is \((I d v, *)\); the second dimension of \(v\) must be at least \(\max (1, n)\).

INTEGER. The leading dimension of the array \(a\). Must be at least max (1, m) .

INTEGER.
If jobv = 'A', the product of Jacobi rotations in ?gesvj is applied to the first \(m v\) rows of \(v\). See the description of jobv. \(0 \leq m v \leq l d v\).

INTEGER. The leading dimension of the array \(v ; I d v \geq 1\).
jobv \(=\) 'V', ldv \(\geq \max (1, n)\).
jobv = 'A', \(l d v \geq \max (1, m v)\).
REAL for sgesvj
DOUBLE PRECISION for dgesvj.
work is a workspace array, its dimension \(\max (4, m+n)\).
If jobu = 'C', work (1)=CTOL, where CTOL defines the threshold for convergence. The process stops if all columns of \(A\) are mutually orthogonal up to CTOL*EPS, EPS=?lamch ('E'). It is required that CTOL \(\geq 1\), that is, it is not allowed to force the routine to obtain orthogonality below \(\varepsilon\).

COMPLEX for cgesvj
DOUBLE COMPLEX for zgesvj
cwork is a workspace array, its dimension \(m+n\).
INTEGER.
Length of work for real flavors or cwork for complex flavors, lwork \(\geq\) \(\max (6, m+n)\).
```

rwork
Irwork

```

REAL for cgesvj
DOUBLE PRECISION for zgesvj
rwork is a workspace array, its dimension max (\(6, m+n\)).
If jobu = 'C', rwork (1) = CTOL, where CTOL defines the threshold for convergence. The process stops if all columns of a are mutually orthogonal up to CTOL*EPS, EPS=?lamch ('E'). It is required that CTOL \(\geq 1\), that is, it is not allowed to force the routine to obtain orthogonality below \(\varepsilon\).
```

INTEGER for cgesvj
INTEGER for zgesvj
Length of rwork, lrwork\geq max (6,n).

```

\section*{Output Parameters}
a
sva

On exit:
If jobu = 'U' or jobu = 'C':
- if info \(=0\), the leading columns of \(A\) contain left singular vectors corresponding to the computed singular values of a that are above the underflow threshold ?lamch('S'), that is, non-zero singular values. The number of the computed non-zero singular values is returned in work (2) for real flavors or rwork (2) for complex flavors. Also see the descriptions of sva and work for real flavors or rwork for complex flavors. The computed columns of \(u\) are mutually numerically orthogonal up to approximately TOL=sqrt (m) *EPS (default); or TOL=CTOL*EPSjobu \(=\) 'C', see the description of jobu.
- if info > 0 , the procedure ? gesvj did not converge in the given number of iterations (sweeps). In that case, the computed columns of \(u\) may not be orthogonal up to TOL. The output \(u\) (stored in a), sigma (given by the computed singular values in \(\operatorname{sva}(1: n)\)) and \(v\) is still a decomposition of the input matrix \(A\) in the sense that the residual \(\| A-\) scale \({ }^{\star} U^{\star}\) sigma \({ }^{\star} V^{\mathbb{T}}\left\|_{2} /\right\| A \|_{2}\) for real flavors or \(\| A\) scale* \(U^{*}\) sigma* \(V^{H}\left\|_{2} /\right\| A \mid \|_{2}\) for complex flavors (where scale \(=\) stat[0]) is small.
If jobu = 'N':
- if info \(=0\), note that the left singular vectors are 'for free' in the onesided Jacobi SVD algorithm. However, if only the singular values are needed, the level of numerical orthogonality of \(u\) is not an issue and iterations are stopped when the columns of the iterated matrix are numerically orthogonal up to approximately \(m^{*}\) EPS. Thus, on exit, a contains the columns of \(u\) scaled with the corresponding singular values.
- if info > 0 , the procedure ? gesvj did not converge in the given number of iterations (sweeps).

REAL for sgesvj
DOUBLE PRECISION for dgesvj.
REAL for cgesvj
DOUBLE PRECISION for zgesvj

Array size \(n\).
If info \(=0\), depending on the value scale \(=\) work (1) for real flavors or rwork (1) for complex flavors, where scale is the scaling factor:
- if scale \(=1, \operatorname{sva}(1: n)\) contains the computed singular values of \(a\). During the computation, sva contains the Euclidean column norms of the iterated matrices in the array \(a\).
- if scale \(\neq 1\), the singular values of a are scale*sva(1:n), and this factored representation is due to the fact that some of the singular values of a might underflow or overflow.

If info \(>0\), the procedure ? \(g e s v j\) did not converge in the given number of iterations (sweeps) and scale*sva(1:n) may not be accurate.

On exit:
If jobv \(=\) 'V', contains the \(n-b y-n\) matrix of the right singular vectors.
If jobv = 'A', then \(v\) contains the product of the computed right singular vector matrix and the initial matrix in the array \(v\).
If jobv \(={ }^{\prime} N^{\prime}, v\) is not referenced.
On exit,
work (1) \(=\) scale is the scaling factor such that scale*sva(1:n) are the computed singular values of \(A\). See the description of sva().
work (2) is the number of the computed nonzero singular values.
work (3) is the number of the computed singular values that are larger than the underflow threshold.
work (4) is the number of sweeps of Jacobi rotations needed for numerical convergence.
\(\operatorname{work}(5)=\max _\{i \neq j\}|\operatorname{CoS}(A(:, i), A(:, j))|\) in the last sweep. This is useful information in cases when ?gesvj did not converge, as it can be used to estimate whether the output is still useful and for post festum analysis.
work (6) is the largest absolute value over all sines of the Jacobi rotation angles in the last sweep. It can be useful in a post festum analysis.

On exit,
rwork (1) = scale is the scaling factor such that scale*sva(1:n) are the computed singular values of \(A\). See description of sva().
rwork (2) is the number of the computed nonzero singular values.
rwork (3) is the number of the computed singular values that are larger than the underflow threshold.
rwork (4) is the number of sweeps of Jacobi rotations needed for numerical convergence.
rwork (5) \(=\max _{-}\{i \neq j\}|\operatorname{COS}(A(:, i), A(:, j))|\) in the last sweep. This is useful information in cases when ?gesvj did not converge, as it can be used to estimate whether the output is still useful and for post festum analysis.
rwork (6) is the largest absolute value over all sines of the Jacobi rotation angles in the last sweep. It can be useful for a post festum analysis.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info > 0 , the function did not converge in the maximal number (30) of sweeps. The output may still be useful. See the description of work or rwork.

\section*{See Also}
?lamch
?ggsvd
Computes the generalized singular value decomposition of a pair of general rectangular matrices (deprecated).

\section*{Syntax}
```

call sggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv,
q, ldq, work, iwork, info)
call dggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv,
q, ldq, work, iwork, info)
call cggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv,
q, ldq, work, rwork, iwork, info)
call zggsvd(jobu, jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv,
q, ldq, work, rwork, iwork, info)
call ggsvd(a, b, alpha, beta [, k] [,l] [,u] [,v] [,q] [,iwork] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

This routine is deprecated; use ggsvd3.
The routine computes the generalized singular value decomposition (GSVD) of an \(m\)-by- \(n\) real/complex matrix \(A\) and \(p\)-by-n real/complex matrix \(B\) :

where \(U, V\) and \(Q\) are orthogonal/unitary matrices and \(U^{\prime}, V^{\prime}\) mean transpose/conjugate transpose of \(U\) and \(V\) respectively.
Let \(k+l=\) the effective numerical rank of the matrix \(\left(A^{\prime}, B^{\prime}\right)^{\prime}\), then \(R\) is a \((k+l)\)-by- \((k+l)\) nonsingular upper triangular matrix, \(D_{1}\) and \(D_{2}\) are \(m\)-by- \((k+/)\) and \(p\)-by- \((k+/)\) "diagonal" matrices and of the following structures, respectively:
If \(m-k-1 \geq 0\),
\(k \quad\) l \(D_{1}=\quad \begin{array}{r}k \\ I-k-I \\ 0 \\ 0\end{array}\left(\begin{array}{l}I \\ 0 \\ 0\end{array}\right)\)

where
\(C=\operatorname{diag}(a l p h a(K+1), \ldots\), alpha(K+1))
\(S=\operatorname{diag}(\operatorname{beta}(K+1), \ldots, \operatorname{beta}(K+1))\)
\(C^{2}+S^{2}=I\)
\(R\) is stored in \(a(1: k+l, n-k-l+1: n)\) on exit.
If \(m-k-1<0\),
\[
\begin{aligned}
& k \quad m-k \quad k+1-m \\
& \left.D_{1}=\begin{array}{r}
k \\
m-k \\
0
\end{array} \begin{array}{lll}
I & 0 & 0 \\
0 & 0
\end{array}\right) \\
& k \quad m-k \quad k+l-m \\
& D_{i}=k+\underset{m-m}{p-\mu}\left(\begin{array}{lll}
0 & S & 0 \\
0 & 0 & I \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
\]
where
```

C = diag(alpha(K+1),..., alpha(m)),
S = diag(beta(K+1),...,beta(m)),
C

```

On exit,
\[
\left(\begin{array}{ccc}
R_{11} & R_{12} & R_{13} \\
0 & R_{22} & R_{23}
\end{array}\right)
\]
is stored in \(a(1: m, n-k-I+1: n)\) and \(R_{33}\) is stored in \(b(m-k+1: l, n+m-k-l+1: n)\).
The routine computes \(C, S, R\), and optionally the orthogonal/unitary transformation matrices \(U, V\) and \(Q\).
In particular, if \(B\) is an \(n\)-by- \(n\) nonsingular matrix, then the GSVD of \(A\) and \(B\) implicitly gives the SVD of \(A^{*} B^{-1}\) :
\(A^{*} B^{-1}=U^{\star}\left(D_{1}{ }^{*} D_{2}^{-1}\right) * V^{\prime}\).
If (\(\left.A^{\prime}, B^{\prime}\right)^{\prime}\) has orthonormal columns, then the GSVD of \(A\) and \(B\) is also equal to the CS decomposition of \(A\) and \(B\). Furthermore, the GSVD can be used to derive the solution of the eigenvalue problem:
\(A^{\prime \star} A^{\star} X=\lambda{ }^{\star} B^{\prime \star} B^{\star} X\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobu} & CHARACTER*1. Must be 'U' or 'n'. \\
\hline & If jobu = 'U', orthogonal/unitary matrix \(U\) is computed. \\
\hline & If jobu = 'N', U is not computed. \\
\hline \multirow[t]{3}{*}{jobv} & CHARACTER*1. Must be 'V' or 'N'. \\
\hline & If jobv \(={ }^{\prime} \mathrm{V}\) ', orthogonal/unitary matrix \(V\) is computed. \\
\hline & If jobv = 'N', V is not computed. \\
\hline \multirow[t]{3}{*}{jobq} & CHARACTER*1. Must be ' Q ' or 'N'. \\
\hline & If jobq \(=\) ' \(Q\) ', orthogonal/unitary matrix \(Q\) is computed. \\
\hline & If \(j 0 b q={ }^{\prime} \mathrm{N}^{\prime}, Q\) is not computed. \\
\hline m & INTEGER. The number of rows of the matrix \(A(m \geq 0)\). \\
\hline \(n\) & INTEGER. The number of columns of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \(p\) & INTEGER. The number of rows of the matrix \(B(p \geq 0)\). \\
\hline \multirow[t]{10}{*}{\(a, b\), work} & REAL for sggsvd \\
\hline & DOUBLE PRECISION for dggsvd \\
\hline & COMPLEX for cggsvd \\
\hline & double Complex for zggsvd. \\
\hline & Arrays: \\
\hline & \(a(l d a, *)\) contains the \(m\)-by-n matrix \(A\). \\
\hline & The second dimension of a must be at least max \((1, n)\). \\
\hline & \(b(I d b, *)\) contains the \(p\)-by-n matrix \(B\). \\
\hline & The second dimension of \(b\) must be at least \(\max (1, n)\). work (*) is a workspace array. \\
\hline & The dimension of work must be at least max (\(3 n, m, p)+n\). \\
\hline lda & Integer. The leading dimension of \(a\); at least max (\(1, m\)). \\
\hline 1 db & INTEGER. The leading dimension of \(b\); at least \(\max (1, p)\). \\
\hline \multirow[t]{2}{*}{Idu} & INTEGER. The leading dimension of the array \(u\). \\
\hline & \\
\hline \multirow[t]{2}{*}{\(1 d v\)} & INTEGER. The leading dimension of the array \(v\). \\
\hline & \(l d v \geq \max (1, p)\) if \(j 0 b v=\) ' \(V\) '; \(l d v \geq 1\) otherwise. \\
\hline \multirow[t]{2}{*}{\(1 d q\)} & INTEGER. The leading dimension of the array \(q\). \\
\hline & \(l d q \geq \max (1, n)\) if \(j 0 . b q={ }^{\prime} Q\) '; \(1 d q \geq 1\) otherwise. \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, size at least max \((1, n)\). \\
\hline
\end{tabular}
```

rwork

```

\section*{Output Parameters}
\[
k, I
\]
\(a\)
b
alpha, beta
\(u, v, q\)

REAL for cggsvd DOUBLE PRECISION for zggsvd.
Workspace array, size at least max \((1,2 n)\). Used in complex flavors only.

INTEGER. On exit, \(k\) and \(/\) specify the dimension of the subblocks. The sum \(k+/\) is equal to the effective numerical rank of \(\left(A^{\prime}, B^{\prime}\right)^{\prime}\).

On exit, a contains the triangular matrix \(R\) or part of \(R\).
On exit, \(b\) contains part of the triangular matrix R if \(m-k-1<0\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays, size at least \(\max (1, n)\) each.
Contain the generalized singular value pairs of \(A\) and \(B\) :
alpha(1:k) = 1,
\(\operatorname{beta}(1: k)=0\),
and if \(m-k-l \geq 0\),
alpha \((k+1: k+1)=C\),
beta \((k+1: k+1)=S\),
or if \(m-k-1<0\),
alpha \((k+1: m)=C\), alpha \((m+1: k+1)=0\)
\(\operatorname{beta}(k+1: m)=S, \operatorname{beta}(m+1: k+1)=1\)
and
alpha \((k+1+1: n)=0\)
beta \((k+1+1: n)=0\).
REAL for sggsvd
DOUBLE PRECISION for dggsvd
COMPLEX for cggsvd
DOUBLE COMPLEX for zggsvd.
Arrays:
\(u(I d u, *)\); the second dimension of \(u\) must be at least \(\max (1, m)\).
If jobu = 'U', \(u\) contains the \(m\)-by- \(m\) orthogonal/unitary matrix \(U\).
If jobu = 'N', \(u\) is not referenced.
\(v(I d v, *)\); the second dimension of \(v\) must be at least \(\max (1, p)\).
If jobv \(=\) ' \(V\) ', \(v\) contains the \(p\)-by- \(p\) orthogonal/unitary matrix \(V\).
If jobv = ' \(N\) ', \(v\) is not referenced.
\(q\left(/ d q,{ }^{*}\right)\); the second dimension of \(q\) must be at least \(\max (1, n)\).
If jobq = ' \(Q\) ', \(q\) contains the \(n\)-by- \(n\) orthogonal/unitary matrix \(Q\).

If jobq \(=\) ' \(N^{\prime}, q\) is not referenced.
iwork
info

On exit, iwork stores the sorting information.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info = 1, the Jacobi-type procedure failed to converge. For further details, see subroutine tgsja.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ggsvd interface are the following:
\begin{tabular}{|c|c|}
\hline a & Holds the matrix \(A\) of size (\(m, n\)). \\
\hline b & Holds the matrix \(B\) of size (\(p, n\)). \\
\hline alpha & Holds the vector of length \(n\). \\
\hline beta & Holds the vector of length \(n\). \\
\hline \(u\) & Holds the matrix \(U\) of size (\(m, m\)). \\
\hline v & Holds the matrix \(V\) of size (\(p, p\)). \\
\hline q & Holds the matrix \(Q\) of size (\(n, n\)). \\
\hline iwork & Holds the vector of length \(n\). \\
\hline jobu & Restored based on the presence of the argument \(u\) as follows: jobu \(=\) 'U', if \(u\) is present, jobu \(=\) 'N', if \(u\) is omitted. \\
\hline jobv & Restored based on the presence of the argument \(v\) as follows: jobz \(=\) 'V', if \(v\) is present, \\
\hline & \\
\hline jobq & \begin{tabular}{l}
Restored based on the presence of the argument \(q\) as follows: \\
\(j o b z=\) ' \(Q\) ', if \(q\) is present, \\
jobz \(=\) 'N', if \(q\) is omitted.
\end{tabular} \\
\hline
\end{tabular}

\section*{?gesvdx}

Computes the SVD and left and right singular vectors for a matrix.

\section*{Syntax}
```

call sgesvdx(jobu, jobvt, range, m, n, a, lda, vl, vu, il, iu, ns, s, u, ldu, vt, ldvt,
work, lwork, iwork, info)
call dgesvdx(jobu, jobvt, range, m, n, a, lda, vl, vu, il, iu, ns, s, u, ldu, vt, ldvt,
work, lwork, iwork, info)

```
```

call cgesvdx(jobu, jobvt, range, m, n, a, lda, vl, vu, il, iu, ns, s, u, ldu, vt, ldvt,
work, lwork, rwork, iwork, info)
call zgesvdx(jobu, jobvt, range, m, n, a, lda, vl, vu, il, iu, ns, s, u, ldu, vt, ldvt,
work, lwork, rwork, iwork, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}
? gesvdx computes the singular value decomposition (SVD) of a real or complex m-by-n matrix \(A\), optionally computing the left and right singular vectors. The SVD is written
\(A=U * \Sigma *\) transpose \((V)\)
where \(\Sigma\) is an \(m\)-by- \(n\) matrix which is zero except for its \(\min (m, n)\) diagonal elements, \(U\) is an m-by-m matrix, and \(V\) is an \(n\)-by-n matrix. The matrices \(U\) and \(V\) are orthogonal for real \(A\), and unitary for complex \(A\). The diagonal elements of \(\Sigma\) are the singular values of \(A\); they are real and non-negative, and are returned in descending order. The first \(\min (m, n)\) columns of \(U\) and \(V\) are the left and right singular vectors of \(A\).
? gesvdx uses an eigenvalue problem for obtaining the SVD, which allows for the computation of a subset of singular values and vectors. See ?bdsvdx for details.

Note that the routine returns \(V^{\top}\), not \(V\).

\section*{Input Parameters}
jobu

CHARACTER*1. Specifies options for computing all or part of the matrix \(U\) :
\(=\) ' V ': the first \(\min (m, n)\) columns of \(U\) (the left singular vectors) or as specified by range are returned in the array \(u\);
\(=\) ' N ': no columns of \(U\) (no left singular vectors) are computed.
CHARACTER*1. Specifies options for computing all or part of the matrix \(V^{\top}\) :
\(=\) ' \(V\) ': the first \(\min (m, n)\) rows of \(V^{\top}\) (the right singular vectors) or as specified by range are returned in the array vt;
\(=\) ' N ': no rows of \(V^{\top}\) (no right singular vectors) are computed.
CHARACTER*1. = 'A': find all singular values.
\(=\) ' V ': all singular values in the half-open interval (\(v 1, v u\)] are found.
\(=\) 'I': the il-th through iu-th singular values are found.
INTEGER. The number of rows of the input matrix \(A . m \geq 0\).
INTEGER. The number of columns of the input matrix \(A . n \geq 0\).
REAL for sgesvdx
DOUBLE PRECISION for dgesvdx
COMPLEX for cgesvdx
DOUBLE COMPLEX for zgesvdx
Array, size (lda, \(n\))
On entry, the \(m-b y-n\) matrix \(A\).

INTEGER. The leading dimension of the array \(a\).
\(I d a \geq \max (1, m)\).
REAL for sgesvdx
DOUBLE PRECISION for dgesvdx
REAL for cgesvdx
DOUBLE PRECISION for zgesvdx
\(v l \geq 0\).
REAL for sgesvdx
DOUBLE PRECISION for dgesvdx
REAL for cgesvdx
DOUBLE PRECISION for zgesvdx
If range \(=\) ' V ', the lower and upper bounds of the interval to be searched for singular values. \(v u>v l\). Not referenced if range \(=\) 'A' or 'I'.

INTEGER.
INTEGER. If range='I', the indices (in ascending order) of the smallest and largest singular values to be returned. \(1 \leq i l \leq i u \leq \min (m, n)\), if \(\min (m, n)>0\). Not referenced if range \(=\) ' A ' or ' V '.

INTEGER. The leading dimension of the array \(u\). \(1 d u \geq 1\); if jobu = 'V', \(I d u \geq m\).

INTEGER. The leading dimension of the array vt. ldvt \(\geq\) 1; if jobvt = 'V', \(l d v t \geq n s\) (see above).

REAL for sgesvdx
DOUBLE PRECISION for dgesvdx
COMPLEX for cgesvdx
DOUBLE COMPLEX for zgesvdx
Array, size (max(1,1work)).
On exit, if info \(=0\), work(1) returns the optimal lwork;
INTEGER. The size of the array work.
lwork \(\geq \max (1, \min (m, n) *(\min (m, n)+4))\) for the paths (see comments inside the code):
- PATH 1 (\(m\) much larger than \(n\))
- PATH 1t (\(n\) much larger than \(m\))
lwork \(\geq \max \left(1, \min (m, n)^{*} 2+\max (m, n)\right)\) for the other paths. For good performance, lwork should generally be larger.

If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

REAL for cgesvdx
DOUBLE PRECISION for zgesvdx
Array, size (max(1, Irwork)).
Irwork \(\geq \min (m, n) *(\min (m, n) * 2+15 * \min (m, n))\).

\section*{Output Parameters}
a
ns

S
u
\(v t\)

On exit, the contents of a are destroyed.
INTEGER. The total number of singular values found,
\(0 \leq n s \leq \min (m, n)\).
If range \(=\) ' A ', \(n s=\min (m, n)\); if range \(=\) ' I ', \(n s=i u-i l+1\).
REAL for sgesvdx
DOUBLE PRECISION for dgesvdx
REAL for cgesvdx
DOUBLE PRECISION for zgesvdx
Array, size \((\min (m, n))\)
The singular values of \(A\), sorted so that \(s(i) \geq s(i+1)\).
REAL for sgesvdx
DOUBLE PRECISION for dgesvdx
COMPLEX for cgesvdx
DOUBLE COMPLEX for zgesvdx
If jobu = 'V', u contains columns of \(U\) (the left singular vectors, stored columnwise) as specified by range; if jobu = ' N ', \(u\) is not referenced.

\section*{NOTE}

Make sure that \(u c o l \geq n s\); if range \(=\) ' \(V\) ', the exact value of \(n s\) is not known in advance and an upper bound must be used.

REAL for sgesvdx
DOUBLE PRECISION for dgesvdx
COMPLEX for cgesvdx
DOUBLE COMPLEX for zgesvdx
Array, size (ldvt, \(n\))
If jobvt \(=\) ' \(V\) ', vt contains the rows of \(V^{\top}\) (the right singular vectors, stored rowwise) as specified by range; if jobvt \(=\) ' N ', vt is not referenced.

\section*{NOTE}

Make sure that \(l d v t \geq n s\); if range \(=\) ' V ', the exact value of ns is not known in advance and an upper bound must be used.
iwork
info

INTEGER. Array, size \(\left(12^{*} \min (m, n)\right)\).
If info \(=0\), the first \(n s\) elements of superb are zero. If info \(>0\), then superb contains the indices of the eigenvectors that failed to converge in ?bdsvdx/?stevx.

INTEGER.
= 0: successful exit.
\(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value.
\(>0\) : if info \(=i\), then \(i\) eigenvectors failed to converge in ?bdsvdx/?stevx. if info \(=n^{*} 2+1\), an internal error occurred in ?bdsvdx.
?bdsvdx
Computes the SVD of a bidiagonal matrix.

\section*{Syntax}
```

call sbdsvdx (uplo, jobz, range, n, d, e, vl, vu, il, iu, ns, s, z, ldz, work, iwork,
info )
call dbdsvdx (uplo, jobz, range, n, d, e, vl, vu, il, iu, ns, s, z, ldz, work, iwork,
info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}
?bdsvdx computes the singular value decomposition (SVD) of a real \(n\)-by- \(n\) (upper or lower) bidiagonal matrix \(B, B=U * S * V T\), where \(S\) is a diagonal matrix with non-negative diagonal elements (the singular values of \(B\)), and \(U\) and \(V T\) are orthogonal matrices of left and right singular vectors, respectively.
Given an upper bidiagonal \(B\) with diagonal \(d=\left[d_{1} d_{2} \ldots d_{n}\right]\) and superdiagonal \(e=\left[e_{1} e_{2} \ldots e_{n-1}\right]\), ?bdsvdx computes the singular value decompositon of \(B\) through the eigenvalues and eigenvectors of the \(n * 2\)-by-n*2 tridiagonal matrix
\(T G K=\left(\begin{array}{cccccc}0 & d_{1} & & & & \\ d_{1} & 0 & e_{1} & & & \\ & e_{1} & 0 & d_{2} & \\ & & d_{2} & \ddots & \ddots \\ & & & \ddots & \ddots\end{array}\right)\)
If \((s, u, v)\) is a singular triplet of \(B\) with \(\|u\|=\|v\|=1\), then \((\pm s, q),\|q\|=1\), are eigenpairs of TGK, with \(q=P * \frac{\left(u^{\prime} \pm v^{\prime}\right)}{\sqrt{2}}=\frac{\left(v_{1} u_{1} v_{2} u_{2} \cdots v_{n} u_{n}\right)}{\sqrt{2}}\), and \(P=\left(e_{n+1} e_{1} e_{n+2} e_{2} \cdots\right)\).

Given a TGK matrix, one can either
1. compute \(-s,-v\) and change signs so that the singular values (and corresponding vectors) are already in descending order (as in ?gesvd/?gesdd) or
2. compute \(s, v\) and reorder the values (and corresponding vectors).
?bdsvdx implements (1) by calling ?stevx (bisection plus inverse iteration, to be replaced with a version of the Multiple Relative Robust Representation algorithm. (See P. Willems and B. Lang, A framework for the MR^3 algorithm: theory and implementation, SIAM J. Sci. Comput., 35:740-766, 2013.)

\section*{Input Parameters}
```

uplo CHARACTER*1. = 'U': B is upper bidiagonal;
= 'L': B is lower bidiagonal.
CHARACTER*1. = ' N': Compute singular values only;
= 'V': Compute singular values and singular vectors.
CHARACTER*1. = 'A': Find all singular values.
= 'V': all singular values in the half-open interval [ vl,vu) are found.
= 'I': the il-th through iu-th singular values are found.
INTEGER. The order of the bidiagonal matrix.
n}>=0
REAL for sbdsvdx
DOUBLE PRECISION for dbdsvdx

```
 Array, size \(n\).
 The \(n\) diagonal elements of the bidiagonal matrix \(B\).
 REAL for sbdsvdx
 DOUBLE PRECISION for dbdsvdx
 Array, size (max \((1, n-1)\))
 The \((n-1)\) superdiagonal elements of the bidiagonal matrix \(B\) in elements 1
 to \(n-1\).
 REAL for sbdsvdx
 DOUBLE PRECISION for dbdsvdx
 \(v 1 \geq 0\).
 REAL for sbdsvdx
 DOUBLE PRECISION for dbdsvdx
 If range='V', the lower and upper bounds of the interval to be searched for
 singular values. vu > vl.
 Not referenced if range = 'A' or 'I'.
 INTEGER. If range='I', the indices (in ascending order) of the smallest and
 largest singular values to be returned.
 \(1 \leq i l \leq i u \leq \min (m, n)\), if \(\min (m, n)>0\).
 Not referenced if range = 'A' or 'V'.

INTEGER. The leading dimension of the array \(z\).
\(I d z \geq 1\), and if \(j o b z=' V ', I d z \geq \max \left(2, n^{*} 2\right)\).

\section*{Output Parameters}
\(n s\)

S
z
work
iwork
info

INTEGER. The total number of singular values found. \(0 \leq n s \leq n\).
If range \(=\) ' A ', \(n s=n\), and if range \(=\) 'I', \(n s=i u-i l+1\).
REAL for sbdsvdx
DOUBLE PRECISION for dbdsvdx
Array, size (\(n\))
The first \(n s\) elements contain the selected singular values in ascending order.

REAL for sbdsvdx
DOUBLE PRECISION for dbdsvdx
Array, size (\(\left.2^{*} n_{n}, k\right)\)
If jobz \(=\) ' \(V\) ', then if info \(=0\) the first \(n s\) columns of \(z\) contain the singular vectors of the matrix \(B\) corresponding to the selected singular values, with \(U\) in rows 1 to \(n\) and \(V\) in rows \(n+1\) to \(n * 2\), i.e.
\(z=\binom{U}{V}\)
If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.

\section*{NOTE}

Make sure that at least \(k=n s+1\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(n s\) is not known in advance and an upper bound must be used.

REAL for sbdsvdx
DOUBLE PRECISION for dbdsvdx
Array, size \(\left(14 *_{n}\right)\)
INTEGER. Array, size \(\left(12 *_{n}\right)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first ns elements of iwork are zero. If info \(>0\), then \(i w o r k\) contains the indices of the eigenvectors that failed to converge in ?stevx.

INTEGER. \(=0\) : successful exit.
< 0: if info \(=-i\), the \(i\)-th argument had an illegal value.
\(>0\) :
if info \(=i\), then \(i\) eigenvectors failed to converge in ?stevx. The indices of the eigenvectors (as returned by ?stevx) are stored in the array iwork.
\[
\text { if info }=n * 2+1, \text { an internal error occurred. }
\]

\section*{Cosine-Sine Decomposition: LAPACK Driver Routines}

This topic describes LAPACK driver routines for computing the cosine-sine decomposition (CS decomposition). You can also call the corresponding computational routines to perform the same task.
The computation has the following phases:
1. The matrix is reduced to a bidiagonal block form.
2. The blocks are simultaneously diagonalized using techniques from the bidiagonal SVD algorithms.

Table "Driver Routines for Cosine-Sine Decomposition (CSD)" lists LAPACK routines (FORTRAN 77 interface) that perform CS decomposition of matrices. The corresponding routine names in the Fortran 95 interface are without the first symbol.
Computational Routines for Cosine-Sine Decomposition (CSD)
\begin{tabular}{lll}
\hline Operation & Real matrices & Complex matrices \\
\hline \begin{tabular}{l}
Compute the CS decomposition of a block- \\
partitioned orthogonal matrix
\end{tabular} & orcsd uncsd \\
orcsd2by1 uncsd2by1
\end{tabular}\(\quad\) orcsd uncsd \begin{tabular}{l}
Compute the CS decomposition of a block- \\
partitioned unitary matrix
\end{tabular}

\section*{See Also}

\section*{CS Computational Routines}
?orcsd/?uncsd
Computes the CS decomposition of a block-partitioned orthogonal/unitary matrix.

\section*{Syntax}
```

call sorcsd( jobul, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12,
ldx12, x21, ldx21, x22, ldx22, theta, ul, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work,
lwork, iwork, info )
call dorcsd( jobul, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12,
ldx12, x21, ldx21, x22, ldx22, theta, ul, ldul, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work,
lwork, iwork, info )
call cuncsd( jobul, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12,
ldx12, x21, ldx21, x22, ldx22, theta, ul, ldul, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work,
lwork, rwork, lrwork, iwork, info )
call zuncsd( jobul, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12,
ldx12, x21, ldx21, x22, ldx22, theta, ul, ldul, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work,
lwork, rwork, lrwork, iwork, info )
call orcsd( x11,x12,x21,x22,theta,u1,u2,v1t,v2t[,jobul][,jobu2][,jobv1t][,jobv2t]
[,trans][,signs][,info] )
call uncsd( x11,x12,x21,x22,theta,u1,u2,v1t,v2t[,jobu1][,jobu2][,jobv1t][,jobv2t]
[,trans][,signs][,info] )

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routines ?orcsd/?uncsd compute the CS decomposition of an \(m\)-by- \(m\) partitioned orthogonal matrix \(X\) :
\[
X=\left(\begin{array}{lll}
x_{11} & x_{12} \\
\hline x_{21} & \mid & x_{22}
\end{array}\right)=\left(\begin{array}{ll}
u_{1} & \mid \\
\hline & \mid
\end{array} u_{2}\right)\left(\begin{array}{ccccc}
I & 0 & 0 \mid 0 & 0 & 0 \\
0 & C & 0 \mid 0 & -S & 0 \\
0 & 0 & 0 \mid 0 & 0 & -I \\
\hline 0 & 0 & 0 \mid I & 0 & 0 \\
0 & S & 0 \mid 0 & C & 0 \\
0 & 0 & I \mid 0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
v_{1} & \mid & \\
\hline & \mid & v_{2}
\end{array}\right)^{T}
\]
or unitary matrix:
\[
X=\left(\begin{array}{lll}
x_{11} & x_{12} \\
\hline x_{21} & \mid & x_{22}
\end{array}\right)=\left(\begin{array}{ll}
u_{1} & \mid \\
\hline & \mid
\end{array} u_{2}\left(\begin{array}{ccccc}
I & 0 & 0 \mid 0 & 0 & 0 \\
0 & C & 0 \mid 0 & -S & 0 \\
0 & 0 & 0 \mid 0 & 0 & -I \\
\hline 0 & 0 & 0 \mid I & 0 & 0 \\
0 & S & 0 \mid 0 & C & 0 \\
0 & 0 & I \mid 0 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
v_{1} & \mid & \\
\hline & \mid & v_{2}
\end{array}\right)^{H}\right.
\]
\(x_{11}\) is \(p\)-by- \(q\). The orthogonal/unitary matrices \(u_{1}, u_{2}, v_{1}\), and \(v_{2}\) are \(p\)-by- \(p,(m-p)\)-by- \((m-p), q\)-by- \(q,(m-q)\) -by- \((m-q)\), respectively. \(C\) and \(S\) are \(r\)-by- \(r\) nonnegative diagonal matrices satisfying \(C^{2}+S^{2}=I\), in which \(r\) \(=\min (p, m-p, q, m-q)\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobu1 & CHARACTER. If equals \(Y\), then \(u_{1}\) is computed. Otherwise, \(u_{1}\) is not computed. \\
\hline jobu2 & CHARACTER. If equals \(Y\), then \(u_{2}\) is computed. Otherwise, \(u_{2}\) is not computed. \\
\hline jobv1t & CHARACTER. If equals \(Y\), then \(v_{1}{ }^{t}\) is computed. Otherwise, \(v_{1}{ }^{t}\) is not computed. \\
\hline jobv2t & CHARACTER. If equals \(Y\), then \(v_{2}{ }^{t}\) is computed. Otherwise, \(v_{2}{ }^{t}\) is not computed. \\
\hline trans & CHARACTER \\
\hline & \begin{tabular}{ll}
\(=\) ' \(T\) ': & \(x, u_{1}, u_{2}, v_{1}{ }^{t}, v_{2}{ }^{t}\) are stored in row-major order. \\
otherwise & \begin{tabular}{l}
\(x, u_{1}, u_{2}, v_{1}{ }^{t}, v_{2}{ }^{t}\) are stored in column-major \\
order.
\end{tabular}
\end{tabular} \\
\hline signs & CHARACTER \\
\hline & \[
\begin{array}{ll}
= & \text { 'o': } \\
\text { The lower-left block is made nonpositive (the } \\
\text { "other" convention). }
\end{array}
\] \\
\hline & otherwise The upper-right block is made nonpositive (the "default" convention). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline m & INTEGER. The number of rows and columns of the matrix \(X\). \\
\hline p & INTEGER. The number of rows in \(x_{11}\) and \(x_{12} .0 \leq p \leq m\). \\
\hline q & INTEGER. The number of columns in \(x_{11}\) and \(x_{21} .0 \leq q \leq m\). \\
\hline \multirow[t]{6}{*}{x11, x12, x21, x22} & REAL for sorcsd \\
\hline & DOUBLE PRECISION for dorcsd \\
\hline & COMPLEX for cuncsd \\
\hline & DOUBLE COMPLEX for zuncsd \\
\hline & Arrays of size x11 (\(1 d x 11, q), x 12(1 d x 12, m-q), x 21(1 d x 21, q)\), and \(x 22\) (ldx22,m-q). \\
\hline & Contain the parts of the orthogonal/unitary matrix whose CSD is desired. \\
\hline \(1 d x 11,1 d x 12,1 d x 21,1 d x 22\) & INTEGER. The leading dimensions of the parts of array \(X\). \(1 d x 11 \geq \max (1\), \(p), I d x 12 \geq \max (1, p), I d x 21 \geq \max (1, m-p), I d x 22 \geq \max (1, m-p)\). \\
\hline Idu1 & INTEGER. The leading dimension of the array \(u_{1}\). If jobul \(=' ~ Y, ~ I d u 1 \geq\) \(\max (1, p)\). \\
\hline Idu2 & INTEGER. The leading dimension of the array \(u_{2}\). If jobu2 \(=\) ' \(Y\) ', Idu2 \(\geq\) \(\max (1, m-p)\). \\
\hline \(1 d v 1 t\) & INTEGER. The leading dimension of the array \(v 1 t\). If jobvit \(=' Y\) ', ldv1t \(\geq\) \(\max (1, q)\). \\
\hline \(1 d v 2 t\) & INTEGER. The leading dimension of the array \(v 2 t\). If jobv2t \(=' Y\) ', ldv2tz \(\max (1, m-q)\). \\
\hline \multirow[t]{5}{*}{work} & REAL for sorcsd \\
\hline & DOUBLE PRECISION for dorcsd \\
\hline & COMPLEX for cuncsd \\
\hline & DOUBLE COMPLEX for zuncsd \\
\hline & Workspace array, size (max (1, lwork)). \\
\hline \multirow[t]{2}{*}{Iwork} & INTEGER. The size of the work array. Constraints: \\
\hline & If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for cuncsd \\
\hline & DOUBLE PRECISION for zuncsd \\
\hline & Workspace array, size (max (1, Irwork)). \\
\hline lrwork & INTEGER. The size of the rwork array. Constraints: \\
\hline
\end{tabular}

If \(\operatorname{lrwork}=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the rwork array, returns this value as the first entry of the rwork array, and no error message related to lrwork is issued by xerbla.

INTEGER. Workspace array, dimension \(m\).

\section*{Output Parameters}

REAL for sorcsd
DOUBLE PRECISION for dorcsd
COMPLEX for cuncsd
DOUBLE COMPLEX for zuncsd
Array, size (\(1 d u 2, m-p\)).
If jobu2 \(=\) ' \(Y\) ', u2 contains the (\(m-p\))-by- \((m-p)\) orthogonal/unitary matrix
\(u_{2}\).
REAL for sorcsd
DOUBLE PRECISION for dorcsd
COMPLEX for cuncsd
DOUBLE COMPLEX for zuncsd
Array, size (Idv1t,*) .
If jobvlt \(=\) ' \(Y\) ', vIt contains the \(q\)-by- \(q\) orthogonal matrix \(v_{1}{ }^{T}\) or unitary matrix \(v_{1}{ }^{H}\).

REAL for sorcsd
DOUBLE PRECISION for dorcsd
COMPLEX for cuncsd

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.
Specific details for the routine ?orcsd/?uncsd interface are as follows:
\begin{tabular}{ll}
\(x 11\) & Holds the block of matrix \(X\) of size \((p, q)\). \\
\(x 12\) & Holds the block of matrix \(X\) of size \((p, m-q)\). \\
\(x 21\) & Holds the block of matrix \(X\) of size \((m-p, q)\). \\
theta & Holds the block of matrix \(X\) of size \((m-p, m-q)\). \\
\(u 1\) & Holds the vector of length \(r=\min (p, m-p, q, m-q)\). \\
v1t & Holds the matrix of size \((p, p)\). \\
Holds the matrix of size \((m-p, m-p)\).
\end{tabular}
```

v2t Holds the matrix of size (m-q,m-q).
jobsu1 Indicates whether }\mp@subsup{u}{1}{}\mathrm{ is computed. Must be 'Y' or 'O'.
jobsu2 Indicates whether }\mp@subsup{u}{2}{}\mathrm{ is computed. Must be 'Y' or 'O'.
jobvlt Indicates whether v}\mp@subsup{v}{1}{t}\mathrm{ is computed. Must be 'Y' or 'O'.
jobv2t Indicates whether v2t is computed. Must be 'Y' or 'O'.
trans Must be 'N' or 'T'.
signs Must be 'O' or 'D'.

```

\section*{See Also}
?bbcsd
xerbla
?orcsd2by1/?uncsd2by1
Computes the CS decomposition of a block-partitioned orthogonal/unitary matrix.

\section*{Syntax}
```

call sorcsd2by1( jobu1, jobu2, jobv1t, m, p, q, x11, ldx11, x21, ldx21, theta, ul, ldul,
u2, ldu2, vlt, ldvlt, work, lwork, iwork, info )
call dorcsd2by1( jobu1, jobu2, jobv1t, m, p, q, x11, ldx11, x21, ldx21, theta, ul, ldul,
u2, ldu2, vlt, ldvlt, work, lwork, iwork, info )
call cuncsd2by1( jobu1, jobu2, jobv1t, m, p, q, x11, ldx11, x21, ldx21, theta, ul, ldul,
u2, ldu2, vlt, ldvlt, work, lwork, rwork, lrwork, iwork, info )
call zuncsd2by1( jobu1, jobu2, jobv1t, m, p, q, x11, ldx11, x21, ldx21, theta, ul, ldul,
u2, ldu2, vlt, ldvlt, work, lwork, rwork, lrwork, iwork, info )
call orcsd2by1( x11,x21,theta,u1,u2,v1t[,jobu1][,jobu2][,jobv1t][,info] )
call uncsd2by1( x11,x21,theta,u1,u2,v1t[,jobu1][,jobu2][,jobv1t][,info] )

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routines ?orcsd2by1/?uncsd2by1 compute the CS decomposition of an \(m\)-by- \(q\) matrix \(X\) with orthonormal columns that has been partitioned into a 2-by-1 block structure:

\(x_{11}\) is \(p\)-by- \(q\). The orthogonal/unitary matrices \(u_{1}, u_{2}, v_{1}\), and \(v_{2}\) are \(p\)-by- \(p,(m-p)\)-by- \((m-p), q-\) by- \(q,(m-q)\) -by- \((m-q)\), respectively. \(C\) and \(S\) are \(r\)-by- \(r\) nonnegative diagonal matrices satisfying \(C^{2}+S^{2}=I\), in which \(r\) \(=\min (p, m-p, q, m-q)\).

\section*{Input Parameters}
```

jobu1 CHARACTER. If equal to ' }Y\mathrm{ ', then }\mp@subsup{u}{1}{}\mathrm{ is computed. Otherwise, }\mp@subsup{u}{1}{}\mathrm{ is not
computed.
CHARACTER. If equal to 'Y', then }\mp@subsup{u}{2}{}\mathrm{ is computed. Otherwise, }\mp@subsup{u}{2}{}\mathrm{ is not
computed.

```
m

P
q

CHARACTER. If equal to ' \(Y\) ', then \(u_{1}\) is computed. Otherwise, \(u_{1}\) is not computed.

CHARACTER. If equal to ' \(Y\) ', then \(u_{2}\) is computed. Otherwise, \(u_{2}\) is not computed.

CHARACTER. If equal to ' \(Y\) ', then \(v_{1}{ }^{t}\) is computed. Otherwise, \(v_{1}{ }^{t}\) is not computed.

INTEGER. The number of rows and columns of the matrix \(X\).
INTEGER. The number of rows in \(x_{11} .0 \leq p \leq m\).
INTEGER. The number of columns in \(x_{11} \cdot 0 \leq q \leq m\).
REAL for sorcsd2by1
DOUBLE PRECISION for dorcsd2by1
COMPLEX for cuncsd2by1
DOUBLE COMPLEX for zuncsd2by1
Array, size (Idx11,q).
On entry, the part of the orthogonal matrix whose CSD is desired.
INTEGER. The leading dimension of the array \(x 11.1 d x 11 \geq \max (1, p)\).
REAL for sorcsd2by1
DOUBLE PRECISION for dorcsd2by1

COMPLEX for cuncsd2by1
DOUBLE COMPLEX for zuncsd2by1
Array, size (\(/ d x 21, q\)).
On entry, the part of the orthogonal matrix whose CSD is desired.
INTEGER. The leading dimension of the array \(X . I d x 21 \geq \max (1, m-p)\).
INTEGER. The leading dimension of the array \(u_{1}\). If jobul \(=' Y\) ', 1 dul \(\geq\) \(\max (1, p)\).

INTEGER. The leading dimension of the array \(u_{2}\). If jobu2 \(=' Y\) ', Idu2 \(\geq\) \(\max (1, m-p)\).

INTEGER. The leading dimension of the array \(v 1 t\). If jobvit \(=' Y\) ', \(1 d v 1 t \geq\) \(\max (1, q)\).

REAL for sorcsd2by1
DOUBLE PRECISION for dorcsd2by1
COMPLEX for cuncsd2by1
DOUBLE COMPLEX for zuncsd2by1
Workspace array, size (max (1,1 work)).
INTEGER. The size of the work array. Constraints:
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

REAL for cuncsd2by1
DOUBLE PRECISION for zuncsd2by1
Workspace array, size (max (1, lrwork)).
INTEGER. The size of the rwork array. Constraints:
If lrwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the rwork array, returns this value as the first entry of the rwork array, and no error message related to lrwork is issued by xerbla.

INTEGER. Workspace array, dimension \(m-\min (p, m-p, q, m-q)\).

\section*{Output Parameters}
theta
REAL for sorcsd2by1
DOUBLE PRECISION for dorcsd2by1
COMPLEX for cuncsd2by1
DOUBLE COMPLEX for zuncsd2by1
Array, size (\(r\)), in which \(r=\min (p, m-p, q, m-q)\).
\(C=\operatorname{diag}(\cos (\) theta(1)), ..., \(\cos (t h e t a(r))\)), and
u1
\(S=\operatorname{diag}(\sin (t h e t a(1)), \ldots, \sin (t h e t a(r))\)).

REAL for sorcsd2by1
DOUBLE PRECISION for dorcsd2by1
COMPLEX for cuncsd2by1
DOUBLE COMPLEX for zuncsd2by1
Array, size (ldu1,p) .
If jobul \(=\) ' \(Y\) ', ul contains the \(p\)-by- \(p\) orthogonal/unitary matrix \(u_{1}\).
REAL for sorcsd2by1
DOUBLE PRECISION for dorcsd2by1
COMPLEX for cuncsd2by1
DOUBLE COMPLEX for zuncsd2by1
Array, size (Idu2,m-p).
If jobu2 \(=\) ' \(Y\) ', u2 contains the (\(m-p\))-by- \((m-p)\) orthogonal/unitary matrix \(u_{2}\).

REAL for sorcsd2by1
DOUBLE PRECISION for dorcsd2by1
COMPLEX for cuncsd2by1
DOUBLE COMPLEX for zuncsd2by1
Array, size (\(/ d v 1 t, q\)).
If jobvIt \(=\) ' \(Y\) ', vIt contains the \(q\)-by- \(q\) orthogonal matrix \(v_{1}{ }^{T}\) or unitary matrix \(v_{1}{ }^{H}\).

On exit,
If info \(=0, \quad\) work (1) returns the optimal lwork.
If info > 0, work (2:r) contains the values phi(1), ...,
phi (r-1) that, together with theta(1), ..., theta (\(r\)) define the matrix in intermediate bidiagonal-block form remaining after nonconvergence. info specifies the number of nonzero phi's.
\(<0:\) if info \(=-i\), the \(i\)-th argument has an illegal value
\(>0\) : ?orcsd2by1/?uncsd2by1 did not converge. See the description of
work above for details.

\section*{Fortran 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see Fortran 95 Interface Conventions.

Specific details for the routine ?orcsd2by1/?orcsd2by1 interface are as follows:
\begin{tabular}{ll}
x11 & Holds the block of matrix \(X_{11}\) of size \((p, q)\). \\
x21 & Holds the block of matrix \(X_{21}\) of size \((m-p, q)\). \\
theta & Holds the vector of length \(r=\min (p, m-p, q, m-q)\). \\
u1 & Holds the matrix \(u_{1}\) of size \((p, p)\). \\
u2 & Holds the matrix \(u_{2}\) of size \((m-p, m-p)\). \\
v1t & Holds the matrix \(v_{1}^{\top}\) or \(v_{1}{ }^{H}\) of size \((q, q)\). \\
jobu2 & Indicates whether \(u_{1}\) is computed. Must be 'Y' or 'O'. \\
jobv1t & Indicates whether \(u_{2}\) is computed. Must be 'Y' or 'O'.
\end{tabular}

\section*{See Also}
? bbecsd
xerbla

\section*{Generalized Symmetric Definite Eigenvalue Problems: LAPACK Driver Routines}

This topic describes LAPACK driver routines used for solving generalized symmetric definite eigenproblems. See also computational routines that can be called to solve these problems. Table "Driver Routines for Solving Generalized Symmetric Definite Eigenproblems" lists all such driver routines for the FORTRAN 77 interface. The corresponding routine names in the Fortran 95 interface are without the first symbol.
Driver Routines for Solving Generalized Symmetric Definite Eigenproblems
\begin{tabular}{ll}
\hline Routine Name & Operation performed \\
\hline sygv/hegv & \begin{tabular}{l}
Computes all eigenvalues and, optionally, eigenvectors of a real / complex \\
generalized symmetric /Hermitian positive-definite eigenproblem.
\end{tabular} \\
sygvd/hegvd & \begin{tabular}{l}
Computes all eigenvalues and, optionally, eigenvectors of a real / complex \\
generalized symmetric /Hermitian positive-definite eigenproblem. If eigenvectors \\
are desired, it uses a divide and conquer method.
\end{tabular} \\
sygvx/hegvx & \begin{tabular}{l}
Computes selected eigenvalues and, optionally, eigenvectors of a real / complex \\
generalized symmetric /Hermitian positive-definite eigenproblem. \\
spgv/hpgv
\end{tabular} \\
\begin{tabular}{l}
Computes all eigenvalues and, optionally, eigenvectors of a real / complex \\
generalized symmetric /Hermitian positive-definite eigenproblem with matrices in \\
packed storage.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
\hline Routine Name & Operation performed \\
\hline spgvd/hpgvd & \begin{tabular}{l}
Computes all eigenvalues and, optionally, eigenvectors of a real / complex \\
generalized symmetric /Hermitian positive-definite eigenproblem with matrices in \\
packed storage. If eigenvectors are desired, it uses a divide and conquer method. \\
spgvx/hpgvx \\
Computes selected eigenvalues and, optionally, eigenvectors of a real / complex \\
generalized symmetric /Hermitian positive-definite eigenproblem with matrices in \\
packed storage.
\end{tabular} \\
sbgv/hbgv & \begin{tabular}{l}
Computes all eigenvalues and, optionally, eigenvectors of a real / complex \\
generalized symmetric /Hermitian positive-definite eigenproblem with banded \\
matrices.
\end{tabular} \\
\begin{tabular}{l}
Computes all eigenvalues and, optionally, eigenvectors of a real / complex \\
generalized symmetric /Hermitian positive-definite eigenproblem with banded \\
matrices. If eigenvectors are desired, it uses a divide and conquer method.
\end{tabular} \\
sbgvx/hbgvx & \begin{tabular}{l}
Computes selected eigenvalues and, optionally, eigenvectors of a real / complex \\
generalized symmetric /Hermitian positive-definite eigenproblem with banded \\
matrices.
\end{tabular} \\
\hline
\end{tabular}
```

?sygv
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem.

```

\section*{Syntax}
```

call ssygv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)

```
call ssygv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)
call dsygv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)
call dsygv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)
call sygv(a, b, w [,itype] [,jobz] [,uplo] [,info])
```

call sygv(a, b, w [,itype] [,jobz] [,uplo] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form

Here \(A\) and \(B\) are assumed to be symmetric and \(B\) is also positive definite.

\section*{Input Parameters}
itype
jobz

INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype \(=1\), the problem type is \(A \star_{X}=\operatorname{lambda}{ }^{*} B^{*}{ }_{x}\);
if itype \(=2\), the problem type is \(A^{*} B^{*} x=l a m b d a^{*} x\);
if itype \(=3\), the problem type is \(B^{\star} A^{\star} x=\) lambda* \(x\).
CHARACTER*1. Must be 'N' or 'V'.
```

If jobz = 'N', then compute eigenvalues only.
If jobz = ' V ', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays $a$ and $b$ store the upper triangles of $A$ and $B$;
If uplo = 'L', arrays $a$ and $b$ store the lower triangles of $A$ and $B$.
INTEGER. The order of the matrices $A$ and $B(n \geq 0)$.
REAL for ssygv
DOUBLE PRECISION for dsygv.

```

\section*{Arrays:}
\(a(I d a, *)\) contains the upper or lower triangle of the symmetric matrix \(A\), as specified by uplo.
The second dimension of \(a\) must be at least \(\max (1, n)\).
\(b(/ d b, *)\) contains the upper or lower triangle of the symmetric positive definite matrix \(B\), as specified by uplo.

The second dimension of \(b\) must be at least \(\max (1, n)\).
work is a workspace array, its dimension max (1, lwork).
integer. The leading dimension of \(a\); at least \(\max (1, n)\).
integer. The leading dimension of \(b\); at least \(\max (1, n)\).
INTEGER.
The dimension of the array work;
lwork \(\geq \max (1,3 n-1)\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to /work is issued by xerbla.

See Application Notes for the suggested value of /work.

\section*{Output Parameters}
a
b
w

On exit, if jobz = 'V', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{T}{ }_{B^{\star}} Z=1\);

If jobz = 'N', then on exit the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of \(A\), including the diagonal, is destroyed.

On exit, if info \(\leq n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T} * U\) or \(B=\) \(L^{*} L^{T}\).

REAL for ssygv

DOUBLE PRECISION for dsygv.
Array, size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
work (1)
info
On exit, if info \(=0\), then work(1) returns the required minimal size of Iwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0 , spotrf/dpotrf or ssyev/dsyev returned an error code:
If info \(=i \leq n\), ssyev/dsyev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;

If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sygv interface are the following:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
b Holds the matrix B of size ( }n,n)\mathrm{ .
w Holds the vector of length n.
itype
jobz Must be 'N' or 'V'. The default value is 'N'.
uplo Must be 'U' or 'L'. The default value is 'U'.

```

\section*{Application Notes}

For optimum performance use 1 wor \(k \geq(n b+2) * n\), where \(n b\) is the blocksize for ssytrd/dsytrd returned by ilaenv.

If it is not clear how much workspace to supply, use a generous value of Iwork (or liwork) for the first run or set lwork \(=-1\) (liwork \(=-1\)).

If Iwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.
If \(\operatorname{lwork}=-1\) (\(\operatorname{liwork}=-1\)), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if work (liwork) is less than the minimal required value and is not equal to -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
```

?hegv
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
positive-definite eigenproblem.

```

Syntax
```

call chegv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, info)
call zhegv(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, info)
call hegv(a, b, w [,itype] [,jobz] [,uplo] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form

Here \(A\) and \(B\) are assumed to be Hermitian and \(B\) is also positive definite.

\section*{Input Parameters}
```

itype
jobz
uplo
n
a,b, work

```

INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved:
if itype \(=1\), the problem type is \(A \star_{X}=\operatorname{lambda}{ }^{\star} B^{\star} X\);
if itype \(=2\), the problem type is \(A{ }^{*} B^{*} X=\) lambda*x;
if itype \(=3\), the problem type is \(B^{\star} A^{\star} X=\) lambda* \(x\).
CHARACTER*1. Must be 'N' or 'V'.
If jobz = ' \(N\) ', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'U' or 'L'.
If uplo \(=\) 'U', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\);
If uplo \(=\) 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\).
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
COMPLEX for chegv
DOUBLE COMPLEX for zhegv.
Arrays:
\(a(/ d a, *)\) contains the upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo.

The second dimension of \(a\) must be at least \(\max (1, n)\).
\(b(/ d b, *)\) contains the upper or lower triangle of the Hermitian positive definite matrix \(B\), as specified by uplo.

The second dimension of \(b\) must be at least \(\max (1, n)\).

Ida

\section*{1 db}
lwork
rwork
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of \(a\); at least max \((1, n)\).
INTEGER. The leading dimension of \(b\); at least max \((1, n)\).
INTEGER.
The dimension of the array work; lwork \(\geq \max (1,2 n-1)\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.
REAL for chegv
DOUBLE PRECISION for zhegv.
Workspace array, size at least max(1, 3n-2).

\section*{Output Parameters}
a
b
w
work(1)
info
On exit, if jobz = 'V', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{H \star} B^{\star} Z=1\);
if itype \(=3, Z^{H *} \operatorname{inv}(B) * Z=I\);
If \(j o b z=\) 'N', then on exit the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of \(A\), including the diagonal, is destroyed.

On exit, if info \(\leq n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H \star} U\) or \(B=\) \(L^{\star} L^{H}\).

REAL for chegv
DOUBLE PRECISION for zhegv.
Array, size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
On exit, if info \(=0\), then work(1) returns the required minimal size of Iwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument has an illegal value.
If info > 0, cpotrf/zpotrf or cheev/zheev return an error code:
If info \(=i \leq n\), cheev/zheev fails to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal do not converge to zero;

If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) can not be completed and no eigenvalues or eigenvectors are computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hegv interface are the following:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
b Holds the matrix B of size ( }n,n)\mathrm{ .
w Holds the vector of length n.
itype Must be 1, 2, or 3. The default value is 1.
jobz Must be 'N' or 'V'. The default value is 'N'.
uplo Must be 'U' or'L'. The default value is 'U'.

```

\section*{Application Notes}

For optimum performance use /work \(\geq(n b+1)^{*} n\), where \(n b\) is the blocksize for chetrd/zhetrd returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set
lwork \(=-1\).
If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set Iwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
```

?sygvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem using a divide and conquer method.
Syntax

```
```

call ssygvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, iwork, liwork, info)

```
call ssygvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, iwork, liwork, info)
call dsygvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, iwork, liwork, info)
call dsygvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, iwork, liwork, info)
call sygvd(a, b, w [,itype] [,jobz] [,uplo] [,info])
```

call sygvd(a, b, w [,itype] [,jobz] [,uplo] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form

Here \(A\) and \(B\) are assumed to be symmetric and \(B\) is also positive definite.
It uses a divide and conquer algorithm.

\section*{Input Parameters}
itype
jobz
uplo
n
\(a, b\), work

1da
1 db
lwork

INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved:
if itype \(=1\), the problem type is \(A \star_{X}=\operatorname{lambda}{ }^{*}{ }^{*}{ }^{*} X\);
if itype \(=2\), the problem type is \(A^{*} B^{*} x=l a m b d a{ }^{*} x\);
if itype \(=3\), the problem type is \(B^{\star} A^{\star} \mathrm{x}=\operatorname{lambda}{ }^{\star} \mathrm{x}\).
CHARACTER*1. Must be 'N' or 'V'.
If jobz = ' \(N\) ', then compute eigenvalues only.
If jobz \(=\) ' V ', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\);
If uplo = 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\).
Integer. The order of the matrices \(A\) and \(B(n \geq 0)\).
REAL for ssygvd
DOUBLE PRECISION for dsygvd.

\section*{Arrays:}
\(a(l d a, *)\) contains the upper or lower triangle of the symmetric matrix \(A\), as specified by uplo.
The second dimension of \(a\) must be at least \(\max (1, n)\).
\(b(/ d b, *)\) contains the upper or lower triangle of the symmetric positive definite matrix \(B\), as specified by uplo.

The second dimension of \(b\) must be at least \(\max (1, n)\).
work is a workspace array, its dimension max (1, lwork).
integer. The leading dimension of \(a\); at least \(\max (1, n)\).
integer. The leading dimension of \(b\); at least \(\max (1, n)\).
INTEGER.
The dimension of the array work.
Constraints:
If \(n \leq 1\), lwork \(\geq 1\);
If jobz \(=\) 'N' and \(n>1\), 1 work < \(2 n+1\);

If jobz \(=\) ' \(V\) ' and \(n>1\), lwork \(<2 n^{2}+6 n+1\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.

INTEGER.
Workspace array, its dimension max (1, lwork).
INTEGER.
The dimension of the array iwork.
Constraints:
If \(n \leq 1\), liwork \(\geq 1\);
If jobz = 'N' and n>1, liwork \(\geq\) 1;
If jobz = 'V' and \(n>1\), liwork \(\geq 5 n+3\).
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}
a
b
w
work(1)
iwork(1)
info

On exit, if jobz = 'V', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{T \star} B^{\star} Z=I\);
if itype \(=3, Z^{T}\) *inv \((B) * Z=I\);
If jobz = 'N', then on exit the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of \(A\), including the diagonal, is destroyed.

On exit, if info \(n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T} \star U\) or \(B=\) \(L^{\star} L^{T}\).

REAL for ssygvd
DOUBLE PRECISION for dsygvd.
Array, size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
On exit, if info \(=0\), then work (1) returns the required minimal size of Iwork.

On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful.

If info \(=-i\), the \(i\)-th argument had an illegal value.
If info \(>0\), an error code is returned as specified below.
- For infón:
- If info \(=i\) and \(j o b z=\) 'N', then the algorithm failed to converge; \(i\) off-diagonal elements of an intermediate tridiagonal form did not converge to zero.
- If jobz = 'V', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns infol (\(n\) +1) through mod (info, \(n+1\)).
- For info > \(n\) :
- If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sygvd interface are the following:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
b Holds the matrix B of size (n,n).
w Holds the vector of length n.
itype Must be 1, 2, or 3. The default value is 1.
jobz Must be 'N' or 'V'. The default value is 'N'.
uplo Must be 'U' or'L'. The default value is 'U'.

```

\section*{Application Notes}

If it is not clear how much workspace to supply, use a generous value of Iwork (or liwork) for the first run or set 1 work \(=-1\) (liwork \(=-1\)).
If Iwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork(1)) for subsequent runs.

If \(\operatorname{lwork}=-1\) (liwork \(=-1\)), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if work (liwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\footnotetext{
?hegvd
Computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem using a divide and conquer method.
}

\section*{Syntax}
```

call chegvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, lrwork, iwork,
liwork, info)
call zhegvd(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, rwork, lrwork, iwork,
liwork, info)
call hegvd(a, b, w [,itype] [,jobz] [,uplo] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form

Here \(A\) and \(B\) are assumed to be Hermitian and \(B\) is also positive definite.
It uses a divide and conquer algorithm.

\section*{Input Parameters}
itype
jobz CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'U' or 'L'.
If uplo \(=\) 'U', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\);
If uplo \(=\) 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\).
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
COMPLEX for chegvd
DOUBLE COMPLEX for zhegvd.

\section*{Arrays:}
\(a(/ d a, *)\) contains the upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo.
The second dimension of \(a\) must be at least \(\max (1, n)\).
\(b(/ d b, *)\) contains the upper or lower triangle of the Hermitian positive definite matrix \(B\), as specified by uplo.

The second dimension of \(b\) must be at least max \((1, n)\).
```

lda
ldb
lwork
rwork
lrwork
iwork
INTEGER. The leading dimension of $a$; at least max $(1, n)$.
INTEGER. The leading dimension of $b$; at least max $(1, n)$.
INTEGER.
The dimension of the array work.
Constraints:
If $n \leq 1$, lwork $\geq 1$;
If jobz = 'N' and $n>1$, lwork $\geq n+1$;
If jobz $=$ 'V' and $n>1,1$ work $\geq n^{2}+2 n$.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to lwork or Irwork or liwork is issued by xerbla. See Application Notes for details.
REAL for chegvd
DOUBLE PRECISION for zhegvd.
Workspace array, size max (1, lrwork).
INTEGER.
The dimension of the array rwork.
Constraints:
If $n \leq 1$, lrwork $\geq 1$;
If jobz $=$ ' $N$ ' and $n>1$, lrwork $\geq n$;
If jobz $=$ 'V' and $n>1$, lrwork $\geq 2 n^{2}+5 n+1$.
If $\operatorname{lrwork}=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.
INTEGER.
Workspace array, size max (1, liwork).
INTEGER.
The dimension of the array iwork.

```

\section*{Constraints:}
```

If $n \leq 1$, liwork $\geq 1$;
If jobz = 'N' and n>1, liwork $\geq 1$;
If jobz $=$ 'V' and $n>1$, liwork $\geq 5 n+3$.

```
work is a workspace array, its dimension max (1, lwork).

If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}
a
b
w
work(1)
rwork(1)
iwork(1)
info

On exit, if jobz = 'V', then if info \(=0\), a contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{H_{\star}} B^{\star} Z=I\);
if itype \(=3, Z^{H \star} \operatorname{inv}(B) * Z=I\);
If \(j o b z=\) 'N', then on exit the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of \(A\), including the diagonal, is destroyed.

On exit, if info \(n n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H *} U\) or \(B=\) \(L^{\star} L^{H}\).

REAL for chegvd
DOUBLE PRECISION for zhegvd.
Array, size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
On exit, if info \(=0\), then work (1) returns the required minimal size of Iwork.

On exit, if info \(=0\), then rwork (1) returns the required minimal size of Irwork.

On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info \(=i\), and \(j o b z=' N\) ', then the algorithm failed to converge; \(i\) offdiagonal elements of an intermediate tridiagonal form did not converge to zero;
if info \(=i\), and \(j o b z=' V\) ', then the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns infol \((n+1)\) through mod (info, \(n+1)\).
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hegvd interface are the following:
\begin{tabular}{ll}
\(a\) & Holds the matrix \(A\) of size \((n, n)\). \\
\(b\) & Holds the matrix \(B\) of size \((n, n)\). \\
\(w\) & Holds the vector of length \(n\). \\
itype & Must be 1,2 , or 3. The default value is 1. \\
jobz \(u p l o\) & Must be 'N' or 'V'. The default value is ' \(N\) '. \\
& Must be 'U' or 'L'. The default value is ' U '.
\end{tabular}

\section*{Application Notes}

If you are in doubt how much workspace to supply, use a generous value of Iwork (liwork or Irwork) for the first run or set lwork \(=-1\) (liwork \(=-1\), lrwork \(=-1\)).
If you choose the first option and set any of admissible Iwork (liwork or Irwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork) on exit. Use this value (work (1), iwork (1), rwork (1)) for subsequent runs.

If you set \(\operatorname{lwork}=-1\) (liwork \(=-1\), lrwork \(=-1\)), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.

Note that if you set Iwork (liwork, Irwork) to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?sygvx \\ Computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem.}

\section*{Syntax}
```

call ssygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z,
ldz, work, lwork, iwork, ifail, info)
call dsygvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z,
ldz, work, lwork, iwork, ifail, info)
call sygvx(a, b, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol]
[,info])

```

Include Files
- mkl.fi, lapack.f90

Description

The routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form

Here \(A\) and \(B\) are assumed to be symmetric and \(B\) is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
itype
jobz
range
uplo
n
a, b, work

Ida
\(1 d b\)
vl, vu

INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved:
if itype \(=1\), the problem type is \(A *_{X}=\lambda \star^{*}{ }^{*} X^{\prime}\);
if itype \(=2\), the problem type is \(A^{*} B^{*} x=\lambda^{*} x\);
if itype \(=3\), the problem type is \(B^{\star} A^{\star} x=\lambda^{*} x\).
CHARACTER*1. Must be 'N' or 'V'.
If jobz = ' \(N\) ', then compute eigenvalues only.
If jobz \(=\) ' V ', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range \(=\) ' A ', the routine computes all eigenvalues.
If range \(=\) ' \(V\) ', the routine computes eigenvalues lambda(i) in the halfopen interval:
vl<lambda (i) \(\leq v u\).
If range \(=\) 'I', the routine computes eigenvalues with indices il to iu.
CHARACTER*1. Must be 'U' or 'L'.
If uplo \(=\) ' U', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\);
If uplo \(=\) 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\).
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
REAL for ssygvx
DOUBLE PRECISION for dsygvx.

\section*{Arrays:}
\(a(I d a, *)\) contains the upper or lower triangle of the symmetric matrix \(A\), as specified by uplo.
The second dimension of \(a\) must be at least \(\max (1, n)\).
\(b(I d b, *)\) contains the upper or lower triangle of the symmetric positive definite matrix \(B\), as specified by uplo.

The second dimension of \(b\) must be at least \(\max (1, n)\).
work is a workspace array, its dimension max (1,1 work).
INTEGER. The leading dimension of \(a\); at least max \((1, n)\).
INTEGER. The leading dimension of \(b\); at least max \((1, n)\).
REAL for ssygvx
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{} & DOUBLE PRECISION for dsygvx. \\
\hline & If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) 'A' or 'I', v/ and vu are not referenced. \\
\hline \multirow[t]{5}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and iu=0 \\
\hline & if \(n=0\). \\
\hline & If range \(=\) ' A ' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{2}{*}{abstol} & REAL for ssygvx \\
\hline & DOUBLE PRECISION for dsygvx. The absolute error tolerance for the eigenvalues. See Application Notes for more information. \\
\hline \multirow[t]{2}{*}{\(1 d z\)} & INTEGER. The leading dimension of the output array z. Constraints: \\
\hline & \(I d z \geq 1 ;\) if \(j o b z=V^{\prime} V^{\prime}, 1 d z \geq \max (1, n)\). \\
\hline \multirow[t]{5}{*}{1 work} & INTEGER. \\
\hline & The dimension of the array work; \\
\hline & I work < max \((1,8 n)\). \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla. \\
\hline & See Application Notes for the suggested value of lwork. \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, size at least max \((1,5 n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
\(b\)
m
\(W, Z\)

On exit, the upper triangle (if uplo = 'U') or the lower triangle (if uplo = ' L ') of \(A\), including the diagonal, is overwritten.

On exit, if info \(n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T} * U\) or \(B=\) \(L^{\star} L^{T}\).

INTEGER. The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=\) 'I',
\(m=i u-i l+1\).
REAL for ssygvx
DOUBLE PRECISION for dsygvx.

Arrays:
\(w(*)\), size at least \(\max (1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues in ascending order.
z (Idz,*).
The second dimension of \(z\) must be at least max \((1, m)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{T \star} B^{\star} Z=1\);
if itype \(=3, Z^{T *} \operatorname{inv}(B) * Z=I\);
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.
work (1)
ifail
info

On exit, if info \(=0\), then work(1) returns the required minimal size of Iwork.

INTEGER.
Array, size at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\) th argument had an illegal value.
If info > 0, spotrf/dpotrf and ssyevx/dsyevx returned an error code:
If info \(=i \leq n\), ssyevx/dsyevx failed to converge, and \(i\) eigenvectors failed to converge. Their indices are stored in the array ifail;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sygvx interface are the following:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
b Holds the matrix B of size ( }n,n)\mathrm{ .
w Holds the vector of length n.
z
ifail
itype
uplo
vl
vu
il
iu
abstol
jobz
Holds the matrix $A$ of size $(n, n)$.
Holds the matrix $B$ of size $(n, n)$.
Holds the vector of length $n$.
Holds the matrix $Z$ of size $(n, n)$, where the values $n$ and $m$ are significant.
Holds the vector of length $n$.
Must be 1,2 , or 3 . The default value is 1 .
Must be 'U' or 'L'. The default value is 'U'.
Default value for this element is $v l=-\operatorname{HUGE}(v /)$.
Default value for this element is $v u=\operatorname{HUGE}(v /)$.
Default value for this argument is $i l=1$.
Default value for this argument is $i u=n$.
Default value for this element is abstol $=0.0 \_W P$.
Restored based on the presence of the argument $z$ as follows:
jobz = 'V', if $z$ is present,
jobz $=$ ' $N$ ', if $z$ is omitted.

```
range

Note that there will be an error condition if ifail is present and \(z\) is omitted.
Restored based on the presence of arguments \(v l, v u, i l, i u\) as follows:
range \(=\) ' \(V\) ', if one of or both \(v /\) and \(v u\) are present,
range \(=\) 'I', if one of or both \(i l\) and \(i u\) are present,
range \(=\) ' \(A\) ', if none of \(v /, v u, i l, i u\) is present,
Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both il and iu are present.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.
If \(a b s t o l\) is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) is used as tolerance, where \(T\) is the tridiagonal matrix obtained by reducing \(C\) to tridiagonal form, where \(C\) is the symmetric matrix of the standard symmetric problem to which the generalized problem is transformed. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2^{*}\) ? lamch('S'), not zero.
If this routine returns with info >0, indicating that some eigenvectors did not converge, set abstol to 2*? lamch('S').

For optimum performance use /work \(\geq(n b+3)^{*} n\), where \(n b\) is the blocksize for ssytrd/dsytrd returned by ilaenv.

If it is not clear how much workspace to supply, use a generous value of Iwork for the first run, or set lwork \(=-1\).

In first case the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If 1 work \(=-1\), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if Iwork is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?hegvx \\ Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian positive-definite eigenproblem.}

\section*{Syntax}
```

call chegvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z,
ldz, work, lwork, rwork, iwork, ifail, info)
call zhegvx(itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z,
ldz, work, lwork, rwork, iwork, ifail, info)
call hegvx(a, b, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol]
[,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form

Here \(A\) and \(B\) are assumed to be Hermitian and \(B\) is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
itype
jobz
range

INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved:
if itype \(=1\), the problem type is \(A^{*} X=\lambda^{*} B^{*} x\);
if itype \(=2\), the problem type is \(A \star^{*} \star^{*} X=\lambda^{\star} X\);
if itype \(=3\), the problem type is \(B^{\star} A{ }^{\star} X=\lambda^{\star} X\).
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range \(=\) ' A ', the routine computes all eigenvalues.
If range \(=\) ' \(V\) ', the routine computes eigenvalues lambda(i) in the halfopen interval:
vl<lambda (i) \(\leq v u\).
If range \(=\) 'I', the routine computes eigenvalues with indices il to iu.
CHARACTER*1. Must be 'U' or 'L'.
If uplo \(=\) 'U', arrays \(a\) and \(b\) store the upper triangles of \(A\) and \(B\);
If uplo \(=\) 'L', arrays \(a\) and \(b\) store the lower triangles of \(A\) and \(B\).
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
COMPLEX for chegvx
DOUBLE COMPLEX for zhegvx.

\section*{Arrays:}
\(a(I d a, *)\) contains the upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo.
The second dimension of \(a\) must be at least \(\max (1, n)\).
\(b(I d b, *)\) contains the upper or lower triangle of the Hermitian positive definite matrix \(B\), as specified by uplo.

The second dimension of \(b\) must be at least max \((1, n)\).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of \(a\); at least max \((1, n)\).
INTEGER. The leading dimension of \(b\); at least \(\max (1, n)\).
REAL for chegvx
DOUBLE PRECISION for zhegvx.
If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl< vu.
If range \(=\) 'A' or 'I', v/ and \(v u\) are not referenced.
INTEGER.
If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.

Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); \(i l=1\) and \(i u=0\)
if \(n=0\).
If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced.
REAL for chegvx
DOUBLE PRECISION for zhegvx.
The absolute error tolerance for the eigenvalues. See Application Notes for more information.

INTEGER. The leading dimension of the output array \(z\). Constraints:
\(l d z \geq 1\); if \(j o b z=' V ', l d z \geq \max (1, n)\).

\section*{Output Parameters}

INTEGER.
The dimension of the array work; 1 work \(\geq \max (1,2 n)\).
If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

See Application Notes for the suggested value of Iwork.
REAL for chegvx
DOUBLE PRECISION for zhegvx.
Workspace array, size at least max(1,7n).
INTEGER.
Workspace array, size at least max \((1,5 n)\).

On exit, the upper triangle (if uplo = 'U') or the lower triangle (if uplo = 'L') of \(A\), including the diagonal, is overwritten.

On exit, if info \(\leq n\), the part of \(b\) containing the matrix is overwritten by the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H} * U\) or \(B=\) \(L^{\star} L^{H}\).

INTEGER. The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=\) 'A', \(m=n\), and if range \(=\) 'I',
\(m=i u-i l+1\).

REAL for chegvx
DOUBLE PRECISION for zhegvx.
Array, size at least \(\max (1, n)\).
The first \(m\) elements of \(w\) contain the selected eigenvalues in ascending order.

COMPLEX for chegvx
DOUBLE COMPLEX for zhegvx.
Array \(z(I d z, *)\). The second dimension of \(z\) must be at least max \((1, m)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{H} * B * Z=1\);
if itype \(=3, Z^{H \star} \operatorname{inv}(B) * Z=I\);
If jobz = 'N', then \(z\) is not referenced.
```

work(1)
ifail
info
On exit, if info $=0$, then work(1) returns the required minimal size of Iwork.
INTEGER.
Array, size at least $\max (1, n)$.
If jobz $=$ ' $V$ ', then if info $=0$, the first $m$ elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th argument had an illegal value.
If info > 0, cpotrf/zpotrf and cheevx/zheevx returned an error code:
If info $=i \leq n$, cheevx/zheevx failed to converge, and $i$ eigenvectors failed to converge. Their indices are stored in the array ifail;
If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order $i$ of $B$ is not positive-definite. The factorization of $B$ could not be completed and no eigenvalues or eigenvectors were computed.

```

If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hegvx interface are the following:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
b Holds the matrix B of size (n,n).
w Holds the vector of length n.
Z
ifail
itype
uplo
vl
vu
il
Holds the matrix Z of size ( }n,n\mathrm{ ), where the values n and m}\mathrm{ are significant.
Holds the vector of length n.
Must be 1,2 , or 3 . The default value is 1 .
Must be 'U' or 'L'. The default value is 'U'.
Default value for this element is vl = - HUGE(v/).
Default value for this element is vu = HUGE(v/).
Default value for this argument is il = 1.

```
```

iu Default value for this argument is iu = n.
abstol
jobz
Default value for this argument is iu $=n$.
Default value for this element is abstol $=0.0 \_\mathrm{WP}$.
Restored based on the presence of the argument $z$ as follows:
jobz = 'V', if $z$ is present,
jobz = 'N', if $z$ is omitted.

```
range

Note that there will be an error condition if ifail is present and \(z\) is omitted.
Restored based on the presence of arguments \(v l, v u, i l, i u\) as follows:
range \(=\) ' \(V\) ', if one of or both \(v /\) and \(v u\) are present,
range \(=\) 'I', if one of or both \(i l\) and \(i u\) are present,
range \(=\) ' \(A\) ', if none of \(v l, v u, i l\), iu is present,
Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both il and iu are present.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If abstol is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(C\) to tridiagonal form, where \(C\) is the symmetric matrix of the standard symmetric problem to which the generalized problem is transformed. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero.
If this routine returns with info \(>0\), indicating that some eigenvectors did not converge, try setting abstol to 2*?lamch('S').

For optimum performance use \(/ w o r k \geq(n b+1)^{*} n\), where \(n b\) is the blocksize for chetrd/zhetrd returned by ilaenv.

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
```

?spgv
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem with matrices in packed storage.
Syntax

```
```

call sspgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)

```
call sspgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)
call dspgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)
```

call dspgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, info)

```
```

call spgv(ap, bp, w [,itype] [,uplo] [,z] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form

Here \(A\) and \(B\) are assumed to be symmetric, stored in packed format, and \(B\) is also positive definite.

\section*{Input Parameters}
itype
jobz
uplo
n
ap, bp, work
\(1 d z\)

Integer. Must be 1 or 2 or 3 . Specifies the problem type to be solved:
if itype \(=1\), the problem type is \(A *_{x}=\operatorname{lambda}{ }^{*}{ }^{*} x\);
if itype \(=2\), the problem type is \(A^{*} B^{*} x=\) lambda* \(x\);
if itype \(=3\), the problem type is \(B^{\star} A^{\star} \mathrm{x}=\operatorname{lambda}{ }^{*} x\).
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'U' or 'L'.
If uplo \(=\) 'U', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\);
If uplo = 'L', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\).
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
REAL for sspgv
DOUBLE PRECISION for dspgv.
Arrays:
\(a p\left({ }^{*}\right)\) contains the packed upper or lower triangle of the symmetric matrix \(A\), as specified by uplo.
The dimension of \(a p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
\(b p(*)\) contains the packed upper or lower triangle of the symmetric matrix \(B\), as specified by uplo.
The dimension of \(b p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
work \((*)\) is a workspace array, size at least \(\max (1,3 n)\).
INTEGER. The leading dimension of the output array \(z ; I d z \geq 1\). If jobz \(=\) 'V', ldz \(\geq \max (1, n)\).

\section*{Output Parameters}
bp

W, Z
info

On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T} * U\) or \(B=L^{\star} L^{T}\), in the same storage format as \(B\).

REAL for sspgv
DOUBLE PRECISION for dspgv.
Arrays:
\(w(*)\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
z(Idz,*).
The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{T \star} B^{\star} Z=I\);
if itype \(=3, Z^{T \star} \operatorname{inv}(B) * Z=I\);
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0, spptrf/dpptrf and sspev/dspev returned an error code:
If \(i n f o=i \leq n\), sspev/dspev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine spgv interface are the following:
\begin{tabular}{ll}
ap & Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\). \\
bp & Holds the array \(B\) of size \(\left(n^{*}(n+1) / 2\right)\). \\
\(w\) & Holds the vector with the number of elements \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\). \\
itype \begin{tabular}{ll}
uplo & Must be 1,2 , or 3. The default value is 1. \\
jobz & Must be 'U' or 'L'. The default value is ' \(\mathrm{U}^{\prime}\). \\
& Restored based on the presence of the argument \(z\) as follows: \\
& jobz \(=' \mathrm{~V}\) ', if \(z\) is present, \\
& jobz \(=' \mathrm{~N}^{\prime}\), if \(z\) is omitted.
\end{tabular}
\end{tabular}
```

?hpgv
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
positive-definite eigenproblem with matrices in packed
storage.
Syntax
call chpgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork, info)
call zhpgv(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, rwork, info)
call hpgv(ap, bp, w [,itype] [,uplo] [,z] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form

Here \(A\) and \(B\) are assumed to be Hermitian, stored in packed format, and \(B\) is also positive definite.

\section*{Input Parameters}
itype
jobz
uplo
n
ap, bp, work

INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved:
if itype \(=1\), the problem type is \(A \star_{X}=\operatorname{lambda}{ }^{\star} B^{\star} x\);
if itype \(=2\), the problem type is \(A{ }^{*} B^{*}{ }_{X}=\) lambda*x;
if itype \(=3\), the problem type is \(B^{\star} A^{*} X=\operatorname{lambda}{ }^{\star} x\).
CHARACTER*1. Must be 'N' or 'V'.
If jobz = ' N ', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'U' or 'L'.
If uplo \(=\) 'U', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\);
If uplo \(=\) 'L', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\).
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
COMPLEX for chpgv
DOUBLE COMPLEX for zhpgv.
Arrays:
\(a p(*)\) contains the packed upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo.
The dimension of \(a p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
\(b p\left({ }^{*}\right)\) contains the packed upper or lower triangle of the Hermitian matrix \(B\), as specified by uplo.

\section*{Output Parameters}

The dimension of \(b p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\). work \(\left({ }^{*}\right)\) is a workspace array, size at least max(1, \(\left.2 n-1\right)\).

INTEGER. The leading dimension of the output array \(z ; I d z \geq 1\). If jobz \(=\) 'V', \(I d z \geq \max (1, n)\).

REAL for chpgv
DOUBLE PRECISION for zhpgv.
Workspace array, size at least max(1, 3n-2).

On exit, the contents of \(a p\) are overwritten.
On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H *} U\) or \(B=L^{\star} L^{H}\), in the same storage format as \(B\).

REAL for chpgv
DOUBLE PRECISION for zhpgv.
Array, size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
COMPLEX for chpgv
DOUBLE COMPLEX for zhpgv.
Array z(Idz,*).
The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors.
The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{H \star} B^{\star} Z=I\);
if itype \(=3, Z^{H \star} \operatorname{inv}(B) * Z=I\);
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpev/zhpev returned an error code:
If info \(=i \leq n\), chpev/zhpev failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;

If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hpgv interface are the following:
\begin{tabular}{ll}
ap & Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\). \\
bp & Holds the array \(B\) of size \(\left(n^{*}(n+1) / 2\right)\). \\
\(w\) & Holds the vector with the number of elements \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\). \\
itype \begin{tabular}{ll}
uplo & Must be 1,2 , or 3. The default value is 1. \\
jobz & Must be 'U' or 'L'. The default value is ' \(U^{\prime}\). \\
& Restored based on the presence of the argument \(z\) as follows: \\
& jobz \(=' V '\), if \(z\) is present, \\
& jobz \(=' N '\), if \(z\) is omitted.
\end{tabular}
\end{tabular}
```

?spgvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem with matrices in packed storage using a
divide and conquer method.

```
Syntax
```

call sspgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, iwork, liwork, info)
call dspgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, iwork, liwork, info)
call spgvd(ap, bp, w [,itype] [,uplo] [,z] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form
\(A^{\star} X=\lambda{ }^{\star} B^{\star} X, \quad A^{\star} B^{\star} X=\lambda^{\star} X\), or \(B^{\star} A^{\star} X=\lambda^{\star} X\).
Here \(A\) and \(B\) are assumed to be symmetric, stored in packed format, and \(B\) is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
itype
jobz

INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved:
if itype \(=1\), the problem type is \(A^{*}{ }_{X}=\operatorname{lambda}{ }^{\star} B^{*} X\);
if itype \(=2\), the problem type is \(A^{*} B^{*} x=l a m b d a^{*} x\);
if itype \(=3\), the problem type is \(B^{\star} A^{\star} x=\operatorname{lambda}{ }^{\star} x\).
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
uplo
n
ap, bp, work
\(l d z\)
lwork
iwork
liwork

If jobz \(=\) ' V ', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'U' or 'L'.
If uplo \(=\) 'U', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\);
If uplo \(=\) 'L', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\).
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
REAL for sspgvd
DOUBLE PRECISION for dspgvd.
Arrays:
\(a p\left({ }^{*}\right)\) contains the packed upper or lower triangle of the symmetric matrix \(A\), as specified by uplo.
The dimension of \(a p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
\(b p\left(^{*}\right)\) contains the packed upper or lower triangle of the symmetric matrix \(B\), as specified by uplo.

The dimension of \(b p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
work is a workspace array, its dimension max (1,1 work).
INTEGER. The leading dimension of the output array \(z ; I d z \geq 1\). If jobz \(=\) 'V', \(I d z \geq \max (1, n)\).

INTEGER.
The dimension of the array work.

\section*{Constraints:}

If \(n \leq 1\), lwork \(\geq 1\);
If jobz = 'N' and \(n>1,1\) work \(\geq 2 n\);
If jobz \(=\) 'V' and \(n>1\), lwork \(\geq 2 n^{2}+6 n+1\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.

INTEGER.
Workspace array, dimension max (1, lwork).
INTEGER.
The dimension of the array iwork.
Constraints:
If \(n \leq 1\), liwork \(\geq 1\);
If jobz = 'N' and n>1, liwork \(\geq 1\);
If jobz = 'V' and \(n>1\), liwork \(\geq 5 n+3\).

If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the required sizes of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}
ap
bp

W, Z
work(1)
iwork(1)
info

On exit, the contents of ap are overwritten.
On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T} * U\) or \(B=L^{\star} L^{T}\), in the same storage format as \(B\).

REAL for sspgv
DOUBLE PRECISION for dspgv.

\section*{Arrays:}
\(w(*)\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
\(z(I d z, *)\).
The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors. The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{T \star} B^{\star} Z=1\);
if itype \(=3, Z^{T *} \operatorname{inv}(B) * Z=I\);
If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
On exit, if info \(=0\), then work (1) returns the required minimal size of Iwork.

On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0, spptrf/dpptrf and sspevd/dspevd returned an error code:
If info \(=i \leq n, s s p e v d / d s p e v d\) failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine spgvd interface are the following:
```

ap Holds the array A of size (n*(n+1)/2).
bp Holds the array B of size (n*(n+1)/2).
w Holds the vector with the number of elements n.
z Holds the matrix Z of size ( }n,n)\mathrm{ .
itype
uplo
jobz
Holds the array $A$ of size $\left(n^{*}(n+1) / 2\right)$.
Holds the array $B$ of size $\left(n^{*}(n+1) / 2\right)$.
Holds the vector with the number of elements $n$.
Holds the matrix $Z$ of size $(n, n)$.
Must be 1,2 , or 3 . The default value is 1 .
Must be 'U' or 'L'. The default value is 'U'.
Restored based on the presence of the argument $z$ as follows:
jobz $=$ ' $V$ ', if $z$ is present,
$j o b z=$ ' $N$ ', if $z$ is omitted.

```

\section*{Application Notes}

If it is not clear how much workspace to supply, use a generous value of Iwork (or liwork) for the first run, or set 1 work \(=-1\) (liwork \(=-1\)).

If Iwork (or liwork) has any of admissible sizes, which is no less than the minimal value described, then the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.
If 1 work \(=-1\) (liwork \(=-1\)), then the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if Iwork (liwork) is less than the minimal required value and is not equal to -1 , then the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
```

?hpgvd
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
positive-definite eigenproblem with matrices in packed
storage using a divide and conquer method.

```

Syntax
```

call chpgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, rwork, lrwork, iwork,
liwork, info)
call zhpgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, rwork, lrwork, iwork,
liwork, info)
call hpgvd(ap, bp, w [,itype] [,uplo] [,z] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form

Here \(A\) and \(B\) are assumed to be Hermitian, stored in packed format, and \(B\) is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
itype
jobz
uplo
n
ap, bp, work
ldz
l work

INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved:
if itype \(=1\), the problem type is \(A \star_{X}=\operatorname{lambda}{ }^{\star} B^{\star} X\);
if itype \(=2\), the problem type is \(A{ }^{\star} B^{\star} X=\operatorname{lambda}{ }^{\star} x\);
if itype \(=3\), the problem type is \(B^{\star} A^{\star} X=\) lambda* \(x\).
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
If jobz \(=\) ' V ', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\);
If uplo \(=\) 'L', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\).
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
COMPLEX for chpgvd
DOUBLE COMPLEX for zhpgvd.
Arrays:
\(a p(*)\) contains the packed upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo.

The dimension of ap must be at least max \(\left(1, n^{*}(n+1) / 2\right)\).
\(b p\left(^{*}\right)\) contains the packed upper or lower triangle of the Hermitian matrix \(B\), as specified by uplo.

The dimension of \(b p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of the output array \(z ; 1 d z \geq 1\). If \(j o b z=\) 'V', ldz \(\geq \max (1, n)\).

INTEGER.
The dimension of the array work.
Constraints:
If \(n \leq 1\), lwork \(\geq 1\);
If jobz \(=\) ' \(N\) ' and \(n>1\), lwor \(k \geq n\);
If jobz \(=\) 'V' and \(n>1\), lwork \(\geq 2 n\).

If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.
rwork
lrwork
iwork
liwork

REAL for chpgvd
DOUBLE PRECISION for zhpgvd.
Workspace array, its dimension max (1, lrwork).
INTEGER.
The dimension of the array rwork.
Constraints:
If \(n \leq 1\), lrwork \(\geq 1\);
If jobz \(=\) ' \(N\) ' and \(n>1\), Irwork \(\geq n\);
If jobz \(=\) ' \(V\) ' and \(n>1\), Irwork \(\geq 2 n^{2}+5 n+1\).
If Irwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

INTEGER.
Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array iwork.

\section*{Constraints:}

If \(n \leq 1\), liwork \(\geq 1\);
If jobz = 'N' and n>1, liwork \(\geq 1\);
If jobz \(=\) 'V' and \(n>1\), liwork \(\geq 5 n+3\).
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}
\(a p\)
bp

W

On exit, the contents of \(a p\) are overwritten.
On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H \star} U\) or \(B=L^{\star} L^{H}\), in the same storage format as \(B\).

REAL for chpgvd
DOUBLE PRECISION for zhpgvd.
Array, size at least \(\max (1, n)\).
```

    If info = 0, contains the eigenvalues in ascending order.
    z
COMPLEX for chpgvd
DOUBLE COMPLEX for zhpgvd.
Array z(/dz,*).
The second dimension of z must be at least max (1,n).
If jobz = 'V', then if info = 0, z contains the matrix Z of eigenvectors.
The eigenvectors are normalized as follows:
if itype = 1 or 2, Z Z
if itype = 3, Z H* inv (B)*Z = I;
If jobz = 'N', then z is not referenced.

```
work(1)
rwork(1)
iwork(1)
info
```

On exit, if info $=0$, then work (1) returns the required minimal size of Iwork.
On exit, if info $=0$, then rwork (1) returns the required minimal size of Irwork.
On exit, if info $=0$, then iwork (1) returns the required minimal size of liwork.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevd/zhpevd returned an error code:
If info $=i \leq n$, chpevd/zhpevd failed to converge, and $i$ off-diagonal elements of an intermediate tridiagonal did not converge to zero;
If info $=n+i$, for $1 \leq i \leq n$, then the leading minor of order $i$ of $B$ is not positive-definite. The factorization of $B$ could not be completed and no eigenvalues or eigenvectors were computed.

```

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hpgvd interface are the following:
\begin{tabular}{ll}
ap & Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\). \\
bp & Holds the array \(B\) of size \(\left(n^{*}(n+1) / 2\right)\). \\
Holds the vector with the number of elements \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\). \\
itype & Must be 1,2 , or 3. The default value is 1. \\
uplo & Must be 'U' or ' \(L\) '. The default value is ' \(U\) '. \\
jobz & Restored based on the presence of the argument \(z\) as follows:
\end{tabular}
```

jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

```

\section*{Application Notes}

If you are in doubt how much workspace to supply, use a generous value of /work (liwork or Irwork) for the first run or set 1 work \(=-1\) (liwork \(=-1\), lrwork \(=-1\)).
If you choose the first option and set any of admissible Iwork (liwork or Irwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork) on exit. Use this value (work (1), iwork (1), rwork (1)) for subsequent runs.
If you set lwork =-1 (liwork = -1, lrwork = -1), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.
Note that if you set /work (liwork, Irwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
```

?spgvx
Computes selected eigenvalues and, optionally,
eigenvectors of a real generalized symmetric definite
eigenproblem with matrices in packed storage.
Syntax

```
```

call sspgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz,

```
call sspgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz,
work, iwork, ifail, info)
work, iwork, ifail, info)
call dspgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz,
call dspgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz,
work, iwork, ifail, info)
work, iwork, ifail, info)
call spgvx(ap, bp, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail]
call spgvx(ap, bp, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail]
[,abstol] [,info])
```

[,abstol] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite eigenproblem, of the form

Here \(A\) and \(B\) are assumed to be symmetric, stored in packed format, and \(B\) is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
itype
INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved:
if itype \(=1\), the problem type is \(A *_{X}=\operatorname{lambda}{ }^{*}{ }^{*}{ }^{*}\);
```

    if itype = 2, the problem type is A* B*x = lambda*}x\mathrm{ ;
    if itype = 3, the problem type is B*A* x = lambda*x.
    CHARACTER*1. Must be 'N' or 'V'.
    If jobz = 'N', then compute eigenvalues only.
    If jobz = 'V', then compute eigenvalues and eigenvectors.
    CHARACTER*1. Must be 'A' or 'V' or 'I'.
    If range = 'A', the routine computes all eigenvalues.
    If range = 'V', the routine computes eigenvalues lambda(i) in the half-
    open interval:
    vl<lambda(i)\leqvu.
    If range = 'I', the routine computes eigenvalues with indices il to iu.
    CHARACTER*1. Must be 'U' or 'L'.
    If uplo = 'U', arrays ap and bp store the upper triangles of A and B;
    If uplo = 'L', arrays ap and bp store the lower triangles of A and B.
    INTEGER. The order of the matrices A and B(n\geq0).
    REAL for sspgvx
    DOUBLE PRECISION for dspgvx.
    Arrays:
    ap(*) contains the packed upper or lower triangle of the symmetric matrix
    A, as specified by uplo.
    The size of ap must be at least max(1, n*(n+1)/2).
    bp(*) contains the packed upper or lower triangle of the symmetric matrix
    B, as specified by uplo.
    The size of bp must be at least max(1, n*(n+1)/2).
    work(*) is a workspace array, size at least max(1, 8n).
    REAL for sspgvx
    DOUBLE PRECISION for dspgvx.
    If range = 'V', the lower and upper bounds of the interval to be searched
    for eigenvalues.
    Constraint: vl< vu.
    If range = 'A' or 'I',v/ and vu are not referenced.
    INTEGER.
    If range = 'I', the indices in ascending order of the smallest and largest
    eigenvalues to be returned.
    Constraint: 1 \leqil\leqiu\leqn, if n > 0; il=1 and iu=0
    if n = 0.
    ```

If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced.
abstol
\(1 d z\)
iwork

\section*{Output Parameters}
bp
m

REAL for sspgvx
DOUBLE PRECISION for dspgvx.
The absolute error tolerance for the eigenvalues. See Application Notes for more information.

INTEGER. The leading dimension of the output array \(z\). Constraints:
\(l d z \geq 1\); if \(j o b z=' V ', l d z \geq \max (1, n)\).
INTEGER.
Workspace array, size at least max(1,5n).

On exit, the contents of \(a p\) are overwritten.
On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{T} \star U\) or \(B=L \star L^{T}\), in the same storage format as \(B\).

INTEGER. The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=\) 'I',
\(m=i u-i l+1\).
REAL for sspgvx
DOUBLE PRECISION for dspgvx.
Arrays:
\(w(*)\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
z(Idz,*).
The second dimension of \(z\) must be at least max \((1, n)\).
If jobz = 'V', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{T \star} B^{\star} Z=1\);
if itype \(=3, Z^{T \star} \operatorname{inv}(B) * Z=I\);
If jobz = 'N', then \(z\) is not referenced.
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

Note: you must ensure that at least max \((1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

INTEGER.
Array, size at least max \((1, n)\).

If jobz = ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info \(>0\), the ifail contains the indices of the eigenvectors that failed to converge.
If jobz \(=\) ' N ', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0, spptrf/dpptrf and sspevx/dspevx returned an error code:
If info \(=i \leq n\), sspevx/dspevx failed to converge, and \(i\) eigenvectors failed to converge. Their indices are stored in the array ifail;

If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine spgvx interface are the following:
\begin{tabular}{|c|c|}
\hline \(a p\) & Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\). \\
\hline bp & Holds the array B of size (\(n *(n+1) / 2)\). \\
\hline w & Holds the vector with the number of elements \(n\). \\
\hline z & Holds the matrix \(Z\) of size (\(n, n\)), where the values \(n\) and \(m\) are significant. \\
\hline ifail & Holds the vector with the number of elements \(n\). \\
\hline itype & Must be 1,2 , or 3 . The default value is 1. \\
\hline uplo & Must be 'U' or 'L'. The default value is 'U'. \\
\hline vl & Default value for this element is \(v /=-\operatorname{HUGE}(v /)\). \\
\hline vu & Default value for this element is \(v u=\operatorname{HUGE}(v /)\). \\
\hline il & Default value for this argument is \(i 1=1\). \\
\hline iu & Default value for this argument is iu \(=n\). \\
\hline abstol & Default value for this element is abstol \(=0.0{ }_{-} \mathrm{WP}\). \\
\hline jobz & Restored based on the presence of the argument \(z\) as follows: \\
\hline & jobz = 'V', if \(z\) is present, \\
\hline & jobz = 'N', if \(z\) is omitted. \\
\hline
\end{tabular}

Note that there will be an error condition if ifail is present and \(z\) is omitted.
Restored based on the presence of arguments \(v l, v u, i l, i u\) as follows:
range \(=\) ' \(V\) ', if one of or both \(v /\) and \(v u\) are present,
```

range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl,vu,il, iu is present,

```

Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both il and iu are present.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If abstol is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) is used instead, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold \(2^{*}\) ? lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, set abstol to 2*? lamch('S').
```

?hpgvx
Computes selected eigenvalues and, optionally,
eigenvectors of a generalized Hermitian positive-
definite eigenproblem with matrices in packed
storage.

```

\section*{Syntax}
```

call chpgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz,
work, rwork, iwork, ifail, info)
call zhpgvx(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz,
work, rwork, iwork, ifail, info)
call hpgvx(ap, bp, w [,itype] [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail]
[,abstol] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form

Here \(A\) and \(B\) are assumed to be Hermitian, stored in packed format, and \(B\) is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
itype
INTEGER. Must be 1 or 2 or 3 . Specifies the problem type to be solved:
if itype \(=1\), the problem type is \(A \star_{X}=\operatorname{lambda}{ }^{\star} B^{\star} x\);
if itype \(=2\), the problem type is \(A{ }^{*} B^{*} X=\) lambda* \(X\);
if itype \(=3\), the problem type is \(B^{\star} A^{\star} X=\operatorname{lambda}{ }^{\star} x\).
```

jobz
range
uplo
n
ap, bp, work

```

CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.

CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range \(=\) 'A', the routine computes all eigenvalues.
If range \(=\) ' \(V\) ', the routine computes eigenvalues lambda(i) in the halfopen interval:
vl<lambda (i) \(\leq v u\).
If range \(=\) 'I', the routine computes eigenvalues with indices il to iu.
CHARACTER*1. Must be 'U' or 'L'.
If uplo \(=\) 'U', arrays \(a p\) and \(b p\) store the upper triangles of \(A\) and \(B\);
If uplo = 'L', arrays \(a p\) and \(b p\) store the lower triangles of \(A\) and \(B\).
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
COMPLEX for chpgvx
DOUBLE COMPLEX for zhpgvx.
Arrays:
\(a p(*)\) contains the packed upper or lower triangle of the Hermitian matrix \(A\), as specified by uplo.
The dimension of \(a p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
\(b p\) (*) contains the packed upper or lower triangle of the Hermitian matrix \(B\), as specified by uplo.

The dimension of \(b p\) must be at least \(\max \left(1, n^{*}(n+1) / 2\right)\).
work(*) is a workspace array, size at least max(1, \(2 n\)).
REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues.

Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.
INTEGER.
If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.

Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\)
if \(n=0\).
If range = 'A' or 'V', il and iu are not referenced.
REAL for chpgvx
DOUBLE PRECISION for zhpgvx.

The absolute error tolerance for the eigenvalues.
See Application Notes for more information.
\(1 d z\)

\section*{Output Parameters}

INTEGER. The leading dimension of the output array \(z ; 1 d z \geq 1\). If jobz \(=\) 'V', \(I d z \geq \max (1, n)\).

REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
Workspace array, size at least max(1, 7n).
INTEGER.
Workspace array, size at least max \((1,5 n)\).

On exit, the contents of \(a p\) are overwritten.
On exit, contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(B=U^{H \star} U\) or \(B=L^{\star} L^{H}\), in the same storage format as \(B\).

INTEGER. The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=\) 'A', \(m=n\), and if range \(=\) 'I',
\(m=i u-i l+1\).
REAL for chpgvx
DOUBLE PRECISION for zhpgvx.
Array, size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
COMPLEX for chpgvx
DOUBLE COMPLEX for zhpgvx.
Array z(Idz,*).
The second dimension of \(z\) must be at least max \((1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(A\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized as follows:
if itype \(=1\) or \(2, Z^{H_{\star}} B^{\star} Z=I\);
if itype \(=3, Z^{H \star} \operatorname{inv}(B) * Z=I\);
If jobz = 'N', then \(z\) is not referenced.
If an eigenvector fails to converge, then that column of \(z\) contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

Note: you must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and an upper bound must be used.

\author{
ifail \\ info
}

\section*{INTEGER.}

Array, size at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.

If jobz = 'N', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0, cpptrf/zpptrf and chpevx/zhpevx returned an error code:
If info = \(i \leq n\), chpevx/zhpevx failed to converge, and \(i\) eigenvectors failed to converge. Their indices are stored in the array ifail;

If info \(=n+i\), for \(1 \leq i \leq n\), then the leading minor of order \(i\) of \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hpgvx interface are the following:
\begin{tabular}{|c|c|}
\hline \(a p\) & Holds the array \(A\) of size \(\left(n^{*}(n+1) / 2\right)\). \\
\hline bp & Holds the array B of size (\(n *(n+1) / 2\)). \\
\hline w & Holds the vector with the number of elements \(n\). \\
\hline z & Holds the matrix \(Z\) of size (\(n, n\)), where the values \(n\) and \(m\) are significant. \\
\hline ifail & Holds the vector with the number of elements \(n\). \\
\hline itype & Must be 1,2 , or 3 . The default value is 1 . \\
\hline uplo & Must be 'U' or 'L'. The default value is 'U'. \\
\hline vl & Default value for this element is \(v /=-\operatorname{HUGE}(v /)\). \\
\hline vu & Default value for this element is \(v u=\operatorname{HUGE}(v /)\). \\
\hline il & Default value for this argument is il \(=1\). \\
\hline iu & Default value for this argument is iu \(=n\). \\
\hline abstol & Default value for this element is abstol \(=0.0{ }_{-} \mathrm{WP}\). \\
\hline jobz & Restored based on the presence of the argument \(z\) as follows: \\
\hline & \(j o b z=\) 'V', if \(z\) is present, \\
\hline & jobz = 'N', if \(z\) is omitted. \\
\hline
\end{tabular}

Note that there will be an error condition if ifail is present and \(z\) is omitted.
range Restored based on the presence of arguments \(v /, v u, i l, i u\) as follows:
\[
\begin{aligned}
& \text { range }=\text { ' } \mathrm{V}^{\prime} \text {, if one of or both } v l \text { and } v u \text { are present, } \\
& \text { range }=\text { 'I', if one of or both } i l \text { and } i u \text { are present, } \\
& \text { range }=\text { 'A', if none of } v l, v u, i l, i u \text { is present, }
\end{aligned}
\]

Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both il and iu are present.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If \(a b s t o l\) is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) is used as tolerance, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

\section*{?sbgv}

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with banded matrices.

\section*{Syntax}
```

call ssbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, info)
call dsbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, info)
call sbgv(ab, bb, w [,uplo] [,z] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite banded eigenproblem, of the form \(A^{\star} X=\lambda^{\star} B^{\star} x\). Here \(A\) and \(B\) are assumed to be symmetric and banded, and \(B\) is also positive definite.

\section*{Input Parameters}
```

jobz
uplo
n
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.
INTEGER. The order of the matrices A and B(n\geq0).

```
```

ka
$k b$
ab, bb, work

```

I dab

1 dbb
\(l d z\)

\section*{Output Parameters}
```

ab

```
bb
W, Z
info

INTEGER. The number of super- or sub-diagonals in \(A\) (\(k a \geq 0\)).

INTEGER. The number of super- or sub-diagonals in \(B(k b \geq 0)\).
REAL for ssbgv
DOUBLE PRECISION for dsbgv

\section*{Arrays:}
\(a b\left(/ d a b,{ }^{*}\right)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format.

The second dimension of the array \(a b\) must be at least \(\max (1, n)\).
\(b b(I d b b, *)\) is an array containing either upper or lower triangular part of the symmetric matrix \(B\) (as specified by uplo) in band storage format.

The second dimension of the array \(b b\) must be at least max \((1, n)\). work \(\left({ }^{*}\right)\) is a workspace array, dimension at least max \((1,3 n)\)

INTEGER. The leading dimension of the array \(a b ;\) must be at least \(k a+1\).
INTEGER. The leading dimension of the array \(b b ;\) must be at least \(k b+1\).
INTEGER. The leading dimension of the output array \(z ; l d z \geq 1\). If \(j o b z=\) 'V', ldz \(\geq\) max (1, n).

On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=\) \(S^{T} * S\), as returned by pbstf/pbstf.

REAL for ssbgv
DOUBLE PRECISION for dsbgv
Arrays:
\(w(*)\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
z (Idz,*).
The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{T} \star^{\star} Z=I\).

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0, and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned \(i n f o=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sbgv interface are the following:
\begin{tabular}{|c|c|}
\hline \(a b\) & Holds the array \(A\) of size (\(k a+1, n\)) . \\
\hline bb & Holds the array \(B\) of size (\(k b+1, n\)). \\
\hline w & Holds the vector with the number of elements \(n\). \\
\hline \(z\) & Holds the matrix \(Z\) of size (\(n, n\)). \\
\hline uplo & Must be 'U' or 'L'. The default value is 'U'. \\
\hline jobz & Restored based on the presence of the argument \(z\) as follows: jobz = 'V', if \(z\) is present, \\
\hline & jobz = 'N', if \(z\) is omitted. \\
\hline
\end{tabular}
```

?hbgv
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
positive-definite eigenproblem with banded matrices.

```

\section*{Syntax}
```

call chbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, rwork, info)

```
call chbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, rwork, info)
call zhbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, rwork, info)
call zhbgv(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, rwork, info)
call hbgv(ab, bb, w [,uplo] [,z] [,info])
```

call hbgv(ab, bb, w [,uplo] [,z] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite banded eigenproblem, of the form \(A^{*} X_{X}=\lambda{ }^{*} B^{\star}{ }_{x}\). Here \(A\) and \(B\) are Hermitian and banded matrices, and matrix \(B\) is also positive definite.

\section*{Input Parameters}
jobz
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
```

uplo
n
ka
kb
ab, bb, work

```
Idab
ldbb
\(1 d z\)
rwork

\section*{Output Parameters}

If jobz \(=\) ' V ', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'U' or 'L'.
If uplo \(=\) 'U', arrays \(a b\) and \(b b\) store the upper triangles of \(A\) and \(B\);
If uplo \(=\) 'L', arrays \(a b\) and \(b b\) store the lower triangles of \(A\) and \(B\).
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
INTEGER. The number of super- or sub-diagonals in \(A\) (\(k a \geq 0\)).

INTEGER. The number of super- or sub-diagonals in \(B(k b \geq 0)\).
COMPLEX for chbgv
DOUBLE COMPLEX for zhbgv

\section*{Arrays:}
\(a b\left(/ d a b,{ }^{*}\right)\) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format.

The second dimension of the array \(a b\) must be at least \(\max (1, n)\).
\(b b(I d b b, *)\) is an array containing either upper or lower triangular part of the Hermitian matrix \(B\) (as specified by uplo) in band storage format.

The second dimension of the array \(b b\) must be at least \(\max (1, n)\). work \(\left(^{*}\right)\) is a workspace array, dimension at least \(\max (1, n)\).

INTEGER. The leading dimension of the array \(a b ;\) must be at least \(k a+1\).
INTEGER. The leading dimension of the array \(b b ;\) must be at least \(k b+1\).
INTEGER. The leading dimension of the output array \(z ; l d z \geq 1\). If \(j o b z=\) 'V', ldz \(\geq\) max (1, \(n\)).

REAL for chbgv
DOUBLE PRECISION for zhbgv.
Workspace array, size at least max(1, 3n).

On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=\) \(S^{H *} S\), as returned by pbstf/pbstf.

REAL for chbgv
DOUBLE PRECISION for zhbgv.
Array, size at least max \((1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
COMPLEX for chbgv
DOUBLE COMPLEX for zhbgv

Array \(z(I d z, *)\).
The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{H \star} B^{\star} Z=I\).

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0, and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hbgv interface are the following:
\begin{tabular}{ll}
\(a b\) & Holds the array \(A\) of size \((k a+1, n)\). \\
bb & Holds the array \(B\) of size \((k b+1, n)\). \\
\(w\) & Holds the vector with the number of elements \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\). \\
uplo \begin{tabular}{ll}
Mobz & Must be 'U' or 'L'. The default value is 'U'. \\
& Restored based on the presence of the argument \(z\) as follows: \\
& jobz \(=' \mathrm{~V}\) ', if \(z\) is present, \\
& jobz \(=' N '\), if \(z\) is omitted.
\end{tabular}
\end{tabular}
?sbgvd
Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with banded matrices. If eigenvectors are desired, it uses a divide and conquer method.

\section*{Syntax}
```

call ssbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork, iwork,
liwork, info)
call dsbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork, iwork,
liwork, info)
call sbgvd(ab, bb, w [,uplo] [,z] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite banded eigenproblem, of the form \(A^{\star} X=\lambda^{\star} B^{\star} x\). Here \(A\) and \(B\) are assumed to be symmetric and banded, and \(B\) is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline jobz & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobz = 'N', then compute eigenvalues only. \\
\hline & If \(\mathrm{jobz}=\) ' V ', then compute eigenvalues and eigenvectors. \\
\hline uplo & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', arrays \(a b\) and \(b b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo \(=\) 'L', arrays \(a b\) and \(b b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline ka & INTEGER. The number of super- or sub-diagonals in \(A\) \\
\hline & (\(k a \geq 0\)). \\
\hline kb & INTEGER. The number of super- or sub-diagonals in \(B(k b \geq 0)\). \\
\hline ab, bb, work & REAL for ssbgvd \\
\hline & DOUBLE PRECISION for dsbgvd \\
\hline & Arrays: \\
\hline & \(a b(/ d a b, *)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of the array \(a b\) must be at least max \((1, n)\). \\
\hline & \(b b(I d b b, *)\) is an array containing either upper or lower triangular part of the symmetric matrix \(B\) (as specified by uplo) in band storage format. \\
\hline & The second dimension of the array \(b b\) must be at least max \((1, n)\). \\
\hline & work is a workspace array, its dimension max (1, lwork). \\
\hline Idab & INTEGER. The leading dimension of the array \(a b ;\) must be at least \(k a+1\). \\
\hline 1 dbb & INTEGER. The leading dimension of the array \(b b ;\) must be at least \(k b+1\). \\
\hline \(1 d z\) & INTEGER. The leading dimension of the output array \(z ; 1 d z \geq 1\). If jobz \(=\) 'V', ldz \(\geq \max (1, n)\). \\
\hline lwork & INTEGER. \\
\hline & The dimension of the array work. \\
\hline & Constraints: \\
\hline
\end{tabular}

If \(n \leq 1\), lwork \(\geq 1\);
If jobz \(=\) ' \(N\) ' and \(n>1\), lwork \(\geq 3 n\);
If jobz \(=\) 'V' and \(n>1\), lwork \(\geq 2 n^{2}+5 n+1\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to Iwork or liwork is issued by xerbla. See Application Notes for details.
iwork
liwork

INTEGER.
Workspace array, its dimension max (1, liwork).
INTEGER.
The dimension of the array iwork.
Constraints:
If \(n \leq 1\), liwork \(\geq 1\);
If jobz \(=\) ' \(N\) ' and \(n>1\), liwork \(\geq 1\);
If jobz \(=\) 'V' and \(n>1\), liwork \(\geq 5 n+3\).
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work and iwork arrays, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}

On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=\) \(S^{T} * S\), as returned by pbstf/pbstf.

REAL for ssbgvd
DOUBLE PRECISION for dsbgvd
Arrays:
\(w\left(^{*}\right)\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
\(z(I d z, *)\).
The second dimension of \(z\) must be at least max \((1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{T *} B^{*} Z=\mathrm{I}\).

If jobz \(=\) ' \(N\) ', then \(z\) is not referenced.
On exit, if info \(=0\), then work (1) returns the required minimal size of lwork.
iwork(1)
info

On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0, and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sbgvd interface are the following:
\begin{tabular}{ll}
\(a b\) & Holds the array \(A\) of size \((k a+1, n)\). \\
bb & Holds the array \(B\) of size \((k b+1, n)\). \\
\(w\) & Holds the vector with the number of elements \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\). \\
uplo \begin{tabular}{ll}
jobz & Must be 'U' or 'L'. The default value is ' U '. \\
& Restored based on the presence of the argument \(z\) as follows: \\
& \(j o b z=' V ', ~ i f ~\) \\
is present, \\
& \(j o b z=' N '\), if \(z\) is omitted.
\end{tabular}
\end{tabular}

\section*{Application Notes}

If it is not clear how much workspace to supply, use a generous value of /work (or liwork) for the first run or set 1 work \(=-1\) (liwork \(=-1\)).

If /work (or liwork) has any of admissible sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1)) for subsequent runs.

If lwork = -1 (liwork = -1), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.
Note that if work (liwork) is less than the minimal required value and is not equal to -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
```

?hbgvd
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized Hermitian
positive-definite eigenproblem with banded matrices.
If eigenvectors are desired, it uses a divide and
conquer method.

```

\section*{Syntax}
```

call chbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork, rwork,

```
call chbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork, rwork,
lrwork, iwork, liwork, info)
lrwork, iwork, liwork, info)
call zhbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork, rwork,
call zhbgvd(jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz, work, lwork, rwork,
lrwork, iwork, liwork, info)
lrwork, iwork, liwork, info)
call hbgvd(ab, bb, w [,uplo] [,z] [,info])
```

call hbgvd(ab, bb, w [,uplo] [,z] [,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite banded eigenproblem, of the form \(A^{\star} X=\lambda^{\star} B^{\star} x\). Here \(A\) and \(B\) are assumed to be Hermitian and banded, and \(B\) is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

\section*{Input Parameters}
```

jobz

```

CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'U' or 'L'.
If uplo \(=\) 'U', arrays \(a b\) and \(b b\) store the upper triangles of \(A\) and \(B\);
If uplo = 'L', arrays \(a b\) and \(b b\) store the lower triangles of \(A\) and \(B\).
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
INTEGER. The number of super- or sub-diagonals in \(A\)
(\(k a \geq 0\)).
INTEGER. The number of super- or sub-diagonals in \(B(k b \geq 0)\).
COMPLEX for chbgvd
DOUBLE COMPLEX for zhbgvd
Arrays:
\(a b\left(/ d a b,{ }^{*}\right)\) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format.
The second dimension of the array \(a b\) must be at least max \((1, n)\).
\(b b(I d b b, *)\) is an array containing either upper or lower triangular part of the Hermitian matrix \(B\) (as specified by uplo) in band storage format.
ldab
1 dbb
ldz
lwork
liwork

The second dimension of the array \(b b\) must be at least \(\max (1, n)\). work is a workspace array, its dimension max (1, lwork).

INTEGER. The leading dimension of the array \(a b ;\) must be at least \(k a+1\).
INTEGER. The leading dimension of the array \(b b ;\) must be at least \(k b+1\).
INTEGER. The leading dimension of the output array \(z ; I d z \geq 1\). If jobz \(=\) \(' V ', l d z \geq \max (1, n)\).

INTEGER.
The dimension of the array work.

\section*{Constraints:}

If \(n \leq 1\), lwork \(\geq 1\);
If jobz = 'N' and \(n>1\), lwor \(k \geq n\);
If jobz = 'V' and \(n>1\), lwork \(\geq 2 n^{2}\).
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

REAL for chbgvd
DOUBLE PRECISION for zhbgvd.
Workspace array, size max (1, Irwork).
INTEGER.
The dimension of the array rwork.
Constraints:
If \(n \leq 1\), lrwork \(\geq 1\);
If jobz = 'N' and \(n>1\), lrwork \(\geq n\);
If jobz \(=\) ' \(V\) ' and \(n>1\), lrwork \(\geq 2 n^{2}+5 n+1\).
If lrwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

INTEGER.
Workspace array, size max (1, liwork).
INTEGER.
The dimension of the array iwork.
Constraints:
If \(n \leq 1\), lwork \(\geq 1\);
If jobz = 'N' and n>1, liwork \(\geq 1\);

If jobz \(=\) 'V' and \(n>1\), liwork \(\geq 5 n+3\).
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work, rwork and iwork arrays, returns these values as the first entries of the work, rwork and iwork arrays, and no error message related to Iwork or Irwork or liwork is issued by xerbla. See Application Notes for details.

\section*{Output Parameters}

On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=\) \(s^{H * S}\), as returned by pbstf/pbstf.

REAL for chbgvd
DOUBLE PRECISION for zhbgvd.
Array, size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
COMPLEX for chbgvd
DOUBLE COMPLEX for zhbgvd
Array \(z(/ d z, *)\).
The second dimension of \(z\) must be at least \(\max (1, n)\).
If jobz = 'V', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{H *} B^{\star} Z=I\).
If jobz = ' N ', then \(z\) is not referenced.
On exit, if info \(=0\), then work (1) returns the required minimal size of Iwork.

On exit, if info \(=0\), then rwork (1) returns the required minimal size of Irwork.

On exit, if info \(=0\), then iwork (1) returns the required minimal size of liwork.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0 , and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine hbgvd interface are the following:
```

ab Holds the array A of size (ka+1,n).
bb Holds the array B of size (kb+1,n).
w Holds the vector with the number of elements n.
z Holds the matrix Z of size ( }n,n)\mathrm{ .
uplo Must be 'U' or 'L'. The default value is 'U'.
jobz Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

```

\section*{Application Notes}

If you are in doubt how much workspace to supply, use a generous value of lwork (liwork or Irwork) for the first run or set 1 work \(=-1\) (liwork \(=-1\), lrwork \(=-1\)).
If you choose the first option and set any of admissible Iwork (liwork or Irwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork) on exit. Use this value (work (1), iwork(1), rwork (1)) for subsequent runs.

If you set lwork \(=-1\) (liwork \(=-1\), lrwork \(=-1\)), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork, rwork). This operation is called a workspace query.

Note that if you set Iwork (liwork, Irwork) to less than the minimal required value and not -1, the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?sbgvx \\ Computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem with banded matrices.}

\section*{Syntax}
```

call ssbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu, il, iu,
abstol, m, w, z, ldz, work, iwork, ifail, info)
call dsbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu, il, iu,
abstol, m, W, z, ldz, work, iwork, ifail, info)
call sbgvx(ab, b.b, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q] [,abstol]
[,info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The routine computes selected eigenvalues, and optionally, the eigenvectors of a real generalized symmetricdefinite banded eigenproblem, of the form \(A^{\star} x=\lambda^{\star} B^{\star} x\). Here \(A\) and \(B\) are assumed to be symmetric and banded, and \(B\) is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{jobz} & CHARACTER*1. Must be 'N' or 'V'. \\
\hline & If jobz = 'N', then compute eigenvalues only. \\
\hline & If \(\mathrm{jobz}=\) ' V ', then compute eigenvalues and eigenvectors. \\
\hline \multirow[t]{5}{*}{range} & CHARACTER*1. Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' A ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the routine computes eigenvalues lambda(\(i\)) in the halfopen interval: \\
\hline & \(v l<l a m b d a(i) \leq v u\). \\
\hline & If range \(=\) 'I', the routine computes eigenvalues in range il to iu. \\
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & If uplo = 'U', arrays \(a b\) and \(b b\) store the upper triangles of \(A\) and \(B\); \\
\hline & If uplo = 'L', arrays \(a b\) and \(b b\) store the lower triangles of \(A\) and \(B\). \\
\hline \(n\) & INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\). \\
\hline \multirow[t]{2}{*}{ka} & INTEGER. The number of super- or sub-diagonals in \(A\) \\
\hline & (\(k a \geq 0\)). \\
\hline kb & INTEGER. The number of super- or sub-diagonals in \(B(k b \geq 0)\). \\
\hline ab, bb, work & REAL for ssbgvx \\
\hline & DOUBLE PRECISION for dsbgvx \\
\hline
\end{tabular}

\section*{Arrays:}
\(a b(/ d a b, *)\) is an array containing either upper or lower triangular part of the symmetric matrix \(A\) (as specified by uplo) in band storage format.
The second dimension of the array \(a b\) must be at least max \((1, n)\).
\(b b\left(I d b b,{ }^{*}\right)\) is an array containing either upper or lower triangular part of the symmetric matrix \(B\) (as specified by uplo) in band storage format.

The second dimension of the array \(b b\) must be at least max \((1, n)\).
work(*) is a workspace array, size (7*n).
INTEGER. The leading dimension of the array \(a b ;\) must be at least \(k a+1\).
INTEGER. The leading dimension of the array \(b b ;\) must be at least \(k b+1\).
REAL for ssbgvx
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{} & DOUBLE PRECISION for dsbgvx. \\
\hline & If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues. \\
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) 'A' or 'I', v/ and vu are not referenced. \\
\hline \multirow[t]{5}{*}{il, iu} & INTEGER. \\
\hline & If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range \(=\) ' A ' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{3}{*}{abstol} & REAL for ssbgvx \\
\hline & DOUBLE PRECISION for dsbgvx. \\
\hline & The absolute error tolerance for the eigenvalues. See Application Notes for more information. \\
\hline \(1 d z\) & INTEGER. The leading dimension of the output array \(z ; I d z \geq 1\). If jobz \(=\) 'V', \(1 d z \geq \max (1, n)\). \\
\hline \multirow[t]{2}{*}{\(1 d q\)} & INTEGER. The leading dimension of the output array \(q\); \(1 d q<1\). \\
\hline & If jobz \(=\) ' \(\mathrm{V}^{\prime}\), \(1 \mathrm{dq}<\mathrm{max}(1, n)\). \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, size (5*n). \\
\hline
\end{tabular}

\section*{Output Parameters}

On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=\) \(S^{T} * S\), as returned by pbstf/pbstf.

INTEGER. The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=' A ', m=n\), and if range \(=' I\) ',
\(m=i u-i l+1\).
REAL for ssbgvx
DOUBLE PRECISION for dsbgvx
Arrays:
\(w(*)\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
z (Idz,*).
The second dimension of \(z\) must be at least \(\max (1, n)\).

If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{T} \star^{\star} Z=I\).

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
\(q(I d q, *)\).
The second dimension of \(q\) must be at least max \((1, n)\).
If jobz = 'V', then \(q\) contains the \(n\)-by-n matrix used in the reduction of \(A \star x=\operatorname{lambda}{ }^{\star} B^{\star} x\) to standard form, that is, \(C^{\star} x=\operatorname{lambda} x\) and consequently \(C\) to tridiagonal form.
If jobz \(=\) ' \(N\) ', then \(q\) is not referenced.

\section*{INTEGER.}

Array, size (m).
If jobz = 'V', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info > 0, and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine sbgvx interface are the following:
\begin{tabular}{ll}
ab & Holds the array \(A\) of size \((k a+1, n)\). \\
bb & Holds the array \(B\) of size \((k b+1, n)\). \\
w & Holds the vector with the number of elements \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\). \\
ifail & Holds the vector with the number of elements \(n\). \\
uplo & Holds the matrix \(Q\) of size \((n, n)\). \\
\(v l\) & Must be 'U' or 'L'. The default value is ' \(U\) '. \\
& Default value for this element is \(v l=-\operatorname{HUGE}(v /)\).
\end{tabular}
```

vu Default value for this element is vu = HUGE(vl).
il Default value for this argument is il = 1.
iu Default value for this argument is iu = n.
abstol Default value for this element is abstol = 0.0_WP.
jobz
Default value for this element is $v u=\operatorname{HUGE}(v /)$.
Default value for this argument is $i l=1$.
Default value for this argument is iu $=n$.
Default value for this element is abstol $=0.0 \_\mathrm{WP}$.
Restored based on the presence of the argument $z$ as follows:
jobz $=$ ' $V$ ', if $z$ is present,
$j o b z=$ ' $N$ ', if $z$ is omitted.

```
range

Note that there will be an error condition if ifail or \(q\) is present and \(z\) is omitted.
Restored based on the presence of arguments \(v l, v u, i l, i u\) as follows:
range \(=\) ' \(V\) ', if one of or both \(v /\) and \(v u\) are present,
range \(=\) 'I', if one of or both il and \(i u\) are present,
range \(=\) ' \(A\) ', if none of \(v /, v u, i l, i u\) is present,
Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both il and iu are present.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If \(a b s t o l\) is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) is used as tolerance, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

\section*{?hbgvx}

Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian positive-definite eigenproblem with banded matrices.

\section*{Syntax}
```

call chbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu, il, iu,
abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
call zhbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu, il, iu,
abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
call hbgvx(ab, bb, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q] [,abstol]
[,info])

```

Include Files
- mkl.fi, lapack.f90

Description

The routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite banded eigenproblem, of the form \(A^{\star}{ }_{x}=\lambda{ }^{\star} B^{\star} x\). Here \(A\) and \(B\) are assumed to be Hermitian and banded, and \(B\) is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.

\section*{Input Parameters}
```

jobz
range
uplo
n
ka
kb
ab, bb, work

```
I dab
1 dbb
vl, vu

CHARACTER*1. Must be 'N' or 'V'.
If jobz = ' \(N\) ', then compute eigenvalues only.
If \(j o b z=\) ' \(V\) ', then compute eigenvalues and eigenvectors.
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range \(=\) ' A ', the routine computes all eigenvalues.
If range \(=\) ' \(V\) ', the routine computes eigenvalues lambda(\(i\)) in the halfopen interval:
\(v l<\operatorname{lambda}(i) \leq v u\).
If range \(=\) 'I', the routine computes eigenvalues with indices il to iu.
CHARACTER*1. Must be 'U' or 'L'.
If uplo \(=\) 'U', arrays \(a b\) and \(b b\) store the upper triangles of \(A\) and \(B\);
If uplo \(=\) 'L', arrays \(a b\) and \(b b\) store the lower triangles of \(A\) and \(B\).
INTEGER. The order of the matrices \(A\) and \(B(n \geq 0)\).
INTEGER. The number of super- or sub-diagonals in \(A\)
(\(k a \geq 0\)).
INTEGER. The number of super- or sub-diagonals in \(B(k b \geq 0)\).
COMPLEX for chbgvx
DOUBLE COMPLEX for zhbgvx
Arrays:
\(a b\left(/ d a b,{ }^{*}\right)\) is an array containing either upper or lower triangular part of the Hermitian matrix \(A\) (as specified by uplo) in band storage format.
The second dimension of the array \(a b\) must be at least max \((1, n)\).
\(b b\left(I d b b,{ }^{*}\right)\) is an array containing either upper or lower triangular part of the Hermitian matrix \(B\) (as specified by uplo) in band storage format.

The second dimension of the array \(b b\) must be at least max \((1, n)\). work(*) is a workspace array, size at least max \((1, n)\).

INTEGER. The leading dimension of the array \(a b ;\) must be at least \(k a+1\).
INTEGER. The leading dimension of the array \(b b ;\) must be at least \(k b+1\).
REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues.
\begin{tabular}{|c|c|}
\hline & Constraint: vl< vu. \\
\hline & If range \(=\) ' A ' or 'I', v/ and vu are not referenced. \\
\hline il, iu & INTEGER. \\
\hline & If range \(=\) 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. \\
\hline & Constraint: \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) \\
\hline & if \(n=0\). \\
\hline & If range \(=\) ' A ' or ' V ', il and \(i u\) are not referenced. \\
\hline abstol & REAL for chbgvx \\
\hline & DOUBLE PRECISION for zhbgvx. \\
\hline & The absolute error tolerance for the eigenvalues. See Application Notes for more information. \\
\hline \(1 d z\) & INTEGER. The leading dimension of the output array \(z ; 1 d z \geq 1\). If jobz \(=\) \(' \mathrm{~V}\) ', \(1 d z \geq \max (1, n)\). \\
\hline \(1 d q\) & INTEGER. The leading dimension of the output array \(q ; I d q \geq 1\). If \(j o b z=\) 'V', ldq叉 max \((1, n)\). \\
\hline rwork & REAL for chbgvx \\
\hline & DOUBLE PRECISION for zhbgvx. \\
\hline & Workspace array, size at least max (1, 7n). \\
\hline iwork & INTEGER. \\
\hline & Workspace array, size at least max \((1,5 n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(a b\)
bb
m

W
\(z, q\)

On exit, the contents of \(a b\) are overwritten.
On exit, contains the factor \(S\) from the split Cholesky factorization \(B=\) \(S^{H *} S\), as returned by pbstf/pbstf.

INTEGER. The total number of eigenvalues found,
\(0 \leq m \leq n\). If range \(=\) ' \(A\) ', \(m=n\), and if range \(=\) 'I',
\(m=i u-i l+1\).
REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
Array \(w(*)\), size at least \(\max (1, n)\).
If info \(=0\), contains the eigenvalues in ascending order.
COMPLEX for chbgvx
DOUBLE COMPLEX for zhbgvx
Arrays:
z (/dz,*).
The second dimension of \(z\) must be at least max \((1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0, z\) contains the matrix \(Z\) of eigenvectors, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\). The eigenvectors are normalized so that \(Z^{H \star} B^{\star} Z=I\).

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
\(q(I d q, *)\).
The second dimension of \(q\) must be at least \(\max (1, n)\).
If jobz \(=\) ' \(V\) ', then \(q\) contains the \(n\)-by- \(n\) matrix used in the reduction of \(A x=\lambda B x\) to standard form, that is, \(C x=\lambda x\) and consequently \(C\) to tridiagonal form.
If jobz \(=\) ' \(N\) ', then \(q\) is not referenced.
INTEGER.
Array, size at least max \((1, n)\).
If jobz \(=\) ' \(V\) ', then if info \(=0\), the first \(m\) elements of ifail are zero; if info > 0 , the ifail contains the indices of the eigenvectors that failed to converge.
If jobz \(=\) ' \(N\) ', then ifail is not referenced.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th argument had an illegal value.
If info \(>0\), and
if \(i \leq n\), the algorithm failed to converge, and \(i\) off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info \(=n+i\), for \(1 \leq i \leq n\), then pbstf/pbstf returned info \(=i\) and \(B\) is not positive-definite. The factorization of \(B\) could not be completed and no eigenvalues or eigenvectors were computed.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hbgvx interface are the following:
\begin{tabular}{ll}
\(a b\) & Holds the array \(A\) of size \((k a+1, n)\). \\
\(b b\) & Holds the array \(B\) of size \((k b+1, n)\). \\
\(w\) & Holds the vector with the number of elements \(n\). \\
\(z\) & Holds the matrix \(Z\) of size \((n, n)\). \\
ifail & Holds the vector with the number of elements \(n\). \\
\(q\) & Holds the matrix \(Q\) of size \((n, n)\).
\end{tabular}
```

uplo Must be 'U' or 'L'.
vl Default value for this element is vl = - HUGE (v/).
Default value for this element is vu = HUGE(v/).
Default value for this argument is il = 1.
Default value for this argument is iu = n.
Default value for this element is abstol = 0.0_WP.
Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.

```

Note that there will be an error condition if ifail or \(q\) is present and \(z\) is omitted.
Restored based on the presence of arguments \(v l, v u, i l, i u\) as follows:
range \(=\) ' \(V\) ', if one of or both \(v /\) and \(v u\) are present,
range \(=\) 'I', if one of or both il and iu are present,
range \(=\) 'A', if none of \(v l, v u\), \(i l\), iu is present,
Note that there will be an error condition if one of or both \(v /\) and \(v u\) are present and at the same time one of or both il and iu are present.

\section*{Application Notes}

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ \(\varepsilon^{\star} \max (|a|,|b|)\), where \(\varepsilon\) is the machine precision.

If abstol is less than or equal to zero, then \(\varepsilon^{\star}| | T| |_{1}\) will be used in its place, where \(T\) is the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*? lamch('S'), not zero.

If this routine returns with info > 0 , indicating that some eigenvectors did not converge, try setting abstol to 2*? lamch('S').

\section*{Generalized Nonsymmetric Eigenvalue Problems: LAPACK Driver Routines}

This topic describes LAPACK driver routines used for solving generalized nonsymmetric eigenproblems. See also computational routines that can be called to solve these problems. Table "Driver Routines for Solving Generalized Nonsymmetric Eigenproblems" lists all such driver routines for the FORTRAN 77 interface. The corresponding routine names in the Fortran 95 interface are without the first symbol.

Driver Routines for Solving Generalized Nonsymmetric Eigenproblems
\begin{tabular}{ll}
Routine Name & Operation performed \\
\hline gges & \begin{tabular}{l}
Computes the generalized eigenvalues, Schur form, and the left and/or right Schur \\
vectors for a pair of nonsymmetric matrices.
\end{tabular} \\
ggesx & \begin{tabular}{l}
Computes the generalized eigenvalues, Schur form, and, optionally, the left and/or \\
right matrices of Schur vectors.
\end{tabular} \\
gges3 & Computes generalized Schur factorization for a pair of matrices. \\
ggev & \begin{tabular}{l}
Computes the generalized eigenvalues, and the left and/or right generalized \\
eigenvectors for a pair of nonsymmetric matrices.
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
\hline Routine Name & Operation performed \\
\hline ggevx & \begin{tabular}{l}
Computes the generalized eigenvalues, and, optionally, the left and/or right \\
generalized eigenvectors. \\
ggev3
\end{tabular} \\
\hline
\end{tabular}

\begin{abstract}
?gges
Computes the generalized eigenvalues, Schur form, and the left and/or right Schur vectors for a pair of nonsymmetric matrices.
\end{abstract}

\section*{Syntax}
```

call sgges(jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar, alphai, beta,
vSl, ldvsl, vSr, ldvsr, work, lwork, bwork, info)
call dgges(jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar, alphai, beta,
vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info)
call cgges(jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta, vsl,
ldvsl, vsr, ldvsr, work, lwork, rwork, bwork, info)
call zgges(jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta, vsl,
ldvsl, vsr, ldvsr, work, lwork, rwork, bwork, info)
call gges(a, b, alphar, alphai, beta [,vsl] [,vsr] [,select] [,sdim] [,info])
call gges(a, b, alpha, beta [, vsl] [,vsr] [,select] [,sdim] [,info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The ?gges routine computes the generalized eigenvalues, the generalized real/complex Schur form (\(S, T\)), optionally, the left and/or right matrices of Schur vectors (\(v s /\) and \(v s r\)) for a pair of \(n\)-by- \(n\) real/complex nonsymmetric matrices \((A, B)\). This gives the generalized Schur factorization
```

(A,B)=(VSl*S *VSrr', VSI*T*VSrH}

```

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix \(S\) and the upper triangular matrix \(T\). The leading columns of vs/ and vsr then form an orthonormal/unitary basis for the corresponding left and right eigenspaces (deflating subspaces).
If only the generalized eigenvalues are needed, use the driver ggev instead, which is faster.
A generalized eigenvalue for a pair of matrices \((A, B)\) is a scalar \(w\) or a ratio alpha / beta \(=w\), such that \(A-\) \(W^{\star} B\) is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta=0 or for both being zero. A pair of matrices \((S, T)\) is in the generalized real Schur form if \(T\) is upper triangular with non-negative diagonal and \(S\) is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of \(S\) are "standardized" by making the corresponding elements of \(T\) have the form:

and the pair of corresponding 2-by-2 blocks in \(S\) and \(T\) will have a complex conjugate pair of generalized eigenvalues. A pair of matrices \((S, T)\) is in generalized complex Schur form if \(S\) and \(T\) are upper triangular and, in addition, the diagonal of \(T\) are non-negative real numbers.

The ?gges routine replaces the deprecated ?gegs routine.

\section*{Input Parameters}
jobvsl
jobvsr
sort

CHARACTER*1. Must be 'N' or 'V'.
If jobvsl = 'N', then the left Schur vectors are not computed.
If jobvsl \(=\) ' V', then the left Schur vectors are computed.
CHARACTER*1. Must be 'N' or 'V'.
If jobvsr \(=\) ' \(N\) ', then the right Schur vectors are not computed.
If jobver = 'V', then the right Schur vectors are computed.
CHARACTER*1. Must be 'N' or 'S'. Specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form.
If sort \(=\) ' \(N\) ', then eigenvalues are not ordered.
If sort \(=\) 'S', eigenvalues are ordered (see selctg).
```

selctg

LOGICAL FUNCTION of three REAL arguments for real flavors.
LOGICAL FUNCTION of two COMPLEX arguments for complex flavors.
selctg must be declared EXTERNAL in the calling subroutine.
If sort = 'S', selctg is used to select eigenvalues to sort to the top left of the Schur form.

If sort = 'N', selctg is not referenced.
For real flavors:
An eigenvalue (alphar( j ) + alphai( j$)$ )/beta( j ) is selected if selctg(alphar( j ), alphai( j$)$, beta $(\mathrm{j}))$ is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.

Note that in the ill-conditioned case, a selected complex eigenvalue may no longer satisfy selctg(alphar(j), alphai(j), beta(j)) = .TRUE. after ordering. In this case info is set to $n+2$.

For complex flavors:
An eigenvalue alpha(j) / beta(j) is selected if selctg(alpha(j), beta(j)) is true.
Note that a selected complex eigenvalue may no longer satisfy $\operatorname{selctg}(a l p h a(j)$, beta(j)) $=$.TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to $n+2$ (see info below).

INTEGER. The order of the matrices $A, B, v s l$, and $v s r(n \geq 0)$.
REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.
Arrays:
$a(/ d a, *)$ is an array containing the $n$-by- $n$ matrix $A$ (first of the pair of matrices).
The second dimension of $a$ must be at least max $(1, n)$.
$b\left(/ d b,{ }^{*}\right)$ is an array containing the $n$-by-n matrix $B$ (second of the pair of matrices).

The second dimension of $b$ must be at least max $(1, n)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of the array $a$. Must be at least max $(1, n)$.
INTEGER. The leading dimension of the array $b$. Must be at least max $(1, n)$.
INTEGER. The leading dimensions of the output matrices vsl and vsr, respectively. Constraints:
$\operatorname{ldvs} 1 \geq 1$. If jobvsl $=' \mathrm{~V} ', l d v s l \geq \max (1, n)$.
$\operatorname{ldvsr} \geq 1$. If jobvsr $=' \mathrm{~V}$ ', Idvsr $\geq \max (1, n)$.

```
Iwork
```


## Output Parameters

a
b
sdim
alphar, alphai
alpha
beta

INTEGER.
The dimension of the array work.
1 work $\geq \max (1,8 n+16)$ for real flavors;
lwork $\geq \max (1,2 n)$ for complex flavors.
For good performance, Iwork must generally be larger.
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

REAL for cgges
DOUBLE PRECISION for zgges
Workspace array, size at least max $(1,8 n)$.
This array is used in complex flavors only.
LOGICAL.
Workspace array, size at least max $(1, n)$.
Not referenced if sort $='^{\prime}$ '.

On exit, this array has been overwritten by its generalized Schur form $S$.
On exit, this array has been overwritten by its generalized Schur form $T$.
INTEGER.
If sort $=$ ' N ', sdim $=0$.
If sort $=$ ' S ', sdim is equal to the number of eigenvalues (after sorting) for which selctg is true.
Note that for real flavors complex conjugate pairs for which selctg is true for either eigenvalue count as 2 .

REAL for sgges;
DOUBLE PRECISION for dgges.
Arrays, size at least $\max (1, n)$ each. Contain values that form generalized eigenvalues in real flavors.
See beta.
COMPLEX for cgges;
DOUBLE COMPLEX for zgges.
Array, size at least $\max (1, n)$. Contain values that form generalized eigenvalues in complex flavors. See beta.

REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges

DOUBLE COMPLEX for zgges.
Array, size at least $\max (1, n)$.
For real flavors:
On exit, (alphar( j ) $+\operatorname{alphai}(\mathrm{j}) * \mathrm{i}) /$ beta( j$), \mathrm{j}=1, \ldots, n$, will be the generalized eigenvalues.
$\operatorname{alphar}(\mathrm{j})+\operatorname{alphai}(\mathrm{j}) * \mathrm{i}$ and $\operatorname{beta}(\mathrm{j}), \mathrm{j}=1, \ldots, n$ are the diagonals of the complex Schur form ( $S, T$ ) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of $(A, B)$ were further reduced to triangular form using complex unitary transformations. If alphai( j$)$ is zero, then the $j$ th eigenvalue is real; if positive, then the $j$-th and $(j+1)$-st eigenvalues are a complex conjugate pair, with alphai $(\mathrm{j}+1)$ negative.
For complex flavors:
On exit, alpha( j$) / b e t a(\mathrm{j}), \mathrm{j}=1, \ldots, n$, will be the generalized eigenvalues. alphaalpha( j ) and beta( j$), \mathrm{j}=1, \ldots, n$ are the diagonals of the complex Schur form ( $S, T$ ) output by cgges/zgges. The beta( j ) will be non-negative real.
See also Application Notes below.
vsl, vsr
work(1) info

REAL for sgges
DOUBLE PRECISION for dgges
COMPLEX for cgges
DOUBLE COMPLEX for zgges.

## Arrays:

$v s /(/ d v s l, *)$, the second dimension of $v s /$ must be at least max $(1, n)$.
If jobvsl = ' V ', this array will contain the left Schur vectors.
If jobvsl = ' N ', vsl is not referenced.
vsr(ldvsr,*), the second dimension of vsr must be at least max $(1, n)$.
If jobvsr = ' V ', this array will contain the right Schur vectors.
If jobvsr = 'N', vsr is not referenced.
On exit, if info $=0$, then work(1) returns the required minimal size of Iwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If info $=i$, and
$i \leq n$ :
the $Q Z$ iteration failed. $(A, B)$ is not in Schur form, but alphar $(\mathrm{j})$, alphai( j ) (for real flavors), or alpha(j) (for complex flavors), and beta(j), $\mathrm{j}=$ info $+1, \ldots, n$ should be correct.
$i$ > $n$ : errors that usually indicate LAPACK problems:
$i=n+1$ : other than $Q Z$ iteration failed in hgeqz;
$i=n+2$ : after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the generalized Schur form no longer satisfy selctg = .TRUE.. This could also be caused due to scaling; $i=n+3$ : reordering failed in tgsen.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine gges interface are the following:

| a | Holds the matrix $A$ of size $(n, n)$. |
| :--- | :--- |
| b | Holds the matrix $B$ of size $(n, n)$. |
| alphar | Holds the vector of length $n$. Used in real flavors only. |
| alphai | Holds the vector of length $n$. Used in real flavors only. |
| alpha | Holds the vector of length $n$. Used in complex flavors only. |
| beta | Holds the vector of length $n$. |
| Vsl | Holds the matrix VSL of size $(n, n)$. |
| Vsr | Rolds the matrix VSR of size $(n, n)$. |
| jobvsl | jobvsl $=' V '$, if $v s l$ is present, |
|  | jobvsl $=' N^{\prime}$, if $v s l$ is omitted. |

jobvsr Restored based on the presence of the argument vsr as follows:
jobvsr = 'V', if vsr is present,
jobvsr = 'N', if vsr is omitted.
sort
Restored based on the presence of the argument select as follows:
sort $=$ 'S', if select is present,
sort $=$ ' $N$ ', if select is omitted.

## Application Notes

If you are in doubt how much workspace to supply, use a generous value of Iwork for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible Iwork sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

The quotients alphar(j)/beta(j) and alphai(j)/beta(j) may easily over- or underflow, and beta(j) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai will be always less than and usually comparable with norm $(A)$ in magnitude, and beta always less than and usually comparable with norm( $B$ ).

## ?ggesx

Computes the generalized eigenvalues, Schur form, and, optionally, the left and/or right matrices of Schur vectors.

## Syntax

```
call sggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb, sdim, alphar,
alphai, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, iwork, liwork, bwork,
infO)
call dggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb, sdim, alphar,
alphai, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, iwork, liwork, bwork,
info)
call cggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb, sdim, alpha, beta,
vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, rwork, iwork, liwork, bwork, info)
call zggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb, sdim, alpha, beta,
vsl, ldvsl, vsr, ldvsr, rconde, rcondv, work, lwork, rwork, iwork, liwork, bwork, info)
call ggesx(a, b, alphar, alphai, beta [,vsl] [,vsr] [,select] [,sdim] [,rconde] [,
rcondv] [,info])
call ggesx(a, b, alpha, beta [, vsl] [,vsr] [,select] [,sdim] [,rconde] [,rcondv] [,
info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The routine computes for a pair of $n$-by- $n$ real/complex nonsymmetric matrices $(A, B)$, the generalized eigenvalues, the generalized real/complex Schur form ( $S, T$ ), optionally, the left and/or right matrices of Schur vectors (vsl and vsr). This gives the generalized Schur factorization

```
(A,B)=(VSI*S *VSr'H, VSI*T*VSr H
```

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix $S$ and the upper triangular matrix $T$; computes a reciprocal condition number for the average of the selected eigenvalues (rconde); and computes a reciprocal condition number for the right and left deflating subspaces corresponding to the selected eigenvalues (rcondv). The leading columns of vsl and vsr then form an orthonormal/unitary basis for the corresponding left and right eigenspaces (deflating subspaces).
A generalized eigenvalue for a pair of matrices $(A, B)$ is a scalar $w$ or a ratio alpha / beta $=w$, such that $A$ - $w^{\star} B$ is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta $=0$ or for both being zero. A pair of matrices $(S, T)$ is in generalized real Schur form if $T$ is upper triangular with non-negative diagonal and $S$ is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of $S$ will be "standardized" by making the corresponding elements of $T$ have the form:

and the pair of corresponding 2-by-2 blocks in $S$ and $T$ will have a complex conjugate pair of generalized eigenvalues. A pair of matrices $(S, T)$ is in generalized complex Schur form if $S$ and $T$ are upper triangular and, in addition, the diagonal of $T$ are non-negative real numbers.

## Input Parameters

jobvsl
jobvsr
sort
selctg

CHARACTER*1. Must be 'N' or 'V'.
If jobvsl = 'N', then the left Schur vectors are not computed.
If jobvsl = 'V', then the left Schur vectors are computed.
CHARACTER*1. Must be 'N' or 'V'.
If jobvsr = ' $N$ ', then the right Schur vectors are not computed.
If jobvsr = ' V ', then the right Schur vectors are computed.
CHARACTER*1. Must be 'N' or 'S'. Specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form.
If sort $=$ ' N ', then eigenvalues are not ordered.
If sort $=$ 'S', eigenvalues are ordered (see selctg).
LOGICAL FUNCTION of three REAL arguments for real flavors.

LOGICAL FUNCTION of two COMPLEX arguments for complex flavors.
selctg must be declared EXTERNAL in the calling subroutine.
If sort = 'S', selctg is used to select eigenvalues to sort to the top left of the Schur form.

If sort $=$ 'N', selctg is not referenced.
For real flavors:
An eigenvalue (alphar( j ) + alphai( j$)$ )/beta( j ) is selected if selctg(alphar( j ), alphai( j$)$, beta $(\mathrm{j}))$ is true; that is, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex eigenvalue may no longer satisfy selctg(alphar(j), alphai(j), beta(j)) =.TRUE. after ordering. In this case info is set to $n+2$.

For complex flavors:
An eigenvalue alpha(j) / beta(j) is selected if selctg(alpha(j), beta(j)) is true.

Note that a selected complex eigenvalue may no longer satisfy $\operatorname{selctg}(a l p h a(j)$, beta(j)) $=$.TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned); in this case info is set to $n+2$ (see info below).

CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed.
If sense = 'N', none are computed;
If sense $=$ 'E', computed for average of selected eigenvalues only;
If sense $=$ 'V', computed for selected deflating subspaces only;
If sense $=$ 'B', computed for both.
If sense is 'E', 'V', or 'B', then sort must equal 'S'.
INTEGER. The order of the matrices $A, B, v s l$, and $v s r(n \geq 0)$.
REAL for sggesx
DOUBLE PRECISION for dggesx
COMPLEX for cggesx
DOUBLE COMPLEX for zggesx.

## Arrays:

$a(/ d a, *)$ is an array containing the $n$-by- $n$ matrix $A$ (first of the pair of matrices).
The second dimension of $a$ must be at least $\max (1, n)$.
$b(/ d b, *)$ is an array containing the $n$-by-n matrix $B$ (second of the pair of matrices).

The second dimension of $b$ must be at least $\max (1, n)$.
work is a workspace array, its dimension max ( 1,1 work).
INTEGER. The leading dimension of the array $a$.

```
ldb
ldvsl, ldvsr
lwork
rwork
iwork
liwork
INTEGER. The leading dimension of the array \(b\).
Must be at least \(\max (1, n)\).
INTEGER. The leading dimensions of the output matrices vsl and vsr, respectively. Constraints:
\(\operatorname{ldvs} 1 \geq 1\). If jobvsl \(=' \operatorname{V'} \operatorname{ldvs} l \geq \max (1, n)\).
\(\operatorname{ldvsr} \geq 1\). If jobvsr \(=\) 'V', ldvsr \(\geq \max (1, n)\).
INTEGER.
The dimension of the array work.
```


## For real flavors:

```
If \(n=0\) then 1 wor \(k \geq 1\).
If \(n>0\) and sense \(=' N\) ', then 1 work \(\geq \max \left(8^{*} n, 6 * n+16\right)\).
If \(n>0\) and sense \(=' E ', ' V '\), or 'B', then 1 work \(\geq \max (8 * n, 6 * n+16\),
2*sdim*(n-sdim));
For complex flavors:
If \(n=0\) then 1 wor \(k \geq 1\).
If \(n>0\) and sense \(=' N '\), then \(1 w o r k \geq \max (1,2 * n)\);
If \(n>0\) and sense \(=' E ', ' V '\), or 'B', then \(\operatorname{lwork} \geq \max (1,2 * n\), 2*sdim* (n-sdim)).
Note that \(2 * \operatorname{sdim}^{\star}(n-s d i m) \leq n^{\star} n / 2\).
An error is only returned if 1 work \(<\max (8 * n, 6 * n+16)\) for real flavors, and lwork< max (1, \(2 *_{n}\)) for complex flavors, but if sense = 'E', 'V', or ' B ', this may not be large enough.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the bound on the optimal size of the work array and the minimum size of the iwork array, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla.
REAL for cggesx
DOUBLE PRECISION for zggesx
Workspace array, size at least max \((1,8 n)\).
This array is used in complex flavors only.
INTEGER.
Workspace array, size max(1, liwork).
INTEGER.
The dimension of the array iwork.
If sense \(=\) ' \(N\) ', or \(n=0\), then liwork \(\geq 1\),
```

Must be at least $\max (1, n)$.
otherwise liwork $\geq(n+6)$ for real flavors, and liwork $\geq(n+2)$ for complex flavors.

If liwork=-1, then a workspace query is assumed; the routine only calculates the bound on the optimal size of the work array and the minimum size of the iwork array, returns these values as the first entries of the work and iwork arrays, and no error message related to lwork or liwork is issued by xerbla.

LOGICAL.
Workspace array, size at least max $(1, n)$.
Not referenced if sort $=$ ' N '.

## Output Parameters

a
b
sdim
alphar, alphai
alpha
beta
$\operatorname{alphar}(\mathrm{j})+\operatorname{alphai}(\mathrm{j}) * \mathrm{i}$ and $\operatorname{beta}(\mathrm{j}), \mathrm{j}=1, \ldots, n$ are the diagonals of the complex Schur form ( $S, T$ ) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of $(A, B)$ were further reduced to triangular form using complex unitary transformations. If $\operatorname{alphai}(\mathrm{j})$ is zero, then the $j$ th eigenvalue is real; if positive, then the $j$-th and $(j+1)$-st eigenvalues are a complex conjugate pair, with alphai $(\mathrm{j}+1)$ negative.

## For complex flavors:

On exit, alpha(j)/beta( j$), \mathrm{j}=1, \ldots, n$ will be the generalized eigenvalues. alpha( j ) and $\operatorname{beta}(\mathrm{j}), \mathrm{j}=1, \ldots, n$ are the diagonals of the complex Schur form $(S, T)$ output by cggesx/zggesx. The beta(j) will be non-negative real.

## See also Application Notes below.

REAL for sggesx
DOUBLE PRECISION for dggesx
COMPLEX for cggesx
DOUBLE COMPLEX for zggesx.
Arrays:
$v s l(/ d v s /, *)$, the second dimension of $v s /$ must be at least max $(1, n)$.
If jobvsl = 'V', this array will contain the left Schur vectors.
If jobvsl = 'N', vsl is not referenced.
$v s r(I d v s r, *)$, the second dimension of $v s r$ must be at least max $(1, n)$.
If jobvsr = 'V', this array will contain the right Schur vectors.
If jobvsr = 'N', vsr is not referenced.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Arrays, size (2) each
If sense $=$ 'E' or 'B', rconde[0] and rconde[1] contain the reciprocal condition numbers for the average of the selected eigenvalues.
Not referenced if sense $=$ ' $N$ ' or 'V'.
If sense $=$ ' $V$ ' or ' B ', rcondv(1) and $r$ condv(2) contain the reciprocal condition numbers for the selected deflating subspaces.

Not referenced if sense $=$ ' $N$ ' or 'E'.
On exit, if info $=0$, then $\operatorname{work}(1)$ returns the required minimal size of Iwork.

On exit, if info $=0$, then $\operatorname{iwork}(1)$ returns the required minimal size of liwork.

## INTEGER.

If info $=0$, the execution is successful.
If info $=-i$, the $i$ th parameter had an illegal value.
If info $=i$, and
$i \leq n$ :
the $Q Z$ iteration failed. $(A, B)$ is not in Schur form, but alphar $(\mathrm{j})$, alphai( j$)$ (for real flavors), or alpha(j) (for complex flavors), and beta(j), $j=i n f o$ $+1, \ldots, n$ should be correct.
$i>n$ : errors that usually indicate LAPACK problems:
$i=n+1$ : other than $Q Z$ iteration failed in ?hgeqz;
$i=n+2$ : after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the generalized Schur form no longer satisfy selctg = .TRUE.. This could also be caused due to scaling; $i=n+3$ : reordering failed in tgsen.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ggesx interface are the following:

```
a Holds the matrix A of size (}n,n)\mathrm{ .
b Holds the matrix B of size (n,n).
alphar
alphai
alpha
beta
vsl
vsr
rconde
rcondv
jobvsl
```

jobvsr
sort

Restored based on the presence of arguments rconde and rcondv as follows: sense $=$ ' B ', if both rconde and rcondv are present,

$$
\begin{aligned}
& \text { sense }=\text { 'E', if rconde is present and rcondv omitted, } \\
& \text { sense }=\text { 'V', if rconde is omitted and rcondv present, } \\
& \text { sense }=' \mathrm{~N} \text { ', if both rconde and rcondv are omitted. }
\end{aligned}
$$

Note that there will be an error condition if rconde or rcondv are present and select is omitted.

## Application Notes

If you are in doubt how much workspace to supply, use a generous value of Iwork (or liwork) for the first run or set lwork $=-1$ (liwork $=-1$ ).

If you choose the first option and set any of admissible Iwork (or liwork) sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array (work, iwork) on exit. Use this value (work (1), iwork (1) ) for subsequent runs.

If you set 1 work $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work, iwork). This operation is called a workspace query.

Note that if you set Iwork (liwork) to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The quotients $\operatorname{alphar}(\mathrm{j}) / \operatorname{beta}(\mathrm{j})$ and $\operatorname{alphai}(\mathrm{j}) /$ beta $(\mathrm{j})$ may easily over- or underflow, and beta( j ) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai will be always less than and usually comparable with norm $(A)$ in magnitude, and beta always less than and usually comparable with norm( $B$ ).

```
?gges3
Computes generalized Schur factorization for a pair of
matrices.
```


## Syntax

```
call sgges3 (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar, alphai,
```

call sgges3 (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar, alphai,
beta, vSl, ldvsl, vsr, ldvsr, work, lwork, bwork, info )
beta, vSl, ldvsl, vsr, ldvsr, work, lwork, bwork, info )
call dgges3 (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar, alphai,
call dgges3 (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alphar, alphai,
beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info )
beta, vsl, ldvsl, vsr, ldvsr, work, lwork, bwork, info )
call cgges3 (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta, vsl,
call cgges3 (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta, vsl,
ldvsl, vSr, ldvsr, work, lwork, rwork, bwork, info )
ldvsl, vSr, ldvsr, work, lwork, rwork, bwork, info )
call zgges3 (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta, vsl,
call zgges3 (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim, alpha, beta, vsl,
ldvsl, vSr, ldvsr, work, lwork, rwork, bwork, info )

```
ldvsl, vSr, ldvsr, work, lwork, rwork, bwork, info)
```

Include Files

- mkl.fi


## Description

For a pair of $n$-by- $n$ real or complex nonsymmetric matrices $(A, B)$, ? gges 3 computes the generalized eigenvalues, the generalized real or complex Schur form ( $S, T$ ), and optionally the left or right matrices of Schur vectors (VSL and VSR). This gives the generalized Schur factorization
$\left.(A, B)=((V S L))^{*}(V S R)^{\top},(V S L)^{*} T^{*}(V S R)^{\top}\right)$ for real $(A, B)$
or
$(A, B)=\left((V S L) * S^{*}(V S R)^{\mathrm{H}},(V S L)^{*} T^{*}(V S R)^{\mathrm{H}}\right)$ for complex $(A, B)$
where $(V S R)^{\mathrm{H}}$ is the conjugate-transpose of $V S R$.

Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix $S$ and the upper triangular matrix $T$. The leading columns of VSL and VSR then form an orthonormal basis for the corresponding left and right eigenspaces (deflating subspaces).

## NOTE

If only the generalized eigenvalues are needed, use the driver ?ggev instead, which is faster.

A generalized eigenvalue for a pair of matrices $(A, B)$ is a scalar $w$ or a ratio alpha/beta $=w$, such that $A$ $w^{*} \mathrm{~B}$ is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta $=0$ or both being zero.
For real flavors:
A pair of matrices $(S, T)$ is in generalized real Schur form if $T$ is upper triangular with non-negative diagonal and $S$ is block upper triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized eigenvalues, while 2-by-2 blocks of $S$ will be "standardized" by making the corresponding elements of $T$ have the form:
$\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$
and the pair of corresponding 2-by-2 blocks in $S$ and $T$ have a complex conjugate pair of generalized eigenvalues.
For complex flavors:
A pair of matrices $(S, T)$ is in generalized complex Schur form if $S$ and $T$ are upper triangular and, in addition, the diagonal elements of $T$ are non-negative real numbers.

## Input Parameters

```
jobvsl
```

jobvsr
sort
selctg

CHARACTER*1. = ' N ': do not compute the left Schur vectors;
CHARACTER*1. = ' N ': do not compute the right Schur vectors;
$=$ 'V': compute the right Schur vectors.
CHARACTER*1. Specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form.
$=$ ' N ': Eigenvalues are not ordered;
$=$ 'S': Eigenvalues are ordered (see selctg).
LOGICAL. selctg is a function of three arguments for real flavors or two arguments for complex flavors. selctg must be declared EXTERNAL in the calling subroutine. If sort = ' N ', selctg is not referenced. If sort = ' S ', selctg is used to select eigenvalues to sort to the top left of the Schur form.

For real flavors:
An eigenvalue (alphar $(j)+$ alphai( $j)$ )/beta( $j$ ) is selected if selctg(alphar $(j)$, alphai $(j)$,beta $(j))$ is true. In other words, if either one of a complex conjugate pair of eigenvalues is selected, then both complex eigenvalues are selected.
Note that in the ill-conditioned case, a selected complex eigenvalue may no longer satisfy selctg(alphar(j),alphai(j),beta(j))=.TRUE. after ordering. info is to be set to $n+2$ in this case.

For complex flavors:
An eigenvalue alpha( $j$ )/beta( $j$ ) is selected if selctg(alpha( $j$ ), beta( $j$ )) is true.

Note that a selected complex eigenvalue may no longer satisfy $\operatorname{selctg}(a \operatorname{lpha}(j)$,beta $(j))=$.TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is illconditioned), in this case info is set to $n+2$ (See info below)..

INTEGER. The order of the matrices $A, B, V S L$, and $V S R . n \geq 0$.
REAL for sgges3
DOUBLE PRECISION for dgges 3
COMPLEX for cgges 3
DOUBLE COMPLEX for zgges 3
Array, size (lda, n). On entry, the first of the pair of matrices.
INTEGER. The leading dimension of $a$. Id $a \geq \max (1, n)$.
REAL for sgges3
DOUBLE PRECISION for dgges3
COMPLEX for cgges 3
DOUBLE COMPLEX for zgges 3
Array, size $(1 \mathrm{db}, n)$. On entry, the second of the pair of matrices.
INTEGER. The leading dimension of $b .1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of the matrix VSL. $I d v s l \geq 1$, and if jobvsl = 'V', ldvsl $\geq \mathrm{n}$.

INTEGER. The leading dimension of the matrix VSR. Idvsr $\geq 1$, and if jobvsr = 'V', ldvsr $\geq \mathrm{n}$.

INTEGER. The size of the array work. If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

REAL for sgges3
DOUBLE PRECISION for dgges3
COMPLEX for cgges 3
DOUBLE COMPLEX for zgges 3
Array, size (MAX ( 1,1 work $)$ ).
On exit, if info $=0$, work(1) returns the optimal lwork.
REAL for cgges3
DOUBLE PRECISION for zgges3
Array, size $\left(8^{*} n\right)$.

LOGICAL. Array, size (n). Not referenced if sort = 'N'.

## Output Parameters

a
b
sdim
alpha
alphar
alphai
beta

On exit, a is overwritten by its generalized Schur form S .
On exit, $b$ is overwritten by its generalized Schur form T .
INTEGER. If sort $=$ ' N ', sdim $=0$. If sort $=$ ' S ', sdim $=$ number of eigenvalues (after sorting) for which selctg is true.

COMPLEX for cgges3
double complex for zgges3
Array, size ( $n$ ).
REAL for sgges 3
DOUBLE PRECISION for dgges3
Array, size ( $n$ ).
REAL for sgges 3
DOUBLE PRECISION for dgges3
Array, size ( $n$ ).
REAL for sgges 3
DOUBLE PRECISION for dgges3
COMPLEX for cgges3
DOUBLE COMPLEX for zgges3
Array, size ( $n$ ).
For real flavors:
On exit, (alphar(j) +alphai(j) $\left.\mathrm{i}_{\mathrm{i}}\right) /$ beta( j$), \mathrm{j}=1, \ldots, \mathrm{n}$, are the generalized eigenvalues. alphar $(j)+a \operatorname{lphai}(j) * i$, and beta $(j), j=1, \ldots, n$ are the diagonals of the complex Schur form $(S, T)$ that would result if the 2-by-2 diagonal blocks of the real Schur form of ( $a, b$ ) were further reduced to triangular form using 2-by- 2 complex unitary transformations. If alphai $(j)$ is zero, then the $j$-th eigenvalue is real; if positive, then the $j$-th and ( $j+1$ )-st eigenvalues are a complex conjugate pair, with alphai( $j+1)$ negative.

Note: the quotients alphar(j)/beta(j) and alphai(j)/beta(j) can easily over- or underflow, and beta( $j$ ) might even be zero. Thus, you should avoid computing the ratio alpha/beta by simply dividing alpha by beta. However, alphar and alphai is always less than and usually comparable with norm(a) in magnitude, and beta is always less than and usually comparable with norm( $b$ ).
For complex flavors:

On exit, alpha( $j$ ) ( $j$ )/beta $(j), j=1, \ldots, n$, are the generalized eigenvalues. alpha $(j), j=1, \ldots, n$ and beta $(j), j=1, \ldots, n$ are the diagonals of the complex Schur form $(a, b)$ output by ?gges3. The beta( $j$ ) is non-negative real.

Note: the quotient alpha(j)/beta(j) can easily over- or underflow, and beta ( $j$ ) might even be zero. Thus, you should avoid computing the ratio alpha/beta by simply dividing alpha by beta. However, alpha is always less than and usually comparable with norm(a) in magnitude, and beta is always less than and usually comparable with norm(b).

REAL for sgges3
DOUBLE PRECISION for dgges 3
COMPLEX for cgges 3
DOUBLE COMPLEX for zgges 3
Array, size ( $1 \mathrm{dvs} 1, \mathrm{n}$ ).
If jobvsl = 'V', vsl contains the left Schur vectors. Not referenced if jobvsl = 'N'.

REAL for sgges3
DOUBLE PRECISION for dgges3
COMPLEX for cgges 3
DOUBLE COMPLEX for zgges 3
Array, size (ldvsr, n).
If jobvsr = 'V', vsr contains the right Schur vectors. Not referenced if jobvsr = ' N '.

INTEGER. $=0$ : successful exit $<0$ : if info $=-i$, the $i$-th argument had an illegal value.
$=1, \ldots, n$ :

- for real flavors:

The QZ iteration failed. $(a, b)$ are not in Schur form, but alphar(j), alphai(j) and beta(j) should be correct for $j=i n f o$ $+1, \ldots, n$.

- for complex flavors:

The QZ iteration failed. $(a, b)$ are not in Schur form, but alpha( $j$ ) and beta $(j)$ should be correct for $j=i n f o+1, \ldots, n$.
> $n$ :

- $=n+1$ : other than QZ iteration failed in ?hgeqz.
- $=n+2$ : after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the Generalized Schur form no longer satisfy selctg= .TRUE. This could also be caused due to scaling.
- $=n+3$ : reordering failed in ?tgsen.


## ?ggev <br> Computes the generalized eigenvalues, and the left and/or right generalized eigenvectors for a pair of nonsymmetric matrices.

## Syntax

```
call sggev(jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr,
work, lwork, info)
call dggev(jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr,
work, lwork, info)
call cggev(jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work, lwork,
rwork, info)
call zggev(jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work, lwork,
rwork, info)
call ggev(a, b, alphar, alphai, beta [,vl] [,vr] [,info])
call ggev(a, b, alpha, beta [, vl] [,vr] [,info])
```

Include Files

- mkl.fi, lapack.f90


## Description

The ? ggev routine computes the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors for a pair of $n$-by- $n$ real/complex nonsymmetric matrices $(A, B)$.
A generalized eigenvalue for a pair of matrices $(A, B)$ is a scalar $\lambda$ or a ratio alpha / beta $=\lambda$, such that $A-$ $\lambda * B$ is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta $=0$ and even for both being zero.
The right generalized eigenvector $v(j)$ corresponding to the generalized eigenvalue $\lambda(j)$ of $(A, B)$ satisfies $A^{\star} V(j)=\lambda(j){ }^{\star} B^{\star} V(j)$.
The left generalized eigenvector $u(j)$ corresponding to the generalized eigenvalue $\lambda(j)$ of $(A, B)$ satisfies $u(j){ }^{H_{\star} A}=\lambda(j){ }^{*} u(j){ }^{H_{\star} B}$
where $u(j)^{H}$ denotes the conjugate transpose of $u(j)$.
The ?ggev routine replaces the deprecated ?gegv routine.

## Input Parameters

```
jobvl CHARACTER*1.Must be 'N' or 'V'.
 If jobvl = 'N', the left generalized eigenvectors are not computed;
 If jobvl = 'v', the left generalized eigenvectors are computed.
 CHARACTER*1. Must be 'N' or 'V'.
 If jobvr = 'N', the right generalized eigenvectors are not computed;
 If jobvr = 'V', the right generalized eigenvectors are computed.
 INTEGER. The order of the matrices A,B,vl, and vr (n\geq0).
```

```
a,b, work
Ida
I db
ldvl, ldvr
lwork
rwork
```


## Output Parameters

```
a,b
alphar, alphai
```

On exit, these arrays have been overwritten.
REAL for sggev;
DOUBLE PRECISION for dggev.

Arrays, size at least $\max (1, n)$ each. Contain values that form generalized eigenvalues in real flavors.

See beta.

COMPLEX for cggev;
DOUBLE COMPLEX for zggev.
Array, size at least $\max (1, n)$. Contain values that form generalized eigenvalues in complex flavors. See beta.

REAL for sggev
DOUBLE PRECISION for dggev
COMPLEX for cggev
DOUBLE COMPLEX for zggev.
Array, size at least max $(1, n)$.
For real flavors:
On exit, (alphar( j$)+\operatorname{alphai}(\mathrm{j}) * \mathrm{i}) / \operatorname{beta}(\mathrm{j}), \mathrm{j}=1, \ldots, n$, are the generalized eigenvalues.
If alphai( j$)$ is zero, then the $j$-th eigenvalue is real; if positive, then the $j$-th and $(j+1)$-st eigenvalues are a complex conjugate pair, with alphai $(j+1)$ negative.

For complex flavors:
On exit, alpha( j$) / \operatorname{beta}(\mathrm{j}), \mathrm{j}=1, \ldots, n$, are the generalized eigenvalues.
See also Application Notes below.
REAL for sggev
DOUBLE PRECISION for dggev
COMPLEX for cggev
DOUBLE COMPLEX for zggev.
Arrays:
$v /(I d v l, *)$; the second dimension of $v /$ must be at least $\max (1, n)$. Contains the matrix of left generalized eigenvectors VL.
If jobvl = 'V', the left generalized eigenvectors $u_{j}$ are stored one after another in the columns of $V L$, in the same order as their eigenvalues. Each eigenvector is scaled so the largest component has abs(Re) $+\mathrm{abs}(\mathrm{Im})=$ 1.

If jobvl = ' N ', $v /$ is not referenced.

## For real flavors:

If the $j$-th eigenvalue is real, then $u_{j}=V L_{*}, j$, the $j$-th column of $V L$.
If the $j$-th and $(j+1)$-st eigenvalues form a complex conjugate pair, then for $i=\operatorname{sqrt}(-1), u_{j}=V L_{*, j}+i * V L_{\star, j+1}$ and $u_{j+1}=V L_{*, j}-i * V L_{\star}, j+$ +1 .
For complex flavors:
$u_{j}=V L_{\star},{ }_{j}$, the $j$-th column of $v /$.
$v r(I d v r, *)$; the second dimension of $v r$ must be at least max $(1, n)$. Contains the matrix of right generalized eigenvectors $V R$.

If jobvr $=$ ' $V$ ', the right generalized eigenvectors $v_{j}$ are stored one after another in the columns of $V R$, in the same order as their eigenvalues. Each eigenvector is scaled so the largest component has $a b s(R e)+a b s(I m)=1$.
If jobvr = ' N ', vr is not referenced.

## For real flavors:

If the $j$-th eigenvalue is real, then $v_{j}=V R_{\star}, j$, the $j$-th column of $V R$.
If the $j$-th and $(j+1)$-st eigenvalues form a complex conjugate pair, then $v_{j}$ $=V R_{\star, j}+i^{\star} V R_{\star, j+1}$ and $v_{j+1}=V R_{\star, j}-i^{\star} V R_{\star, j+1}$.
For complex flavors:
$v_{j}=V R_{\star}, j$, the $j$-th column of $V R$.
On exit, if info $=0$, then work(1) returns the required minimal size of Iwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i$, and
$i \leq n$ : the $Q Z$ iteration failed. No eigenvectors have been calculated, but $\operatorname{alphar}(\mathrm{j})$, alphai(j) (for real flavors), or alpha(j) (for complex flavors), and beta(j), j=info+1, ..., $n$ should be correct.
$i>n$ : errors that usually indicate LAPACK problems:
$i=n+1$ : other than $Q Z$ iteration failed in hgeqz;
$i=n+2$ : error return from tgevc.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ggev interface are the following:

| a | Holds the matrix $A$ of size $(n, n)$. |
| :--- | :--- |
| b | Holds the matrix $B$ of size $(n, n)$. |
| alphai | Holds the vector of length $n$. Used in real flavors only. |
| alpha | Holds the vector of length $n$. Used in real flavors only. |
| beta | Holds the vector of length $n$. Used in complex flavors only. |
| $v l$ | Holds the vector of length $n$. |
| $v r$ | Holds the matrix VL of size $(n, n)$. |
| Holds the matrix $V R$ of size $(n, n)$. |  |

```
jobvl Restored based on the presence of the argument vl as follows:
jobvl = 'V', if v/ is present,
jobvl = 'N', if v/ is omitted.
jobvr Restored based on the presence of the argument \(v r\) as follows:
jobvr = 'V', if vr is present,
jobvr = 'N', if vr is omitted.
```


## Application Notes

If you are in doubt how much workspace to supply, use a generous value of /work for the first run or set lwork $=-1$.

If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.

If you set lwork $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.

Note that if you set /work to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The quotients alphar( j$) /$ beta( j ) and alphai( $\mathrm{j} /$ /beta( j ) may easily over- or underflow, and beta( j ) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually comparable with norm $(A)$ in magnitude, and beta always less than and usually comparable with norm $(B)$.

## ?ggevx <br> Computes the generalized eigenvalues, and, optionally, the left and/or right generalized eigenvectors.

## Syntax

```
call sggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alphar, alphai, beta, vl,
ldvl, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, rcondv, work, lwork,
iwork, bwork, info)
call dggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alphar, alphai, beta, vl,
ldvl, vr, ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, rcondv, work, lwork,
iwork, bwork, info)
call cggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr,
ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, rcondv, work, lwork, rwork, iwork,
bwork, info)
call zggevx(balanc, jobvl, jobvr, sense, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr,
ldvr, ilo, ihi, lscale, rscale, abnrm, bbnrm, rconde, rcondv, work, lwork, rwork, iwork,
bwork, info)
call ggevx(a, b, alphar, alphai, beta [,vl] [,vr] [,balanc] [,ilo] [,ihi] [, lscale]
[,rscale] [,abnrm] [,bbnrm] [,rconde] [,rcondv] [,info])
call ggevx(a, b, alpha, beta [, vl] [,vr] [,balanc] [,ilo] [,ihi] [,lscale] [, rscale]
[,abnrm] [,bbnrm] [,rconde] [,rcondv] [,info])
```


## Include Files

- mkl.fi, lapack.f90


## Description

The routine computes for a pair of $n$-by- $n$ real/complex nonsymmetric matrices $(A, B)$, the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.

Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ilo, ihi, Iscale, rscale, abnrm, and bbnrm), reciprocal condition numbers for the eigenvalues (rconde), and reciprocal condition numbers for the right eigenvectors (rcondv).

A generalized eigenvalue for a pair of matrices $(A, B)$ is a scalar $\lambda$ or a ratio alpha / beta $=\lambda$, such that $A-$ $\lambda \star B$ is singular. It is usually represented as the pair (alpha, beta), as there is a reasonable interpretation for beta=0 and even for both being zero. The right generalized eigenvector $v(j)$ corresponding to the generalized eigenvalue $\lambda(j)$ of $(A, B)$ satisfies

```
A*V(j) = \lambda(j)* ***V(j).
```

The left generalized eigenvector $u(j)$ corresponding to the generalized eigenvalue $\lambda(j)$ of $(A, B)$ satisfies

```
u(j) }\mp@subsup{}{}{H*}A=\lambda(j)*u(j) *) N* B
```

where $u(j)^{H}$ denotes the conjugate transpose of $u(j)$.

## Input Parameters

balanc
jobvl
jobvr
sense

CHARACTER*1. Must be 'N', 'P', 'S', or 'B'. Specifies the balance option to be performed.

If balanc = 'N', do not diagonally scale or permute;
If balanc = 'P', permute only;
If balanc = 'S', scale only;
If balanc = 'B', both permute and scale.
Computed reciprocal condition numbers will be for the matrices after balancing and/or permuting. Permuting does not change condition numbers (in exact arithmetic), but balancing does.

CHARACTER*1. Must be 'N' or 'V'.
If jobvl = 'N', the left generalized eigenvectors are not computed;
If jobvl = 'V', the left generalized eigenvectors are computed.
CHARACTER*1. Must be 'N' or 'V'.
If jobvr = 'N', the right generalized eigenvectors are not computed;
If jobvr = ' V ', the right generalized eigenvectors are computed.
CHARACTER*1. Must be 'N', 'E', 'V', or 'B'. Determines which reciprocal condition number are computed.

If sense = 'N', none are computed;
If sense = 'E', computed for eigenvalues only;
If sense $=$ ' $V$ ', computed for eigenvectors only;
$n$
a, b, work

Ida
$1 d b$
ldvl, Idvr

I work

If sense $=$ ' B ', computed for eigenvalues and eigenvectors.
INTEGER. The order of the matrices $A, B, v l$, and $\operatorname{vr}(n \geq 0)$.
REAL for sggevx
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.

## Arrays:

$a\left(/ d a,^{*}\right)$ is an array containing the $n$-by-n matrix $A$ (first of the pair of matrices).

The second dimension of $a$ must be at least max $(1, n)$.
$b\left(/ d b,{ }^{*}\right)$ is an array containing the $n$-by-n matrix $B$ (second of the pair of matrices).

The second dimension of $b$ must be at least $\max (1, n)$.
work is a workspace array, its dimension max (1, lwork).
INTEGER. The leading dimension of the array $a$.
Must be at least $\max (1, n)$.
INTEGER. The leading dimension of the array $b$.
Must be at least $\max (1, n)$.
INTEGER. The leading dimensions of the output matrices $v /$ and $v r$, respectively.

Constraints:

```
ldvl\geq 1. If jobvl = 'V',ldvl\geq max(1, n).
ldvr\geq 1. If jobvr = 'V', ldvr\geq max(1, n).
```

INTEGER.
The dimension of the array work. 1 work $\geq \max (1,2 * n)$;
For real flavors:

```
If balanc = 'S',or'B', or jobvl = 'V',or jobvr = 'V', then lwork\geq
max(1, 6*n);
if sense = 'E',or'B', then lwork\geq max(1, 10*n);
if sense = 'V',or'B', lwork\geq (2n'2+ 8*n+16).
```

For complex flavors:

```
if sense = 'E', lwork\geq max(1, 4*n);
```

if sense $=$ 'V', or 'B', 1 work $\geq \max \left(1,2 * n^{2}+2 * n\right)$.

If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to Iwork is issued by xerbla.

```
rwork REAL for cggevx
 DOUBLE PRECISION for zggevx
 Workspace array, size at least max (1, 6* n) if balanc = 'S', or 'B', and
 at least max (1, 2*n) otherwise.
 This array is used in complex flavors only.
 INTEGER.
 Workspace array, size at least (n+6) for real flavors and at least (n+2) for
 complex flavors.
 Not referenced if sense = 'E'.
 LOGICAL. Workspace array, size at least max(1, n).
 Not referenced if sense = 'N'.
```


## Output Parameters

$a, b$
alphar, alphai
alpha
beta

On exit, these arrays have been overwritten.
If jobvl = 'V' or jobvr = 'V' or both, then a contains the first part of the real Schur form of the "balanced" versions of the input $A$ and $B$, and $b$ contains its second part.

REAL for sggevx;
DOUBLE PRECISION for dggevx.
Arrays, size at least $\max (1, n)$ each. Contain values that form generalized eigenvalues in real flavors.
See beta.
COMPLEX for cggevx;
DOUBLE COMPLEX for zggevx.
Array, size at least $\max (1, n)$. Contain values that form generalized eigenvalues in complex flavors. See beta.

REAL for sggevx
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.
Array, size at least $\max (1, n)$.
For real flavors:
On exit, (alphar( j ) + alphai( j$) * \mathrm{i}) /$ beta( j$), \mathrm{j}=1, \ldots, n$, will be the generalized eigenvalues.

If alphai( j$)$ is zero, then the $j$-th eigenvalue is real; if positive, then the $j$-th and ( $j+1$ )-st eigenvalues are a complex conjugate pair, with alphai( $j+1$ ) negative.
For complex flavors:
On exit, alpha( j$) / \mathrm{beta}(\mathrm{j}), \mathrm{j}=1, \ldots, n$, will be the generalized eigenvalues.

## See also Application Notes below.

REAL for sggevx
DOUBLE PRECISION for dggevx
COMPLEX for cggevx
DOUBLE COMPLEX for zggevx.
Arrays:
$v /(I d v l, *)$; the second dimension of $v /$ must be at least max $(1, n)$.
If jobvl = ' V ', the left generalized eigenvectors $u(j)$ are stored one after another in the columns of $v l$, in the same order as their eigenvalues. Each eigenvector will be scaled so the largest component have abs(Re) + $a b s(I m)=1$.
If jobvl = 'N', v/ is not referenced.
For real flavors:
If the $j$-th eigenvalue is real, then $u(j)=v l(:, j)$, the $j$-th column of $v /$.
If the j -th and ( $\mathrm{j}+1 \mathrm{l}$ )-st eigenvalues form a complex conjugate pair, then for $i=\operatorname{sqrt}(-1), u(j)=v l(:, j)+i * v l(:, j+1)$ and $u(j+1)=$ vl(:,j) - i*vl(:,j+1).

For complex flavors:
$u(j)=v l(:, j)$, the $j$-th column of $v /$.
$v r(l d v r, *)$; the second dimension of $v r$ must be at least $\max (1, n)$.
If jobvr = ' V ', the right generalized eigenvectors $v(\mathrm{j})$ are stored one after another in the columns of $v r$, in the same order as their eigenvalues. Each eigenvector will be scaled so the largest component have abs(Re) + $a b s(I m)=1$.
If jobvr = 'N', vr is not referenced.

## For real flavors:

If the j -th eigenvalue is real, then $v(j)=v r(:, j)$, the $j$-th column of $v r$.
If the $j$-th and $(j+1)$-st eigenvalues form a complex conjugate pair, then $v(j)=v r(:, j)+i * v r(:, j+1)$ and $v(j+1)=v r(:, j)-i * v r(:, j$ +1).

## For complex flavors:

$v(j)=v r(:, j)$, the $j$-th column of $v r$.
INTEGER. ilo and ihi are integer values such that on exit $A_{i j}=0$ and $B_{i}{ }_{j}$ $=0$ if $i>j$ and $j=1, \ldots$, ilo-1 or $i=$ ihit1,..., n.
If balanc = 'N' or 'S', ilo = 1 and ihi = n.
lscale, rscale
ilo, ihi

## REAL for single-precision flavors

DOUBLE PRECISION for double-precision flavors.
Arrays, size at least $\max (1, n)$ each.
Iscale contains details of the permutations and scaling factors applied to the left side of $A$ and $B$.
abnrm, bbnrm
rconde, rcondv
work(1)
info

If $P L(j)$ is the index of the row interchanged with row $\mathbf{j}$, and $D L(j)$ is the scaling factor applied to row $j$, then
lscale(j) $=P L(j)$, for $j=1, \ldots, i l o-1$
$=D L(j)$, for $j=i l o, \ldots, i h i$
$=P L(j)$ for $j=i h i+1, \ldots, n$.
The order in which the interchanges are made is $n$ to $i h i+1$, then 1 to ilo-1. rscale contains details of the permutations and scaling factors applied to the right side of $A$ and $B$.
If $P R(j)$ is the index of the column interchanged with column $\mathbf{j}$, and $D R(j)$ is the scaling factor applied to column $j$, then
rscale(j) $=P R(j)$, for $j=1, \ldots$, ilo-1
$=D R(j)$, for $j=i l o, \ldots, i h i$
$=P R(j)$ for $j=i h i+1, \ldots, n$.
The order in which the interchanges are made is $n$ to $i h i+1$, then 1 to ilo-1.
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
The one-norms of the balanced matrices $A$ and $B$, respectively.
REAL for single precision flavors DOUBLE PRECISION for double precision flavors.

Arrays, size at least $\max (1, n)$ each.
If sense $=$ ' E ', or ' B ', rconde contains the reciprocal condition numbers of the eigenvalues, stored in consecutive elements of the array. For a complex conjugate pair of eigenvalues two consecutive elements of rconde are set to the same value. Thus rconde $(\mathrm{j}), r \operatorname{condv}(\mathrm{j})$, and the $j$-th columns of $v /$ and $v r$ all correspond to the same eigenpair (but not in general the $j$-th eigenpair, unless all eigenpairs are selected).
If sense $=$ ' N ', or ' V ', rconde is not referenced.
If sense $=$ ' V ', or ' B ', rcondv contains the estimated reciprocal condition numbers of the eigenvectors, stored in consecutive elements of the array. For a complex eigenvector two consecutive elements of rcondv are set to the same value.

If the eigenvalues cannot be reordered to compute rcondv $(\mathrm{j}) r$ ronde[ $j]$, rcondv( j ) is set to 0 ; this can only occur when the true value would be very small anyway.
If sense $=$ 'N', or 'E', rcondv is not referenced.
On exit, if info $=0$, then work(1) returns the required minimal size of lwork.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=$ i, and
$i \leq n$ :
the $Q Z$ iteration failed. No eigenvectors have been calculated, but alphar(j), alphai(j) (for real flavors), or alpha(j) (for complex flavors), and beta(j), $j=i n f o+1, \ldots, n$ should be correct.
$i>n$ : errors that usually indicate LAPACK problems:
$i=n+1$ : other than $Q Z$ iteration failed in hgeqz;
$i=n+2$ : error return from tgevc.

## LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ggevx interface are the following:

| a | Holds the matrix $A$ of size ( $n, n$ ). |
| :---: | :---: |
| b | Holds the matrix $B$ of size ( $n, n$ ). |
| alphar | Holds the vector of length $n$. Used in real flavors only. |
| alphai | Holds the vector of length $n$. Used in real flavors only. |
| alpha | Holds the vector of length $n$. Used in complex flavors only. |
| beta | Holds the vector of length $n$. |
| vl | Holds the matrix VL of size ( $n, n$ ). |
| vr | Holds the matrix $V R$ of size ( $n, n$ ). |
| Iscale | Holds the vector of length $n$. |
| rscale | Holds the vector of length $n$. |
| rconde | Holds the vector of length $n$. |
| rcondv | Holds the vector of length $n$. |
| balanc | Must be 'N', 'B', or 'P'. The default value is 'N'. |
| jobvl | Restored based on the presence of the argument $v /$ as follows: jobvl = 'V', if $v /$ is present, |
|  | jobvl = 'N', if vl is omitted. |
| jobvr | Restored based on the presence of the argument vr as follows: jobvr = 'V', if vr is present, |
|  | jobvr = 'N', if vr is omitted. |

Restored based on the presence of arguments rconde and rcondv as follows:
sense $=$ ' B ', if both rconde and rcondv are present,
sense $=$ 'E', if rconde is present and rcondv omitted,
sense $=$ 'V', if rconde is omitted and rcondv present,

```
sense = 'N', if both rconde and rcondv are omitted.
```


## Application Notes

If you are in doubt how much workspace to supply, use a generous value of /work for the first run or set lwork $=-1$.
If you choose the first option and set any of admissible /work sizes, which is no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value (work (1)) for subsequent runs.
If you set lwork $=-1$, the routine returns immediately and provides the recommended workspace in the first element of the corresponding array (work). This operation is called a workspace query.
Note that if you set /work to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.
The quotients alphar( j )/beta( j ) and alphai( j$) /$ beta( j$)$ may easily over- or underflow, and beta( j ) may even be zero. Thus, you should avoid simply computing the ratio. However, alphar and alphai (for real flavors) or alpha (for complex flavors) will be always less than and usually comparable with norm $(A)$ in magnitude, and beta always less than and usually comparable with norm( $B$ ).

## ?ggev3

Computes the generalized eigenvalues and the left and right generalized eigenvectors for a pair of matrices.

## Syntax

```
call sggev3 (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr,
work, lwork, info)
call dggev3 (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta, vl, ldvl, vr, ldvr,
work, lwork, info)
call cggev3 (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)
call zggev3 (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)
```

Include Files

- mkl.fi


## Description

For a pair of $n$-by- $n$ real or complex nonsymmetric matrices $(A, B)$, ?ggev3 computes the generalized eigenvalues, and optionally, the left and right generalized eigenvectors.
A generalized eigenvalue for a pair of matrices $(A, B)$ is a scalar $\lambda$ or a ratio alpha/beta $=\lambda$, such that $A$ $\lambda^{* B}$ is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta $=0$, and even for both being zero.
For real flavors:
The right eigenvector $v_{j}$ corresponding to the eigenvalue $\lambda_{j}$ of $(A, B)$ satisfies
$A * v_{j}=\lambda_{j} * B * v_{j}$.
The left eigenvector $u_{j}$ corresponding to the eigenvalue $\lambda_{j}$ of $(A, B)$ satisfies
$u_{\mathrm{j}} \mathrm{H}^{*} A=\lambda_{\mathrm{j}} * u_{\mathrm{j}}{ }^{\mathrm{H}} * B$
where $u_{j}{ }^{H}$ is the conjugate-transpose of $u_{j}$.
For complex flavors:
The right generalized eigenvector $v_{j}$ corresponding to the generalized eigenvalue $\lambda_{j}$ of $(A, B)$ satisfies $A * v_{\mathrm{j}}=\lambda_{\mathrm{j}} * B * v_{\mathrm{j}}$.
The left generalized eigenvector $u_{j}$ corresponding to the generalized eigenvalues $\lambda_{j}$ of $(A, B)$ satisfies
$u_{\mathrm{j}}{ }^{\mathrm{H}} * A=\lambda_{\mathrm{j}} * u_{\mathrm{j}}{ }^{\mathrm{H}} * B$
where $u_{j}{ }^{H}$ is the conjugate-transpose of $u_{j}$.
Input Parameters
jobvl
jobvr
$n$
$a$

Ida
b
$1 d b$
ldvI
ldvr

CHARACTER*1. = ' N ': do not compute the left generalized eigenvectors;
$=$ ' V ': compute the left generalized eigenvectors.
CHARACTER*1. = ' N ': do not compute the right generalized eigenvectors;
$=$ ' V ': compute the right generalized eigenvectors.
INTEGER. The order of the matrices $A, B, V L$, and $V R$.
$n \geq 0$.
REAL for sggev3
DOUBLE PRECISION for dggev3
COMPLEX for cggev3
DOUBLE COMPLEX for zggev3
Array, size (lda, $n$ ).
On entry, the matrix $A$ in the pair $(A, B)$.
INTEGER. The leading dimension of $a$.
$l d a \geq \max (1, n)$.
REAL for sggev3
DOUBLE PRECISION for dggev3
COMPLEX for cggev3
DOUBLE COMPLEX for zggev3
Array, size ( $1 \mathrm{db}, \mathrm{n}$ ).
On entry, the matrix $B$ in the pair $(A, B)$.
INTEGER. The leading dimension of $b$.
$l d b \geq \max (1, n)$.
INTEGER. The leading dimension of the matrix VL.
$l d v l \geq 1$, and if jobvl = 'V', $l d v l \geq n$.
INTEGER. The leading dimension of the matrix $V R$.
$I d v r \geq 1$, and if jobvr = 'V', $I d v r \geq n$.

```
work REAL for sggev3
 DOUBLE PRECISION for dggev3
 COMPLEX for cggev3
DOUBLE COMPLEX for zggev3
Array, size (MAX(1,1work))
On exit, if info = 0, work(1) returns the optimal lwork.
INTEGER. The dimension of the array work.
If lwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal \((A, B)\) of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
REAL for cggev3
DOUBLE PRECISION for zggev3
Array, size \(\left(8^{*} n\right)\).
```


## Output Parameters

a
b
alphar
alphai
alpha
beta

On exit, a is overwritten.
On exit, b is overwritten.
REAL for sggev3
DOUBLE PRECISION for dggev3
Array, size ( $n$ ).
REAL for sggev3
DOUBLE PRECISION for dggev3
Array, size ( $n$ ).
COMPLEX for cggev3
DOUBLE COMPLEX for zggev3
Array, size ( $n$ ).
REAL for sggev3
DOUBLE PRECISION for dggev3
COMPLEX for cggev3
DOUBLE COMPLEX for zggev3
Array, size ( $n$ ).
For real flavors:
On exit, (alphar(j) + alphai(j)*i)/beta(j), $j=1, \ldots, n$, are the generalized eigenvalues. If alphai( $j$ ) is zero, then the $j$-th eigenvalue is real; if positive, then the $j$-th and $(j+1)$-st eigenvalues are a complex conjugate pair, with alphai $(j+1)$ negative.

Note: the quotients alphar(j)/beta( $j$ ) and alphai( $j$ )/beta ( $j$ ) can easily over- or underflow, and beta(j) might even be zero. Thus, you should avoid computing the ratio alpha/beta by simply dividing alpha by beta. However, alphar and alphai are always less than and usually comparable with norm $(A)$ in magnitude, and beta is always less than and usually comparable with norm $(B)$.
For complex flavors:
On exit, alpha(j)/beta(j),j=1,..,n, are the generalized eigenvalues.
Note: the quotients alpha(j)/beta(j) may easily over- or underflow, and beta(j) can even be zero. Thus, you should avoid computing the ratio alpha/beta by simply dividing alpha by beta. However, alpha is always less than and usually comparable with norm $(A)$ in magnitude, and betais always less than and usually comparable with norm $(B)$.

REAL for sggev3
DOUBLE PRECISION for dggev3
COMPLEX for cggev3
DOUBLE COMPLEX for zggev3
Array, size ( $1 d v \mathrm{l}, \mathrm{n}$ ).
For real flavors:
If jobvl = 'V', the left eigenvectors $u_{j}$ are stored one after another in the columns of $v l$, in the same order as their eigenvalues. If the $j$-th eigenvalue is real, then $u_{j}=v l(:, j)$, the $j$-th column of $v l$. If the $j$-th and $(j+1)$-st eigenvalues form a complex conjugate pair, then $u_{j}=$ $v l(:, j)+i^{*} v l(:, j+1)$ and $u_{j+1}=v l(:, j)-i^{*} v l(:, j+1)$.

Each eigenvector is scaled so the largest component has abs(real part) + abs(imag. part) $=1$.

Not referenced if jobvl = ' N '.
For complex flavors:
If jobvl $=$ ' $V$ ', the left generalized eigenvectors $u_{j}$ are stored one after another in the columns of $v l$, in the same order as their eigenvalues.
Each eigenvector is scaled so the largest component has abs(real part $)+$ abs(imag. part) $=1$.

Not referenced if jobvl = ' N '.
REAL for sggev3
DOUBLE PRECISION for dggev3
COMPLEX for cggev3
DOUBLE COMPLEX for zggev3
Array, size (ldvr, n).
For real flavors:

If jobvr $=$ ' $V$ ', the right eigenvectors $v_{j}$ are stored one after another in the columns of $v r$, in the same order as their eigenvalues. If the $j$ th eigenvalue is real, then $v_{j}=v r(:, j)$, the $j$-th column of $v r$. If the $j$ th and $(j+1)$-st eigenvalues form a complex conjugate pair, then $v_{j}=$ $\operatorname{vr}(:, j)+i^{*} v r(:, j+1)$ and $v_{j+1}=\operatorname{vr}(:, j)-i^{*} v r(:, j+1)$.
Each eigenvector is scaled so the largest component has abs(real part) + abs(imag. part) $=1$.

Not referenced if jobvr = ' N '.
For complex flavors:
If jobvr = ' $V$ ', the right generalized eigenvectors $v_{j}$ are stored one after another in the columns of $v r$, in the same order as their eigenvalues. Each eigenvector is scaled so the largest component has abs(real part) + abs(imag. part) $=1$.
Not referenced if jobvr = ' N '.
INTEGER. $=0$ : successful exit.
< 0 : if info $=-i$, the $i$-th argument had an illegal value.
$=1, \ldots, n$ :

- for real flavors:

The QZ iteration failed. No eigenvectors have been calculated, but alphar $(j)$, alphar $(j)$ and beta $(j)$ should be correct for $j=i n f o+$ $1, \ldots, n$.

- for complex flavors:

The QZ iteration failed. No eigenvectors have been calculated, but alpha( $j$ ) and beta( $j$ ) should be correct for $j=$ info $+1, \ldots, n$.
> n :

- $=n+1$ : other than QZ iteration failed in ?hgeqz,
- $=n+2$ : error return from ?tgevc.


## LAPACK Auxiliary Routines

Routine naming conventions, mathematical notation, and matrix storage schemes used for LAPACK auxiliary routines are the same as for the driver and computational routines described in previous chapters.
The table below summarizes information about the available LAPACK auxiliary routines.
LAPACK Auxiliary Routines

| Routine Name | Data <br> Types | Description |
| :--- | :--- | :--- |
| ?lacgv | c, z | Conjugates a complex vector. |
| ?lacrm | c, z | Multiplies a complex matrix by a square real matrix. |
| ?lacrt | c, z | Performs a linear transformation of a pair of complex vectors. |
| ?laesy | c, z | Computes the eigenvalues and eigenvectors of a 2-by-2 complex <br> symmetric matrix. |


| Routine Name | Data Types | Description |
| :---: | :---: | :---: |
| ?rot | c, z | Applies a plane rotation with real cosine and complex sine to a pair of complex vectors. |
| ? spmv | c, z | Computes a matrix-vector product for complex vectors using a complex symmetric packed matrix |
| ? spr | c, z | Performs the symmetrical rank- 1 update of a complex symmetric packed matrix. |
| ?syconv | $s, c, d, z$ | Converts a symmetric matrix given by a triangular matrix factorization into two matrices and vice versa. |
| ? symv | c, z | Computes a matrix-vector product for a complex symmetric matrix. |
| ?syr | c, z | Performs the symmetric rank-1 update of a complex symmetric matrix. |
| i?max1 | c, z | Finds the index of the vector element whose real part has maximum absolute value. |
| ? sum1 | $s c, d z$ | Forms the 1 -norm of the complex vector using the true absolute value. |
| ? gbtf 2 | s, d, c, z | Computes the LU factorization of a general band matrix using the unblocked version of the algorithm. |
| ? geb d2 | $s, d, c, z$ | Reduces a general matrix to bidiagonal form using an unblocked algorithm. |
| ? geh 22 | $s, d, c, z$ | Reduces a general square matrix to upper Hessenberg form using an unblocked algorithm. |
| ?gelq2 | s, d, c, z | Computes the LQ factorization of a general rectangular matrix using an unblocked algorithm. |
| ?gelqt3 | s, d, c, z | Recursively computes the LQ factorization of a general matrix using the compact WY representation of Q . |
| ? geq 12 | $s, d, c, z$ | Computes the QL factorization of a general rectangular matrix using an unblocked algorithm. |
| ?geqı2 | s, d, c, z | Computes the QR factorization of a general rectangular matrix using an unblocked algorithm. |
| ? geqr 2 p | $s, d, c, z$ | Computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm. |
| ? geqrat 2 | $s, d, c, z$ | Computes a QR factorization of a general real or complex matrix using the compact WY representation of Q . |
| ? geqr ¢ 3 | $s, d, c, z$ | Recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of Q . |
| ?gerq2 | $s, d, c, z$ | Computes the RQ factorization of a general rectangular matrix using an unblocked algorithm. |
| ?gesc2 | $s, d, c, z$ | Solves a system of linear equations using the LU factorization with complete pivoting computed by ?getc2. |


| Routine Name | Data <br> Types | Description |
| :---: | :---: | :---: |
| ? getc2 | $s, d, c, z$ | Computes the LU factorization with complete pivoting of the general $n$-by-n matrix. |
| ? getf2 | $s, d, c, z$ | Computes the LU factorization of a general $m$-by- $n$ matrix using partial pivoting with row interchanges (unblocked algorithm). |
| ? 9 tts2 | $s, d, c, z$ | Solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by ?gttrf. |
| ?isnan | $s, d$, | Tests input for NaN. |
| ?laisnan | $s, d$, | Tests input for NaN by comparing two arguments for inequality. |
| ? labrd | $s, d, c, z$ | Reduces the first $n b$ rows and columns of a general matrix to a bidiagonal form. |
| ? 1 acn 2 | $s, d, c, z$ | Estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products. |
| ? lacon | $s, d, c, z$ | Estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products. |
| ? lacpy | $s, d, c, z$ | Copies all or part of one two-dimensional array to another. |
| ?ladiv | s, d, c, z | Performs complex division in real arithmetic, avoiding unnecessary overflow. |
| ? lae2 | s, d | Computes the eigenvalues of a 2-by-2 symmetric matrix. |
| ? laebz | s, d | Computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine ?stebz. |
| ? laed0 | s, d, c, z | Used by ?stedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method. |
| ? laed1 | $s, d$ | Used by sstedc/dstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal. |
| ?laed2 | $s, d$ | Used by sstedc/dstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal. |
| ? laed3 | s, d | Used by sstedc/dstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal. |
| ?laed4 | $s, d$ | Used by sstedc/dstedc. Finds a single root of the secular equation. |
| ? laed5 | s, d | Used by sstedc/dstedc. Solves the 2-by-2 secular equation. |
| ?laed6 | $s, d$ | Used by sstedc/dstedc. Computes one Newton step in solution of the secular equation. |
| ?laed7 | $s, d, c, z$ | Used by ?stedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense. |


| Routine Name | Data <br> Types | Description |
| :---: | :---: | :---: |
| ?laed8 | $s, d, c, z$ | Used by ?stedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense. |
| ?laed9 | s, d | Used by sstedc/dstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is dense. |
| ? laeda | $s, d$ | Used by ?stedc. Computes the $Z$ vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense. |
| ?laein | $s, d, c, z$ | Computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration. |
| ?laev2 | $s, d, c, z$ | Computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix. |
| ? laexc | s, d | Swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonical form, by an orthogonal similarity transformation. |
| ?lag2 | $s, d$ | Computes the eigenvalues of a 2-by-2 generalized eigenvalue problem, with scaling as necessary to avoid over-/underflow. |
| ? lags2 | $s, d$ | Computes 2-by-2 orthogonal matrices $U, V$, and $Q$, and applies them to matrices $A$ and $B$ such that the rows of the transformed $A$ and $B$ are parallel. |
| ?lagtf | s, d | Computes an LU factorization of a matrix $T-\lambda I$, where $T$ is a general tridiagonal matrix, and $\lambda$ a scalar, using partial pivoting with row interchanges. |
| ? lagtm | $s, d, c, z$ | Performs a matrix-matrix product of the form $C=\alpha A B+\beta C$, where $A$ is a tridiagonal matrix, $B$ and $C$ are rectangular matrices, and $\alpha$ and $\beta$ are scalars, which may be 0,1 , or -1 . |
| ? lagts | $s, d$ | Solves the system of equations $(T-\lambda I) x=y$ or $(T-\lambda I)^{T} x=y$, where $T$ is a general tridiagonal matrix and $\lambda$ a scalar, using the LU factorization computed by ?lagtf. |
| ? lagv2 | $s, d$ | Computes the Generalized Schur factorization of a real 2-by-2 matrix pencil $(A, B)$ where $B$ is upper triangular. |
| ? lahqr | $s, d, c, z$ | Computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm. |
| ? lahrd | $s, d, c, z$ | Reduces the first $n b$ columns of a general rectangular matrix $A$ so that elements below the $k$-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of $A$. |
| ? lahr2 | $s, d, c, z$ | Reduces the specified number of first columns of a general rectangular matrix $A$ so that elements below the specified subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of $A$. |
| ?laic1 | $s, d, c, z$ | Applies one step of incremental condition estimation. |


| Routine Name | Data <br> Types | Description |
| :---: | :---: | :---: |
| ? lakf2 | $s, d, c, z$ | Forms a matrix containing Kronecker products between the given matrices. |
| ?lals0 | $s, d, c, z$ | Applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by ?gelsd. |
| ?lalsa | $s, d, c, z$ | Computes the SVD of the coefficient matrix in compact form. Used by ?gelsd. |
| ?lalsd | $s, d, c, z$ | Uses the singular value decomposition of $A$ to solve the least squares problem. |
| ? 1 amrg | $s, d$ | Creates a permutation list to merge the entries of two independently sorted sets into a single set sorted in ascending order. |
| ?lamswlq | $s, d, c, z$ | Multiplies a general real matrix by a real orthogonal matrix defined as the product of blocked elementary reflectors computed by short wide LQ factorization. |
| ? lamtsqr | $s, d, c, z$ | Multiplies a general matrix by the product of blocked elementary reflectors computed by tall skinny QR factorization. |
| ? laneg | $s, d$ | Computes the Sturm count. |
| ? langb | $s, d, c, z$ | Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix. |
| ? lange | $s, d, c, z$ | Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general rectangular matrix. |
| ? langt | $s, d, c, z$ | Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix. |
| ?lanhs | $s, d, c, z$ | Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix. |
| ? lansb | $s, d, c, z$ | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix. |
| ? lanhb | C, z | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix. |
| ?lansp | $s, d, c, z$ | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form. |
| ? 1 anhp | C, z | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form. |
| ?lanst/?lanht | $s, d / c, z$ | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric or complex Hermitian tridiagonal matrix. |


| Routine Name | Data <br> Types | Description |
| :---: | :---: | :---: |
| ?lansy | $s, d, c, z$ | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/ complex symmetric matrix. |
| ? lanhe | C, z | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix. |
| ? lantb | $s, d, c, z$ | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix. |
| ? lantp | $s, d, c, z$ | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form. |
| ? lantr | $s, d, c, z$ | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix. |
| ? 1 anv2 | $s, d$ | Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form. |
| ?lapll | $s, d, c, z$ | Measures the linear dependence of two vectors. |
| ? lapmr | $s, d, c, z$ | Rearranges rows of a matrix as specified by a permutation vector. |
| ? lapmt | $s, d, c, z$ | Performs a forward or backward permutation of the columns of a matrix. |
| ? $1 \mathrm{apy2}$ | $s, d$ | Returns sqrt $\left(x^{2}+y^{2}\right)$. |
| ? lapy 3 | $s, d$ | Returns sqrt( $x^{2}+y^{2}+z^{2}$ ). |
| ? laqgb | $s, d, c, z$ | Scales a general band matrix, using row and column scaling factors computed by ?gbequ. |
| ?laqge | $s, d, c, z$ | Scales a general rectangular matrix, using row and column scaling factors computed by ?geequ. |
| ? 1 aqhb | C, z | Scales a Hermitian band matrix, using scaling factors computed by ?pbequ. |
| ? 1 aqp 2 | $s, d, c, z$ | Computes a QR factorization with column pivoting of the matrix block. |
| ?laqps | $s, d, c, z$ | Computes a step of QR factorization with column pivoting of a real m-by-n matrix $A$ by using BLAS level 3. |
| ?laqr0 | $s, d, c, z$ | Computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition. |
| ?laqr1 | $s, d, c, z$ | Sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix $H$ and specified shifts. |
| ?laqr2 | $s, d, c, z$ | Performs the orthogonal/unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation). |


| Routine Name | Data <br> Types | Description |
| :---: | :---: | :---: |
| ?laqr3 | $s, d, c, z$ | Performs the orthogonal/unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation). |
| ?laqr4 | $s, d, c, z$ | Computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition. |
| ?laqr5 | $s, d, c, z$ | Performs a single small-bulge multi-shift QR sweep. |
| ? laqsb | $s, d, c, z$ | Scales a symmetric/Hermitian band matrix, using scaling factors computed by ?pbequ. |
| ?laqsp | $s, d, c, z$ | Scales a symmetric/Hermitian matrix in packed storage, using scaling factors computed by ?ppequ. |
| ? laqsy | $s, d, c, z$ | Scales a symmetric/Hermitian matrix, using scaling factors computed by ?poequ. |
| ? laqtr | $s, d$ | Solves a real quasi-triangular system of equations, or a complex quasi-triangular system of special form, in real arithmetic. |
| ? lar1v | $s, d, c, z$ | Computes the (scaled) $r$-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix $L D L^{T}-\lambda I$. |
| ? lar2v | $s, d, c, z$ | Applies a vector of plane rotations with real cosines and real/ complex sines from both sides to a sequence of 2-by-2 symmetric/ Hermitian matrices. |
| ?laran | s, d | Returns a random real number from a uniform distribution. |
| ?larf | $s, d, c, z$ | Applies an elementary reflector to a general rectangular matrix. |
| ? larfb | $s, d, c, z$ | Applies a block reflector or its transpose/conjugate-transpose to a general rectangular matrix. |
| ? larfg | $s, d, c, z$ | Generates an elementary reflector (Householder matrix). |
| ?larfgp | $s, d, c, z$ | Generates an elementary reflector (Householder matrix) with nonnegatibe beta. |
| ?larft | $s, d, c, z$ | Forms the triangular factor $T$ of a block reflector $H=I-v t v^{H}$ |
| ?larfx | $s, d, c, z$ | Applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order $\leq 10$. |
| ?large | $s, d, c, z$ | Pre- and post-multiplies a real general matrix with a random orthogonal matrix. |
| ? larnd | $s, d, c, z$ | Returns a random real number from a uniform or normal distribution. |
| ?largv | $s, d, c, z$ | Generates a vector of plane rotations with real cosines and real/ complex sines. |
| ? larnv | $s, d, c, z$ | Returns a vector of random numbers from a uniform or normal distribution. |
| ? laror | $s, d, c, z$ | Pre- or post-multiplies an $m$-by- $n$ matrix by a random orthogonal/ unitary matrix. |


| Routine Name | Data <br> Types | Description |
| :---: | :---: | :---: |
| ?larot | $s, d, c, z$ | Applies a Givens rotation to two adjacent rows or columns. |
| ?larra | s, d | Computes the splitting points with the specified threshold. |
| ? larrb | s, d | Provides limited bisection to locate eigenvalues for more accuracy. |
| ?larrc | s, d | Computes the number of eigenvalues of the symmetric tridiagonal matrix. |
| ? larrd | s, d | Computes the eigenvalues of a symmetric tridiagonal matrix to suitable accuracy. |
| ?larre | s, d | Given the tridiagonal matrix $T$, sets small off-diagonal elements to zero and for each unreduced block $T_{i}$, finds base representations and eigenvalues. |
| ? larrf | s, d | Finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated. |
| ?larrj | $s, d$ | Performs refinement of the initial estimates of the eigenvalues of the matrix $T$. |
| ?larrk | $s, d$ | Computes one eigenvalue of a symmetric tridiagonal matrix $T$ to suitable accuracy. |
| ?larrr | $s, d$ | Performs tests to decide whether the symmetric tridiagonal matrix $T$ warrants expensive computations which guarantee high relative accuracy in the eigenvalues. |
| ?larrv | $s, d, c, z$ | Computes the eigenvectors of the tridiagonal matrix $T=L D L^{T}$ given $L, D$ and the eigenvalues of $L D L^{T}$. |
| ?lartg | $s, d, c, z$ | Generates a plane rotation with real cosine and real/complex sine. |
| ? lartgp | s, d | Generates a plane rotation so that the diagonal is nonnegative. |
| ?lartgs | $s, d$ | Generates a plane rotation designed to introduce a bulge in implicit QR iteration for the bidiagonal SVD problem. |
| ?lartv | $s, d, c, z$ | Applies a vector of plane rotations with real cosines and real/ complex sines to the elements of a pair of vectors. |
| ?laruv | $s, d$ | Returns a vector of n random real numbers from a uniform distribution. |
| ?larz | $s, d, c, z$ | Applies an elementary reflector (as returned by ?tzrzf) to a general matrix. |
| ?larzb | $s, d, c, z$ | Applies a block reflector or its transpose/conjugate-transpose to a general matrix. |
| ?larzt | $s, d, c, z$ | Forms the triangular factor $T$ of a block reflector $H=I-v t v^{H}$. |
| ?las2 | s, d | Computes singular values of a 2-by-2 triangular matrix. |
| ?lascl | $s, d, c, z$ | Multiplies a general rectangular matrix by a real scalar defined as $c_{\text {to }} / C_{\text {from }}$. |
| ?lasd0 | s, d | Computes the singular values of a real upper bidiagonal $n$-by-m matrix $B$ with diagonal $d$ and off-diagonal $e$. Used by ?bdsdc. |


| Routine Name | Data <br> Types | Description |
| :---: | :---: | :---: |
| ?lasd1 | s, d | Computes the SVD of an upper bidiagonal matrix $B$ of the specified size. Used by ?bdsdc. |
| ? lasd2 | $s, d$ | Merges the two sets of singular values together into a single sorted set. Used by ?bdsdc. |
| ?lasd3 | $s, d$ | Finds all square roots of the roots of the secular equation, as defined by the values in $D$ and $Z$, and then updates the singular vectors by matrix multiplication. Used by ?bdsdc. |
| ? lasd4 | $s, d$ | Computes the square root of the $i$-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used by ?bdsdc. |
| ?lasd5 | $s, d$ | Computes the square root of the $i$-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix. Used by ?bdsdc. |
| ? lasd6 | $s, d$ | Computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller ones by appending a row. Used by ?bdsdc. |
| ?lasd7 | s, d | Merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. Used by ?bdsdc. |
| ? lasd8 | $s, d$ | Finds the square roots of the roots of the secular equation, and stores, for each element in $D$, the distance to its two nearest poles. Used by ?bdsdc. |
| ? lasda | $s, d$ | Computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal $d$ and off-diagonal $e$. Used by ?bdsdc. |
| ? lasdq | $s, d$ | Computes the SVD of a real bidiagonal matrix with diagonal $d$ and off-diagonal e. Used by ?bdsdc. |
| ?lasdt | $s, d$ | Creates a tree of subproblems for bidiagonal divide and conquer. Used by ?bdsdc. |
| ?laset | $s, d, c, z$ | Initializes the off-diagonal elements and the diagonal elements of a matrix to given values. |
| ? lasq1 | s, d | Computes the singular values of a real square bidiagonal matrix. Used by ?bdsqr. |
| ? 1asq2 | s, d | Computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd Array $Z$ to high relative accuracy. Used by ?bdsqr and ?stegr. |
| ? 1 asq3 | s, d | Checks for deflation, computes a shift and calls dqds. Used by ?bdsqr. |
| ? 1 asq4 | s, d | Computes an approximation to the smallest eigenvalue using values of $d$ from the previous transform. Used by ?bdsqr. |
| ? 1 asq5 | s, d | Computes one dqds transform in ping-pong form. Used by ?bdsqr and ?stegr. |


| Routine Name | Data Types | Description |
| :---: | :---: | :---: |
| ?lasq6 | s, d | Computes one $d q d$ transform in ping-pong form. Used by ?bdsqr and ?stegr. |
| ?lasr | $s, d, c, z$ | Applies a sequence of plane rotations to a general rectangular matrix. |
| ? lasrt | $s, d$ | Sorts numbers in increasing or decreasing order. |
| ?lassq | $s, d, c, z$ | Updates a sum of squares represented in scaled form. |
| ?lasv2 | $s, d$ | Computes the singular value decomposition of a 2-by-2 triangular matrix. |
| ?laswp | $s, d, c, z$ | Performs a series of row interchanges on a general rectangular matrix. |
| ?laswlq | $s, d, c, z$ | Computes blocked short-wide LQ matrix factorization. |
| ?lasy2 | s, d | Solves the Sylvester matrix equation where the matrices are of order 1 or 2. |
| ?lasyf | $s, d, c, z$ | Computes a partial factorization of a real/complex symmetric matrix, using the diagonal pivoting method. |
| ?lasyf_aa | $s, d, c, z$ | Factorizes a panel of a symmetric matrix using Aasen's algorithm. |
| ?lasyf_rook | $s, d, c, z$ | Computes a partial factorization of a real/complex symmetric matrix, using the bounded Bunch-Kaufman diagonal pivoting method. |
| ?lahef | C, z | Computes a partial factorization of a complex Hermitian indefinite matrix, using the diagonal pivoting method. |
| ?lahef_rook | C, z | Computes a partial factorization of a complex Hermitian indefinite matrix, using the bounded Bunch-Kaufman diagonal pivoting method. |
| ?lahef_aa | C, z | Computes a partial factorization of a complex Hermitian matrix, using Aasen's algorithm. |
| ?latbs | $s, d, c, z$ | Solves a triangular banded system of equations. |
| ?latdf | $s, d, c, z$ | Uses the LU factorization of the $n$-by-n matrix computed by ?getc2 and computes a contribution to the reciprocal Difestimate. |
| ? latm1 | $s, d, c, z$ | Computes the entries of a matrix as specified. |
| ?latm2 | $s, d, c, z$ | Returns an entry of a random matrix. |
| ?latm3 | $s, d, c, z$ | Returns set entry of a random matrix. |
| ? latm5 | $s, d, c, z$ | Generates matrices involved in the Generalized Sylvester equation. |
| ?latm6 | $s, d, c, z$ | Generates test matrices for the generalized eigenvalue problem, their corresponding right and left eigenvector matrices, and also reciprocal condition numbers for all eigenvalues and the reciprocal condition numbers of eigenvectors corresponding to the 1th and 5th eigenvalues. |


| Routine Name | Data <br> Types | Description |
| :---: | :---: | :---: |
| ?latme | $s, d, c, z$ | Generates random non-symmetric square matrices with specified eigenvalues. |
| ?latmr | $s, d, c, z$ | Generates random matrices of various types. |
| ?latps | $s, d, c, z$ | Solves a triangular system of equations with the matrix held in packed storage. |
| ?latrd | $s, d, c, z$ | Reduces the first $n b$ rows and columns of a symmetric/Hermitian matrix $A$ to real tridiagonal form by an orthogonal/unitary similarity transformation. |
| ?latrs | $s, d, c, z$ | Solves a triangular system of equations with the scale factor set to prevent overflow. |
| ?latrz | $s, d, c, z$ | Factors an upper trapezoidal matrix by means of orthogonal/ unitary transformations. |
| ?latsqr | $s, d, c, z$ | Computes a blocked tall-skinny QR matrix factorization. |
| ? lauu2 | $s, d, c, z$ | Computes the product $U U^{H}$ or $L^{H} L$, where $U$ and $L$ are upper or lower triangular matrices (unblocked algorithm). |
| ? lauum | $s, d, c, z$ | Computes the product $U U^{H}$ or $L^{H} L$, where $U$ and $L$ are upper or lower triangular matrices (blocked algorithm). |
| ? orbdb1/ ?unbdb1 | $s, d, c, z$ | Simultaneously bidiagonalizes the blocks of a tall and skinny |
| ? orbdb2 / ?unbdb2 |  |  |
| ? orbdb3/ ? unbdb3 |  |  |
| ? orbdb 4 / ?unbdb 4 |  |  |
| ? orbdb 5 / ? unbdb 5 | $s, d, c, z$ | Orthogonalizes a column vector with respect to the orthonormal basis matrix. |
| ?orbdb6/?unbdb6 basis matrix. |  |  |
| ?org2l/?ung2l | $s, d / c, z$ | Generates all or part of the orthogonal/unitary matrix $Q$ from a QL factorization determined by ?geqlf (unblocked algorithm). |
| ?org2r/?ung2r | $s, d / c, z$ | Generates all or part of the orthogonal/unitary matrix $Q$ from a QR factorization determined by ?geqrf (unblocked algorithm). |
| ?orgl2/?ungl2 | $s, d / c, z$ | Generates all or part of the orthogonal/unitary matrix $Q$ from an LQ factorization determined by ?gelqf (unblocked algorithm). |
| ?orgr2/?ungr2 | s, d/c, z | Generates all or part of the orthogonal/unitary matrix $Q$ from an RQ factorization determined by ?gerqf (unblocked algorithm). |
| ?orm2l/?unm2l | $s, d / c, z$ | Multiplies a general matrix by the orthogonal/unitary matrix from a QL factorization determined by ?geqlf (unblocked algorithm). |
| ?orm2r/?unm2r | $s, d / c, z$ | Multiplies a general matrix by the orthogonal/unitary matrix from a QR factorization determined by ?geqrf (unblocked algorithm). |
| ? orml2/?unml2 | $s, d / c, z$ | Multiplies a general matrix by the orthogonal/unitary matrix from a LQ factorization determined by ?gelqf (unblocked algorithm). |
| ? ormr2/?unmr2 | s, d/c, z | Multiplies a general matrix by the orthogonal/unitary matrix from a RQ factorization determined by ?gerqf (unblocked algorithm). |


| Routine Name | Data <br> Types | Description |
| :---: | :---: | :---: |
| ? ormr3/?unmr3 | $s, d / c, z$ | Multiplies a general matrix by the orthogonal/unitary matrix from a RZ factorization determined by ?tzrzf (unblocked algorithm). |
| ?pbtf2 | $s, d, c, z$ | Computes the Cholesky factorization of a symmetric/ Hermitian positive definite band matrix (unblocked algorithm). |
| ?potf2 | $s, d, c, z$ | Computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblocked algorithm). |
| ?ptts2 | $s, d, c, z$ | Solves a tridiagonal system of the form $A X=B$ using the $L D L^{H}$ factorization computed by ?pttrf. |
| ? rscl | $\begin{aligned} & s, d, c s, \\ & z d \end{aligned}$ | Multiplies a vector by the reciprocal of a real scalar. |
| ?syswapr | $s, d, c, z$ | Applies an elementary permutation on the rows and columns of a symmetric matrix. |
| ?heswapr | C, z | Applies an elementary permutation on the rows and columns of a Hermitian matrix. |
| ?sygs2/?hegs2 | $s, d / c, z$ | Reduces a symmetric/Hermitian positive-definite generalized eigenproblem to standard form, using the factorization results obtained from ?potrf (unblocked algorithm). |
| ?sytd2/?hetd2 | $s, d / c, z$ | Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation (unblocked algorithm). |
| ?sytf2 | $s, d, c, z$ | Computes the factorization of a real/complex symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm). |
| ?sytf2_rook | $s, d, c, z$ | Computes the factorization of a real/complex symmetric indefinite matrix, using the bounded Bunch-Kaufman diagonal pivoting method (unblocked algorithm). |
| ?hetf2 | C, z | Computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (unblocked algorithm). |
| ?hetf2_rook | C, z | Computes the factorization of a complex Hermitian matrix, using the bounded Bunch-Kaufman diagonal pivoting method (unblocked algorithm). |
| ?tgex2 | $s, d, c, z$ | Swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogonal/unitary equivalence transformation. |
| ?tgsy2 | $s, d, c, z$ | Solves the generalized Sylvester equation (unblocked algorithm). |
| ?trti2 | $s, d, c, z$ | Computes the inverse of a triangular matrix (unblocked algorithm). |
| clag2z | $\mathrm{C} \rightarrow \mathrm{z}$ | Converts a complex single precision matrix to a complex double precision matrix. |
| dlag2s | $d \rightarrow s$ | Converts a double precision matrix to a single precision matrix. |
| slag2d | $s \rightarrow d$ | Converts a single precision matrix to a double precision matrix. |
| zlag2c | $z \rightarrow \mathrm{c}$ | Converts a complex double precision matrix to a complex single precision matrix. |


| Routine Name | Data <br> Types | Description |
| :---: | :---: | :---: |
| ?larfp | $s, d, c, z$ | Generates a real or complex elementary reflector. |
| ila?lc | $s, d, c, z$ | Scans a matrix for its last non-zero column. |
| ila?lr | $s, d, c, z$ | Scans a matrix for its last non-zero row. |
| ? gsvj 0 | s, d | Pre-processor for the routine ? gesvj. |
| ? 9 svj1 | s, d | Pre-processor for the routine ? gesvj, applies Jacobi rotations targeting only particular pivots. |
| ?sfrk | s, d | Performs a symmetric rank-k operation for matrix in RFP format. |
| ? hfrk | c, z | Performs a Hermitian rank-k operation for matrix in RFP format. |
| ? tfsm | $s, d, c, z$ | Solves a matrix equation (one operand is a triangular matrix in RFP format). |
| ?lansf | s, d | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix in RFP format. |
| ? lanhf | C, z | Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian matrix in RFP format. |
| ?tfttp | $s, d, c, z$ | Copies a triangular matrix from the rectangular full packed format (TF) to the standard packed format (TP). |
| ? tfttr | $s, d, c, z$ | Copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR). |
| ?tplqt2 | $s, d, c, z$ | Computes an LQ factorization of a triangular-pentagonal matrix using the compact WY representation for Q . |
| ?tpqrt2 | $s, d, c, z$ | Computes a QR factorization of a real or complex "triangularpentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q . |
| ? tprfb | $s, d, c, z$ | Applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex matrix, which is composed of two blocks. |
| ?tpttf | $s, d, c, z$ | Copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF). |
| ?tpttr | $s, d, c, z$ | Copies a triangular matrix from the standard packed format (TP) to the standard full format (TR). |
| ?trttf | $s, d, c, z$ | Copies a triangular matrix from the standard full format (TR) to the rectangular full packed format (TF). |
| ?trttp | $s, d, c, z$ | Copies a triangular matrix from the standard full format (TR) to the standard packed format (TP). |
| ?pstf2 | $s, d, c, z$ | Computes the Cholesky factorization with complete pivoting of a real symmetric or complex Hermitian positive semi-definite matrix. |
| dlat2s | $d \rightarrow s$ | Converts a double-precision triangular matrix to a single-precision triangular matrix. |


| Routine Name | Data <br> Types | Description |
| :--- | :--- | :--- |
| zlat2c | z $\rightarrow$ c | Converts a double complex triangular matrix to a complex <br> triangular matrix. |
| ?lacp2 | c, z | Copies all or part of a real two-dimensional array to a complex <br> array. |
| ?la_gbamv | s, d, c, z | Performs a matrix-vector operation to calculate error bounds. |
| ?la_gbrcond | s, | c, z |


| Routine Name | Data <br> Types | Description |
| :---: | :---: | :---: |
| ?la_porcond_x | C, z | Computes the infinity norm condition number of op(A)*diag(x) for Hermitian positive-definite matrices. |
| ?la_porfsx_extended | $s, d, c, z$ | Improves the computed solution to a system of linear equations for symmetric or Hermitian positive-definite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. |
| ?la_porpvgrw | $s, d, c, z$ | Computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. |
| ? laqhe | C, z | Scales a Hermitian matrix. |
| ?laqhp | C, z | Scales a Hermitian matrix stored in packed form. |
| ?larcm | C, z | Copies all or part of a real two-dimensional array to a complex array. |
| ?la_rpvgrw | C, z | Multiplies a square real matrix by a complex matrix. |
| ?larscl2 | $s, d, c, z$ | Performs reciprocal diagonal scaling on a vector. |
| ?lascl2 | $s, d, c, z$ | Performs diagonal scaling on a vector. |
| ?la_syamv | $s, d, c, z$ | Computes a matrix-vector product using a symmetric indefinite matrix to calculate error bounds. |
| ?la_syrcond | $s, d$ | Estimates the Skeel condition number for a symmetric indefinite matrix. |
| ?la_syrcond_c | C, z | Computes the infinity norm condition number of $\mathrm{op}(\mathrm{A}) * \operatorname{inv}(\operatorname{diag}(\mathrm{c}))$ for symmetric indefinite matrices. |
| ?la_syrcond_x | C, z | Computes the infinity norm condition number of op(A)*diag(x) for symmetric indefinite matrices. |
| ?la_syrfsx_extended | $s, d, c, z$ | Improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. |
| ?la_syrpvgrw | $s, d, c, z$ | Computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite matrix. |
| ?la_wwaddw | $s, d, c, z$ | Adds a vector into a doubled-single vector. |
| ?larfy | $s, d, c, z$ | Applies an elementary reflector, or Householder matrix, $H$, to an $n$ by $n$ symmetric or Hermitian matrix C, from both the left and the right. |
| mkl_?tppack | $s, d, c, z$ | Copies a triangular/symmetric matrix or submatrix from standard full format to standard packed format. |
| mkl_?tpunpack | $s, d, c, z$ | Copies a triangular/symmetric matrix or submatrix from standard packed format to full format. |

## ?lacgv

Conjugates a complex vector.

## Syntax

```
call clacgv(n, x, incx)
call zlacgv(n, x, incx)
```

Include Files

- mkl.fi


## Description

The routine conjugates a complex vector $x$ of length $n$ and increment incx (see "Vector Arguments in BLAS" in Appendix B).

## Input Parameters

The data types are given for the Fortran interface.

```
n
INTEGER. The length of the vector x (n\geq0).
COMPLEX for clacgv
DOUBLE COMPLEX for zlacgv.
Array, dimension (1+(n-1)* | incx|).
Contains the vector of length n to be conjugated.
incx INTEGER. The spacing between successive elements of }x\mathrm{ .
```


## Output Parameters

$x$
On exit, overwritten with conjg(x).

## ?lacrm

Multiplies a complex matrix by a square real matrix.

## Syntax

```
call clacrm(m, n, a, lda, b, ldb, c, ldc, rwork)
call zlacrm(m, n, a, lda, b, ldb, c, ldc, rwork)
```

Include Files

- mkl.fi


## Description

The routine performs a simple matrix-matrix multiplication of the form
$C=A \star B$,
where $A$ is $m$-by- $n$ and complex, $B$ is $n$-by- $n$ and real, $C$ is $m$-by- $n$ and complex.
Input Parameters
m
INTEGER. The number of rows of the matrix $A$ and of the matrix $C(m \geq 0)$.
$n$
a
b

1 db
ldc
rwork

INTEGER. The number of columns and rows of the matrix $B$ and the number of columns of the matrix $C$
( $n \geq 0$ ).
COMPLEX for clacrm
DOUBLE COMPLEX for zlacrm
Array, DIMENSION (Ida, $n$ ). Contains the $m$-by- $n$ matrix $A$.
INTEGER. The leading dimension of the array $a, 1 d a \geq \max (1, m)$.
REAL for clacrm
DOUBLE PRECISION for zlacrm
Array, DIMENSION ( $1 \mathrm{db}, n$ ). Contains the $n$-by-n matrix $B$.
INTEGER. The leading dimension of the array $b, I d b \geq \max (1, n)$.
INTEGER. The leading dimension of the output array $c, \operatorname{ldc}$ max $(1, n)$.
REAL for clacrm
DOUBLE PRECISION for zlacrm
Workspace array, DIMENSION ( $2 * m^{\star} n$ ).

## Output Parameters

c
COMPLEX for clacrm
DOUBLE COMPLEX for zlacrm
Array, DIMENSION ( $/ d c, n$ ). Contains the $m$-by-n matrix $C$.

## ?lacrt

Performs a linear transformation of a pair of complex vectors.

## Syntax

```
call clacrt(n, cx, incx, cy, incy, c, s)
call zlacrt(n, cx, incx, cy, incy, c, s)
```

Include Files

- mkl.fi

Description

The routine performs the following transformation

where $c, s$ are complex scalars and $x, y$ are complex vectors.
Input Parameters
$n$
$C x, C y$
incx
incy
$C, S$

INTEGER. The number of elements in the vectors $c x$ and $c y(n \geq 0)$.
COMPLEX for clacrt
DOUBLE COMPLEX for zlacrt
Arrays, dimension (n).
Contain input vectors $x$ and $y$, respectively.
INTEGER. The increment between successive elements of $c x$.
Integer. The increment between successive elements of $c y$.
COMPLEX for clacrt
DOUBLE COMPLEX for zlacrt
Complex scalars that define the transform matrix


## Output Parameters

```
CX
cy
On exit, overwritten with -\mp@subsup{s}{}{\star}x}+\mp@subsup{c}{}{\star}y
```


## ?laesy

Computes the eigenvalues and eigenvectors of a 2-by-2 complex symmetric matrix, and checks that the norm of the matrix of eigenvectors is larger than a threshold value.

## Syntax

```
call claesy(a, b, c, rt1, rt2, evscal, cs1, sn1)
call zlaesy(a, b, c, rt1, rt2, evscal, cs1, sn1)
```

Include Files

- mkl.fi


## Description

The routine performs the eigendecomposition of a 2-by-2 symmetric matrix

provided the norm of the matrix of eigenvectors is larger than some threshold value.
$r t 1$ is the eigenvalue of larger absolute value, and rt2 of smaller absolute value. If the eigenvectors are computed, then on return (cs1,sn1) is the unit eigenvector for rt1, hence

$$
\left[\begin{array}{cc}
c s 1 & s n 1 \\
-s n 1 & c s 1
\end{array}\right] \cdot\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \cdot\left[\begin{array}{cc}
c s 1 & -s n 1 \\
\operatorname{sn} 1 & c s 1
\end{array}\right]=\left[\begin{array}{cc}
r \pm 1 & 0 \\
0 & r \pm 2
\end{array}\right]
$$

## Input Parameters

$a, b, c$
COMPLEX for claesy
DOUBLE COMPLEX for zlaesy
Elements of the input matrix.

## Output Parameters

rt1, rt2
evscal
cs1, sn1

COMPLEX for claesy
DOUBLE COMPLEX for zlaesy
Eigenvalues of larger and smaller modulus, respectively.
COMPLEX for claesy
DOUBLE COMPLEX for zlaesy
The complex value by which the eigenvector matrix was scaled to make it orthonormal. If evscal is zero, the eigenvectors were not computed. This means one of two things: the 2-by-2 matrix could not be diagonalized, or the norm of the matrix of eigenvectors before scaling was larger than the threshold value thresh (set to 0.1E0).

COMPLEX for claesy
DOUBLE COMPLEX for zlaesy
If evscal is not zero, then (cs1, sn1) is the unit right eigenvector for rt1.
?rot
Applies a plane rotation with real cosine and complex sine to a pair of complex vectors.

## Syntax

```
call crot(n, cx, incx, cy, incy, c, s)
call zrot(n, cx, incx, cy, incy, c, s)
```

Include Files

- mkl.fi


## Description

The routine applies a plane rotation, where the cosine (c) is real and the sine (s) is complex, and the vectors $c x$ and cy are complex. This routine has its real equivalents in BLAS (see ?rot in Chapter "BLAS and Sparse BLAS Routines").

## Input Parameters

$n$

Cx, Cy
incx
incy

C

S
REAL for srot
DOUBLE PRECISION for drot
COMPLEX for crot
DOUBLE COMPLEX for zrot
Values that define a rotation

where $c^{*} c+s^{*} \operatorname{conjg}(s)=1.0$.

On exit, overwritten with $c^{\star} x+s^{\star} y$.
On exit, overwritten with $-\operatorname{conjg}(s){ }^{*} x+c^{\star} y$.

## ?spmv

Computes a matrix-vector product for complex vectors
using a complex symmetric packed matrix.
Syntax
call cspmv( uplo, $n$, alpha, ap, $x, i n c x$, beta, y, incy )

```
call zspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
```


## Include Files

- mkl.fi


## Description

The ?spmv routines perform a matrix-vector operation defined as

```
y := alpha*a*}x+b\mp@subsup{b}{}{*}\mp@subsup{a}{}{*}y
```

where:
alpha and beta are complex scalars,
$x$ and $y$ are $n$-element complex vectors
a is an $n$-by-n complex symmetric matrix, supplied in packed form.
These routines have their real equivalents in BLAS (see ?spmv in Chapter "BLAS and Sparse BLAS Routines").

## Input Parameters

```
uplo
n
alpha,beta
\begin{tabular}{|c|c|}
\hline & Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\). \\
\hline incx & INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero. \\
\hline \multirow[t]{3}{*}{Y} & COMPLEX for cspmv \\
\hline & DOUBLE COMPLEX for zspmv \\
\hline & Array, DIMENSION at least (1 + (n - 1)*abs (incy)). Before entry, the incremented array \(y\) must contain the \(n\)-element vector \(y\). \\
\hline incy & INTEGER. Specifies the increment for the elements of \(y\). The value of incy must not be zero. \\
\hline
\end{tabular}

\section*{Output Parameters}
y
Overwritten by the updated vector \(y\).

\section*{?spr}

Performs the symmetrical rank-1 update of a complex symmetric packed matrix.

\section*{Syntax}
```

call cspr( uplo, n, alpha, x, incx, ap )
call zspr( uplo, n, alpha, x, incx, ap )

```

Include Files
- mkl.fi

\section*{Description}

The ? spr routines perform a matrix-vector operation defined as
\[
a:=a l p h a^{\star} X^{\star} x^{H}+a,
\]
where:
alpha is a complex scalar
\(x\) is an \(n\)-element complex vector
\(a\) is an \(n\)-by- \(n\) complex symmetric matrix, supplied in packed form.
These routines have their real equivalents in BLAS (see ?spr in Chapter "BLAS and Sparse BLAS Routines").

\section*{Input Parameters}
uplo
CHARACTER*1. Specifies whether the upper or lower triangular part of the matrix \(a\) is supplied in the packed array ap, as follows:
If uplo = 'U' or 'u', the upper triangular part of the matrix \(a\) is supplied in the array \(a p\).
If uplo = 'L' or 'l', the lower triangular part of the matrix \(a\) is supplied in the array \(a p\).
\(n\)

INTEGER.
Specifies the order of the matrix \(a\).
The value of \(n\) must be at least zero.
COMPLEX for cspr
DOUBLE COMPLEX for zspr
Specifies the scalar alpha.
COMPLEX for cspr
DOUBLE COMPLEX for zspr
Array, DIMENSION at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\).

INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero.

COMPLEX for cspr
DOUBLE COMPLEX for zspr
Array, DIMENSION at least \(((n *(n+1)) / 2)\). Before entry, with uplo \(=' \mathrm{U} '\) or 'u', the array ap must contain the upper triangular part of the symmetric matrix packed sequentially, column-by-column, so that ap(1) contains \(A(1,1)\), ap (2) and \(a p(3)\) contain \(A(1,2)\) and \(A(2,2)\) respectively, and so on.
Before entry, with uplo = 'L' or 'l', the array ap must contain the lower triangular part of the symmetric matrix packed sequentially, column-bycolumn, so that \(a p(1)\) contains \(a(1,1), a p(2)\) and \(a p(3)\) contain \(a(2,1)\) and \(a(3,1)\) respectively, and so on.
Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero.

\section*{Output Parameters}
ap
With uplo = 'U' or 'u', overwritten by the upper triangular part of the updated matrix.
With uplo = 'L' or 'l', overwritten by the lower triangular part of the updated matrix.

\section*{?syconv}

Converts a symmetric matrix given by a triangular matrix factorization into two matrices and vice versa.

\section*{Syntax}
```

call ssyconv( uplo, way, n, a, lda, ipiv, e, info )
call dsyconv( uplo, way, n, a, lda, ipiv, e, info )
call csyconv( uplo, way, n, a, lda, ipiv, e, info )
call zsyconv( uplo, way, n, a, lda, ipiv, e, info )
call syconv( a[,uplo][,way][,ipiv][,info][,e] )

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The routine converts matrix \(A\), which results from a triangular matrix factorization, into matrices \(L\) and \(D\) and vice versa. The routine returns non-diagonalized elements of \(D\) and applies or reverses permutation done with the triangular matrix factorization.

\section*{Input Parameters}
```

uplo

```
way
n
a

Ida
ipiv

\section*{Output Parameters}
e
info

REAL for ssyconv
DOUBLE PRECISION for dsyconv
COMPLEX for csyconv
DOUBLE COMPLEX for zsyconv
Array of size max \((1, n)\) containing the superdiagonal/subdiagonal of the symmetric 1 -by-1 or 2-by-2 block diagonal matrix \(D\) in \(L^{*} D^{*} L^{\top}\).

INTEGER. If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info = -1011, memory allocation error occurred.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine syconv interface are as follows:
```

a Holds the matrix A of size ( }n,n)\mathrm{ .
uplo Must be 'U' or 'L'.
way Must be 'C' or 'R'.
ipiv Holds the vector of length n.
e Holds the vector of length n.

```

\section*{See Also}
?sytrf
?symv
Computes a matrix-vector product for a complex
symmetric matrix.

\section*{Syntax}
```

call csymv( uplo, n, alpha, a, lda, x, incx, beta, y, incy )
call zsymv( uplo, n, alpha, a, lda, x, incx, beta, y, incy )

```

Include Files
- mkl.fi

\section*{Description}

The routine performs the matrix-vector operation defined as
\(y:=a l p h a^{*} a^{*} x+b e t a^{\star} y\),
where:
alpha and beta are complex scalars
\(x\) and \(y\) are \(n\)-element complex vectors
\(a\) is an \(n\)-by- \(n\) symmetric complex matrix.
These routines have their real equivalents in BLAS (see ?symv in Chapter "BLAS and Sparse BLAS Routines").

\section*{Input Parameters}
uplo
n

CHARACTER*1. Specifies whether the upper or lower triangular part of the array \(a\) is used:
If uplo = 'U' or 'u', then the upper triangular part of the array \(a\) is used.
If uplo = 'L' or 'l', then the lower triangular part of the array \(a\) is used.
INTEGER. Specifies the order of the matrix \(a\). The value of \(n\) must be at least zero.
```

alpha,beta
a
Ida
x
incx
y

```
incy

\section*{Output Parameters}
y
Overwritten by the updated vector \(y\).

\section*{?syr}

Performs the symmetric rank-1 update of a complex symmetric matrix.

\section*{Syntax}
```

call csyr( uplo, n, alpha, x, incx, a, lda )
call zsyr( uplo, n, alpha, x, incx, a, lda )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine performs the symmetric rank 1 operation defined as
\(a:=a l p h a^{\star} x^{\star} x^{H}+a\),
where:
- alpha is a complex scalar.
- \(x\) is an \(n\)-element complex vector.
- \(a\) is an \(n\)-by- \(n\) complex symmetric matrix.

These routines have their real equivalents in BLAS (see ?syr in Chapter "BLAS and Sparse BLAS Routines").

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. Specifies whether the upper or lower triangular part of the array \(a\) is used: \\
\hline & If uplo = 'U' or 'u', then the upper triangular part of the array \(a\) is used. \\
\hline & If uplo = 'L' or 'l', then the lower triangular part of the array \(a\) is used. \\
\hline \(n\) & INTEGER. Specifies the order of the matrix \(a\). The value of \(n\) must be at least zero. \\
\hline \multirow[t]{3}{*}{alpha} & COMPLEX for csyr \\
\hline & DOUBLE COMPLEX for zsyr \\
\hline & Specifies the scalar alpha. \\
\hline \multirow[t]{3}{*}{\(x\)} & COMPLEX for csyr \\
\hline & DOUBLE COMPLEX for zsyr \\
\hline & Array, size at least \((1+(n-1) * a b s(i n c x))\). Before entry, the incremented array \(x\) must contain the \(n\)-element vector \(x\). \\
\hline incx & INTEGER. Specifies the increment for the elements of \(x\). The value of incx must not be zero. \\
\hline \multirow[t]{4}{*}{a} & COMPLEX for csyr \\
\hline & DOUBLE COMPLEX for zsyr \\
\hline & Array, size (lda, n). Before entry with uplo = 'U' or 'u', the leading n-by-n upper triangular part of the array a must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of \(a\) is not referenced. \\
\hline & Before entry with uplo = 'L' or 'l', the leading n-by-n lower triangular part of the array a must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of \(a\) is not referenced. \\
\hline Ida & INTEGER. Specifies the leading dimension of \(a\) as declared in the calling (sub)program. The value of Ida must be at least max \((1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
With uplo = 'U' or 'u', the upper triangular part of the array \(a\) is overwritten by the upper triangular part of the updated matrix.
```

    With uplo = 'L' or 'l', the lower triangular part of the array a is
    overwritten by the lower triangular part of the updated matrix.
    INTEGER. If info = 0, the execution is successful.
    If info < 0, the i-th parameter had an illegal value.
    If info = -1011, memory allocation error occurred.
    ```

\section*{i?max1}

Finds the index of the vector element whose real part
has maximum absolute value.
Syntax
```

index = icmax1( n, cx, incx )
index = izmaxl( n, cx, incx )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

Given a complex vector \(c x\), the i?maxi functions return the index of the first vector element of maximum absolute value. These functions are based on the BLAS functions icamax/izamax, but using the absolute value of components. They are designed for use with clacon/zlacon.

\section*{Input Parameters}
```

n
CX
incx

```

INTEGER. Specifies the number of elements in the vector \(c x\).
COMPLEX for icmax1
DOUBLE COMPLEX for izmax1
Array, size at least \((1+(n-1)\) *abs (incx)).
Contains the input vector.
INTEGER. Specifies the spacing between successive elements of \(c x\).

\section*{Output Parameters}
index
INTEGER. Index of the vector element of maximum absolute value.

\section*{?sum1}

Forms the 1-norm of the complex vector using the
true absolute value.

\section*{Syntax}
```

res = scsum1( n, cx, incx )
res = dzsum1( n, cx, incx )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

Given a complex vector cx, scsum1/dzsum1 functions take the sum of the absolute values of vector elements and return a single/double precision result, respectively. These functions are based on scasum/dzasum from Level 1 BLAS, but use the true absolute value and were designed for use with clacon/zlacon.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. Specifies the number of elements in the vector \(c x\). \\
\(c x\) & COMPLEX for scsum1 \\
& DOUBLE COMPLEX for dzsum1 \\
& Array, size at least \((1+(n-1) * a b s(i n c x))\). \\
& Contains the input vector whose elements will be summed. \\
incx & INTEGER. Specifies the spacing between successive elements of \(c x\) (incx > \\
& \(0)\).
\end{tabular}

\section*{Output Parameters}
res \begin{tabular}{ll}
REAL for scsum1 \\
DOUBLE PRECISION for dzsum1 \\
& Sum of absolute values.
\end{tabular}

\section*{?gbtf2}

Computes the LU factorization of a general band matrix using the unblocked version of the algorithm.

\section*{Syntax}
```

call sgbtf2( m, n, kl, ku, ab, ldab, ipiv, info )
call dgbtf2( m, n, kl, ku, ab, ldab, ipiv, info )
call cgbtf2( m, n, kl, ku, ab, ldab, ipiv, info )
call zgbtf2( m, n, kl, ku, ab, ldab, ipiv, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine forms the \(L U\) factorization of a general real/complex m-by-n band matrix \(A\) with \(k l\) sub-diagonals and \(k u\) super-diagonals. The routine uses partial pivoting with row interchanges and implements the unblocked version of the algorithm, calling Level 2 BLAS. See also ?gbtrf.

\section*{Input Parameters}
```

m
n
kl
ku
ab

```
Idab

\section*{Output Parameters}

INTEGER. The number of rows of the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
INTEGER. The number of sub-diagonals within the band of \(A(k l \geq 0)\).
INTEGER. The number of super-diagonals within the band of \(A(k u \geq 0)\).
REAL for sgbtf2
DOUBLE PRECISION for dgbtf2
COMPLEX for cgbtf2
DOUBLE COMPLEX for zgbtf2.
Array, DIMENSION (/dab,*).
The array \(a b\) contains the matrix \(A\) in band storage (see Matrix Arguments).
The second dimension of \(a b\) must be at least max \((1, n)\).
INTEGER. The leading dimension of the array \(a b\).
```

```
(ldab\geq 2kl + ku +1)
```

```
```

```
(ldab\geq 2kl + ku +1)
```

```

Overwritten by details of the factorization. The diagonal and \(k l+k u\) superdiagonals of \(U\) are stored in the first \(1+k l+k u\) rows of \(a b\). The multipliers used during the factorization are stored in the next \(k l\) rows.

INTEGER.
Array, DIMENSION at least \(\max (1, \min (m, n))\).
The pivot indices: row \(i\) was interchanged with row ipiv(i).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=i, u_{i j}\) is 0 . The factorization has been completed, but \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{?gebd2}

Reduces a general matrix to bidiagonal form using an unblocked algorithm.

\section*{Syntax}
```

call sgebd2( m, n, a, lda, d, e, tauq, taup, work, info )
call dgebd2( m, n, a, lda, d, e, tauq, taup, work, info )
call cgebd2( m, n, a, lda, d, e, tauq, taup, work, info )
call zgebd2( m, n, a, lda, d, e, tauq, taup, work, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine reduces a general \(m\)-by- \(n\) matrix \(A\) to upper or lower bidiagonal form \(B\) by an orthogonal (unitary) transformation: \(Q^{T \star} A^{\star} P=B\) (for real flavors) or \(Q^{H \star} A^{\star} P=B\) (for complex flavors).
If \(m \geq n, B\) is upper bidiagonal; if \(m<n, B\) is lower bidiagonal.
The routine does not form the matrices \(Q\) and \(P\) explicitly, but represents them as products of elementary reflectors. if \(m \geq n\),
\(Q=H(1) * H(2) * \ldots * H(n)\), and \(P=G(1) * G(2) * \ldots{ }^{*} G(n-1)\)
if \(m<n\),
```

Q = H(1)*H(2)*···*H(m-1), and P = G(1)*G(2)* ...*G(m)

```

Each \(H(i)\) and \(G(i)\) has the form
```

H(i) = I - tauq* ** V and G(i) = I - taup* u* uT

```

where tauq and taup are scalars (real for sgebd2/dgebd2, complex for cgebd2/zgebd2), and \(v\) and \(u\) are vectors (real for sgebd2/dgebd2, complex for cgebd2/zgebd2).

\section*{Input Parameters}
m
\(n\)
a, work

Ida

\section*{Output Parameters}

INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgebd2
DOUBLE PRECISION for dgebd2
COMPLEX for cgebd2
DOUBLE COMPLEX for zgebd2.
Arrays:
a (lda,*) contains the \(m\)-by- \(n\) general matrix \(A\) to be reduced. The second dimension of \(a\) must be at least \(\max (1, n)\).
work(*) is a workspace array, the dimension of work must be at least \(\max (1, m, n)\).

INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
if \(m \geq n\), the diagonal and first super-diagonal of a are overwritten with the upper bidiagonal matrix \(B\). Elements below the diagonal, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors, and elements above the first superdiagonal, with the array taup, represent the orthogonal/unitary matrix \(p\) as a product of elementary reflectors.
d
if \(m<n\), the diagonal and first sub-diagonal of \(a\) are overwritten by the lower bidiagonal matrix \(B\). Elements below the first subdiagonal, with the array tauq, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors, and elements above the diagonal, with the array taup, represent the orthogonal/unitary matrix \(p\) as a product of elementary reflectors.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array, DIMENSION at least max (1, \(\min (m, n))\).
Contains the diagonal elements of the bidiagonal matrix \(B: d(i)=a(i\), i).

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Array, DIMENSION at least \(\max (1, \min (m, n)-1)\).

Contains the off-diagonal elements of the bidiagonal matrix \(B\) :
if \(m \geq n, e(i)=a(i, i+1)\) for \(i=1,2, \ldots, n-1\);
if \(m<n, e(i)=a(i+1, i)\) for \(i=1,2, \ldots, m-1\).
REAL for sgebd2
DOUBLE PRECISION for dgebd2
COMPLEX for cgebd2
DOUBLE COMPLEX for zgebd2.
Arrays, DIMENSION at least max (\(1, \min (m, n)\)).
Contain scalar factors of the elementary reflectors which represent orthogonal/unitary matrices \(Q\) and \(p\), respectively.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the ith parameter had an illegal value.

\section*{?gehd2}

Reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.

\section*{Syntax}
```

call sgehd2( n, ilo, ihi, a, lda, tau, work, info )
call dgehd2( n, ilo, ihi, a, lda, tau, work, info )
call cgehd2( n, ilo, ihi, a, lda, tau, work, info )
call zgehd2( n, ilo, ihi, a, lda, tau, work, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine reduces a real/complex general matrix \(A\) to upper Hessenberg form \(H\) by an orthogonal or unitary similarity transformation \(Q^{T \star} A^{\star} Q=H\) (for real flavors) or \(Q^{H \star} A^{\star} Q=H\) (for complex flavors).

The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of elementary reflectors.

\section*{Input Parameters}
n
ilo, ihi
a, work

Ida

\section*{Output Parameters}
a
tau
info

INTEGER The order of the matrix \(A(n \geq 0)\).
INTEGER. It is assumed that \(A\) is already upper triangular in rows and columns 1:ilo -1 and ihi+1:n.

If \(A\) has been output by ?gebal, then
ilo and ihi must contain the values returned by that routine. Otherwise they should be set to ilo = 1 and ihi \(=n\). Constraint: \(1 \leq i l o \leq i h i \leq\) max (1, n).

REAL for sgehd2
DOUBLE PRECISION for dgehd2
COMPLEX for cgehd2
DOUBLE COMPLEX for zgehd2.

\section*{Arrays:}
a (lda,*) contains the \(n\)-by- \(n\) matrix \(A\) to be reduced. The second dimension of \(a\) must be at least max \((1, n)\).
work (\(n\)) is a workspace array.
INTEGER. The leading dimension of \(a\); at least max \((1, n)\).

On exit, the upper triangle and the first subdiagonal of \(A\) are overwritten with the upper Hessenberg matrix \(H\) and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors. See Application Notes below.

REAL for sgehd2
DOUBLE PRECISION for dgehd2
COMPLEX for cgehd2
DOUBLE COMPLEX for zgehd2.
Array, DIMENSION at least max (1, \(n-1\)).
Contains the scalar factors of elementary reflectors. See Application Notes below.

INTEGER.
If info \(=0\), the execution is successful.

If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{Application Notes}

The matrix \(Q\) is represented as a product of (ihi - ilo) elementary reflectors
\(Q=H(i l o) * H(i l o+1) * \ldots * H(i h i-1)\)
Each \(H(i)\) has the form
\(H(i)=I-\operatorname{ta} u^{\star} V^{\star} V^{T}\) for real flavors, or
\(H(i)=I-\operatorname{tau^{\star }} V^{\star} V^{H}\) for complex flavors
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i)=0, v(i+1)=1\) and \(v(i h i\) \(+1: n)=0\).

On exit, v(i+2:ihi) is stored in a(i+2:ihi, i) and tau in tau(i).
The contents of \(a\) are illustrated by the following example, with \(n=7\), ilo \(=2\) and ihi \(=6\) :

\section*{on entry}

\section*{on exit}

where a denotes an element of the original matrix \(A\), \(h\) denotes a modified element of the upper Hessenberg matrix \(H\), and \(v_{i}\) denotes an element of the vector defining \(H(\mathrm{i})\).

\section*{?gelq2}

Computes the \(L Q\) factorization of a general rectangular matrix using an unblocked algorithm.

Syntax
```

call sgelq2( m, n, a, lda, tau, work, info )
call dgelq2( m, n, a, lda, tau, work, info )
call cgelq2( m, n, a, lda, tau, work, info )
call zgelq2( m, n, a, lda, tau, work, info )

```

Include Files
- mkl.fi

Description

The routine computes an \(L Q\) factorization of a real/complex \(m\)-by-n matrix \(A\) as \(A=L^{\star} Q\).
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of min \((m, n)\) elementary reflectors:
\(Q=H(k) \ldots H(2) H(1)\left(\operatorname{or} Q=H(k)^{H} \ldots H(2)^{H} H(1)^{H}\right.\) for complex flavors), where \(k=\min (m, n)\)
Each \(H(\mathrm{i})\) has the form
\(H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{T}\) for real flavors, or
\(H(i)=I-\operatorname{tau}^{\star} V^{\star} v^{H}\) for complex flavors,
where tau is a real/complex scalar stored in tau(i), and \(v\) is a real/complex vector with \(v_{1: i-1}=0\) and \(v_{i}=\) 1.

On exit, \(v_{i+1: n}\) (for real functions) and conjg(\(v_{i+1: n}\)) (for complex functions) are stored in \(a(i, i+1: n)\).

\section*{Input Parameters}

The data types are given for the Fortran interface.
```

m INTEGER. The number of rows in the matrix A (m\geq0).
n INTEGER. The number of columns in A(n\geq0).

```

INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgelq2
DOUBLE PRECISION for dgelq2
COMPLEX for cgelq2
DOUBLE COMPLEX for zgelq2.
Arrays: \(a(/ d a, *)\) contains the \(m\)-by- \(n\) matrix \(A\). The second dimension of \(a\) must be at least max \((1, n)\).
work \((m)\) is a workspace array.
INTEGER. The leading dimension of \(a\); at least \(\max (1, m)\).
a, work
lda

\section*{Output Parameters}
a
info

Overwritten by the factorization data as follows:
on exit, the elements on and below the diagonal of the array a contain the \(m\)-by- \(\min (n, m)\) lower trapezoidal matrix \(L\) (\(L\) is lower triangular if \(n \geq m\)); the elements above the diagonal, with the array tau, represent the orthogonal/ unitary matrix \(Q\) as a product of \(\min (n, m)\) elementary reflectors.

REAL for sgelq2
DOUBLE PRECISION for dgelq2
COMPLEX for cgelq2
DOUBLE COMPLEX for zgelq2.
Array, size at least max \((1, \min (m, n))\).
Contains scalar factors of the elementary reflectors.
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
\[
\text { If info }=-1011 \text {, memory allocation error occurred. }
\]
```

?gelqt3
?gelqt3 recursively computes a LQ factorization of a
general real or complex M-by-N matrix A, using the
compact WY representation of Q.
call sgelqt3(m, n, a, lda, t, ldt, info)
call dgelqt3(m, n, a, lda, t, ldt, info)
call cgelqt3(m, n, a, lda, t, ldt, info)
call zgelqt3(m, n, a, lda, t, ldt, info)

```

\section*{Description}
? gelqt3 recursively computes a LQ factorization of a real or complex m-by-n matrix \(A\), using the compact WY representation of \(Q\). Based on the algorithm of Elmroth and Gustavson [ELMROTH00].

The matrix \(V\) stores the elementary reflectors \(H(i)\) in the \(i\)-th row above the diagonal. For example, if \(m=5\) and \(n=3\), the matrix \(V\) is
```

V =( (1)
( 1 1 v
1 v

```
where the \(v_{i} s\) represent the vectors which define \(H(i)\), which are returned in the array \(a\). The 1 elements along the diagonal of \(V\) are not stored in \(a\). The block reflector \(H\) is then given by
\(H=\mathrm{I}-V^{*} T^{*} V^{\top}\) for real matrices, or
\(H=\mathrm{I}-V * T * V^{\mathrm{H}}\) for complex matrices.

\section*{Input Parameters}
m
\(n\)
a

Ida
\(1 d t\)

INTEGER. The number of rows of the matrix \(A . m \leq n\).
INTEGER. The number of columns of the matrix \(A . n \geq 0\).
REAL for sgelqt3
DOUBLE PRECISION for dgelqt3
COMPLEX for cgelqt3
COMPLEX*16 for zgelqt3
Array of size (lda,n). On entry, the real or complex m-by-n matrix \(A\).
INTEGER. The leading dimension of the array \(a . l d a \geq \max (1, m)\).
INTEGER. The leading dimension of the array \(t . I d t \geq \max (1, n)\).

\section*{Output Parameters}
a
t

On exit, the elements on and below the diagonal contain the \(n\)-by- \(n\) lower triangular matrix \(L\); the elements above the diagonal are the rows of \(V\). See Description for further details.
```

DOUBLE PRECISION for dgelqt3
COMPLEX for cgelqt3
COMPLEX*16 for zgelqt3
Array of size ( $l d t, n$ ). The $n$-by- $n$ upper triangular factor of the block reflector. The elements on and above the diagonal contain the block reflector $T$; the elements below the diagonal are not used. See Description for further details.
info
INTEGER.
info $=0$ : successful exit.
info < 0 : if info $=-i$, the $i$-th argument had an illegal value.

```

\section*{?geql2}

Computes the QL factorization of a general rectangular matrix using an unblocked algorithm.

\section*{Syntax}
```

call sgeql2( m, n, a, lda, tau, work, info )
call dgeql2( m, n, a, lda, tau, work, info )
call cgeql2( m, n, a, lda, tau, work, info )
call zgeql2( m, n, a, lda, tau, work, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine computes a \(Q L\) factorization of a real/complex \(m\)-by-n matrix \(A\) as \(A=Q^{\star} L\).
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors :
\(Q=H(\mathrm{k}) * \ldots{ }^{*} H(2) \star H(1)\), where \(k=\min (m, n)\).
Each \(H(i)\) has the form
\(H(i)=I-\tan V^{\star} V^{T}\) for real flavors, or
\(H(i)=I-\operatorname{tau^{\star }} V^{\star} V^{H}\) for complex flavors
where tau is a real/complex scalar stored in tau(i), and \(v\) is a real/complex vector with \(v(m-k+i+1: m)=0\) and \(v(m-k+i)=1\).

On exit, \(v(1: m-k+i-1)\) is stored in \(a(1: m-k+i-1, n-k+i)\).

\section*{Input Parameters}
m
INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
\(n \quad\) INTEGER. The number of columns in \(A(n \geq 0)\).
a, work
REAL for sgeql2
```

DOUBLE PRECISION for dgeql2
COMPLEX for cgeql2
DOUBLE COMPLEX for zgeql2.
Arrays:
a (lda, *) contains the m-by-n matrix $A$.
The second dimension of $a$ must be at least max $(1, n)$. work $(m)$ is a workspace array.
INTEGER. The leading dimension of $a$; at least max $(1, m)$.

```

\section*{Output Parameters}
a
Overwritten by the factorization data as follows:
on exit, if \(m \geq n\), the lower triangle of the subarray \(a(m-n+1: m, 1: n)\) contains the \(n\)-by- \(n\) lower triangular matrix \(L\); if \(m<n\), the elements on and below the \((n-m)\) th superdiagonal contain the \(m\)-by- \(n\) lower trapezoidal matrix \(L\); the remaining elements, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors.

REAL for sgeql2
DOUBLE PRECISION for dgeql2
COMPLEX for cgeql2
DOUBLE COMPLEX for zgeql2.
Array, DIMENSION at least max (1, min \((m, n))\).
Contains scalar factors of the elementary reflectors.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{?geqr2}

Computes the \(Q R\) factorization of a general rectangular matrix using an unblocked algorithm.

\section*{Syntax}
```

call sgeqr2( m, n, a, lda, tau, work, info )
call dgeqr2( m, n, a, lda, tau, work, info )
call cgeqr2( m, n, a, lda, tau, work, info )
call zgeqr2( m, n, a, lda, tau, work, info )

```

Include Files
- mkl.fi

Description

The routine computes a \(Q R\) factorization of a real/complex \(m\)-by- \(n\) matrix \(A\) as \(A=Q^{\star} R\).
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of min \((m, n)\) elementary reflectors:
\(Q=H(1){ }^{*} H(2) * \ldots{ }^{*} H(k)\), where \(k=\min (m, n)\)
Each \(H(\mathrm{i})\) has the form
\(H(i)=I-\tan ^{\star} V^{\star} V^{T}\) for real flavors, or
\(H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{H}\) for complex flavors
where tau is a real/complex scalar stored in tau(i), and \(v\) is a real/complex vector with \(v_{1: i-1}=0\) and \(v_{i}=\) 1.

On exit, \(v_{i+1: m}\) is stored in \(a(i+1: m, i)\).

\section*{Input Parameters}

The data types are given for the Fortran interface.
```

m INTEGER. The number of rows in the matrix A (m\geq0).
n INTEGER. The number of columns in A(n\geq0).
a, work
lda

```

\section*{Output Parameters}
```

$a$
Overwritten by the factorization data as follows:
on exit, the elements on and above the diagonal of the array a contain the $\min (n, m)$-by- $n$ upper trapezoidal matrix $R$ ( $R$ is upper triangular if $m \geq n$ ); the elements below the diagonal, with the array tau, represent the orthogonal/ unitary matrix $Q$ as a product of elementary reflectors.
REAL for sgeqr2
DOUBLE PRECISION for dgeqr2
COMPLEX for cgeqr2
DOUBLE COMPLEX for zgeqr2.
Array, size at least max $(1, \min (m, n))$.
Contains scalar factors of the elementary reflectors.
INTEGER.

```

If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?geqr2p \\ Computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.}

Syntax
```

call sgeqr2p( m, n, a, lda, tau, work, info )
call dgeqr2p( m, n, a, lda, tau, work, info )
call cgeqr2p( m, n, a, lda, tau, work, info )
call zgeqr2p( m, n, a, lda, tau, work, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine computes a \(Q R\) factorization of a real/complex m-by-n matrix \(A\) as \(A=Q^{\star} R\). The diagonal entries of \(R\) are real and nonnegative.
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors :
\(Q=H(1){ }^{*} H(2) * \ldots * H(k)\), where \(k=\min (m, n)\)
Each \(H(i)\) has the form
\(H(i)=I-t a u^{\star} V^{\star} V^{T}\) for real flavors, or
\(H(i)=I-t a u^{\star} V^{\star} V^{H}\) for complex flavors
where tau is a real/complex scalar stored in tau(i), and \(v\) is a real/complex vector with \(v(1: i-1)=0\) and \(v(i)=1\).

On exit, \(v(i+1: m)\) is stored in \(a(i+1: m, i)\).

\section*{Input Parameters}
\begin{tabular}{ll}
\(m\) & INTEGER. The number of rows in the matrix \(A(m \geq 0)\). \\
\(n\) & INTEGER. The number of columns in \(A(n \geq 0)\). \\
& REAL for sgeqr2p \\
& DOUBLE PRECISION for \(d\) \\
& COMPLEX for cgeqr \(2 p\) \\
& DOUBLE COMPLEX for zgeqr2p. \\
& Arrays: \\
& \(a(I d a, *)\) contains the \(m\)-by- \(n\) matrix \(A\).
\end{tabular}

The second dimension of \(a\) must be at least max \((1, n)\). work(\(n\)) is a workspace array.
lda
INTEGER. The leading dimension of \(a\); at least max \((1, m)\).

\section*{Output Parameters}
a
Overwritten by the factorization data as follows:
on exit, the elements on and above the diagonal of the array a contain the \(\min (n, m)\)-by- \(n\) upper trapezoidal matrix \(R\) (\(R\) is upper triangular if \(m \geq n\)).
The diagonal entries of \(R\) are real and nonnegative; the elements below the diagonal, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors.

REAL for sgeqr2p
DOUBLE PRECISION for dgeqr2p
COMPLEX for cgeqr2p
DOUBLE COMPLEX for zgeqr2p.
Array, DIMENSION at least max (1, \(\min (m, n))\).
Contains scalar factors of the elementary reflectors.
info
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{?geqrt2}

Computes a QR factorization of a general real or complex matrix using the compact WY representation of \(Q\).

Syntax
```

call sgeqrt2(m, n, a, lda, t, ldt, info)
call dgeqrt2(m, n, a, lda, t, ldt, info)
call cgeqrt2(m, n, a, lda, t, ldt, info)
call zgeqrt2(m, n, a, lda, t, ldt, info)
call geqrt2(a, t, [info])

```

\section*{Include Files}
- mkl.fi, lapack.f90

\section*{Description}

The strictly lower triangular matrix \(V\) contains the elementary reflectors \(H(i)\) in the \(i\) th column below the diagonal. For example, if \(m=5\) and \(n=3\), the matrix \(V\) is
where \(v_{i}\) represents the vector that defines \(H(i)\). The vectors are returned in the lower triangular part of array a.

\section*{NOTE}

The 1 s along the diagonal of \(V\) are not stored in a.

The block reflector \(H\) is then given by
\(H=I-V^{\star} T^{\star} V^{\mathbb{T}}\) for real flavors, and
\(H=I-V^{\star} T^{\star} V^{H}\) for complex flavors,
where \(V^{\top}\) is the transpose and \(V^{H}\) is the conjugate transpose of \(V\).

\section*{Input Parameters}
```

m INTEGER. The number of rows in the matrix A (m\geqn).
n
a
Ida
ldt

```

\section*{Output Parameters}
a
Overwritten by the factorization data as follows:
The elements on and above the diagonal of the array contain the \(n-b y-n\) upper triangular matrix \(R\). The elements below the diagonal are the columns of \(V\).

REAL for sgeqrt2
DOUBLE PRECISION for dgeqrt2
COMPLEX for cgeqret2
COMPLEX*16 for zgeqrt2.
Array, size \((l d t, \min (m, n))\).
The \(n\)-by- \(n\) upper triangular factor of the block reflector. The elements on and above the diagonal contain the block reflector \(T\). The elements below the diagonal are not used.

\section*{INTEGER.}

If info \(=0\), the execution is successful.
If info \(<0\) and info \(=-i\), the \(i\) th argument had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?geqrt3}

Recursively computes a QR factorization of a general real or complex matrix using the compact WY
representation of \(Q\).
Syntax
```

call sgeqrt3(m, n, a, lda, t, ldt, info)
call dgeqrt3(m, n, a, lda, t, ldt, info)
call cgeqrt3(m, n, a, lda, t, ldt, info)
call zgeqrt3(m, n, a, lda, t, ldt, info)
call geqrt3(a, t [, info])

```

Include Files
- mkl.fi, lapack.f90

\section*{Description}

The strictly lower triangular matrix \(V\) contains the elementary reflectors \(H(i)\) in the \(i\) th column below the diagonal. For example, if \(m=5\) and \(n=3\), the matrix \(V\) is

where \(v_{i}\) represents one of the vectors that define \(H(i)\). The vectors are returned in the lower part of triangular array \(a\).

\section*{NOTE}

The 1 s along the diagonal of \(V\) are not stored in a.

The block reflector \(H\) is then given by \(H=I-V^{\star} T^{\star} V^{\mathbb{P}}\) for real flavors, and
\(H=I-V^{*} T^{\star} V^{H 1}\) for complex flavors,
where \(V^{\top}\) is the transpose and \(V^{H}\) is the conjugate transpose of \(V\).

\section*{Input Parameters}
m
n
a
da
\(I d t\)

\section*{Output Parameters}
\(a\)
\(t\)
info

INTEGER. The number of rows in the matrix \(A(m \geq n)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for sgeqrt3
DOUBLE PRECISION for dgeqrt 3
COMPLEX for cgeqre 3
COMPLEX*16 for zgeqrt3.
Array, size (lda, \(n\)). Array a contains the \(m\)-by-n matrix \(A\).
INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
INTEGER. The leading dimension of \(t\); at least \(\max (1, n)\).

The elements on and above the diagonal of the array contain the \(n-b y-n\) upper triangular matrix \(R\). The elements below the diagonal are the columns of \(V\).

REAL for sgeqrt3
DOUBLE PRECISION for dgeqrt3
COMPLEX for cgeqre 3
COMPLEX*16 for zgeqrt3.
Array, size ldt by \(n\).
The \(n\)-by- \(n\) upper triangular factor of the block reflector. The elements on and above the diagonal contain the block reflector \(T\). The elements below the diagonal are not used.

INTEGER.
If info \(=0\), the execution is successful.
If info \(<0\) and info \(=-i\), the \(i\) th argument had an illegal value.
If info \(=-1011\), memory allocation error occurred.

\section*{?gerq2}

Computes the \(R Q\) factorization of a general
rectangular matrix using an unblocked algorithm.

\section*{Syntax}
```

call sgerq2( m, n, a, lda, tau, work, info )
call dgerq2( m, n, a, lda, tau, work, info )
call cgerq2( m, n, a, lda, tau, work, info )
call zgerq2( m, n, a, lda, tau, work, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine computes a \(R Q\) factorization of a real/complex \(m\)-by- \(n\) matrix \(A\) as \(A=R^{\star} Q\).
The routine does not form the matrix \(Q\) explicitly. Instead, \(Q\) is represented as a product of \(\min (m, n)\) elementary reflectors :
\(Q=H(1){ }^{*} H(2) * \ldots{ }^{*} H(k)\) for real flavors, or
\(Q=H(1)^{H * H}(2)^{H \star} \ldots *^{*}(\mathrm{k})^{H}\) for complex flavors
where \(k=\min (m, n)\).
Each \(H(i)\) has the form
\(H(i)=I-\operatorname{tau} u^{\star} V^{\star} V^{T}\) for real flavors, or
\(H(i)=I-\tan { }^{\star} V^{\star} V^{H}\) for complex flavors
where tau is a real/complex scalar stored in tau(i), and \(v\) is a real/complex vector with \(v(n-k+i+1: n)=0\) and \(v(n-k+i)=1\).
On exit, \(v(1: n-k+i-1)\) is stored in \(a(m-k+i, 1: n-k+i-1)\).

\section*{Input Parameters}
```

m
n
a, work
lda

```

\section*{Output Parameters}
a
Overwritten by the factorization data as follows:
on exit, if \(m \leq n\), the upper triangle of the subarray \(a(1: m, n-m+1: n)\) contains the \(m\)-by- \(m\) upper triangular matrix \(R\); if \(m>n\), the elements on and above the (\(m-n\))-th subdiagonal contain the \(m\)-by- \(n\) upper trapezoidal matrix \(R\); the remaining elements, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors.

REAL for sgerq2
```

    DOUBLE PRECISION for dgerq2
    COMPLEX for cgerq2
DOUBLE COMPLEX for zgerq2.
Array, DIMENSION at least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

```

\section*{?gesc2}

Solves a system of linear equations using the LU
factorization with complete pivoting computed
by ?getc2.

\section*{Syntax}
```

call sgesc2( n, a, lda, rhs, ipiv, jpiv, scale )
call dgesc2( n, a, lda, rhs, ipiv, jpiv, scale )
call cgesc2( n, a, lda, rhs, ipiv, jpiv, scale )
call zgesc2( n, a, lda, rhs, ipiv, jpiv, scale )

```

Include Files
- mkl.fi

Description

The routine solves a system of linear equations
\(A * X=\) scale*RHS
with a general \(n\)-by-n matrix \(A\) using the \(L U\) factorization with complete pivoting computed by ?getc 2 .

\section*{Input Parameters}
n
a, rhs
INTEGER. The order of the matrix \(A\).
REAL for sgesc2
DOUBLE PRECISION for dgesc2
COMPLEX for cgesc2
DOUBLE COMPLEX for zgesc2.
Arrays:
a (lda, *) contains the \(L U\) part of the factorization of the \(n\)-by- \(n\) matrix \(A\) computed by ? getc2:
\(A=P^{*} L^{*} U^{*} Q\).
The second dimension of a must be at least max \((1, n)\);
\begin{tabular}{|c|c|}
\hline & rhs(\(n\)) contains on entry the right hand side vector for the system of equations. \\
\hline Ida & INTEGER. The leading dimension of \(a\); at least max \((1, n)\). \\
\hline ipiv & INTEGER. \\
\hline & \begin{tabular}{l}
Array, DIMENSION at least max \((1, n)\). \\
The pivot indices: for \(1 \leq i \leq n\), row \(i\) of the matrix has been interchanged with row ipiv(i).
\end{tabular} \\
\hline jpiv & INTEGER. \\
\hline & \begin{tabular}{l}
Array, DIMENSION at least max \((1, n)\). \\
The pivot indices: for \(1 \leq j \leq n\), column \(j\) of the matrix has been interchanged with column jpiv(j).
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Parameters}
```

rhs

```
scale

On exit, overwritten with the solution vector \(X\).
REAL for sgesc2/cgesc2
DOUBLE PRECISION for dgesc2/zgesc2
Contains the scale factor. scale is chosen in the range \(0 \leq\) scale \(\leq 1\) to prevent overflow in the solution.

\section*{?getc2}

Computes the LU factorization with complete pivoting of the general \(n\)-by-n matrix.

\section*{Syntax}
```

call sgetc2( n, a, lda, ipiv, jpiv, info )
call dgetc2( n, a, lda, ipiv, jpiv, info )
call cgetc2( n, a, lda, ipiv, jpiv, info)
call zgetc2( n, a, lda, ipiv, jpiv, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine computes an \(L U\) factorization with complete pivoting of the \(n\)-by- \(n\) matrix \(A\). The factorization has the form \(A=P^{\star} L^{\star} U^{\star} Q\), where \(P\) and \(Q\) are permutation matrices, \(L\) is lower triangular with unit diagonal elements and \(U\) is upper triangular.
The LU factorization computed by this routine is used by ?latdf to compute a contribution to the reciprocal Dif-estimate.

\section*{Input Parameters}

\section*{n \\ a \\ Ida \\ Output Parameters}
\(a\)

INTEGER. The order of the matrix \(A(n \geq 0)\).
REAL for sgetc2
DOUBLE PRECISION for dgetc2
COMPLEX for cgetc2
DOUBLE COMPLEX for zgetc2.
Array a(lda,*) contains the \(n\)-by- \(n\) matrix \(A\) to be factored. The second dimension of \(a\) must be at least max \((1, n)\);

INTEGER. The leading dimension of \(a\); at least max \((1, n)\).

On exit, the factors \(L\) and \(U\) from the factorization \(A=P^{\star} L^{\star} U^{\star} Q\); the unit diagonal elements of \(L\) are not stored. If \(U(k, k)\) appears to be less than \(\operatorname{smin}, U(k, k)\) is given the value of smin, that is giving a nonsingular perturbed system.

INTEGER.
Array, DIMENSION at least max \((1, n)\).
The pivot indices: for \(1 \leq i \leq n\), row i of the matrix has been interchanged with row ipiv(i).

INTEGER.
Array, DIMENSION at least max \((1, n)\).
The pivot indices: for \(1 \leq j \leq n\), column \(j\) of the matrix has been interchanged with column jpiv (j).

INTEGER.
If info \(=0\), the execution is successful.
If info \(=k>0, U(k, k)\) is likely to produce overflow if we try to solve for \(x\) in \(A{ }^{*} X=b\). So \(U\) is perturbed to avoid the overflow.

\section*{?getf2}

Computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm).

\section*{Syntax}
```

call sgetf2( m, n, a, lda, ipiv, info )
call dgetf2( m, n, a, lda, ipiv, info )
call cgetf2( m, n, a, lda, ipiv, info )
call zgetf2( m, n, a, lda, ipiv, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine computes the \(L U\) factorization of a general \(m\)-by- \(n\) matrix \(A\) using partial pivoting with row interchanges. The factorization has the form
```

A = P* L* U

```
where \(p\) is a permutation matrix, \(L\) is lower triangular with unit diagonal elements (lower trapezoidal if \(m>\) \(n\)) and \(U\) is upper triangular (upper trapezoidal if \(m<n\)).

\section*{Input Parameters}

The data types are given for the Fortran interface.
```

m INTEGER. The number of rows in the matrix A (m\geq0).
n INTEGER. The number of columns in A(n\geq0).
a REAL for sgetf2
DOUBLE PRECISION for dgetf2
COMPLEX for cgetf2
DOUBLE COMPLEX for zgetf2.
Array, size (/da,*). Contains the matrix A to be factored. The second
dimension of a must be at least max (1, n).
INTEGER. The leading dimension of a; at least max(1,m).

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline a & Overwritten by \(L\) and \(U\) \\
\hline \multirow[t]{3}{*}{ipiv} & INTEGER. \\
\hline & Array, size at least max \\
\hline & The pivot indices: for 1 \\
\hline \multirow[t]{4}{*}{info} & INTEGER. If info \(=0\), th \\
\hline & If info \(=-i\), the \(i\)-th \\
\hline & If info \(=i>0, u_{i j}\) is exactly singular. Divisio system of linear equati \\
\hline & If info = -1011, me \\
\hline \multicolumn{2}{|l|}{? gtts2} \\
\hline \multicolumn{2}{|l|}{Solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by ?gttrf.} \\
\hline
\end{tabular}

\section*{Syntax}
```

call sgtts2( itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb )
call dgtts2( itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb )
call cgtts2( itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb )
call zgtts2( itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb )

```

Include Files
- mkl.fi

\section*{Description}

The routine solves for \(X\) one of the following systems of linear equations with multiple right hand sides: \(A * X=B, A^{T} \star X=B\), or \(A^{H} * X=B\) (for complex matrices only), with a tridiagonal matrix \(A\) using the \(L U\) factorization computed by ?gttrf.

\section*{Input Parameters}
```

itrans
nrhs
dl,d,du,du2,b

Indicates the form of the equations to be solved:
If itrans $=0$, then $A * X=B$ (no transpose).
If itrans $=1$, then $A^{T *} X=B$ (transpose).
If itrans $=2$, then $A^{H} * X=B$ (conjugate transpose).
INTEGER. The order of the matrix $A(n \geq 0)$.
INTEGER. The number of right-hand sides, i.e., the number of columns in $B$ (nrhs $\geq 0$ ).

REAL for sgtts2
DOUBLE PRECISION for dgtts2
COMPLEX for cgtts2
DOUBLE COMPLEX for zgtts2.
Arrays: $d l(n-1), d(n), d u(n-1), d u 2(n-2), b(l d b, n r h s)$.
The array $d l$ contains the $(n-1)$ multipliers that define the matrix $L$ from the $L U$ factorization of $A$.

The array $d$ contains the $n$ diagonal elements of the upper triangular matrix $U$ from the $L U$ factorization of $A$.

The array $d u$ contains the $(n-1)$ elements of the first super-diagonal of $U$.
The array du2 contains the $(n-2)$ elements of the second super-diagonal of $U$.

The array $b$ contains the matrix $B$ whose columns are the right-hand sides for the systems of equations.

INTEGER. The leading dimension of $b ;$ must be $\operatorname{ldb} \geq \max (1, n)$.
INTEGER.

Array, DIMENSION (n).
The pivot indices array, as returned by ?gttrf.

## Output Parameters

b
Overwritten by the solution matrix $X$.
?isnan
Tests input for NaN.

## Syntax

```
val = sisnan(sin)
val = disnan(din)
```

Include Files

- mkl.fi


## Description

This logical routine returns.TRUE. if its argument is NaN, and.FALSE. otherwise.

## Input Parameters

```
sin REAL for sisnan
 Input to test for NaN.
 DOUBLE PRECISION for disnan
 Input to test for NaN.
```


## Output Parameters

Logical. Result of the test.

## ?laisnan

Tests input for NaN.
Syntax

```
val = slaisnan(sin1, sin2)
val = dlaisnan(din1, din2)
```


## Include Files

- mkl.fi


## Description

This logical routine checks for NaNs (NaN stands for 'Not A Number') by comparing its two arguments for inequality. NaN is the only floating-point value where NaN $\neq$ NaN returns. TRUE. To check for NaNs, pass the same variable as both arguments.

This routine is not for general use. It exists solely to avoid over-optimization in ?isnan.

## Input Parameters

```
sin1, sin2
REAL for sisnan
```

din2, din2
Two numbers to compare for inequality.
DOUBLE PRECISION for disnan
Two numbers to compare for inequality.

## Output Parameters

val Logical. Result of the comparison.

## ?labrd

Reduces the first nb rows and columns of a general matrix to a bidiagonal form.

## Syntax

```
call slabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
call dlabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
call clabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
call zlabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
```

Include Files

- mkl.fi


## Description

The routine reduces the first $n b$ rows and columns of a general $m$-by- $n$ matrix $A$ to upper or lower bidiagonal form by an orthogonal/unitary transformation $Q^{* *} A^{*} P$, and returns the matrices $X$ and $Y$ which are needed to apply the transformation to the unreduced part of $A$.
if $m \geq n, A$ is reduced to upper bidiagonal form; if $m<n$, to lower bidiagonal form.
The matrices $Q$ and $P$ are represented as products of elementary reflectors: $Q=H(1) *(2) \star \ldots \star H(n b)$, and $P=G(1) * G(2) * \ldots * G(n b)$

Each $H(i)$ and $G(i)$ has the form

```
H(i) = I - tauq* v* v' and G(i) = I - taup* u*u'
```

where tauq and taup are scalars, and $v$ and $u$ are vectors.
The elements of the vectors $v$ and $u$ together form the $m$-by- $n b$ matrix $V$ and the $n b$-by- $n$ matrix $U^{\prime}$ which are needed, with $X$ and $Y$, to apply the transformation to the unreduced part of the matrix, using a block update of the form: $A:=A-V^{\star} Y^{\prime}-X^{\star} U^{\prime}$.

This is an auxiliary routine called by ?gebrd.

## Input Parameters

m
INTEGER. The number of rows in the matrix $A(m \geq 0)$.

```
n
n.b
a
lda
ldx
Idy
```


## Output Parameters

a
$d, e$
tauq, taup

INTEGER. The number of columns in $A(n \geq 0)$.
INTEGER. The number of leading rows and columns of $A$ to be reduced.
REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
DOUBLE COMPLEX for zlabrd.
Array $a(/ d a, *)$ contains the matrix $A$ to be reduced. The second dimension of $a$ must be at least max $(1, n)$.

INTEGER. The leading dimension of $a$; at least max $(1, m)$.
INTEGER. The leading dimension of the output array $x$; must beat least $\max (1, m)$.

INTEGER. The leading dimension of the output array $y$; must beat least $\max (1, n)$.

On exit, the first $n b$ rows and columns of the matrix are overwritten; the rest of the array is unchanged.
if $m \geq n$, elements on and below the diagonal in the first $n b$ columns, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors; and elements above the diagonal in the first $n b$ rows, with the array taup, represent the orthogonal/unitary matrix $p$ as a product of elementary reflectors.
if $m<n$, elements below the diagonal in the first $n b$ columns, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors, and elements on and above the diagonal in the first $n b$ rows, with the array taup, represent the orthogonal/unitary matrix $p$ as a product of elementary reflectors.

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Arrays, DIMENSION ( $n b$ ) each. The array $d$ contains the diagonal elements of the first $n b$ rows and columns of the reduced matrix:
$d(i)=a(i, i)$.
The array e contains the off-diagonal elements of the first $n b$ rows and columns of the reduced matrix.

REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
DOUBLE COMPLEX for zlabrd.
Arrays, DIMENSION ( $n b$ ) each. Contain scalar factors of the elementary reflectors which represent the orthogonal/unitary matrices $Q$ and $P$, respectively.

REAL for slabrd
DOUBLE PRECISION for dlabrd
COMPLEX for clabrd
DOUBLE COMPLEX for zlabrd.
Arrays, dimension $x(/ d x, n b), y(/ d y, n b)$.
The array $x$ contains the $m$-by- $n b$ matrix $X$ required to update the unreduced part of $A$.
The array $y$ contains the $n$-by- $n b$ matrix $Y$ required to update the unreduced part of $A$.

## Application Notes

if $m \geq n$, then for the elementary reflectors $H(i)$ and $G(i)$,
$v(1: i-1)=0, v(i)=1$, and $v(i: m)$ is stored on exit in $a(i: m, i) ; u(1: i)=0, u(i+1)=1$, and $u(i$ $+1: n$ ) is stored on exit in a(i, $i+1: n)$;
tauq is stored in tauq(i) and taup in taup(i).
if $m<n$,
$v(1: i)=0, v(i+1)=1$, and $v(i+1: m)$ is stored on exit in $a(i+2: m, i) ; u(1: i-1)=0, u(i)=1$, and $u(i: n)$ is stored on exit in $a(i, i+1: n)$; tauq is stored in tauq(i) and taup in taup(i).

The contents of $a$ on exit are illustrated by the following examples with $n b=2$ :

$$
m=6, n=5(m>n)
$$

$$
m=5, n=6(m<n)
$$

$\left[\begin{array}{lllll}1 & 1 & u_{1} & u_{1} & u_{1} \\ v_{1} & 1 & 1 & u_{2} & u_{2} \\ v_{1} & v_{2} & a & a & a \\ v_{1} & v_{2} & a & a & a \\ v_{1} & v_{2} & a & a & a \\ v_{1} & v_{2} & a & a & a\end{array}\right]$
$\left[\begin{array}{cccccc}1 & u_{1} & u_{1} & u_{1} & u_{1} & u_{1} \\ 1 & 1 & u_{2} & u_{2} & u_{2} & u_{2} \\ v_{1} & 1 & a & a & a & a \\ v_{1} & v_{2} & a & a & a & a \\ v_{1} & v_{2} & a & a & a & a\end{array}\right]$
where a denotes an element of the original matrix which is unchanged, $v_{i}$ denotes an element of the vector defining $H(\mathrm{i})$, and $u_{i}$ an element of the vector defining $G(i)$.

## ?lacn2

Estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.

## Syntax

```
call slacn2(n, v, x, isgn, est, kase, isave)
call dlacn2(n, v, x, isgn, est, kase, isave)
call clacn2(n, v, x, est, kase, isave)
```

```
call zlacn2(n, v, x, est, kase, isave)
```


## Include Files

- mkl.fi


## Description

The routine estimates the 1-norm of a square, real or complex matrix $A$. Reverse communication is used for evaluating matrix-vector products.

## Input Parameters

```
n INTEGER. The order of the matrix A(n\geq1).
v, x
isgn
est
kase
isave
```


## Output Parameters

```
est
```

kase
v
$x$

An estimate (a lower bound) for norm( $A$ ).
On an intermediate return, kase is set to 1 or 2 , indicating whether $x$ is overwritten by $A^{*} x$ or $A^{T *} x$ for real flavors and $A^{*} x$ or $A^{H *} x$ for complex flavors.

On the final return, kase is set to 0 .
On the final return, $v=A^{*} w$, where est $=$ norm ( $v$ )/norm(w) (w is not returned).

On an intermediate return, $x$ is overwritten by
$A^{*}{ }^{x}$, if kase $=1$,

```
A T}\mp@subsup{}{}{T}X,\mathrm{ if kase = 2 (for real flavors),
A H*}x\mathrm{ , if kase = 2 (for complex flavors),
```

and the routine must be re-called with all the other parameters unchanged.
isave This parameter is used to save variables between calls to the routine.

## ?lacon

Estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.

## Syntax

```
call slacon(n, v, x, isgn, est, kase)
call dlacon(n, v, x, isgn, est, kase)
call clacon(n, v, x, est, kase)
call zlacon(n, v, x, est, kase)
```


## Include Files

- mkl.fi


## Description

The routine estimates the 1 -norm of a square, real/complex matrix $A$. Reverse communication is used for evaluating matrix-vector products.

## WARNING

The ?lacon routine is not thread-safe. It is deprecated and retained for the backward compatibility only. Use the thread-safe ?1acn2 routine instead.

## Input Parameters

$n$
$V, x$
isgn
est

INTEGER. The order of the matrix $A(n \geq 1)$.
REAL for slacon
DOUBLE PRECISION for dlacon
COMPLEX for clacon
DOUBLE COMPLEX for zlacon.
Arrays, DIMENSION (n) each.
$v$ is a workspace array.
$x$ is used as input after an intermediate return.
INTEGER.
Workspace array, DIMENSION (n), used with real flavors only.
REAL for slacon/clacon

DOUBLE PRECISION for dlacon/zlacon
An estimate that with kase=1 or 2 should be unchanged from the previous call to ?lacon.

INTEGER.
On the initial call to ?lacon, kase should be 0 .

## Output Parameters

est
REAL for slacon/clacon
DOUBLE PRECISION for dlacon/zlacon
An estimate (a lower bound) for norm $(A)$.
On an intermediate return, kase will be 1 or 2 , indicating whether $x$ should be overwritten by $A^{*} x$ or $A^{T *_{x}}$ for real flavors and $A^{*} x$ or $A^{H *} x$ for complex flavors. On the final return from ?lacon, kase will again be 0 .

On the final return, $v=A^{\star} w$, where est $=\operatorname{norm}(v) / \operatorname{norm}(w)$ (w is not returned).

On an intermediate return, $x$ should be overwritten by
$A^{\star}{ }^{\prime}$, if kase $=1$,
$A^{T}{ }_{x}$, if kase $=2$ (for real flavors),
$A^{H *}{ }_{X}$, if kase $=2$ (for complex flavors),
and ?lacon must be re-called with all the other parameters unchanged.

## ?lacpy

Copies all or part of one two-dimensional array to another.

## Syntax

```
call slacpy(uplo, m, n, a, lda, b, ldb)
call dlacpy(uplo, m, n, a, lda, b, ldb)
call clacpy(uplo, m, n, a, lda, b, ldb)
call zlacpy(uplo, m, n, a, lda, b, ldb)
```

Include Files

- mkl.fi


## Description

The routine copies all or part of a two-dimensional matrix $A$ to another matrix $B$.

## Input Parameters

The data types are given for the Fortran interface.

```
uplo
 CHARACTER*1.
```

Specifies the part of the matrix $A$ to be copied to $B$.
If uplo = 'U', the upper triangular part of $A$;
if uplo = 'L', the lower triangular part of $A$.
Otherwise, all of the matrix $A$ is copied.
INTEGER. The number of rows in the matrix $A(m \geq 0)$.
INTEGER. The number of columns in $A(n \geq 0)$.
REAL for slacpy
DOUBLE PRECISION for dlacpy
COMPLEX for clacpy
DOUBLE COMPLEX for zlacpy.
Array a (lda, *), contains the $m$-by-n matrix $A$.
The second dimension of $a$ must be at least max $(1, n)$.
If uplo = 'U', only the upper triangle or trapezoid is accessed; if uplo = 'L', only the lower triangle or trapezoid is accessed.
integer. The leading dimension of $a ;$ Id $a \geq \max (1, m)$.
INTEGER. The leading dimension of the output array $b ; 1 d b \geq \max (1, m)$.

## Output Parameters

b
REAL for slacpy
DOUBLE PRECISION for dlacpy
COMPLEX for clacpy
DOUBLE COMPLEX for zlacpy.
Array $b\left(I d b,^{*}\right)$, contains the $m$-by- $n$ matrix $B$.
The second dimension of $b$ must be at least max $(1, n)$.
On exit, $B=A$ in the locations specified by uplo.
?ladiv
Performs complex division in real arithmetic, avoiding unnecessary overflow.

## Syntax

```
call sladiv(a, b, c, d, p, q)
call dladiv(a, b, c, d, p, q)
res = cladiv(x, y)
res = zladiv(x, y)
```

Include Files

- mkl.fi


## Description

The routines sladiv/dladiv perform complex division in real arithmetic as


Complex functions cladiv/zladiv compute the result as

```
res = x/y,
```

where $x$ and $y$ are complex. The computation of $x / y$ will not overflow on an intermediary step unless the results overflows.
The algorithm used is due to [Baudin12].
Input Parameters

```
a,b,c,d REAL for sladiv
 DOUBLE PRECISION for dladiv
 The scalars a,b,c, and d in the above expression (for real flavors only).
 COMPLEX for cladiv
 DOUBLE COMPLEX for zladiv
 The complex scalars }x\mathrm{ and }y\mathrm{ (for complex flavors only).
```


## Output Parameters

$p, q$
res

REAL for sladiv
DOUBLE PRECISION for dladiv
The scalars $p$ and $q$ in the above expression (for real flavors only).
COMPLEX for cladiv
DOUBLE COMPLEX for zladiv
Contains the result of division $x / y$.
?lae2
Computes the eigenvalues of a 2-by-2 symmetric matrix.

Syntax

```
call slae2(a, b, c, rt1, rt2)
call dlae2(a, b, c, rt1, rt2)
```

Include Files

- mkl.fi


## Description

The routines sla2/dlae 2 compute the eigenvalues of a 2-by-2 symmetric matrix


On return, $r t 1$ is the eigenvalue of larger absolute value, and $r t 1$ is the eigenvalue of smaller absolute value. Input Parameters
$a, b, c$
REAL for slae2
DOUBLE PRECISION for dlae2
The elements $a, b$, and $c$ of the 2-by- 2 matrix above.

## Output Parameters

rt1, rt2

REAL for slae2
DOUBLE PRECISION for dlae2

The computed eigenvalues of larger and smaller absolute value, respectively.

## Application Notes

$r t 1$ is accurate to a few ulps barring over/underflow. rt2 may be inaccurate if there is massive cancellation in the determinant $a^{*} c-b^{*} b$; higher precision or correctly rounded or correctly truncated arithmetic would be needed to compute rt2 accurately in all cases.

Overflow is possible only if $r$ t1 is within a factor of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds

```
underflow_threshold / macheps.
```


## ?laebz

Computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine ?stebz.

## Syntax

```
call slaebz(ijob, nitmax, n, mmax, minp, nbmin, abstol, reltol, pivmin, d, e, e2, nval,
ab, c, mout, nab, work, iwork, info)
call dlaebz(ijob, nitmax, n, mmax, minp, nbmin, abstol, reltol, pivmin, d, e, e2, nval,
ab, c, mout, nab, work, iwork, info)
```

Include Files

- mkl.fi


## Description

The routine ?laebz contains the iteration loops which compute and use the function $n(w)$, which is the count of eigenvalues of a symmetric tridiagonal matrix $T$ less than or equal to its argument $w$. It performs a choice of two types of loops:

```
ijob
```

ijob
ijob

$$
=1 \text {, followed by }
$$

=2: It takes as input a list of intervals and returns a list of sufficiently small intervals whose union contains the same eigenvalues as the union of the original intervals. The input intervals are $(a b(j, 1), a b(j, 2)], j=1, \ldots, \operatorname{minp}$. The output interval $(a b(j, 1), a b(j, 2)]$ will contain eigenvalues nab $(j, 1)+1, \ldots, \operatorname{nab}(j, 2)$, where $1 \leq j \leq$ mout.
=3: It performs a binary search in each input interval $(a b(j, 1), a b(j, 2)]$ for $a$ point $w(j)$ such that $n(w(j))=n v a l(j)$, and uses $c(j)$ as the starting point of the search. If such a $w(j)$ is found, then on output $a b(j, 1)=a b(j, 2)=w$. If no such $w(j)$ is found, then on output $(a b(j, 1), a b(j, 2)]$ will be a small interval containing the point where $n(w)$ jumps through $n v a l(j)$, unless that point lies outside the initial interval.

Note that the intervals are in all cases half-open intervals, that is, of the form ( $a, b]$, which includes $b$ but not $a$.

To avoid underflow, the matrix should be scaled so that its largest element is no greater than overflow ${ }^{1 / 2}$ * overflow ${ }^{1 / 4}$ in absolute value. To assure the most accurate computation of small eigenvalues, the matrix should be scaled to be not much smaller than that, either.

## NOTE

In general, the arguments are not checked for unreasonable values.

## Input Parameters

ijob	INTEGER. Specifies what is to be done:
	= 1: Compute nab for the initial intervals.
	= 2: Perform bisection iteration to find eigenvalues of $T$.
	$=3$ : Perform bisection iteration to invert $n(w)$, i.e., to find a point which has a specified number of eigenvalues of $T$ to its left. Other values will cause ?laebz to return with info=-1.
nitmax	INTEGER. The maximum number of "levels" of bisection to be performed, i.e., an interval of width $W$ will not be made smaller than $2^{-n i t m a x} * W$. If not all intervals have converged after nitmax iterations, then info is set to the number of non-converged intervals.
$n$	INTEGER. The dimension $n$ of the tridiagonal matrix $T$. It must be at least 1 .
mmax	INTEGER. The maximum number of intervals. If more than mmax intervals are generated, then ?laebz will quit with info=mmax +1 .
minp	INTEGER. The initial number of intervals. It may not be greater than mmax.
n.bmin	INTEGER. The smallest number of intervals that should be processed using a vector loop. If zero, then only the scalar loop will be used.
abstol	REAL for slaebz
	DOUBLE PRECISION for dlaebz

The minimum (absolute) width of an interval. When an interval is narrower than abstol, or than reltol times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, i.e., converged. This must be at least zero.

REAL for slaebz
DOUBLE PRECISION for dlaebz.
The minimum relative width of an interval. When an interval is narrower than abstol, or than reltol times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, i.e., converged. Note: this should always be at least radix*machineepsilon.

REAL for slaebz
DOUBLE PRECISION for dlaebz.

The minimum absolute value of a "pivot" in the Sturm sequence loop. This value must be at least (max $|\mathrm{e}(\mathrm{j}) * * 2| * \operatorname{safe} \min )$ and at least safe_min, where safe_min is at least the smallest number that can divide one without overflow.

REAL for slaebz
DOUBLE PRECISION for dlaebz.
Arrays, dimension ( $n$ ) each. The array $d$ contains the diagonal elements of the tridiagonal matrix $T$.

The array e contains the off-diagonal elements of the tridiagonal matrix $T$ in positions 1 through $n-1$. e(n)vis arbitrary.
The array e2 contains the squares of the off-diagonal elements of the tridiagonal matrix $T$. e2( $n$ ) is ignored.

INTEGER.
Array, dimension (minp).
If $i j o b=1$ or 2 , not referenced.
If $i j o b=3$, the desired values of $n(w)$.
REAL for slaebz
DOUBLE PRECISION for dlaebz.
Array, dimension (mmax,2) The endpoints of the intervals. $a b(\mathrm{j}, 1)$ is $a(j)$, the left endpoint of the $j$-th interval, and $a b(j, 2)$ is $b(j)$, the right endpoint of the $j$-th interval.

REAL for slaebz
DOUBLE PRECISION for dlaebz.
Array, dimension (mmax)
If $i j o b=1$, ignored.
If $i j o b=2$, workspace.
If $i j o b=3$, then on input $c(j)$ should be initialized to the first search point in the binary search.

INTEGER.
Array, dimension (mmax,2)
If $i j o b=2$, then on input, $n a b(i, j)$ should be set. It must satisfy the condition:
$n(a b(i, 1)) \leq n a b(i, 1) \leq n a b(i, 2) \leq n(a b(i, 2))$, which means that in interval $i$ only eigenvalues nab(i,1)+1, ..., nab(i,2) are considered.
Usually, nab(i,j)=n(ab(i,j)), from a previous call to ?laebz with $i j o b=1$.
If $i j o b=3$, normally, nab should be set to some distinctive value(s) before ?laebz is called.

REAL for slaebz
DOUBLE PRECISION for dlaebz.

Workspace array, dimension (mmax).
iwork
INTEGER.
Workspace array, dimension (mmax).

## Output Parameters

nval
$a b$
mout
nab
info
The elements of nval will be reordered to correspond with the intervals in $a b$. Thus, $n v a l(j)$ on output will not, in general be the same as nval( $j$ ) on input, but it will correspond with the interval $(a b(j, 1), a b(j, 2)]$ on output.

The input intervals will, in general, be modified, split, and reordered by the calculation.

INTEGER.
If $i j o b=1$, the number of eigenvalues in the intervals.
If $i j o b=2$ or 3 , the number of intervals output.
If $i j o b=3$, mout will equal minp.
If $i j o b=1$, then on output $n a b(i, j)$ will be set to $N(a b(i, j))$.
If $i j o b=2$, then on output, $n a b(i, j)$ will contain $\max (n a(k, \min (n b(k)$, $N(a b(\mathrm{i}, \mathrm{j}))))$, where $k$ is the index of the input interval that the output interval $(a b(\mathrm{j}, 1), a b(\mathrm{j}, 2)]$ came from, and $n a(k)$ and $n b(k)$ are the input values of $n a b(k, 1)$ and $n a b(k, 2)$.
If $i j o b=3$, then on output, $n a b(i, j)$ contains $N(a b(i, j))$, unless $N(w)>n v a l(i)$ for all search points $w$, in which case nab(i,1) will not be modified, i.e., the output value will be the same as the input value (modulo reorderings, see nval and $a b$ ), or unless $N(w)$ < nval(i) for all search points $w$, in which case $n a b(i, 2)$ will not be modified.

INTEGER.
If info $=0$ - all intervals converged
If info = 1--mmax - the last info interval did not converge.
If info $=$ mmax +1 - more than mmax intervals were generated

## Application Notes

This routine is intended to be called only by other LAPACK routines, thus the interface is less user-friendly. It is intended for two purposes:
(a) finding eigenvalues. In this case, ? laebz should have one or more initial intervals set up in $a b$, and ? laebz should be called with $i j o b=1$. This sets up nab, and also counts the eigenvalues. Intervals with no eigenvalues would usually be thrown out at this point. Also, if not all the eigenvalues in an interval $i$ are desired, $n a b(i, 1)$ can be increased or $n a b(i, 2)$ decreased. For example, set $n a b(i, 1)=n a b(i, 2)-1$ to get the largest eigenvalue. ?laebz is then called with $i j o b=2$ and mmax no smaller than the value of mout returned by the call with $i j o b=1$. After this ( $i j o b=2$ ) call, eigenvalues $n a b(i, 1)+1$ through $n a b(i, 2)$ are approximately $a b(i, 1)$ (or $a b(i, 2))$ to the tolerance specified by abstol and reltol.
(b) finding an interval ( $a^{\prime}, b^{\prime}$ ] containing eigenvalues $w(f), \ldots, w(I)$. In this case, start with a Gershgorin interval ( $a, b$ ). Set up $a b$ to contain 2 search intervals, both initially $(a, b)$. One nval element should contain $\mathrm{f}-1$ and the other should contain I , while $c$ should contain $a$ and $b$, respectively. nab(i,1) should be -1 and $n a b(i, 2)$ should be $n+1$, to flag an error if the desired interval does not lie in $(a, b)$. ? laebz is then called with
$i j o b=3$. On exit, if $w(f-1)<w(f)$, then one of the intervals $--j--$ will have $a b(j, 1)=a b(j, 2)$ and $\operatorname{nab}(j, 1)=\operatorname{nab}(j, 2)=f-1$, while if, to the specified tolerance, $w(f-k)=\ldots=w(f+r), k>0$ and $r \geq 0$, then the interval will have $n(a b(j, 1))=n a b(j, 1)=f-k$ and $n(a b(j, 2))=n a b(j, 2)=f+r$. The cases $w(1)<w(l$ +1 ) and $w(1-r)=\ldots=w(1+k)$ are handled similarly.

## ?laed0 <br> Used by ?stedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.

## Syntax

```
call slaed0(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs, work, iwork, info)
call dlaed0(icompq, qsiz, n, d, e, q, ldq, qstore, ldqs, work, iwork, info)
call claedO(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork, iwork, info)
call zlaedO(qsiz, n, d, e, q, ldq, qstore, ldqs, rwork, iwork, info)
```


## Include Files

- mkl.fi


## Description

Real flavors of this routine compute all eigenvalues and (optionally) corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method.

Complex flavors claedo/zlaed0 compute all eigenvalues of a symmetric tridiagonal matrix which is one diagonal block of those from reducing a dense or band Hermitian matrix and corresponding eigenvectors of the dense or band matrix.

## Input Parameters

```
icompq
```

qsiz
n
d, e, rwork

INTEGER. Used with real flavors only.
If $i c o m p q=0$, compute eigenvalues only.
If icompq = 1, compute eigenvectors of original dense symmetric matrix also.

On entry, the array $q$ must contain the orthogonal matrix used to reduce the original matrix to tridiagonal form.

If icompq $=2$, compute eigenvalues and eigenvectors of the tridiagonal matrix.

INTEGER.
The dimension of the orthogonal/unitary matrix used to reduce the full matrix to tridiagonal form; $q$ si $z \geq n$ (for real flavors, $q s i z \geq n$ if icompq $=1$ ).

INTEGER. The dimension of the symmetric tridiagonal matrix ( $n \geq 0$ ).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors. Arrays:
$d(*)$ contains the main diagonal of the tridiagonal matrix. The dimension of $d$ must be at least max $(1, n)$.
$e(*)$ contains the off-diagonal elements of the tridiagonal matrix. The dimension of $e$ must be at least max ( $1, n-1$ ).
rwork (*) is a workspace array used in complex flavors only. The dimension of rwork must be at least $\left(1+3 n+2 n \log _{2}(n)+3 n^{2}\right)$, where $\log _{2}(n)=$ smallest integer $k$ such that $2^{k} \geq n$.

REAL for slaed0
DOUBLE PRECISION for dlaed0
COMPLEX for claed0
DOUBLE COMPLEX for zlaed0.
Arrays: $q\left(I d q,{ }^{*}\right)$, qstore(Idqs, *). The second dimension of these arrays must be at least max $(1, n)$.

For real flavors:
If $i$ compq $=0$, array $q$ is not referenced.
If icompq $=1$, on entry, $q$ is a subset of the columns of the orthogonal matrix used to reduce the full matrix to tridiagonal form corresponding to the subset of the full matrix which is being decomposed at this time.
If icompq $=2$, on entry, $q$ will be the identity matrix. The array qstore is a workspace array referenced only when $i c o m p q=1$. Used to store parts of the eigenvector matrix when the updating matrix multiplies take place.

## For complex flavors:

On entry, $q$ must contain an qsiz-by-n matrix whose columns are unitarily orthonormal. It is a part of the unitary matrix that reduces the full dense Hermitian matrix to a (reducible) symmetric tridiagonal matrix. The array qstore is a workspace array used to store parts of the eigenvector matrix when the updating matrix multiplies take place.

INTEGER. The leading dimension of the array $q ; I d q \geq \max (1, n)$.
INTEGER. The leading dimension of the array qstore; $I d q s \geq \max (1, n)$.
REAL for slaed0
DOUBLE PRECISION for dlaedo.
Workspace array, used in real flavors only.
If icompq $=0$ or 1 , the dimension of work must be at least ( $1+3 n$ $+2 n \log _{2}(n)+3 n^{2}$ ), where $\log _{2}(n)=$ smallest integer $k$ such that $2^{k} \geq n$.

If icompq $=2$, the dimension of work must be at least $\left(4 n+n^{2}\right)$.
INTEGER.
Workspace array.
For real flavors, if icompq $=0$ or 1, and for complex flavors, the dimension of iwork must be at least $\left(6+6 n+5 n \log _{2}(n)\right)$.

For real flavors, if icompq $=2$, the dimension of iwork must be at least $(3+5 n)$.

## Output Parameters

$d$
$e$
$q$
info

On exit, contains eigenvalues in ascending order.
On exit, the array is destroyed.
If icompq $=2$, on exit, $q$ contains the eigenvectors of the tridiagonal matrix.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=i>0$, the algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns $i /(n+1)$ through $\bmod (i, n+1)$.

```
?laed1
Used by sstedc/dstedc. Computes the updated
eigensystem of a diagonal matrix after modification by
a rank-one symmetric matrix. Used when the original
matrix is tridiagonal.
```


## Syntax

```
call slaed1(n, d, q, ldq, indxq, rho, cutpnt, work, iwork, info)
```

call slaed1( n, d, q, ldq, indxq, rho, cutpnt, work, iwork, info )
call dlaed1( n, d, q, ldq, indxq, rho, cutpnt, work, iwork, info )

```
call dlaed1(n, d, q, ldq, indxq, rho, cutpnt, work, iwork, info)
```

Include Files

- mkl.fi


## Description

The routine ? laed1 computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all eigenvalues and eigenvectors of a tridiagonal matrix. ?laed7 handles the case in which eigenvalues only or eigenvalues and eigenvectors of a full symmetric matrix (which was reduced to tridiagonal form) are desired.

```
T = Q(in)*(D(in)+rho* Z* ZT)* QT(in) = Q(out)*D(out)* QT
```

where $Z=Q^{T} u, u$ is a vector of length $n$ with ones in the cutpnt and (cutpnt+1) -th elements and zeros elsewhere. The eigenvectors of the original matrix are stored in $Q$, and the eigenvalues are in $D$. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem when there are multiple eigenvalues or if there is a zero in the $z$ vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ?laed2.
The second stage consists of calculating the updated eigenvalues. This is done by finding the roots of the secular equation via the routine ?laed4 (as called by ?laed3). This routine also calculates the eigenvectors of the current problem.

The final stage consists of computing the updated eigenvectors directly using the updated eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from the overall problem.

## Input Parameters

$n$
d, q, work
$1 d q$
indxq
rho
cutpnt
iwork

## Output Parameters

d
q
indxq
info

INTEGER. The dimension of the symmetric tridiagonal matrix ( $n \geq 0$ ).
REAL for slaed1
DOUBLE PRECISION for dlaed1.
Arrays:
$d(*)$ contains the eigenvalues of the rank-1-perturbed matrix. The dimension of $d$ must be at least max $(1, n)$.
$q(I d q, *)$ contains the eigenvectors of the rank-1-perturbed matrix. The second dimension of $q$ must be at least max $(1, n)$.
$\operatorname{work}(*)$ is a workspace array, dimension at least $\left(4 n+n^{2}\right)$.
INTEGER. The leading dimension of the array $q ; 1 d q \geq \max (1, n)$.
INTEGER. Array, dimension ( $n$ ).
On entry, the permutation which separately sorts the two subproblems in $d$ into ascending order.

REAL for slaed1
DOUBLE PRECISION for dlaed1.
The subdiagonal entry used to create the rank-1 modification. This parameter can be modified by ?laed2, where it is input/output.

INTEGER.
The location of the last eigenvalue in the leading sub-matrix. $\min (1, n) \leq$ cutpnt $\leq n / 2$.

INTEGER.
Workspace array, dimension (4n).

On exit, contains the eigenvalues of the repaired matrix.
On exit, $q$ contains the eigenvectors of the repaired tridiagonal matrix.
On exit, contains the permutation which will reintegrate the subproblems back into sorted order, that is, $d($ indxq(i $=1, n)$ ) will be in ascending order.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value. If info $=1$, an eigenvalue did not converge.

?laed2<br>Used by sstedc/dstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal.

## Syntax

```
call slaed2(k, n, n1, d, q, ldq, indxq, rho, z, dlamda, w, q2, indx, indxc, indxp,
coltyp, info)
call dlaed2(k, n, nl, d, q, ldq, indxq, rho, z, dlamda, w, q2, indx, indxc, indxp,
coltyp, info)
```


## Include Files

- mkl.fi


## Description

The routine ?laed 2 merges the two sets of eigenvalues together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more eigenvalues are close together or if there is a tiny entry in the $z$ vector. For each such occurrence the order of the related secular equation problem is reduced by one.

## Input Parameters

k	INTEGER. The number of non-deflated eigenvalues, and the order of the related secular equation $(0 \leq k \leq n)$.
$n$	INTEGER. The dimension of the symmetric tridiagonal matrix ( $n \geq 0$ ).
n1	Integer. The location of the last eigenvalue in the leading sub-matrix; $\min (1, n) \leq n 1 \leq n / 2$.
$d, q, z$	REAL for slaed2
	DOUBLE PRECISION for dlaed2.
	Arrays:
	$d(*)$ contains the eigenvalues of the two submatrices to be combined. The dimension of $d$ must be at least max $(1, n)$.
	$q(l d q, *)$ contains the eigenvectors of the two submatrices in the two square blocks with corners at $(1,1),(n 1, n 1)$ and $(n 1+1, n 1+1),(n, n)$. The second dimension of $q$ must be at least max $(1, n)$.
	$z$ (*) contains the updating vector (the last row of the first sub-eigenvector matrix and the first row of the second sub-eigenvector matrix).
$1 d q$	INTEGER. The leading dimension of the array $q ; 1 d q \geq \max (1, n)$.
indxqrho	INTEGER. Array, dimension ( $n$ ).
	On entry, the permutation which separately sorts the two subproblems in $d$ into ascending order. Note that elements in the second half of this permutation must first have $n 1$ added to their values.
	REAL for slaed2

indx, indxp
coltyp

DOUBLE PRECISION for dlaed2.
On entry, the off-diagonal element associated with the rank-1 cut which originally split the two submatrices which are now being recombined.

INTEGER.
Workspace arrays, dimension ( $n$ ) each. Array indx contains the permutation used to sort the contents of dlamda into ascending order.

Array indxp contains the permutation used to place deflated values of $d$ at the end of the array.
$\operatorname{indxp}(1: k)$ points to the nondeflated $d$-values and $\operatorname{indxp}(k+1: n)$ points to the deflated eigenvalues.

INTEGER.
Workspace array, dimension ( $n$ ).
During execution, a label which will indicate which of the following types a column in the $q 2$ matrix is:

1 : non-zero in the upper half only;
2 : dense;
3 : non-zero in the lower half only;
4 : deflated.

## Output Parameters

d
$q$
z
indxq
rho
dlamda, w, q2
indxc

On exit, $d$ contains the trailing ( $n-k$ ) updated eigenvalues (those which were deflated) sorted into increasing order.

On exit, $q$ contains the trailing ( $n-k$ ) updated eigenvectors (those which were deflated) in its last $n-k$ columns.

On exit, $z$ content is destroyed by the updating process.
Destroyed on exit.
On exit, rho has been modified to the value required by ?laed3.
REAL for slaed2
DOUBLE PRECISION for dlaed2.
Arrays: dlamda(n), w(n), q2(n12+(n-n1)2).
The array dlamda contains a copy of the first $k$ eigenvalues which is used by ?laed3 to form the secular equation.

The array $w$ contains the first $k$ values of the final deflation-altered $z$-vector which is passed to ?laed3.

The array $q 2$ contains a copy of the first $k$ eigenvectors which is used by ? laed3 in a matrix multiply (sgemm/dgemm) to solve for the new eigenvectors.

INTEGER. Array, dimension (n).

```
coltyp On exit, coltyp(i) is the number of columns of type i, for i=1 to 4 only (see
 the definition of types in the description of coltyp in Input Parameters).
 INTEGER.
 If info = 0, the execution is successful.
 If info = -i, the i-th parameter had an illegal value.
```


## ?laed3

Used by sstedc/dstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal.

## Syntax

```
call slaed3(k, n, n1, d, q, ldq, rho, dlamda, q2, indx, ctot, w, s, info)
call dlaed3(k, n, n1, d, q, ldq, rho, dlamda, q2, indx, ctot, w, s, info)
```

Include Files

- mkl.fi


## Description

The routine ? laed3 finds the roots of the secular equation, as defined by the values in $d, w$, and rho, between 1 and $k$.
It makes the appropriate calls to ?laed 4 and then updates the eigenvectors by multiplying the matrix of eigenvectors of the pair of eigensystems being combined by the matrix of eigenvectors of the $k$-by- $k$ system which is solved here.

This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but none are known.

## Input Parameters

k
n
n1
q

INTEGER. The number of terms in the rational function to be solved by ?laed4 ( $k \geq 0$ ).

INTEGER. The number of rows and columns in the $q$ matrix. $n \geq k$ (deflation may result in $n>k$ ).

INTEGER. The location of the last eigenvalue in the leading sub-matrix; $\min (1, n) \leq n 1 \leq n / 2$.

REAL for slaed3
DOUBLE PRECISION for dlaed3.
Array $q(I d q, *)$. The second dimension of $q$ must be at least max $(1, n)$.

Initially, the first $k$ columns of this array are used as workspace.

```
INTEGER. The leading dimension of the array \(q ; 1 d q \geq \max (1, n)\). REAL for slaed3
DOUBLE PRECISION for dlaed3.
```

The value of the parameter in the rank one update equation. rho $\geq 0$ required.

REAL for slaed3
DOUBLE PRECISION for dlaed3.
Arrays: dlamda(k), q2(ldq2, *), w(k).
The first $k$ elements of the array dlamda contain the old roots of the deflated updating problem. These are the poles of the secular equation.
The first $k$ columns of the array $q 2$ contain the non-deflated eigenvectors for the split problem. The second dimension of $q 2$ must be at least max (1, n).

The first $k$ elements of the array $w$ contain the components of the deflationadjusted updating vector.

INTEGER. Array, dimension ( $n$ ).
The permutation used to arrange the columns of the deflated $q$ matrix into three groups (see ?laed2).
The rows of the eigenvectors found by ?laed 4 must be likewise permuted before the matrix multiply can take place.

INTEGER. Array, dimension (4).
A count of the total number of the various types of columns in $q$, as described in indx. The fourth column type is any column which has been deflated.

REAL for slaed3
DOUBLE PRECISION for dlaed3.
Workspace array, dimension $(n 1+1)^{*} k$.
Will contain the eigenvectors of the repaired matrix which will be multiplied by the previously accumulated eigenvectors to update the system.

## Output Parameters

[^6]dlamda
REAL for slaed3
DOUBLE PRECISION for dlaed3.
Array, dimension at least max $(1, n)$.
$d(i)$ contains the updated eigenvalues for $1 \leq i \leq k$.
On exit, the columns 1 to $k$ of $q$ contain the updated eigenvectors.
May be changed on output by having lowest order bit set to zero on Cray XMP, Cray Y-MP, Cray-2, or Cray C-90, as described above.

```
w Destroyed on exit.
info INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.
If info = 1, an eigenvalue did not converge.
```


## ?laed4

Used by sstedc/dstedc. Finds a single root of the secular equation.

## Syntax

```
call slaed4(n, i, d, z, delta, rho, dlam, info)
call dlaed4(n, i, d, z, delta, rho, dlam, info)
```

Include Files

- mkl.fi


## Description

This routine computes the $i$-th updated eigenvalue of a symmetric rank-one modification to a diagonal matrix whose elements are given in the array $d$, and that

```
D(i) < D(j) for i < j
```

and that rho $>0$. This is arranged by the calling routine, and is no loss in generality. The rank-one modified system is thus

```
diag(D) + rho*Z * transpose(Z).
```

where we assume the Euclidean norm of $Z$ is 1 .
The method consists of approximating the rational functions in the secular equation by simpler interpolating rational functions.

## Input Parameters

```
n
i
d, z
rho
INTEGER. The length of all arrays.
INTEGER. The index of the eigenvalue to be computed; \(1 \leq i \leq n\).
REAL for slaed4
DOUBLE PRECISION for dlaed4
Arrays, dimension (\(n\)) each. The array \(d\) contains the original eigenvalues. It is assumed that they are in order, \(d(i)<d(j)\) for \(i<j\).
The array \(z\) contains the components of the updating vector \(Z\).
REAL for slaed4
DOUBLE PRECISION for dlaed4
The scalar in the symmetric updating formula.
```


## Output Parameters

```
delta REAL for slaed4
DOUBLE PRECISION for dlaed4
Array, dimension (n).
If n\not= 1, delta contains (d(j) - lambda_i) in its j-th component. If n = 1,
then delta(1) = 1. The vector delta contains the information necessary to
construct the eigenvectors.
REAL for slaed4
DOUBLE PRECISION for dlaed4
The computed lambda_i, the i
INTEGER.
If info = 0, the execution is successful.
If info = 1, the updating process failed.
```

?laed5
Used by sstedc/dstedc. Solves the 2-by-2 secular
equation.

Syntax

```
call slaed5(i, d, z, delta, rho, dlam)
call dlaed5(i, d, z, delta, rho, dlam)
```


## Include Files

- mkl.fi


## Description

The routine computes the $i$-th eigenvalue of a symmetric rank-one modification of a 2-by-2 diagonal matrix

```
diag(D) + rho*Z * transpose(Z).
```

The diagonal elements in the array $D$ are assumed to satisfy
$D(i)<D(j)$ for $i<j$.
We also assume rho $>0$ and that the Euclidean norm of the vector $Z$ is one.

## Input Parameters

i
INTEGER. The index of the eigenvalue to be computed;
$1 \leq i \leq 2$.
d, z
REAL for slaed5
DOUBLE PRECISION for dlaed5
Arrays, dimension (2) each. The array $d$ contains the original eigenvalues. It is assumed that $d(1)<d(2)$.

```
rho
```

The array $z$ contains the components of the updating vector.
REAL for slaed5
DOUBLE PRECISION for dlaed5
The scalar in the symmetric updating formula.

## Output Parameters

delta
dlam

REAL for slaed5
DOUBLE PRECISION for dlaed5
Array, dimension (2).
The vector delta contains the information necessary to construct the eigenvectors.

REAL for slaed5
DOUBLE PRECISION for dlaed5
The computed lambda_i, the $i$-th updated eigenvalue.

## ?laed6 <br> Used by sstedc/dstedc. Computes one Newton step in solution of the secular equation.

## Syntax

```
call slaed6(kniter, orgati, rho, d, z, finit, tau, info)
call dlaed6(kniter, orgati, rho, d, z, finit, tau, info)
```


## Include Files

- mkl.fi


## Description

The routine computes the positive or negative root (closest to the origin) of

$$
f(x)=x h o+\frac{z(1)}{d(1)-x}+\frac{z(2)}{d(2)-x}+\frac{z(3)}{d(3)-x}
$$

It is assumed that if orgati $=$.TRUE. the root is between $d(2)$ and $d(3)$;otherwise it is between $d(1)$ and $d(2)$ This routine is called by ?laed 4 when necessary. In most cases, the root sought is the smallest in magnitude, though it might not be in some extremely rare situations.

## Input Parameters

```
kniter
orgati
```


## INTEGER.

Refer to ?laed4 for its significance.
LOGICAL.

If orgati $=$.TRUE., the needed root is between $d(2)$ and $d(3)$; otherwise it is between $d(1)$ and $d(2)$. See ?laed 4 for further details.
rho
d, $z$
finit

REAL for slaed6
DOUBLE PRECISION for dlaed6
Refer to the equation for $f(x)$ above.
REAL for slaed6
DOUBLE PRECISION for dlaed6
Arrays, dimension (3) each.
The array $d$ satisfies $d(1)<d(2)<d(3)$.
Each of the elements in the array $z$ must be positive.
REAL for slaed6
DOUBLE PRECISION for dlaed6
The value of $f(x)$ at 0 . It is more accurate than the one evaluated inside this routine (if someone wants to do so).

## Output Parameters

tau
info

REAL for slaed6
DOUBLE PRECISION for dlaed6
The root of the equation for $f(x)$.
INTEGER.
If info $=0$, the execution is successful.
If info = 1, failure to converge.

## ?laed7

Used by ?stedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.

## Syntax

```
call slaed7(icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq, indxq, rho, cutpnt,
qstore, qptr, prmptr, perm, givptr, givcol, givnum, work, iwork, info)
call dlaed7(icompq, n, qsiz, tlvls, curlvl, curpbm, d, q, ldq, indxq, rho, cutpnt,
qstore, qptr, prmptr, perm, givptr, givcol, givnum, work, iwork, info)
call claed7(n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho, indxq, qstore,
qptr, prmptr, perm, givptr, givcol, givnum, work, rwork, iwork, info)
call zlaed7(n, cutpnt, qsiz, tlvls, curlvl, curpbm, d, q, ldq, rho, indxq, qstore,
qptr, prmptr, perm, givptr, givcol, givnum, work, rwork, iwork, info)
```

Include Files

- mkl.fi


## Description

The routine ?laed7 computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. This routine is used only for the eigenproblem which requires all eigenvalues and optionally eigenvectors of a dense symmetric/Hermitian matrix that has been reduced to tridiagonal form. For real flavors, slaed1/dlaed1 handles the case in which all eigenvalues and eigenvectors of a symmetric tridiagonal matrix are desired.

```
T = Q(in)*(D(in)+rho* Z* ZT)* *T (in) = Q(out)*D(out)* QT
T = Q(in)* (D(in)+rho* Z* Z H
```

where $Z=Q^{T \star} u$ for real flavors and $Z=Q^{H \star} u$ for complex flavors, $u$ is a vector of length $n$ with ones in the cutpnt and (cutpnt +1 ) -th elements and zeros elsewhere. The eigenvectors of the original matrix are stored in $Q$, and the eigenvalues are in $D$. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem when there are multiple eigenvalues or if there is a zero in the $z$ vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine slaed8/dlaed8 (for real flavors) or by the routine slaed2/ dlaed2 (for complex flavors).

The second stage consists of calculating the updated eigenvalues. This is done by finding the roots of the secular equation via the routine ?laed4 (as called by ?laed9 or ?laed3). This routine also calculates the eigenvectors of the current problem.

The final stage consists of computing the updated eigenvectors directly using the updated eigenvalues. The eigenvectors for the current problem are multiplied with the eigenvectors from the overall problem.

## Input Parameters

icompq
n
cutpnt
qsiz
tlvls
curlvl
curpbm
$d$

INTEGER. Used with real flavors only.
If $i$ compq $=0$, compute eigenvalues only.
If icompq $=1$, compute eigenvectors of original dense symmetric matrix also. On entry, the array $q$ must contain the orthogonal matrix used to reduce the original matrix to tridiagonal form.

INTEGER. The dimension of the symmetric tridiagonal matrix ( $n \geq 0$ ).
INTEGER. The location of the last eigenvalue in the leading sub-matrix. $\min (1, n) \leq$ cutpnt $\leq n$.

INTEGER.
The dimension of the orthogonal/unitary matrix used to reduce the full matrix to tridiagonal form; $q s i z \geq n$ (for real flavors, $q s i z \geq n$ if $i c o m p q=$ 1).

INTEGER. The total number of merging levels in the overall divide and conquer tree.

INTEGER. The current level in the overall merge routine, $0 \leq$ curlvl $\leq$ tlvls.

INTEGER. The current problem in the current level in the overall merge routine (counting from upper left to lower right).

REAL for slaed7/claed7

DOUBLE PRECISION for dlaed7/zlaed7.
Array, dimension at least max $(1, n)$.
Array $d(*)$ contains the eigenvalues of the rank-1-perturbed matrix.
REAL for slaed7
DOUBLE PRECISION for dlaed7
COMPLEX for claed7
DOUBLE COMPLEX for zlaed7.

## Arrays:

$q(l d q, *)$ contains the eigenvectors of the rank-1-perturbed matrix. The second dimension of $q$ must be at least $\max (1, n)$.
work $\left({ }^{*}\right)$ is a workspace array, dimension at least ( $3 n+2 * q s i z^{*} n$ ) for real flavors and at least (qsiz^n) for complex flavors.
$\operatorname{INTEGER}$. The leading dimension of the array $q ; I d q \geq \max (1, n)$.
INTEGER. Array, dimension ( $n$ ).
Contains the permutation that separately sorts the two sub-problems in $d$ into ascending order.

REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7.
The subdiagonal element used to create the rank-1 modification.
REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7.
Array, dimension $\left(n^{2}+1\right)$. Serves also as output parameter.
Stores eigenvectors of submatrices encountered during divide and conquer, packed together. qptr points to beginning of the submatrices.

INTEGER. Array, dimension $(n+2)$. Serves also as output parameter. List of indices pointing to beginning of submatrices stored in qstore. The submatrices are numbered starting at the bottom left of the divide and conquer tree, from left to right and bottom to top.

INTEGER. Arrays, dimension ( $n \log _{2} n$ ) each.
The array $\operatorname{prmptr}\left({ }^{*}\right)$ contains a list of pointers which indicate where in perm a level's permutation is stored. prmptr(i+1) - prmptr(i) indicates the size of the permutation and also the size of the full, non-deflated problem.
The array perm $\left(^{*}\right.$ ) contains the permutations (from deflation and sorting) to be applied to each eigenblock. This parameter can be modified by ?laed8, where it is output.

The array givptr(*) contains a list of pointers which indicate where in givcol a level's Givens rotations are stored. givptr(i+1) - givptr(i) indicates the number of Givens rotations.

INTEGER. Array, dimension (2, $n \log _{2} n$ ).

```
Each pair of numbers indicates a pair of columns to take place in a Givens rotation.
givnum REAL for slaed7/claed7
DOUBLE PRECISION for dlaed7/zlaed7.
Array, dimension (2, \(n \log _{2} n\)).
Each number indicates the \(S\) value to be used in the corresponding Givens rotation.
INTEGER.
Workspace array, dimension (4n).
REAL for claed7
DOUBLE PRECISION for zlaed7.
Workspace array, dimension (\(3 n+2 q s i z^{\star} n\)). Used in complex flavors only.
```


## Output Parameters

d

9
indxq
rho
prmptr, perm, givptr
givcol
givnum
info

On exit, contains the eigenvalues of the repaired matrix.
On exit, $q$ contains the eigenvectors of the repaired tridiagonal matrix.
integer. Array, dimension ( $n$ ).
Contains the permutation that reintegrates the subproblems back into a sorted order, that is,
$d($ indxq(i $=1, n))$ will be in the ascending order.
This parameter can be modified by ?laed8, where it is input/output.
INTEGER. Arrays, dimension $\left(n \log _{2} n\right.$ ) each.
The array prmptr contains an updated list of pointers.
The array perm contains an updated permutation.
The array givptr contains an updated list of pointers.
This parameter can be modified by ?laed8, where it is output.
This parameter can be modified by ?laed8, where it is output.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=1$, an eigenvalue did not converge.
?laed8
Used by ?stedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.

## Syntax

```
call slaed8(icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z, dlamda, q2, ldq2, w,
perm, givptr, givcol, givnum, indxp, indx, info)
call dlaed8(icompq, k, n, qsiz, d, q, ldq, indxq, rho, cutpnt, z, dlamda, q2, ldq2, w,
perm, givptr, givcol, givnum, indxp, indx, info)
call claed8(k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2, ldq2, w, indxp, indx,
indxq, perm, givptr, givcol, givnum, info)
call zlaed8(k, n, qsiz, q, ldq, d, rho, cutpnt, z, dlamda, q2, ldq2, w, indxp, indx,
indxq, perm, givptr, givcol, givnum, info)
```


## Include Files

- mkl.fi


## Description

The routine merges the two sets of eigenvalues together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more eigenvalues are close together or if there is a tiny element in the $z$ vector. For each such occurrence the order of the related secular equation problem is reduced by one.

## Input Parameters

icompq
n
cutpnt
qsiz
$d, z$
$q$

INTEGER. Used with real flavors only.
If icompq $=0$, compute eigenvalues only.
If icompq $=1$, compute eigenvectors of original dense symmetric matrix also.
On entry, the array $q$ must contain the orthogonal matrix used to reduce the original matrix to tridiagonal form.

INTEGER. The dimension of the symmetric tridiagonal matrix ( $n \geq 0$ ).
INTEGER. The location of the last eigenvalue in the leading sub-matrix. $\min (1, n) \leq$ cutpnt $\leq n$.

INTEGER.
The dimension of the orthogonal/unitary matrix used to reduce the full matrix to tridiagonal form; qsiz¥n (for real flavors, qsiz¥n if icompq = 1).

REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
Arrays, dimension at least max $(1, n)$ each. The array $d(*)$ contains the eigenvalues of the two submatrices to be combined.
On entry, $z\left(^{*}\right)$ contains the updating vector (the last row of the first subeigenvector matrix and the first row of the second sub-eigenvector matrix). The contents of $z$ are destroyed by the updating process.

REAL for slaed8
DOUBLE PRECISION for dlaed8

COMPLEX for claed8
DOUBLE COMPLEX for zlaed8.

## Array

$q\left(I d q,{ }^{*}\right)$. The second dimension of $q$ must be at least max ( $1, n$ ). On entry, $q$ contains the eigenvectors of the partially solved system which has been previously updated in matrix multiplies with other partially solved eigensystems.
For real flavors, If icompq $=0, q$ is not referenced.
INTEGER. The leading dimension of the array $q ; 1 d q \geq \max (1, n)$.
INTEGER. The leading dimension of the output array $q 2 ; 1 d q 2 \geq \max (1$, n).

INTEGER. Array, dimension ( $n$ ).
The permutation that separately sorts the two sub-problems in $d$ into ascending order. Note that elements in the second half of this permutation must first have cutpnt added to their values in order to be accurate.

REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
On entry, the off-diagonal element associated with the rank-1 cut which originally split the two submatrices which are now being recombined.

## Output Parameters

k
d
z
$q$
indxq
rho
dlamda, w
q2

INTEGER. The number of non-deflated eigenvalues, and the order of the related secular equation.

On exit, contains the trailing ( $n-k$ ) updated eigenvalues (those which were deflated) sorted into increasing order.

On exit, the updating process destroys the contents of $z$.
On exit, $q$ contains the trailing ( $n-k$ ) updated eigenvectors (those which were deflated) in its last ( $n-k$ ) columns.

INTEGER. Array, dimension ( $n$ ).
The permutation of merged eigenvalues set.
On exit, rho has been modified to the value required by ?laed3.
REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
Arrays, dimension ( $n$ ) each. The array dlamda(*) contains a copy of the first $k$ eigenvalues which will be used by ?laed3 to form the secular equation.

The array $w\left({ }^{*}\right)$ will hold the first $k$ values of the final deflation-altered $z$ vector and will be passed to ?laed3.

REAL for slaed8

DOUBLE PRECISION for dlaed8
COMPLEX for claed8
DOUBLE COMPLEX for zlaed8.

## Array

$q 2(I d q 2, *)$. The second dimension of $q 2$ must be at least max $(1, n)$.
Contains a copy of the first $k$ eigenvectors which will be used by slaed7/ dlaed7 in a matrix multiply (sgemm/dgemm) to update the new eigenvectors. For real flavors, If $i c o m p q=0, q 2$ is not referenced.
indxp, indx
perm

INTEGER. Workspace arrays, dimension ( $n$ ) each.
The array $\operatorname{ind} \operatorname{xp}\left({ }^{*}\right)$ will contain the permutation used to place deflated values of $d$ at the end of the array. On output, $\operatorname{indxp}(1: k)$ points to the nondeflated $d$-values and $\operatorname{indxp}(k+1: n)$ points to the deflated eigenvalues.

The array indx(*) will contain the permutation used to sort the contents of $d$ into ascending order.

INTEGER. Array, dimension ( $n$ ).
Contains the permutations (from deflation and sorting) to be applied to each eigenblock.

INTEGER. Contains the number of Givens rotations which took place in this subproblem.

INTEGER. Array, dimension (2, $n$ ).
Each pair of numbers indicates a pair of columns to take place in a Givens rotation.

REAL for slaed8/claed8
DOUBLE PRECISION for dlaed8/zlaed8.
Array, dimension $(2, n)$.
Each number indicates the $S$ value to be used in the corresponding Givens rotation.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## ?laed9

Used by sstedc/dstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is dense.

Syntax

```
call slaed9(k, kstart, kstop, n, d, q, ldq, rho, dlamda, w, s, lds, info)
call dlaed9(k, kstart, kstop, n, d, q, ldq, rho, dlamda, w, s, lds, info)
```


## Include Files

- mkl.fi


## Description

The routine finds the roots of the secular equation, as defined by the values in $d, z$, and rho, between kstart and kstop. It makes the appropriate calls to slaed4/dlaed4 and then stores the new matrix of eigenvectors for use in calculating the next level of $z$ vectors.

## Input Parameters

k
kstart, kstop
$n$
$q$
$1 d q$
rho
dlamda, w
$1 d s$

## Output Parameters

INTEGER. The number of terms in the rational function to be solved by slaed4/dlaed4 ( $k \geq 0$ ).

INTEGER. The updated eigenvalues lambda(i),
kstart $\leq i \leq k s t o p$ are to be computed.
$1 \leq$ kstart $\leq k s t o p \leq k$.
INTEGER. The number of rows and columns in the $Q$ matrix. $n \geq k$ (deflation may result in $n>k$ ).

REAL for slaed9
DOUBLE PRECISION for dlaed9.
Workspace array, dimension ( $/ d q,{ }^{*}$ ).
The second dimension of $q$ must be at least max $(1, n)$.
INTEGER. The leading dimension of the array $q ; 1 d q \geq \max (1, n)$.
REAL for slaed9
DOUBLE PRECISION for dlaed9
The value of the parameter in the rank one update equation. $r h o \geq 0$ required.

REAL for slaed9
DOUBLE PRECISION for dlaed9
Arrays, dimension ( $k$ ) each. The first $k$ elements of the array dlamda(*) contain the old roots of the deflated updating problem. These are the poles of the secular equation.
The first $k$ elements of the array $w\left({ }^{*}\right)$ contain the components of the deflation-adjusted updating vector.

INTEGER. The leading dimension of the output array $s ; l d s \geq \max (1, k)$.
d

REAL for slaed9
DOUBLE PRECISION for dlaed9

Array, dimension ( $n$ ). Elements in $d(i)$ are not referenced for $1 \leq i<$ kstart or kstop < i $\leq n$.

REAL for slaed9
DOUBLE PRECISION for dlaed9.
Array, dimension (Ids, *) .
The second dimension of $s$ must be at least max $(1, k)$. Will contain the eigenvectors of the repaired matrix which will be stored for subsequent $z$ vector calculation and multiplied by the previously accumulated eigenvectors to update the system.
dlamda

W
info

On exit, the value is modified to make sure all dlamda(i) - dlamda( $j$ ) can be computed with high relative accuracy, barring overflow and underflow.

Destroyed on exit.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value. If info $=1$, the eigenvalue did not converge.

## ?laeda

Used by ?stedc. Computes the $Z$ vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense.

## Syntax

```
call slaeda(n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol, givnum, q, qptr, z,
ztemp, info)
call dlaeda(n, tlvls, curlvl, curpbm, prmptr, perm, givptr, givcol, givnum, q, qptr, z,
ztemp, info)
```


## Include Files

- mkl.fi


## Description

The routine ?laeda computes the $Z$ vector corresponding to the merge step in the curlvl-th step of the merge process with tlv/s steps for the curpbm-th problem.

## Input Parameters

```
n INTEGER. The dimension of the symmetric tridiagonal matrix (n\geq0).
tlvls
curlvl
INTEGER. The dimension of the symmetric tridiagonal matrix (\(n \geq 0\)).
INTEGER. The total number of merging levels in the overall divide and conquer tree.
INTEGER. The current level in the overall merge routine, \(0 \leq c u r l v l \leq\) tlvls.
```

```
curpbm
prmptr, perm, givptr
givCol
givnum
q
qptr
ztemp
```


## Output Parameters

z
info

INTEGER. The current problem in the current level in the overall merge routine (counting from upper left to lower right).

INTEGER. Arrays, dimension $\left(n \log _{2} n\right)$ each.
The array prmptr(*) contains a list of pointers which indicate where in perm a level's permutation is stored. prmptr(i+1) - prmptr(i) indicates the size of the permutation and also the size of the full, non-deflated problem.

The array perm $\left(^{*}\right.$ ) contains the permutations (from deflation and sorting) to be applied to each eigenblock.

The array givptr(*) contains a list of pointers which indicate where in givcol a level's Givens rotations are stored. givptr(i+1) - givptr(i) indicates the number of Givens rotations.

INTEGER. Array, dimension (2, $n \log _{2} n$ ).
Each pair of numbers indicates a pair of columns to take place in a Givens rotation.

REAL for slaeda
DOUBLE PRECISION for dlaeda.
Array, dimension (2, $n \log _{2} n$ ).
Each number indicates the $S$ value to be used in the corresponding Givens rotation.

REAL for slaeda
DOUBLE PRECISION for dlaeda.
Array, dimension ( $n^{2}$ ).
Contains the square eigenblocks from previous levels, the starting positions for blocks are given by qptr.

INTEGER. Array, dimension ( $n+2$ ). Contains a list of pointers which indicate where in $q$ an eigenblock is stored. sqrt( qptr(i+1) - qptr(i)) indicates the size of the block.

REAL for slaeda
DOUBLE PRECISION for dlaeda.
Workspace array, dimension (n).

REAL for slaeda
DOUBLE PRECISION for dlaeda.
Array, dimension ( $n$ ). Contains the updating vector (the last row of the first sub-eigenvector matrix and the first row of the second sub-eigenvector matrix).

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.

## ?laein

Computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.

## Syntax

```
call slaein(rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb, work, eps3, smlnum,
bignum, info)
call dlaein(rightv, noinit, n, h, ldh, wr, wi, vr, vi, b, ldb, work, eps3, smlnum,
bignum, info)
call claein(rightv, noinit, n, h, ldh, w, v, b, ldb, rwork, eps3, smlnum, info)
call zlaein(rightv, noinit, n, h, ldh, w, v, b, ldb, rwork, eps3, smlnum, info)
```


## Include Files

- mkl.fi


## Description

The routine ? laein uses inverse iteration to find a right or left eigenvector corresponding to the eigenvalue ( $w r, w i$ ) of a real upper Hessenberg matrix $H$ (for real flavors slaein/dlaein) or to the eigenvalue $w$ of a complex upper Hessenberg matrix $H$ (for complex flavors claein/zlaein).

## Input Parameters

```
rightv
noinit
n
h
ldh
wr, wi
LOGICAL.
 If rightv = .TRUE., compute right eigenvector;
 if rightv = .FALSE., compute left eigenvector.
 LOGICAL.
 If noinit = .TRUE., no initial vector is supplied in (vr,vi) or in v (for
 complex flavors);
 if noinit = .FALSE., initial vector is supplied in (vr,vi) or in v (for
 complex flavors).
 INTEGER. The order of the matrix H(n\geq0).
 REAL for slaein
 DOUBLE PRECISION for dlaein
 COMPLEX for claein
 DOUBLE COMPLEX for zlaein.
 Array h(Idh, *).
 The second dimension of h must be at least max (1, n). Contains the upper
 Hessenberg matrix H.
 INTEGER. The leading dimension of the array h; ldh\geq max (1, n).
 REAL for slaein
 DOUBLE PRECISION for dlaein.
```

w

$$
-1
$$

work
rwork

The real and imaginary parts of the eigenvalue of $H$ whose corresponding right or left eigenvector is to be computed (for real flavors of the routine).

COMPLEX for claein
DOUBLE COMPLEX for zlaein.
The eigenvalue of $H$ whose corresponding right or left eigenvector is to be computed (for complex flavors of the routine).

REAL for slaein
DOUBLE PRECISION for dlaein.
Arrays, dimension (n) each. Used for real flavors only. On entry, if noinit $=$.FALSE. and $w i=0.0$, vr must contain a real starting vector for inverse iteration using the real eigenvalue wr;
if noinit $=$.FALSE. and wif $0.0, v r$ and vi must contain the real and imaginary parts of a complex starting vector for inverse iteration using the complex eigenvalue (wr,wi);otherwise vr and vi need not be set.

COMPLEX for claein
DOUBLE COMPLEX for zlaein.
Array, dimension (n). Used for complex flavors only. On entry, if noinit $=$.FALSE., $v$ must contain a starting vector for inverse iteration; otherwise $v$ need not be set.

REAL for slaein
DOUBLE PRECISION for dlaein
COMPLEX for claein
DOUBLE COMPLEX for zlaein.
Workspace array $b(/ d b, *)$. The second dimension of $b$ must be at least $\max (1, n)$.

INTEGER. The leading dimension of the array $b$;
$1 d b \geq n+1$ for real flavors;
$I d b \geq \max (1, n)$ for complex flavors.
REAL for slaein
DOUBLE PRECISION for dlaein.
Workspace array, dimension (n).
Used for real flavors only.
REAL for claein
DOUBLE PRECISION for zlaein.
Workspace array, dimension ( $n$ ).
Used for complex flavors only.
REAL for slaein/claein
DOUBLE PRECISION for dlaein/zlaein.
eps3 is a small machine-dependent value which is used to perturb close eigenvalues, and to replace zero pivots.
sminum is a machine-dependent value close to underflow threshold. A suggested value for smlnum is slamch('s') * ( $n /$ slamch('p') for slaein/claein or dlamch('s') * (n/dlamch('p') for dlaein/zlaein. See lamch.

REAL for slaein
DOUBLE PRECISION for dlaein.
bignum is a machine-dependent value close to overflow threshold. Used for real flavors only. A suggested value for bignum is $1 /$ slamch('s') for slaein/claein or 1 / dlamch('s') for dlaein/zlaein.

## Output Parameters

vr, vi

V
info

On exit, if wi $=0.0$ (real eigenvalue), vr contains the computed real eigenvector; if wif 0.0 (complex eigenvalue), vr and $v i$ contain the real and imaginary parts of the computed complex eigenvector. The eigenvector is normalized so that the component of largest magnitude has magnitude 1 ; here the magnitude of a complex number $(x, y)$ is taken to be $|x|+|y|$.
$v i$ is not referenced if $w i=0.0$.
On exit, $v$ contains the computed eigenvector, normalized so that the component of largest magnitude has magnitude 1 ; here the magnitude of a complex number $(x, y)$ is taken to be $|x|+|y|$.

INTEGER.
If info $=0$, the execution is successful.
If info $=1$, inverse iteration did not converge. For real flavors, $v r$ is set to the last iterate, and so is $v i$, if wi$=0.0$. For complex flavors, $v$ is set to the last iterate.

## ?laev2

Computes the eigenvalues and eigenvectors of a 2-
by-2 symmetric/Hermitian matrix.

## Syntax

```
call slaev2(a, b, c, rt1, rt2, cs1, sn1)
call dlaev2(a, b, c, rt1, rt2, cs1, sn1)
call claev2(a, b, c, rt1, rt2, cs1, sn1)
call zlaev2(a, b, c, rt1, rt2, cs1, sn1)
```


## Include Files

- mkl.fi


## Description

The routine performs the eigendecomposition of a 2 -by-2 symmetric matrix

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \text { (for slaev2/dlaev2) or Hermitian matrix }\left[\begin{array}{cc}
a & b \\
\operatorname{conjg}(b) & c
\end{array}\right]
$$

(for claev2/zlaev2).
On return, rt1 is the eigenvalue of larger absolute value, rt2 of smaller absolute value, and (cs1, sn1) is the unit right eigenvector for rt1, giving the decomposition

$$
\left[\begin{array}{cc}
c s 1 & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{cs1}
\end{array}\right] \cdot\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \cdot\left[\begin{array}{cc}
c s 1 & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{cs1}
\end{array}\right]=\left[\begin{array}{cc}
r \pm 1 & 0 \\
0 & r \pm 2
\end{array}\right]
$$

(for slaev2/dlaev2),
or

$$
\left[\begin{array}{cc}
c s 1 & \operatorname{conjg}(s n 1) \\
-s n 1 & c s 1
\end{array}\right] \cdot\left[\begin{array}{cc}
a & b \\
\operatorname{conjg}(b) & c
\end{array}\right] \cdot\left[\begin{array}{cc}
\operatorname{cs1} & -\operatorname{conjg}(\operatorname{sn} 1) \\
\operatorname{sn1} & \operatorname{cs1}
\end{array}\right]=\left[\begin{array}{cc}
r t 1 & 0 \\
0 & r t 2
\end{array}\right]
$$

(for claev2/zlaev2).
Input Parameters
$a, b, c$
REAL for slaev2
DOUBLE PRECISION for dlaev2
COMPLEX for claev2
DOUBLE COMPLEX for zlaev2.
Elements of the input matrix.

## Output Parameters

rt1

cs
sn
REAL for slaev2/claev2
DOUBLE PRECISION for dlaev2/zlaev2.
Eigenvalues of larger and smaller absolute value, respectively.
REAL for slaev2/claev2
DOUBLE PRECISION for dlaev2/zlaev2.
REAL for slaev2
DOUBLE PRECISION for dlaev2
COMPLEX for claev2
DOUBLE COMPLEX for zlaev2.
The vector (cs1,sn1) is the unit right eigenvector for rt1.

## Application Notes

rt1 is accurate to a few ulps barring over/underflow. rt2 may be inaccurate if there is massive cancellation in the determinant $a^{\star} c-b^{\star} b$; higher precision or correctly rounded or correctly truncated arithmetic would be needed to compute rt2 accurately in all cases. cs1 and sn1 are accurate to a few ulps barring over/underflow. Overflow is possible only if $r t 1$ is within a factor of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds underflow_threshold / macheps.

## ?laexc

Swaps adjacent diagonal blocks of a real upper quasitriangular matrix in Schur canonical form, by an orthogonal similarity transformation.

## Syntax

```
call slaexc(wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)
call dlaexc(wantq, n, t, ldt, q, ldq, j1, n1, n2, work, info)
```


## Include Files

- mkl.fi


## Description

The routine swaps adjacent diagonal blocks $T_{11}$ and $T_{22}$ of order 1 or 2 in an upper quasi-triangular matrix $T$ by an orthogonal similarity transformation.
$T$ must be in Schur canonical form, that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements of opposite sign.

## Input Parameters

wantq
n
$t, q$
$1 d t$
$1 d q$

LOGICAL.
If wantq $=$.TRUE., accumulate the transformation in the matrix $Q$;
If wantq $=$.FALSE., do not accumulate the transformation.
INTEGER. The order of the matrix $T(n \geq 0)$.
REAL for slaexc
DOUBLE PRECISION for dlaexc

## Arrays:

$t$ (ldt,*) contains on entry the upper quasi-triangular matrix $T$, in Schur canonical form.

The second dimension of $t$ must be at least max $(1, n)$.
$q(l d q, *)$ contains on entry, if want $q=$. TRUE., the orthogonal matrix $Q$. If want $q=$.FALSE., $q$ is not referenced. The second dimension of $q$ must be at least $\max (1, n)$.

INTEGER. The leading dimension of $t$; at least max $(1, n)$.
INTEGER. The leading dimension of $q$;
If want $q=$.FALSE., then $1 d q \geq 1$.

```
 If wantq = .TRUE., then ldq\geq max (1,n).
 INTEGER. The index of the first row of the first block T11 .
 INTEGER. The order of the first block T11
(n1 = 0, 1, or 2).
INTEGER. The order of the second block T}\mp@subsup{T}{22}{
(n2 = 0, 1, or 2).
REAL for slaexc;
DOUBLE PRECISION for dlaexc.
Workspace array, DIMENSION (n).
```


## Output Parameters

t
On exit, the updated matrix $T$, again in Schur canonical form.
On exit, if wantq $=$. TRUE., the updated matrix $Q$.
INTEGER.
If info $=0$, the execution is successful.
If info $=1$, the transformed matrix $T$ would be too far from Schur form; the blocks are not swapped and $T$ and $Q$ are unchanged.

## ?lag2

Computes the eigenvalues of a 2-by-2 generalized
eigenvalue problem, with scaling as necessary to
avoid over-/underflow.
Syntax

```
call slag2(a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)
call dlag2(a, lda, b, ldb, safmin, scale1, scale2, wr1, wr2, wi)
```

Include Files

- mkl.fi


## Description

The routine computes the eigenvalues of a $2 \times 2$ generalized eigenvalue problem $A-w^{*} B$, with scaling as necessary to avoid over-/underflow. The scaling factor, $s$, results in a modified eigenvalue equation
$s^{\star} A-w^{\star} B$,
where $s$ is a non-negative scaling factor chosen so that $w, w^{*} B$, and $s^{*} A$ do not overflow and, if possible, do not underflow, either.

Input Parameters
$a, b$
REAL for slag2

DOUBLE PRECISION for dlag2

## Arrays:

$a(l d a, 2)$ contains, on entry, the $2 \times 2$ matrix $A$. It is assumed that its 1norm is less than $1 /$ safmin. Entries less than sqrt (safmin) *norm (A) are subject to being treated as zero.
$b(/ d b, 2)$ contains, on entry, the $2 \times 2$ upper triangular matrix $B$. It is assumed that the one-norm of $B$ is less than $1 /$ safmin. The diagonals should be at least sqrt(safmin) times the largest element of $B$ (in absolute value); if a diagonal is smaller than that, then +/- sqrt (safmin) will be used instead of that diagonal.

INTEGER. The leading dimension of $a ; 1 d a \geq 2$.
INTEGER. The leading dimension of $b ; 1 d b \geq 2$.
REAL for slag2;
DOUBLE PRECISION for dlag2.
The smallest positive number such that $1 /$ safmin does not overflow. (This should always be ?lamch('S') - it is an argument in order to avoid having to call ?lamch frequently.)

## Output Parameters


wr1

REAL for slag2;
DOUBLE PRECISION for dlag2.
A scaling factor used to avoid over-/underflow in the eigenvalue equation which defines the first eigenvalue. If the eigenvalues are complex, then the eigenvalues are (wrl +/- wii)/scalel (which may lie outside the exponent range of the machine), scale1=scale2, and scale1 will always be positive.

If the eigenvalues are real, then the first (real) eigenvalue is wrl/scale1, but this may overflow or underflow, and in fact, scale1 may be zero or less than the underflow threshhold if the exact eigenvalue is sufficiently large.

REAL for slag2;
DOUBLE PRECISION for dlag2.
A scaling factor used to avoid over-/underflow in the eigenvalue equation which defines the second eigenvalue. If the eigenvalues are complex, then scale2=scale1. If the eigenvalues are real, then the second (real) eigenvalue is wr2/scale2, but this may overflow or underflow, and in fact, scale2 may be zero or less than the underflow threshold if the exact eigenvalue is sufficiently large.

REAL for slag2;
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then wr1 is scale1 times the eigenvalue closest to the $(2,2)$ element of $A *_{\operatorname{inv}}(B)$.

If the eigenvalue is complex, then wrl=wr2 is scale1 times the real part of the eigenvalues.
wr2
wi

REAL for slag2;
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then $w r 2$ is scale 2 times the other eigenvalue. If the eigenvalue is complex, then wrl=wr2 is scale1 times the real part of the eigenvalues.

REAL for slag2;
DOUBLE PRECISION for dlag2.
If the eigenvalue is real, then wi is zero. If the eigenvalue is complex, then wi is scale1 times the imaginary part of the eigenvalues. wi will always be non-negative.

## ?lags2

Computes 2-by-2 orthogonal matrices $U, V$, and $Q$, and applies them to matrices $A$ and $B$ such that the rows of the transformed $A$ and $B$ are parallel.

## Syntax

```
call slags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)
call dlags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)
call clags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)
call zlags2(upper, a1, a2, a3, b1, b2, b3, csu, snu, csv, snv, csq, snq)
```

Include Files

- mkl.fi


## Description

For real flavors, the routine computes 2-by-2 orthogonal matrices $U, V$ and $Q$, such that if upper $=$. TRUE., then

$$
U^{T} * A^{*} Q=U^{T} *\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & 0 \\
\mathrm{x} & \mathrm{x}
\end{array}\right]
$$

and

$$
V^{T} * B^{*} Q=V^{T} *\left[\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & 0 \\
\mathrm{x} & \mathrm{x}
\end{array}\right]
$$

or if upper = .FALSE., then

$$
U^{T} * A^{*} Q=U^{T} *\left[\begin{array}{cc}
A_{1} & 0 \\
A_{2} & A_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & \mathrm{x} \\
0 & \mathrm{x}
\end{array}\right]
$$

and

$$
V^{T} * B^{*} Q=V^{T} *\left[\begin{array}{cc}
B_{1} & 0 \\
B_{2} & B_{2}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & \mathrm{x} \\
0 & \mathrm{x}
\end{array}\right]
$$

The rows of the transformed $A$ and $B$ are parallel, where

$$
U=\left[\begin{array}{cc}
\operatorname{csu} u & \operatorname{sn} u \\
-\operatorname{sn} u & \operatorname{csu} u
\end{array}\right], V=\left[\begin{array}{cc}
\operatorname{csv} & \operatorname{snv} \\
-\operatorname{sn} v & \operatorname{csv}
\end{array}\right], Q=\left[\begin{array}{cc}
\operatorname{cs} q & \operatorname{sn} q \\
-\operatorname{sn} q & \operatorname{cs} q
\end{array}\right]
$$

Here $Z^{T}$ denotes the transpose of $Z$.
For complex flavors, the routine computes 2-by-2 unitary matrices $U, V$ and $Q$, such that if upper $=$. TRUE., then

$$
U^{H} * A^{*} Q=U^{H} *\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & 0 \\
\mathrm{x} & \mathrm{x}
\end{array}\right]
$$

and

$$
V^{H} * B^{*} Q=V^{H} *\left[\begin{array}{cc}
B_{1} & B_{2} \\
0 & B_{2}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & 0 \\
\mathrm{x} & \mathrm{x}
\end{array}\right]
$$

or if upper $=$.FALSE., then

$$
U^{H *} A^{*} Q=U^{H *}\left[\begin{array}{cc}
A_{1} & 0 \\
A_{2} & A_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & \mathrm{x} \\
0 & \mathrm{x}
\end{array}\right]
$$

and

$$
V^{H} * B^{*} Q=V^{H} *\left[\begin{array}{cc}
B_{1} & 0 \\
B_{2} & B_{3}
\end{array}\right] * Q=\left[\begin{array}{cc}
\mathrm{x} & \mathrm{x} \\
0 & \mathrm{x}
\end{array}\right]
$$

The rows of the transformed $A$ and $B$ are parallel, where

$$
U=\left[\begin{array}{cc}
c s u & s n u \\
H & \\
-\operatorname{snu} & c s u
\end{array}\right], V=\left[\begin{array}{cc}
c s v & s n v \\
-\operatorname{snv} & c s v
\end{array}\right], Q=\left[\begin{array}{cc}
c s q & \operatorname{snq} \\
-\operatorname{snq} H & c s q
\end{array}\right]
$$

## Input Parameters

upper
a1, a3
a2
b1, b3
b2

LOGICAL.
If upper $=$.TRUE., the input matrices $A$ and $B$ are upper triangular; If upper $=$.FALSE., the input matrices $A$ and $B$ are lower triangular.

REAL for slags2 and clags2
DOUBLE PRECISION for dlags2 and zlags2
REAL for slags2
DOUBLE PRECISION for dlags2
COMPLEX for clags2
COMPLEX*16 for zlags2
On entry, a1, a2 and a3 are elements of the input 2-by-2 upper (lower) triangular matrix $A$.

REAL for slags2 and clags2
DOUBLE PRECISION for dlags2 and zlags2
REAL for slags2
DOUBLE PRECISION for dlags2
COMPLEX for clags2
COMPLEX*16 for zlags2
On entry, b1, b2 and b3 are elements of the input 2-by-2 upper (lower) triangular matrix $B$.

## Output Parameters

REAL for slags2 and clags2
DOUBLE PRECISION for dlags2 and zlags2
Element of the desired orthogonal matrix $U$.
REAL for slags2
DOUBLE PRECISION for dlags2
Element of the desired orthogonal matrix $U$.

```
COMPLEX for clags2
COMPLEX*16 for zlags2
REAL for slags2 and clags2
DOUBLE PRECISION for dlags2 and zlags2
Element of the desired orthogonal matrix v.
REAL for slags2
DOUBLE PRECISION for dlags2
COMPLEX for clags2
COMPLEX*16 for zlags2
Element of the desired orthogonal matrix V.
REAL for slags2 and clags2
DOUBLE PRECISION for dlags2 and zlags2
Element of the desired orthogonal matrix Q.
REAL for slags2
DOUBLE PRECISION for dlags2
Element of the desired orthogonal matrix Q.
COMPLEX for clags2
COMPLEX*16 for zlags2
```


## ?lagtf

```
Computes an LU factorization of a matrix \(T-\lambda^{*} I\), where
\(T\) is a general tridiagonal matrix, and \(\lambda\) is a scalar, using partial pivoting with row interchanges.
```


## Syntax

```
call slagtf(n, a, lambda, b, c, tol, d, in, info)
```

call slagtf( n, a, lambda, b, c, tol, d, in, info )
call dlagtf( n, a, lambda, b, c, tol, d, in, info )

```
call dlagtf(n, a, lambda, b, c, tol, d, in, info)
```


## Include Files

- mkl.fi


## Description

The routine factorizes the matrix ( $T$ - lambda夫I), where $T$ is an $n$-by- $n$ tridiagonal matrix and lambda is a scalar, as

```
T - lambda* I = P* L* U,
```

where $P$ is a permutation matrix, $L$ is a unit lower tridiagonal matrix with at most one non-zero sub-diagonal elements per column and $U$ is an upper triangular matrix with at most two non-zero super-diagonal elements per column. The factorization is obtained by Gaussian elimination with partial pivoting and implicit row scaling. The parameter lambda is included in the routine so that ?lagtf may be used, in conjunction with ?lagts, to obtain eigenvectors of $T$ by inverse iteration.

## Input Parameters

$n$

INTEGER. The order of the matrix $T(n \geq 0)$.
REAL for slagtf
DOUBLE PRECISION for dlagtf
Arrays, dimension $a(n), b(n-1), c(n-1)$ :
On entry, $a(*)$ must contain the diagonal elements of the matrix $T$.
On entry, $b\left({ }^{*}\right)$ must contain the ( $n-1$ ) super-diagonal elements of $T$.
On entry, $c(*)$ must contain the ( $n-1$ ) sub-diagonal elements of $T$.
REAL for slagtf
DOUBLE PRECISION for dlagtf
On entry, a relative tolerance used to indicate whether or not the matrix ( $T$ - lambda*I) is nearly singular. tol should normally be chose as approximately the largest relative error in the elements of $T$. For example, if the elements of $T$ are correct to about 4 significant figures, then $t o l$ should be set to about $5 * 10^{-4}$. If tol is supplied as less than eps, where eps is the relative machine precision, then the value eps is used in place of tol.

## Output Parameters

On exit, $a$ is overwritten by the $n$ diagonal elements of the upper triangular matrix $U$ of the factorization of $T$.

On exit, $b$ is overwritten by the $n-1$ super-diagonal elements of the matrix $U$ of the factorization of $T$.

On exit, $c$ is overwritten by the $n-1$ sub-diagonal elements of the matrix $L$ of the factorization of $T$.

REAL for slagtf
DOUBLE PRECISION for dlagtf
Array, dimension ( $n-2$ ).
On exit, $d$ is overwritten by the $n-2$ second super-diagonal elements of the matrix $U$ of the factorization of $T$.

INTEGER.

Array, dimension ( $n$ ).
On exit, in contains details of the permutation matrix $p$. If an interchange occurred at the $k$-th step of the elimination, then in $(k)=1$, otherwise $i n(k)=0$. The element $i n(n)$ returns the smallest positive integer $j$ such that

```
abs(u(j,j)) \leq norm((T - lambda*I)(j))*tol,
```

where norm $(A(j))$ denotes the sum of the absolute values of the $j$-th row of the matrix $A$.

If no such $j$ exists then $i n(n)$ is returned as zero. If $i n(n)$ is returned as positive, then a diagonal element of $U$ is small, indicating that ( $T$ lambda*I) is singular or nearly singular.
info
INTEGER.
If info $=0$, the execution is successful.
If info $=-k$, the $k$-th parameter had an illegal value.

## ?lagtm

Performs a matrix-matrix product of the form $C=$ alpha* $A * B+$ beta $* C$, where $A$ is a tridiagonal matrix, $B$ and $C$ are rectangular matrices, and alpha and beta are scalars, which may be 0,1 , or -1 .

## Syntax

```
call slagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
call dlagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
call clagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
call zlagtm(trans, n, nrhs, alpha, dl, d, du, x, ldx, beta, b, ldb)
```

Include Files

- mkl.fi


## Description

The routine performs a matrix-vector product of the form:

```
B := alpha*A*X + beta*B
```

where $A$ is a tridiagonal matrix of order $n, B$ and $X$ are $n$-by-nrhs matrices, and alpha and beta are real scalars, each of which may be $0 ., 1$., or -1 .

## Input Parameters

```
trans
n
nrhs
alpha, beta
```

Indicates the form of the equations:
If trans $=$ 'N', then $B:=$ alpha* $A \star X+$ beta* $B$ (no transpose);
If trans $=$ 'T', then $B:=$ alpha* $A^{T} \star X+$ beta* $B$ (transpose);
If trans $=$ 'C', then $B:=a l p h a^{\star} A^{H \star} X+b e t a \star B$ (conjugate transpose)
INTEGER. The order of the matrix $A(n \geq 0)$.
INTEGER. The number of right-hand sides, i.e., the number of columns in $X$ and $B$ (nrhs $\geq 0)$.

REAL for slagtm/clagtm
DOUBLE PRECISION for dlagtm/zlagtm

Specify the scalars alpha and beta respectively. alpha must be $0 ., 1 .$, or -1 .; otherwise, it is assumed to be 0 . beta must be $0 ., 1$., or -1 .; otherwise, it is assumed to be 1 .
$d l, d, d u$
$x, b$
$1 d x$
$1 d b$

## Output Parameters

$b$

REAL for slagtm
DOUBLE PRECISION for dlagtm
COMPLEX for clagtm
DOUBLE COMPLEX for zlagtm.
Arrays: $d l(n-1), d(n), d u(n-1)$.
The array $d l$ contains the $(n-1)$ sub-diagonal elements of $T$.
The array $d$ contains the $n$ diagonal elements of $T$.
The array $d u$ contains the $(n-1)$ super-diagonal elements of $T$.
REAL for slagtm
DOUBLE PRECISION for dlagtm
COMPLEX for clagtm
DOUBLE COMPLEX for zlagtm.
Arrays:
$x(I d x, *)$ contains the $n$-by-nrhs matrix $X$. The second dimension of $x$ must be at least max (1, nrhs).
$b(/ d b, *)$ contains the $n$-by-nrhs matrix $B$. The second dimension of $b$ must be at least max (1, nrhs).

INTEGER. The leading dimension of the array $x ; \operatorname{ldx} \geq \max (1, n)$.
INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.

Overwritten by the matrix expression $B:=a l p h a \star A \star X+b e t a \star B$

## ?lagts

Solves the system of equations ( $T$ - lambda*I) ${ }^{*} x=y$ or $\left(T \text { - lambda }{ }^{*} I\right)^{T *} x=y$, where $T$ is a general
tridiagonal matrix and lambda is a scalar, using the LU
factorization computed by ?lagtf.

## Syntax

```
call slagts(job, n, a, b, c, d, in, y, tol, info)
call dlagts(job, n, a, b, c, d, in, y, tol, info)
```


## Include Files

- mkl.fi

Description

The routine may be used to solve for $x$ one of the systems of equations:

```
(T - lambda*I)*x = y or (T - lambda*I) }\mp@subsup{}{}{T}\mp@subsup{*}{X}{}=y
```

where $T$ is an $n$-by- $n$ tridiagonal matrix, following the factorization of $(T-\operatorname{lambda} I)$ as

```
T - lambda* I = P* L* U,
```

computed by the routine ?lagtf.
The choice of equation to be solved is controlled by the argument job, and in each case there is an option to perturb zero or very small diagonal elements of $U$, this option being intended for use in applications such as inverse iteration.

## Input Parameters

job
$n$
$a, b, c, d$
in

Y

INTEGER. Specifies the job to be performed by ?lagts as follows:
= 1: The equations $(T-\operatorname{lambda} A) x=y$ are to be solved, but diagonal elements of $U$ are not to be perturbed.
$=-1$ : The equations $(T-\operatorname{lambda*} I) x=y$ are to be solved and, if overflow would otherwise occur, the diagonal elements of $U$ are to be perturbed. See argument tol below.
=2: The equations $\left(T-\operatorname{lambda}{ }^{\star} I\right)^{T} X=y$ are to be solved, but diagonal elements of $U$ are not to be perturbed.
$=-2$ : The equations $(T-\operatorname{lambda\star } I)^{T_{X}}=y$ are to be solved and, if overflow would otherwise occur, the diagonal elements of $U$ are to be perturbed. See argument tol below.

INTEGER. The order of the matrix $T(n \geq 0)$.
REAL for slagts
DOUBLE PRECISION for dlagts
Arrays, dimension $a(n), b(n-1), c(n-1), d(n-2)$ :
On entry, $a(*)$ must contain the diagonal elements of $U$ as returned from ?lagtf.
On entry, $b$ (*) must contain the first super-diagonal elements of $U$ as returned from ?lagtf.
On entry, $c(*)$ must contain the sub-diagonal elements of $L$ as returned from ?lagtf.
On entry, $d$ (*) must contain the second super-diagonal elements of $U$ as returned from ?lagtf.

INTEGER.
Array, dimension ( $n$ ).
On entry, in (*) must contain details of the matrix $p$ as returned from ?lagtf.

REAL for slagts
DOUBLE PRECISION for dlagts
Array, dimension ( $n$ ). On entry, the right hand side vector $y$.

REAL for slagtf
DOUBLE PRECISION for dlagtf.
On entry, with job < 0, tol should be the minimum perturbation to be made to very small diagonal elements of $U$. tol should normally be chosen as about eps*norm ( $U$ ), where eps is the relative machine precision, but if tol is supplied as non-positive, then it is reset to eps*max $(a b s(u(i, j)))$. If job $>0$ then tol is not referenced.

## Output Parameters

```
y
tol
info
```

On exit, $y$ is overwritten by the solution vector $x$.
On exit, tol is changed as described in Input Parameters section above, only if $t o l$ is non-positive on entry. Otherwise tol is unchanged.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value. If info $=i>0$, overflow would occur when computing the ith element of the solution vector $x$. This can only occur when job is supplied as positive and either means that a diagonal element of $U$ is very small, or that the elements of the righthand side vector $y$ are very large.

## ?lagv2

Computes the Generalized Schur factorization of a real
2-by-2 matrix pencil $(A, B)$ where $B$ is upper triangular.

## Syntax

```
call slagv2(a, lda, b, ldb, alphar, alphai, beta, csl, snl, csr, snr)
call dlagv2(a, lda, b, ldb, alphar, alphai, beta, csl, snl, csr, snr)
```

Include Files

- mkl.fi


## Description

The routine computes the Generalized Schur factorization of a real 2-by-2 matrix pencil $(A, B)$ where $B$ is upper triangular. The routine computes orthogonal (rotation) matrices given by csl, snl and csr, snr such that:

1) if the pencil $(A, B)$ has two real eigenvalues (include $0 / 0$ or $1 / 0$ types), then

$$
\left[\begin{array}{cc}
a_{11} & a_{11} \\
0 & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{cs} 1 & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{cs} 1
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{cs} r & -\operatorname{sn} r \\
\operatorname{sn} r & \operatorname{cs} r
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
b_{11} & b_{11} \\
0 & b_{22}
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{cs1} & \operatorname{sn} 1 \\
-\sin 1 & \operatorname{cs} 1
\end{array}\right]\left[\begin{array}{cc}
b_{11} & b_{12} \\
0 & b_{22}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{cs} r & -\operatorname{sn} r \\
\operatorname{sn} r & \csc r
\end{array}\right]
$$

2) if the pencil $(A, B)$ has a pair of complex conjugate eigenvalues, then

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{11} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{cs1} & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{cs1}
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{csr} r & -\operatorname{sn} r \\
\operatorname{snr} & \operatorname{csr}
\end{array}\right]} \\
& {\left[\begin{array}{cc}
b_{11} & 0 \\
0 & b_{22}
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{cs} 1 & \operatorname{sn} 1 \\
-\operatorname{sn} 1 & \operatorname{cs} 1
\end{array}\right]\left[\begin{array}{cc}
b_{11} & b_{12} \\
0 & b_{22}
\end{array}\right]\left[\begin{array}{cc}
\operatorname{cs} r & -\operatorname{sn} r \\
\operatorname{sn} r & \operatorname{csr} r
\end{array}\right]}
\end{aligned}
$$

where $b_{11} \geq b_{22}>0$.
Input Parameters
$a, b$
lda
ldb

## Output Parameters

```
a
b
alphar, alphai, beta
```

csl, snl

REAL for slagv2
DOUBLE PRECISION for dlagv2
Arrays:
a(Ida,2) contains the 2-by-2 matrix $A$;
$b(I d b, 2)$ contains the upper triangular 2-by-2 matrix $B$.
INTEGER. The leading dimension of the array $a$;
$I d a \geq 2$.
INTEGER. The leading dimension of the array $b$;
$1 d b \geq 2$.

On exit, $a$ is overwritten by the " $A$-part" of the generalized Schur form.
On exit, $b$ is overwritten by the " $B$-part" of the generalized Schur form.
REAL for slagv2
DOUBLE PRECISION for dlagv2.
Arrays, dimension (2) each.
(alphar(k) + i*alphai(k))/beta(k) are the eigenvalues of the pencil $(A, B), k=1,2$ and $i=\operatorname{sqrt}(-1)$.

Note that beta(k) may be zero.
REAL for slagv2
DOUBLE PRECISION for dlagv2

The cosine and sine of the left rotation matrix, respectively.

```
csr, snr
REAL for slagv2
DOUBLE PRECISION for dlagv2
The cosine and sine of the right rotation matrix, respectively.
```


## ?lahqr <br> Computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/ single-shift QR algorithm.

## Syntax

```
call slahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, info)
call dlahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, info)
call clahqr(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info)
call zlahqr(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info)
```

Include Files

- mkl.fi


## Description

The routine is an auxiliary routine called by ?hseqr to update the eigenvalues and Schur decomposition already computed by ?hseqr, by dealing with the Hessenberg submatrix in rows and columns ilo to ihi.

## Input Parameters

wantt
wantz
$n$
ilo, ihi
h, z

LOGICAL.
If wantt $=$.TRUE., the full Schur form $T$ is required;
If wantt $=$.FALSE., eigenvalues only are required.
LOGICAL.
If wantz = .TRUE., the matrix of Schur vectors $Z$ is required;
If wantz = .FALSE., Schur vectors are not required.
INTEGER. The order of the matrix $H(n \geq 0)$.
INTEGER.
It is assumed that $h$ is already upper quasi-triangular in rows and columns $i h i+1: n$, and that $h(i l o, i l o-1)=0$ (unless $i l o=1$ ). The routine ?lahqr works primarily with the Hessenberg submatrix in rows and columns ilo to ihi, but applies transformations to all of $h$ if wantt
= . TRUE. .

## Constraints:

$1 \leq i l o \leq \max (1, i h i) ; i h i \leq n$.
REAL for slahqr

DOUBLE PRECISION for dlahqr
COMPLEX for clahqr
DOUBLE COMPLEX for zlahqr.

## Arrays:

$h(I d h, *)$ contains the upper Hessenberg matrix $h$.
The second dimension of $h$ must be at least max $(1, n)$.
$z(I d z, *)$
If wantz = .TRUE., then, on entry, $z$ must contain the current matrix $z$ of transformations accumulated by ?hseqr. The second dimension of $z$ must be at least max $(1, n)$

If want $z=$.FALSE., then $z$ is not referenced..
INTEGER. The leading dimension of $h$; at least $\max (1, n)$.
INTEGER. The leading dimension of $z$; at least max $(1, n)$.
INTEGER. Specify the rows of $z$ to which transformations must be applied if wantz = .TRUE..
$1 \leq i l o z \leq i l o ; i h i \leq i h i z \leq n$.

## Output Parameters

h
On exit, if info $=0$ and wantt $=$. TRUE., then,

- for slahqr/dlahqr, $h$ is upper quasi-triangular in rows and columns ilo:ihi with any 2-by-2 diagonal blocks in standard form.
- for clahqr/zlahqr, $h$ is upper triangular in rows and columns ilo:ihi.

If info $=0$ and wantt $=$.FALSE., the contents of $h$ are unspecified on exit. If info is positive, see description of info for the output state of $h$.

REAL for slahqr
DOUBLE PRECISION for dlahqr
Arrays, DIMENSION at least max $(1, n)$ each. Used with real flavors only. The real and imaginary parts, respectively, of the computed eigenvalues ilo to ihi are stored in the corresponding elements of $w r$ and $w i$. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of wr and wi, say the i-th and (i+1)-th, with wi(i)> 0 and wi $(i+1)<0$.

If wantt = .TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in $h$, with $w r(i)=h(i, i)$, and, if $h(i: i+1, i: i+1)$ is a 2-by-2 diagonal block, wi(i) = sqrt(h(i $+1, i) * h(i, i+1))$ and wi(i+1) = -wi(i).

COMPLEX for clahqr
DOUBLE COMPLEX for zlahqr.
Array, DIMENSION at least max $(1, n)$. Used with complex flavors only. The computed eigenvalues ilo to ihi are stored in the corresponding elements of $w$.

If wantt $=$.TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in $h$, with $w(i)=h(i, i)$.

If wantz = .TRUE., then, on exit $z$ has been updated; transformations are applied only to the submatrix z(iloz:ihiz, ilo:ihi).

INTEGER.
If info $=0$, the execution is successful.
With info > 0 ,

- if info $=i$, ? lahqr failed to compute all the eigenvalues ilo to ihi in a total of 30 iterations per eigenvalue; elements i+1: ihi of wr and wi (for slahqr/dlahqr) or $w$ (for clahqr/zlahqr) contain those eigenvalues which have been successfully computed.
- if wantt is .FALSE., then on exit the remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix rows and columns ilo through info of the final output value of $h$.
- if wantt is .TRUE., then on exit (initial value of $h$ ) ${ }^{*} u=u^{*}$ (final value of $h$ ), (*) where $u$ is an orthognal matrix. The final value of $h$ is upper Hessenberg and triangular in rows and columns info+1 through ihi.
- if wantz is .TRUE., then on exit
$($ final value of $z)=(\text { initial value of } z)^{*} u$, where $u$ is an orthognal matrix in (*) regardless of the value of wantt.


## ?lahrd

Reduces the first nb columns of a general rectangular matrix $A$ so that elements below the $k$-th subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A (deprecated).

## Syntax

```
call slahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)
call dlahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)
call clahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)
call zlahrd(n, k, nb, a, lda, tau, t, ldt, y, ldy)
```


## Include Files

- mkl.fi


## Description

This routine is deprecated; use lahr2.
The routine reduces the first $n b$ columns of a real/complex general $n$-by-( $n-k+1$ ) matrix $A$ so that elements below the $k$-th subdiagonal are zero. The reduction is performed by an orthogonal/unitary similarity transformation $Q^{T *} A^{*} Q$ for real flavors, or $Q^{H *} A^{*} Q$ for complex flavors. The routine returns the matrices $V$ and $T$ which determine $Q$ as a block reflector $I-V^{*} T^{*} V^{T}$ (for real flavors) or $I-V^{*} T^{*} V^{H}$ (for complex flavors), and also the matrix $Y=A^{*} V^{*} T$.

The matrix $Q$ is represented as products of $n b$ elementary reflectors:

```
Q =H(1)*H(2)*\ldots * H(nb)
```

Each H(i) has the form
$H(i)=I-t a u^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-t a u^{\star} V^{\star} V^{H}$ for complex flavors, or
where tau is a real/complex scalar, and $v$ is a real/complex vector.

## Input Parameters

```
n INTEGER. The order of the matrix A(n\geq0).
k
n.b
a
Ida
ldt
Idy
```


## Output Parameters

a
On exit, the elements on and above the $k$-th subdiagonal in the first $n b$ columns are overwritten with the corresponding elements of the reduced matrix; the elements below the $k$-th subdiagonal, with the array tau, represent the matrix $Q$ as a product of elementary reflectors. The other columns of $a$ are unchanged. See Application Notes below.

REAL for slahrd
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
DOUBLE COMPLEX for zlahrd.
Array, DIMENSION ( $n b$ ).
Contains scalar factors of the elementary reflectors.
REAL for slahrd
DOUBLE PRECISION for dlahrd
COMPLEX for clahrd
DOUBLE COMPLEX for zlahrd.

Arrays, dimension $t(I d t, n b), y(I d y, n b)$.
The array $t$ contains upper triangular matrix $T$.
The array $y$ contains the $n$-by-nb matrix $Y$.

## Application Notes

For the elementary reflector $H(i)$,
$v(1: i+k-1)=0, v(i+k)=1 ; v(i+k+1: n)$ is stored on exit in $a(i+k+1: n, i)$ and tau is stored in tau(i).
The elements of the vectors $v$ together form the $(n-k+1)$-by- $n b$ matrix $V$ which is needed, with $T$ and $Y$, to apply the transformation to the unreduced part of the matrix, using an update of the form:
$A:=\left(I-V^{\star} T^{\star} V^{T}\right) *\left(A-Y^{\star} V^{T}\right)$ for real flavors, or
$A:=\left(I-V^{\star} T^{\star} V^{H}\right) \star\left(A-Y^{\star} V^{H}\right)$ for complex flavors.
The contents of $A$ on exit are illustrated by the following example with $n=7, k=3$ and $n b=2$ :
$\left[\begin{array}{lllll}a & h & a & a & a \\ a & h & a & a & a \\ a & h & a & a & a \\ h & h & a & a & a \\ V_{1} & h & a & a & a \\ v_{1} & V_{2} & a & a & a \\ V_{1} & V_{2} & a & a & a\end{array}\right]$
where $a$ denotes an element of the original matrix $A, h$ denotes a modified element of the upper Hessenberg matrix $H$, and $v_{i}$ denotes an element of the vector defining $H(\mathrm{i})$.

See Also
?lahr2

## ? lahr2

Reduces the specified number of first columns of a general rectangular matrix $A$ so that elements below the specified subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of $A$.

## Syntax

```
call slahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)
call dlahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)
call clahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)
call zlahr2(n, k, nb, a, lda, tau, t, ldt, y, ldy)
```


## Include Files

- mkl.fi


## Description

The routine reduces the first $n b$ columns of a real/complex general $n$-by- $(n-k+1)$ matrix $A$ so that elements below the $k$-th subdiagonal are zero. The reduction is performed by an orthogonal/unitary similarity transformation $Q^{T *} A^{*} Q$ for real flavors, or $Q^{H *} A^{*} Q$ for complex flavors. The routine returns the matrices $V$ and $T$ which determine $Q$ as a block reflector $I-V^{*} T^{*} V^{T}$ (for real flavors) or $I-V^{*} T^{*} V^{H}$ (for real flavors), and also the matrix $Y=A^{*} V^{*} T$.

The matrix $Q$ is represented as products of $n b$ elementary reflectors:

$$
Q=H(1) \star H(2) \star \ldots \quad \star H(n b)
$$

Each H(i) has the form
$H(i)=I-\tan ^{\star} V^{\star} V^{T}$ for real flavors, or
$H(i)=I-\operatorname{ta} u^{\star} V^{\star} V^{H}$ for complex flavors
where tau is a real/complex scalar, and $v$ is a real/complex vector.
This is an auxiliary routine called by ? gehrd.

## Input Parameters

$n$
$k$
$n b$
a
INTEGER. The order of the matrix $A(n \geq 0)$.
INTEGER. The offset for the reduction. Elements below the $k$-th subdiagonal in the first $n b$ columns are reduced to zero $(k<n)$.

INTEGER. The number of columns to be reduced.
REAL for slahr2
DOUBLE PRECISION for dlahr2
COMPLEX for clahr2
DOUBLE COMPLEX for zlahr2.
Array, DIMENSION (Ida, $n-k+1$ ) contains the $n$-by- $(n-k+1)$ general matrix $A$ to be reduced.

```
Ida
ldt
ldy
```

```
INTEGER. The leading dimension of the array a; lda \geqmax (1, n).
```

INTEGER. The leading dimension of the array a; lda \geqmax (1, n).
INTEGER. The leading dimension of the output array t;ldt \geqnb.
INTEGER. The leading dimension of the output array t;ldt \geqnb.
INTEGER. The leading dimension of the output array y; ldy \geqn.

```
INTEGER. The leading dimension of the output array y; ldy \geqn.
```


## Output Parameters

a
On exit, the elements on and above the $k$-th subdiagonal in the first $n b$ columns are overwritten with the corresponding elements of the reduced matrix; the elements below the $k$-th subdiagonal, with the array tau, represent the matrix $Q$ as a product of elementary reflectors. The other columns of $a$ are unchanged. See Application Notes below.

```
REAL for slahr2
```

DOUBLE PRECISION for dlahr2
COMPLEX for clahr2
DOUBLE COMPLEX for zlahr2.
Array, DIMENSION ( $n b$ ).
Contains scalar factors of the elementary reflectors.

```
REAL for slahr2
```

DOUBLE PRECISION for dlahr2
COMPLEX for clahr2
DOUBLE COMPLEX for zlahr2.

Arrays, dimension $t(I d t, n b), y(I d y, n b)$.
The array $t$ contains upper triangular matrix $T$.
The array $y$ contains the $n$-by-nb matrix $Y$.

## Application Notes

For the elementary reflector $H(i)$,
$v(1: i+k-1)=0, v(i+k)=1 ; v(i+k+1: n)$ is stored on exit in $a(i+k+1: n, i)$ and tau is stored in tau(i).

The elements of the vectors $v$ together form the $(n-k+1)$-by- $n b$ matrix $V$ which is needed, with $T$ and $Y$, to apply the transformation to the unreduced part of the matrix, using an update of the form:
$A:=\left(I-V^{\star} T^{\star} V^{T}\right) *\left(A-Y^{\star} V^{T}\right)$ for real flavors, or
$A:=\left(I-V^{\star} T^{\star} V^{H}\right) \star\left(A-Y^{\star} V^{H}\right)$ for complex flavors.
The contents of $A$ on exit are illustrated by the following example with $n=7, k=3$ and $n b=2$ :
en
where a denotes an element of the original matrix $A$, $h$ denotes a modified element of the upper Hessenberg matrix $H$, and $v_{i}$ denotes an element of the vector defining $H(i)$.
?laic1
Applies one step of incremental condition estimation.

## Syntax

```
call slaic1(job, j, x, sest, w, gamma, sestpr, s, c)
call dlaic1(job, j, x, sest, w, gamma, sestpr, s, c)
call claic1(job, j, x, sest, w, gamma, sestpr, s, c)
call zlaicl(job, j, x, sest, w, gamma, sestpr, s, c)
```

Include Files

- mkl.fi


## Description

The routine ?laic1 applies one step of incremental condition estimation in its simplest version.
Let $x,\left||x|_{2}=1\right.$ (where $||a|_{2}$ denotes the 2-norm of $a$ ), be an approximate singular vector of an $j$-by- $j$ lower triangular matrix $L$, such that
$\left|\left|L^{\star} x\right|\right|_{2}=$ sest
Then ?laic1 computes sestpr, s, c such that the vector

$$
\text { xhat }=\left[\begin{array}{c}
s^{*} \mathrm{x} \\
\mathrm{c}
\end{array}\right]
$$

is an approximate singular vector of

$$
\text { Lhat }=\left[\begin{array}{cc}
L & 0 \\
w^{N} & \text { gamma }
\end{array}\right]
$$

(for complex flavors), or

$$
\text { Lhat }=\left[\begin{array}{cc}
L & 0 \\
w^{T} & \text { gamma }
\end{array}\right]
$$

(for real flavors), in the sense that
|| Lhat*xhat| $\left.\right|_{2}=$ sestpr.
Depending on job, an estimate for the largest or smallest singular value is computed.
For real flavors, $[s c]^{T}$ and sestpr ${ }^{2}$ is an eigenpair of the system

$$
\operatorname{diag}(\text { sest*sest, } 0)+[\text { alpha gamma }] *\left[\begin{array}{c}
\text { alpha } \\
\text { gamma }
\end{array}\right]
$$

where alpha $=x^{T}{ }^{W}$.
For complex flavors, $[s c]^{H}$ and sestpr ${ }^{2}$ is an eigenpair of the system

$$
\operatorname{diag}\left(\operatorname{ses} t^{*} \operatorname{ses} t, 0\right)+[\text { alpha ganma }] *\left[\begin{array}{c}
\operatorname{conjg}(a l p h a) \\
\operatorname{conjg}(\text { gamma })
\end{array}\right]
$$

where alpha $=x^{H *} w$.

## Input Parameters

j
$x, w$
sest
gamma

INTEGER.
If job $=1$, an estimate for the largest singular value is computed; If job $=2$, an estimate for the smallest singular value is computed; INTEGER. Length of $x$ and $w$.
REAL for slaic1
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
DOUBLE COMPLEX for zlaic1.
Arrays, dimension ( $j$ ) each. Contain vectors $x$ and $w$, respectively.
REAL for slaicl/claic1;
DOUBLE PRECISION for dlaic1/zlaic1.
Estimated singular value of $j$-by- $j$ matrix $L$.
REAL for slaic1
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
DOUBLE COMPLEX for zlaic1.
The diagonal element gamma.

## Output Parameters

```
sestpr
```

s, c

REAL for slaicl/claic1;
DOUBLE PRECISION for dlaic1/zlaic1.
Estimated singular value of $(j+1)$-by- $(j+1)$ matrix Lhat.
REAL for slaic1
DOUBLE PRECISION for dlaic1
COMPLEX for claic1
DOUBLE COMPLEX for zlaic1.
Sine and cosine needed in forming xhat.
?lakf2
Forms a matrix containing Kronecker products
between the given matrices.
Syntax

```
call slakf2(m, n, a, lda, b, d, e, z, ldz)
call dlakf2(m, n, a, lda, b, d, e, z, ldz)
```

```
call clakf2(m, n, a, lda, b, d, e, z, ldz)
call zlakf2(m, n, a, lda, b, d, e, z, ldz)
```

Include Files

- mkl.fi


## Description

The routine ?lakf2 forms the $2 * m^{*} n$ by $2 * m^{*} n$ matrix $Z$.

$$
Z=\left[\begin{array}{ll}
\mathrm{kron}(I n, A) & -\mathrm{kron}\left(B^{T}, I m\right) \\
\mathrm{kron}(I n, D) & -\mathrm{kron}\left(E^{T}, I m\right)
\end{array}\right]
$$

,
where $I n$ is the identity matrix of size $n$ and $X^{\top}$ is the transpose of $X$. kron $(X, Y)$ is the Kronecker product between the matrices $X$ and $Y$.

## Input Parameters

m
$n$
$a$
d
e

INTEGER. Size of matrix, $m \geq 1$
INTEGER. Size of matrix, $n \geq 1$
REAL for slakf2,
DOUBLE PRECISION for dlakf2, COMPLEX for clakf2,

DOUBLE COMPLEX for zlakf2,
Array, size $/ d a-b y-n$. The matrix $A$ in the output matrix $Z$.
INTEGER. The leading dimension of $a, b, d$, and $e . l d a \geq m+n$.
REAL for slakf2,
DOUBLE PRECISION for dlakf2,
COMPLEX for clakf2,
DOUBLE COMPLEX for zlakf2,
Array, size Ida by $n$. Matrix used in forming the output matrix $Z$.
REAL for slakf2,
DOUBLE PRECISION for dlakf2,
COMPLEX for clakf2,
DOUBLE COMPLEX for zlakf2,
Array, size Ida by $m$. Matrix used in forming the output matrix $Z$.
REAL for slakf2,
DOUBLE PRECISION for dlakf2,
COMPLEX for clakf2,
DOUBLE COMPLEX for zlakf2,

Array, size Ida by $n$. Matrix used in forming the output matrix $Z$.
$l d z \quad$ INTEGER. The leading dimension of $Z . l d z \geq 2^{\star} m^{\star} n$.

## Output Parameters

## z

```
REAL for slakf2,
DOUBLE PRECISION for dlakf2,
COMPLEX for clakf2,
DOUBLE COMPLEX for zlakf2,
```

Array, size $I d z-$ by- $2 * m * n$. The resultant Kronecker $m * n * 2$-by- $m * n * 2$ matrix.

## ?laln2

Solves a 1-by-1 or 2-by-2 linear system of equations of the specified form.

## Syntax

```
call slaln2(ltrans, na, nw, smin, ca, a, lda, dl, d2, b, ldb, wr, wi, x, ldx, scale,
xnorm, info)
call dlaln2(ltrans, na, nw, smin, ca, a, lda, dl, d2, b, ldb, wr, wi, x, ldx, scale,
xnorm, info)
```


## Include Files

- mkl.fi


## Description

The routine solves a system of the form

$$
\left(c a^{\star} A-w^{\star} D\right) \star X=s^{\star} B, \text { or }\left(c a^{\star} A^{T}-w^{\star} D\right) \star X=s^{\star} B
$$

with possible scaling (s) and perturbation of $A$.
$A$ is an na-by-na real matrix, ca is a real scalar, $D$ is an na-by-na real diagonal matrix, $w$ is a real or complex value, and $X$ and $B$ are na-by-1 matrices: real if $w$ is real, complex if $w$ is complex. The parameter na may be 1 or 2.

If $w$ is complex, $X$ and $B$ are represented as na-by- 2 matrices, the first column of each being the real part and the second being the imaginary part.

The routine computes the scaling factor $s(\leq 1)$ so chosen that $X$ can be computed without overflow. $X$ is further scaled if necessary to assure that norm ( $c a^{\star} A-W^{\star} D$ ) ${ }^{\star} \operatorname{norm}(X)$ is less than overflow.
If both singular values of ( $c a^{\star} A-w^{\star} D$ ) are less than $s m i n, ~ s m i n * I$ (where $I$ stands for identity) will be used instead of $\left(c a * A-w^{*} D\right)$. If only one singular value is less than smin, one element of (ca*A-w*D) will be perturbed enough to make the smallest singular value roughly smin.
If both singular values are at least $\operatorname{smin},\left(c a^{\star} A-w^{\star} D\right)$ will not be perturbed. In any case, the perturbation will be at most some small multiple of max ( $\operatorname{smin}, \quad u l p^{\star}$ norm $\left(c a^{\star} A-w^{\star} D\right)$ ).
The singular values are computed by infinity-norm approximations, and thus will only be correct to a factor of 2 or so.

## NOTE

All input quantities are assumed to be smaller than overflow by a reasonable factor (see bignum).

## Input Parameters

trans
na
nW
smin
ca
a
lda
$d 1, d 2$
b

1 db
wr, wi

LOGICAL.
If trans $=$.TRUE., $A$ - transpose will be used.
If $\operatorname{trans}=$.FALSE., $A$ will be used (not transposed.)
INTEGER. The size of the matrix $A$, possible values 1 or 2 .
INTEGER. This parameter must be 1 if $w$ is real, and 2 if $w$ is complex. Possible values 1 or 2 .

REAL for slaln2
DOUBLE PRECISION for dlaln2.
The desired lower bound on the singular values of $A$.
This should be a safe distance away from underflow or overflow, for example, between (underflow/machine_precision) and (machine_precision * overflow). (See bignum and ulp).

REAL for slaln2
DOUBLE PRECISION for dlaln2.
The coefficient by which $A$ is multiplied.
REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION (Ida,na).
The na-by-na matrix $A$.
INTEGER. The leading dimension of $a$. Must be at least na.
REAL for slaln2
DOUBLE PRECISION for dlaln2.
The $(1,1)$ and $(2,2)$ elements in the diagonal matrix $D$, respectively. $d 2$ is not used if $n w=1$.

REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION ( $/ d b, n w$ ). The na-by-nw matrix $B$ (right-hand side). If nw $=2$ ( $w$ is complex), column 1 contains the real part of $B$ and column 2 contains the imaginary part.

INTEGER. The leading dimension of $b$. Must be at least na.
REAL for slaln2
DOUBLE PRECISION for dlaln2.

## $1 d x$

## Output Parameters

x
scale
xnorm
info

The real and imaginary part of the scalar $w$, respectively. $w i$ is not used if $n w=1$.

INTEGER. The leading dimension of the output array $x$. Must be at least na.

REAL for slaln2
DOUBLE PRECISION for dlaln2.
Array, DIMENSION (Idx,nw). The na-by-nw matrix $X$ (unknowns), as computed by the routine. If $n w=2$ ( $w$ is complex), on exit, column 1 will contain the real part of $X$ and column 2 will contain the imaginary part.

REAL for slaln2
DOUBLE PRECISION for dlaln2.
The scale factor that $B$ must be multiplied by to insure that overflow does not occur when computing $X$. Thus ( $\left.c a^{\star} A-w^{\star} D\right) \quad X$ will be scale* $B$, not $B$ (ignoring perturbations of $A$.) It will be at most 1 .

REAL for slaln2
DOUBLE PRECISION for dlaln2.
The infinity-norm of $X$, when $X$ is regarded as an na-by-nw real matrix.
INTEGER.
An error flag. It will be zero if no error occurs, a negative number if an argument is in error, or a positive number if ( $c a^{\star} A-w^{\star} D$ ) had to be perturbed. The possible values are:

If info $=0$ : no error occurred, and ( $\left.c a^{\star} A-w^{\star} D\right)$ did not have to be perturbed.

If info $=1:\left(c a^{\star} A-w^{\star} D\right)$ had to be perturbed to make its smallest (or only) singular value greater than smin.

## NOTE

For higher speed, this routine does not check the inputs for errors.

## ?lals0

Applies back multiplying factors in solving the least squares problem using divide and conquer SVD approach. Used by ?gelsd.

## Syntax

```
call slals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr, givcol, ldgcol,
givnum, ldgnum, poles, difl, difr, z, k, c, s, work, info)
call dlals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr, givcol, ldgcol,
givnum, ldgnum, poles, difl, difr, z, k, c, s, work, info)
call clals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr, givcol, ldgcol,
givnum, ldgnum, poles, difl, difr, z, k, c, s, rwork, info)
```

```
call zlals0(icompq, nl, nr, sqre, nrhs, b, ldb, bx, ldbx, perm, givptr, givcol, ldgcol,
givnum, ldgnum, poles, difl, difr, z, k, c, s, rwork, info)
```

Include Files

- mkl.fi


## Description

The routine applies back the multiplying factors of either the left or right singular vector matrix of a diagonal matrix appended by a row to the right hand side matrix $B$ in solving the least squares problem using the divide-and-conquer SVD approach.

For the left singular vector matrix, three types of orthogonal matrices are involved:
(1L) Givens rotations: the number of such rotations is givptr; the pairs of columns/rows they were applied to are stored in givcol; and the $c$ - and $s$-values of these rotations are stored in givnum.
(2L) Permutation. The ( $n /+1$ )-st row of $B$ is to be moved to the first row, and for $j=2: n$, perm $(j)$-th row of $B$ is to be moved to the $j$-th row.
(3L) The left singular vector matrix of the remaining matrix.
For the right singular vector matrix, four types of orthogonal matrices are involved:
(1R) The right singular vector matrix of the remaining matrix.
$(2 R)$ If sqre $=1$, one extra Givens rotation to generate the right null space.
(3R) The inverse transformation of (2L).
(4R) The inverse transformation of (1L).
Input Parameters
icompq
nl
$n r$
sqre
nrhs
b

INTEGER. Specifies whether singular vectors are to be computed in factored form:

If $i$ compq $=0$ : Left singular vector matrix.
If icompq = 1: Right singular vector matrix.
INTEGER. The row dimension of the upper block.
$n 1 \geq 1$.
INTEGER. The row dimension of the lower block.
$n r \geq 1$.
INTEGER.
If sqre $=0$ : the lower block is an $n r$-by-nr square matrix.
If sqre $=1$ : the lower block is an $n r$-by- $(n r+1)$ rectangular matrix. The bidiagonal matrix has row dimension $n=n l+n r+1$, and column dimension $m=n+$ sqre.

INTEGER. The number of columns of $B$ and $b x$.
Must be at least 1 .
REAL for slals0
DOUBLE PRECISION for dlals0

	COMPLEX for clals0
	DOUBLE COMPLEX for zlals0.
	Array, DIMENSION ( $/ d b$, nrhs ).
	Contains the right hand sides of the least squares problem in rows 1 through $m$.
1 db	INTEGER. The leading dimension of $b$.
	Must be at least max $(1, \max (m, n))$.
bx	REAL for slals0
	DOUBLE PRECISION for dlals0
	COMPLEX for clals0
	DOUBLE COMPLEX for zlals0.
	Workspace array, DIMENSION ( /dbx, nrhs ).
1 dbx	INTEGER. The leading dimension of $b x$.
perm	INTEGER. Array, DIMENSION ( $n$ ).
	The permutations (from deflation and sorting) applied to the two blocks.
givptr	INTEGER. The number of Givens rotations which took place in this subproblem.
givcol	INTEGER. Array, DIMENSION ( Idgcol, 2 ). Each pair of numbers indicates a pair of rows/columns involved in a Givens rotation.
1 dgcol	INTEGER. The leading dimension of givcol, must be at least $n$.
givnum	REAL for slals0/clals0
	DOUBLE PRECISION for dlals0/zlals0
	Array, DIMENSION ( Idgnum, 2 ). Each number indicates the cor s value used in the corresponding Givens rotation.
Idgnum	INTEGER. The leading dimension of arrays difr, poles and givnum, must be at least $k$.
poles	REAL for slals0/clals0
	DOUBLE PRECISION for dlalso/zlals0
	Array, DIMENSION ( Idgnum, 2 ). On entry, poles(1:k, 1) contains the new singular values obtained from solving the secular equation, and poles(1:k, 2 ) is an array containing the poles in the secular equation.
difl	REAL for slals0/clals0
	DOUBLE PRECISION for dlalso/zlals0
	Array, DIMENSION ( $k$ ). On entry, $\operatorname{difl}(i)$ is the distance between $i$-th updated (undeflated) singular value and the $i$-th (undeflated) old singular value.
difr	REAL for slals0/clals0

DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION ( Idgnum, 2 ). On entry, $\operatorname{difr}(\mathrm{i}, 1)$ contains the distances between $i$-th updated (undeflated) singular value and the $i+1$-th (undeflated) old singular value. And $\operatorname{difr}(i, 2)$ is the normalizing factor for the $i$-th right singular vector.

REAL for slals0/clals0
DOUBLE PRECISION for dlals0/zlals0
Array, DIMENSION ( $k$ ). Contains the components of the deflation-adjusted updating row vector.

INTEGER. Contains the dimension of the non-deflated matrix. This is the order of the related secular equation. $1 \leq k \leq n$.

REAL for slals0/clals0
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre $=0$ and the $c$ value of a Givens rotation related to the right null space if sqre $=1$.

REAL for slals0/clals0
DOUBLE PRECISION for dlals0/zlals0
Contains garbage if sqre $=0$ and the $s$ value of a Givens rotation related to the right null space if sqre $=1$.

REAL for slals0
DOUBLE PRECISION for dlals0
Workspace array, DIMENSION ( $k$ ). Used with real flavors only.
REAL for clals0
DOUBLE PRECISION for zlals0
Workspace array, DIMENSION ( $\left.k^{*}(1+n r h s)+2 * n r h s\right)$. Used with complex flavors only.

## Output Parameters

$b$
info

On exit, contains the solution $X$ in rows 1 through $n$.
INTEGER.
If info $=0$ : successful exit.
If info $=-i<0$, the $i$-th argument had an illegal value.

## ?lalsa

Computes the SVD of the coefficient matrix in compact form. Used by ?gelsd.

## Syntax

```
call slalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl, difr, z,
poles, givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info)
```

```
call dlalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl, difr, z,
poles, givptr, givcol, ldgcol, perm, givnum, c, s, work, iwork, info)
call clalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl, difr, z,
poles, givptr, givcol, ldgcol, perm, givnum, c, s, rwork, iwork, info)
call zlalsa(icompq, smlsiz, n, nrhs, b, ldb, bx, ldbx, u, ldu, vt, k, difl, difr, z,
poles, givptr, givcol, ldgcol, perm, givnum, c, s, rwork, iwork, info)
```


## Include Files

- mkl.fi


## Description

The routine is an intermediate step in solving the least squares problem by computing the SVD of the coefficient matrix in compact form. The singular vectors are computed as products of simple orthogonal matrices.

If icompq = 0, ? lalsa applies the inverse of the left singular vector matrix of an upper bidiagonal matrix to the right hand side; and if icompq = 1, the routine applies the right singular vector matrix to the right hand side. The singular vector matrices were generated in the compact form by ?lalsa.

## Input Parameters

icompq
smlsiz
n
nrhs
b

1 db

1 dbx
$u$

INTEGER. Specifies whether the left or the right singular vector matrix is involved. If icompq $=0$ : left singular vector matrix is used

If icompq = 1: right singular vector matrix is used.
INTEGER. The maximum size of the subproblems at the bottom of the computation tree.

INTEGER. The row and column dimensions of the upper bidiagonal matrix.
INTEGER. The number of columns of $b$ and $b x$. Must be at least 1 .
REAL for slalsa
DOUBLE PRECISION for dlalsa
COMPLEX for clalsa
DOUBLE COMPLEX for zlalsa
Array, DIMENSION (/db, nrhs). Contains the right hand sides of the least squares problem in rows 1 through $m$.

INTEGER. The leading dimension of $b$ in the calling subprogram. Must be at least max (1, max ( $m, n$ )).

INTEGER. The leading dimension of the output array $b x$.
REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (Idu, smlsiz). On entry, $u$ contains the left singular vector matrices of all subproblems at the bottom level.

```
ldu
vt
k
difl
difr
z

INTEGER, \(I d u \geq n\). The leading dimension of arrays \(u\), \(v t\), difl, difr, poles, givnum, and \(z\).

REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION(ldu, smlsiz +1). On entry, vt \({ }^{T}\) (for real flavors) or \(v t\) \({ }^{H}\) (for complex flavors) contains the right singular vector matrices of all subproblems at the bottom level.

INTEGER array, DIMENSION (\(n\)).
REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (Idu, n/vl), where nlvl \(=\operatorname{int}\left(\log _{2}(n /(s m l s i z+1))\right)\)
\(+1\).
REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (ldu, \(2 *_{n l v l)}\). On entry, difl(*, i) and \(\operatorname{difr}(*, 2 i-1)\) record distances between singular values on the \(i\)-th level and singular values on the (\(i-1\))-th level, and \(\operatorname{difr}(*, 2 i)\) record the normalizing factors of the right singular vectors matrices of subproblems on \(i\)-th level.

REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (\(/ d u, n / v /\). On entry, \(z(1, i)\) contains the components of the deflation- adjusted updating the row vector for subproblems on the \(i\)-th level.

REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
Array, DIMENSION (/du, 2*n/v/).
On entry, poles(*, 2i-1: \(2 i\)) contains the new and old singular values involved in the secular equations on the \(i\)-th level.

INTEGER. Array, DIMENSION (\(n\)).
On entry, givptr(i) records the number of Givens rotations performed on the \(i\)-th problem on the computation tree.

INTEGER. Array, DIMENSION (Idgcol, \(2 * n / v /\)). On entry, for each i, givcol(*, 2i-1: 2i) records the locations of Givens rotations performed on the \(i\)-th level on the computation tree.

INTEGER, \(I d g c o l \geq n\). The leading dimension of arrays givcol and perm.
INTEGER. Array, DIMENSION (Idgcol, n/vl). On entry, perm(*, i) records permutations done on the \(i\)-th level of the computation tree.

REAL for slalsa/clalsa
DOUBLE PRECISION for dlalsa/zlalsa
\begin{tabular}{|c|c|}
\hline & Array, DIMENSION (Idu, \(2 * n / v /\)). On entry, givnum(*, 2i-1: 2i) records the \(c\) and \(s\) values of Givens rotations performed on the \(i\)-th level on the computation tree. \\
\hline \multirow[t]{3}{*}{c} & ReAL for slalsa/clalsa \\
\hline & DOUBLE PRECISION for dlalsa/zlalsa \\
\hline & Array, DIMENSION (\(n\)). On entry, if the \(i\)-th subproblem is not square, \(c(i)\) contains the \(c\) value of a Givens rotation related to the right null space of the \(i\)-th subproblem. \\
\hline \multirow[t]{3}{*}{\(s\)} & REAL for slalsa/clalsa \\
\hline & DOUBLE PRECISION for dlalsa/zlalsa \\
\hline & Array, DIMENSION (\(n\)). On entry, if the \(i\)-th subproblem is not square, \(s(i)\) contains the \(s\)-value of a Givens rotation related to the right null space of the \(i\)-th subproblem. \\
\hline \multirow[t]{3}{*}{work} & REAL for slalsa \\
\hline & DOUBLE PRECISION for dlalsa \\
\hline & Workspace array, DIMENSION at least (\(n\)). Used with real flavors only. \\
\hline \multirow[t]{3}{*}{rwork} & REAL for clalsa \\
\hline & DOUBLE PRECISION for zlalsa \\
\hline & Workspace array, DIMENSION at least max \(\left(n,(s m l s z+1) *_{n r h s *}\right)\). Used with complex flavors only. \\
\hline \multirow[t]{2}{*}{iwork} & INTEGER. \\
\hline & Workspace array, DIMENSION at least (3n). \\
\hline \multicolumn{2}{|l|}{Output Parameters} \\
\hline b & On exit, contains the solution \(X\) in rows 1 through \(n\). \\
\hline \multirow[t]{5}{*}{bx} & REAL for slalsa \\
\hline & DOUBLE PRECISION for dlalsa \\
\hline & COMPLEX for clalsa \\
\hline & DOUBLE COMPLex for zlalsa \\
\hline & Array, dimension (ldbx, nrhs). On exit, the result of applying the left or right singular vector matrix to \(b\). \\
\hline \multirow[t]{2}{*}{info} & INTEGER. If info \(=0\) : successful exit \\
\hline & If info \(=-i<0\), the \(i\)-th argument had an illegal value. \\
\hline
\end{tabular}

\section*{?lalsd}

Uses the singular value decomposition of A to solve the least squares problem.

\section*{Syntax}
```

call slalsd( uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, iwork, info )

```
```

call dlalsd( uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, iwork, info )
call clalsd( uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, rwork, iwork, info )
call zlalsd( uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, rwork, iwork, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine uses the singular value decomposition of \(A\) to solve the least squares problem of finding \(X\) to minimize the Euclidean norm of each column of \(A * X-B\), where \(A\) is \(n\)-by- \(n\) upper bidiagonal, and \(X\) and \(B\) are \(n\)-by-nrhs. The solution \(X\) overwrites \(B\).

The singular values of \(A\) smaller than rcond times the largest singular value are treated as zero in solving the least squares problem; in this case a minimum norm solution is returned. The actual singular values are returned in \(d\) in ascending order.
This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.

It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. \\
\hline & If uplo = 'U', \(d\) and e define an upper bidiagonal matrix. \\
\hline & If uplo = 'L', \(d\) and e define a lower bidiagonal matrix. \\
\hline smlsiz & INTEGER. The maximum size of the subproblems at the bottom of the computation tree. \\
\hline \(n\) & INTEGER. The dimension of the bidiagonal matrix. \\
\hline & \(n \geq 0\). \\
\hline nrhs & INTEGER. The number of columns of \(B\). Must be at least 1 . \\
\hline \multirow[t]{3}{*}{d} & REAL for slalsd/clalsd \\
\hline & DOUBLE PRECISION for dlalsd/zlalsd \\
\hline & Array, DIMENSION (\(n\)). On entry, \(d\) contains the main diagonal of the bidiagonal matrix. \\
\hline \multirow[t]{3}{*}{e} & REAL for slalsd/clalsd \\
\hline & DOUBLE PRECISION for dlalsd/zlalsd \\
\hline & Array, DIMENSION (\(n-1\)). Contains the super-diagonal entries of the bidiagonal matrix. On exit, \(e\) is destroyed. \\
\hline \multirow[t]{4}{*}{b} & REAL for slalsd \\
\hline & DOUBLE PRECISION for dlalsd \\
\hline & COMPLEX for clalsd \\
\hline & DOUBLE COMPLEX for zlalsd \\
\hline
\end{tabular}

1 db

Array, DIMENSION (/db,nrhs).
On input, \(b\) contains the right hand sides of the least squares problem. On output, \(b\) contains the solution \(X\).

INTEGER. The leading dimension of \(b\) in the calling subprogram. Must be at least max \((1, n)\).

REAL for slalsd/clalsd
DOUBLE PRECISION for dlalsd/zlalsd
The singular values of \(A\) less than or equal to rcond times the largest singular value are treated as zero in solving the least squares problem. If rcond is negative, machine precision is used instead. For example, for the least squares problem diag \((S) * X=B\), where \(\operatorname{diag}(S)\) is a diagonal matrix of singular values, the solution is \(X(i)=B(i) / S(i)\) if \(S(i)\) is greater than rcond \(*_{\max }(S)\), and \(X(i)=0\) if \(S(i)\) is less than or equal to rcond \({ }^{*} \max (S)\).

INTEGER. The number of singular values of \(A\) greater than rcond times the largest singular value.

REAL for slalsd
DOUBLE PRECISION for dlalsd
COMPLEX for clalsd
DOUBLE COMPLEX for zlalsd

\section*{Workspace array.}

DIMENSION for real flavors at least
\(\left(9 n+2 n^{\star} s m l s i z+8 n^{\star} n l v l+n^{\star} n r h s+(\operatorname{smlsiz}+1)^{2}\right)\),
where
```

nlvl = max(0, int(log}2(n/(smlsiz+1))) + 1).

```

DIMENSION for complex flavors is (\(n * n r h s\)).
REAL for clalsd
DOUBLE PRECISION for zlalsd
Workspace array, used with complex flavors only.
```

DIMENSION at least (9n + 2n*smlsiz + 8n*nlvl + 3*mlsiz*nrhs +
(smlsiz+1)}\mp@subsup{}{}{2})

```
where
```

nlvl = max(0, int(log}2(min(m,n)/(smlsiz+1))) + 1).

```

INTEGER.
Workspace array of DIMENSION (\(3 n \star n l v l+11 n)\).

\section*{Output Parameters}

On exit, if info \(=0, d\) contains singular values of the bidiagonal matrix.
\begin{tabular}{|c|c|}
\hline e & On exit, destroyed. \\
\hline b & On exit, \(b\) contains the solution \(X\). \\
\hline \multirow[t]{4}{*}{info} & INTEGER. \\
\hline & If info \(=0\) : successful exit. \\
\hline & If info \(=-i<0\), the \(i\)-th argument had an illegal value. \\
\hline & If info > 0: The algorithm failed to compute a singular value while working on the submatrix lying in rows and columns infol (\(n+1\)) through \(\bmod (i n f o, n+1)\). \\
\hline
\end{tabular}

\section*{?lamrg}

Creates a permutation list to merge the entries of two independently sorted sets into a single set sorted in acsending order.

\section*{Syntax}
```

call slamrg( n1, n2, a, strd1, strd2, index )
call dlamrg( n1, n2, a, strd1, strd2, index )

```

\section*{Include Files}
- mkl.fi

Description

The routine creates a permutation list which will merge the elements of a (which is composed of two independently sorted sets) into a single set which is sorted in ascending order.

\section*{Input Parameters}
```

n1, n2
a
strdl, strd2
INTEGER. These arguments contain the respective lengths of the two sorted lists to be merged.
REAL for slamrg
DOUBLE PRECISION for dlamrg.
Array, DIMENSION ( $n 1+n 2$ ).
The first $n 1$ elements of a contain a list of numbers which are sorted in either ascending or descending order. Likewise for the final $n 2$ elements.
INTEGER.
These are the strides to be taken through the array $a$. Allowable strides are 1 and -1 . They indicate whether a subset of $a$ is sorted in ascending (strdx $=1$ ) or descending (strdx $=-1$ ) order.

```

\section*{Output Parameters}
index
INTEGER. Array, DIMENSION (\(n 1+n 2\)).

On exit, this array will contain a permutation such that if \(b(i)=\) \(a(i n d e x(i))\) for \(i=1, n 1+n 2\), then \(b\) will be sorted in ascending order.

\section*{?lamswlq}

Multiplies a general real matrix by a real orthogonal matrix defined as the product of blocked elementary reflectors computed by short wide \(L Q\) factorization.
```

call slamswlq(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
call dlamswlq(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
call clamswlq(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
call zlamswlq(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)

```

\section*{Description}
? lamswlq overwrites the general real m-by-n matrix \(C\) with
\begin{tabular}{|l|l|l|}
\hline & side \(=\) 'L' & side \(=\) 'R' \\
\hline trans \(=\) 'N' & \(Q^{*} C\) & \(C^{*} Q\) \\
\hline trans \(=\) ' \(\mathrm{T}^{\prime}\) & \(Q^{\top *} C\) & \(C^{*} Q^{\top}\) \\
\hline trans \(='^{\prime}\) & \(Q^{H * C}\) & \(C^{*} Q^{H}\) \\
\hline
\end{tabular}
where \(Q\) is a real orthogonal matrix defined as the product of blocked elementary reflectors computed by short wide LQ factorization (?laswlq).

Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations, representing \(Q\) as a product of other orthogonal matrices: \(Q=Q(1) * Q(2) * \ldots * Q(k)\), where each \(Q(i)\) zeros out upper diagonal entries of a block of nb rows of \(A\) :
\(Q(1)\) zeros out the upper diagonal entries of rows \(1: n b\) of \(A\),
\(Q(2)\) zeros out the bottom \(m b-n\) rows of rows \(\left[1: m, n b+1: 2^{*} n b-m\right]\) of \(A\),
\(Q(3)\) zeros out the bottom \(m b-n\) rows of rows \(\left[1: m, 2^{*} n b-m+1: 3^{*} n b-2_{m}\right]\) of \(A \ldots\)
\(Q(1)\) is computed by gelqt, which represents \(Q(1)\) by Householder vectors stored under the diagonal of rows \(1: m b\) of \(A\), and by upper triangular block reflectors, stored in array \(t(1: 1 d t, 1: n)\). For more information, see gelqt.
\(Q(i)\) for \(i>1\) is computed by tplqt, which represents \(Q(i)\) by Householder vectors stored in columns [(\(i\) \(\left.1) *(n b-m)+m+1: i^{*}(n b-m)+m\right]\) of \(A\), and by upper triangular block reflectors, stored in array \(t(1: 1 d t\), \((i\) \(-1) *_{m}+1: i^{*} m\)). The last \(Q(k)\) may use fewer rows. For more information see Further Details in tplqt. For more details of the overall algorithm, see [DEMMEL12].

\section*{Input Parameters}
side
trans

CHARACTER*1.
If side = 'L': apply op \((Q)\) from the left;
if side = 'R': apply op \((Q)\) from the right.
CHARACTER*1.
If trans \(=\) 'N': No transpose, \(o p(Q)=Q\);
if trans \(=\) ' \(T\) ': Transpose, op \((Q)=Q^{\top}\);
if trans= 'C': Transpose, op \((Q)=Q^{H}\).
INTEGER. The number of rows of the matrix \(C . m \geq 0\).
INTEGER. The number of columns of the matrix C. \(n \geq m\).
INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). \(m \geq k \geq 0\);

INTEGER. The row block size to be used in the blocked \(Q R\). \(m \geq m b \geq 1\)
INTEGER. The block size to be used in the blocked QR. nb \(>m\).
REAL for slamswlq
DOUBLE PRECISION for dlamswlq
COMPLEX for clamswlq
COMPLEX*16 for zlamswlq
Array of size \((I d a, m)\) if side \(=\) 'L' or \((I d a, n)\) if side \(=\) 'R'. The \(i\)-th row must contain the vector which defines the blocked elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ? laswlq in the first \(k\) rows of its array argument \(a\).

INTEGER. The leading dimension of the array \(a . I d a \geq \max (1, k)\).
REAL for slamswlq
DOUBLE PRECISION for dlamswlq
COMPLEX for clamswlq
COMPLEX*16 for zlamswlq
Array of size \((m\) * Number of blocks(ceiling \((n-k / n b-k))\)), The blocked upper triangular block reflectors stored in compact form as a sequence of upper triangular blocks as described previously.

INTEGER. The leading dimension of the array \(t\). \(1 d t \geq m b\).
REAL for slamswlq
DOUBLE PRECISION for dlamswlq
COMPLEX for clamswlq
COMPLEX*16 for zlamswlq
Array of size \((l d c, n)\). On entry, the \(m\)-by- \(n\) matrix \(C\).
INTEGER. The leading dimension of the array c. \(1 d c \geq \max (1, m)\).
INTEGER. The size of the array work. If side = 'L', lwork \(\geq \max (1, n b)^{*}\) mb ; if side \(=\) 'R', \(\operatorname{lwork} \geq \max (1, m) * m b\). If \(l\) work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

\section*{Output Parameters}
```

C
work
info

```

On exit, c is overwritten by op \((Q)^{*} C\) or \(C^{*} \mathrm{op}(Q)\).
REAL for slamswlq
DOUBLE PRECISION for dlamswlq
COMPLEX for clamswlq
COMPLEX*16 for zlamswlq
Workspace array of size (max(1, lwork)).
INTEGER.
info \(=0\) : successful exit.
info < 0: if info \(=-i\), the \(i\)-th argument had an illegal value.

\section*{?lamtsqr}

Multiplies a general matrix by the product of blocked elementary reflectors computed by tall skinny \(Q R\) factorization (?latsqr)
```

call slamtsqr(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
call dlamtsqr(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
call clamtsqr(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
call zlamtsqr(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)

```

\section*{Description}
?lamtsqr overwrites the general real or complexm-by-n matrix \(C\) with
\begin{tabular}{|c|c|c|}
\hline & side = 'L' & side = 'R' \\
\hline trans \(=\) ' N ' & \(Q^{*} C\) & \(C^{*} Q\) \\
\hline trans \(=\) 'T' & \(Q^{\top *} C\) & \(C^{*} Q^{\top}\) \\
\hline trans \(=\) 'C' & \(Q^{H *} C\) & \(C^{*} Q^{\text {H }}\) \\
\hline
\end{tabular}
where \(Q\) is a real orthogonal matrix defined as the product of blocked elementary reflectors computed by tall skinny QR factorization (?latsqr). Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations, representing \(Q\) as a product of other orthogonal matrices
\(Q=Q(1) * Q(2) * \ldots * Q(k)\)
where each \(Q(i)\) zeros out subdiagonal entries of a block of mb rows of \(A\) :
\(Q(1)\) zeros out the subdiagonal entries of rows 1 :mb of \(A\),
\(Q(2)\) zeros out the bottom \(m b-n\) rows of rows \([1: n, m b+1: 2 * m b-n]\) of \(A\),
\(Q(3)\) zeros out the bottom \(m b-n\) rows of rows \(\left[1: n, 2 *_{m b}-n+1: 3 *_{m b}-2 *_{n}\right.\)] of \(A \ldots\).
\(Q(1)\) is computed by geqrt, which represents \(Q(1)\) by Householder vectors stored under the diagonal of rows 1 :mb of \(a\), and by upper triangular block reflectors, stored in array \(t(1: 1 d t, 1: n)\). For more information, see geqrt.
\(Q(i)\) for \(i>1\) is computed by tpqrt, which represents \(Q(i)\) by Householder vectors stored in rows [(\(i\) \(\left.1)^{*}(m b-n)+n+1: i^{*}(m b-n)+n\right]\) of \(a\), and by upper triangular block reflectors, stored in array \(t(1: 1 d t\), (\(i\) \(-1)^{*}+1: i^{*} n\). The last \(Q(k)\) may use fewer rows. For more information, see tpqrt. For more details of the overall algorithm, see [DEMMEL12].

\section*{Input Parameters}
```

side
trans
CHARACTER*1.
If side = 'L': apply op $(Q)$ from the left;
if side = 'R': apply $o p(Q)$ from the right.
CHARACTER*1.
If trans $=$ ' N ': No transpose, $\mathrm{op}(Q)=Q$;
if trans $=$ ' $T$ ': Transpose, $o p(Q)=Q^{\top}$;
if trans $=$ ' C ': Transpose, $o p(Q)=Q^{H}$.

```
m

INTEGER. The number of rows of the matrix \(C . m \geq 0\).
INTEGER. The number of columns of the matrix \(C . m \geq n \geq 0\).
INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). \(n \geq k \geq 0\);

INTEGER. The block size to be used in the blocked QR. mb \(>n\). (Must be the same as in ?latsqr)

INTEGER. The column block size to be used in the blocked \(Q R\). \(n \geq n b \geq 1\).
REAL for slamtsqr
DOUBLE PRECISION for dlamtsqr
COMPLEX for clamtsqr
COMPLEX*16 for zlamtsqr
Array of size (\(I d a, k\)). The \(i\)-th column must contain the vector which defines the blocked elementary reflector \(H(i)\), for \(i=1,2, \ldots, k\), as returned by ?latsqr in the first \(k\) columns of its array argument \(a\).

INTEGER. The leading dimension of the array \(a\).
If side \(=\) 'L', Ida \(\geq \max (1, m)\);
if side \(=\) 'R', Ida \(\max (1, n)\).
REAL for slamtsqr
DOUBLE PRECISION for dlamtsqr
COMPLEX for clamtsqr
COMPLEX*16 for zlamtsqr
Array of size (\(n *\) Number of blocks(ceiling \((m-k / m b-k))\)). The blocked upper triangular block reflectors stored in compact form as a sequence of upper triangular blocks, as described previously.

INTEGER. The leading dimension of the array \(t . I d t \geq n b\).
```

C REAL for slamtsqr
DOUBLE PRECISION for dlamtsqr
COMPLEX for clamtsqr
COMPLEX*16 for zlamtsqr
Array of size (Idc,n). On entry, the m-by-n matrix C.
INTEGER. The leading dimension of the array c. ldc\geq max (1,m).
INTEGER. The dimension of the array work. If side = 'L', lwork\geq max(1,
n)*nb; if side = 'R', lwork\geq max(1,mb)*nb. If lwork = -1, then a
workspace query is assumed; the routine only calculates the optimal size of
the work array, returns this value as the first entry of the work array, and
no error message related to lwork is issued by xerbla.

```

\section*{Output Parameters}

On exit, c is overwritten by op \((Q)^{*} C\) or \(C^{*} \mathrm{op}(Q)\).
REAL for slamtsqr
DOUBLE PRECISION for dlamtsqr
COMPLEX for clamtsqr
COMPLEX*16 for zlamtsqr
Workspace array of size (max(1, lwork)).
INTEGER.
info \(=0\) : successful exit.
info \(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value.

\section*{?laneg}

Computes the Sturm count, the number of negative pivots encountered while factoring tridiagonal \(T\) -
\(\underline{\text { sigma }} I=L * D * L^{T}\).

\section*{Syntax}
```

value = slaneg( n, d, lld, sigma, pivmin, r )
value = dlaneg( n, d, lld, sigma, pivmin, r )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine computes the Sturm count, the number of negative pivots encountered while factoring tridiagonal \(T\)-sigma* \(I=L^{*} D^{*} L^{T}\). This implementation works directly on the factors without forming the tridiagonal matrix \(T\). The Sturm count is also the number of eigenvalues of \(T\) less than sigma. This routine is called from ? larb. The current routine does not use the pivmin parameter but rather requires IEEE-754
propagation of infinities and NaNs (NaN stands for 'Not A Number'). This routine also has no input range restrictions but does require default exception handling such that \(x / 0\) produces Inf when \(x\) is non-zero, and Inf/Inf produces NaN. (For more information see [Marques06]).

\section*{Input Parameters}
\(n\)
INTEGER. The order of the matrix.
REAL for slaneg
DOUBLE PRECISION for dlaneg
Array, DIMENSION (\(n\)).
Contains \(n\) diagonal elements of the matrix \(D\).
lld
sigma
pivmin
r
REAL for slaneg
DOUBLE PRECISION for dlaneg
Array, DIMENSION (\(n-1\)).
Contains (\(n-1\)) elements \(L(i) * L(i) * D(i)\).
REAL for slaneg
DOUBLE PRECISION for dlaneg
Shift amount in \(T\)-sigma* \(I=L^{\star} D^{\star} L^{\star} * T\).
REAL for slaneg
DOUBLE PRECISION for dlaneg
The minimum pivot in the Sturm sequence. May be used when zero pivots are encountered on non-IEEE-754 architectures.

INTEGER.
The twist index for the twisted factorization that is used for the negcount.

\section*{Output Parameters}
value
INTEGER. The number of negative pivots encountered while factoring.

\section*{?langb}

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.

\section*{Syntax}
```

val = slangb( norm, n, kl, ku, ab, ldab, work )
val = dlangb( norm, n, kl, ku, ab, ldab, work )
val = clangb( norm, n, kl, ku, ab, ldab, work )
val = zlangb( norm, n, kl, ku, ab, ldab, work )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The function returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an \(n\)-by- \(n\) band matrix \(A\), with \(k l\) sub-diagonals and \(k u\) super-diagonals.

\section*{Input Parameters}
norm
\(n\)
kI
ku
\(a b\)

Idab
work

CHARACTER*1. Specifies the value to be returned by the routine:
\(=' M^{\prime}\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix
A.
\(=\) '1' or 'O' or 'o': val \(=\) norm1 (A), 1-norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val \(=\) normI (\(A\)), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F','f','E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).

INTEGER. The order of the matrix \(A\). \(n \geq 0\). When \(n=0\), ? langb is set to zero.

INTEGER. The number of sub-diagonals of the matrix \(A . k l \geq 0\).
INTEGER. The number of super-diagonals of the matrix \(A . k u \geq 0\).
REAL for slangb
DOUBLE PRECISION for dlangb
COMPLEX for clangb
DOUBLE COMPLEX for zlangb
Array, DIMENSION (Idab,n).
The band matrix \(A\), stored in rows 1 to \(k l+k u+1\). The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows:
\(a b(k u+1+i-j, j)=a(i, j)\)
for max \((1, j-k u) \leq i \leq \min (n, j+k l)\).
INTEGER. The leading dimension of the array \(a b\).
\(1 d a b \geq k l+k u+1\).
REAL for slangb/clangb
DOUBLE PRECISION for dlangb/zlangb
Workspace array, DIMENSION (max (1, lwork)), where
lwork \(\geq n\) when norm = 'I'; otherwise, work is not referenced.

\section*{Output Parameters}
val
REAL for slangb/clangb
DOUBLE PRECISION for dlangb/zlangb

Value returned by the function.
```

?lange
Returns the value of the 1-norm, Frobenius norm,
infinity-norm, or the largest absolute value of any
element of a general rectangular matrix.

```

\section*{Syntax}
```

val = slange( norm, m, n, a, lda, work )

```
val = slange(norm, m, n, a, lda, work)
val = dlange(norm, m, n, a, lda, work)
val = dlange(norm, m, n, a, lda, work)
val = clange(norm, m, n, a, lda, work)
val = clange(norm, m, n, a, lda, work)
val = zlange(norm, m, n, a, lda, work)
```

val = zlange( norm, m, n, a, lda, work )

```

Include Files
- mkl.fi

\section*{Description}

The function ?lange returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex matrix \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface.
norm
m
n
a

CHARACTER*1. Specifies the value to be returned by the routine:
\(={ }^{\prime} \mathrm{M}^{\prime}\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix A.
\(=\) '1' or 'O' or '○': val \(=\) norm1 (\(A\)), 1-norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
\(=' F^{\prime}, ' f ', ' E\) ' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).

INTEGER. The number of rows of the matrix \(A\).
\(m \geq 0\). When \(m=0\), ? lange is set to zero.
INTEGER. The number of columns of the matrix \(A\).
\(n \geq 0\). When \(n=0\), ? lange is set to zero.
REAL for slange
DOUBLE PRECISION for dlange
COMPLEX for clange
DOUBLE COMPLEX for zlange
Array, DIMENSION (Ida,n).
```

Array a contains the $m$-by-n matrix $A$.
INTEGER. The leading dimension of the array $a$.
REAL for slange and clange.
DOUBLE PRECISION for dlange and zlange.
Workspace array, DIMENSION max(1,lwork), where lwork $\geq m$ when norm $=$ 'I'; otherwise, work is not referenced.

```

\section*{Output Parameters}
```

val

```

REAL for slange/clange
DOUBLE PRECISION for dlange/zlange
Value returned by the function.

\section*{?langt \\ Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.}

\section*{Syntax}
```

val = slangt( norm, n, dl, d, du )
val = dlangt( norm, n, dl, d, du )
val = clangt( norm, n, dl, d, du )
val = zlangt( norm, n, dl, d, du )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex tridiagonal matrix \(A\).

\section*{Input Parameters}

INTEGER. The order of the matrix \(A . n \geq 0\). When \(n=0\), ? langt is set to zero.
\(d l, d, d u\)
REAL for slangt
DOUBLE PRECISION for dlangt
COMPLEX for clangt
DOUBLE COMPLEX for zlangt
Arrays: \(d l(n-1), d(n), d u(n-1)\).
The array \(d l\) contains the (\(n-1\)) sub-diagonal elements of \(A\).
The array \(d\) contains the diagonal elements of \(A\).
The array \(d u\) contains the (\(n-1\)) super-diagonal elements of \(A\).

\section*{Output Parameters}
val
REAL for slangt/clangt
DOUBLE PRECISION for dlangt/zlangt
Value returned by the function.

\section*{?lanhs}

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.

\section*{Syntax}
```

val = slanhs( norm, n, a, lda, work )
val = dlanhs( norm, n, a, lda, work )
val = clanhs( norm, n, a, lda, work )
val = zlanhs( norm, n, a, lda, work )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The function ? lanhs returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hessenberg matrix \(A\).

The value val returned by the function is:
```

val = max(abs( (Aij)), if norm = 'M' or 'm'
= norm1(A), if norm = '1' or 'O' or 'O'
= normI(A), if norm = 'I' or 'i'
= normF(A), if norm = 'F', 'f', 'E' or 'e'

```
where norm1 denotes the 1-norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max (abs \(\left(A_{i j}\right)\)) is not a consistent matrix norm.

\section*{Input Parameters}
norm
\(n\)
a

Ida
work

CHARACTER*1. Specifies the value to be returned by the routine as described above.

INTEGER. The order of the matrix \(A\).
\(n \geq 0\). When \(n=0\), ? lanhs is set to zero.
REAL for slanhs
DOUBLE PRECISION for dlanhs
COMPLEX for clanhs
DOUBLE COMPLEX for zlanhs
Array, DIMENSION (Ida, \(n\)). The \(n\)-by- \(n\) upper Hessenberg matrix \(A\); the part of \(A\) below the first sub-diagonal is not referenced.

INTEGER. The leading dimension of the array \(a\).
\(1 d a \geq \max (n, 1)\).
REAL for slanhs and clanhs.
DOUBLE PRECISION for dlange and zlange.
Workspace array, DIMENSION (max (1, lwork)), where lwork \(\geq n\) when norm = 'I'; otherwise, work is not referenced.

\section*{Output Parameters}
```

val

```

REAL for slanhs/clanhs
DOUBLE PRECISION for dlanhs/zlanhs
Value returned by the function.

\section*{?lansb}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.

Syntax
```

val = slansb( norm, uplo, n, k, ab, ldab, work )
val = dlansb( norm, uplo, n, k, ab, ldab, work )
val = clansb( norm, uplo, n, k, ab, ldab, work )
val = zlansb( norm, uplo, n, k, ab, ldab, work )

```

\section*{Include Files}
- mkl.fi

Description

The function ? lansb returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an \(n\)-by- \(n\) real/complex symmetric band matrix \(A\), with \(k\) superdiagonals.

\section*{Input Parameters}
norm
\(n\)
k
\(a b\)

Idab
work

CHARACTER*1. Specifies the value to be returned by the routine: \(=' M^{\prime}\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix \(A\). \(=\) '1' or 'O' or '○': val \(=\operatorname{norm1}(A)\), 1 -norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': \(v a l=\operatorname{normI}(A)\), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) ' \(F^{\prime}\), 'f', 'E' or 'e': val \(=\) normF \((A)\), Frobenius norm of the matrix \(A\) (square root of sum of squares).

CHARACTER*1.
Specifies whether the upper or lower triangular part of the band matrix \(A\) is supplied. If uplo = 'U': upper triangular part is supplied; If uplo = 'L': lower triangular part is supplied.

INTEGER. The order of the matrix \(A . n \geq 0\).
When \(n=0\), ?lansb is set to zero.
INTEGER. The number of super-diagonals or sub-diagonals of the band matrix \(A . k \geq 0\).

REAL for slansb
DOUBLE PRECISION for dlansb
COMPLEX for clansb
DOUBLE COMPLEX for zlansb
Array, DIMENSION (/dab,n).
The upper or lower triangle of the symmetric band matrix \(A\), stored in the first \(k+1\) rows of \(a b\). The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows:
if uplo = 'U', ab \((k+1+i-j, j)=a(i, j)\)
for max \((1, j-k) \leq i \leq j ;\)
if uplo \(=\) 'L', ab \((1+i-j, j)=a(i, j)\) for \(j \leq i \leq \min (n, j+k)\).
INTEGER. The leading dimension of the array \(a b\).
\(1 d a b \geq k+1\).
REAL for slansb and clansb.
DOUBLE PRECISION for dlansb and zlansb.
Workspace array, DIMENSION (max (1,1 work)), where
lwork \(\geq n\) when norm \(=\) 'I' or '1' or 'O'; otherwise, work is not referenced.

\section*{Output Parameters}
val
REAL for slansb/clansb
DOUBLE PRECISION for dlansb/zlansb
Value returned by the function.
```

?lanhb
Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.
Syntax

```
```

val = clanhb( norm, uplo, n, k, ab, ldab, work )

```
val = clanhb(norm, uplo, n, k, ab, ldab, work)
val = zlanhb(norm, uplo, n, k, ab, ldab, work)
```

val = zlanhb( norm, uplo, n, k, ab, ldab, work )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an \(n\)-by- \(n\) Hermitian band matrix \(A\), with \(k\) super-diagonals.

\section*{Input Parameters}
norm

CHARACTER*1. Specifies the value to be returned by the routine: \(=\) 'M' or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix \(A\). \(=\) '1' or 'O' or '०': val \(=\operatorname{norm1}(A)\), 1 -norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val \(=\operatorname{normI}(A)\), infinity norm of the matrix \(A\) (maximum row sum),
\(=' F^{\prime}, f^{\prime}, E^{\prime}\) or 'e': val \(=\operatorname{normF}(A)\), Frobenius norm of the matrix \(A\) (square root of sum of squares).

CHARACTER*1.
Specifies whether the upper or lower triangular part of the band matrix \(A\) is supplied.

If uplo = 'U': upper triangular part is supplied;
If uplo = 'L': lower triangular part is supplied.
INTEGER. The order of the matrix \(A . n \geq 0\). When \(n=0\), ? lanhb is set to zero.

INTEGER. The number of super-diagonals or sub-diagonals of the band matrix \(A\).
\(k \geq 0\).

COMPLEX for clanhb.
```

DOUBLE COMPLEX for zlanhb.
Array, DIMENSION (IdaB,n). The upper or lower triangle of the Hermitian band matrix $A$, stored in the first $k+1$ rows of $a b$. The $j$-th column of $A$ is stored in the $j$-th column of the array $a b$ as follows:
if uplo = 'U', ab $(k+1+i-j, j)=a(i, j)$
for max $(1, j-k) \leq i \leq j$;
if uplo $=$ 'L', $a b(1+i-j, j)=a(i, j)$ for $j \leq i \leq \min (n, j+k)$.

```

Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero.

INTEGER. The leading dimension of the array \(a b\). \(I d a b \geq k+1\).
REAL for clanhb.
DOUBLE PRECISION for zlanhb.
Workspace array, DIMENSIONmax (1, lwork), where
lwork \(\geq n\) when norm \(=\) 'I' or '1' or 'O'; otherwise, work is not referenced.

\section*{Output Parameters}
```

val

```

REAL for slanhb/clanhb
DOUBLE PRECISION for dlanhb/zlanhb
Value returned by the function.

\section*{?lansp}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.

\section*{Syntax}
```

val = slansp( norm, uplo, n, ap, work )
val = dlansp( norm, uplo, n, ap, work )
val = clansp( norm, uplo, n, ap, work )
val = zlansp( norm, uplo, n, ap, work )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The function ? lansp returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix \(A\), supplied in packed form.

\section*{Input Parameters}
norm
uplo
n
\(a p\)
work

CHARACTER*1. Specifies the value to be returned by the routine: \(=' M^{\prime}\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix \(A\). \(=\) '1' or 'O' or '○': val \(=\operatorname{norm1}(A)\), 1 -norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val \(=\) normI \((A)\), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F', 'f', 'E' or 'e': val = normF \((A)\), Frobenius norm of the matrix \(A\) (square root of sum of squares).

CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is supplied.

If uplo = 'U': Upper triangular part of \(A\) is supplied
If uplo = 'L': Lower triangular part of \(A\) is supplied.
INTEGER. The order of the matrix \(A . n \geq 0\). When
\(n=0\), ? lansp is set to zero.
REAL for slansp
DOUBLE PRECISION for dlansp
COMPLEX for clansp
DOUBLE COMPLEX for zlansp
Array, DIMENSION \((n(n+1) / 2)\).
The upper or lower triangle of the symmetric matrix \(A\), packed columnwise in a linear array. The \(j\)-th column of \(A\) is stored in the array ap as follows:
if uplo = 'U', ap(i \(+(j-1) j / 2)=A(i, j)\) for \(1 \leq i \leq j\);
if uplo = 'L', ap(i+(j-1) \((2 n-j) / 2)=A(i, j)\) for \(j \leq i \leq n\).
REAL for slansp and clansp.
DOUBLE PRECISION for dlansp and zlansp.
Workspace array, DIMENSION (max (1, lwork)), where
lwork \(\geq n\) when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.

\section*{Output Parameters}
val

REAL for slansp/clansp
DOUBLE PRECISION for dlansp/zlansp
Value returned by the function.

\section*{?lanhp}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.

Syntax
```

val = clanhp( norm, uplo, n, ap, work )
val = zlanhp( norm, uplo, n, ap, work )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The function ?lanhp returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix \(A\), supplied in packed form.

\section*{Input Parameters}
norm
uplo
\(n\)
ap
work

CHARACTER*1. Specifies the value to be returned by the routine: \(=\) 'M' or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix \(A\). \(=\) '1' or 'O' or '○': val \(=\operatorname{norm1}(A)\), 1 -norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val \(=\operatorname{normI}(A)\), infinity norm of the matrix \(A\) (maximum row sum),
\(=' F ', ' f\) ', 'E' or 'e': val \(=\operatorname{normF}(A)\), Frobenius norm of the matrix \(A\) (square root of sum of squares).

CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is supplied.

If uplo = 'U': Upper triangular part of \(A\) is supplied
If uplo = 'L': Lower triangular part of \(A\) is supplied.
INTEGER. The order of the matrix \(A\).
\(n \geq 0\). When \(n=0\), ? lanhp is set to zero.
COMPLEX for clanhp.
DOUBLE COMPLEX for zlanhp.
Array, DIMENSION \((n(n+1) / 2)\). The upper or lower triangle of the Hermitian matrix \(A\), packed columnwise in a linear array. The \(j\)-th column of \(A\) is stored in the array ap as follows:
if uplo \(=\) 'U', ap \((i+(j-1) j / 2)=A(i, j)\) for \(1 \leq i \leq j\);
if uplo = 'L', ap(i+(j-1) \((2 n-j) / 2)=A(i, j)\) for \(j \leq i \leq n\).
REAL for clanhp.

DOUBLE PRECISION for zlanhp.
Workspace array, DIMENSION (max (1, lwork)), where
lwork \(\geq n\) when norm \(=\) 'I' or '1' or 'O'; otherwise, work is not referenced.

\section*{Output Parameters}
val
REAL for clanhp.
DOUBLE PRECISION for zlanhp.
Value returned by the function.

\section*{?lanst/?lanht}

Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a real symmetric or complex
Hermitian tridiagonal matrix.

\section*{Syntax}
```

val = slanst( norm, n, d, e )
val = dlanst( norm, n, d, e )
val = clanht( norm, n, d, e )
val = zlanht( norm, n, d, e )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The functions ?lanst/?lanht return the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric or a complex Hermitian tridiagonal matrix \(A\).

\section*{Input Parameters}
norm
n

CHARACTER*1. Specifies the value to be returned by the routine: \(={ }^{\prime} \mathrm{M}^{\prime}\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{\mathrm{ij}}\right)\right)\), largest absolute value of the matrix A.
\(=\) '1' or 'O' or 'o': val \(=\operatorname{norm1}(A), 1\)-norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F', 'f', 'E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).

INTEGER. The order of the matrix \(A\).
\(n \geq 0\). When \(n=0\), ? lanst/? lanht is set to zero.
d
e

REAL for slanst/clanht
DOUBLE PRECISION for dlanst/zlanht
Array, DIMENSION (\(n\)). The diagonal elements of \(A\).
REAL for slanst
DOUBLE PRECISION for dlanst
COMPLEX for clanht
DOUBLE COMPLEX for zlanht
Array, DIMENSION (\(n-1\)).
The (\(n-1\)) sub-diagonal or super-diagonal elements of \(A\).

\section*{Output Parameters}

\section*{val}

REAL for slanst/clanht
DOUBLE PRECISION for dlanst/zlanht
Value returned by the function.

\section*{?lansy}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix.

\section*{Syntax}
```

val = slansy( norm, uplo, n, a, lda, work )
val = dlansy( norm, uplo, n, a, lda, work )
val = clansy( norm, uplo, n, a, lda, work )
val = zlansy( norm, uplo, n, a, lda, work )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The function ?lansy returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real/complex symmetric matrix \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface.
norm
CHARACTER*1. Specifies the value to be returned by the routine:
\(={ }^{\prime} \mathrm{M}^{\prime}\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix
A.
\(=\) '1' or 'O' or 'o': val = norm1 (A), 1-norm of the matrix \(A\) (maximum column sum),
```

    = 'I' or 'i': val = normI (A), infinity norm of the matrix }A\mathrm{ (maximum row sum),
    $=' F^{\prime}, ' f ', ' E '$ or 'e': val $=\operatorname{normF}(A)$, Frobenius norm of the matrix $A$ (square root of sum of squares).
CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix $A$ is to be referenced.
$=$ 'U': Upper triangular part of $A$ is referenced.
$=$ 'L': Lower triangular part of $A$ is referenced
INTEGER. The order of the matrix $A$. $n \geq 0$. When $n=0$, ? lansy is set to zero.
REAL for slansy
DOUBLE PRECISION for dlansy
COMPLEX for clansy
DOUBLE COMPLEX for zlansy
Array, size (Ida,n). The symmetric matrix $A$.
If uplo = 'U', the leading $n$-by-n upper triangular part of a contains the upper triangular part of the matrix $A$, and the strictly lower triangular part of $a$ is not referenced.
If uplo = 'L', the leading $n$-by- $n$ lower triangular part of a contains the lower triangular part of the matrix $A$, and the strictly upper triangular part of $a$ is not referenced.
INTEGER. The leading dimension of the array $a$.
$I d a \geq \max (n, 1)$.
REAL for slansy and clansy.
DOUBLE PRECISION for dlansy and zlansy.
Workspace array, DIMENSION (max (1, lwork)), where
lwork $\geq n$ when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.

```

\section*{Output Parameters}
val
REAL for slansy/clansy
DOUBLE PRECISION for dlansy/zlansy
Value returned by the function.

\section*{?lanhe}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.

\section*{Syntax}
```

val = clanhe( norm, uplo, n, a, lda, work )
val = zlanhe( norm, uplo, n, a, lda, work )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The function ? lanhe returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface.
```

norm CHARACTER*1. Specifies the value to be returned by the routine:
= 'M' or 'm': val = max(abs( }\mp@subsup{A}{ij}{})\mathrm{ ), largest absolute value of the matrix A.
= '1' or 'O' or 'O': val = norm1(A), 1-norm of the matrix A (maximum
column sum),
= 'I' or 'i': val = normI(A), infinity norm of the matrix A (maximum
row sum),
= 'F','f','E' or 'e': val = normF(A), Frobenius norm of the matrix A
(square root of sum of squares).
uplo
CHARACTER*1.

```
n
a
lda
work

Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is to be referenced.
\(=\) 'U': Upper triangular part of \(A\) is referenced.
\(=\) 'L': Lower triangular part of \(A\) is referenced
INTEGER. The order of the matrix \(A\). \(n \geq 0\). When \(n=0\), ? lanhe is set to zero.

COMPLEX for clanhe.
DOUBLE COMPLEX for zlanhe.
Array, size (Ida,n). The Hermitian matrix \(A\).
If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced.

If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

INTEGER. The leading dimension of the array \(a\).
\(l d a \geq \max (n, 1)\).
REAL for clanhe.

DOUBLE PRECISION for zlanhe.
Workspace array, DIMENSION (max (1, Iwork)), where
Iwork \(\geq n\) when norm \(=\) 'I' or '1' or 'O'; otherwise, work is not referenced.

\section*{Output Parameters}

REAL for clanhe.
DOUBLE PRECISION for zlanhe.
Value returned by the function.

\section*{?lantb}

Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.

\section*{Syntax}
```

val = slantb( norm, uplo, diag, n, k, ab, ldab, work )
val = dlantb( norm, uplo, diag, n, k, ab, ldab, work )
val = clantb( norm, uplo, diag, n, k, ab, ldab, work )
val = zlantb( norm, uplo, diag, n, k, ab, ldab, work )

```

Include Files
- mkl.fi

\section*{Description}

The function ?lantb returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an \(n\)-by- \(n\) triangular band matrix \(A\), with (\(k+1\)) diagonals.

\section*{Input Parameters}
norm
uplo

CHARACTER*1. Specifies the value to be returned by the routine:
\(=' \mathrm{M}\) ' or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix
A.
\(=\) ' 1 ' or ' \(O\) ' or 'o': val \(=\operatorname{norm} 1(A), 1\)-norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
= 'F', 'f', 'E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).

CHARACTER*1.
Specifies whether the matrix \(A\) is upper or lower triangular.
= 'U': Upper triangular
\(=\) 'L': Lower triangular.
diag
n
k

CHARACTER*1.
Specifies whether or not the matrix \(A\) is unit triangular.
\(=\) ' \(N^{\prime}\) : Non-unit triangular
= 'U': Unit triangular.
INTEGER. The order of the matrix \(A . n \geq 0\). When \(n=0\), ? lantb is set to zero.

INTEGER. The number of super-diagonals of the matrix \(A\) if uplo = 'U', or the number of sub-diagonals of the matrix \(A\) if uplo = 'L'. \(k \geq 0\).

REAL for slantb
DOUBLE PRECISION for dlantb
COMPLEX for clantb
DOUBLE COMPLEX for zlantb
Array, DIMENSION (Idab,n). The upper or lower triangular band matrix \(A\), stored in the first \(k+1\) rows of \(a b\).

The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows:
if uplo = 'U', \(a b(k+1+i-j, j)=a(i, j)\) for \(\max (1, j-k) \leq i \leq j\);
if uplo \(=\) 'L', \(a b(1+i-j, j)=a(i, j)\) for \(j \leq i \leq \min (n, j+k)\).
Note that when diag = 'U', the elements of the array \(a b\) corresponding to the diagonal elements of the matrix \(A\) are not referenced, but are assumed to be one.

INTEGER. The leading dimension of the array \(a b\).
\(1 d a b \geq k+1\).
REAL for slantb and clantb.
DOUBLE PRECISION for dlantb and zlantb.
Workspace array, DIMENSION (max (1, lwork)), where
lwork \(\geq n\) when norm = 'I' ; otherwise, work is not referenced.

\section*{Output Parameters}
val
REAL for slantb/clantb.
DOUBLE PRECISION for dlantb/zlantb.
Value returned by the function.

\section*{?lantp}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form.

\section*{Syntax}
```

val = slantp( norm, uplo, diag, n, ap, work )
val = dlantp( norm, uplo, diag, n, ap, work )
val = clantp( norm, uplo, diag, n, ap, work )
val = zlantp( norm, uplo, diag, n, ap, work )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The function ?lantp returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix \(A\), supplied in packed form.

\section*{Input Parameters}
```

norm CHARACTER*1. Specifies the value to be returned by the routine:
= 'M' or'm': val = max (abs ( }\mp@subsup{A}{ij}{\prime}))\mathrm{ ), largest absolute value of the matrix
A.
= '1' or 'O' or 'O': val = norm1(A), 1-norm of the matrix A
(maximum column sum),
= 'I' or 'i': val = normI(A), infinity norm of the matrix A (maximum
row sum),
= 'F','f','E' or 'e': val = normF(A), Frobenius norm of the matrix
A (square root of sum of squares).
uplo
diag
n
ap
CHARACTER*1.
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L':Lower triangular.
CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N': Non-unit triangular
= 'U': Unit triangular.
INTEGER. The order of the matrix A.
n\geq0.When n = 0, ?lantp is set to zero.
REAL for slantp
DOUBLE PRECISION for dlantp
COMPLEX for clantp
DOUBLE COMPLEX for zlantp
Array, DIMENSION (n(n+1)/2).

```

The upper or lower triangular matrix \(A\), packed columnwise in a linear array. The \(j\)-th column of \(A\) is stored in the array \(a p\) as follows:
if uplo = 'U', AP \((i+(j-1) j / 2)=a(i, j)\) for \(1 \leq i \leq j\);
if uplo \(=\) 'L', ap \((i+(j-1)(2 n-j) / 2)=a(i, j)\) for \(j \leq i \leq n\).
Note that when diag = 'U', the elements of the array ap corresponding to the diagonal elements of the matrix \(A\) are not referenced, but are assumed to be one.

REAL for slantp and clantp.
DOUBLE PRECISION for dlantp and zlantp.
Workspace array, DIMENSION (max (1, lwork)), where lwork \(\geq n\) when norm = ' I' ; otherwise, work is not referenced.

\section*{Output Parameters}
val
REAL for slantp/clantp.
DOUBLE PRECISION for dlantp/zlantp.
Value returned by the function.

\section*{?lantr}

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.

\section*{Syntax}
```

val = slantr( norm, uplo, diag, m, n, a, lda, work )
val = dlantr( norm, uplo, diag, m, n, a, lda, work )
val = clantr( norm, uplo, diag, m, n, a, lda, work )
val = zlantr( norm, uplo, diag, m, n, a, lda, work )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The function ? lantr returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface.
norm
CHARACTER*1. Specifies the value to be returned by the routine:
\(=\) 'M' or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix
A.
\(=\) '1' or 'O' or 'O': val \(=\) norm1 (A), 1-norm of the matrix \(A\)
(maximum column sum),
m
a
Ida
work
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F', 'f','E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).

CHARACTER*1.
Specifies whether the matrix \(A\) is upper or lower trapezoidal.
= 'U': Upper trapezoidal
\(=\) 'L': Lower trapezoidal.
Note that \(A\) is triangular instead of trapezoidal if \(m=n\).
CHARACTER*1.
Specifies whether or not the matrix \(A\) has unit diagonal.
= 'N': Non-unit diagonal
\(=\) 'U': Unit diagonal.
INTEGER. The number of rows of the matrix \(A . m \geq 0\), and if uplo \(=' U ', m\) \(\leq n\).

When \(m=0\), ?lantr is set to zero.
INTEGER. The number of columns of the matrix \(A . n \geq 0\), and if uplo \(=\) 'L', \(n \leq m\).
When \(n=0\), ?lantr is set to zero.
REAL for slantr
DOUBLE PRECISION for dlantr
COMPLEX for clantr
DOUBLE COMPLEX for zlantr
Array, DIMENSION (Ida,n).
The trapezoidal matrix \(A(A\) is triangular if \(m=n)\).
If uplo = 'U', the leading \(m\)-by- \(n\) upper trapezoidal part of the array a contains the upper trapezoidal matrix, and the strictly lower triangular part of \(A\) is not referenced.

If uplo = 'L', the leading m-by-n lower trapezoidal part of the array a contains the lower trapezoidal matrix, and the strictly upper triangular part of \(A\) is not referenced. Note that when diag = 'U', the diagonal elements of \(A\) are not referenced and are assumed to be one.

INTEGER. The leading dimension of the array \(a\).
\(I d a \geq \max (m, 1)\).
REAL for slantr/clantrp.
DOUBLE PRECISION for dlantr/zlantr.
Workspace array, DIMENSION (max (1, lwork)), where
lwork \(\geq m\) when norm = 'I' ; otherwise, work is not referenced.

\section*{Output Parameters}
```

val REAL for slantr/clantrp.
DOUBLE PRECISION for dlantr/zlantr.
Value returned by the function.

```
?lanv2
Computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form.

\section*{Syntax}
```

call slanv2( a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn )
call dlanv2( a, b, c, d, rtlr, rtli, rt2r, rt2i, cs, sn )

```

Include Files
- mkl.fi

\section*{Description}

The routine computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form:
\[
\left[\begin{array}{ll}
a & b \\
a & d
\end{array}\right]=\left[\begin{array}{cc}
a s & -s n \\
s n & a s
\end{array}\right]\left[\begin{array}{cc}
a a & b b \\
a c & d d
\end{array}\right]\left[\begin{array}{cc}
a s & s n \\
-s n & a s
\end{array}\right]
\]
where either
1. \(\quad c c=0\) so that \(a a\) and \(d d\) are real eigenvalues of the matrix, or
2. \(a a=d d\) and \(b b^{\star} c c<0\), so that \(a a \pm \operatorname{sqrt}\left(b b^{\star} c c\right)\) are complex conjugate eigenvalues.

The routine was adjusted to reduce the risk of cancellation errors, when computing real eigenvalues, and to ensure, if possible, that abs (rt1r) \(\geq a b s(r t 2 r)\).

\section*{Input Parameters}
\(a, b, c, d\)
REAL for slanv2
DOUBLE PRECISION for dlanv2.

On entry, elements of the input matrix.

\section*{Output Parameters}
```

a,b,c,d
rt1r, rt1i, rt2r, rt2i

```

On exit, overwritten by the elements of the standardized Schur form.
REAL for slanv2
DOUBLE PRECISION for dlanv2.
The real and imaginary parts of the eigenvalues.
If the eigenvalues are a complex conjugate pair, rtIi \(>0\).
```

CS,sn REAL for slanv2
DOUBLE PRECISION for dlanv2.
Parameters of the rotation matrix.

```

\section*{?lapll}

Measures the linear dependence of two vectors.

\section*{Syntax}
```

call slapll( n, x, incx, Y, incy, ssmin )
call dlapll( n, x, incx, Y, incy, ssmin )
call clapll( n, x, incx, Y, incy, ssmin )
call zlapll( n, x, incx, Y, incy, ssmin )

```

Include Files
- mkl.fi

\section*{Description}

Given two column vectors \(x\) and \(y\) of length \(n\), let
\(A=(x y)\) be the \(n\)-by- 2 matrix.
The routine ? lapll first computes the \(Q R\) factorization of \(A\) as \(A=Q * R\) and then computes the SVD of the 2-by-2 upper triangular matrix \(R\). The smaller singular value of \(R\) is returned in ssmin, which is used as the measurement of the linear dependency of the vectors \(x\) and \(y\).

\section*{Input Parameters}
\(n\)

X

Y
incx

INTEGER. The length of the vectors \(x\) and \(y\).
REAL for slapll
DOUBLE PRECISION for dlapll
COMPLEX for clapll
DOUBLE COMPLEX for zlapll
Array, DIMENSION(1+(n-1) incx).
On entry, \(x\) contains the \(n\)-vector \(x\).
REAL for slapll
DOUBLE PRECISION for dlapll
COMPLEX for clapll
DOUBLE COMPLEX for zlapll
Array, DIMENSION (\(1+(n-1) i n c y)\).
On entry, \(y\) contains the \(n\)-vector \(y\).
INTEGER. The increment between successive elements of \(x\); incx \(>0\).

INTEGER. The increment between successive elements of \(y\); incy \(>0\).

\section*{Output Parameters}
```

X

```

On exit, \(x\) is overwritten.
On exit, \(y\) is overwritten.
REAL for slapll/clapll
DOUBLE PRECISION for dlapll/zlapll
The smallest singular value of the \(n\)-by- 2 matrix \(A=(x y)\).
```

?lapmr
Rearranges rows of a matrix as specified by a permutation vector.

```

\section*{Syntax}
```

call slapmr( forwrd, m, n, x, ldx, k )

```
call slapmr(forwrd, m, n, x, ldx, k)
call dlapmr(forwrd, m, n, x, ldx, k)
call dlapmr(forwrd, m, n, x, ldx, k)
call clapmr(forwrd, m, n, x, ldx, k)
call clapmr(forwrd, m, n, x, ldx, k)
call zlapmr(forwrd, m, n, x, ldx, k)
call zlapmr(forwrd, m, n, x, ldx, k)
call lapmr(x,k[,forwrd])
```

call lapmr( x,k[,forwrd] )

```

Include Files
- mkl.fi

\section*{Description}

The ? lapmr routine rearranges the rows of the \(m\)-by- \(n\) matrix \(X\) as specified by the permutation \(k(1), k(2), \ldots, k(m)\) of the integers \(1, \ldots, m\).

If forwrd \(=\).TRUE., forward permutation:
\(X(k(i, *))\) is moved to \(X(i, *)\) for \(i=1,2, \ldots, m\).
If forwrd \(=\).FALSE., backward permutation:
\(X(i, *)\) is moved to \(X(k(i, *))\) for \(i=1,2, \ldots, m\).

\section*{Input Parameters}

The data types are given for the Fortran interface.
LOGICAL.
If forwrd = .TRUE., forward permutation.
If forwrd = .FALSE., backward permutation.
m
INTEGER. The number of rows of the matrix \(X . m \geq 0\).
INTEGER. The number of columns of the matrix \(X . n \geq 0\).
REAL for slapmr
DOUBLE PRECISION for dlapmr
```

COMPLEX for clapmr
DOUBLE COMPLEX for zlapmr
Array, size (Idx,n)On entry, the m-by-n matrix }x\mathrm{ .
INTEGER. The leading dimension of the array X,Id X\geq max (1,m).
INTEGER. Array, size (m). On entry, k contains the permutation vector and
is used as internal workspace.

```

\section*{Output Parameters}

X
k

On exit, \(x\) contains the permuted matrix \(X\).
On exit, \(k\) is reset to its original value.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ?lapmr interface are as follows:
```

x Holds the matrix }X\mathrm{ of size ( }n,n)\mathrm{ .
k Holds the vector of length m.
forwrd Specifies the permutation. Must be '.TRUE.' or '.FALSE.'.

```

\section*{See Also}
?lapmt

\section*{?lapmt \\ Performs a forward or backward permutation of the columns of a matrix.}

\section*{Syntax}
```

call slapmt( forwrd, m, n, x, ldx, k )
call dlapmt( forwrd, m, n, x, ldx, k )
call clapmt( forwrd, m, n, x, ldx, k )
call zlapmt( forwrd, m, n, x, ldx, k )

```

Include Files
- mkl.fi

\section*{Description}

The routine ?lapmt rearranges the columns of the \(m\)-by- \(n\) matrix \(X\) as specified by the permutation \(k(1), k(2), \ldots, k(n)\) of the integers \(1, \ldots, n\).

If forwrd= .TRUE., forward permutation:
\(X(*, k(j))\) is moved to \(X(*, j)\) for \(j=1,2, \ldots, n\).
If forwrd = .FALSE., backward permutation:
\(X(*, j)\) is moved to \(X(*, k(j))\) for \(j=1,2, \ldots, n\).

\section*{Input Parameters}
forwrd
m
\(n\)

X
\(1 d x\)
k

LOGICAL.
If forwrd= .TRUE., forward permutation
If forwrd = .FALSE., backward permutation
INTEGER. The number of rows of the matrix \(X . m \geq 0\).
INTEGER. The number of columns of the matrix \(X . n \geq 0\).
REAL for slapmt
DOUBLE PRECISION for dlapmt
COMPLEX for clapmt
DOUBLE COMPLEX for zlapmt
Array, size \((I d x, n)\). On entry, the \(m\)-by- \(n\) matrix \(X\).
INTEGER. The leading dimension of the array \(x, I d x \geq \max (1, m)\).
INTEGER. Array, size (\(n\)). On entry, \(k\) contains the permutation vector and is used as internal workspace.

\section*{Output Parameters}

X
On exit, \(x\) contains the permuted matrix \(X\).
On exit, \(k\) is reset to its original value.

\section*{See Also}
?lapmr
?lapy2
Returns sqrt (\(x^{2}+y^{2}\)).
Syntax
```

val = slapy2( x, y )
val = dlapy2( x, y )

```

Include Files
- mkl.fi

\section*{Description}

The function ?lapy2 returns sqrt \(\left(x^{2}+y^{2}\right)\), avoiding unnecessary overflow or harmful underflow.

\section*{Input Parameters}

The data types are given for the Fortran interface.
\(x, y\)
REAL for slapy2

DOUBLE PRECISION for dlapy2
Specify the input values \(x\) and \(y\).

\section*{Output Parameters}
val
REAL for slapy2
DOUBLE PRECISION for dlapy2.
Value returned by the function.
If val=-1D0, the first argument was NaN .
If val=-2D0, the second argument was NaN .

\section*{?lapy3}

Returns sqrt \(\left(x^{2}+y^{2}+z^{2}\right)\).
Syntax
```

val = slapy3( x, y, z )
val = dlapy3( x, y, z )

```

Include Files
- mkl.fi

\section*{Description}

The function ?lapy3 returns sqrt \(\left(x^{2}+y^{2}+z^{2}\right)\), avoiding unnecessary overflow or harmful underflow.

\section*{Input Parameters}

The data types are given for the Fortran interface.
\(x, y, z\)
REAL for slapy3
DOUBLE PRECISION for dlapy3
Specify the input values \(x, y\) and \(z\).

\section*{Output Parameters}
val
REAL for slapy3
DOUBLE PRECISION for dlapy3.
Value returned by the function.
If val \(=-1 D 0\), the first argument was NaN .
If val \(=-2 \mathrm{DO}\), the second argument was NaN.
If val \(=-3 \mathrm{DO}\), the third argument was NaN .

\section*{?laqgb}

Scales a general band matrix, using row and column scaling factors computed by ?gbequ.

\section*{Syntax}
```

call slaqgb( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed )
call dlaqgb( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed )
call claqgb( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed )
call zlaqgb( m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed )

```
Include Files
- mkl.fi

\section*{Description}

The routine equilibrates a general \(m\)-by- \(n\) band matrix \(A\) with \(k l\) subdiagonals and \(k u\) superdiagonals using the row and column scaling factors in the vectors \(r\) and \(c\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & INTEGER. The number of rows of the matrix \(A . m \geq 0\). \\
\hline \(n\) & INTEGER. The number of columns of the matrix \(A . n \geq 0\). \\
\hline kl & INTEGER. The number of subdiagonals within the band of \(A . k l \geq 0\). \\
\hline ku & INTEGER. The number of superdiagonals within the band of \(A\). \(k u \geq 0\). \\
\hline \multirow[t]{5}{*}{\(a b\)} & REAL for slaqgb \\
\hline & DOUBLE PRECISION for dlaqgb \\
\hline & COMPLEX for claqgb \\
\hline & DOUBLE COMPLEX for zlaqgb \\
\hline & Array, DIMENSION (Idab,n). On entry, the matrix \(A\) in band storage, in rows 1 to \(k l+k u+1\). The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows: \(a b(k u+1+i-j, j)=A(i, j)\) for \(\max (1, j-k u) \leq i \leq\) \(\min (m, j+k l)\). \\
\hline 1 dab & INTEGER. The leading dimension of the array \(a b\). \\
\hline & \(l d a \geq k l+k u+1\). \\
\hline \multirow[t]{3}{*}{amax} & REAL for slaqgb/claqgb \\
\hline & DOUBLE PRECISION for dlaqgb/zlaqgb \\
\hline & Absolute value of largest matrix entry. \\
\hline \multirow[t]{3}{*}{\(r, c\)} & REAL for slaqgb/claqgb \\
\hline & DOUBLE PRECISION for dlaqgb/zlaqgb \\
\hline & Arrays \(r(m), c(n)\). Contain the row and column scale factors for \(A\), respectively. \\
\hline \multirow[t]{2}{*}{rowend} & REAL for slaqgb/claqgb \\
\hline & DOUBLE PRECISION for dlaqgb/zlaqgb \\
\hline
\end{tabular}
```

Ratio of the smallest $r(i)$ to the largest $r(i)$.
colcnd
REAL for slaqgb/claqgb
DOUBLE PRECISION for dlaqgb/zlaqgb
Ratio of the smallest $c(i)$ to the largest $c(i)$.

```

\section*{Output Parameters}
\(a b\)
equed
On exit, the equilibrated matrix, in the same storage format as \(A\). See equed for the form of the equilibrated matrix.
```

CHARACTER*1.

```

Specifies the form of equilibration that was done.
If equed \(=\) ' \(N\) ': No equilibration
If equed = 'R': Row equilibration, that is, \(A\) has been premultiplied by \(\operatorname{diag}(r)\).
If equed \(=\) ' C': Column equilibration, that is, \(A\) has been postmultiplied by diag(c).
If equed \(=\) ' \(B\) ': Both row and column equilibration, that is, \(A\) has been replaced by diag \((r) * A * \operatorname{diag}(c)\).

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if row or column scaling should be done based on the ratio of the row or column scaling factors. If rowend < thresh, row scaling is done, and if colcnd < thresh, column scaling is done. large and small are threshold values used to decide if row scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, row scaling is done.

\section*{?laqge}

Scales a general rectangular matrix, using row and column scaling factors computed by ?geequ.

\section*{Syntax}
```

call slaqge( m, n, a, lda, r, c, rowcnd, colcnd, amax, equed )
call dlaqge( m, n, a, lda, r, c, rowcnd, colcnd, amax, equed )
call claqge( m, n, a, lda, r, c, rowcnd, colcnd, amax, equed )
call zlaqge( m, n, a, lda, r, c, rowcnd, colcnd, amax, equed )

```

Include Files
- mkl.fi

\section*{Description}

The routine equilibrates a general \(m\)-by- \(n\) matrix \(A\) using the row and column scaling factors in the vectors \(r\) and \(c\).

\section*{Input Parameters}
m
n
a
\(r\)

C
rowend
colcnd
amax

INTEGER. The number of rows of the matrix \(A\).
\(m \geq 0\).
INTEGER. The number of columns of the matrix \(A\).
\(n \geq 0\).
REAL for slaqge
DOUBLE PRECISION for dlaqge
COMPLEX for claqge
DOUBLE COMPLEX for zlaqge
Array, DIMENSION (Ida,n). On entry, the \(m\)-by-n matrix \(A\).
INTEGER. The leading dimension of the array \(a\).
\(l d a \geq \max (m, 1)\).
REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Array, DIMENSION (\(m\)). The row scale factors for A.
REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Array, DIMENSION (\(n\)). The column scale factors for A.
REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Ratio of the smallest \(r(i)\) to the largest \(r(i)\).
REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Ratio of the smallest \(c(i)\) to the largest \(c(i)\).
REAL for slanqge/claqge
DOUBLE PRECISION for dlaqge/zlaqge
Absolute value of largest matrix entry.

\section*{Output Parameters}
a
equed

On exit, the equilibrated matrix.
See equed for the form of the equilibrated matrix.
CHARACTER*1.
Specifies the form of equilibration that was done.
If equed \(=\) ' \(N\) ': No equilibration

If equed = 'R': Row equilibration, that is, \(A\) has been premultiplied by diag(r).
If equed \(=\) ' C': Column equilibration, that is, \(A\) has been postmultiplied by diag(c).

If equed \(=\) ' B ': Both row and column equilibration, that is, \(A\) has been replaced by diag \((r) * A * \operatorname{diag}(c)\).

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if row or column scaling should be done based on the ratio of the row or column scaling factors. If rowend < thresh, row scaling is done, and if colcnd < thresh, column scaling is done. large and small are threshold values used to decide if row scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, row scaling is done.

\section*{?laqhb \\ Scales a Hermetian band matrix, using scaling factors \\ computed by ?pbequ.}

\section*{Syntax}
```

call claqhb( uplo, n, kd, ab, ldab, s, scond, amax, equed )
call zlaqhb( uplo, n, kd, ab, ldab, s, scond, amax, equed )

```

Include Files
- mkl.fi

\section*{Description}

The routine equilibrates a Hermetian band matrix \(A\) using the scaling factors in the vector \(s\).

\section*{Input Parameters}
```

uplo

```
n
\(k d\)
\(a b\)

CHARACTER*1.
Specifies whether the upper or lower triangular part of the band matrix \(A\) is stored.
If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.
INTEGER. The order of the matrix \(A\).
\(n \geq 0\).
INTEGER. The number of super-diagonals of the matrix \(A\) if uplo = 'U', or the number of sub-diagonals if uplo = 'L'.
\(k a \geq 0\).
COMPLEX for claqhb
DOUBLE COMPLEX for zlaqhb

Array, DIMENSION (/dab, \(n\)). On entry, the upper or lower triangle of the band matrix \(A\), stored in the first \(k d+1\) rows of the array. The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows:
if uplo \(=\) 'U', \(a b(k d+1+i-j, j)=A(i, j)\) for max \((1, j-k d) \leq i \leq j\); if uplo \(=' L ', a b(1+i-j, j)=A(i, j)\) for \(j \leq i \leq \min (n, j+k d)\).

INTEGER. The leading dimension of the array \(a b\).
\(1 d a b \geq k d+1\).
REAL for claqsb
DOUBLE PRECISION for zlaqsb
Ratio of the smallest \(s(i)\) to the largest \(s(i)\).
REAL for claqsb
DOUBLE PRECISION for zlaqsb
Absolute value of largest matrix entry.

\section*{Output Parameters}
\(a b\)

S
equed

On exit, if info \(=0\), the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{H \star} U\) or \(A=L^{\star} L^{H}\) of the band matrix \(A\), in the same storage format as \(A\).

REAL for claqsb
DOUBLE PRECISION for zlaqsb
Array, DIMENSION (\(n\)). The scale factors for A.
CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed \(=\) ' \(Y\) ': Equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond < thresh, scaling is done.
The values large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

\section*{?laqp2}

Computes a QR factorization with column pivoting of the matrix block.

\section*{Syntax}
```

call slaqp2( m, n, offset, a, lda, jpvt, tau, vn1, vn2, work )
call dlaqp2( m, n, offset, a, lda, jpvt, tau, vn1, vn2, work )

```
```

call claqp2( m, n, offset, a, lda, jpvt, tau, vn1, vn2, work )
call zlaqp2( m, n, offset, a, lda, jpvt, tau, vn1, vn2, work )

```

Include Files
- mkl.fi

\section*{Description}

The routine computes a \(Q R\) factorization with column pivoting of the block \(A(o f f s e t+1: m, 1: n)\). The block \(A(1:\) offset, \(1: n)\) is accordingly pivoted, but not factorized.

\section*{Input Parameters}
```

m
n
offset
a
Ida
jpvt
vn1, vn2
work
INTEGER. The number of rows of the matrix $A . m \geq 0$.
INTEGER. The number of columns of the matrix $A . n \geq 0$.
INTEGER. The number of rows of the matrix $A$ that must be pivoted but no factorized. offset $\geq 0$.
REAL for slaqp2
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
DOUBLE COMPLEX for zlaqp2
Array, DIMENSION (/da,n). On entry, the $m$-by- $n$ matrix $A$.
INTEGER. The leading dimension of the array a. Ida $\max (1, m)$.
INTEGER.
Array, DIMENSION ( $n$ ).
On entry, if jpvt(i) $\neq 0$, the $i$-th column of $A$ is permuted to the front of $A * P$ (a leading column); if jpvt (i) $=0$, the $i$-th column of $A$ is a free column.
REAL for slaqp2/claqp2
DOUBLE PRECISION for dlaqp2/zlaqp2
Arrays, DIMENSION ( $n$ ) each. Contain the vectors with the partial and exact column norms, respectively.
REAL for slaqp2
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
DOUBLE COMPLEX for zlaqp2 Workspace array, DIMENSION ( $n$ ).

```

\section*{Output Parameters}
a
On exit, the upper triangle of block \(A(o f f s e t+1: m, 1: n\)) is the triangular factor obtained; the elements in block \(A(o f f s e t+1: m, 1: n\)) below the diagonal, together with the array tau, represent the orthogonal matrix \(Q\) as a product of elementary reflectors. Block \(A(1: o f f s e t, 1: n)\) has been accordingly pivoted, but not factorized.

On exit, if jpvt (i) \(=k\), then the \(i\)-th column of \(A^{*} P\) was the \(k\)-th column of \(A\).

REAL for slaqp2
DOUBLE PRECISION for dlaqp2
COMPLEX for claqp2
DOUBLE COMPLEX for zlaqp2
Array, DIMENSION (min \((m, n))\).
The scalar factors of the elementary reflectors.
vn1, vn2
Contain the vectors with the partial and exact column norms, respectively.

\section*{?laqps}

Computes a step of \(Q R\) factorization with column pivoting of a real m-by-n matrix A by using BLAS level
3.

Syntax
```

call slaqps( m, n, offset, nb, kb, a, lda, jpvt, tau, vnl, vn2, auxv, f, ldf)
call dlaqps( m, n, offset, nb, kb, a, lda, jpvt, tau, vn1, vn2, auxv, f, ldf )
call claqps( m, n, offset, nb, kb, a, lda, jpvt, tau, vnl, vn2, auxv, f, ldf )
call zlaqps( m, n, offset, nb, kb, a, lda, jpvt, tau, vnl, vn2, auxv, f, ldf )

```

Include Files
- mkl.fi

\section*{Description}

The routine computes a step of \(Q R\) factorization with column pivoting of a real \(m\)-by- \(n\) matrix \(A\) by using BLAS level 3. The routine tries to factorize \(N B\) columns from \(A\) starting from the row offset +1 , and updates all of the matrix with BLAS level 3 routine ? gemm.

In some cases, due to catastrophic cancellations, ? laqps cannot factorize \(N B\) columns. Hence, the actual number of factorized columns is returned in \(k b\).

Block \(A(1:\) offset, \(1: n)\) is accordingly pivoted, but not factorized.

\section*{Input Parameters}
m
INTEGER. The number of rows of the matrix \(A . m \geq 0\).
\(n\)
INTEGER. The number of columns of the matrix \(A . n \geq 0\).
```

offset INTEGER. The number of rows of A that have been factorized in previous
steps.
INTEGER. The number of columns to factorize.
REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
DOUBLE COMPLEX for zlaqps
Array, DIMENSION (Ida,n).
On entry, the m-by-n matrix }A\mathrm{ .
INTEGER. The leading dimension of the array a.
lda\geq max (1,m).
INTEGER. Array, DIMENSION (n).
If jpvt(I) =k then column k of the full matrix A has been permuted into
position i in AP.
REAL for slaqps/claqps
DOUBLE PRECISION for dlaqps/zlaqps
Arrays, DIMENSION ( }n\mathrm{ ) each. Contain the vectors with the partial and exact
column norms, respectively.
REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
DOUBLE COMPLEX for zlaqps
Array, DIMENSION (nb). Auxiliary vector.
REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
DOUBLE COMPLEX for zlaqps
Array, DIMENSION (Idf,nb). For real flavors, matrix F}\mp@subsup{F}{}{T}=\mp@subsup{L}{}{*}\mp@subsup{Y}{}{T*}A\mathrm{ . For
complex flavors, matrix }\mp@subsup{F}{}{H}=\mp@subsup{L}{}{*}\mp@subsup{Y}{}{H*}A\mathrm{ .
INTEGER. The leading dimension of the array $f$.
$I d f \geq \max (1, n)$.

```

\section*{Output Parameters}
kb
a

INTEGER. The number of columns actually factorized.
On exit, block \(A\) (offset+1:m, \(1: k b\)) is the triangular factor obtained and block \(A(1\) :offset, \(1: n)\) has been accordingly pivoted, but no factorized. The rest of the matrix, block \(A\) (offset \(+1: m, k b+1: n\)) has been updated.
```

jpvt INTEGER array, DIMENSION (n). If jpvt(I) = k then column k of the full
matrix A has been permuted into position i in AP.
REAL for slaqps
DOUBLE PRECISION for dlaqps
COMPLEX for claqps
DOUBLE COMPLEX for zlaqps
Array, DIMENSION (kb). The scalar factors of the elementary reflectors.
vn1, vn2
auxv
f
The vectors with the partial and exact column norms, respectively.
Auxiliary vector.
Matrix F}\mp@subsup{F}{}{\prime}=\mp@subsup{L}{}{*}\mp@subsup{Y}{}{\prime}*A

```

\section*{?laqr0}

Computes the eigenvalues of a Hessenberg matrix, and optionally the marixes from the Schur decomposition.

\section*{Syntax}
```

call slaqr0( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, work, lwork,
info )
call dlaqr0( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, work, lwork,
info )
call claqr0( wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork,
info )
call zlaqr0( wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork,
info )

```

Include Files
- mkl.fi

\section*{Description}

The routine computes the eigenvalues of a Hessenberg matrix \(H\), and, optionally, the matrices \(T\) and \(Z\) from the Schur decomposition \(H=Z^{\star} T^{\star} Z^{H}\), where \(T\) is an upper quasi-triangular/triangular matrix (the Schur form), and \(Z\) is the orthogonal/unitary matrix of Schur vectors.

Optionally \(Z\) may be postmultiplied into an input orthogonal/unitary matrix \(Q\) so that this routine can give the Schur factorization of a matrix \(A\) which has been reduced to the Hessenberg form \(H\) by the orthogonal/ unitary matrix \(Q: A=Q^{\star} H^{\star} Q^{H}=(Q Z)^{\star} H^{\star}(Q Z)^{H}\).

\section*{Input Parameters}
wantt
LOGICAL.
If wantt = .TRUE., the full Schur form \(T\) is required;
If wantt \(=\).FALSE., only eigenvalues are required.
```

wantz
n
ilo, ihi
h
Idh
iloz, ihiz
z
Idz
work
l work
LOGICAL.
If wantz = .TRUE., the matrix of Schur vectors Z is required;
If wantz = .FALSE., Schur vectors are not required.
INTEGER. The order of the Hessenberg matrix H. (n\geq0).
INTEGER.
It is assumed that $H$ is already upper triangular in rows and columns 1:ilo-1 and ihi+1:n, and if ilo > 1 then $H(i l o, i l o-1)=0$.
ilo and ihi are normally set by a previous call to cgebal, and then passed to cgehrd when the matrix output by cgebal is reduced to Hessenberg form. Otherwise, ilo and ihi should be set to 1 and $n$, respectively.
If $n>0$, then $1 \leq i l o \leq i h i \leq n$.
If $n=0$, then $i l o=1$ and $i h i=0$
REAL for slaqr0
DOUBLE PRECISION for dlaqr0
COMPLEX for claqr0
DOUBLE COMPLEX for zlaqr0.
Array, DIMENSION $(I d h, n)$, contains the upper Hessenberg matrix $H$.
$\operatorname{INTEGER}$. The leading dimension of the array $h . l d h \geq \max (1, n)$.
INTEGER. Specify the rows of $Z$ to which transformations must be applied if wantz is.TRUE., $1 \leq i l o z \leq i l o ; i h i \leq i h i z \leq n$.
REAL for slaqr0
DOUBLE PRECISION for dlaqr0
COMPLEX for claqr0
DOUBLE COMPLEX for zlaqr0.
Array, DIMENSION (Idz, ihi), contains the matrix $Z$ if wantz is .TRUE . . If wantz is .FALSE., $z$ is not referenced.
INTEGER. The leading dimension of the array $z$.
If wantz is. TRUE., then $I d z \geq \max (1$, ihiz). Otherwise, $I d z \geq 1$.
REAL for slaqr0
DOUBLE PRECISION for dlaqr0
COMPLEX for claqr0
DOUBLE COMPLEX for zlaqr0.
Workspace array with dimension Iwork.
INTEGER. The dimension of the array work.
lwork $\geq \max (1, n)$ is sufficient, but for the optimal performance a greater workspace may be required, typically as large as $6 * n$.

```

It is recommended to use the workspace query to determine the optimal workspace size. If 1 work \(=-1\), then the routine performs a workspace query: it estimates the optimal workspace size for the given values of the input parameters \(n, i l o\), and ihi. The estimate is returned in work(1). No error messages related to the \(l\) work is issued by xerbla. Neither \(H\) nor \(Z\) are accessed.

\section*{Output Parameters}
h
If infolo, and wantt is .TRUE., then \(h\) contains the upper quasi-triangular/ triangular matrix \(T\) from the Schur decomposition (the Schur form).
If info=0, and wantt is .FALSE., then the contents of \(h\) are unspecified on exit.
(The output values of \(h\) when info \(>0\) are given under the description of the info parameter below.)

The routine may explicitly set \(h(i, j)\) for \(i>j\) and \(j=1,2, \ldots i l o-1\) or j=ihi+1, ihi+2,...n.

On exit work (1) contains the minimum value of Iwork required for optimum performance.

COMPLEX for claqr0
DOUBLE COMPLEX for zlaqr0.
Arrays, DIMENSION(\(n\)). The computed eigenvalues of \(h(i l o\) :ihi, ilo:ihi) are stored in w(ilo:ihi). If wantt is .TRUE., then the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in \(h\), with \(w(i)=h(i, i)\).

REAL for slaqr0
DOUBLE PRECISION for dlaqr0
Arrays, DIMENSION(ihi) each. The real and imaginary parts, respectively, of the computed eigenvalues of \(h(i l o: i h i, i l o: i h i)\) are stored in \(w r(i l o: i h i)\) and wi(ilo:ihi). If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of wr and \(w i\), say the \(i\)-th and \((i+1)\)-th, with \(w i(i)>0\) and \(w i(i+1)<0\). If wantt is .TRUE., then the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in \(h\), with \(w r(i)=h(i, i)\), and if \(h(i: i+1, i: i+1)\) is a 2-by-2 diagonal block, then wi(i) \(=\operatorname{sqrt}(-h(i\) \(+1, i) * h(i, i+1)\)).

If wantz is .TRUE., then \(z(i l o: i h i, ~ i l o z: i h i z) ~ i s ~ r e p l a c e d ~ b y ~ z(i l o: i h i, ~\) iloz:ihiz)*U, where \(U\) is the orthogonal/unitary Schur factor of h(ilo:ihi, ilo:ihi).
If wantz is .FALSE., \(z\) is not referenced.
(The output values of \(z\) when info \(>0\) are given under the description of the info parameter below.)

INTEGER.
\(=0\) : the execution is successful.
\(>0\) : if info \(=i\), then the routine failed to compute all the eigenvalues. Elements 1:ilo-1 and \(i+1: n\) of wr and wi contain those eigenvalues which have been successfully computed.
\(>0\) : if wantt is.FALSE., then the remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix rows and columns ilo through info of the final output value of \(h\).
\(>0\) : if wantt is .TRUE., then (initial value of \(h\)) \(* U=U^{*}\) (final value of \(h\), where \(U\) is an orthogonal/unitary matrix. The final value of \(h\) is upper Hessenberg and quasi-triangular/triangular in rows and columns info+1 through ihi.
\(>0\) : if wantz is.TRUE., then (final value of \(z\) (ilo:ihi, iloz: ihiz) \()=(\) initial value of \(z(i l o\) :ihi, iloz:ihiz)*U, where \(U\) is the orthogonal/unitary matrix in the previous expression (regardless of the value of want \(t\)).
\(>0\) : if wantz is .FALSE., then \(z\) is not accessed.

\section*{?laqr1}

Sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix \(H\) and specified shifts.

\section*{Syntax}
```

call slaqr1( n, h, ldh, sr1, sil, sr2, si2, v )
call dlaqr1( n, h, ldh, srl, sil, sr2, si2, V )
call claqr1( n, h, ldh, s1, s2, V )
call zlaqr1( n, h, ldh, s1, s2, v )

```

Include Files
- mkl.fi

\section*{Description}

Given a 2-by-2 or 3-by-3 matrix \(H\), this routine sets \(v\) to a scalar multiple of the first column of the product
```

K = (H - sl*I)*(H - s2*I),or K = (H - (sr1 + i*sil)*I)*(H - (sr2 + i*si2)*I)

```
scaling to avoid overflows and most underflows.
It is assumed that either 1) srl \(=\operatorname{sr2}\) and sil \(=-\) si2, or 2) sil \(=\operatorname{si2}=0\).
This is useful for starting double implicit shift bulges in the QR algorithm.

\section*{Input Parameters}
\(n\)
INTEGER.
The order of the matrix \(H\). n must be equal to 2 or 3 .
sr1, si2, sr2, si2
REAL for slaqr1
DOUBLE PRECISION for dlaqr1

Shift values that define \(K\) in the formula above.
s1, s2
h
\(1 d h\)

COMPLEX for claqr1
DOUBLE COMPLEX for zlaqr1.
Shift values that define \(K\) in the formula above.
REAL for slaqr1
DOUBLE PRECISION for dlaqr1
COMPLEX for claqr1
DOUBLE COMPLEX for zlaqr1.
Array, DIMENSION (Idh, n), contains 2-by-2 or 3-by-3 matrix \(H\) in the formula above.

INTEGER.
The leading dimension of the array \(h\) just as declared in the calling routine. \(1 d h \geq n\).

\section*{Output Parameters}

\section*{v}

REAL for slaqr1
DOUBLE PRECISION for dlaqr1
COMPLEX for claqr1
DOUBLE COMPLEX for zlaqr1.
Array with dimension (\(n\)).
A scalar multiple of the first column of the matrix \(K\) in the formula above.

\section*{?laqr2 \\ Performs the orthogonal/unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).}

\section*{Syntax}
```

call slaqr2( wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sr, si,
v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork )
call dlaqr2( wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sr, si,
v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork )
call claqr2( wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sh, v,
ldv, nh, t, ldt, nv, wv, ldwv, work, lwork )
call zlaqr2( wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sh, v,
ldv, nh, t, ldt, nv, wv, ldwv, work, lwork )

```

Include Files
- mkl.fi

\section*{Description}

The routine accepts as input an upper Hessenberg matrix \(H\) and performs an orthogonal/unitary similarity transformation designed to detect and deflate fully converged eigenvalues from a trailing principal submatrix. On output \(H\) has been overwritten by a new Hessenberg matrix that is a perturbation of an orthogonal/ unitary similarity transformation of \(H\). It is to be hoped that the final version of \(H\) has many zero subdiagonal entries.

This subroutine is identical to ? laqr 3 except that it avoids recursion by calling ?lahqr instead of ? laqr 4.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{wantt} & LOGICAL. \\
\hline & If wantt \(=\).TRUE., then the Hessenberg matrix \(H\) is fully updated so that the quasi-triangular/triangular Schur factor may be computed (in cooperation with the calling subroutine). \\
\hline & If wantt \(=\).FALSE., then only enough of \(H\) is updated to preserve the eigenvalues. \\
\hline \multirow[t]{3}{*}{wantz} & LOGICAL. \\
\hline & If wantz = .TRUE., then the orthogonal/unitary matrix \(Z\) is updated so that the orthogonal/unitary Schur factor may be computed (in cooperation with the calling subroutine). \\
\hline & If wantz \(=\).FALSE., then \(Z\) is not referenced. \\
\hline \(n\) & INTEGER. The order of the Hessenberg matrix \(H\) and (if wantz =.TRUE.) the order of the orthogonal/unitary matrix \(Z\). \\
\hline \multirow[t]{2}{*}{ktop} & INTEGER. \\
\hline & It is assumed that either \(k t o p=1\) or \(h(k t o p, k t o p-1)=0 . k t o p\) and \(k b o t\) together determine an isolated block along the diagonal of the Hessenberg matrix. \\
\hline \multirow[t]{2}{*}{kbot} & INTEGER. \\
\hline & It is assumed without a check that either \(k b \circ t=n\) or \(h(k b \circ t+1, k b \circ t)=0\). \(k\) top and kbot together determine an isolated block along the diagonal of the Hessenberg matrix. \\
\hline \multirow[t]{2}{*}{nw} & INTEGER. \\
\hline & Size of the deflation window. \(1 \leq n w \leq(k b \circ t-k t o p+1)\). \\
\hline \multirow[t]{5}{*}{h} & REAL for slaqr2 \\
\hline & DOUBLE PRECISION for dlaqr2 \\
\hline & COMPLEX for claqr2 \\
\hline & DOUBLE COMPLEX for zlaqr2. \\
\hline & Array, DIMENSION (\(/ d h, n\)), on input the initial \(n-b y-n\) section of \(h\) stores the Hessenberg matrix \(H\) undergoing aggressive early deflation. \\
\hline 1 dh & INTEGER. The leading dimension of the array \(h\) just as declared in the calling subroutine. \(1 d h \geq n\). \\
\hline
\end{tabular}
```

iloz, ihiz
ldz
v
ldv
nh
t
ldt
nv
wv
ldwV
work

```
iloz, ihiz
z
\(1 d z\)

V
work

INTEGER. Specify the rows of \(Z\) to which transformations must be applied if wantz is. TRUE. . \(1 \leq i l o z \leq i h i z \leq n\).

REAL for slaqr2
DOUBLE PRECISION for dlaqr2
COMPLEX for claqr2
DOUBLE COMPLEX for zlaqr2.
Array, DIMENSION (Idz, \(n\)), contains the matrix \(Z\) if wantz is .TRUE. . If wantz is .FALSE., then \(z\) is not referenced.

INTEGER. The leading dimension of the array \(z\) just as declared in the calling subroutine. \(1 d z \geq 1\).

REAL for slaqr2
DOUBLE PRECISION for dlaqr2
COMPLEX for claqr2
DOUBLE COMPLEX for zlaqr2.
Workspace array with dimension (ldv, nw). An nw-by-nw work array.
INTEGER. The leading dimension of the array \(v\) just as declared in the calling subroutine. \(I d v \geq n w\).

INTEGER. The number of column of \(t . n h \geq n w\).
REAL for slaqr2
DOUBLE PRECISION for dlaqr2
COMPLEX for claqr2
DOUBLE COMPLEX for zlaqr2.
Workspace array with dimension (ldt, nw).
INTEGER. The leading dimension of the array \(t\) just as declared in the calling subroutine. \(1 d t \geq_{n w}\).

INTEGER. The number of rows of work array wv available for workspace. \(n v \geq n w\).

REAL for slaqr2
DOUBLE PRECISION for dlaqr2
COMPLEX for claqr2
DOUBLE COMPLEX for zlaqr2.
Workspace array with dimension (ldwv, nw).
INTEGER. The leading dimension of the array wv just as declared in the calling subroutine. \(1 d w v \geq n w\).

REAL for slaqr2
DOUBLE PRECISION for dlaqr2

COMPLEX for claqr2
DOUBLE COMPLEX for zlaqr2.
Workspace array with dimension Iwork.
INTEGER. The dimension of the array work.
lwork \(=2 * n w\)) is sufficient, but for the optimal performance a greater workspace may be required.

If 1 work \(k=-1\), then the routine performs a workspace query: it estimates the optimal workspace size for the given values of the input parameters \(n, n w\), \(k t o p\), and kbot. The estimate is returned in work (1). No error messages related to the lwork is issued by xerbla. Neither \(H\) nor \(Z\) are accessed.

\section*{Output Parameters}
h
work (1)
z
On output \(h\) has been transformed by an orthogonal/unitary similarity transformation, perturbed, and the returned to Hessenberg form that (it is to be hoped) has some zero subdiagonal entries.

On exit work (1) is set to an estimate of the optimal value of 1 work for the given values of the input parameters \(n, n w, k t o p\), and kbot.

If wantz is .TRUE., then the orthogonal/unitary similarity transformation is accumulated into \(z\) (iloz:ihiz, ilo:ihi) from the right.
If wantz is .FALSE., then \(z\) is unreferenced.
INTEGER. The number of converged eigenvalues uncovered by the routine.
Integer. The number of unconverged, that is approximate eigenvalues returned in sr, si or in sh that may be used as shifts by the calling subroutine.

COMPLEX for claqr2
DOUBLE COMPLEX for zlaqr2.
Arrays, DIMENSION (kbot).
The approximate eigenvalues that may be used for shifts are stored in the \(\operatorname{sh}(k b \circ t-n d-n s+1)\) through the \(\operatorname{sh}(k b \circ t-n d)\).

The converged eigenvalues are stored in the \(\operatorname{sh}(k b o t-n d+1)\) through the sh(kbot).

REAL for slaqr2
DOUBLE PRECISION for dlaqr2
Arrays, DIMENSION (kbot) each.
The real and imaginary parts of the approximate eigenvalues that may be used for shifts are stored in the \(s r(k b o t-n d-n s+1)\) through the \(s r\) (kbot\(n d)\), and \(s i(k b o t-n d-n s+1)\) through the \(s i(k b \circ t-n d)\), respectively.
The real and imaginary parts of converged eigenvalues are stored in the \(s r(k b \circ t-n d+1)\) through the \(s r(k b o t)\), and \(s i(k b \circ t-n d+1)\) through the si(kbot), respectively.
```

?laqr3
Performs the orthogonal/unitary similarity
transformation of a Hessenberg matrix to detect and
deflate fully converged eigenvalues from a trailing
principal submatrix (aggressive early deflation).

```

\section*{Syntax}
```

call slaqr3( wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sr, si,

```
call slaqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sr, si,
v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
call dlaqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sr, si,
call dlaqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sr, si,
v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
call claqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sh, v,
call claqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sh, v,
ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
call zlaqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sh, v,
call zlaqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sh, v,
ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
```

ldv, nh, t, ldt, nv, wv, ldwv, work, lwork )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine accepts as input an upper Hessenberg matrix \(H\) and performs an orthogonal/unitary similarity transformation designed to detect and deflate fully converged eigenvalues from a trailing principal submatrix. On output \(H\) has been overwritten by a new Hessenberg matrix that is a perturbation of an orthogonal/ unitary similarity transformation of \(H\). It is to be hoped that the final version of \(H\) has many zero subdiagonal entries.

\section*{Input Parameters}
```

wantt
wantz
n
ktop

```

LOGICAL.
If wantt = .TRUE., then the Hessenberg matrix \(H\) is fully updated so that the quasi-triangular/triangular Schur factor may be computed (in cooperation with the calling subroutine).

If wantt \(=\).FALSE., then only enough of \(H\) is updated to preserve the eigenvalues.

LOGICAL.
If wantz = .TRUE., then the orthogonal/unitary matrix \(Z\) is updated so that the orthogonal/unitary Schur factor may be computed (in cooperation with the calling subroutine).

If wantz \(=\).FALSE., then \(Z\) is not referenced.
INTEGER. The order of the Hessenberg matrix \(H\) and (if wantz =. .TRUE.) the order of the orthogonal/unitary matrix \(Z\).

INTEGER.
It is assumed that either \(k t o p=1\) or \(h(k t o p, k t o p-1)=0 . k t o p\) and \(k b o t\) together determine an isolated block along the diagonal of the Hessenberg matrix.
```

kbot
nw
h
ldh
iloz, ihiz
z
ldz
v
Idv
nh
t

```

INTEGER. The leading dimension of the array \(t\) just as declared in the calling subroutine. \(l d t \geq_{n w}\).

INTEGER. The number of rows of work array wv available for workspace. \(n v \geq n w\).

REAL for slaqr3
DOUBLE PRECISION for dlaqr3
COMPLEX for claqr3
DOUBLE COMPLEX for zlaqr3.
Workspace array with dimension (ldwv, nw).
INTEGER. The leading dimension of the array wv just as declared in the calling subroutine. \(I d w v \geq n w\).

REAL for slaqr3
DOUBLE PRECISION for dlaqr3
COMPLEX for claqr3
DOUBLE COMPLEX for zlaqr3.
Workspace array with dimension Iwork.
INTEGER. The dimension of the array work.
lwork \(=2{ }^{*} n w\)) is sufficient, but for the optimal performance a greater workspace may be required.
If 1 work \(=-1\), then the routine performs a workspace query: it estimates the optimal workspace size for the given values of the input parameters \(n, n w\), \(k t o p\), and \(k b o t\). The estimate is returned in work(1). No error messages related to the 1 work is issued by xerbla. Neither \(H\) nor \(Z\) are accessed.

\section*{Output Parameters}
h
work(1)
z

On output \(h\) has been transformed by an orthogonal/unitary similarity transformation, perturbed, and the returned to Hessenberg form that (it is to be hoped) has some zero subdiagonal entries.

On exit work (1) is set to an estimate of the optimal value of lwork for the given values of the input parameters \(n, n w, k t o p\), and kbot.

If wantz is .TRUE., then the orthogonal/unitary similarity transformation is accumulated into z(iloz:ihiz, ilo:ihi) from the right.

If wantz is .FALSE., then \(z\) is unreferenced.
INTEGER. The number of converged eigenvalues uncovered by the routine.
INTEGER. The number of unconverged, that is approximate eigenvalues returned in sr, si or in sh that may be used as shifts by the calling subroutine.

COMPLEX for claqr3
DOUBLE COMPLEX for zlaqr3.

\section*{Arrays, DIMENSION (kbot).}

The approximate eigenvalues that may be used for shifts are stored in the \(\operatorname{sh}(k b \circ t-n d-n s+1)\) through the \(\operatorname{sh}(k b \circ t-n d)\).

The converged eigenvalues are stored in the \(\operatorname{sh}(k b o t-n d+1)\) through the sh(kbot).

REAL for slaqr3
DOUBLE PRECISION for dlaqr3
Arrays, DIMENSION (kbot) each.
The real and imaginary parts of the approximate eigenvalues that may be used for shifts are stored in the \(s r(k b \circ t-n d-n s+1)\) through the \(s r(k b o t-\) \(n d)\), and \(s i(k b \circ t-n d-n s+1)\) through the \(s i(k b \circ t-n d)\), respectively.

The real and imaginary parts of converged eigenvalues are stored in the sr(kbot-nd+1) through the \(s r(k b \circ t)\), and \(s i(k b \circ t-n d+1)\) through the si(kbot), respectively.
```

?laqr4
Computes the eigenvalues of a Hessenberg matrix,
and optionally the matrices from the Schur
decomposition.
Syntax
call slaqr4( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, work, lwork,
info )
call dlaqr4( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, work, lwork,
info )
call claqr4( wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork,
info )
call zlaqr4( wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork,
info )

```

Include Files
- mkl.fi

\section*{Description}

The routine computes the eigenvalues of a Hessenberg matrix \(H\), and, optionally, the matrices \(T\) and \(Z\) from the Schur decomposition \(H=Z^{\star} T^{\star} Z^{H}\), where \(T\) is an upper quasi-triangular/triangular matrix (the Schur form), and \(Z\) is the orthogonal/unitary matrix of Schur vectors.

Optionally \(Z\) may be postmultiplied into an input orthogonal/unitary matrix \(Q\) so that this routine can give the Schur factorization of a matrix \(A\) which has been reduced to the Hessenberg form \(H\) by the orthogonal/ unitary matrix \(Q: A=Q^{\star} H^{\star} Q^{H}=(Q Z)^{\star} H^{\star}(Q Z)^{H}\).

This routine implements one level of recursion for ?laqr0. It is a complete implementation of the small bulge multi-shift QR algorithm. It may be called by ? laqr0 and, for large enough deflation window size, it may be called by ?laqr3. This routine is identical to ? laqr0 except that it calls ? laqr2 instead of ?laqr3.

\section*{Input Parameters}
wantt
wantz
\(n\)
ilo, ihi
h
ldh
iloz, ihiz
z
\(I d z\)
work

LOGICAL.
If wantt \(=\).TRUE., the full Schur form \(T\) is required;
If wantt \(=\).FALSE., only eigenvalues are required.
LOGICAL.
If wantz = .TRUE., the matrix of Schur vectors \(Z\) is required;
If wantz \(=\).FALSE., Schur vectors are not required.
INTEGER. The order of the Hessenberg matrix \(H .(n \geq 0)\).
INTEGER.
It is assumed that \(H\) is already upper triangular in rows and columns 1:ilo-1 and ihi+1:n, and if ilo > 1 then \(h(i l o, i l o-1)=0\).
ilo and ihi are normally set by a previous call to cgebal, and then passed to cgehrd when the matrix output by cgebal is reduced to Hessenberg form. Otherwise, ilo and ihi should be set to 1 and \(n\), respectively.

If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\).
If \(n=0\), then \(i l o=1\) and \(i h i=0\)
REAL for slaqr 4
DOUBLE PRECISION for dlaqr4
COMPLEX for claqr 4
DOUBLE COMPLEX for zlaqr4.
Array, DIMENSION \((I d h, n)\), contains the upper Hessenberg matrix \(H\).
INTEGER. The leading dimension of the array \(h . l d h \geq \max (1, n)\).
INTEGER. Specify the rows of \(Z\) to which transformations must be applied if
wantz is. TRUE., \(1 \leq i l o z \leq i l o ; ~ i h i \leq i h i z \leq n\).
REAL for slaqr 4
DOUBLE PRECISION for dlaqr4
COMPLEX for claqr 4
DOUBLE COMPLEX for zlaqr 4.
Array, DIMENSION (Idz, ihi), contains the matrix \(Z\) if wantz is .TRUE.. If wantz is .FALSE., \(z\) is not referenced.

INTEGER. The leading dimension of the array \(z\).
If wantz is. TRUE., then \(I d z \geq \max (1\), ihiz). Otherwise, \(I d z \geq 1\).
REAL for slaqr 4
DOUBLE PRECISION for dlaqr4
COMPLEX for claqr 4
\begin{tabular}{|c|c|}
\hline & DOUBLE COMPLEX for zlaqr 4. \\
\hline & Workspace array with dimension /work. \\
\hline \multirow[t]{5}{*}{1 work} & INTEGER. The dimension of the array work. \\
\hline & \(l\) work \(\geq \max (1, n)\) is sufficient, but for the optimal performance a greater workspace may be required, typically as large as 6*n. \\
\hline & It is recommended to use the workspace query to determine the optimal workspace size. If 1 work \(=-1\), then the routine performs a workspace query: it estimates the optimal workspace size for the given values of the input \\
\hline & parameters \(n, i l o\), and ihi. The estimate is returned in work(1). No error messages related to the lwork is issued by xerbla. Neither \(H\) nor \(Z\) are \\
\hline & accessed. \\
\hline
\end{tabular}

\section*{Output Parameters}
h
work (1)

W
wr, wi
z

If infolo, and wantt is .TRUE., then \(h\) contains the upper quasi-triangular/ triangular matrix \(T\) from the Schur decomposition (the Schur form).

If infolo, and wantt is. FALSE., then the contents of \(h\) are unspecified on exit.
(The output values of \(h\) when info \(>0\) are given under the description of the info parameter below.)

The routines may explicitly set \(h(i, j)\) for \(i>j\) and \(j=1,2, \ldots\) ilo-1 or \(j=i h i+1\), ihi+2,...n.

On exit work (1) contains the minimum value of Iwork required for optimum performance.

COMPLEX for claqr 4
DOUBLE COMPLEX for zlaqr4.
Arrays, DIMENSION(\(n\)). The computed eigenvalues of \(h\) (ilo:ihi, ilo:ihi) are stored in w(ilo:ihi). If wantt is .TRUE., then the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in \(h\), with \(w(i)=h(i, i)\).

REAL for slaqr 4
DOUBLE PRECISION for dlaqr4
Arrays, DIMENSION(ihi) each. The real and imaginary parts, respectively, of the computed eigenvalues of \(h(i l o: i h i, i l o: i h i)\) are stored in the \(w r(i l o: i h i)\) and wi(ilo:ihi). If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of wr and \(w i\), say the \(i\)-th and \((i+1)\)-th, with \(w i(i)>0\) and \(w i(i+1)<0\). If wantt is . TRUE., then the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in \(h\), with \(w r(i)=h(i, i)\), and if \(h(i: i+1, i: i+1)\) is a 2-by-2 diagonal block, then wi(i)=sqrt(-h(i \(+1, i) * h(i, i+1)\)).

If wantz is .TRUE., then \(z(i l o: i h i, ~ i l o z: i h i z) ~ i s ~ r e p l a c e d ~ b y ~ z(i l o: i h i, ~\) iloz:ihiz)*U, where \(U\) is the orthogonal/unitary Schur factor of h(ilo:ihi, ilo:ihi).

If wantz is .FALSE., \(z\) is not referenced.
(The output values of \(z\) when info \(>0\) are given under the description of the info parameter below.)

INTEGER.
\(=0\) : the execution is successful.
\(>0\) : if info \(=i\), then the routine failed to compute all the eigenvalues. Elements 1: ilo-1 and \(i+1: n\) of \(w r\) and wi contain those eigenvalues which have been successfully computed.
\(>0\) : if wantt is.FALSE., then the remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix rows and columns ilo through info of the final output value of \(h\).
\(>0\) : if wantt is .TRUE., then (initial value of \(h\)) \({ }^{*}=U^{\star}\) (final value of \(h\), where \(U\) is an orthogonal/unitary matrix. The final value of \(h\) is upper Hessenberg and quasi-triangular/triangular in rows and columns info 1 through ihi.
\(>0\) : if wantz is .TRUE., then (final value of \(z\) (ilo:ihi,
iloz:ihiz)) (initial value of \(z(i l o\) :ihi, iloz:ihiz)*U, where \(U\) is the orthogonal/unitary matrix in the previous expression (regardless of the value of want \(t\)).
\(>0\) : if wantz is. FALSE., then \(z\) is not accessed.

\section*{?laqr5}

Performs a single small-bulge multi-shift QR sweep.

\section*{Syntax}
```

call slaqr5( wantt, wantz, kacc22, n, ktop, kbot, nshfts, sr, si, h, ldh, iloz, ihiz, z,
ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh )
call dlaqr5( wantt, wantz, kacc22, n, ktop, kbot, nshfts, sr, si, h, ldh, iloz, ihiz, z,
ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh )
call claqr5( wantt, wantz, kacc22, n, ktop, kbot, nshfts, s, h, ldh, iloz, ihiz, z, ldz,
v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh )
call zlaqr5( wantt, wantz, kacc22, n, ktop, kbot, nshfts, s, h, ldh, iloz, ihiz, z, ldz,
v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

This auxiliary routine called by ?laqr0 performs a single small-bulge multi-shift QR sweep.

\section*{Input Parameters}
```

wantt

```

LOGICAL.
wantt \(=\).TRUE. if the quasi-triangular/triangular Schur factor is computed.
wantt is set to . FALSE. otherwise.
wantz
kacc22
n
ktop, kbot
nshfts
sr, si

S
h

LOGICAL.
wantz = .TRUE. if the orthogonal/unitary Schur factor is computed.
wantz is set to . FALSE. otherwise.
INTEGER. Possible values are 0,1 , or 2.
Specifies the computation mode of far-from-diagonal orthogonal updates.
\(=0\) : the routine does not accumulate reflections and does not use matrixmatrix multiply to update far-from-diagonal matrix entries.
\(=1\) : the routine accumulates reflections and uses matrix-matrix multiply to update the far-from-diagonal matrix entries.
\(=2\) : the routine accumulates reflections, uses matrix-matrix multiply to update the far-from-diagonal matrix entries, and takes advantage of 2-by-2 block structure during matrix multiplies.

INTEGER. The order of the Hessenberg matrix \(H\) upon which the routine operates.

INTEGER.
It is assumed without a check that either \(k t o p=1\) or \(h(k t o p, k t o p-1)=0\), and either \(k b \circ t=n\) or \(h(k b \circ t+1, k b \circ t)=0\).

INTEGER.
Number of simultaneous shifts, must be positive and even.
REAL for slaqr5
DOUBLE PRECISION for dlaqr5
Arrays, DIMENSION (nshfts) each.
sr contains the real parts and si contains the imaginary parts of the nshfts shifts of origin that define the multi-shift QR sweep.

COMPLEX for claqr5
DOUBLE COMPLEX for zlaqr5.
Arrays, DIMENSION (nshfts).
\(s\) contains the shifts of origin that define the multi-shift QR sweep.
REAL for slaqr5
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
DOUBLE COMPLEX for zlaqr5.
Array, DIMENSION (\(/ d h, n\)), on input contains the Hessenberg matrix.
\(1 d h\)
iloz, ihiz
z
\(1 d z\)
v
ldv

U
wh
ldwh
nv

INTEGER. The leading dimension of the array \(h\) just as declared in the calling routine. \(l d h \geq \max (1, n)\).

INTEGER. Specify the rows of \(Z\) to which transformations must be applied if wantz is.TRUE.. \(1 \leq i l o z \leq i h i z \leq n\).

REAL for slaqr5
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
DOUBLE COMPLEX for zlaqr5.
Array, DIMENSION (Idz, ihi), contains the matrix \(Z\) if wantz is .TRUE.. If wantz is .FALSE., then \(z\) is not referenced.

INTEGER. The leading dimension of the array \(z\) just as declared in the calling routine. \(l d z \geq n\).

REAL for slaqr5
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
DOUBLE COMPLEX for zlaqr5.
Workspace array with dimension (ldv, nshfts/2).
INTEGER. The leading dimension of the array \(v\) just as declared in the calling routine. \(I d v \geq 3\).

REAL for slaqr5
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
DOUBLE COMPLEX for zlaqr5.
Workspace array with dimension (Idu, 3*nshfts-3).
INTEGER. The leading dimension of the array \(u\) just as declared in the calling routine. \(1 d u \geq 3 * n s h f t s-3\).

INTEGER. The number of column in the array wh available for workspace. nh \(\geq 1\).

REAL for slaqr5
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
DOUBLE COMPLEX for zlaqr5.
Workspace array with dimension (ldwh, nh)
INTEGER. The leading dimension of the array wh just as declared in the calling routine. \(1 d w h \geq 3 * n s h f t s-3\)

INTEGER. The number of rows of the array wv available for workspace. \(n v \geq\) 1.

WV
\(I d W V\)

\section*{Output Parameters}
h
z
REAL for slaqr5
DOUBLE PRECISION for dlaqr5
COMPLEX for claqr5
DOUBLE COMPLEX for zlaqr5.
Workspace array with dimension (Idwv, \(3 * n s h f t s-3\)).
INTEGER. The leading dimension of the array wv just as declared in the calling routine. \(l d W v \geq n v\).
```

sr, si

```
```

sr, si

```

On output, may be reordered.
On output a multi-shift QR Sweep with shifts \(s r(j)+i * s i(j)\) or \(s(j)\) is applied to the isolated diagonal block in rows and columns ktop through kbot .

If wantz is .TRUE., then the QR Sweep orthogonal/unitary similarity transformation is accumulated into z(iloz:ihiz, ilo:ihi) from the right.
If wantz is . FALSE., then \(z\) is unreferenced.

\section*{?laqsb}

Scales a symmetric band matrix, using scaling factors
computed by ?pbequ.

\section*{Syntax}
```

call slaqsb( uplo, n, kd, ab, ldab, s, scond, amax, equed )
call dlaqsb( uplo, n, kd, ab, ldab, s, scond, amax, equed )
call claqsb( uplo, n, kd, ab, ldab, s, scond, amax, equed )
call zlaqsb( uplo, n, kd, ab, ldab, s, scond, amax, equed )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine equilibrates a symmetric band matrix \(A\) using the scaling factors in the vector \(s\).

\section*{Input Parameters}
```

uplo

```
n

CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored.
If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.
INTEGER. The order of the matrix \(A\).
\(n \geq 0\).
\(k d\)

INTEGER. The number of super-diagonals of the matrix \(A\) if uplo = 'U', or the number of sub-diagonals if uplo = 'L'.
\(k a \geq 0\).
REAL for slaqsb
DOUBLE PRECISION for dlaqsb
COMPLEX for claqsb
DOUBLE COMPLEX for zlaqsb
Array, DIMENSION (\(/ d a b, n\)). On entry, the upper or lower triangle of the symmetric band matrix \(A\), stored in the first \(k d+1\) rows of the array. The \(j\) th column of \(A\) is stored in the \(j\)-th column of the array ab as follows:
if uplo \(=' U ', a b(k d+1+i-j, j)=A(i, j)\) for \(\max (1, j-k d) \leq i \leq j\);
if uplo \(=' L ', a b(1+i-j, j)=A(i, j)\) for \(j \leq i \leq \min (n, j+k d)\).
INTEGER. The leading dimension of the array \(a b\).
\(1 d a b \geq k d+1\).
REAL for slaqsb/claqsb
DOUBLE PRECISION for dlaqsb/zlaqsb
Array, DIMENSION (\(n\)). The scale factors for A.
REAL for slaqsb/claqsb
DOUBLE PRECISION for dlaqsb/zlaqsb
Ratio of the smallest \(s(i)\) to the largest \(s(i)\).
REAL for slaqsb/claqsb
DOUBLE PRECISION for dlaqsb/zlaqsb
Absolute value of largest matrix entry.

\section*{Output Parameters}
a.b
equed

On exit, if info \(=0\), the triangular factor \(U\) or \(L\) from the Cholesky factorization of the band matrix \(A\) that can be \(A=U^{T} * U\) or \(A=L^{*} L^{T}\) for real flavors and \(A=U^{H \star} U\) or \(A=L^{\star} L^{H}\) for complex flavors, in the same storage format as \(A\).

CHARACTER*1.
Specifies whether or not equilibration was done.
If equed \(=\) ' \(N\) ': No equilibration.
If equed \(=\) ' \(Y\) ': Equilibration was done, that is, \(A\) has been replaced by \(\operatorname{diag}(s) * A * \operatorname{diag}(s)\).

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond < thresh, scaling is done. large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

\section*{?laqsp}

Scales a symmetric/Hermitian matrix in packed
storage, using scaling factors computed by ?ppequ.

\section*{Syntax}
```

call slaqsp( uplo, n, ap, s, scond, amax, equed )
call dlaqsp( uplo, n, ap, s, scond, amax, equed )
call claqsp( uplo, n, ap, s, scond, amax, equed )
call zlaqsp( uplo, n, ap, s, scond, amax, equed)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ? laqsp equilibrates a symmetric matrix \(A\) using the scaling factors in the vector \(s\).

\section*{Input Parameters}
```

uplo
n
ap
S
CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix $A$ is stored.
If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.
INTEGER. The order of the matrix $A . n \geq 0$.
REAL for slaqsp
DOUBLE PRECISION for dlaqsp
COMPLEX for claqsp
DOUBLE COMPLEX for zlaqsp
Array, DIMENSION $(n(n+1) / 2)$.
On entry, the upper or lower triangle of the symmetric matrix $A$, packed columnwise in a linear array. The $j$-th column of $A$ is stored in the array ap as follows:
if uplo = 'U', ap(i $+(j-1) j / 2)=A(i, j)$ for $1 \leq i \leq j$;
if uplo $=$ 'L', ap(i $+(j-1)(2 n-j) / 2)=A(i, j)$ for $j \leq i \leq n$.
REAL for slaqsp/claqsp

```

DOUBLE PRECISION for dlaqsp/zlaqsp
Array, DIMENSION (\(n\)). The scale factors for A.
scond
amax
REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Ratio of the smallest \(s(i)\) to the largest \(s(i)\).
REAL for slaqsp/claqsp
DOUBLE PRECISION for dlaqsp/zlaqsp
Absolute value of largest matrix entry.

\section*{Output Parameters}
ap
equed
On exit, the equilibrated matrix: \(\operatorname{diag}(s) * A \star \operatorname{diag}(s)\), in the same storage format as \(A\).

CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed \(=\) 'Y': Equilibration was done, that is, \(A\) has been replaced by
\(\operatorname{diag}(s) \star A \star \operatorname{diag}(s)\).

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond < thresh, scaling is done. large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

\section*{?laqsy}

Scales a symmetric/Hermitian matrix, using scaling
factors computed by ?syequ, ?syequb, ?poequ, or ?poequb.

\section*{Syntax}
```

call slaqsy( uplo, n, a, lda, s, scond, amax, equed)
call dlaqsy( uplo, n, a, lda, s, scond, amax, equed )
call claqsy( uplo, n, a, lda, s, scond, amax, equed )
call zlaqsy( uplo, n, a, lda, s, scond, amax, equed )

```

Include Files
- mkl.fi

\section*{Description}

The routine equilibrates a symmetric matrix \(A\) using the scaling factors in the vector \(s\).

\section*{Input Parameters}
uplo
\(n\)
a

Ida

S
scond
amax

CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored.

If uplo = 'U': upper triangular.
If uplo = 'L': lower triangular.
INTEGER. The order of the matrix \(A\).
\(n \geq 0\).
REAL for slaqsy
DOUBLE PRECISION for dlaqsy
COMPLEX for claqsy
DOUBLE COMPLEX for zlaqsy
Array, DIMENSION (Ida,n). On entry, the symmetric matrix \(A\).
If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced.

If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

INTEGER. The leading dimension of the array \(a\).
\(l d a \geq \max (n, 1)\).
REAL for slaqsy/claqsy
DOUBLE PRECISION for dlaqsy/zlaqsy
Array, DIMENSION (\(n\)). The scale factors for A.
REAL for slaqsy/claqsy
DOUBLE PRECISION for dlaqsy/zlaqsy
Ratio of the smallest \(s(i)\) to the largest \(s(i)\).
REAL for slaqsy/claqsy
DOUBLE PRECISION for dlaqsy/zlaqsy
Absolute value of largest matrix entry.

\section*{Output Parameters}
a
equed

On exit, if equed \(=\) ' \(Y\) ', the equilibrated matrix: \(\operatorname{diag}(s) * A \star \operatorname{diag}(s)\).
CHARACTER*1.
Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
```

If equed = 'Y': Equilibration was done, i.e., $A$ has been replaced by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

```

\section*{Application Notes}

The routine uses internal parameters thresh, large, and small, which have the following meaning. thresh is a threshold value used to decide if scaling should be based on the ratio of the scaling factors. If scond < thresh, scaling is done. large and small are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

\section*{?laqtr}

Solves a real quasi-triangular system of equations, or a complex quasi-triangular system of special form, in real arithmetic.

\section*{Syntax}
```

call slaqtr( ltran, lreal, n, t, ldt, b, w, scale, x, work, info )
call dlaqtr( ltran, lreal, n, t, ldt, b, w, scale, x, work, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine ? laqtr solves the real quasi-triangular system
```

op(T) * p = scale*c, if lreal = .TRUE.

```
or the complex quasi-triangular systems
op \((T+i B)^{*}(p+i q)=s c a l e^{*}(c+i d)\), if lreal \(=\).FALSE.
in real arithmetic, where \(T\) is upper quasi-triangular.
If lreal = .FALSE., then the first diagonal block of \(T\) must be \(1-b y-1, B\) is the specially structured matrix

op \((A)=A\) or \(A^{T}, A^{T}\) denotes the transpose of matrix \(A\).
On input,
\[
x=\left[\begin{array}{l}
C \\
d
\end{array}\right], \text { on output } x=\left[\begin{array}{l}
p \\
q
\end{array}\right]
\]

This routine is designed for the condition number estimation in routine ?trsna.
Input Parameters
ltran

Ireal
n
t

LOGICAL.
On entry, Itran specifies the option of conjugate transpose:
\(=\). FALSE., op \((T+i B)=T+i B\),
\(=\). TRUE., op \((T+i B)=(T+i B)^{T}\).

LOGICAL.
On entry, Ireal specifies the input matrix structure:
\(=\).FALSE., the input is complex
\(=\). TRUE. , the input is real.

INTEGER.
On entry, \(n\) specifies the order of \(T+i B . n \geq 0\).
REAL for slaqtr
```

DOUBLE PRECISION for dlaqtr
Array, dimension (Idt, $n$ ). On entry, $t$ contains a matrix in Schur canonical form. If lreal $=$.FALSE., then the first diagonal block of $t$ must be 1-by-1.
INTEGER. The leading dimension of the matrix $T$.
$l d t \geq \max (1, n)$.
REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension ( $n$ ). On entry, $b$ contains the elements to form the matrix $B$ as described above. If lreal $=$.TRUE., $b$ is not referenced.
REAL for slaqtr
DOUBLE PRECISION for dlaqtr
On entry, $w$ is the diagonal element of the matrix $B$.
If lreal $=$.TRUE., $w$ is not referenced.
REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Array, dimension (2n). On entry, $x$ contains the right hand side of the system.
REAL for slaqtr
DOUBLE PRECISION for dlaqtr
Workspace array, dimension ( $n$ ).

```

\section*{Output Parameters}
scale
x
info

REAL for slaqtr
DOUBLE PRECISION for dlaqtr
On exit, scale is the scale factor.
On exit, \(X\) is overwritten by the solution.
INTEGER.
If info \(=0\) : successful exit.
If info \(=1\) : the some diagonal 1-by-1 block has been perturbed by a small number smin to keep nonsingularity.

If info \(=2\) : the some diagonal 2-by-2 block has been perturbed by a small number in ?laln2 to keep nonsingularity.

\section*{NOTE}

For higher speed, this routine does not check the inputs for errors.

\section*{?laqz0}

Implements the multishift QZ method with aggressive early deflation for finding the generalized eigenvalues of the matrix pair \((A, B)\).

\section*{Syntax}

FORTRAN 77:
```

call slaqz0(wants, wantq, wantz, n, ilo, ihi, a, lda, b, ldb, alphar, alphai, beta, q,
ldq, z, ldz, work, lwork, rec, info)
call dlaqz0(wants, wantq, wantz, n, ilo, ihi, a, lda, b, ldb, alphar, alphai, beta, q,
ldq, z, ldz, work, lwork, rec, info)
call claqz0(wants, wantq, wantz, n, ilo, ihi, a, lda, b, ldb, alpha, beta, q, ldq, z,
ldz, work, lwork, rwork, rec, info)
call zlaqz0(wants, wantq, wantz, n, ilo, ihi, a, lda, b, ldb, alpha, beta, q, ldq, z,
ldz, work, lwork, rwork, rec, info)

```

\section*{Include Files}

The FORTRAN 77 interfaces are specified in the mkl_lapack.fi and mkl_lapack.h include files.

\section*{Description}

The routine computes the eigenvalues of a real/complex matrix pair (\(A, B\)), where \(A\) is an upper Hessenberg matrix and \(B\) is upper triangular, using the double-shift version (for real flavors) or single-shift version (for complex flavors) of the multishift QZ method with aggressive early deflation.
For real flavors:
If wants \(=\) ' \(S\) ', then the Hessenberg-triangular pair \((A, B)\) is also reduced to generalized Schur form:
\[
A=Q^{*} S^{\star} Z^{\wedge} T, \quad B=Q * P^{*} Z^{\wedge} T
\]
where Q and Z are orthogonal matrices, P is an upper triangular matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal blocks. The 1-by-1 blocks correspond to real eigenvalues of the matrix pair (\(A, B\)) and the 2-by-2 blocks correspond to complex conjugate pairs of eigenvalues.

Additionally, the 2-by-2 upper triangular diagonal blocks of \(P\) corresponding to 2 -by- 2 blocks of \(S\) are reduced to positive diagonal form; that is, if \(S(j+1, j)\) is non-zero, then \(P(j+1, j)=P(j, j+1)=0, P(j, j)>0\), and \(P(j+1, j+1)>0\).

For complex flavors:
If wants \(=\) ' \(S\) ', then the Hessenberg-triangular pair \((A, B)\) is also reduced to generalized Schur form:
\[
A=Q^{\star} S^{\star} Z^{\wedge} H, \quad B=Q^{\star} P^{\star} Z^{\wedge} H
\]
where Q and Z are unitary matrices, P is an upper triangular matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal blocks.
For all function flavors:
Optionally, the orthogonal/unitary matrix Q from the generalized Schur factorization may be postmultiplied into an input matrix Q1, and the orthogonal/unitary matrix \(Z\) may be postmultiplied into an input matrix Z 1 .

If Q1 and Z1 are the orthogonal/unitary matrices from ? gghrd that reduced the matrix pair (\(\mathrm{A} 1, \mathrm{~B} 1\)) to generalized upper Hessenberg form (\(\mathrm{A}, \mathrm{B}\)), then the output matrices \(\mathrm{Q} 1 * \mathrm{Q}\) and \(\mathrm{Z} 1 * \mathrm{Z}\) are the orthogonal/ unitary factors from the generalized Schur factorization of \((A, B)\) :
```

A1 = (Q1*Q)S *(Z1*Z)^H, B1 = (Q1*Q)*P(Z1*Z)^H

```

To avoid overflow, eigenvalues of the matrix pair (\(\mathrm{A}, \mathrm{B}\)) are computed as a pair of values (alpha,beta). For claqz0/zlaqz0, alpha and beta are complex, and for slaqz0/dlaqz0, alpha is complex and beta real.

If beta is nonzero, \(\lambda=\) alpha/beta is an eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP):
```

A*}X=\mp@subsup{\lambda}{}{*}\mp@subsup{B}{}{*}

```
and if alpha is nonzero, \(\mu=\) beta/alpha is an eigenvalue of the alternate form of the GNEP:
\[
\mu^{\star} A^{*} y=B^{*} y
\]

Real eigenvalues (for real flavors) or the values of alpha and beta for the i-th eigenvalue (for complex flavors) can be read directly from the generalized Schur form:
```

alpha = S(i,i), beta = P(i,i)

```

\section*{Input Parameters}

The data types are given for the Fortran interface. A datatype placeholder, if present, is used for the C interface data types.
Refer to the C Interface Conventions topic in the C-based reference for the C interface principal conventions and type definitions.
```

wants
wantq CHARACTER*1. Must be 'N', 'I', or 'V'.
If wantq = 'N', left Schur vectors (q) are not computed.
If wantq = 'I', q is initialized to the unit matrix and the matrix of left Schur
vectors of (A, B) is returned.
If wantq = 'V', q must contain an orthogonal/unitary matrix Q1 on entry
and the product Q1*Q is returned.
CHARACTER*1. Must be 'N', 'I', or 'V'.
If wantz = 'N', right Schur vectors (z) are not computed.
If wantz = 'I', z is initialized to the unit matrix and the matrix of right Schur
vectors of (A,B) is returned.
If wantz = 'V', z must contain an orthogonal/unitary matrix z1 on entry and
the product z1*z is returned.
INTEGER. The order of the matrices A, B, Q, and Z ( }\textrm{n}\geq0)\mathrm{ .
INTEGER. ilo and ihi mark the rows and columns of A which are in
Hessenberg form. It is assumed that A is already upper triangular in rows
and columns 1:ilo-1 and ihi+1:n.
Constraint:
If n > 0, then 1 \leq ilo \leq ihi \leq n.
If n = 0, then ilo = 1 and ihi = 0.
REAL for slaqz0..

```

DOUBLE PRECISION for dlaqz0.
COMPLEX for claqz0.
DOUBLE COMPLEX for zlaqz0.

\section*{Arrays:}

On entry, a(lda,*) contains the n-by-n upper Hessenberg matrix A. The second dimension of a must be at least max \((1, n)\).

On entry, b (ldb, *) contains the n-by-n upper triangular matrix B. The second dimension of \(b\) must be at least \(\max (1, n)\).

\section*{q (Idq,*):}

On entry, if wantq \(=\) ' V ', this array contains the orthogonal/unitary matrix Q1 used in the reduction of \((\mathrm{A} 1, \mathrm{~B} 1)\) to generalized Hessenberg form.
If wantq \(=\) ' \(N\) ', then \(q\) is not referenced. The second dimension of \(q\) must be at least max \((1, n)\).

\section*{z (Idz,*):}

On entry, if wantz = 'V', this array contains the orthogonal/unitary matrix \(Z 1\) used in the reduction of \((A 1, B 1)\) to generalized Hessenberg form (\(A, B\)). If wantz \(=\) ' \(N\) ', then \(z\) is not referenced.

The second dimension of \(z\) must be at least max \((1, n)\).
work is a workspace array; its dimension is max (1, lwork).
INTEGER. The first dimension of \(a\); at least max \((1, n)\).
INTEGER. The first dimension of \(b\); at least max \((1, n)\).
INTEGER. The first dimension of \(q\).
If wantq \(=\) ' \(N\) ', then \(1 \mathrm{dq} \geq 1\).
If wantq \(=\) ' I ' or ' V ', then \(1 \mathrm{dq} \geq \max (1, \mathrm{n})\).
INTEGER. The first dimension of \(z\).
If wantq \(=\) ' N ', then \(1 \mathrm{dz} \geq 1\).
If wantq \(=\) 'I'or 'V', then \(1 d z \geq \max (1, n)\).
INTEGER. Indicates the current recursion level. Should be set to 0 on first call.

INTEGER. The dimension of the array work. lwork \(\geq \max (1, n)\).
If lwork \(=-1\), then a workspace query is assumed; the routine calculates only the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.
For details, see Application Notes.
REAL for claqz 0 .
DOUBLE PRECISION for zlaqz0.

Workspace array with DIMENSION at least max \((1, n)\). Used in complex flavors only.

\section*{Output Parameters}
\(a\)
b
alphar, alphai
alpha
beta

\section*{For real flavors:}

If wants = 'S', then on exit a contains the upper quasi-triangular matrix \(S\) from the generalized Schur factorization; 2-by-2 diagonal blocks (corresponding to complex conjugate pairs of eigenvalues) are returned in standard form, with \(a(i, i)=a(i+1, i+1)\) and \(a(i+1, i) * a(i, i\) \(+1)<0\).
If wants = ' \(E\) ', then on exit the diagonal blocks of a match those of \(S\), but the rest of \(a\) is unspecified.

\section*{For complex flavors:}

If wants = 'S', then on exit a contains the upper triangular matrix \(S\) from the generalized Schur factorization.

If wants = ' \(E\) ', then on exit the diagonal of a matches that of \(S\), but the rest of \(a\) is unspecified.

If wants \(=\) ' S ', then on exit b contains the upper triangular matrix P from the generalized Schur factorization.

\section*{For real flavors:}

2-by-2 diagonal blocks of \(P\) corresponding to 2-by-2 blocks of \(S\) are reduced to positive diagonal form; that is, if \(b(j+1, j)\) is non-zero, then \(b(j\) \(+1, j)=b(j, j+1)=0\) and \(b(j, j)\) and \(b(j+1, j+1)\) will be positive.
If wants \(=\) ' \(E\) ', then on exit the diagonal blocks of \(b\) match those of \(P\), but the rest of \(b\) is unspecified.

\section*{For complex flavors:}
if wants = ' \(E\) ', then on exit the diagonal of \(b\) matches that of \(P\), but the rest of \(b\) is unspecified.

REAL for slaqz0;
DOUBLE PRECISION for dlaqzO.
Arrays, DIMENSION at least max \((1, n)\). The real and imaginary parts, respectively, of each scalar alpha define an eigenvalue of GNEP.
If alphai (\(j\)) is zero, then the \(j\)-th eigenvalue is real; if positive, then the \(j\)-th and \((j+1)\)-th eigenvalues are a complex conjugate pair, with alphai(j+1) = -alphai(j).

COMPLEX for claqz 0 .
DOUBLE COMPLEX for zlaqz0.
Array, DIMENSION at least max \((1, n)\).
The complex scalars alpha defines the eigenvalues of GNEP. alphai(i) = \(S(i, i)\) in the generalized Schur factorization.

REAL for slaqz0.

DOUBLE PRECISION for dlaqzO
COMPLEX for claqz0
DOUBLE COMPLEX for zlaqz0.
Array, DIMENSION at least max \((1, n)\).

\section*{For real flavors:}

The scalars beta defines the eigenvalues of GNEP.
Together, the quantities alpha \(=(\operatorname{alphar}(j), \operatorname{alphai}(j))\) and beta \(=\) beta (\(j\)) represents the \(j\)-th eigenvalue of the matrix pair (\(A, B\)), in one of the forms lambda = alpha/beta or mu = beta/alpha. In general, because either lambda or mu may overflow, they should not be computed.

\section*{For complex flavors:}

The real non-negative scalars beta defines the eigenvalues of GNEP. Together, the quantities alpha \(=\) alpha (\(j\)) and beta \(=\) beta \((j)\) represent the \(j\)-th eigenvalue of the matrix pair \((A, B)\), in one of the forms lambda \(=\) alpha/beta or mu \(=\) beta/alpha. In general, because either lambda or mu may overflow, they should not be computed.

On exit, if wantq = 'I', q is overwritten by the orthogonal/unitary matrix of left Schur vectors of the pair \((A, B)\), and if want \(q=\) ' \(V\) ', \(q\) is overwritten by the orthogonal/unitary matrix of left Schur vectors of (A1, B1).

On exit, if wantz = ' I ', \(z\) is overwritten by the orthogonal/unitary matrix of right Schur vectors of the pair (\(\mathrm{A}, \mathrm{B}\)), and if wantz \(=\) ' \(V\) ', \(z\) is overwritten by the orthogonal/unitary matrix of right Schur vectors of (A1, B1).
work(1)
If info \(\geq 0\), on exit work (1) contains the minimum value of lwork required for optimum performance. Use this lwork for subsequent runs.

INTEGER.
If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.
If info \(=1, \ldots, n\), the QZ iteration did not converge.
\((A, B)\) is not in Schur form, but alphar(i), alphai(i) (for real flavors), alpha(i) (for complex flavors), and beta(i), i=info+1,..., n should be correct.

\section*{Application Notes}

If you are in doubt how much workspace to supply, use a generous value of lwork for the first run or set lwork \(=-1\).

If you choose the first option and set any of the admissible lwork sizes no less than the minimal value described, the routine completes the task, though probably not so fast as with a recommended workspace, and provides the recommended workspace in the first element of the corresponding array work on exit. Use this value of work (1) for subsequent runs.
If you set lwork \(=-1\), the routine returns immediately and provides the recommended workspace in the first element of the corresponding array work. This operation is called a workspace query.

Note that if you set lwork to less than the minimal required value and not -1 , the routine returns immediately with an error exit and does not provide any information on the recommended workspace.

\section*{?lar1v}

Computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of tridiagonal matrix.

\section*{Syntax}
```

call slarlv( n, bl, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz,
mingma, r, isuppz, nrminv, resid, rqcorr, work )
call dlarlv( n, bl, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz,
mingma, r, isuppz, nrminv, resid, rqcorr, work )
call clarlv( n, bl, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz,
mingma, r, isuppz, nrminv, resid, rqcorr, work )
call zlarlv( n, bl, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz,
mingma, r, isuppz, nrminv, resid, rqcorr, work )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ? lar1v computes the (scaled) \(r\)-th column of the inverse of the submatrix in rows \(b 1\) through \(b n\) of the tridiagonal matrix \(L^{*} D^{\star} L^{T}-\lambda \star I\). When \(\lambda\) is close to an eigenvalue, the computed vector is an accurate eigenvector. Usually, \(r\) corresponds to the index where the eigenvector is largest in magnitude.
The following steps accomplish this computation :
- Stationary \(q d\) transform, \(L * D * L^{T}-\lambda * I=L(+) * D(+) * L(+)^{T}\)
- Progressive \(q d\) transform, \(L^{*} D^{\star} L^{T}-\lambda \star I=U(-) \star D(-) * U(-)^{T}\),
- Computation of the diagonal elements of the inverse of \(L * D * L^{T}-\lambda \star I\) by combining the above transforms, and choosing \(r\) as the index where the diagonal of the inverse is (one of the) largest in magnitude.
- Computation of the (scaled) \(r\)-th column of the inverse using the twisted factorization obtained by combining the top part of the stationary and the bottom part of the progressive transform.

\section*{Input Parameters}
```

n
b1 INTEGER. First index of the submatrix of L*D*LT
bn
lambda
I
INTEGER. The order of the matrix L* D**T
INTEGER. Last index of the submatrix of L* D* L'
REAL for slar1v/clar1v
DOUBLE PRECISION for dlarlv/zlar1v
The shift. To compute an accurate eigenvector, lambda should be a good approximation to an eigenvalue of $L * D^{*} L^{T}$.
REAL for slar1v/clar1v

```
\begin{tabular}{|c|c|}
\hline & DOUBLE PRECISION for dlar1v/zlar1v \\
\hline & Array, DIMENSION (\(n-1\)). \\
\hline & The (\(n-1\)) subdiagonal elements of the unit bidiagonal matrix \(L\), in elements 1 to \(n-1\). \\
\hline d & REAL for slar1v/clarlv \\
\hline & DOUBLE PRECISION for dlarlv/zlar1v \\
\hline & Array, DIMENSION (n). \\
\hline & The \(n\) diagonal elements of the diagonal matrix \(D\). \\
\hline ld & REAL for slar1v/clar1v \\
\hline & DOUBLE PRECISION for dlar1v/zlar1v \\
\hline & Array, DIMENSION (\(n-1\)). \\
\hline & The \(n\)-1 elements \(L_{i}{ }^{*} D_{i}\). \\
\hline \(11 d\) & REAL for slarlv/clar1v \\
\hline & DOUBLE PRECISION for dlarlv/zlarlv \\
\hline & Array, DIMENSION (\(n-1\)). \\
\hline & The \(n\)-1 elements \(L_{i}{ }^{*} L_{i}{ }^{*} D_{i}\). \\
\hline pivmin & REAL for slar1v/clar1v \\
\hline & DOUBLE PRECISION for dlar1v/zlar1v \\
\hline & The minimum pivot in the Sturm sequence. \\
\hline gaptol & REAL for slar1v/clarlv \\
\hline & DOUBLE PRECISION for dlar1v/zlar1v \\
\hline & Tolerance that indicates when eigenvector entries are negligible with respect to their contribution to the residual. \\
\hline \(z\) & REAL for slar1v \\
\hline & DOUBLE PRECISION for dlarlv \\
\hline & COMPLEX for clarlv \\
\hline & DOUBLE COMPLEX for zlar1v \\
\hline & Array, DIMENSION (\(n\)). All entries of \(z\) must be set to 0 . \\
\hline wantnc & LOGICAL. \\
\hline & Specifies whether negent has to be computed. \\
\hline \(r\) & INTEGER. \\
\hline & The twist index for the twisted factorization used to compute \(z\). On input, 0 \(\leq r \leq n\). If \(r\) is input as \(0, r\) is set to the index where (\(L L^{\star} D^{\star} L^{T}-\) lambda* \(I)^{-1}\) is largest in magnitude. If \(1 \leq r \leq n, r\) is unchanged. \\
\hline work & REAL for slarlv/clarlv \\
\hline & DOUBLE PRECISION for dlar1v/zlar1v \\
\hline
\end{tabular}

Workspace array, DIMENSION (4*n).

\section*{Output Parameters}
z
REAL for slarlv
DOUBLE PRECISION for dlarlv
COMPLEX for clar1v
DOUBLE COMPLEX for zlar1v
Array, DIMENSION (n). The (scaled) r-th column of the inverse. \(z(r)\) is returned to be 1 .

INTEGER. If wantnc is . TRUE . then negcnt \(=\) the number of pivots \(<\) pivmin in the matrix factorization \(L^{\star} D^{\star} L^{T}\), and negcnt \(=-1\) otherwise.

REAL for slar1v/clar1v
DOUBLE PRECISION for dlarlv/zlar1v
The square of the 2 -norm of \(z\).
REAL for slarlv/clar1v
DOUBLE PRECISION for dlarlv/zlar1v
The reciprocal of the largest (in magnitude) diagonal element of the inverse of \(L^{\star} D^{\star} L^{T}-I a m b d a \star I\).

On output, \(r\) is the twist index used to compute \(z\). Ideally, \(r\) designates the position of the maximum entry in the eigenvector.

INTEGER. Array, DIMENSION (2). The support of the vector in \(Z\), that is, the vector \(z\) is nonzero only in elements isuppz(1) through isuppz(2).

REAL for slarlv/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
Equals \(1 /\) sqrt \((z t z)\).
REAL for slar1v/clar1v
DOUBLE PRECISION for dlar1v/zlar1v
The residual of the EP vector.
```

resid = ABS( mingma )/sqrt( ztz ).
REAL for slar1v/clar1v
DOUBLE PRECISION for dlarlv/zlarlv

```

The Rayleigh Quotient correction to lambda.
```

rqcorr = mingma/ztz.

```

\section*{?lar2v}

Applies a vector of plane rotations with real cosines and real/complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.

\section*{Syntax}
```

call slar2v( n, x, y, z, incx, c, s, incc )
call dlar2v( n, x, y, z, incx, c, s, incc )
call clar2v( n, x, y, z, incx, c, s, incc )
call zlar2v( n, x, y, z, incx, c, s, incc )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ? lar2v applies a vector of real/complex plane rotations with real cosines from both sides to a sequence of 2-by-2 real symmetric or complex Hermitian matrices, defined by the elements of the vectors \(x\), \(y\) and \(z\). For \(i=1,2, \ldots, n\)
\[
\left[\begin{array}{cc}
x_{1} & z_{1} \\
\operatorname{conjg}\left(z_{1}\right) & y_{1}
\end{array}\right]:=\left[\begin{array}{cc}
c(i) & \operatorname{conjg}(s(i)) \\
-s(i) & c(i)
\end{array}\right]\left[\begin{array}{cc}
x_{1} & z_{1} \\
\operatorname{conjg}\left(z_{1}\right) & y_{1}
\end{array}\right]\left[\begin{array}{cc}
c(i) & -\operatorname{conjg}(s(i)) \\
s(i) & c(i)
\end{array}\right]
\]

\section*{Input Parameters}
\(n\)
\(x, y, z\)
incx

C

S
incc

INTEGER. The number of plane rotations to be applied.
REAL for slar2v
DOUBLE PRECISION for dlar2v
COMPLEX for clar2v
DOUBLE COMPLEX for zlar2v
Arrays, DIMENSION \((1+(n-1) * i n c x)\) each. Contain the vectors \(x, y\) and \(z\), respectively. For all flavors of ? \(1 \operatorname{lar} 2 v\), elements of \(x\) and \(y\) are assumed to be real.

INTEGER. The increment between elements of \(x, y\), and \(z\). incx \(>0\).
REAL for slar2v/clar2v
DOUBLE PRECISION for dlar2v/zlar2v
Array, DIMENSION \((1+(n-1) * i n c c)\). The cosines of the plane rotations.
REAL for slar2v
DOUBLE PRECISION for dlar2v
COMPLEX for clar2v
DOUBLE COMPLEX for zlar2v
Array, DIMENSION \((1+(n-1) * i n c c)\). The sines of the plane rotations.
INTEGER. The increment between elements of \(c\) and \(s\). incc \(>0\).

\section*{Output Parameters}
\(x, y, z\)
Vectors \(x, y\) and \(z\), containing the results of transform.

\section*{?laran}

Returns a random real number from a uniform distribution.

\section*{Syntax}
```

res = slaran (iseed)
res = dlaran (iseed)

```

\section*{Description}

The ?laran routine returns a random real number from a uniform \((0,1)\) distribution. This routine uses a multiplicative congruential method with modulus \(2^{48}\) and multiplier 33952834046453. 48-bit integers are stored in four integer array elements with 12 bits per element. Hence the routine is portable across machines with integers of 32 bits or more.

\section*{Input Parameters}
```

iseed

```

INTEGER. Array, size 4. On entry, the seed of the random number generator. The array elements must be between 0 and 4095, and iseed (4) must be odd.

\section*{Output Parameters}
iseed
res

INTEGER.
On exit, the seed is updated.
REAL for slaran,
DOUBLE PRECISION for dlaran,
Random number.
?larf
Applies an elementary reflector to a general rectangular matrix.

\section*{Syntax}
```

call slarf( side, m, n, v, incv, tau, c, ldc, work )
call dlarf( side, m, n, v, incv, tau, c, ldc, work )
call clarf( side, m, n, v, incv, tau, c, ldc, work )
call zlarf( side, m, n, v, incv, tau, c, ldc, work )

```

Include Files
- mkl.fi

Description

The routine applies a real/complex elementary reflector \(H\) to a real/complex \(m\)-by- \(n\) matrix \(C\), from either the left or the right. \(H\) is represented in one of the following forms:
- \(H=I-t a u^{\star} V^{\star} V^{T}\)
where tau is a real scalar and v is a real vector.
If \(\operatorname{tau}=0\), then \(H\) is taken to be the unit matrix.
- \(H=I-\operatorname{tau}^{\star} V^{\star} V^{H}\)
where tau is a complex scalar and v is a complex vector.
If \(\operatorname{tau}=0\), then \(H\) is taken to be the unit matrix. For clarf/zlarf, to apply \(H^{H}\) (the conjugate transpose of \(H\)), supply conjg(tau) instead of tau.

\section*{Input Parameters}
```

side CHARACTER*1.
If side = 'L': form H*C
If side = 'R': form C*H.
INTEGER. The number of rows of the matrix C.
INTEGER. The number of columns of the matrix C.
REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
DOUBLE COMPLEX for zlarf
Array, DIMENSION
$(1+(m-1) * a b s(i n c v))$ if side $=$ 'L' or
$(1+(n-1) * a b s(i n c v))$ if side $=' R$ '. The vector $v$ in the representation of $H . v$ is not used if tau $=0$.
INTEGER. The increment between elements of $v$.
incvキ 0 .
REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
DOUBLE COMPLEX for zlarf

```

The value tau in the representation of \(H\).
REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
DOUBLE COMPLEX for zlarf
Array, DIMENSION (\(/ d c, n\)).
On entry, the \(m\)-by- \(n\) matrix \(C\).
```

ldc
work
INTEGER. The leading dimension of the array c.
ldc\geq max (1,m).
REAL for slarf
DOUBLE PRECISION for dlarf
COMPLEX for clarf
DOUBLE COMPLEX for zlarf
Workspace array, DIMENSION
(n) if side = 'L' or
(m) if side = 'R'.

```

\section*{Output Parameters}
c
On exit, \(C\) is overwritten by the matrix \(H^{*} C\) if side \(=\) ' L ', or \(C^{*} H\) if side = 'R'.

\section*{?larfb}

Applies a block reflector or its transpose/conjugatetranspose to a general rectangular matrix.

\section*{Syntax}
```

call slarfb( side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork )
call dlarfb( side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork )
call clarfb( side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork )
call zlarfb( side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The real flavors of the routine ?larfb apply a real block reflector \(H\) or its transpose \(H^{\top}\) to a real \(m\)-by- \(n\) matrix \(C\) from either left or right.

The complex flavors of the routine ?larfb apply a complex block reflector \(H\) or its conjugate transpose \(H^{H}\) to a complex \(m\)-by- \(n\) matrix \(C\) from either left or right.

\section*{Input Parameters}

The data types are given for the Fortran interface.
```

side CHARACTER*1.
If side = 'L': apply H or H}\mp@subsup{H}{}{T}\mathrm{ for real flavors and H or H}\mp@subsup{H}{}{H}\mathrm{ for complex
flavors from the left.
If side = 'R': apply H or H}\mp@subsup{H}{}{T}\mathrm{ for real flavors and H or H}\mp@subsup{H}{}{H}\mathrm{ for complex
flavors from the right.
trans CHARACTER*1.

```
```

    If trans = 'N': apply H (No transpose).
    If trans = 'C': apply H}\mp@subsup{H}{}{H}\mathrm{ (Conjugate transpose).
    If trans = 'T': apply H}\mp@subsup{H}{}{T}\mathrm{ (Transpose).
    CHARACTER*1.
    Indicates how $H$ is formed from a product of elementary reflectors

```
```

If direct = 'F': H = H(1)*H(2)*. . . *H(k) (forward)

```
If direct = 'F': H = H(1)*H(2)*. . . *H(k) (forward)
If direct = 'B':H = H(k)* . . . H(2)*H(1) (backward)
If direct = 'B':H = H(k)* . . . H(2)*H(1) (backward)
CHARACTER*1.
Indicates how the vectors which define the elementary reflectors are stored:
If storev = 'C': Column-wise
If storev = 'R': Row-wise
INTEGER. The number of rows of the matrix \(C\).
INTEGER. The number of columns of the matrix \(C\).
INTEGER. The order of the matrix \(T\) (equal to the number of elementary reflectors whose product defines the block reflector).
REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
DOUBLE COMPLEX for zlarfb
Array, DIMENSION
\((I d v, k)\) if storev \(=\) ' C'
\((I d v, m)\) if storev \(=\) 'R' and side \(=\) 'L'
\((I d v, n)\) if storev = 'R' and side = 'R'
The matrix \(v\). See Application Notes below.
INTEGER. The leading dimension of the array \(v\).
If storev \(=\) 'C' and side \(=\) 'L', ldv \(\geq \max (1, m)\);
if storev \(=\) 'C' and side \(=\) 'R', ldv \(\geq \max (1, n)\);
if storev \(=\) 'R', \(l d v \geq k\).
REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
DOUBLE COMPLEX for zlarfb
Array, size (ldt,k).
Contains the triangular \(k\)-by- \(k\) matrix \(T\) in the representation of the block reflector.
```

```
ldt
c
ldc
work
ldwork
INTEGER. The leading dimension of the array \(t\).
\(\operatorname{ld} t \geq k\).
REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
DOUBLE COMPLEX for zlarfb
Array, size (Idc,n).
On entry, the \(m\)-by-n matrix \(C\).
INTEGER. The leading dimension of the array \(c\).
\(l d c \geq \max (1, m)\).
REAL for slarfb
DOUBLE PRECISION for dlarfb
COMPLEX for clarfb
DOUBLE COMPLEX for zlarfb
Workspace array, DIMENSION (/dwork, k).
INTEGER. The leading dimension of the array work.
If side \(=\) 'L', ldwork \(\geq \max (1, n)\);
if side \(=\) 'R', ldwork \(\geq \max (1, m)\).
```


## Output Parameters

c
On exit, $c$ is overwritten by the product of the following:

- $H^{*} C$, or $H^{T} C$, or $C^{*} H$, or $C^{*} H^{T}$ for real flavors
- $H^{*} C$, or $H^{H *} C$, or $C^{*} H$, or $C^{*} H^{H}$ for complex flavors

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the $i$-th parameter had an illegal value.
If info $=-1011$, memory allocation error occurred.

## Application Notes

The shape of the matrix $V$ and the storage of the vectors which define the $H(i)$ is best illustrated by the following example with $n=5$ and $k=3$. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.

$$
\begin{aligned}
& \text { direct }=\text { ' } \mathrm{F}^{\prime} \text { and storev }=\text { ' } \mathrm{C} \text { ': direct }=\text { ' } \mathrm{F}^{\prime} \text { and storev }=\text { 'R': } \\
& {\left[\begin{array}{ccc}
1 & & \\
V_{1} & 1 & \\
V_{1} & V_{2} & 1 \\
V_{1} & V_{2} & V_{3} \\
V_{1} & V_{2} & V_{3}
\end{array}\right]} \\
& \text { direct }=\text { ' } \mathrm{B}^{\prime} \text { and storev }=\text { 'C': direct }=\text { ' } \mathrm{B}^{\prime} \text { and storev }=\text { ' } \mathrm{R} \text { ': } \\
& {\left[\begin{array}{ccc}
\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3} \\
\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3} \\
1 & \mathrm{v}_{2} & \mathrm{v}_{3} \\
& 1 & \mathrm{v}_{3} \\
& & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
1 & \mathrm{~V}_{1} & \mathrm{~V}_{1} & \mathrm{~V}_{1} & \mathrm{~V}_{1} \\
& 1 & \mathrm{~V}_{2} & \mathrm{~V}_{2} & \mathrm{~V}_{2} \\
& & 1 & \mathrm{~V}_{3} & \mathrm{~V}_{3}
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
v_{1} & v_{1} & 1 & & \\
v_{2} & v_{2} & v_{2} & 1 & \\
v_{3} & v_{3} & v_{3} & v_{3} & 1
\end{array}\right]}
\end{aligned}
$$

## ?larfg

Generates an elementary reflector (Householder matrix).

## Syntax

```
call slarfg(n, alpha, x, incx, tau)
call dlarfg(n, alpha, x, incx, tau)
call clarfg(n, alpha, x, incx, tau)
call zlarfg(n, alpha, x, incx, tau)
```


## Include Files

- mkl.fi


## Description

The routine ?larfg generates a real/complex elementary reflector $H$ of order $n$, such that

$$
H^{*}\left[\begin{array}{c}
\text { alpha } \\
x
\end{array}\right]=\left[\begin{array}{c}
\text { bet } a \\
0
\end{array}\right], H^{T} *_{H}=I
$$

for real flavors and

$$
H^{X} *\left[\begin{array}{c}
\text { alpha} \\
x
\end{array}\right]=\left[\begin{array}{c}
\text { beta } \\
0
\end{array}\right], H^{x} *_{H}=I
$$

for complex flavors,
where alpha and beta are scalars (with beta real for all flavors), and $x$ is an ( $n$-1)-element real/complex vector. $H$ is represented in the form

$$
H=I-t a u^{*}\left[\begin{array}{l}
1 \\
v
\end{array}\right] *\left[\begin{array}{ll}
1 & v^{T}
\end{array}\right]
$$

for real flavors and

$$
H=I-\operatorname{tau}^{*}\left[\begin{array}{l}
1 \\
v
\end{array}\right] *\left[\begin{array}{ll}
1 & v^{H}
\end{array}\right]
$$

for complex flavors,
where tau is a real/complex scalar and $v$ is a real/complex ( $n-1$ )-element vector, respectively. Note that for clarfg/zlarfg, $H$ is not Hermitian.

If the elements of $x$ are all zero (and, for complex flavors, alpha is real), then tau $=0$ and $H$ is taken to be the unit matrix.
Otherwise, $1 \leq$ tau $\leq 2$ (for real flavors), or
$1 \leq \operatorname{Re}(t a u) \leq 2$ and abs $($ tau-1) $\leq 1$ (for complex flavors).

## Input Parameters

The data types are given for the Fortran interface.
$n$
alpha

X
incx

INTEGER. The order of the elementary reflector.
REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
DOUBLE COMPLEX for zlarfg On entry, the value alpha.
REAL for slarfg
DOUBLE PRECISION for dlarfg
COMPLEX for clarfg
DOUBLE COMPLEX for zlarfg
Array, size $(1+(n-2) * a b s(i n c x))$.
On entry, the vector $x$.
INTEGER.
The increment between elements of $x$. incx $>0$.

## Output Parameters

alpha	On exit, it is overwritten with the value beta.
$x$	On exit, it is overwritten with the vector $v$.
tau	REAL for slarfg
	DOUBLE PRECISION for dlarfg
	COMPLEX for clarfg
	DOUBLE COMPLEX for zlarfg The value tau.

On exit, it is overwritten with the value beta.
On exit, it is overwritten with the vector $v$.
REAL for slarfg
DOUBLE PRECISION for dlarfg

DOUBLE COMPLEX for zlarfg The value tau.

```
?larfgp
Generates an elementary reflector (Householder
matrix) with non-negative beta .
```


## Syntax

```
call slarfgp(n, alpha, x, incx, tau)
```

call slarfgp( n, alpha, x, incx, tau )
call dlarfgp( n, alpha, x, incx, tau )
call dlarfgp( n, alpha, x, incx, tau )
call clarfgp( n, alpha, x, incx, tau )
call clarfgp( n, alpha, x, incx, tau )
call zlarfgp( n, alpha, x, incx, tau )

```
call zlarfgp(n, alpha, x, incx, tau)
```

Include Files

- mkl.fi


## Description

The routine ?larfgp generates a real/complex elementary reflector $H$ of order $n$, such that

$$
H^{*}\left[\begin{array}{c}
a l p h a \\
x
\end{array}\right]=\left[\begin{array}{c}
\text { bet } a \\
0
\end{array}\right], H^{T} H=I
$$

for real flavors and

$$
H^{M} *\left[\begin{array}{c}
a l p h a \\
x
\end{array}\right]=\left[\begin{array}{c}
\operatorname{bet} a \\
0
\end{array}\right], H^{M} *_{H}=I
$$

for complex flavors,
where alpha and beta are scalars (with beta real and non-negative for all flavors), and $x$ is an ( $n$-1)-element real/complex vector. $H$ is represented in the form

$$
H=I-t a u^{*}\left[\begin{array}{l}
1 \\
v
\end{array}\right] *\left[\begin{array}{ll}
1 & v^{T}
\end{array}\right]
$$

for real flavors and

$$
H=I-t a u *\left[\begin{array}{l}
1 \\
v
\end{array}\right] *\left[\begin{array}{ll}
1 & v^{H}
\end{array}\right]
$$

for complex flavors,
where tau is a real/complex scalar and $v$ is a real/complex ( $n-1$ )-element vector. Note that for c/zlarfgp, $H$ is not Hermitian.

If the elements of $x$ are all zero (and, for complex flavors, alpha is real), then $\operatorname{tau}=0$ and $H$ is taken to be the unit matrix.

Otherwise, $1 \leq$ tau $\leq 2$ (for real flavors), or
$1 \leq \operatorname{Re}(t a u) \leq 2$ and abs(tau-1) $\leq 1$ (for complex flavors).

## Input Parameters

```
n
alpha
```

INTEGER. The order of the elementary reflector.
REAL for slarfgp

```
DOUBLE PRECISION for dlarfgp
COMPLEX for clarfgp
DOUBLE COMPLEX for zlarfgp
On entry, the value alpha.
X
REAL for \(s\)
DOUBLE PRECISION for dlarfgp
COMPLEX for clarfgp
DOUBLE COMPLEX for zlarfgp
Array, DIMENSION (1+(n-2)*abs(incx)).
On entry, the vector \(x\).
INTEGER.
The increment between elements of \(x\). incx \(>0\).
```


## Output Parameters

alpha
$x$
tau

On exit, it is overwritten with the value beta.
On exit, it is overwritten with the vector $v$.
REAL for slarfgp
DOUBLE PRECISION for dlarfgp
COMPLEX for clarfgp
DOUBLE COMPLEX for zlarfgp
The value tau.
?larft
Forms the triangular factor $T$ of a block reflector $H=I$

- $V * T * V * *$.

Syntax

```
call slarft(direct, storev, n, k, v, ldv, tau, t, ldt)
call dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
call clarft(direct, storev, n, k, v, ldv, tau, t, ldt)
call zlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
```


## Include Files

- mkl.fi


## Description

The routine ? larft forms the triangular factor $T$ of a real/complex block reflector $H$ of order $n$, which is defined as a product of $k$ elementary reflectors.
If direct $=' F^{\prime}, H=H(1) * H(2) * . . . * H(k)$ and $T$ is upper triangular;
If direct $=$ ' $\mathrm{B}^{\prime}, H=H(k) * \cdot . . * H(2) * H(1)$ and $T$ is lower triangular.

If storev = 'C', the vector which defines the elementary reflector $\mathrm{H}(i)$ is stored in the $i$-th column of the array $v$, and $H=I-V^{\star} T^{\star} V^{T}$ (for real flavors) or $H=I-V^{\star} T^{\star} V^{H}$ (for complex flavors).

If storev = 'R', the vector which defines the elementary reflector $H(i)$ is stored in the $i$-th row of the array $v$, and $H=I-V^{T \star} T^{\star} V$ (for real flavors) or $H=I-V^{H \star} T^{*} V$ (for complex flavors).

## Input Parameters

The data types are given for the Fortran interface.

```
direct CHARACTER*1.
Specifies the order in which the elementary reflectors are multiplied to form the block reflector:
```

```
 = 'F':H = H(1)*H(2)*. . . *H(k) (forward)
```

    = 'F':H = H(1)*H(2)*. . . *H(k) (forward)
    = 'B':H=H(k)*. . .*H(2)*H(1) (backward)
    = 'B':H=H(k)*. . .*H(2)*H(1) (backward)
    CHARACTER*1.
    ```
 CHARACTER*1.
```

Specifies how the vectors which define the elementary reflectors are stored (see also Application Notes below):
= 'C': column-wise
= 'R': row-wise.
INTEGER. The order of the block reflector $H . n \geq 0$.
INTEGER. The order of the triangular factor $T$ (equal to the number of elementary reflectors). $k \geq 1$.

REAL for slarft
DOUBLE PRECISION for dlarft
COMPLEX for clarft
DOUBLE COMPLEX for zlarft
Array, DIMENSION
$(I d v, k)$ if storev $=$ ' C' or
$(I d v, n)$ if storev $=$ ' $R$ '.
The matrix $V$.
INTEGER. The leading dimension of the array $v$.
If storev $=' C ', l d v \geq \max (1, n)$
if storev $=$ ' R ', $I d v \geq k$.
REAL for slarft
DOUBLE PRECISION for dlarft
COMPLEX for clarft
DOUBLE COMPLEX for zlarft
Array, size ( $k$ ). tau (i) must contain the scalar factor of the elementary reflector $H(i)$.

INTEGER. The leading dimension of the output array $t$. $1 d t \geq k$.

## Output Parameters

```
t
v
```


## Application Notes

REAL for slarft
DOUBLE PRECISION for dlarft
COMPLEX for clarft
DOUBLE COMPLEX for zlarft
Array, size $l d t$ by $k$. The $k$-by- $k$ triangular factor $T$ of the block reflector. If direct $=$ ' F ', $T$ is upper triangular; if direct $=' \mathrm{~B}$ ', $T$ is lower triangular. The rest of the array is not used.

The matrix $V$.

The shape of the matrix $V$ and the storage of the vectors which define the $H(i)$ is best illustrated by the following example with $n=5$ and $k=3$. The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.

$$
\begin{aligned}
& \text { direct }=\text { ' } F \text { ' and storev }=\text { 'C': direct }=\text { ' } F \text { ' and storev = 'R': } \\
& {\left[\begin{array}{ccc}
1 & & \\
V_{1} & 1 & \\
V_{1} & V_{2} & 1 \\
V_{1} & V_{2} & V_{3} \\
V_{1} & V_{2} & V_{3}
\end{array}\right]} \\
& \text { direct }=\text { ' } \mathrm{B}^{\prime} \text { and storev }=\text { 'C': direct }=\text { ' } \mathrm{B}^{\prime} \text { and storev }=\text { ' } \mathrm{R} \text { ': } \\
& {\left[\begin{array}{ccc}
\mathrm{V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3} \\
\mathrm{~V}_{1} & \mathrm{~V}_{2} & \mathrm{~V}_{3} \\
1 & \mathrm{~V}_{2} & \mathrm{~V}_{3} \\
& 1 & \mathrm{~V}_{3} \\
& & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
1 & V_{1} & V_{1} & V_{1} & V_{1} \\
& 1 & V_{2} & V_{2} & V_{2} \\
& & 1 & V_{3} & V_{3}
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
v_{1} & v_{1} & 1 & & \\
v_{2} & v_{2} & v_{2} & 1 & \\
v_{3} & v_{3} & v_{3} & v_{3} & 1
\end{array}\right]}
\end{aligned}
$$

## ?larfx

Applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order less than or equal to 10.

## Syntax

```
call slarfx(side, m, n, v, tau, c, ldc, work)
call dlarfx(side, m, n, v, tau, c, ldc, work)
call clarfx(side, m, n, v, tau, c, ldc, work)
call zlarfx(side, m, n, v, tau, c, ldc, work)
```


## Include Files

- mkl.fi


## Description

The routine ?larfx applies a real/complex elementary reflector $H$ to a real/complex $m$-by- $n$ matrix $C$, from either the left or the right.
$H$ is represented in the following forms:

- $H=I-t a u^{*} v^{\star} v^{T}$, where tau is a real scalar and $v$ is a real vector.
- $H=I$ - $\operatorname{tau}^{\star} V^{\star} V^{H}$, where tau is a complex scalar and $v$ is a complex vector.

If $\operatorname{tau}=0$, then $H$ is taken to be the unit matrix.

## Input Parameters

The data types are given for the Fortran interface.
side CHARACTER*1.
If side = 'L': form $H^{\star} C$
If side $=$ 'R': form $C^{\star} H$.
INTEGER. The number of rows of the matrix $C$.
INTEGER. The number of columns of the matrix $C$.
REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
DOUBLE COMPLEX for zlarfx
Array, size
(m) if side = 'L' or
$(n)$ if side $=$ 'R'.
The vector $v$ in the representation of $H$.
REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
DOUBLE COMPLEX for zlarfx
The value tau in the representation of $H$.
c
REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
DOUBLE COMPLEX for zlarfx
Array, size Idc by $n$. On entry, the $m$-by- $n$ matrix $c$.

```
ldc
work
Integer. The leading dimension of the array c. Ida \(a(1, m)\).
REAL for slarfx
DOUBLE PRECISION for dlarfx
COMPLEX for clarfx
DOUBLE COMPLEX for zlarfx
Workspace array, size
(\(n\)) if side = 'L' or
\((m)\) if side \(=\) 'R'.
work is not referenced if \(H\) has order \(<11\).
```


## Output Parameters

c
On exit, C is overwritten by the matrix $H^{\star} C$ if side $=$ ' L ', or $C^{\star} H$ if side $=$ 'R'.

## ?larfy

Applies an elementary reflector, or Householder matrix, $H$, to an $n$ by $n$ symmetric or Hermitian matrix
C, from both the left and the right.

```
call slarfy(uplo, n, v, incv, tau, C, ldc, work)
call dlarfy(uplo, n, v, incv, tau, C, ldc, work)
call clarfy(uplo, n, v, incv, tau, C, ldc, work)
call zlarfy(uplo, n, v, incv, tau, C, ldc, work)
```


## Description

? larfy applies an elementary reflector, or Householder matrix, $H$, to an $n$ by $n$ symmetric or Hermitian matrix C , from both the left and the right. H is represented in the form $\mathrm{H}=\mathrm{I}-\operatorname{tau} * v * v^{\top}$ (for real flavors) or $\mathrm{H}=\mathrm{I}-\tan * v * v^{\mathrm{H}}$ (for complex flavors), where tau is a scalar and $v$ is a vector. If tau is zero, H is taken to be the unit matrix.

## Input Parameters

```
uplo
n
V
 CHARACTER*1 Hermitian matrix C is stored.
- = 'U': Upper triangular part of C is stored.
- = 'L': Lower triangular part of C is stored.
INTEGER
REAL for slarfy
DOUBLE PRECISION for dlarfy
COMPLEX for clarfy
```

Specifies whether the upper or lower triangular part of the symmetric or

The number of rows and columns of the matrix $C . n \geq 0$.

```
COMPLEX*16 for zlarfy
Array, dimension (1+(n-1)*abs(incv)). The vector v as described above.
INTEGER
The increment between successive elements of v . incv must not be zero.
REAL for slarfy
DOUBLE PRECISION for dlarfy
COMPLEX for clarfy
COMPLEX*16 for zlarfy
The value tau as described above.
REAL for slarfy
DOUBLE PRECISION for dlarfy
COMPLEX for clarfy
COMPLEX*16 for zlarfy
Array, dimension (Idc, n). On entry, the matrix C.
INTEGER
The leading dimension of the array C. Idc \geq max(1,n).
```


## Output Parameters

```
C
```

```
REAL for slarfy
```

REAL for slarfy
DOUBLE PRECISION for dlarfy
DOUBLE PRECISION for dlarfy
COMPLEX for clarfy
COMPLEX for clarfy
COMPLEX*16 for zlarfy
COMPLEX*16 for zlarfy
On exit, $C$ is overwritten by $\mathrm{H}^{*} \mathrm{C} * \mathrm{H}^{\top}$ (for real flavors) or $\mathrm{H}^{*} \mathrm{C} * \mathrm{H}^{\mathrm{H}}$ (for complex flavors).
work
REAL for slarfy
DOUBLE PRECISION for dlarfy
COMPLEX for clarfy
COMPLEX*16 for zlarfy
Array, dimension ( $n$ ).

```

\section*{?large}

Pre- and post-multiplies a real general matrix with a random orthogonal matrix.

Syntax
```

call slarge( n, a, lda, iseed, work, info )
call dlarge( n, a, lda, iseed, work, info )
call clarge( n, a, lda, iseed, work, info )

```
```

call zlarge( n, a, lda, iseed, work, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ? large pre- and post-multiplies a general \(n\)-by-n matrix \(A\) with a random orthogonal or unitary matrix: \(A=U^{*} D^{*} U^{\top}\).

\section*{Input Parameters}
```

    n INTEGER. The order of the matrix A. n\geq0
    a
    lda
iseed
work
INTEGER. The order of the matrix $A . n \geq 0$
REAL for slarge,
DOUBLE PRECISION for dlarge,
COMPLEX for clarge,
DOUBLE COMPLEX for zlarge,
Array, size Ida by $n$.
On entry, the original $n$-by-n matrix $A$.
INTEGER. The leading dimension of the array $a$. Ida $a n$.
INTEGER. Array, size 4.
On entry, the seed of the random number generator. The array elements must be between 0 and 4095, and iseed (4) must be odd.
REAL for slarge,
DOUBLE PRECISION for dlarge,
COMPLEX for clarge,
DOUBLE COMPLEX for zlarge,
Workspace array, size 2*n.

```

\section*{Output Parameters}
a
iseed
info
INTEGER.
On exit, \(A\) is overwritten by \(U^{*} A^{*} U^{\prime}\) for some random orthogonal matrix \(U\).
INTEGER.
On exit, the seed is updated.
INTEGER.
If info \(=0\), the execution is successful.
If info \(<0\), the \(i\)-th parameter had an illegal value.

\section*{?largv}

Generates a vector of plane rotations with real cosines and real/complex sines.

\section*{Syntax}
```

call slargv( n, x, incx, y, incy, c, incc )
call dlargv( n, x, incx, y, incy, c, incc )
call clargv( n, x, incx, y, incy, c, incc )
call zlargv( n, x, incx, y, incy, c, incc )

```

Include Files
- mkl.fi

\section*{Description}

The routine generates a vector of real/complex plane rotations with real cosines, determined by elements of the real/complex vectors \(x\) and \(y\).
For slargv/dlargv:
\[
\left[\begin{array}{cc}
\Delta(i) & s(i) \\
-s(i) & \Delta(i)
\end{array}\right]\left[\begin{array}{l}
X_{i} \\
Y_{i}
\end{array}\right]=\left[\begin{array}{c}
a_{i} \\
0
\end{array}\right], \text { for } i=1,2, \ldots, n
\]

For clargv/zlargv:
\[
\left[\begin{array}{cc}
c(i) & s(i) \\
-\operatorname{conjg}(s(i)) & c(i)
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]=\left[\begin{array}{c}
r_{i} \\
0
\end{array}\right], \text { for } i=1,2, \ldots, n
\]
where \(c(i)^{2}+\operatorname{abs}(s(i))^{2}=1\) and the following conventions are used (these are the same as in clartg/ zlartg but differ from the BLAS Level 1 routine crotg/zrotg):
If \(y_{i}=0\), then \(c(i)=1\) and \(s(i)=0\);
If \(x_{i}=0\), then \(c(i)=0\) and \(s(i)\) is chosen so that \(r_{i}\) is real.

\section*{Input Parameters}
```

n
x,y
INTEGER. The number of plane rotations to be generated.
REAL for slargv
DOUBLE PRECISION for dlargv
COMPLEX for clargv
DOUBLE COMPLEX for zlargv
Arrays, DIMENSION $(1+(n-1) * i n c x)$ and ( $\left.1+(n-1)^{*} i n c y\right)$, respectively. On entry, the vectors $x$ and $y$.

```
```

incx INTEGER. The increment between elements of x
incx > 0.
INTEGER. The increment between elements of }y\mathrm{ .
incy > 0.
INTEGER. The increment between elements of the output array c. incc >
0.

```

\section*{Output Parameters}
x
On exit, \(x(i)\) is overwritten by \(a_{i}\) (for real flavors), or by \(r_{i}\) (for complex flavors), for \(i=1, \ldots, n\).

On exit, the sines \(s(i)\) of the plane rotations.
REAL for slargv/clargv
DOUBLE PRECISION for dlargv/zlargv
Array, DIMENSION \((1+(n-1) * i n c c)\). The cosines of the plane rotations.

\section*{?larnd \\ Returns a random real number from a uniform or normal distribution.}

\section*{Syntax}
```

res = slarnd( idist, iseed )
res = dlarnd( idist, iseed )
res = clarnd( idist, iseed )
res = zlarnd( idist, iseed )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ? larnd returns a random number from a uniform or normal distribution.

\section*{Input Parameters}
idist
INTEGER. Specifies the distribution of the random numbers. For slarnd and dlanrd:
\(=1:\) uniform \((0,1)\)
\(=2:\) uniform \((-1,1)\)
= 3: normal \((0,1)\).
For clarnd and zlanrd:
\(=1\) : real and imaginary parts each uniform \((0,1)\)
\(=2:\) real and imaginary parts each uniform \((-1,1)\)
\(=3:\) real and imaginary parts each normal \((0,1)\)

\(=4:\) uniformly distributed on the disc abs \((z) \leq 1\)

\(=5:\) uniformly distributed on the circle abs \((z)=1\)
iseed \(\quad\)
INTEGER. Array, size 4.

On entry, the seed of the random number generator. The array elements must be between 0 and 4095, and iseed (4) must be odd.

\section*{Output Parameters}
iseed
res
INTEGER.
On exit, the seed is updated.
REAL for slarnd,
DOUBLE PRECISION for dlarnd,
COMPLEX for clarnd,
DOUBLE COMPLEX for zlarnd,
Random number.

\section*{?larnv}

Returns a vector of random numbers from a uniform or normal distribution.

\section*{Syntax}
```

call slarnv( idist, iseed, n, x )
call dlarnv( idist, iseed, n, x )
call clarnv( idist, iseed, n, x )
call zlarnv( idist, iseed, n, x )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ?larnv returns a vector of \(n\) random real/complex numbers from a uniform or normal distribution.

This routine calls the auxiliary routine ? laruv to generate random real numbers from a uniform \((0,1)\) distribution, in batches of up to 128 using vectorisable code. The Box-Muller method is used to transform numbers from a uniform to a normal distribution.

\section*{Input Parameters}

The data types are given for the Fortran interface.
idist
INTEGER. Specifies the distribution of the random numbers: for slarnv and dlarnv:
```

    = 1: uniform (0,1)
    =2: uniform (-1,1)
    = 3: normal (0,1).
    for clarnv and zlarnv:
    =1: real and imaginary parts each uniform (0,1)
    =2: real and imaginary parts each uniform (-1,1)
    = 3: real and imaginary parts each normal (0,1)
    = 4: uniformly distributed on the disc abs(z)<1
    = 5: uniformly distributed on the circle abs(z) = 1
    INTEGER. Array, size (4).
    ```

On entry, the seed of the random number generator; the array elements must be between 0 and 4095, and iseed(4) must be odd.

INTEGER. The number of random numbers to be generated.

\section*{Output Parameters}

X
REAL for slarnv
DOUBLE PRECISION for dlarnv
COMPLEX for clarnv
DOUBLE COMPLEX for zlarnv
Array, size (\(n\)). The generated random numbers.
iseed
On exit, the seed is updated.

\section*{?laror}

Pre- or post-multiplies an m-by-n matrix by a random orthogonal/unitary matrix.

\section*{Syntax}
```

call slaror( side, init, m, n, a, lda, iseed, x, info )
call dlaror( side, init, m, n, a, lda, iseed, x, info )
call claror( side, init, m, n, a, lda, iseed, x, info )
call zlaror( side, init, m, n, a, lda, iseed, x, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine ? laror pre- or post-multiplies an \(m\)-by- \(n\) matrix \(A\) by a random orthogonal or unitary matrix \(U\), overwriting \(A\). A may optionally be initialized to the identity matrix before multiplying by \(U\). \(U\) is generated using the method of G.W. Stewart (SIAM J. Numer. Anal. 17, 1980, 403-409).

\section*{Input Parameters}
side
init
m
n
a

Ida

CHARACTER*1. Specifies whether \(A\) is multiplied by \(U\) on the left or right.
for slaror and dlaror:
If side \(=\) ' L ', multiply \(A\) on the left (premultiply) by \(U\).
If side \(=\) ' R ', multiply \(A\) on the right (postmultiply) by \(U^{\top}\).
If side \(=\) ' C ' or ' \(T\) ', multiply \(A\) on the left by \(U\) and the right by \(U^{\top}\).
for claror and zlaror:
If side \(=\) ' L ', multiply \(A\) on the left (premultiply) by \(U\).
If side \(=\) 'R', multiply \(A\) on the right (postmultiply) by UC>.
If side \(=\) ' C', multiply \(A\) on the left by \(U\) and the right by \(U C>\)
If side \(=\) ' \(T\) ', multiply \(A\) on the left by \(U\) and the right by \(U^{\top}\).
CHARACTER* \({ }^{1}\). Specifies whether or not a should be initialized to the identity matrix.
If init = 'I', initialize a to (a section of) the identity matrix before applying \(U\).

If init = ' N ', no initialization. Apply \(U\) to the input matrix \(A\).
init = 'I' generates square or rectangular orthogonal matrices:
For \(m=n\) and side \(=\) 'L' or 'R', the rows and the columns are orthogonal to each other.
For rectangular matrices where \(m<n\) :
- If side = 'R', ?laror produces a dense matrix in which rows are orthogonal and columns are not.
- If side= 'L', ?laror produces a matrix in which rows are orthogonal, first \(m\) columns are orthogonal, and remaining columns are zero.
For rectangular matrices where \(m>n\) :
- If side = 'L', ?laror produces a dense matrix in which columns are orthogonal and rows are not.
- If side = 'R', ?laror produces a matrix in which columns are orthogonal, first \(m\) rows are orthogonal, and remaining rows are zero.

Integer. The number of rows of \(A\).
integer. The number of columns of \(A\).
REAL for slaror,
DOUBLE PRECISION for dlaror,
COMPLEX for claror,
DOUBLE COMPLEX for zlaror,
Array, size Ida by \(n\).
integer. The leading dimension of the array \(a\).
\(l d a \geq \max (1, m)\).
iseed

X
INTEGER. Array, size (4).
On entry, specifies the seed of the random number generator. The array elements must be between 0 and 4095; if not they are reduced mod 4096. Also, iseed(4) must be odd.

REAL for slaror,
DOUBLE PRECISION for dlaror,
COMPLEX for claror,
DOUBLE COMPLEX for zlaror,
Workspace array, size (\(3 * \max (m, n)\)).
\begin{tabular}{|c|c|}
\hline Value of side & Length of workspace \\
\hline 'L' & \(2 * m+n\) \\
\hline 'R' & \(2 * n+m\) \\
\hline 'C' or 'T' & \(3 * n\) \\
\hline
\end{tabular}

\section*{Output Parameters}
a
On exit, overwritten
by \(U A\) (if side = 'L'),
by \(A U\) (if side = 'R'),
by \(U A U^{\top}\) (if side \(=\) ' C ' or ' T ').
The values of iseed are changed on exit, and can be used in the next call to continue the same random number sequence.

INTEGER. Array, size (4).
For slaror and dlaror:
If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info \(=1\), the random numbers generated by ?laror are bad.
For claror and zlaror:
If info \(=0\), the execution is successful.
If info \(=-1\), side is not 'L', 'R', 'C', or 'T'.
If info \(=-3\), if \(m\) is negative.
If info \(=-4\), if \(m\) is negative or if side is ' \(C\) ' or ' \(T\) ' and \(n\) is not equal to \(m\).
If info \(=-6\), if \(/ d a\) is less than \(m\).
?larot
Applies a Givens rotation to two adjacent rows or columns.

\section*{Syntax}
```

call slarot( lrows, lleft, lright, nl, c, s, a, lda, xleft, xright )
call dlarot( lrows, lleft, lright, nl, c, s, a, lda, xleft, xright )
call clarot( lrows, lleft, lright, nl, c, s, a, lda, xleft, xright )
call zlarot( lrows, lleft, lright, nl, c, s, a, lda, xleft, xright )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ? larot applies a Givens rotation to two adjacent rows or columns, where one element of the first or last column or row is stored in some format other than GE so that elements of the matrix may be used or modified for which no array element is provided.
One example is a symmetric matrix in SB format (bandwidth \(=4\)), for which uplo = 'L'. Two adjacent rows will have the format:
```

row j : C > C>C>C>C> . . . .
row j + 1 : C>C>C>C>C> . . . .

```
'*' indicates elements for which storage is provided.
' . ' indicates elements for which no storage is provided, but are not necessarily zero; their values are determined by symmetry.
' ' indicates elements which are required to be zero, and have no storage provided.
Those columns which have two ' *' entries can be handled by srot (for slarot and clarot), or by drot(for dlarot and zlarot).
Those columns which have no '*' entries can be ignored, since as long as the Givens rotations are carefully applied to preserve symmetry, their values are determined.
Those columns which have one ' \(*\) ' have to be handled separately, by using separate variables \(p\) and \(q\) :
```

row j : C > C>C>C>C>p. . . .
row j+1 : q C>C>C>C>C> . . . .

```

If element \(p\) is set correctly, ?larot rotates the column and sets \(p\) to its new value. The next call to ?larot rotates columns \(j\) and \(j+1\), and restore symmetry. The element \(q\) is zero at the beginning, and non-zero after the rotation. Later, rotations would presumably be chosen to zero \(q\) out.

Typical Calling Sequences: rotating the \(i\)-th and (\(i+1\))-st rows.

\section*{Example}

\section*{Typical Calling Sequences}

These examples rotate the \(i\)-th and (\(i+1\)) -st rows.
General dense matrix:
```

call dlarot (.TRUE.,.FALSE.,.FALSE., n, c, s,
a(i,1),lda, dummy, dummy)

```

\section*{General banded matrix in GB format:}
```

j = max(1, i-kl )
nl = min( n, i+ku+1 ) + 1-j
call dlarot( .TRUE., i-kl.GE.1, i+ku.LT.n, nl, c,s,
a(ku+i+1-j,j),lda-1, xleft, xright )

```

\section*{NOTE}
\(i+1-j\) is just \(\min (i, k l+1)\).

Symmetric banded matrix in SY format, bandwidth K, lower triangle only:
```

j = max(1, i-k )
nl = min( k+1, i ) + 1
call dlarot( .TRUE., i-k.GE.1, .TRUE., nl, c,s,
a(i,j), lda, xleft, xright )

```

Same, but upper triangle only:
```

nl = min( k+1, n-i ) + 1
call dlarot( .TRUE., .TRUE., i+k.LT.n, nl, c,s,
a(i,i), lda, xleft, xright )

```

Symmetric banded matrix in SB format, bandwidth K, lower triangle only: [same as for SY, except:]
```

    a(i+1-j,j), lda, xleft, xright )
    ```

\section*{NOTE}
\(i+1-j\) is just \(\min (i, k+1)\)

Same, but upper triangle only:
\(a(k+1, i), ~ l d a-1, ~ x l e f t, ~ x r i g h t) ~\)
Rotating columns is just the transpose of rotating rows, except for GB and SB: (rotating columns i and i+1) GB:

\section*{NOTE}
\(k u+j+1-i\) is just \(\max (1, k u+2-i)\)
```

j = max(1, i-ku )
nl = min( n, i+kl+1 ) + 1-j
call dlarot( .TRUE., i-ku.LE.1, i+kl.LT.n, nl, c,s,
a(ku+j+1-i,i),lda-1, xtop, xbottm )

```

SB: (upper triangle)
\[
a(k+j+1-i, i), l d a-1, \text { xtop, xbottm) }
\]

SB: (lower triangle) A(1, i),LDA-1, XTOP, XBOTTM)
```

    a(1,i),lda-1, xtop, xbottm )
    ```

\section*{Input Parameters}
```

lrows

```
lleft
lright
a

LOGICAL.
If lrows = .TRUE., ?larot rotates two rows.
If lrows = .FALSE., ?larot rotates two columns.
LOGICAL.
If lleft \(=\).TRUE., xleft is used instead of the corresponding element of a for the first element in the second row (if lrows = .FALSE.) or column (if lrows=.TRUE.).

If lleft \(=\).FALSE., the corresponding element of \(a\) is used.
LOGICAL.
If lleft = .TRUE., xright is used instead of the corresponding element of a for the first element in the second row (if lrows = .FALSE.) or column (if lrows=. TRUE.).

If lright = .FALSE., the corresponding element of \(a\) is used.
INTEGER. The length of the rows (if lrows=.TRUE.) or columns (if IrOWS =. TRUE.) to be rotated.
If xleft or xright are used, the columns or rows they are in should be included in nl, e.g., if lleft \(=\) lright \(=\).TRUE., then \(n l\) must be at least 2.

The number of rows or columns to be rotated exclusive of those involving xleft and/or xright may not be negative, i.e., nl minus how many of lleft and lright are .TRUE. must be at least zero; if not, xerbla is called.

REAL for slarot,
DOUBLE PRECISION for dlarot,
COMPLEX for clarot,
DOUBLE COMPLEX for zlarot,
Specify the Givens rotation to be applied.
If lrows \(=\).TRUE., then the matrix
\[
\left[\begin{array}{cc}
c & S \\
-S & c
\end{array}\right]
\]
is applied from the left.
If lrows \(=\).FALSE., then the transpose thereof is applied from the right. REAL for slarot,

DOUBLE PRECISION for dlarot,
COMPLEX for clarot,
DOUBLE COMPLEX for zlarot,

The array containing the rows or columns to be rotated. The first element of a should be the upper left element to be rotated.

INTEGER. The "effective" leading dimension of \(a\).
If a contains a matrix stored in GE or SY format, then this is just the leading dimension of \(A\).
If a contains a matrix stored in band (GB or SB) format, then this should be one less than the leading dimension used in the calling routine. Thus, if ais dimensioned \(a(l d a, *)\) in ?larot, then \(a(1, j)\) would be the \(j\)-th element in the first of the two rows to be rotated, and \(a(2, j)\) would be the \(j\)-th in the second, regardless of how the array may be stored in the calling routine. a cannot be dimensioned, because for band format the row number may exceed lda, which is not legal FORTRAN.
If Irows \(=\).TRUE., then Ida must be at least 1 , otherwise it must be at least \(n l\) minus the number of .TRUE. values in xleft and xright.

REAL for slarot,
DOUBLE PRECISION for dlarot,
COMPLEX for clarot,
DOUBLE COMPLEX for zlarot,
If lrows \(=\).TRUE., xleft is used and modified instead of \(a(2,1)\) (if lrows \(=\).TRUE.) or \(a(1,2)\) (if lrows \(=\).FALSE.).

REAL for slarot,
DOUBLE PRECISION for dlarot,
COMPLEX for clarot,
DOUBLE COMPLEX for zlarot,
If lright = .TRUE., xright is used and modified instead of \(a(1, n l)\) (if lrows \(=\). TRUE. \()\) or \(a(n l, 1)(\) if lrows \(=\).FALSE. \()\).

\section*{Output Parameters}
\(a\)
On exit, modified array \(A\).

\section*{?larra}

Computes the splitting points with the specified threshold.

\section*{Syntax}
```

call slarra( n, d, e, e2, spltol, tnrm, nsplit, isplit, info )
call dlarra( n, d, e, e2, spltol, tnrm, nsplit, isplit, info )

```

\section*{Include Files}
- mkl.fi

Description

The routine computes the splitting points with the specified threshold and sets any "small" off-diagonal elements to zero.

\section*{Input Parameters}
n
\(d\)
\(e\)
e2

INTEGER. The order of the matrix \((n>1)\).
REAL for slarra
DOUBLE PRECISION for dlarra
Array, DIMENSION (\(n\)).
Contains \(n\) diagonal elements of the tridiagonal matrix \(T\).
REAL for slarra
DOUBLE PRECISION for dlarra
Array, DIMENSION (n).
First (\(n-1\)) entries contain the subdiagonal elements of the tridiagonal matrix \(T\); \(e(n)\) need not be set.

REAL for slarra
DOUBLE PRECISION for dlarra
Array, DIMENSION (\(n\)).
First (\(n-1\)) entries contain the squares of the subdiagonal elements of the tridiagonal matrix \(T\); e2(n) need not be set.

REAL for slarra
DOUBLE PRECISION for dlarra
The threshold for splitting. Two criteria can be used: spltol<0 : criterion based on absolute off-diagonal value; \(s p l t o l>0\) : criterion that preserves relative accuracy.

REAL for slarra
DOUBLE PRECISION for dlarra
The norm of the matrix.

\section*{Output Parameters}
e
e2
nsplit
isplit
On exit, the entries e(isplit(i)), \(1 \leq i \leq n s p l i t\), are set to zero, the other entries of \(e\) are untouched.

On exit, the entries e2(isplit(i)), \(1 \leq i \leq n s p l i t\), are set to zero.

INTEGER.
The number of blocks the matrix \(T\) splits into. \(1 \leq n s p l i t \leq n\)
INTEGER.

Array, DIMENSION (\(n\)).

The splitting points, at which \(T\) breaks up into blocks. The first block consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), and so on, and the nsplit-th consists of rows/columns isplit(nsplit-1)+1 through isplit(nsplit)=n.

INTEGER.
\(=0\) : successful exit.

\section*{?larrb}

Provides limited bisection to locate eigenvalues for more accuracy.

\section*{Syntax}
```

call slarrb( n, d, lld, ifirst, ilast, rtoll, rtol2, offset, w, wgap, werr, work, iwork,
pivmin, spdiam, twist, info )
call dlarrb( n, d, lld, ifirst, ilast, rtoll, rtol2, offset, w, wgap, werr, work, iwork,
pivmin, spdiam, twist, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

Given the relatively robust representation (RRR) \(L^{*} D^{*} L^{T}\), the routine does "limited" bisection to refine the eigenvalues of \(L^{*} D^{*} L^{T}, w\) (ifirst-offset) through \(w\) (ilast-offset), to more accuracy. Initial guesses for these eigenvalues are input in \(w\). The corresponding estimate of the error in these guesses and their gaps are input in werr and wgap, respectively. During bisection, intervals [left, right] are maintained by storing their midpoints and semi-widths in the arrays \(w\) and werr respectively.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. The order of the matrix. \\
\(d\) & REAL for slarrb \\
& DOUBLE PRECISION for dlarrb \\
lld & Array, DIMENSION \((n)\). The \(n\) diagonal elements of the diagon \\
& REAL for slarrb \\
& DOUBLE PRECISION for dlarrb \\
& Array, DIMENSION \((n-1)\). \\
ifirst & The \(n-1\) elements \(L_{i} \star L_{i}{ }^{*} D_{i}\). \\
ilast & INTEGER. The index of the first eigenvalue to be computed. \\
rtoll, rtol2 & INTEGER. The index of the last eigenvalue to be computed. \\
& REAL for slarrb \\
& DOUBLE PRECISION for dlarrb
\end{tabular}
offset

W
wgap

Tolerance for the convergence of the bisection intervals. An interval [left, right] has converged if RIGHT-LEFT.LT.MAX (rtoll*gap, rtol2*max (| left|, |right|)), where gap is the (estimated) distance to the nearest eigenvalue.

INTEGER. Offset for the arrays \(w\), wgap and werr, that is, the ifirst-offset through ilast-offset elements of these arrays are to be used.

REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (\(n\)). On input, w(ifirst-offset) through w(ilast-offset) are estimates of the eigenvalues of \(L^{*} D^{*} L^{T}\) indexed ifirst through ilast.

REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (\(n-1\)). The estimated gaps between consecutive eigenvalues of \(L^{*} D^{*} L^{T}\), that is, wgap(i-offset) is the gap between eigenvalues \(i\) and \(i+1\). Note that if IFIRST.EQ. ILAST then wgap(ifirstoffset) must be set to 0 .

REAL for slarrb
DOUBLE PRECISION for dlarrb
Array, DIMENSION (\(n\)). On input, werr(ifirst-offset) through werr(ilast-offset) are the errors in the estimates of the corresponding elements in \(w\).

REAL for slarrb
DOUBLE PRECISION for dlarrb
Workspace array, DIMENSION (2*n).
REAL for slarrb
DOUBLE PRECISION for dlarrb
The minimum pivot in the Sturm sequence.
REAL for slarrb
DOUBLE PRECISION for dlarrb
The spectral diameter of the matrix.
INTEGER. The twist index for the twisted factorization that is used for the negcount.
twist \(=n\) : Compute negcount from \(L^{\star} D^{\star} L^{T}-\operatorname{lambda} i=L+\star D+\star L\) \(+{ }^{T}\)
twist \(=n\) : Compute negcount from \(L^{\star} D^{\star} L^{T}-\) lambda* \(i=U-\star D-* U-T\)
twist \(=n\) : Compute negcount from \(L^{\star} D^{\star} L^{T}-\operatorname{lambda}{ }^{\star} i=N_{r}{ }^{\star} D r_{r}^{\star} N_{r}\)
INTEGER.
Workspace array, DIMENSION (2*n).

\section*{Output Parameters}

W
wgap
werr
info

On output, the estimates of the eigenvalues are "refined".
On output, the gaps are refined.
On output, "refined" errors in the estimates of \(w\).
INTEGER.
Error flag.
?larrc
Computes the number of eigenvalues of the symmetric tridiagonal matrix.

Syntax
```

call slarrc( jobt, n, vl, vu, d, e, pivmin, eigcnt, lont, rcnt, info )
call dlarrc( jobt, n, vl, vu, d, e, pivmin, eigcnt, lcnt, rcnt, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine finds the number of eigenvalues of the symmetric tridiagonal matrix \(T\) or of its factorization \(L^{\star} D^{\star} L^{T}\) in the specified interval.

\section*{Input Parameters}
jobt
n
vl,vu
d
e

CHARACTER*1.
= 'T': computes Sturm count for matrix \(T\).
\(=' L '\) : computes Sturm count for matrix \(L^{\star} D^{\star} L^{T}\).
INTEGER.
The order of the matrix. \((n>1)\).
REAL for slarrc
DOUBLE PRECISION for dlarrc
The lower and upper bounds for the eigenvalues.
REAL for slarrc
DOUBLE PRECISION for dlarrc
Array, DIMENSION (\(n\)).
If jobt= 'T': contains the \(n\) diagonal elements of the tridiagonal matrix \(T\).
If jobt= 'L': contains the \(n\) diagonal elements of the diagonal matrix \(D\).
REAL for slarrc
DOUBLE PRECISION for dlarrc

Array, DIMENSION (\(n\)).
If jobt= 'T': contains the \((n-1)\) offdiagonal elements of the matrix \(T\).
If jobt= 'L': contains the \((n-1)\) offdiagonal elements of the matrix \(L\).
REAL for slarrc
DOUBLE PRECISION for dlarrc
The minimum pivot in the Sturm sequence for the matrix \(T\).

\section*{Output Parameters}
eigent
INTEGER.
The number of eigenvalues of the symmetric tridiagonal matrix \(T\) that are in the half-open interval (\(v 1, v u\)].

INTEGER.
The left and right negcounts of the interval.
INTEGER.
Now it is not used and always is set to 0 .
```

?larrd
Computes the eigenvalues of a symmetric tridiagonal matrix to suitable accuracy.

```

\section*{Syntax}
```

call slarrd( range, order, n, vl, vu, il, iu, gers, reltol, d, e, e2, pivmin, nsplit,

```
call slarrd(range, order, n, vl, vu, il, iu, gers, reltol, d, e, e2, pivmin, nsplit,
isplit, m, w, werr, wl, wu, iblock, indexw, work, iwork, info)
isplit, m, w, werr, wl, wu, iblock, indexw, work, iwork, info)
call dlarrd(range, order, n, vl, vu, il, iu, gers, reltol, d, e, e2, pivmin, nsplit,
call dlarrd(range, order, n, vl, vu, il, iu, gers, reltol, d, e, e2, pivmin, nsplit,
isplit, m, w, werr, wl, wu, iblock, indexw, work, iwork, info)
```

isplit, m, w, werr, wl, wu, iblock, indexw, work, iwork, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine computes the eigenvalues of a symmetric tridiagonal matrix \(T\) to suitable accuracy. This is an auxiliary code to be called from ?stemr. The user may ask for all eigenvalues, all eigenvalues in the halfopen interval (\(v 1, v u\), or the il-th through iu-th eigenvalues.

To avoid overflow, the matrix must be scaled so that its largest element is no greater than (overflow \({ }^{1 / 2 *}\) underflow \({ }^{1 / 4}\)) in absolute value, and for greatest accuracy, it should not be much smaller than that. (For more details see [Kahan66].

Input Parameters
range
CHARACTER.
= 'A': ("All") all eigenvalues will be found.
order
\(n\)
\(=\) 'V': ("Value") all eigenvalues in the half-open interval (\(v 1, v u\)] will be found.
= 'I': ("Index") the il-th through iu-th eigenvalues will be found.
CHARACTER.
= 'B': ("By block") the eigenvalues will be grouped by split-off block (see iblock, isplit below) and ordered from smallest to largest within the block.
= 'E': ("Entire matrix") the eigenvalues for the entire matrix will be ordered from smallest to largest.

INTEGER. The order of the tridiagonal matrix \(T(n \geq 1)\).
REAL for slarrd
DOUBLE PRECISION for dlarrd
If range \(=\) ' \(V\) ': the lower and upper bounds of the interval to be searched for eigenvalues. Eigenvalues less than or equal to \(v l\), or greater than vu, will not be returned. vl < vu.

If range = 'A' or 'I': not referenced.
INTEGER.
If range = 'I': the indices (in ascending order) of the smallest and largest eigenvalues to be returned. \(1 \leq i l \leq i u \leq n\), if \(n>0\); il=1 and \(i u=0\) if \(n=0\).

If range \(=\) ' \(A\) ' or ' \(V\) ': not referenced.

REAL for slarrd
DOUBLE PRECISION for dlarrd
Array, DIMENSION (2 * \(n\)).
The \(n\) Gerschgorin intervals (the i-th Gerschgorin interval is (gers(2*i-1), gers(2*i)).

REAL for slarrd
DOUBLE PRECISION for dlarrd
The minimum relative width of an interval. When an interval is narrower than reltol times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, that is converged. Note: this should always be at least radix*machine epsilon.

REAL for slarrd
DOUBLE PRECISION for dlarrd
Array, DIMENSION (\(n\)).
Contains \(n\) diagonal elements of the tridiagonal matrix \(T\).
REAL for slarrd
DOUBLE PRECISION for dlarrd
\begin{tabular}{|c|c|}
\hline & Array, DIMENSION (\(n-1\)). \\
\hline & Contains (\(n-1\)) off-diagonal elements of the tridiagonal matrix \(T\). \\
\hline e2 & REAL for slarrd \\
\hline & DOUBLE PRECISION for dlarrd \\
\hline & Array, DIMENSION (\(n-1\)). \\
\hline & Contains (\(n-1\)) squared off-diagonal elements of the tridiagonal matrix \(T\). \\
\hline pivmin & REAL for slarrd \\
\hline & DOUBLE PRECISION for dlarrd \\
\hline & The minimum pivot in the Sturm sequence for the matrix \(T\). \\
\hline nsplit & INTEGER. \\
\hline & The number of diagonal blocks the matrix \(T .1 \leq n s p l i t \leq n\) \\
\hline isplit & INTEGER. \\
\hline & Arrays, DIMENSION (\(n\)). \\
\hline & The splitting points, at which \(T\) breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit(1), the second of rows/ columns isplit(1)+1 through isplit(2), and so on, and the nsplit-th consists of rows/columns isplit(nsplit-1)+1 through isplit(nsplit)=n. \\
\hline & (Only the first nsplit elements actually is used, but since the user cannot know a priori value of nsplit, \(n\) words must be reserved for isplit.) \\
\hline work & REAL for slarrd \\
\hline & DOUBLE PRECISION for dlarrd \\
\hline & Workspace array, DIMENSION (\(4 * n\)). \\
\hline iwork & INTEGER. \\
\hline & Workspace array, DIMENSION (\(4 * n\)). \\
\hline
\end{tabular}

\section*{Output Parameters}
m

\section*{INTEGER.}

The actual number of eigenvalues found. \(0 \leq m \leq n\). (See also the description of info=2,3.)

REAL for slarrd
DOUBLE PRECISION for dlarrd
Array, DIMENSION (\(n\)).
The first \(m\) elements of \(w\) contain the eigenvalue approximations. ?laprd computes an interval \(I_{j}=\left(a_{j}, b_{j}\right]\) that includes eigenvalue \(j\). The eigenvalue approximation is given as the interval midpoint \(w(j)=\left(a_{j}\right.\) \(\left.+b_{j}\right) / 2\). The corresponding error is bounded by \(\operatorname{werr}(j)=a b s\left(a_{j}-b_{j}\right) / 2\).

REAL for slarrd

DOUBLE PRECISION for dlarrd
Array, DIMENSION (\(n\)).
The error bound on the corresponding eigenvalue approximation in w .
REAL for slarrd
DOUBLE PRECISION for dlarrd
The interval (wl, wu] contains all the wanted eigenvalues.
If range \(=\) ' \(V\) ': then \(w l=v l\) and \(w u=v u\).
If range \(=\) 'A': then wl and wu are the global Gerschgorin bounds on the spectrum.

If range = 'I': then wl and wu are computed by ?laebz from the index range specified.

INTEGER.
Array, DIMENSION (\(n\)).
At each row/column \(j\) where \(e(j)\) is zero or small, the matrix \(T\) is considered to split into a block diagonal matrix.

If info \(=0\), then iblock(i) specifies to which block (from 1 to the number of blocks) the eigenvalue \(w\) (i) belongs. (The routine may use the remaining \(n-m\) elements as workspace.)

INTEGER.
Array, DIMENSION (\(n\)).
The indices of the eigenvalues within each block (submatrix); for example, indexw(i) = j and iblock(i)=k imply that the i-th eigenvalue w(i) is the \(j\)-th eigenvalue in block \(k\).

INTEGER.
\(=0\) : successful exit.
< 0 : if info \(=-i\), the i-th argument has an illegal value
> 0 : some or all of the eigenvalues fail to converge or are not computed:
\(=1\) or 3 : bisection fail to converge for some eigenvalues; these eigenvalues are flagged by a negative block number. The effect is that the eigenvalues may not be as accurate as the absolute and relative tolerances.
\(=2\) or 3 :range='I' only: not all of the eigenvalues il:iu are found.
=4: range='I', and the Gershgorin interval initially used is too small. No eigenvalues are computed.
?larre
Given the tridiagonal matrix \(T\), sets small off-diagonal elements to zero and for each unreduced block \(T_{i}\), finds base representations and eigenvalues.

\section*{Syntax}
```

call slarre( range, n, vl, vu, il, iu, d, e, e2, rtoll, rtol2, spltol, nsplit, isplit, m,
w, werr, wgap, iblock, indexw, gers, pivmin, work, iwork, info )
call dlarre( range, n, vl, vu, il, iu, d, e, e2, rtoll, rtol2, spltol, nsplit, isplit, m,
w, werr, wgap, iblock, indexw, gers, pivmin, work, iwork, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

To find the desired eigenvalues of a given real symmetric tridiagonal matrix \(T\), the routine sets any "small" off-diagonal elements to zero, and for each unreduced block \(T_{i,}\) it finds
- a suitable shift at one end of the block spectrum
- the base representation, \(T_{i}-\sigma_{i}{ }^{*} I=L_{i}{ }^{*} D_{i}{ }^{*} L_{i}{ }^{T}\), and
- eigenvalues of each \(L_{i}{ }^{*} D_{i} * L_{i}{ }^{T}\).

The representations and eigenvalues found are then used by ?stemr to compute the eigenvectors of a symmetric tridiagonal matrix. The accuracy varies depending on whether bisection is used to find a few eigenvalues or the dqds algorithm (subroutine ? lasq2) to compute all and discard any unwanted one. As an added benefit, ? larre also outputs the \(n\) Gerschgorin intervals for the matrices \(L_{i}{ }^{*} D_{i}{ }^{*} L_{i}{ }^{T}\).

\section*{Input Parameters}
rangeCHARACTER.
= 'A': ("All") all eigenvalues will be found.
\[
\text { = 'V':("Value") all eigenvalues in the half-open interval }(v 1, v u] \text { will be }
\]
found.
= 'I': ("Index") the il-th through iu-th eigenvalues of the entire matrix will be found.
INTEGER. The order of the matrix. \(n>0\).
REAL for slarre
DOUBLE PRECISION for dlarre
If range \(=\) ' \(V\) ', the lower and upper bounds for the eigenvalues. Eigenvalues less than or equal to \(v l\), or greater than \(v u\), are not returned. \(v l<v u\).
INTEGER.
If range= 'I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned. \(1 \leq i l \leq i u \leq n\).
REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (n).
The \(n\) diagonal elements of the diagonal matrices \(T\).
e
REAL for slarre

DOUBLE PRECISION for dlarre
Array, DIMENSION (\(n\)). The first (\(n-1\)) entries contain the subdiagonal elements of the tridiagonal matrix \(T ; e(n)\) need not be set.

REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (\(n\)). The first (\(n-1\)) entries contain the squares of the subdiagonal elements of the tridiagonal matrix \(T\); e2(n) need not be set.

REAL for slarre
DOUBLE PRECISION for dlarre
Parameters for bisection. An interval [LEFT,RIGHT] has converged if RIGHT-LEFT.LT.MAX (rtoll*gap, rtol2*max (|LEFT|,|RIGHT|)).

REAL for slarre
DOUBLE PRECISION for dlarre
The threshold for splitting.
REAL for slarre
DOUBLE PRECISION for dlarre
Workspace array, DIMENSION (6*n).
INTEGER.
Workspace array, DIMENSION (5*n).

\section*{Output Parameters}
\(v 1, v u\)
d
e
e2
nsplit
isplit
m

W

On exit, if range= 'I' or = 'A', contain the bounds on the desired part of the spectrum.

On exit, the \(n\) diagonal elements of the diagonal matrices \(D_{i}\).
On exit, the subdiagonal elements of the unit bidiagonal matrices \(L_{i}\). The entries \(e\left(\right.\) isplit(\(\left.^{\prime}\right)\)), \(1 \leq i \leq n s p l i t\), contain the base points sigma \({ }_{i}\) on output.

On exit, the entries e2(isplit(\(i\))), \(1 \leq i \leq n s p l i t\), have been set to zero.

INTEGER. The number of blocks \(T\) splits into. \(1 \leq\) nsplit \(\leq n\).
INTEGER. Array, DIMENSION (\(n\)). The splitting points, at which \(T\) breaks up into blocks. The first block consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), etc., and the nsplit-th consists of rows/columns isplit(nsplit-1)+1 through isplit(nsplit)=n.

INTEGER. The total number of eigenvalues (of all the \(L_{i}{ }^{*} D_{i} * L_{i}{ }^{T}\)) found.
REAL for slarre
DOUBLE PRECISION for dlarre
werr
wgap
iblock
indexw
gers
pivmin
info

Array, DIMENSION (\(n\)). The first \(m\) elements contain the eigenvalues. The eigenvalues of each of the blocks, \(L_{i}{ }^{*} D_{i}{ }^{*} L_{i}{ }^{T}\), are sorted in ascending order. The routine may use the remaining \(n-m\) elements as workspace.

REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (\(n\)). The error bound on the corresponding eigenvalue in \(w\).

REAL for slarre
DOUBLE PRECISION for dlarre
Array, DIMENSION (\(n\)). The separation from the right neighbor eigenvalue in \(w\). The gap is only with respect to the eigenvalues of the same block as each block has its own representation tree. Exception: at the right end of a block the left gap is stored.

INTEGER. Array, DIMENSION (\(n\)).
The indices of the blocks (submatrices) associated with the corresponding eigenvalues in \(w\); iblock (\(i\))=1 if eigenvalue \(w(i)\) belongs to the first block from the top, \(=2\) if \(w(i)\) belongs to the second block, etc.

INTEGER. Array, DIMENSION (\(n\)).
The indices of the eigenvalues within each block (submatrix); for example, indexw \((i)=10\) and \(i b \operatorname{lock}(i)=2\) imply that the \(i\)-th eigenvalue \(w(i)\) is the 10th eigenvalue in the second block.

REAL for slarre
DOUBLE PRECISION for dlarre
Array, dimension (\(2^{*} n\)). The \(n\) Gerschgorin intervals (the \(i\)-th Gerschgorin interval is (gers(2*i-1), gers(2*i)).

REAL for slarre
DOUBLE PRECISION for dlarre
The minimum pivot in the Sturm sequence for \(T\).
INTEGER.
If info \(=0\) : successful exit
If info > 0: A problem occured in ?larre. If info \(=5\), the Rayleigh Quotient Iteration failed to converge to full accuracy.
If info < 0 : One of the called subroutines signaled an internal problem. Inspection of the corresponding parameter info for further information is required.
- If info \(=-1\), there is a problem in ?larrd
- If info \(=-2\), no base representation could be found in maxtry iterations. Increasing maxtry and recompilation might be a remedy.
- If info \(=-3\), there is a problem in ?larrb when computing the refined root representation for ?lasq2.
- If info \(=-4\), there is a problem in ?larrb when preforming bisection on the desired part of the spectrum.
- If info \(=-5\), there is a problem in ?lasq2.
- If info \(=-6\), there is a problem in ?lasq2.

\section*{See Also}
?stemr
?lasq2
?larrb
?larrd
?larrf
Finds a new relatively robust representation such that
at least one of the eigenvalues is relatively isolated.
Syntax
```

call slarrf( n, d, l, ld, clstrt, clend, w, wgap, werr, spdiam, clgapl, clgapr, pivmin,
sigma, dplus, lplus, work, info )
call dlarrf( n, d, l, ld, clstrt, clend, w, wgap, werr, spdiam, clgapl, clgapr, pivmin,
sigma, dplus, lplus, work, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

Given the initial representation \(L^{*} D^{*} L^{T}\) and its cluster of close eigenvalues (in a relative measure), w(clstrt), \(w(\) clstrt +1\(), \ldots w(\) clend \()\), the routine ? larrf finds a new relatively robust representation
```

L*D* LT

```
such that at least one of the eigenvalues of \(L(+)^{*} D^{*}(+)^{*} L(+)^{T}\) is relatively isolated.

\section*{Input Parameters}
```

n
d
I
ld
INTEGER. The order of the matrix (subblock, if the matrix is splitted).
REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The $n$ diagonal elements of the diagonal matrix $D$.
REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n-1).
The $(n-1)$ subdiagonal elements of the unit bidiagonal matrix $L$.
ld
REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION (n-1).

```
clstrt
clend

W
wgap
werr
spdiam
clgapl, clgapr
pivmin
work

The \(n\)-1 elements \(L_{i}{ }^{*} D_{i}\).
INTEGER. The index of the first eigenvalue in the cluster.
INTEGER. The index of the last eigenvalue in the cluster.
REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION \(\geq\) (clend-clstrt+1). The eigenvalue approximations of \(L^{*} D^{*} L^{T}\) in ascending order. \(w\) (clstrt) through \(w\) (clend) form the cluster of relatively close eigenvalues.

REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION \(\geq\) (clend-clstrt+1). The separation from the right neighbor eigenvalue in \(w\).

REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION \(\geq\) (clend-clstrt+1). On input, werr contains the semiwidth of the uncertainty interval of the corresponding eigenvalue approximation in \(w\).

REAL for slarrf
DOUBLE PRECISION for dlarrf
Estimate of the spectral diameter obtained from the Gerschgorin intervals.
REAL for slarrf
DOUBLE PRECISION for dlarrf
Absolute gap on each end of the cluster. Set by the calling routine to protect against shifts too close to eigenvalues outside the cluster.

REAL for slarrf
DOUBLE PRECISION for dlarrf
The minimum pivot allowed in the Sturm sequence.
REAL for slarrf
DOUBLE PRECISION for dlarrf
Workspace array, DIMENSION (2*n).

\section*{Output Parameters}
```

wgap

```
sigma
dplus

On output, the gaps are refined.
REAL for slarrf
DOUBLE PRECISION for dlarrf
The shift used to form \(L(+)^{*} D^{*}(+)^{*} L(+)^{T}\).
REAL for slarrf
```

DOUBLE PRECISION for dlarrf
Array, DIMENSION (n). The n diagonal elements of the diagonal matrix
D(+).
REAL for slarrf
DOUBLE PRECISION for dlarrf
Array, DIMENSION ( }n\mathrm{ ). The first ( }n-1\mathrm{ ) elements of Iplus contain the
subdiagonal elements of the unit bidiagonal matrix L(+).

```
?larrj
Performs refinement of the initial estimates of the eigenvalues of the matrix \(T\).

\section*{Syntax}
```

call slarrj( n, d, e2, ifirst, ilast, rtol, offset, w, werr, work, iwork, pivmin,
spdiam, info )
call dlarrj( n, d, e2, ifirst, ilast, rtol, offset, w, werr, work, iwork, pivmin,
spdiam, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

Given the initial eigenvalue approximations of \(T\), this routine does bisection to refine the eigenvalues of \(T\), \(w(i f i r s t-o f f s e t)\) through w(ilast-offset), to more accuracy. Initial guesses for these eigenvalues are input in \(w\), the corresponding estimate of the error in these guesses in werr. During bisection, intervals [\(a, b]\) are maintained by storing their mid-points and semi-widths in the arrays \(w\) and werr respectively.

\section*{Input Parameters}
```

n INTEGER. The order of the matrix T.
d REAL for slarrj
DOUBLE PRECISION for dlarrj
Array, DIMENSION (n).
Contains n diagonal elements of the matrix T
REAL for slarrj
DOUBLE PRECISION for dlarrj
Array, DIMENSION (n-1).
Contains (n-1) squared sub-diagonal elements of the T.
INTEGER.
The index of the first eigenvalue to be computed.
ilast INTEGER.

```

The index of the last eigenvalue to be computed.
```

rtol

```
w
werr
work
iwork
pivmin
spdiam

REAL for slarrj
DOUBLE PRECISION for dlarrj
Tolerance for the convergence of the bisection intervals. An interval [a, b] is considered to be converged if \((b-a) \leq r t o l * \max (|a|,|b|)\).

INTEGER.
Offset for the arrays w and werr, that is the ifirst-offset through ilast-offset elements of these arrays are to be used.
REAL for slarrj
DOUBLE PRECISION for dlarrj
Array, DIMENSION (n).
On input, w(ifirst-offset) through w(ilast-offset) are estimates of the eigenvalues of \(L^{\star} D^{\star} L^{T}\) indexed ifirst through ilast.

REAL for slarrj
DOUBLE PRECISION for dlarrj
Array, DIMENSION (\(n\)).
On input, werr(ifirst-offset) through werr(ilast-offset) are the errors in the estimates of the corresponding elements in \(w\).

REAL for slarrj
DOUBLE PRECISION for dlarrj
Workspace array, DIMENSION (2*n).
INTEGER.
Workspace array, DIMENSION (2*n).
REAL for slarrj
DOUBLE PRECISION for dlarrj
The minimum pivot in the Sturm sequence for the matrix \(T\).
REAL for slarrj
DOUBLE PRECISION for dlarrj
The spectral diameter of the matrix \(T\).

\section*{Output Parameters}
w
werr
info

On exit, contains the refined estimates of the eigenvalues.
On exit, contains the refined errors in the estimates of the corresponding elements in \(w\).

INTEGER.
Now it is not used and always is set to 0 .
?larrk
Computes one eigenvalue of a symmetric tridiagonal
matrix \(T\) to suitable accuracy.

\section*{Syntax}
```

call slarrk( n, iw, gl, gu, d, e2, pivmin, reltol, w, werr, info )
call dlarrk( n, iw, gl, gu, d, e2, pivmin, reltol, w, werr, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine computes one eigenvalue of a symmetric tridiagonal matrix \(T\) to suitable accuracy. This is an auxiliary code to be called from ?stemr.

To avoid overflow, the matrix must be scaled so that its largest element is no greater than (overflow \({ }^{1 / 2 \star}\) underflow \({ }^{1 / 4}\)) in absolute value, and for greatest accuracy, it should not be much smaller than that. For more details see [Kahan66].

\section*{Input Parameters}
n
iw
gl, gu
\(d\)
e2
pivmin
reltol

INTEGER. The order of the matrix \(T .(n \geq 1)\).
INTEGER.
The index of the eigenvalue to be returned.

REAL for slarrk
DOUBLE PRECISION for dlarrk
An upper and a lower bound on the eigenvalue.
REAL for slarrk
DOUBLE PRECISION for dlarrk
Array, DIMENSION (n).
Contains \(n\) diagonal elements of the matrix \(T\).
REAL for slarrk
DOUBLE PRECISION for dlarrk
Array, DIMENSION (\(n-1\)).
Contains \((n-1)\) squared off-diagonal elements of the \(T\).
REAL for slarrk
DOUBLE PRECISION for dlarrk
The minimum pivot in the Sturm sequence for the matrix \(T\).
REAL for slarrk
DOUBLE PRECISION for dlarrk

The minimum relative width of an interval. When an interval is narrower than reltol times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, that is converged. Note: this should always be at least radix^machine epsilon.

\section*{Output Parameters}

W
REAL for slarrk
DOUBLE PRECISION for dlarrk
Contains the eigenvalue approximation.
werr
info
REAL for slarrk
DOUBLE PRECISION for dlarrk
Contains the error bound on the corresponding eigenvalue approximation in w.

INTEGER.
= 0: Eigenvalue converges
\(=-1\) : Eigenvalue does not converge
?larrr
Performs tests to decide whether the symmetric
tridiagonal matrix \(T\) warrants expensive computations
which guarantee high relative accuracy in the
eigenvalues.

\section*{Syntax}
```

call slarrr( n, d, e, info )
call dlarrr( n, d, e, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine performs tests to decide whether the symmetric tridiagonal matrix \(T\) warrants expensive computations which guarantee high relative accuracy in the eigenvalues.

\section*{Input Parameters}
n
d
e

INTEGER. The order of the matrix \(T .(n>0)\).
REAL for slarrr
DOUBLE PRECISION for dlarrr
Array, DIMENSION (\(n\)).
Contains \(n\) diagonal elements of the matrix \(T\).
REAL for slarrr

DOUBLE PRECISION for dlarrr
Array, DIMENSION (n).
The first (\(n-1\)) entries contain sub-diagonal elements of the tridiagonal matrix \(T\); \(e(n)\) is set to 0 .

\section*{Output Parameters}
info
INTEGER.
\(=0\) : the matrix warrants computations preserving relative accuracy (default value).
\(=-1\) : the matrix warrants computations guaranteeing only absolute accuracy.
```

?larrv
Computes the eigenvectors of the tridiagonal matrix $T$
$=L^{*} D^{*} L^{T}$ given $L, D$ and the eigenvalues of $L^{*} D^{*} L^{T}$.

```

\section*{Syntax}
```

call slarrv( n, vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtoll, rtol2, w, werr,
wgap, iblock, indexw, gers, z, ldz, isuppz, work, iwork, info )
call dlarrv( n, vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtoll, rtol2, w, werr,
wgap, iblock, indexw, gers, z, ldz, isuppz, work, iwork, info )
call clarrv( n, vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtoll, rtol2, w, werr,
wgap, iblock, indexw, gers, z, ldz, isuppz, work, iwork, info )
call zlarrv( n, vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtoll, rtol2, w, werr,
wgap, iblock, indexw, gers, z, ldz, isuppz, work, iwork, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ? larrv computes the eigenvectors of the tridiagonal matrix \(T=L^{*} D^{*} L^{T}\) given \(L, D\) and approximations to the eigenvalues of \(L^{*} D^{*} L^{T}\).
The input eigenvalues should have been computed by slarre for real flavors (slarrv/clarrv) and by dlarre for double precision flavors (dlarre/zlarre).

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. The order of the matrix. \(n \geq 0\). \\
\(v l, v u\) & REAL for slarrv/clarrv \\
& DOUBLE PRECISION for dlarrv/zlarrv \\
& Lower and upper bounds respectively of the interval that contains the \\
desired eigenvalues. \(v 1<v u\). Needed to compute gaps on the left or right \\
end of the extremal eigenvalues in the desired range.
\end{tabular}
\(d\)

1
pivmin
isplit
m

> dol, dou
minrgp, rtoll, rtol2

W

REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (\(n\)). On entry, the \(n\) diagonal elements of the diagonal matrix \(D\).

REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (\(n\)).
On entry, the (\(n-1\)) subdiagonal elements of the unit bidiagonal matrix \(L\) are contained in elements 1 to \(n-1\) of \(L\) if the matrix is not splitted. At the end of each block the corresponding shift is stored as given by slarre for real flavors and by dlarre for double precision flavors.

REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
The minimum pivot allowed in the Sturm sequence.
INTEGER. Array, DIMENSION (\(n\)).
The splitting points, at which \(T\) breaks up into blocks. The first block consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), etc.

INTEGER. The total number of eigenvalues found.
\(0 \leq m \leq n\). If range \(=\) 'A', \(m=n\), and if range \(=' I ', m=i u-i I\) +1 .

INTEGER.
If you want to compute only selected eigenvectors from all the eigenvalues supplied, specify an index range dol:dou. Or else apply the setting dol=1, dou \(=m\). Note that dol and dou refer to the order in which the eigenvalues are stored in w.
If you want to compute only selected eigenpairs, then the columns dol-1 to dou +1 of the eigenvector space \(Z\) contain the computed eigenvectors. All other columns of \(Z\) are set to zero.

REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Parameters for bisection. An interval [LEFT,RIGHT] has converged if RIGHT-LEFT.LT.MAX (rtoll*gap, rtol2*max (|LEFT|,|RIGHT|)).
REAL for slarrv/clarrv
DOUBLE PRECISION for dlarrv/zlarrv
Array, DIMENSION (\(n\)). The first \(m\) elements of \(w\) contain the approximate eigenvalues for which eigenvectors are to be computed. The eigenvalues should be grouped by split-off block and ordered from smallest to largest within the block (the output array \(w\) from ?larre is expected here). These eigenvalues are set with respect to the shift of the corresponding root representation for their block.
```

werr
wgap
iblock
indexw
gers
ldz
work
iwork

```

\section*{Output Parameters}
```

d
I
W
werr
wgap
z

```

On exit, d may be overwritten.
On exit, \(I\) is overwritten.
On exit, wholds the eigenvalues of the unshifted matrix.
On exit, werr contains refined values of its input approximations.
On exit, wgap contains refined values of its input approximations. Very small gaps are changed.

REAL for slarrv
DOUBLE PRECISION for dlarrv

\section*{COMPLEX for clarrv}

DOUBLE COMPLEX for zlarrv
Array, DIMENSION (Idz, max \((1, m)\)).
If info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the input eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\).

\section*{NOTE}

The user must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\).
isuppz
info

INTEGER.
Array, DIMENSION \(\left(2 *_{\max }(1, m)\right.\)). The support of the eigenvectors in \(z\), that is, the indices indicating the nonzero elements in \(z\). The \(i\)-th eigenvector is nonzero only in elements isuppz(2i-1) through isuppz(2i).

INTEGER.
If info \(=0\) : successful exit
If info > 0: A problem occured in ?larrv. If info = 5, the Rayleigh Quotient Iteration failed to converge to full accuracy.
If info < 0 : One of the called subroutines signaled an internal problem. Inspection of the corresponding parameter info for further information is required.
- If info \(=-1\), there is a problem in ?larrb when refining a child eigenvalue;
- If info \(=-2\), there is a problem in ?larrf when computing the relatively robust representation (RRR) of a child. When a child is inside a tight cluster, it can be difficult to find an RRR. A partial remedy from the user's point of view is to make the parameter minrgp smaller and recompile. However, as the orthogonality of the computed vectors is proportional to \(1 /\) minrgp, you should be aware that you might be trading in precision when you decrease minrgp.
- If info \(=-3\), there is a problem in ?larrb when refining a single eigenvalue after the Rayleigh correction was rejected.

\section*{See Also}
?larrb
?larre
?larrf

\section*{?lartg}

Generates a plane rotation with real cosine and real/ complex sine.

\section*{Syntax}
```

call slartg( f, g, cs, sn, r )
call dlartg( f, g, cs, sn, r )

```
```

call clartg( f, g, cS, sn, r )
call zlartg( f, g, CS, sn, r )

```

Include Files
- mkl.fi

\section*{Description}

The routine generates a plane rotation so that

where \(c s^{2}+|s n|^{2}=1\)
This is a slower, more accurate version of the BLAS Level 1 routine ?rotg, except for the following differences.

For slartg/dlartg:
\(f\) and \(g\) are unchanged on return;
If \(g=0\), then \(c s=1\) and \(s n=0\);
If \(f=0\) and \(g \neq 0\), then \(c s=0\) and \(s n=1\) without doing any floating point operations (saves work in ?bdsqr when there are zeros on the diagonal);
If \(f\) exceeds \(g\) in magnitude, cs will be positive.
For clartg/zlartg:
\(f\) and \(g\) are unchanged on return;
If \(g=0\), then \(c s=1\) and \(s n=0\);
If \(f=0\), then \(c s=0\) and \(s n\) is chosen so that \(r\) is real.

\section*{Input Parameters}
f, \(g\)
REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
DOUBLE COMPLEX for zlartg

The first and second component of vector to be rotated.

\section*{Output Parameters}

CS
REAL for slartg/clartg
DOUBLE PRECISION for dlartg/zlartg
The cosine of the rotation.
\(s n\)
\(r\)
REAL for slartg
DOUBLE PRECISION for dlartg
COMPLEX for clartg
DOUBLE COMPLEX for zlartg
The sine of the rotation.
```

REAL for slartg

```

DOUBLE PRECISION for dlartg
COMPLEX for clartg
DOUBLE COMPLEX for zlartg
The nonzero component of the rotated vector.

\section*{?lartgp}

Generates a plane rotation.

\section*{Syntax}
```

call slartgp( f, g, cs, sn, r )
call dlartgp( f, g, cs, sn, r )
call lartgp( f,g,cs,sn,r )

```

Include Files
- mkl.fi

\section*{Description}

The routine generates a plane rotation so that

where \(c s^{2}+s n^{2}=1\)
This is a slower, more accurate version of the BLAS Level 1 routine ?rotg, except for the following differences:
- \(\quad f\) and \(g\) are unchanged on return.
- If \(g=0\), then \(c s=(+/-) 1\) and \(s n=0\).
- If \(f=0\) and \(g \neq 0\), then \(c s=0\) and \(s n=(+/-) 1\).

The sign is chosen so that \(r \geq 0\).

\section*{Input Parameters}

The data types are given for the Fortran interface.
```

f,g REAL for slartgp
DOUBLE PRECISION for dlartgp
The first and second component of the vector to be rotated.

```

\section*{Output Parameters}

CS
REAL for slartgp
DOUBLE PRECISION for dlartgp
The cosine of the rotation.
REAL for slartgp
DOUBLE PRECISION for dlartgp
The sine of the rotation.
REAL for slartgp
DOUBLE PRECISION for dlartgp
The nonzero component of the rotated vector.
INTEGER. If info \(=0\), the execution is successful.
If info \(=-1, f\) is NaN .
If info \(=-2, g\) is NaN .

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine ?lartgp interface are as follows:
\(f \quad\) Holds the first component of the vector to be rotated.
\(9 \quad\) Holds the second component of the vector to be rotated.
CS Holds the cosine of the rotation.
\(s n \quad\) Holds the sine of the rotation.
\(r\)
Holds the nonzero component of the rotated vector.

\section*{See Also}
?rotg
?lartg
?lartgs

\section*{?lartgs}

Generates a plane rotation designed to introduce a bulge in implicit QR iteration for the bidiagonal SVD problem.

\section*{Syntax}
```

call slartgs( x, y, sigma, cs, sn )

```
```

call dlartgs( x, y, sigma, cs, sn )
call lartgs( x,y,sigma,cs,sn )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine generates a plane rotation designed to introduce a bulge in Golub-Reinsch-style implicit QR iteration for the bidiagonal SVD problem. \(x\) and \(y\) are the top-row entries, and sigma is the shift. The computed cs and sn define a plane rotation that satisfies the following:

with \(r\) nonnegative.
If \(x^{2}-\) sigma and \(x * y\) are 0 , the rotation is by \(\pi / 2\)

\section*{Input Parameters}

The data types are given for the Fortran interface.
\(x, y\)
```

                                    REAL for slartgs
    ```
DOUBLE PRECISION for dlartgs
sigma
The \((1,1)\) and \((1,2)\) entries of an upper bidiagonal matrix, respectively.
REAL for slartgs
DOUBLE PRECISION for dlartgs
Shift

\section*{Output Parameters}

CS
sn
```

REAL for slartgs
DOUBLE PRECISION for dlartgs

```

The cosine of the rotation.
REAL for slartgs
DOUBLE PRECISION for dlartgs
The sine of the rotation.

\section*{LAPACK 95 Interface Notes}

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine ?lartgs interface are as follows:
\begin{tabular}{ll}
\(x\) & Holds the \((1,1)\) entry of an upper diagonal matrix. \\
\(y\) & Holds the \((1,2)\) entry of an upper diagonal matrix. \\
sigma & Holds the shift. \\
CS & Holds the cosine of the rotation. \\
sn & Holds the sine of the rotation.
\end{tabular}

\section*{See Also}
?lartg
?lartgp

\section*{?lartv}

Applies a vector of plane rotations with real cosines and real/complex sines to the elements of a pair of vectors.

\section*{Syntax}
```

call slartv( n, x, incx, y, incy, c, s, incc )
call dlartv( n, x, incx, y, incy, c, s, incc )
call clartv( n, x, incx, y, incy, c, s, incc )
call zlartv( n, x, incx, y, incy, c, s, incc )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine applies a vector of real/complex plane rotations with real cosines to elements of the real/complex vectors \(x\) and \(y\). For \(i=1,2, \ldots, n\)
\[
\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]:=\left[\begin{array}{cc}
c(i) & s(i) \\
-\operatorname{con} j g(s(i)) & c(i)
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]
\]

\section*{Input Parameters}
n
\(x, y\)

INTEGER. The number of plane rotations to be applied.
REAL for slartv
DOUBLE PRECISION for dlartv
COMPLEX for clartv
DOUBLE COMPLEX for zlartv
```

    Arrays, DIMENSION (1+(n-1)*incx) and (1+(n-1)*incy), respectively. The
    input vectors }x\mathrm{ and }y\mathrm{ .
    INTEGER. The increment between elements of x. incx > 0.
    INTEGER. The increment between elements of y. incy > 0.
    REAL for slartv/clartv
DOUBLE PRECISION for dlartv/zlartv
Array, DIMENSION (1+(n-1)*incc).
The cosines of the plane rotations.
REAL for slartv
DOUBLE PRECISION for dlartv
COMPLEX for clartv
DOUBLE COMPLEX for zlartv
Array, DIMENSION (1+(n-1)*incc).
The sines of the plane rotations.
INTEGER. The increment between elements of c and s. incc>0.

```

\section*{Output Parameters}
\(x, y\)
The rotated vectors \(x\) and \(y\).

\section*{?laruv}

Returns a vector of \(n\) random real numbers from a uniform distribution.

\section*{Syntax}
```

call slaruv( iseed, n, x )
call dlaruv( iseed, n, x )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ?laruv returns a vector of \(n\) random real numbers from a uniform \((0,1)\) distribution (\(n \leq 128\)). This is an auxiliary routine called by ?larnv.

\section*{Input Parameters}
iseed
n

INTEGER. Array, DIMENSION (4). On entry, the seed of the random number generator; the array elements must be between 0 and 4095, and iseed(4) must be odd.

INTEGER. The number of random numbers to be generated. \(n \leq 128\).

\section*{Output Parameters}
\(x\)
REAL for slaruv
DOUBLE PRECISION for dlaruv
Array, DIMENSION (\(n\)). The generated random numbers.
seed
On exit, the seed is updated.
?larz
Applies an elementary reflector (as returned by ?tzrzf) to a general matrix.

\section*{Syntax}
```

call slarz( side, m, n, l, v, incv, tau, c, ldc, work )
call dlarz( side, m, n, l, v, incv, tau, c, ldc, work )
call clarz( side, m, n, l, v, incv, tau, c, ldc, work )
call zlarz( side, m, n, l, v, incv, tau, c, ldc, work )

```

Include Files
- mkl.fi

\section*{Description}

The routine ? larz applies a real/complex elementary reflector \(H\) to a real/complex \(m\)-by- \(n\) matrix \(C\), from either the left or the right. \(H\) is represented in the forms
\(H=I-t a u^{\star} V^{\star} V^{T}\) for real flavors and \(H=I-t a u^{\star} V^{\star} V^{H}\) for complex flavors, where tau is a real/complex scalar and \(v\) is a real/complex vector, respectively.
If \(\operatorname{tau}=0\), then \(H\) is taken to be the unit matrix.
For complex flavors, to apply \(H^{H}\) (the conjugate transpose of \(H\)), supply conjg(tau) instead of tau.
\(H\) is a product of \(k\) elementary reflectors as returned by ?tzrzf.

\section*{Input Parameters}
side
m
n

1

CHARACTER*1.
If side = 'L': form \(H^{*} C\)
If side \(=\) 'R': form \(C^{*} H\)
INTEGER. The number of rows of the matrix \(C\).
INTEGER. The number of columns of the matrix \(C\).
INTEGER. The number of entries of the vector \(v\) containing the meaningful part of the Householder vectors.
```

If side = 'L', m\geqI\geq 0,
if side = 'R', n\geqL\geq 0.

```

V

C

REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
DOUBLE COMPLEX for zlarz
Array, DIMENSION (1+(I-1)*abs(incv)).
The vector \(v\) in the representation of \(H\) as returned by ?tzrzf.
\(v\) is not used if tau \(=0\).
INTEGER. The increment between elements of \(v\).
incvキ 0 .
REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
DOUBLE COMPLEX for zlarz
The value tau in the representation of \(H\).
REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
DOUBLE COMPLEX for zlarz
Array, DIMENSION (/dc,n).
On entry, the \(m\)-by-n matrix \(C\).
INTEGER. The leading dimension of the array \(c\).
\(I d c \geq \max (1, m)\).
REAL for slarz
DOUBLE PRECISION for dlarz
COMPLEX for clarz
DOUBLE COMPLEX for zlarz
Workspace array, DIMENSION
(n) if side \(=\) 'L' or
\((m)\) if side \(=' R^{\prime}\).

\section*{Output Parameters}
c
On exit, \(C\) is overwritten by the matrix \(H^{*} C\) if side \(=\) 'L', or \(C^{*} H\) if side \(=\) 'R'.
```

?larzb
Applies a block reflector or its transpose/conjugate-
transpose to a general matrix.
Syntax

```
```

call slarzb( side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work,

```
call slarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work,
ldwork)
ldwork)
call dlarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work,
call dlarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work,
ldwork)
ldwork)
call clarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work,
call clarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work,
ldwork)
ldwork)
call zlarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work,
call zlarzb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, c, ldc, work,
ldwork)
```

ldwork )

```

Include Files
- mkl.fi

\section*{Description}

The routine applies a real/complex block reflector \(H\) or its transpose \(H^{T}\) (or the conjugate transpose \(H^{H}\) for complex flavors) to a real/complex distributed \(m\)-by-n matrix \(C\) from the left or the right. Currently, only storev \(=\) 'R' and direct \(=\) ' B' are supported.

\section*{Input Parameters}
```

side CHARACTER*1.
If side = 'L': apply H or H}\mp@subsup{H}{}{T}/\mp@subsup{H}{}{H}\mathrm{ from the left
If side = 'R': apply H or H}\mp@subsup{H}{}{T}/\mp@subsup{H}{}{H}\mathrm{ from the right
trans CHARACTER*1.
If trans = 'N': apply H (No transpose)
If trans='C': apply H}\mp@subsup{H}{}{H}\mathrm{ (conjugate transpose)
If trans='T': apply H}\mp@subsup{H}{}{T}\mathrm{ (transpose transpose)
CHARACTER*1.

```

Indicates how \(H\) is formed from a product of elementary reflectors
 \(={ }^{\prime} \mathrm{F}^{\prime}: H=H(1){ }^{*} H(2) * \ldots{ }^{*} H(k)\) (forward, not supported)
 \(=\) ' \(\mathrm{B}^{\prime}: H=H(k) \star \ldots \star H(2) * H(1)\) (backward)
 CHARACTER*1.

Indicates how the vectors which define the elementary reflectors are stored:
\(=\) 'C': Column-wise (not supported)
= 'R': Row-wise.
INTEGER. The number of rows of the matrix \(C\).
\(n\)
k

1
v

IdV
\(t\)
work

INTEGER. The number of columns of the matrix \(C\).
INTEGER. The order of the matrix \(T\) (equal to the number of elementary reflectors whose product defines the block reflector).

INTEGER. The number of columns of the matrix \(V\) containing the meaningful part of the Householder reflectors.
\[
\text { If side }=\text { 'L', } m \geq l \geq 0 \text {, if side }=' R ', n \geq l \geq 0 \text {. }
\]

REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
DOUBLE COMPLEX for zlarzb
Array, DIMENSION (\(/ d v, n v\)).
If storev = 'C', nv = \(k\);
if storev \(=\) 'R', nv \(=1\).
INTEGER. The leading dimension of the array \(v\).
If storev \(=\) 'C', ldv \(\geq\); if storev \(=\) ' R ', \(l d v \geq k\).
REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
DOUBLE COMPLEX for zlarzb
Array, DIMENSION \((I d t, k)\). The triangular \(k\)-by- \(k\) matrix \(T\) in the representation of the block reflector.

INTEGER. The leading dimension of the array \(t\).
\(\operatorname{ld} t \geq k\).
REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
DOUBLE COMPLEX for zlarzb
Array, DIMENSION (Idc,n). On entry, the \(m\)-by- \(n\) matrix \(C\).
INTEGER. The leading dimension of the array \(c\).
\(I d c \geq \max (1, m)\).
REAL for slarzb
DOUBLE PRECISION for dlarzb
COMPLEX for clarzb
DOUBLE COMPLEX for zlarzb
Workspace array, DIMENSION (Idwork, k).

INTEGER. The leading dimension of the array work.
```

If side = 'L', ldwork\geq max(1, n);
if side = 'R', ldwork\geq max(1, m).

```

\section*{Output Parameters}

C
On exit, \(C\) is overwritten by \(H^{*} C\), or \(H^{T} / H^{H *} C\), or \(C^{*} H\), or \(C^{*} H^{T} / H^{H}\).
?larzt
Forms the triangular factor \(T\) of a block reflector \(H=I\)
- \(V^{*} T^{*} V^{H}\).

Syntax
```

call slarzt( direct, storev, n, k, v, ldv, tau, t, ldt )
call dlarzt( direct, storev, n, k, v, ldv, tau, t, ldt )
call clarzt( direct, storev, n, k, v, ldv, tau, t, ldt )
call zlarzt( direct, storev, n, k, v, ldv, tau, t, ldt )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine forms the triangular factor \(T\) of a real/complex block reflector \(H\) of order \(>n\), which is defined as a product of \(k\) elementary reflectors.
If direct \(=' \mathrm{~F}^{\prime}, H=H(1)^{*} H(2)^{*} \ldots{ }^{*} H(k)\), and \(T\) is upper triangular.
If direct \(=\) ' \(\mathrm{B}^{\prime}, H=H(k) * \ldots{ }^{\star} H(2){ }^{*} H(1)\), and \(T\) is lower triangular.
If storev = 'C', the vector which defines the elementary reflector \(H(i)\) is stored in the \(i\)-th column of the array \(V\), and \(H=I-V^{\star} T^{\star} V^{T}\) (for real flavors) or \(H=I-V^{\star} T^{\star} V^{H}\) (for complex flavors).

If storev = 'R', the vector which defines the elementary reflector \(H(i)\) is stored in the \(i\)-th row of the array \(v\), and \(H=I-V^{T} \star T^{\star} V\) (for real flavors) or \(H=I-V^{H \star} T^{\star} V\) (for complex flavors).

Currently, only storev = 'R' and direct = 'B' are supported.

\section*{Input Parameters}
direct
storev

CHARACTER*1.
Specifies the order in which the elementary reflectors are multiplied to form the block reflector:
If direct \(=' F^{\prime}: H=H(1) \star H(2) \star \ldots{ }^{*} H(k)\) (forward, not supported)
If direct \(=\) ' \(\mathrm{B}^{\prime}: H=H(k) * \ldots{ }^{*} H(2) * H(1)\) (backward)
CHARACTER*1.
Specifies how the vectors which define the elementary reflectors are stored (see also Application Notes below):

If storev \(=\) ' C': column-wise (not supported)
If storev = 'R': row-wise
\(n\)
k

V
\(I d V\)
tau
\(l d t\)

\section*{Output Parameters}
\[
t
\]
v

\section*{Application Notes}

The shape of the matrix \(V\) and the storage of the vectors which define the \(H(i)\) is best illustrated by the following example with \(n=5\) and \(k=3\). The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.
\[
\begin{aligned}
& \text { direct }=' F \text { ' and storev }=\text { ' } C \text { ': direct }={ }^{\prime} F^{\prime} \text { and storev }=' R \text { ': } \\
& V=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right] \\
& 1 \\
& 1 \\
& 1 \\
& \text { direct }=\text { ' } \mathrm{B} \text { ' and storev }=\text { ' } \mathrm{C} \text { ': direct }=\text { ' } \mathrm{B} \text { ' and storev }=\text { ' } \mathrm{R} \text { ': }
\end{aligned}
\]

\section*{?las2}

Computes singular values of a 2-by-2 triangular matrix.

\section*{Syntax}
```

call slas2( f, g, h, ssmin, ssmax )
call dlas2( f, g, h, ssmin, ssmax )

```

Include Files
- mkl.fi

\section*{Description}

The routine ?las2 computes the singular values of the 2-by-2 matrix

On return, ssmin is the smaller singular value and SSMAX is the larger singular value.

\section*{Input Parameters}
\[
f, g, h
\]

REAL for slas2
DOUBLE PRECISION for dlas2
The \((1,1),(1,2)\) and (2,2) elements of the 2-by-2 matrix, respectively.

\section*{Output Parameters}
ssmin, ssmax
REAL for slas2
DOUBLE PRECISION for dlas2
The smaller and the larger singular values, respectively.

\section*{Application Notes}

Barring over/underflow, all output quantities are correct to within a few units in the last place (ulps), even in the absence of a guard digit in addition/subtraction. In ieee arithmetic, the code works correctly if one matrix element is infinite. Overflow will not occur unless the largest singular value itself overflows, or is within a few ulps of overflow. (On machines with partial overflow, like the Cray, overflow may occur if the largest singular value is within a factor of 2 of overflow.) Underflow is harmless if underflow is gradual. Otherwise, results may correspond to a matrix modified by perturbations of size near the underflow threshold.

\section*{?lascl \\ Multiplies a general rectangular matrix by a real scalar defined as \(c_{\text {to }} / c_{\text {from }}\).}

\section*{Syntax}
```

call slascl( type, kl, ku, cfrom, cto, m, n, a, lda, info )
call dlascl( type, kl, ku, cfrom, cto, m, n, a, lda, info )
call clascl( type, kl, ku, cfrom, cto, m, n, a, lda, info )
call zlascl( type, kl, ku, cfrom, cto, m, n, a, lda, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine ? lascl multiplies the \(m\)-by- \(n\) real/complex matrix \(A\) by the real scalar \(c_{\text {to }} / c_{\text {from }}\). The operation is performed without over/underflow as long as the final result \(c_{\text {to }}{ }^{\star} A(i, j) / c_{\text {from }}\) does not over/underflow. type specifies that \(A\) may be full, upper triangular, lower triangular, upper Hessenberg, or banded.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline type & \begin{tabular}{l}
CHARACTER*1. This parameter specifies the storage type of the input matrix. \\
\(=' \mathrm{G}^{\prime}: A\) is a full matrix. \\
\(=\) 'L': \(A\) is a lower triangular matrix. \\
\(=\) 'U': \(A\) is an upper triangular matrix. \\
\(=\) 'H': \(A\) is an upper Hessenberg matrix. \\
\(=\) ' B ': \(A\) is a symmetric band matrix with lower bandwidth \(k l\) and upper bandwidth \(k u\) and with the only the lower half stored \\
\(=\) ' \(Q\) ': \(A\) is a symmetric band matrix with lower bandwidth \(k l\) and upper bandwidth \(k u\) and with the only the upper half stored. \\
\(=\) ' Z': \(A\) is a band matrix with lower bandwidth \(k l\) and upper bandwidth \(k u\). See description of the ?gbtrf function for storage details.
\end{tabular} \\
\hline kl & INTEGER. The lower bandwidth of \(A\). Referenced only if type = 'B', 'Q' or 'Z'. \\
\hline ku & INTEGER. The upper bandwidth of \(A\). Referenced only if type \(=\) ' B ', ' \(Q\) ' or 'z'. \\
\hline \multirow[t]{3}{*}{cfrom, cto} & REAL for slascl/clascl \\
\hline & DOUBLE PRECISION for dlascl/zlascl \\
\hline & The matrix \(A\) is multiplied by cto/cfrom. \(A(i, j)\) is computed without over/ underflow if the final result \(c t o^{\star} A(i, j) / c f r o m\) can be represented without over/underflow. cfrom must be nonzero. \\
\hline
\end{tabular}
```

m
INTEGER. The number of rows of the matrix A. m\geq0.
INTEGER. The number of columns of the matrix A. n\geq0.
REAL for slascl
DOUBLE PRECISION for dlascl
COMPLEX for clascl
DOUBLE COMPLEX for zlascl

```

Array, size (Ida, n). The matrix to be multiplied by cto/cfrom. See type for the storage type.

INTEGER. The leading dimension of the array \(a\).
\(I d a \geq \max (1, m)\).

\section*{Output Parameters}
a
info
The multiplied matrix \(A\).
INTEGER.
If info = 0-successful exit
If info \(=-i<0\), the \(i\)-th argument had an illegal value.

\section*{See Also}
? gbtrf
?lasd0
Computes the singular values of a real upper
bidiagonal n-by-m matrix B with diagonal d and off-
diagonal e. Used by ?bdsdc.

\section*{Syntax}
```

call slasd0( n, sqre, d, e, u, ldu, vt, ldvt, smlsiz, iwork, work, info )
call dlasd0( n, sqre, d, e, u, ldu, vt, ldvt, smlsiz, iwork, work, info )

```

Include Files
- mkl.fi

\section*{Description}

Using a divide and conquer approach, the routine ?lasd0 computes the singular value decomposition (SVD) of a real upper bidiagonal \(n\)-by- \(m\) matrix \(B\) with diagonal \(d\) and offdiagonal \(e\), where \(m=n+s q r e\).
The algorithm computes orthogonal matrices \(U\) and \(V T\) such that \(B=U^{\star} S^{\star} V T\). The singular values \(S\) are overwritten on \(d\).

The related subroutine ?lasda computes only the singular values, and optionally, the singular vectors in compact form.

\section*{Input Parameters}
n

\section*{Output Parameters}
\(d\)
u
\(v t\)
info

INTEGER. On entry, the row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array \(d\).

INTEGER. Specifies the column dimension of the bidiagonal matrix.
If sqre \(=0\) : the bidiagonal matrix has column dimension \(m=n\).
If sqre \(=1\) : the bidiagonal matrix has column dimension \(m=n+1\).
REAL for slasd0
DOUBLE PRECISION for dlasdO
Array, DIMENSION (\(n\)). On entry, \(d\) contains the main diagonal of the bidiagonal matrix.

REAL for slasd0
DOUBLE PRECISION for dlasdO
Array, DIMENSION (\(m-1\)). Contains the subdiagonal entries of the bidiagonal matrix. On exit, e is destroyed.

INTEGER. On entry, leading dimension of the output array \(u\).
INTEGER. On entry, leading dimension of the output array \(v t\).
INTEGER. On entry, maximum size of the subproblems at the bottom of the computation tree.

INTEGER.
Workspace array, dimension must be at least (\(8 n\)).
REAL for slasd0
DOUBLE PRECISION for dlasdo
Workspace array, dimension must be at least \(\left(3 m^{2}+2 m\right)\).

On exit \(d\), If info \(=0\), contains singular values of the bidiagonal matrix.
REAL for slasd0
DOUBLE PRECISION for dlasd0
Array, DIMENSION at least \((/ d q, n)\). On exit, \(u\) contains the left singular vectors.

REAL for slasd0
DOUBLE PRECISION for dlasdo
Array, DIMENSION at least (\(/ d v t, m\)). On exit, \(v t^{T}\) contains the right singular vectors.

INTEGER.
If info \(=0\) : successful exit.

If info \(=-i<0\), the \(i\)-th argument had an illegal value.
If info \(=1\), a singular value did not converge.
```

?lasd1
Computes the SVD of an upper bidiagonal matrix B of
the specified size. Used by ?bdsdc.

```

\section*{Syntax}
```

call slasdl( nl, nr, sqre, d, alpha, beta, u, ldu, vt, ldvt, idxq, iwork, work, info )
call dlasdl( nl, nr, sqre, d, alpha, beta, u, ldu, vt, ldvt, idxq, iwork, work, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine computes the SVD of an upper bidiagonal \(n\)-by- \(m\) matrix \(B\), where \(n=n 1+n r+1\) and \(m=n\) + sqre.
The routine ?lasd1 is called from ?lasdo.
A related subroutine ?lasd7 handles the case in which the singular values (and the singular vectors in factored form) are desired.
?lasd1 computes the SVD as follows:

\(=U(\) out \() *(D\) (out) 0\() * V T\) (out)
where \(z^{T}=\left(Z 1^{T} a Z 2^{T} b\right)=u^{T \star} V T^{T}\), and \(u\) is a vector of dimension \(m\) with alpha and beta in the \(n /+1\) and \(n /\) +2 -th entries and zeros elsewhere; and the entry \(b\) is empty if sqre \(=0\).

The left singular vectors of the original matrix are stored in \(u\), and the transpose of the right singular vectors are stored in \(v t\), and the singular values are in \(d\). The algorithm consists of three stages:
1. The first stage consists of deflating the size of the problem when there are multiple singular values or when there are zeros in the \(Z\) vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ?lasd2.
2. The second stage consists of calculating the updated singular values. This is done by finding the square roots of the roots of the secular equation via the routine ?lasd4 (as called by ?lasd3). This routine also calculates the singular vectors of the current problem.
3. The final stage consists of computing the updated singular vectors directly using the updated singular values. The singular vectors for the current problem are multiplied with the singular vectors from the overall problem.

\section*{Input Parameters}
d

INTEGER. The row dimension of the upper block.
\(n l \geq 1\).
INTEGER. The row dimension of the lower block.
\(n r \geq 1\).
INTEGER.
If sqre \(=0\) : the lower block is an \(n r\)-by- \(n r\) square matrix.
If sqre \(=1\) : the lower block is an \(n r\)-by- \((n r+1)\) rectangular matrix. The bidiagonal matrix has row dimension \(n=n l+n r+1\), and column dimension \(m=n+\) sqre.

REAL for slasd1
DOUBLE PRECISION for dlasd1
Array, DIMENSION \((n l+n r+1) . n=n l+n r+1\). On entry \(d(1: n l, 1: n l)\) contains the singular values of the upper block; and \(d(n l+2: n)\) contains the singular values of the lower block.

REAL for slasd1
DOUBLE PRECISION for dlasd1
Contains the diagonal element associated with the added row.
REAL for slasd1
DOUBLE PRECISION for dlasd1
Contains the off-diagonal element associated with the added row.
REAL for slasd1
DOUBLE PRECISION for dlasd1
Array, DIMENSION (Idu, n). On entry \(u(1: n l, 1: n l)\) contains the left singular vectors of the upper block; \(u(n l+2: n, n l+2: n)\) contains the left singular vectors of the lower block.

INTEGER. The leading dimension of the array \(U\).
\(l d u \geq \max (1, n)\).
REAL for slasd1
DOUBLE PRECISION for dlasd1
Array, DIMENSION (ldvt, \(m\)), where \(m=n+\) sqre.
On entry \(v t(1: n l+1, \quad 1: n l+1)^{T}\) contains the right singular vectors of the upper block; vt \((n l+2: m, n l+2: m)^{T}\) contains the right singular vectors of the lower block.

INTEGER. The leading dimension of the array \(v t\).
\(I d v t \geq \max (1, M)\).
INTEGER.

Workspace array, DIMENSION (4n).
```

work
REAL for slasd1
DOUBLE PRECISION for dlasd1
Workspace array, DIMENSION $\left(3 m_{2}+2 m\right)$.

```

\section*{Output Parameters}
```

d On exit d(1:n) contains the singular values of the modified matrix.
alpha On exit, the diagonal element associated with the added row deflated by
max( abs( alpha ), abs( beta ), abs( D(I) ) ), I = 1,n.

```

On exit, the off-diagonal element associated with the added row deflated by max (abs(alpha), abs(beta), abs(D(I))), I = 1, n.

On exit \(u\) contains the left singular vectors of the bidiagonal matrix.
On exit \(v t^{T}\) contains the right singular vectors of the bidiagonal matrix.
INTEGER.
Array, DIMENSION (\(n\)). Contains the permutation which will reintegrate the subproblem just solved back into sorted order, that is, d(idxq(\(i=1\), \(n\))) will be in ascending order.

\section*{INTEGER.}

If info \(=0\) : successful exit.
If info \(=-i<0\), the \(i\)-th argument had an illegal value.
If info \(=1\), a singular value did not converge.

\section*{?lasd2}

Merges the two sets of singular values together into a single sorted set. Used by ?bdsdc.

\section*{Syntax}
```

call slasd2( nl, nr, sqre, k, d, z, alpha, beta, u, ldu, vt, ldvt, dsigma, u2, ldu2, vt2,
ldvt2, idxp, idx, idxp, idxq, coltyp, info )
call dlasd2( nl, nr, sqre, k, d, z, alpha, beta, u, ldu, vt, ldvt, dsigma, u2, ldu2, vt2,
ldvt2, idxp, idx, idxp, idxq, coltyp, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine ? lasd2 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more singular values are close together or if there is a tiny entry in the \(Z\) vector. For each such occurrence the order of the related secular equation problem is reduced by one.
The routine ?lasd2 is called from ?lasd1.

\section*{Input Parameters}
nl
d
alpha
beta
u
\(1 d u\)

Idu2
\(v t\)
ldvt
ldvt2
idxp

INTEGER. The row dimension of the upper block.
\(n l \geq 1\).
INTEGER. The row dimension of the lower block.
\(n r \geq 1\).
INTEGER.
If sqre \(=0\)): the lower block is an \(n r\)-by- \(n r\) square matrix
If sqre \(=1\)): the lower block is an \(n r\)-by-(\(n r+1\)) rectangular matrix. The bidiagonal matrix has \(n=n l+n r+1\) rows and \(m=n+s q r e \geq n\) columns.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (\(n\)). On entry \(d\) contains the singular values of the two submatrices to be combined.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Contains the diagonal element associated with the added row.
REAL for slasd2
DOUBLE PRECISION for dlasd2
Contains the off-diagonal element associated with the added row.
REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION \((I d u, n)\). On entry \(u\) contains the left singular vectors of two submatrices in the two square blocks with corners at \((1,1),(n /, n /)\), and \((n /+2, n /+2),(n, n)\).

INTEGER. The leading dimension of the array \(u\).
\(1 d u \geq n\).
INTEGER. The leading dimension of the output array \(u 2\). Idu \(2 \geq n\).
REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (\(/ d v t, m\)). On entry, \(v t^{T}\) contains the right singular vectors of two submatrices in the two square blocks with corners at \((1,1)\), \((n /+1, n /+1)\), and \((n /+2, n /+2),(m, m)\).

INTEGER. The leading dimension of the array \(v t\). ldvt \(\geq m\).
INTEGER. The leading dimension of the output array vt2. ldvt \(2 \geq m\). INTEGER.

Workspace array, DIMENSION (\(n\)). This will contain the permutation used to place deflated values of \(D\) at the end of the array. On output \(i d x p(2: k)\) points to the nondeflated \(d\)-values and \(i d x p(k+1: n)\) points to the deflated singular values.

INTEGER.
Workspace array, DIMENSION (\(n\)). This will contain the permutation used to sort the contents of \(d\) into ascending order.

INTEGER.
Workspace array, DIMENSION (n). As workspace, this array contains a label that indicates which of the following types a column in the \(u 2\) matrix or a row in the vt2 matrix is:

1 : non-zero in the upper half only
2 : non-zero in the lower half only
3 : dense
4 : deflated.
INTEGER. Array, DIMENSION (\(n\)). This parameter contains the permutation that separately sorts the two sub-problems in \(D\) in the ascending order. Note that entries in the first half of this permutation must first be moved one position backwards and entries in the second half must have \(n l+1\) added to their values.

\section*{Output Parameters}
k
\(d\)
u
z
dsigma
u2

INTEGER. Contains the dimension of the non-deflated matrix, This is the order of the related secular equation. \(1 \leq k \leq n\).

On exit \(D\) contains the trailing (\(n-k\)) updated singular values (those which were deflated) sorted into increasing order.

On exit \(u\) contains the trailing (\(n-k\)) updated left singular vectors (those which were deflated) in its last \(n-k\) columns.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (\(n\)). On exit, \(z\) contains the updating row vector in the secular equation.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (\(n\)). Contains a copy of the diagonal elements (\(k-1\) singular values and one zero) in the secular equation.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (Idu2, n). Contains a copy of the first \(k-1\) left singular vectors which will be used by ?lasd3 in a matrix multiply (?gemm) to solve for the new left singular vectors. \(u 2\) is arranged into four blocks. The first
block contains a column with 1 at \(n l+1\) and zero everywhere else; the second block contains non-zero entries only at and above \(n /\); the third contains non-zero entries only below \(n l+1\); and the fourth is dense.

On exit, \(v t^{T}\) contains the trailing (\(n-k\)) updated right singular vectors (those which were deflated) in its last \(n-k\) columns. In case sqre \(=1\), the last row of \(v t\) spans the right null space.

REAL for slasd2
DOUBLE PRECISION for dlasd2
Array, DIMENSION (Idvt2,n). vt2 \({ }^{T}\) contains a copy of the first \(k\) right singular vectors which will be used by ?lasd3 in a matrix multiply (?gemm) to solve for the new right singular vectors. vt2 is arranged into three blocks. The first block contains a row that corresponds to the special 0 diagonal element in sigma; the second block contains non-zeros only at and before \(n 1+1\); the third block contains non-zeros only at and after \(n l+2\).

INTEGER. Array, DIMENSION (\(n\)). This will contain the permutation used to arrange the columns of the deflated \(u\) matrix into three groups: the first group contains non-zero entries only at and above \(n l\), the second contains non-zero entries only below \(n l+2\), and the third is dense.

On exit, it is an array of dimension 4, with coltyp(\(i\)) being the dimension of the \(i\)-th type columns.

INTEGER.
If info = 0): successful exit
If info \(=-i<0\), the \(i\)-th argument had an illegal value.

\section*{?lasd3}

Finds all square roots of the roots of the secular equation, as defined by the values in \(D\) and \(Z\), and then updates the singular vectors by matrix multiplication. Used by ?bdsdc.

\section*{Syntax}
```

call slasd3( nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu, u2, ldu2, vt, ldvt, vt2, ldvt2,
idxc, ctot, z, info )
call dlasd3( nl, nr, sqre, k, d, q, ldq, dsigma, u, ldu, u2, ldu2, vt, ldvt, vt2, ldvt2,
idxc, ctot, z, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine ?lasd3 finds all the square roots of the roots of the secular equation, as defined by the values in \(D\) and \(Z\).

It makes the appropriate calls to ?lasd4 and then updates the singular vectors by matrix multiplication.
The routine ?lasd3 is called from ?lasd1.

\section*{Input Parameters}
n1
nr
k
q
\(1 d q\)
dsigma
\(1 d u\)
u2
ldu2
ldvt
vt2

INTEGER. The row dimension of the upper block.
\(n 1 \geq 1\).
INTEGER. The row dimension of the lower block.
\(n r \geq 1\).
INTEGER.
If sqre \(=0\)): the lower block is an \(n r\)-by- \(n r\) square matrix.
If sqre \(=1\)): the lower block is an \(n r\)-by-(\(n r+1\)) rectangular matrix. The bidiagonal matrix has \(n=n l+n r+1\) rows and \(m=n+s q r e \geq n\) columns.

INTEGER. The size of the secular equation, \(1 \leq k \leq n\).
REAL for slasd3
DOUBLE PRECISION for dlasd3
Workspace array, DIMENSION at least (Idq, k).
INTEGER. The leading dimension of the array \(Q\).
\(1 d q \geq k\).
REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION \((k)\). The first \(k\) elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation.

INTEGER. The leading dimension of the array \(u\).
\(I d u \geq n\).
REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (Idu2, n).
The first \(k\) columns of this matrix contain the non-deflated left singular vectors for the split problem.

INTEGER. The leading dimension of the array \(u 2\).
Idu \(2 \geq n\).
INTEGER. The leading dimension of the array \(v t\).
\(l d v t \geq n\).
REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (Idvt2, \(n\)).

The first \(k\) columns of \(v t 2\) ' contain the non-deflated right singular vectors for the split problem.
ldvt2
idxc
z

\section*{Output Parameters}
d
u
\(v t\)
vt2
z
info

INTEGER. The leading dimension of the array vt2.
ldvt \(2 \geq n\).
INTEGER. Array, DIMENSION (\(n\)).
The permutation used to arrange the columns of \(u\) (and rows of \(v t\)) into three groups: the first group contains non-zero entries only at and above (or before) \(n l+1\); the second contains non-zero entries only at and below (or after) \(n l+2\); and the third is dense. The first column of \(u\) and the row of \(v t\) are treated separately, however. The rows of the singular vectors found by ?lasd4 must be likewise permuted before the matrix multiplies can take place.

INTEGER. Array, DIMENSION (4). A count of the total number of the various types of columns in \(u\) (or rows in \(v t\)), as described in idxc.
The fourth column type is any column which has been deflated.
REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION \((k)\). The first \(k\) elements of this array contain the components of the deflation-adjusted updating row vector.

REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (\(k\)). On exit the square roots of the roots of the secular equation, in ascending order.

REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (Idu, \(n\)).
The last \(n-k\) columns of this matrix contain the deflated left singular vectors.

REAL for slasd3
DOUBLE PRECISION for dlasd3
Array, DIMENSION (\(/ d v t, m\)).
The last \(m-k\) columns of \(v t^{\prime}\) contain the deflated right singular vectors.
Destroyed on exit.
Destroyed on exit.
INTEGER.
If info \(=0\)): successful exit.
If info \(=-i<0\), the \(i\)-th argument had an illegal value.

If info \(=1\), an singular value did not converge.

\section*{Application Notes}

This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

\section*{?lasd4}

Computes the square root of the \(i\)-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix. Used
by ?bdsdc.

\section*{Syntax}
```

call slasd4( n, i, d, z, delta, rho, sigma, work, info)
call dlasd4( n, i, d, z, delta, rho, sigma, work, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine computes the square root of the \(i\)-th updated eigenvalue of a positive symmetric rank-one modification to a positive diagonal matrix whose entries are given as the squares of the corresponding entries in the array \(d\), and that \(0 \leq d(i)<d(j)\) for \(i<j\) and that rho \(>0\). This is arranged by the calling routine, and is no loss in generality. The rank-one modified system is thus
```

diag(d)*diag(d) + rho* Z* Z }\mp@subsup{Z}{}{T

```
where the Euclidean norm of \(Z\) is equal to 1 . The method consists of approximating the rational functions in the secular equation by simpler interpolating rational functions.

\section*{Input Parameters}
```

n INTEGER. The length of all arrays.
i INTEGER.
The index of the eigenvalue to be computed. 1 \leqi\leqn.
REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION (n).
The original eigenvalues. They must be in order, 0 \leqd(i) < d(j) for i <
j.
REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION (n).

```

The components of the updating vector.
rho
work
REAL for slasd4
DOUBLE PRECISION for dlasd4
The scalar in the symmetric updating formula.
REAL for slasd4
DOUBLE PRECISION for dlasd4
Workspace array, DIMENSION (\(n\)).
If \(n \neq 1\), work contains \(\left(d(j)+s i g m a _i\right)\) in its \(j\)-th component.
If \(n=1\), then work (1) \(=1\).

\section*{Output Parameters}
delta
sigma
info

REAL for slasd4
DOUBLE PRECISION for dlasd4
Array, DIMENSION (\(n\)).
If \(n \neq 1\), delta contains \(\left(d(j)-s i g m a _i\right)\) in its \(j\)-th component.
If \(n=1\), then delta (1) \(=1\). The vector delta contains the information necessary to construct the (singular) eigenvectors.

REAL for slasd4
DOUBLE PRECISION for dlasd4
The computed sigma_i, the \(i\)-th updated eigenvalue.
INTEGER.
\(=0\) : successful exit
> 0: If info \(=1\), the updating process failed.

\section*{?lasd5}

Computes the square root of the \(i\)-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix.Used by ?bdsdc.

\section*{Syntax}
```

call slasd5( i, d, z, delta, rho, dsigma, work )
call dlasd5( i, d, z, delta, rho, dsigma, work )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine computes the square root of the \(i\)-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix diag \((d) * \operatorname{diag}(d)+r h o * Z^{\star} Z^{T}\)

The diagonal entries in the array \(d\) must satisfy \(0 \leq d(i)<d(j)\) for \(i<i\), rho mustbe greater than 0 , and that the Euclidean norm of the vector \(Z\) is equal to 1 .

\section*{Input Parameters}
i
\(d\)
z
rho
work

INTEGER. The index of the eigenvalue to be computed. \(i=1\) or \(i=2\). REAL for slasd5 DOUBLE PRECISION for dlasd5

Array, dimension (2).
The original eigenvalues, \(0 \leq d(1)<d(2)\).
REAL for slasd5
DOUBLE PRECISION for dlasd5
Array, dimension (2).
The components of the updating vector.
REAL for slasd5
DOUBLE PRECISION for dlasd5
The scalar in the symmetric updating formula.
REAL for slasd5
DOUBLE PRECISION for dlasd5
Workspace array, dimension (2). Contains (\(\left.d(j)+s i g m a _i\right)\) in its \(j\)-th component.

\section*{Output Parameters}
```

delta

```
dsigma

REAL for slasd5
DOUBLE PRECISION for dlasd5
Array, dimension (2).
Contains \(\left(d(j)-s i g m a _i\right)\) in its \(j\)-th component. The vector delta contains the information necessary to construct the eigenvectors.

REAL for slasd5
DOUBLE PRECISION for dlasd5
The computed sigma_i, the \(i\)-th updated eigenvalue.

\section*{?lasd6}

Computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller ones by appending a row. Used by ?bdsdc.

\section*{Syntax}
```

call slasd6( icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, perm, givptr, givcol,
ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, iwork, info )

```
```

call dlasd6( icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, perm, givptr, givcol,
ldgcol, givnum, ldgnum, poles, difl, difr, z, k, c, s, work, iwork, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine ? lasd6 computes the SVD of an updated upper bidiagonal matrix \(B\) obtained by merging two smaller ones by appending a row. This routine is used only for the problem which requires all singular values and optionally singular vector matrices in factored form. \(B\) is an \(n\)-by- \(m\) matrix with \(n=n l+n r+1\) and \(m\) \(=n+\) sqre. A related subroutine, ?lasd1, handles the case in which all singular values and singular vectors of the bidiagonal matrix are desired. ?lasd6 computes the SVD as follows:

\(=U(\) out \() *\left(D\right.\) (out) \({ }^{*} V T\) (out)
where \(Z^{\prime}=\left(Z I^{\prime} a Z 2^{\prime} \quad b\right)=u^{\prime} * V T^{\prime}\), and \(u\) is a vector of dimension \(m\) with alpha and beta in the \(n /+1\) and \(n l+2\)-th entries and zeros elsewhere; and the entry \(b\) is empty if sqre \(=0\).

The singular values of \(B\) can be computed using \(D 1, D 2\), the first components of all the right singular vectors of the lower block, and the last components of all the right singular vectors of the upper block. These components are stored and updated in \(v f\) and \(v l\), respectively, in ? lasd6. Hence \(U\) and \(V T\) are not explicitly referenced.

The singular values are stored in \(D\). The algorithm consists of two stages:
1. The first stage consists of deflating the size of the problem when there are multiple singular values or if there is a zero in the \(Z\) vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine ?lasd7.
2. The second stage consists of calculating the updated singular values. This is done by finding the roots of the secular equation via the routine ?lasd4 (as called by ?lasd8). This routine also updates vf and \(v /\) and computes the distances between the updated singular values and the old singular values. ?lasd6 is called from ?lasda.

\section*{Input Parameters}
icompq
\(n 1\)
nr

INTEGER. Specifies whether singular vectors are to be computed in factored form:
\(=0\) : Compute singular values only
\(=1\) : Compute singular vectors in factored form as well.
INTEGER. The row dimension of the upper block. \(n l \geq 1\).

INTEGER. The row dimension of the lower block.
```

nr\geq 1.
INTEGER.
= 0: the lower block is an nr-by-nr square matrix.
= 1: the lower block is an nr-by-(nr+1) rectangular matrix.
The bidiagonal matrix has row dimension n=nl+nr+1, and column
dimension m = n + sqre.
REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, dimension ( $n /+n r+1$ ). On entry $d(1: n /, 1: n /)$ contains the singular values of the upper block, and $d(n /+2: n)$ contains the singular values of the lower block.
REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, dimension ( $m$ ).
On entry, $v f(1: n /+1)$ contains the first components of all right singular vectors of the upper block; and $v f(n l+2: m)$
contains the first components of all right singular vectors of the lower block.
REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, dimension ( $m$ ).
On entry, $v /(1: n /+1)$ contains the last components of all right singular vectors of the upper block; and $v /(n /+2: m)$ contains the last components of all right singular vectors of the lower block.
REAL for slasd6
DOUBLE PRECISION for dlasd6
Contains the diagonal element associated with the added row.
REAL for slasd6
DOUBLE PRECISION for dlasd6
Contains the off-diagonal element associated with the added row.
INTEGER. The leading dimension of the output array givcol, must be at least
$n$.
INTEGER
The leading dimension of the output arrays givnum and poles, must be at least $n$.
REAL for slasd6
DOUBLE PRECISION for dlasd6
Workspace array, dimension (4m).

```
iwork

\section*{Output Parameters}
a
vf
v1
alpha
beta
idxq
perm
givptr
givcol
givnum
poles
difl

INTEGER
Workspace array, dimension (\(3 n\)).

On exit \(d(1: n)\) contains the singular values of the modified matrix.
On exit, vf contains the first components of all right singular vectors of the bidiagonal matrix.

On exit, v/ contains the last components of all right singular vectors of the bidiagonal matrix.

On exit, the diagonal element associated with the added row deflated by max(abs(alpha), abs(beta), abs(D(I))),I = 1,n.

On exit, the off-diagonal element associated with the added row deflated by max (abs(alpha), abs(beta), abs(D(I))), I = 1,n.

INTEGER.
Array, dimension (\(n\)). This contains the permutation which will reintegrate the subproblem just solved back into sorted order, that is, \(d(i d x q(i=\) \(1, n\)) will be in ascending order.

INTEGER.
Array, dimension (\(n\)). The permutations (from deflation and sorting) to be applied to each block. Not referenced if \(i\) compq \(=0\).

Integer. The number of Givens rotations which took place in this subproblem. Not referenced if \(i\) compq \(=0\).

INTEGER.
Array, dimension (Idgcol, 2). Each pair of numbers indicates a pair of columns to take place in a Givens rotation. Not referenced if \(i\) compq \(=0\).

REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, dimension (Idgnum, 2). Each number indicates the \(C\) or \(S\) value to be used in the corresponding Givens rotation. Not referenced if \(i\) compq \(=\) 0 .

REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, dimension (Idgnum, 2). On exit, poles(\(1, *\)) is an array containing the new singular values obtained from solving the secular equation, and poles(2,*) is an array containing the poles in the secular equation. Not referenced if \(i\) compq \(=0\).

REAL for slasd6
DOUBLE PRECISION for dlasd6

Array, dimension (\(n\)). On exit, \(\operatorname{difl}(i)\) is the distance between \(i\)-th updated (undeflated) singular value and the \(i\)-th (undeflated) old singular value.
```

REAL for slasd6

```

DOUBLE PRECISION for dlasd6
Array, dimension (Idgnum, 2) if icompq \(=1\) and dimension (\(n\)) if icompq \(=0\).
On exit, \(\operatorname{difr}(i, 1)\) is the distance between \(i\)-th updated (undeflated) singular value and the \(i+1\)-th (undeflated) old singular value. If \(i\) compq \(=1\), \(\operatorname{difr}(1: k, 2)\) is an array containing the normalizing factors for the right singular vector matrix.

See ?lasd8 for details on difl and difr.
REAL for slasd6
DOUBLE PRECISION for dlasd6
Array, dimension (\(m\)).
The first elements of this array contain the components of the deflationadjusted updating row vector.

INTEGER. Contains the dimension of the non-deflated matrix. This is the order of the related secular equation. \(1 \leq k \leq n\).

REAL for slasd6
DOUBLE PRECISION for dlasd6
c contains garbage if sqre \(=0\) and the \(C\)-value of a Givens rotation related to the right null space if sqre \(=1\).

REAL for slasd6
DOUBLE PRECISION for dlasd6
\(s\) contains garbage if sqre \(=0\) and the \(S\)-value of a Givens rotation related to the right null space if sqre \(=1\).

INTEGER.
\(=0\) : successful exit.
\(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value.
\(>0\) : if info \(=1\), an singular value did not converge

\section*{?lasd7}

Merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. Used by ?bdsdc.

\section*{Syntax}
```

call slasd7( icompq, nl, nr, sqre, k, d, z, zw, vf, vfw, vl, vlw, alpha, beta, dsigma,
idx, idxp, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, c, s, info )
call dlasd7( icompq, nl, nr, sqre, k, d, z, zw, vf, vfw, vl, vlw, alpha, beta, dsigma,
idx, idxp, idxq, perm, givptr, givcol, ldgcol, givnum, ldgnum, c, s, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ? lasd7 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more singular values are close together or if there is a tiny entry in the \(Z\) vector. For each such occurrence the order of the related secular equation problem is reduced by one. ?lasd7 is called from ?lasd6.

\section*{Input Parameters}
```

icompq
nl
nr
sqre
d

```

REAL for slasd7.
DOUBLE PRECISION for dlasd7.

Array, DIMENSION (\(m\)).
Workspace for vf.
REAL for slasd7.
DOUBLE PRECISION for dlasd7.
Array, DIMENSION (\(m\)).
On entry, \(v l(1: n l+1)\) contains the last components of all right singular vectors of the upper block; and \(v l(n l+2: m)\) contains the last components of all right singular vectors of the lower block.

REAL for slasd7.
DOUBLE PRECISION for dlasd7.
Array, DIMENSION (\(m\)).
Workspace for VL.
REAL for slasd7
DOUBLE PRECISION for dlasd7.
Contains the diagonal element associated with the added row.
REAL for slasd7.
DOUBLE PRECISION for dlasd7.
Contains the off-diagonal element associated with the added row.
INTEGER.
Workspace array, DIMENSION (\(n\)). This will contain the permutation used to sort the contents of \(d\) into ascending order.

INTEGER.
Workspace array, DIMENSION (\(n\)). This will contain the permutation used to place deflated values of \(d\) at the end of the array.

INTEGER.
Array, DIMENSION (\(n\)).
This contains the permutation which separately sorts the two sub-problems in \(d\) into ascending order. Note that entries in the first half of this permutation must first be moved one position backward; and entries in the second half must first have \(n l+1\) added to their values.

INTEGER. The leading dimension of the output array givcol, must be at least \(n\).

INTEGER. The leading dimension of the output array givnum, must be at least \(n\).

\section*{Output Parameters}
k
INTEGER. Contains the dimension of the non-deflated matrix, this is the order of the related secular equation.
\(1 \leq k \leq n\).
\(d\)
z
\(v f\)
vl
dsigma
idxp
perm
givptr
givcol
givnum
c

S

On exit, \(d\) contains the trailing (\(n-k\)) updated singular values (those which were deflated) sorted into increasing order.

REAL for slasd7.
DOUBLE PRECISION for dlasd7.
Array, DIMENSION (m).
On exit, \(Z\) contains the updating row vector in the secular equation.
On exit, vf contains the first components of all right singular vectors of the bidiagonal matrix.

On exit, v/ contains the last components of all right singular vectors of the bidiagonal matrix.

REAL for slasd7.
DOUBLE PRECISION for dlasd7.
Array, DIMENSION (\(n\)). Contains a copy of the diagonal elements (\(k-1\) singular values and one zero) in the secular equation.

On output, \(\operatorname{idxp(2:k)}\) points to the nondeflated \(d\)-values and \(i d x p(k+1: n)\) points to the deflated singular values.

INTEGER.
Array, DIMENSION (\(n\)).
The permutations (from deflation and sorting) to be applied to each singular block. Not referenced if icompq \(=0\).

INTEGER.
The number of Givens rotations which took place in this subproblem. Not referenced if \(i c o m p q=0\).

INTEGER.
Array, DIMENSION (Idgcol, 2). Each pair of numbers indicates a pair of columns to take place in a Givens rotation. Not referenced if icompq \(=0\).

REAL for slasd7.
DOUBLE PRECISION for dlasd7.
Array, DIMENSION (Idgnum, 2). Each number indicates the \(C\) or \(S\) value to be used in the corresponding Givens rotation. Not referenced if icompq = 0 .

REAL for slasd7.
DOUBLE PRECISION for dlasd7.
If sqre \(=0\), then \(c\) contains garbage, and if sqre \(=1\), then \(c\) contains \(C\) value of a Givens rotation related to the right null space.

REAL for slasd7.
DOUBLE PRECISION for dlasd7.

If sqre \(=0\), then \(s\) contains garbage, and if sqre \(=1\), then \(s\) contains \(S\) value of a Givens rotation related to the right null space.

INTEGER.
\(=0\) : successful exit.
\(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value.

\section*{?lasd8}

Finds the square roots of the roots of the secular equation, and stores, for each element in \(D\), the distance to its two nearest poles. Used by ?bdsdc.

\section*{Syntax}
```

call slasd8( icompq, k, d, z, vf, vl, difl, difr, lddifr, dsigma, work, info )
call dlasd8( icompq, k, d, z, vf, vl, difl, difr, lddifr, dsigma, work, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine ?lasd8 finds the square roots of the roots of the secular equation, as defined by the values in \(d\) sigma and \(z\). It makes the appropriate calls to ? lasd4, and stores, for each element in \(d\), the distance to its two nearest poles (elements in dsigma). It also updates the arrays \(v f\) and \(v /\), the first and last components of all the right singular vectors of the original bidiagonal matrix. ? lasd8 is called from ?lasd6.

\section*{Input Parameters}

INTEGER. Specifies whether singular vectors are to be computed in factored form in the calling routine:
\(=0\) : Compute singular values only.
\(=1\) : Compute singular vectors in factored form as well.
INTEGER. The number of terms in the rational function to be solved by ?lasd4. \(k \geq 1\).

REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (\(k\)).
The first \(k\) elements of this array contain the components of the deflationadjusted updating row vector.
vf REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (\(k\)).
On entry, vf contains information passed through dbede8.
vl
work

\section*{Output Parameters}
d

Z
\(v f\)
vI
difl
difr
dsigma

REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (\(k\)). On entry, v/ contains information passed through dbede 8.

INTEGER. The leading dimension of the output array difr, must be at least k.

REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (\(k\)).
The first \(k\) elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation.

REAL for slasd8
DOUBLE PRECISION for dlasd8.
Workspace array, DIMENSION at least (3k).

REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (\(k\)).
On output, \(D\) contains the updated singular values.
Updated on exit.
On exit, \(v f\) contains the first \(k\) components of the first components of all right singular vectors of the bidiagonal matrix.

On exit, \(v /\) contains the first \(k\) components of the last components of all right singular vectors of the bidiagonal matrix.
REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array, DIMENSION (\(k\)). On exit, difl(i) \(=d(i)\) - dsigma(i).
REAL for slasd8
DOUBLE PRECISION for dlasd8.
Array,
DIMENSION (Iddifr, 2) if icompq \(=1\) and
DIMENSION \((k)\) if \(i c o m p q=0\).
On exit, difr(i,1) = d(i) - dsigma(i+1), difr(\(k, 1\)) is not defined and will not be referenced. If \(i c o m p q=1\), \(\operatorname{difr}(1: k, 2)\) is an array containing the normalizing factors for the right singular vector matrix. The elements of this array may be very slightly altered in value.
```

info INTEGER.
= 0: successful exit.
< 0: if info = -i, the i-th argument had an illegal value.
> 0: If info = 1, an singular value did not converge.

```
?lasd9
Finds the square roots of the roots of the secular equation, and stores, for each element in \(D\), the distance to its two nearest poles. Used by ?bdsdc.

\section*{Syntax}
```

call slasd9( icompq, ldu, k, d, z, vf, vl, difl, difr, dsigma, work, info )
call dlasd9( icompq, ldu, k, d, z, vf, vl, difl, difr, dsigma, work, info )

```
Include Files
- mkl.fi

\section*{Description}

The routine ?lasd9 finds the square roots of the roots of the secular equation, as defined by the values in \(d s i g m a\) and \(z\). It makes the appropriate calls to ?lasd4, and stores, for each element in \(d\), the distance to its two nearest poles (elements in dsigma). It also updates the arrays \(v f\) and \(v /\), the first and last components of all the right singular vectors of the original bidiagonal matrix. ?lasd9 is called from ?lasd7.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{i compq} & INTEGER. Specifies whether singular vectors are to be computed in factored form in the calling routine: \\
\hline & If icompq \(=0\), compute singular values only; \\
\hline & If icompq = 1, compute singular vector matrices in factored form also. \\
\hline k & INTEGER. The number of terms in the rational function to be solved by slasd4. \(k \geq 1\). \\
\hline \multirow[t]{4}{*}{dsigma} & REAL for slasd9 \\
\hline & DOUBLE PRECISION for dlasd9. \\
\hline & Array, DIMENSION(k). \\
\hline & The first \(k\) elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation. \\
\hline \multirow[t]{3}{*}{\(z\)} & REAL for slasd9 \\
\hline & DOUBLE PRECISION for dlasd9. \\
\hline & Array, DIMENSION \((k)\). The first \(k\) elements of this array contain the components of the deflation-adjusted updating row vector. \\
\hline \multirow[t]{2}{*}{vf} & REAL for slasd9 \\
\hline & DOUBLE PRECISION for dlasd9. \\
\hline
\end{tabular}

Array, DIMENSION(\(k\)). On entry, vf contains information passed through sbede8.

\section*{Output Parameters}
d
\(v f\)
vI
info

REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(\(k\)). On entry, \(v /\) contains information passed through sbede8.

REAL for slasd9
DOUBLE PRECISION for dlasd9.
Workspace array, DIMENSION at least (3k).

REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION(k). \(d(i)\) contains the updated singular values.
On exit, vf contains the first \(k\) components of the first components of all right singular vectors of the bidiagonal matrix.

On exit, \(v /\) contains the first \(k\) components of the last components of all right singular vectors of the bidiagonal matrix.

REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array, DIMENSION (\(k\)).
On exit, difl(i) = d(i) - dsigma(i).
REAL for slasd9
DOUBLE PRECISION for dlasd9.
Array,
DIMENSION \((I d u, 2)\) if icompq \(=1\) and
DIMENSION \((k)\) if \(i c o m p q=0\).
On exit, \(\operatorname{difr}(i, 1)=d(i)-d s i g m a(i+1), \operatorname{difr}(k, 1)\) is not defined and will not be referenced.
If icompq \(=1\), \(\operatorname{difr}(1: k, 2)\) is an array containing the normalizing factors for the right singular vector matrix.

INTEGER.
\(=0\) : successful exit.
\(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value.
\(>0\) : If info \(=1\), an singular value did not converge

\section*{?lasda \\ Computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal \(d\) and offdiagonal e. Used by ?bdsdc.}

\section*{Syntax}
```

call slasda( icompq, smlsiz, n, sqre, d, e, u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, work, iwork, info )
call dlasda( icompq, smlsiz, n, sqre, d, e, u, ldu, vt, k, difl, difr, z, poles, givptr,
givcol, ldgcol, perm, givnum, c, s, work, iwork, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

Using a divide and conquer approach, ?lasda computes the singular value decomposition (SVD) of a real upper bidiagonal \(n\)-by- \(m\) matrix \(B\) with diagonal \(d\) and off-diagonal \(e\), where \(m=n+\) sqre.

The algorithm computes the singular values in the \(S V D B=U^{\star} S^{\star} V T\). The orthogonal matrices \(U\) and \(V T\) are optionally computed in compact form. A related subroutine ? lasdo computes the singular values and the singular vectors in explicit form.

\section*{Input Parameters}
```

icompq

```
smlsiz
n
sqre
d
e

INTEGER.
Specifies whether singular vectors are to be computed in compact form, as follows:
\(=0\) : Compute singular values only.
= 1 : Compute singular vectors of upper bidiagonal matrix in compact form.

INTEGER.
The maximum size of the subproblems at the bottom of the computation tree.

INTEGER. The row dimension of the upper bidiagonal matrix. This is also the dimension of the main diagonal array \(d\).

INTEGER. Specifies the column dimension of the bidiagonal matrix.
If sqre \(=0\) : the bidiagonal matrix has column dimension \(m=n\)
If sqre \(=1\) : the bidiagonal matrix has column dimension \(m=n+1\).
REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (\(n\)). On entry, \(d\) contains the main diagonal of the bidiagonal matrix.

REAL for slasda
DOUBLE PRECISION for dlasda.
\(I d u\)
ldgcol
work
iwork

\section*{Output Parameters}
d
u
k
difr

Array, DIMENSION (\(m-1\)). Contains the subdiagonal entries of the bidiagonal matrix. On exit, \(e\) is destroyed.

INTEGER. The leading dimension of arrays \(u, v t\), difl, difr, poles, givnum, and \(z\). \(I d u \geq n\).

INTEGER. The leading dimension of arrays givcol and perm. \(1 d g c o l \geq n\).
REAL for slasda
DOUBLE PRECISION for dlasda.
Workspace array, DIMENSION \(\left(6 n+(s m l s i z+1)^{2}\right)\).
INTEGER.
Workspace array, Dimension must be at least (7n).

On exit \(d\), if info \(=0\), contains the singular values of the bidiagonal matrix.

REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (/du, sm/siz) if icompq \(=1\).
Not referenced if \(i c o m p q=0\).
If icompq \(=1\), on exit, \(u\) contains the left singular vector matrices of all subproblems at the bottom level.

REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (Idu, sm/siz+1) if icompq \(=1\), and not referenced if icompq \(=0\). If icompq \(=1\), on exit, vt' contains the right singular vector matrices of all subproblems at the bottom level.

INTEGER.
Array, DIMENSION (\(n\)) if icompq \(=1\) and
DIMENSION (1) if \(i\) compq \(=0\).
If \(i\) compq \(=1\), on exit, \(k(i)\) is the dimension of the \(i\)-th secular equation on the computation tree.

REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION (\(/ d u, n / v l\)),
where nlvl \(=\) floor \(\left(\log _{2}(n /\right.\) smlsiz) \()\).
REAL for slasda
DOUBLE PRECISION for dlasda.
Array,

DIMENSION (\(/ d u, 2 n / v /\)) if \(i c o m p q=1\) and
DIMENSION (\(n\)) if icompq \(=0\).
If \(i c o m p q=1\), on exit, \(\operatorname{difl}(1: n, i)\) and \(\operatorname{difr}(1: n, 2 i-1)\) record distances between singular values on the \(i\)-th level and singular values on the (\(i-1\))th level, and \(\operatorname{difr}(1: n, 2 i)\) contains the normalizing factors for the right singular vector matrix. See ?lasd8 for details.

REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (\(\mid d u, n / v /\)) if \(i c o m p q=1\) and
DIMENSION \((n)\) if icompq \(=0\). The first \(k\) elements of \(z(1, i)\) contain the components of the deflation-adjusted updating row vector for subproblems on the \(i\)-th level.

REAL for slasda
DOUBLE PRECISION for dlasda.
Array, DIMENSION(ldu, \(2 * n l v l)\)
if \(i c o m p q=1\), and not referenced if \(i c o m p q=0\). If \(i c o m p q=1\), on exit, poles(1, 2i-1) and poles(1, 2i) contain the new and old singular values involved in the secular equations on the \(i\)-th level.

INTEGER. Array, DIMENSION (\(n\)) if icompq = 1, and not referenced if icompq \(=0\). If \(i c o m p q=1\), on exit, givptr(\(i\)) records the number of Givens rotations performed on the \(i\)-th problem on the computation tree.

INTEGER.
Array, DIMENSION(ldgcol, \(\left.2^{\star} n l v l\right)\) if \(i c o m p q=1\), and not referenced if icompq \(=0\). If \(i c o m p q=1\), on exit, for each \(i\), \(\operatorname{givcol}(1,2 i-1)\) and \(\operatorname{givcol}(1,2 i)\) record the locations of Givens rotations performed on the \(i\)-th level on the computation tree.

INTEGER. Array, DIMENSION (\(\mid d g c o l, ~ n / v /\)) if icompq \(=1\), and not referenced if icompq \(=0\). If icompq \(=1\), on exit, perm \((1, i)\) records permutations done on the \(i\)-th level of the computation tree.

REAL for slasda
DOUBLE PRECISION for dlasda.
Array DIMENSION (\(/ d u, 2^{*} n / v /\)) if icompq \(=1\), and not referenced if icompq \(=0\). If icompq \(=1\), on exit, for each \(i\), \(\operatorname{givnum}(1,2 i-1)\) and givnum (1,2 i) record the \(C\) - and \(S\)-values of Givens rotations performed on the \(i\)-th level on the computation tree.

REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (\(n\)) if icompq \(=1\), and
```

DIMENSION (1) if icompq = 0.
If icompq = 1 and the i-th subproblem is not square, on exit, c(i) contains
the C-value of a Givens rotation related to the right null space of the i-th
subproblem.
S
REAL for slasda
DOUBLE PRECISION for dlasda.
Array,
DIMENSION (n) icompq $=1$, and
DIMENSION (1) if icompq = 0.
If $i$ compq $=1$ and the $i$-th subproblem is not square, on exit, $s(i)$ contains the $S$-value of a Givens rotation related to the right null space of the $i$-th subproblem.
INTEGER.
= 0: successful exit.
< 0 : if info $=-i$, the $i$-th argument had an illegal value
> 0 : If info $=1$, an singular value did not converge

```

\section*{?lasdq}

Computes the SVD of a real bidiagonal matrix with diagonal d and off-diagonal e. Used by ?bdsdc.

\section*{Syntax}
```

call slasdq( uplo, sqre, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work, info )
call dlasdq( uplo, sqre, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ?lasdq computes the singular value decomposition (SVD) of a real (upper or lower) bidiagonal matrix with diagonal \(d\) and off-diagonal \(e\), accumulating the transformations if desired. If \(B\) is the input bidiagonal matrix, the algorithm computes orthogonal matrices \(Q\) and \(P\) such that \(B=Q^{\star} S^{\star} P^{T}\). The singular values \(S\) are overwritten on \(d\).

The input matrix \(U\) is changed to \(U^{\star} Q\) if desired.
The input matrix \(V T\) is changed to \(P^{T *} V T\) if desired.
The input matrix \(C\) is changed to \(Q^{T \star} C\) if desired.

\section*{Input Parameters}
uplo
CHARACTER*1. On entry, uplo specifies whether the input bidiagonal matrix is upper or lower bidiagonal.
If uplo = 'U' or 'u', \(B\) is upper bidiagonal;
\begin{tabular}{|c|c|}
\hline & If uplo = 'L' or 'l', \(B\) is lower bidiagonal. \\
\hline \multirow[t]{4}{*}{sqre} & INTEGER. \\
\hline & \(=0\) : then the input matrix is \(n\)-by-n. \\
\hline & \(=1\) : then the input matrix is \(n\)-by- \((n+1)\) if uplu = 'U' and (\(n+1\))-by- \(n\) if uplu \\
\hline & \(=\) 'L'. The bidiagonal matrix has \(n=n l+n r+1\) rows and \(m=n+\) sqre \(\geq n\) columns. \\
\hline \(n\) & INTEGER. On entry, \(n\) specifies the number of rows and columns in the matrix. \(n\) must be at least 0 . \\
\hline ncvt & INTEGER. On entry, ncvt specifies the number of columns of the matrix \(V T\). novt must be at least 0 . \\
\hline nru & INTEGER. On entry, nru specifies the number of rows of the matrix \(U\). nru must be at least 0 . \\
\hline ncc & INTEGER. On entry, ncc specifies the number of columns of the matrix \(C\). ncc must be at least 0 . \\
\hline \multirow[t]{3}{*}{d} & REAL for slasdq \\
\hline & DOUBLE PRECISION for dlasdq. \\
\hline & Array, DIMENSION (\(n\)). On entry, \(d\) contains the diagonal entries of the bidiagonal matrix. \\
\hline \multirow[t]{3}{*}{e} & REAL for slasdq \\
\hline & DOUBLE PRECISION for dlasdq. \\
\hline & Array, DIMENSION is (\(n-1\)) if sqre \(=0\) and \(n\) if sqre \(=1\). On entry, the entries of \(e\) contain the off-diagonal entries of the bidiagonal matrix. \\
\hline \multirow[t]{3}{*}{vt} & REAL for slasdq \\
\hline & DOUBLE PRECISION for dlasdq. \\
\hline & Array, DIMENSION (ldvt, ncvt). On entry, contains a matrix which on exit has been premultiplied by \(P^{T}\), dimension \(n\)-by-ncvt if sqre \(=0\) and \((n+1)\) -by-ncvt if sqre \(=1\) (not referenced if \(n c v t=0\)). \\
\hline ldvt & INTEGER. On entry, Idvt specifies the leading dimension of \(v t\) as declared in the calling (sub) program. Idvt must be at least 1. If ncvt is nonzero, Idvt must also be at least \(n\). \\
\hline \multirow[t]{3}{*}{\(u\)} & REAL for slasdq \\
\hline & DOUBLE PRECISION for dlasdq. \\
\hline & Array, DIMENSION (Idu, \(n\)). On entry, contains a matrix which on exit has been postmultiplied by \(Q\), dimension \(n r u\)-by- \(n\) if sqre \(=0\) and \(n r u\)-by-(\(n\) \(+1)\) if sqre \(=1\) (not referenced if \(n r u=0)\). \\
\hline \(I d u\) & INTEGER. On entry, Idu specifies the leading dimension of \(u\) as declared in the calling (sub) program. Idu must be at least max (1, nru). \\
\hline c & REAL for slasdq \\
\hline
\end{tabular}

DOUBLE PRECISION for dlasdq.
Array, DIMENSION (Idc, ncc). On entry, contains an \(n\)-by-ncc matrix which on exit has been premultiplied by \(Q^{\prime}\), dimension \(n\)-by-ncc if sqre \(=0\) and \((n+1)\)-by-ncc if sqre \(=1\) (not referenced if \(n c c=0)\).

INTEGER. On entry, Idc specifies the leading dimension of \(C\) as declared in the calling (sub) program. Idc must be at least 1. If \(n c c\) is non-zero, \(I d c\) must also be at least \(n\).

REAL for slasdq
DOUBLE PRECISION for dlasdq.
Array, DIMENSION (4n). This is a workspace array. Only referenced if one of \(n c v t, n r u\), or ncc is nonzero, and if \(n\) is at least 2.

\section*{Output Parameters}
\(d\)
e
\(v t\)
\(u\)

C
info

On normal exit, \(d\) contains the singular values in ascending order.
On normal exit, \(e\) will contain 0 . If the algorithm does not converge, \(d\) and \(e\) will contain the diagonal and superdiagonal entries of a bidiagonal matrix orthogonally equivalent to the one given as input.

On exit, the matrix has been premultiplied by \(P^{\prime}\).
On exit, the matrix has been postmultiplied by \(Q\).
On exit, the matrix has been premultiplied by \(Q^{\prime}\).
INTEGER. On exit, a value of 0 indicates a successful exit. If info \(<0\), argument number -info is illegal. If info \(>0\), the algorithm did not converge, and info specifies how many superdiagonals did not converge.

\section*{?lasdt}

Creates a tree of subproblems for bidiagonal divide
and conquer. Used by ?bdsdc.

\section*{Syntax}
```

call slasdt( n, lvl, nd, inode, ndiml, ndimr, msub )
call dlasdt( n, lvl, nd, inode, ndiml, ndimr, msub )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine creates a tree of subproblems for bidiagonal divide and conquer.

\section*{Input Parameters}
\(n\)
INTEGER. On entry, the number of diagonal elements of the bidiagonal matrix.
```

msub

```

INTEGER. On entry, the maximum row dimension each subproblem at the bottom of the tree can be of.

\section*{Output Parameters}
```

lvI
nd
inode
ndiml
ndimr

```

INTEGER. On exit, the number of levels on the computation tree.
INTEGER. On exit, the number of nodes on the tree.
INTEGER.
Array, DIMENSION (\(n\)). On exit, centers of subproblems.
INTEGER.
Array, DIMENSION (\(n\)). On exit, row dimensions of left children.
INTEGER.
Array, DIMENSION (\(n\)). On exit, row dimensions of right children.
?laset
Initializes the off-diagonal elements and the diagonal elements of a matrix to given values.

Syntax
```

call slaset( uplo, m, n, alpha, beta, a, lda )
call dlaset( uplo, m, n, alpha, beta, a, lda )
call claset( uplo, m, n, alpha, beta, a, lda )
call zlaset( uplo, m, n, alpha, beta, a, lda )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine initializes an m-by-n matrix \(A\) to beta on the diagonal and alpha on the off-diagonals.

\section*{Input Parameters}

The data types are given for the Fortran interface.
```

uplo
m
n
CHARACTER*1. Specifies the part of the matrix $A$ to be set.
If uplo = 'U', upper triangular part is set; the strictly lower triangular part of $A$ is not changed.
If uplo = 'L': lower triangular part is set; the strictly upper triangular part of $A$ is not changed.
Otherwise: All of the matrix $A$ is set.
INTEGER. The number of rows of the matrix $A . m \geq 0$.
INTEGER. The number of columns of the matrix $A$.

```
\(n \geq 0\).
alpha, beta
a
lda

REAL for slaset
DOUBLE PRECISION for dlaset
COMPLEX for claset
DOUBLE COMPLEX for zlaset.
The constants to which the off-diagonal and diagonal elements are to be set, respectively.

REAL for slaset
DOUBLE PRECISION for dlaset
COMPLEX for claset
DOUBLE COMPLEX for zlaset.
Array, DIMENSION (Ida, n).
The array a contains the \(m\)-by- \(n\) matrix \(A\).
INTEGER. The leading dimension of the array \(a\).
\(I d a \geq \max (1, m)\).

\section*{Output Parameters}
a
On exit, the leading \(m\)-by- \(n\) submatrix of \(A\) is set as follows:
if uplo = 'U', \(A_{i j}=\) alpha, \(1 \leq i \leq j-1,1 \leq j \leq n\),
if uplo = 'L', \(A_{i j}=\) alpha, \(j+1 \leq i \leq m, 1 \leq j \leq n\),
otherwise, \(A_{i j}=\) alpha, \(1 \leq i \leq m, \quad 1 \leq j \leq n, \quad i \neq j\),
and, for all uplo, \(A_{i i}=\operatorname{beta}, 1 \leq i \leq \min (m, n)\).
?lasq1
Computes the singular values of a real square
bidiagonal matrix. Used by ?bdsqr.
Syntax
```

call slasq1( n, d, e, work, info )
call dlasq1( n, d, e, work, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ? lasq1 computes the singular values of a real \(n\)-by- \(n\) bidiagonal matrix \(Z\) with diagonal \(d\) and off-diagonal e. The singular values are computed to high relative accuracy, in the absence of denormalization, underflow and overflow.

\section*{Input Parameters}
n
\(d\)
e
work

INTEGER. The number of rows and columns in the matrix. \(n \geq 0\).
REAL for slasq1
DOUBLE PRECISION for dlasq1.
Array, DIMENSION (\(n\)).
On entry, \(d\) contains the diagonal elements of the bidiagonal matrix whose SVD is desired.

REAL for slasq1
DOUBLE PRECISION for dlasq1.
Array, DIMENSION (\(n\)).
On entry, elements e(1:n-1) contain the off-diagonal elements of the bidiagonal matrix whose SVD is desired.

REAL for slasq1
DOUBLE PRECISION for dlasq1.
Workspace array, DIMENSION (4n).

\section*{Output Parameters}

\section*{d}
e
info

On normal exit, \(d\) contains the singular values in decreasing order.
On exit, e is overwritten.
INTEGER.
= 0: successful exit;
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value;
> 0: the algorithm failed:
\(=1\), a split was marked by a positive value in \(e\);
\(=2\), current block of \(Z\) not diagonalized after \(100 n\) iterations (in inner while loop) - on exit the current contents of \(d\) and e represent a matrix with the same singular values as the matrix with which ? lasq1 was originally called, and which the calling subroutine could use to finish the computation, or even feed back into ?lasq1;
\(=3\), termination criterion of outer while loop not met (program created more than \(n\) unreduced blocks.

\section*{?lasq2}

Computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the quotient difference array \(z\) to high relative accuracy.
Used by ?bdsqr and ?stegr.

\section*{Syntax}
```

call slasq2( n, z, info )
call dlasq2( n, z, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ? lasq2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the quotient difference array \(z\) to high relative accuracy, in the absence of denormalization, underflow and overflow.

To see the relation of \(z\) to the tridiagonal matrix, let \(L\) be a unit lower bidiagonal matrix with subdiagonals \(z(2,4,6, .\).\() and let U\) be an upper bidiagonal matrix with 1 's above and diagonal \(z(1,3,5, \ldots)\). The tridiagonal is \(L U\) or, if you prefer, the symmetric tridiagonal to which it is similar.

\section*{Input Parameters}
\(n\)
INTEGER. The number of rows and columns in the matrix. \(n \geq 0\).

Z
REAL for slasq2
DOUBLE PRECISION for dlasq2.
Array, DIMENSION (4 * n).
On entry, \(z\) holds the quotient difference array.

\section*{Output Parameters}

Z
info

On exit, entries 1 to \(n\) hold the eigenvalues in decreasing order, \(z(2 n+1)\) holds the trace, and \(z(2 n+2)\) holds the sum of the eigenvalues. If \(n>2\), then \(z(2 n+3)\) holds the iteration count, \(z(2 n+4)\) holds ndivs/nin \({ }^{2}\), and \(z(2 n+5)\) holds the percentage of shifts that failed.

INTEGER.
= 0 : successful exit;
\(<0\) : if the \(i\)-th argument is a scalar and had an illegal value, then info \(=\) - \(i\), if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\);
> 0: the algorithm failed:
\(=1\), a split was marked by a positive value in e;
\(=2\), current block of \(z\) not diagonalized after \(100 * n\) iterations (in inner while loop) - On exit \(z\) holds a quotient difference array with the same eigenvalues as the \(z\) array on entry;
\(=3\), termination criterion of outer while loop not met (program created more than \(n\) unreduced blocks).

\section*{Application Notes}

The routine ? lasq2 defines a logical variable, ieee, which is .TRUE. on machines which follow ieee-754 floating-point standard in their handling of infinities and NaNs, and .FALSE. otherwise. This variable is passed to ?lasq3.

\section*{?lasq3}

Checks for deflation, computes a shift and calls dqds.
Used by ?bdsqr.

\section*{Syntax}
```

call slasq3( i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv, ieee, ttype,
dmin1, dmin2, dn, dn1, dn2, g, tau )
call dlasq3( i0, n0, z, pp, dmin, sigma, desig, qmax, nfail, iter, ndiv, ieee, ttype,
dmin1, dmin2, dn, dn1, dn2, g, tau )

```

Include Files
- mkl.fi

\section*{Description}

The routine ?lasq3 checks for deflation, computes a shift tau, and calls dqds. In case of failure, it changes shifts, and tries again until output is positive.

\section*{Input Parameters}
```

i0 INTEGER. First index.
n0 INTEGER. Last index.
z
pp
desig REAL for slasq3
DOUBLE PRECISION for dlasq3.
Lower order part of sigma.
REAL for slasq3
DOUBLE PRECISION for dlasq3.
Maximum value of q.
LOGICAL.

```
 Flag for ieee or non-ieee arithmetic (passed to ?lasq5).
ttype
 INTEGER.
 Shift type.
\(d m i n 1, d m i n 2, d n, d n 1, d n 2,9\), REAL for slasq3
tau
 DOUBLE PRECISION for dlasq3.

These scalars are passed as arguments in order to save their values between calls to ?lasq3.

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{dmin} & REAL for slasq3 \\
\hline & DOUBLE PRECISION for dlasq3. \\
\hline & Minimum value of \(d\). \\
\hline pp & INTEGER. \(p p=0\) for ping, \(p p=1\) for pong. \(p p=2\) in applied to the \(Z\) array and that the initial tests performed. \\
\hline \multirow[t]{3}{*}{sigma} & REAL for slasq3 \\
\hline & DOUBLE PRECISION for dlasq3. \\
\hline & Sum of shifts used in the current segment. \\
\hline desig & Lower order part of sigma. \\
\hline nfail & INTEGER. Number of times shift was too big. \\
\hline iter & INTEGER. Number of iterations. \\
\hline ndiv & INTEGER. Number of divisions. \\
\hline \multirow[t]{2}{*}{ttype} & INTEGER. \\
\hline & Shift type. \\
\hline dmin1, dmin2, dn, dn1, dn2, 9, & REAL for slasq3 \\
\hline tau & DOUBLE PRECISION for dlasq3. \\
\hline
\end{tabular}

These scalars are passed as arguments in order to save their values between calls to ?lasq3.

\section*{?lasq4}

Computes an approximation to the smallest eigenvalue using values of \(d\) from the previous transform. Used by ?bdsqr.

\section*{Syntax}
```

call slasq4( i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau, ttype, g )
call dlasq4( i0, n0, z, pp, n0in, dmin, dmin1, dmin2, dn, dn1, dn2, tau, ttype, g )

```

Include Files
- mkl.fi

\section*{Description}

The routine computes an approximation tau to the smallest eigenvalue using values of \(d\) from the previous transform.

\section*{Input Parameters}
```

i0

```
no
z
pp
nOin
dmin
dmin1
dmin2
\(d n\)
\(d n 1\)
\(d n 2\)
\(g\)

\section*{Output Parameters}
ttype
9

INTEGER. First index.
INTEGER. Last index.
REAL for slasq4
DOUBLE PRECISION for dlasq4.
Array, DIMENSION (4n).
\(z\) holds the \(q d\) array.
INTEGER. \(p p=0\) for ping, \(p p=1\) for pong.
INTEGER. The value of n0 at start of eigtest.
REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of \(d\).
REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of \(d\), excluding \(d(n 0)\).
REAL for slasq4
DOUBLE PRECISION for dlasq4.
Minimum value of \(d\), excluding \(d(n 0)\) and \(d(n 0-1)\).
REAL for slasq4
DOUBLE PRECISION for dlasq4. Contains \(d(n)\).
REAL for slasq4
DOUBLE PRECISION for dlasq4. Contains \(d(n-1)\).
REAL for slasq4
DOUBLE PRECISION for dlasq4. Contains \(d(n-2)\).
REAL for slasq4
DOUBLE PRECISION for dlasq4.
A scalar passed as an argument in order to save its value between calls to ? lasq4.

REAL for slasq4
DOUBLE PRECISION for dlasq4.
Shift.
INTEGER. Shift type.
REAL for slasq4

DOUBLE PRECISION for dlasq4.
A scalar passed as an argument in order to save its value between calls to ?lasq4.

\section*{?lasq5}

Computes one dqds transform in ping-pong form.
Used by ?bdsqr and ?stegr.

\section*{Syntax}
```

call slasq5( i0, n0, z, pp, tau, sigma, dmin, dmin1, dmin2, dn, dnm1, dnm2, ieee, eps )
call dlasq5( i0, n0, z, pp, tau, sigma, dmin, dmin1, dmin2, dn, dnm1, dnm2, ieee, eps )

```
Include Files
- mkl.fi

\section*{Description}

The routine computes one dqds transform in ping-pong form: one version for ieee machines, another for non-ieee machines.

Input Parameters
\begin{tabular}{ll}
io & INTEGER. First index. \\
no & INTEGER. Last index. \\
R & REAL for slasq5 \\
& DOUBLE PRECISION for dlasq5. \\
& Array, DIMENSION (4n). \(z\) holds the qd array. emin is stored in \(z(4 * n 0)\) \\
pp & to avoid an extra argument. \\
tau & INTEGER. pp=0 for ping, pp=1 for pong. \\
& REAL for slasq5 \\
& DOUBLE PRECISION for dlasq5. \\
sigma & This is the shift. \\
& REAL for slasq5 \\
& DOUBLE PRECISION for dlasq5. \\
ieee & This is the accumulated shift up to the current point. \\
eps & LOGICAL. Flag for IEEE or non-IEEE arithmetic. \\
& REAL for slasq5 \\
& DOUBLE PRECISION for dlasq5. \\
& This is the value of epsilon used.
\end{tabular}

\section*{Output Parameters}
```

dmin REAL for slasq5
DOUBLE PRECISION for dlasq5.
Minimum value of d.
REAL for slasq5
DOUBLE PRECISION for dlasq5.
Minimum value of d, excluding d(n0).
REAL for slasq5
DOUBLE PRECISION for dlasq5.
Minimum value of d, excluding d(nO) and d(nO-1).
REAL for slasq5
DOUBLE PRECISION for dlasq5. Contains d(n0), the last value of d.
REAL for slasq5
DOUBLE PRECISION for dlasq5. Contains d(n0-1).
REAL for slasq5
DOUBLE PRECISION for dlasq5. Contains d(n0-2).

```

\section*{?lasq6}

Computes one dqd transform in ping-pong form. Used
by ?bdsqr and ?stegr.
Syntax
```

call slasq6( i0, n0, z, pp, dmin, dmin1, dmin2, dn, dnm1, dnm2 )
call dlasq6( i0, n0, z, pp, dmin, dmin1, dmin2, dn, dnm1, dnm2 )

```

Include Files
- mkl.fi

\section*{Description}

The routine ?lasq6 computes one dqd (shift equal to zero) transform in ping-pong form, with protection against underflow and overflow.

\section*{Input Parameters}
```

i0
no
z REAL for slasq6
DOUBLE PRECISION for dlasq6.

```

Array, DIMENSION (4n). Z holds the qd array. emin is stored in \(z(4 * n 0)\) to avoid an extra argument.
pp INTEGER. \(p p=0\) for ping, \(p p=1\) for pong.

\section*{Output Parameters}
dmin
dmin1
dmin2
\(d n\)
\(d n m 1\)
dnm2

REAL for slasq6 DOUBLE PRECISION for dlasq6.

Minimum value of \(d\).
REAL for slasq6 DOUBLE PRECISION for dlasq6.

Minimum value of \(d\), excluding \(d(n 0)\).
REAL for slasq6
DOUBLE PRECISION for dlasq6.
Minimum value of \(d\), excluding \(d(n 0)\) and \(d(n 0-1)\).
REAL for slasq6
DOUBLE PRECISION for dlasq6. Contains \(d(n 0)\), the last value of \(d\).
REAL for slasq6 DOUBLE PRECISION for dlasq6. Contains \(d(n 0-1)\).

REAL for slasq6
DOUBLE PRECISION for dlasq6. Contains \(d(n 0-2)\).
?lasr
Applies a sequence of plane rotations to a general rectangular matrix.

\section*{Syntax}
```

call slasr( side, pivot, direct, m, n, c, s, a, lda )
call dlasr( side, pivot, direct, m, n, c, s, a, lda )
call clasr( side, pivot, direct, m, n, c, s, a, lda )
call zlasr( side, pivot, direct, m, n, c, s, a, lda )

```

Include Files
- mkl.fi

\section*{Description}

The routine applies a sequence of plane rotations to a real/complex matrix \(A\), from the left or the right.
\(A:=P^{\star} A\), when side \(=\) 'L' (Left-hand side)
\(A:=A * P^{\prime}\), when side \(=\) 'R' (Right-hand side)
where \(P\) is an orthogonal matrix consisting of a sequence of plane rotations with \(z=m\) when side \(=\) ' L ' and \(z=n\) when side \(=\) 'R'.

When direct = 'F' (Forward sequence), then
\(P=P(z-1) * \ldots P(2) * P(1)\),
and when direct \(=\) ' \(B^{\prime}\) (Backward sequence), then
\(P=P(1) * P(2) * \ldots * P(z-1)\),
where \(P(k)\) is a plane rotation matrix defined by the 2-by-2 plane rotation:

When pivot = 'V' (Variable pivot), the rotation is performed for the plane \((k, k+1)\), that is, \(P(k)\) has the form

where \(R(k)\) appears as a rank-2 modification to the identity matrix in rows and columns \(k\) and \(k+1\). When pivot \(=\) ' \(T\) ' (Top pivot \()\), the rotation is performed for the plane \((1, k+1)\), so \(P(k)\) has the form
\[
P(k)=\left[\begin{array}{cccccccc}
c(k) & & & & s(k) & & & \\
& 1 & & & & & & \\
& & \cdots & & & & & \\
& & & 1 & & & & \\
-s(k) & & & & c(k) & & & \\
& & & & & 1 & & \\
& & & & & & \cdots & \\
& & & & & & & 1
\end{array}\right]
\]
where \(R(k)\) appears in rows and columns \(k\) and \(k+1\).
Similarly, when pivot \(=\) ' \(B^{\prime}\) (Bottom pivot \()\), the rotation is performed for the plane \((k, z)\), giving \(P(k)\) the form
where \(R(k)\) appears in rows and columns \(k\) and \(z\). The rotations are performed without ever forming \(P(k)\) explicitly.

Input Parameters
side
CHARACTER*1. Specifies whether the plane rotation matrix \(P\) is applied to \(A\) on the left or the right.
```

= 'L': left, compute A := P*A
= 'R': right, compute }A:=A\star P

```
direct
pivot
m
n
a

Ida
```

CHARACTER*1. Specifies whether $P$ is a forward or backward sequence of plane rotations.
$=' F^{\prime}:$ forward, $P=P(z-1) * \ldots * P(2) * P(1)$
$=$ 'B': backward, $P=P(1) * P(2) * \ldots * P(z-1)$
CHARACTER*1. Specifies the plane for which $P(k)$ is a plane rotation matrix.
$=' \mathrm{~V}$ ': Variable pivot, the plane $(k, k+1)$
$=$ ' T ': Top pivot, the plane $(1, k+1)$
$=$ ' $\mathrm{B}^{\prime}$ : Bottom pivot, the plane $(k, z)$
INTEGER. The number of rows of the matrix $A$.
If $m \leq 1$, an immediate return is effected.
INTEGER. The number of columns of the matrix $A$.
If $n \leq 1$, an immediate return is effected.
REAL for slasr/clasr
DOUBLE PRECISION for dlasr/zlasr.
Arrays, DIMENSION
$(m-1)$ if side $=' L '$,
$(n-1)$ if side $={ }^{\prime} \mathrm{R}^{\prime}$.
$c(k)$ and $s(k)$ contain the cosine and sine of the plane rotations respectively that define the 2-by-2 plane rotation part $(R(k))$ of the $P(k)$ matrix as described above in Description.
REAL for slasr
DOUBLE PRECISION for dlasr
COMPLEX for clasr
DOUBLE COMPLEX for zlasr.
Array, DIMENSION (Ida, $n$ ).
The $m$-by-n matrix $A$.
INTEGER. The leading dimension of the array $a$.
$I d a \geq \max (1, m)$.

```

\section*{Output Parameters}
a
On exit, \(A\) is overwritten by \(P^{*} A\) if side \(='^{\prime} \mathrm{R}^{\prime}\), or by \(A^{*} P^{\prime}\) if side \(=\) ' \(L^{\prime}\).

\section*{?lasrt}

Sorts numbers in increasing or decreasing order.

\section*{Syntax}
```

call slasrt( id, n, d, info )
call dlasrt( id, n, d, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ? lasrt sorts the numbers in \(d\) in increasing order (if id = 'I') or in decreasing order (if id = ' D'). It uses Quick Sort, reverting to Insertion Sort on arrays of size \(\leq 20\). Dimension of stack limits \(n\) to about \(2^{32}\).

\section*{Input Parameters}

The data types are given for the Fortran interface.
id CHARACTER*1.
\((d(1) \leq \ldots \leq d(n))\) or into decreasing order
\((d(1) \geq \ldots \geq d(n))\), depending on id.
n
INTEGER. The length of the array \(d\).
d
REAL for slasrt
DOUBLE PRECISION for dlasrt.
On entry, the array to be sorted.

\section*{Output Parameters}
d
On exit, \(d\) has been sorted into increasing order
\[
\begin{aligned}
& (d[0] \leq d[1] \leq \ldots \leq d[n-1]) \text { or into decreasing order } \\
& (d[0] \geq d[1] \geq \ldots \geq d[n-1]) \text {, depending on id. } \\
& \text { INTEGER. If info }=0 \text {, the execution is successful. } \\
& \text { If info }<0 \text {, the } i \text {-th parameter had an illegal value. }
\end{aligned}
\]

\section*{?lassq}

Updates a sum of squares represented in scaled form.
Syntax
```

call slassq( n, x, incx, scale, sumsq )
call dlassq( n, x, incx, scale, sumsq)
call classq( n, x, incx, scale, sumsq )
call zlassq( n, x, incx, scale, sumsq)

```

Include Files
- mkl.fi

\section*{Description}

The real routines slassq/dlassq return the values \(s c l\) and \(s m s q\) such that
```

scl2 * smsq = x(1)2 + _..+x(n)2 + scale 2 *sumsq,
where x( i ) = x(1 + ( i - 1) incx).

```

The value of sumsq is assumed to be non-negative and \(s c l\) returns the value
```

scl = max( scale, abs(x(i))).

```

Values scale and sumsq must be supplied in scale and sumsq, and scl and smsq are overwritten on scale and sumsq, respectively.

The complex routines classq/zlassq return the values \(s c /\) and \(s s q\) such that
\(s c l^{2} * s s q=x(1)^{2}+\ldots+x(n)^{2}+s c a l e^{2} * s u m s q\),
where \(x(i)=a b s(x(1+(i-1) * i n c x))\).
The value of sumsq is assumed to be at least unity and the value of ssq will then satisfy \(1.0 \leq s s q \leq\) sumsq + \(2 n\)
scale is assumed to be non-negative and \(s c l\) returns the value
```

scl = max( scale, abs(real(x(i))), abs(aimag(x(i)))).

```

Values scale and sumsq must be supplied in scale and sumsq, and scl and ssq are overwritten on scale and sumsq, respectively.
All routines ?lassq make only one pass through the vector \(x\).

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. The number of elements to be used from the vector \(x\). \\
\(x\) & REAL for slassq \\
& DOUBLE PRECISION for dlassq \\
& COMPLEX for classq \\
& DOUBLE COMPLEX for zlassq. \\
& The vector for which a scaled sum of squares is computed: \(x(i)=x(1+\) \\
& \((i-1) *\) incx), \(1 \leq i \leq n\). \\
incx & INTEGER. The increment between successive values of the vector \(x\). incx \(>\) \\
& 0. \\
Scale & REAL for slassq/classq \\
& DOUBLE PRECISION for dlassq/zlassq. \\
Sumsq & On entry, the value scale in the equation above. \\
& REAL for slassq/classq \\
& DOUBLE PRECISION for dlassq/zlassq. \\
& On entry, the value sumsq in the equation above.
\end{tabular}

\section*{Output Parameters}
scale
sumsq
On exit, scale is overwritten with scl, the scaling factor for the sum of squares.

For real flavors:
On exit, sums \(q\) is overwritten with the value \(s m s q\) in the equation above.
For complex flavors:
On exit, sumsq is overwritten with the value ssq in the equation above.
?lasv2
Computes the singular value decomposition of a 2-by-2 triangular matrix.

Syntax
```

call slasv2( f, g, h, ssmin, ssmax, snr, csr, snl, csl )
call dlasv2( f, g, h, ssmin, ssmax, snr, csr, snl, csl )

```

Include Files
- mkl.fi

\section*{Description}

The routine ? lasv2 computes the singular value decomposition of a 2-by-2 triangular matrix

On return, abs(ssmax) is the larger singular value, abs(ssmin) is the smaller singular value, and (csl,sn/) and (\(c s r, s n r\)) are the left and right singular vectors for abs(ssmax), giving the decomposition
\[
\left[\begin{array}{cc}
c s l & s n l \\
-\operatorname{snl} & c s I
\end{array}\right]\left[\begin{array}{ll}
f & g \\
0 & h
\end{array}\right]\left[\begin{array}{cc}
c s r & -s n r \\
\operatorname{snr} & c s r
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{simax} & 0 \\
0 & s \sin
\end{array}\right]
\]

\section*{Input Parameters}
\(f, g, h\)
REAL for slasv2
DOUBLE PRECISION for dlasv2.
The (1,1), (1,2) and (2,2) elements of the 2-by-2 matrix, respectively.

\section*{Output Parameters}
ssmin, ssmax
snl, csl
snr, csr

REAL for slasv2
DOUBLE PRECISION for dlasv2.
abs(ssmin) and abs(ssmax) is the smaller and the larger singular value, respectively.

REAL for slasv2
DOUBLE PRECISION for dlasv2.
The vector (csl, snl) is a unit left singular vector for the singular value abs(ssmax).

REAL for slasv2
DOUBLE PRECISION for dlasv2.
The vector (csr, snr) is a unit right singular vector for the singular value abs(ssmax).

\section*{Application Notes}

Any input parameter may be aliased with any output parameter.
Barring over/underflow and assuming a guard digit in subtraction, all output quantities are correct to within a few units in the last place (ulps).

In ieee arithmetic, the code works correctly if one matrix element is infinite. Overflow will not occur unless the largest singular value itself overflows or is within a few ulps of overflow. (On machines with partial overflow, like the Cray, overflow may occur if the largest singular value is within a factor of 2 of overflow.) Underflow is harmless if underflow is gradual. Otherwise, results may correspond to a matrix modified by perturbations of size near the underflow threshold.

\section*{?laswlq}

Computes blocked Short-Wide LQ matrix factorization.
```

call slaswlq(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
call dlaswlq(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
call claswlq(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
call zlaswlq(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)

```

\section*{Description}
? laswlq computes a blocked Short-Wide LQ (SWLQ) factorization of an m-by-n matrix \(A\), where \(n \geq m: A=\) \(L^{*} Q\).

SWLQ performs LQ by a sequence of orthogonal transformations, representing \(Q\) as a product of other orthogonal matrices
\(Q=Q(1)^{*} Q(2)^{*} \ldots * Q(k)\)
where each \(Q(i)\) zeros out upper diagonal entries of a block of nb rows of \(A\) :
\(Q(1)\) zeros out the upper diagonal entries of rows \(1: n b\) of \(A\),
\(Q(2)\) zeros out the bottom \(m b-n\) rows of rows [1:m, nb \(+1: 2^{*} n b-m\)] of \(A\),
\(Q(3)\) zeros out the bottom \(m b-n\) rows of rows [1:m, \(2 *_{n b}-m+1: 3^{*} n b-2 *_{m}\)] of \(A \ldots\).
\(Q(1)\) is computed bygelqt, which represents \(Q(1)\) by Householder vectors stored under the diagonal of rows 1 :mb of \(a\), and by upper triangular block reflectors, stored in array \(t(1: I d t, 1: n)\). For more information, see gelqt.
\(Q(i)\) for \(i>1\) is computed by tplqt, which represents \(Q(i)\) by Householder vectors stored in columns [(\(i\) \(1)^{*}(n b-m)+m+1: i^{*}(n b-m)+m\) of \(a\), and by upper triangular block reflectors, stored in array \(t(1: l d t\), (\(i\) \(\left.-1)^{*} m+1: i^{*}\right)^{\prime}\). The last \(Q(k)\) may use fewer rows. For more information, see tplqt. For more details of the overall algorithm, see [DEMMEL12].

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & INTEGER. The number of rows of the matrix \(A . m \geq 0\). \\
\hline \(n\) & INTEGER. The number of columns of the matrix \(A . n \geq m \geq 0\). \\
\hline mb & INTEGER. The row block size to be used in the blocked QR. \(m \geq m b \geq 1\) \\
\hline nb & INTEGER. The column block size to be used in the blocked \(\mathrm{QR} . \mathrm{nb}>\mathrm{m}\). \\
\hline \multirow[t]{5}{*}{a} & REAL for slaswlq \\
\hline & DOUBLE PRECISION for dlaswlq \\
\hline & COMPLEX for claswlq \\
\hline & COMPLEX*16 for zlaswlq \\
\hline & Array of size (lda, \(n\)). On entry, the m-by-n matrix \(A\). \\
\hline Ida & INTEGER. The leading dimension of the array a. \(1 \mathrm{~d} a \geq \max (1, m)\). \\
\hline \(1 d t\) & INTEGER. The leading dimension of the array \(t\). \(1 d t \geq m b\). \\
\hline \multirow[t]{2}{*}{lwork} & INTEGER. The dimension of the array work. 1 work \(\geq m b * m\). \\
\hline & If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by XERBLA. \\
\hline
\end{tabular}

\section*{Output Parameters}
a
On exit, the elements on and below the diagonal of the array contain the \(n\) -by- \(n\) lower triangular matrix \(L\); the elements above the diagonal represent \(Q\) by the rows of blocked \(V\).
t
REAL for slaswlq
DOUBLE PRECISION for dlaswlq
COMPLEX for claswlq
COMPLEX*16 for zlaswlq
Array of size (ldt, \(n\) * Number_of_row_blocks), where
Number_of_row_blocks \(=\) ceiling \(((n-m) /(n b-m))\). The blocked upper triangular block reflectors stored in compact form as a sequence of upper triangular blocks.

REAL for slaswlq
DOUBLE PRECISION for dlaswlq
COMPLEX for claswlq
COMPLEX*16 for zlaswlq
Workspace array of size (max(1, lwork)).
INTEGER.
info \(=0\) : successful exit.
info < 0 : if info \(=-i\), the \(i\)-th argument had an illegal value.

\section*{?laswp \\ Performs a series of row interchanges on a general rectangular matrix.}

Syntax
```

call slaswp( n, a, lda, kl, k2, ipiv, incx )
call dlaswp( n, a, lda, kl, k2, ipiv, incx )
call claswp( n, a, lda, k1, k2, ipiv, incx )
call zlaswp( n, a, lda, k1, k2, ipiv, incx )

```

Include Files
- mkl.fi

\section*{Description}

The routine performs a series of row interchanges on the matrix \(A\). One row interchange is initiated for each of rows \(k 1\) through \(k 2\) of \(A\).

\section*{Input Parameters}

The data types are given for the Fortran interface.
\(n\)
a

INTEGER. The number of columns of the matrix \(A\).
REAL for slaswp
DOUBLE PRECISION for dlaswp
COMPLEX for claswp
DOUBLE COMPLEX for zlaswp.
Array, size lda by \(n\).
Array a contains the \(m\)-by-n matrix \(A\).
INTEGER. The leading dimension of the array \(a\).
INTEGER. The first element of ipiv for which a row interchange will be done.
INTEGER. The last element of ipiv for which a row interchange will be done.
INTEGER.
Array, size \(k 1+(k 2-k 1) *|i n c x|)\).
The vector of pivot indices. Only the elements in positions \(k 1\) through \(k 2\) of ipiv are accessed.
\(\operatorname{ipiv}(k)=1\) implies rows \(k\) and \(/\) are to be interchanged.
INTEGER. The increment between successive values of ipiv. If ipiv is negative, the pivots are applied in reverse order.

\section*{Output Parameters}
a
On exit, the permuted matrix.

\section*{?lasy2}

Solves the Sylvester matrix equation where the matrices are of order 1 or 2 .

\section*{Syntax}
```

call slasy2( ltranl, ltranr, isgn, n1, n2, tl, ldtl, tr, ldtr, b, ldb, scale, x, ldx,
xnorm, info )
call dlasy2( ltranl, ltranr, isgn, n1, n2, tl, ldtl, tr, ldtr, b, ldb, scale, x, ldx,
xnorm, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine solves for the \(n 1\)-by-n2 matrix \(X, 1 \leq n 1, n 2 \leq 2\), in
\(o p(T L) * X+i s g n * X^{*} o p(T R)=s c a l e * B\),
where
TL is n1-by-n1,
```

TR is n2-by-n2,
B is n1-by-n2,
and isgn = 1 or -1. op (T) = T or T}\mp@subsup{T}{}{T}\mathrm{ , where T}\mp@subsup{T}{}{T}\mathrm{ denotes the transpose of T.
Input Parameters
ltranl LOGICAL.
On entry, Itranl specifies the op (TL):
=.FALSE., op (TL) = TL,
=.TRUE., op (TL) = (TL)T
LOGICAL.
On entry, Itranr specifies the op( $T R$ ):
$=$.FALSE., op $(T R)=T R$,
$=$. TRUE., op $(T R)=(T R)^{T}$.
INTEGER. On entry, isgn specifies the sign of the equation as described before. isgn may only be 1 or -1 .
INTEGER. On entry, $n 1$ specifies the order of matrix $T L$.
n1 may only be 0,1 or 2 .
INTEGER. On entry, $n 2$ specifies the order of matrix $T R$.
$n 2$ may only be 0,1 or 2 .
REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (Idtl,2).
On entry, $t /$ contains an $n 1$-by-n1 matrix $T L$.
INTEGER. The leading dimension of the matrix $T L$.
$l d t l \geq \max (1, n 1)$.
REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION (Idtr,2). On entry, tr contains an n2-by-n2 matrix TR.
INTEGER. The leading dimension of the matrix $T R$.
$l d t r \geq \max (1, n 2)$.
REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION ( $/ d b, 2$ ). On entry, the $n 1$-by-n2 matrix $B$ contains the right-hand side of the equation.
INTEGER. The leading dimension of the matrix $B$.
$1 d b \geq \max (1, n 1)$.

```

INTEGER. The leading dimension of the output matrix \(X\).
\(I d x \geq \max (1, n 1)\).

\section*{Output Parameters}
scale

X
xnorm
info

REAL for slasy2
DOUBLE PRECISION for dlasy2.
On exit, scale contains the scale factor.
scale is chosen less than or equal to 1 to prevent the solution overflowing.
REAL for slasy2
DOUBLE PRECISION for dlasy2.
Array, DIMENSION \((/ d x, 2)\). On exit, \(x\) contains the \(n 1-b y-n 2\) solution.
REAL for slasy2
DOUBLE PRECISION for dlasy2.
On exit, xnorm is the infinity-norm of the solution.
INTEGER. On exit, info is set to 0: successful exit. 1: \(T L\) and \(T R\) have too close eigenvalues, so \(T L\) or \(T R\) is perturbed to get a nonsingular equation.

\section*{NOTE}

For higher speed, this routine does not check the inputs for errors.
```

?lasyf
Computes a partial factorization of a symmetric
matrix, using the diagonal pivoting method.
Syntax

```
```

call slasyf( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info )

```
call slasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call dlasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call dlasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call clasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call clasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call zlasyf(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
```

call zlasyf( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info )

```

Include Files
- mkl.fi

\section*{Description}

The routine ?lasyf computes a partial factorization of a symmetric matrix \(A\) using the Bunch-Kaufman diagonal pivoting method. The partial factorization has the form:
If uplo = 'U':

uplo = 'L'

where the order of \(D\) is at most \(n b\).
The actual order is returned in the argument \(k b\), and is either \(n b\) or \(n b-1\), or \(n\) if \(n \leq n b\).
This is an auxiliary routine called by ?sytrf. It uses blocked code (calling Level 3 BLAS) to update the submatrix \(A_{11}\) (if uplo \(=' \mathrm{U}\) ') or \(A_{22}\) (if uplo \(=\) 'L').

\section*{Input Parameters}
```

uplo
n
n.b
a
Ida
w
CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix $A$ is stored:
= 'U': Upper triangular
= 'L': Lower triangular
INTEGER. The order of the matrix $A . n \geq 0$.
INTEGER. The maximum number of columns of the matrix $A$ that should be factored. $n b$ should be at least 2 to allow for 2 -by- 2 pivot blocks.
REAL for slasyf
DOUBLE PRECISION for dlasyf
COMPLEX for clasyf
DOUBLE COMPLEX for zlasyf.
Array, DIMENSION (Ida, n). If uplo = 'U', the leading $n$-by- $n$ upper triangular part of a contains the upper triangular part of the matrix $A$, and the strictly lower triangular part of $a$ is not referenced. If uplo $=$ 'L', the leading $n$-by- $n$ lower triangular part of a contains the lower triangular part of the matrix $A$, and the strictly upper triangular part of $a$ is not referenced.
INTEGER. The leading dimension of the array $a . l d a \geq \max (1, n)$.
REAL for slasyf
DOUBLE PRECISION for dlasyf

```
```

COMPLEX for clasyf
DOUBLE COMPLEX for zlasyf.
Workspace array, DIMENSION (Idw, nb).
$\operatorname{INTEGER}$. The leading dimension of the array $w . I d w \geq \max (1, n)$.

```

\section*{Output Parameters}
kb
INTEGER. The number of columns of \(A\) that were actually factored \(k b\) is either \(n b-1\) or \(n b\), or \(n\) if \(n \leq n b\).

On exit, a contains details of the partial factorization.
INTEGER. Array, DIMENSION (\(n\)). Details of the interchanges and the block structure of \(D\).

If uplo = 'U', only the last kb elements of ipiv are set;
if uplo = 'L', only the first \(k b\) elements are set.
If \(\operatorname{ipiv}(k)>0\), then rows and columns \(k\) and \(\operatorname{ipiv}(k)\) were interchanged and \(D(k, k)\) is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) \(=\operatorname{ipiv}(k-1)<0\), then rows and columns \(k-1\) and \(-\operatorname{ipiv}(k)\) were interchanged and \(D(k-1: k, k-1: k)\) is a 2-by-2 diagonal block.
If uplo \(=\) 'L' and ipiv(k) \(=\operatorname{ipiv}(k+1)<0\), then rows and columns \(k\) +1 and \(-\operatorname{ipiv}(k)\) were interchanged and \(D(k: k+1, k: k+1)\) is a 2-by-2 diagonal block.

INTEGER.
\(=0\) : successful exit
\(>0\) : if info \(=k, D(k, k)\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular.
?lasyf_aa
Factorizes a panel of a real or complex symmetric matrix using Aasen's algorithm.
```

call slasyf_aa(uplo, jl, m, nb, a, lda, ipiv, h, ldh, work)
call dlasyf_aa(uplo, jl, m, nb, a, lda, ipiv, h, ldh, work)
call clasyf_aa(uplo, jl, m, nb, a, lda, ipiv, h, ldh, work)
call zlasyf_aa(uplo, jl, m, nb, a, lda, ipiv, h, ldh, work)

```

\section*{Description}
?lasyf_aa factorizes a panel of a real or complex symmetric matrix \(A\) using Aasen's algorithm. The panel consists of a set of nb rows of \(A\) when uplo is ' U ', or a set of \(n b\) columns when uplo is 'L'. In order to factorize the panel, Aasen's algorithm requires the last row, or column, of the previous panel. The first row, or column, of \(A\) is set to be the first row, or column, of an identity matrix, which is used to factorize the first panel. The resulting \(j\)-th row of \(U\), or \(j\)-th column of \(L\), is stored in the \((j-1)\)-st row, or column, of \(A\) (without the unit diagonals), while the diagonal and subdiagonal of \(A\) are overwritten by those of \(T\).

\section*{Input Parameters}

\section*{Output Parameters}
a
ipiv
work
```

uplo
j1
m
nb
a
lda
h
ldh
CHARACTER*1.
If uplo = 'U': Upper triangular of $A$ is stored.
If uplo= 'L': Lower triangular of $A$ is stored..
INTEGER. The location of the first row, or column, of the panel within the submatrix of $A$, passed to this routine: when called by ?sytrf_aa, for the first panel, $j 1$ is 1 , while for the remaining panels, $j 1$ is 2 .
INTEGER. The size of the submatrix. $m \geq 0$.
INTEGER. The size of the panel to be factorized.
REAL for slasyf_aa
DOUBLE PRECISION for dlasyf_aa
REAL for clasyf_aa
COMPLEX*16 for zlasyf_aa
Array of size ( $1 \mathrm{da}, \mathrm{m}$ ) for the first panel, and size $(1 d a, m+1)$ for the remaining panels.
On entry, a contains the last row, or column, of the previous panel, and the trailing submatrix of $a$ to be factorized, except for the first panel, when only the panel is passed.
INTEGER. The leading dimension of the array $a$. $1 d a \geq \max (1, n)$.
REAL for slasyf_aa
DOUBLE PRECISION for dlasyf_aa
REAL for clasyf_aa
COMPLEX*16 for zlasyf_aa
Workspace array of size ( $1 \mathrm{dh}, \mathrm{nb}$ ).
INTEGER. The leading dimension of the workspace $h .1 d h \geq \max (1, m)$.

```

On exit, the leading panel is factorized.
INTEGER. Array of size (\(n\)). Details of the row and column interchanges: the row and column \(k\) were interchanged with the row and column ipiv(k).

REAL for slasyf_aa
DOUBLE PRECISION for dlasyf_aa
REAL for clasyf_aa
COMPLEX*16 for zlasyf_aa
Workspace array of \(\operatorname{size}(m)\).

\section*{?lasyf_rook}

Computes a partial factorization of a complex
symmetric matrix, using the bounded Bunch-Kaufman diagonal pivoting method.

\section*{Syntax}
```

call slasyf_rook( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info )
call dlasyf_rook( uplo, n, nb, kb, a, lda, ipiv, W, ldw, info )
call clasyf_rook( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info )
call zlasyf_rook( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info )

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ?lasyf_rook computes a partial factorization of a complex symmetric matrix \(A\) using the bounded Bunch-Kaufman ("rook") diagonal pivoting method. The partial factorization has the form:

where the order of \(D\) is at most \(n b\).
The actual order is returned in the argument \(k b\), and is either \(n b\) or \(n b-1\), or \(n\) if \(n \leq n b\).
This is an auxiliary routine called by ?sytrf_rook. It uses blocked code (calling Level 3 BLAS) to update the submatrix \(A_{11}\) (if uplo \(=' \mathrm{U}\) ') or \(A_{22}\) (if uplo \(=\) 'L').

\section*{Input Parameters}
uplo
CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored:
= 'U': Upper triangular
= 'L': Lower triangular
n
\(n b\)
a

Ida

W
\(I d w\)

\section*{Output Parameters}
kb
\(a\)
ipiv
info

INTEGER. The order of the matrix \(A . n \geq 0\).
INTEGER. The maximum number of columns of the matrix \(A\) that should be factored. \(n b\) should be at least 2 to allow for 2 -by- 2 pivot blocks.
```

REAL for slasyf_rook

```
DOUBLE PRECISION for dlasyf_rook
COMPLEX for clasyf_rook

DOUBLE COMPLEX for zlasyf_rook.
Array, DIMENSION (Ida, n). If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of a contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(a\) is not referenced. If uplo \(=\) 'L', the leading \(n\)-by- \(n\) lower triangular part of a contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(a\) is not referenced.

INTEGER. The leading dimension of the array a. \(1 d a \geq \max (1, n)\).
REAL for slasyf_rook
DOUBLE PRECISION for dlasyf_rook
COMPLEX for clasyf_rook
DOUBLE COMPLEX for zlasyf_rook.
Workspace array, DIMENSION (Idw, nb).
INTEGER. The leading dimension of the array \(w . I d w \geq \max (1, n)\).

INTEGER. The number of columns of \(A\) that were actually factored \(k b\) is either \(n b-1\) or \(n b\), or \(n\) if \(n \leq n b\).

On exit, a contains details of the partial factorization.
INTEGER. Array, DIMENSION (\(n\)). Details of the interchanges and the block structure of \(D\).
If uplo = 'U', only the last \(k b\) elements of ipiv are set;
if uplo = 'L', only the first \(k b\) elements are set.
If \(\operatorname{ipiv}(k)>0\), then rows and columns \(k\) and \(\operatorname{ipiv}(k)\) were interchanged and \(D_{k, k}\) is a 1-by- 1 diagonal block.
If uplo = 'U' and ipiv(k) < 0 and ipiv(k-1) < 0, then rows and columns \(k\) and \(-\operatorname{ipiv}(k)\) were interchanged, rows and columns \(k-1\) and -\(\operatorname{ipiv}(k-1)\) were interchanged, and \(D_{k-1: k, k-1: k}\) is a 2-by-2 diagonal block.
If uplo \(=\) 'L' and ipiv \((k)<0\) and ipiv \((k+1)<0\), then rows and columns \(k\) and \(-\operatorname{ipiv}(k)\) were interchanged, rows and columns \(k+1\) and \(\operatorname{ipiv}(k+1)\) were interchanged, and \(D_{k}: k+1, k: k+1\) is a 2-by-2 diagonal block.

INTEGER.
\(=0\) : successful exit
> 0: if info \(=k, D(k, k)\) is exactly zero. The factorization has been completed, but the block diagonal matrix \(D\) is exactly singular.

\section*{?lahef \\ Computes a partial factorization of a complex \\ Hermitian indefinite matrix, using the diagonal pivoting method. \\ Syntax \\ ```
call clahef(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info) \\ call zlahef(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
```}

Include Files
- mkl.fi

\section*{Description}

The routine ?lahef computes a partial factorization of a complex Hermitian matrix \(A\), using the BunchKaufman diagonal pivoting method. The partial factorization has the form:
If uplo = 'U':


If uplo = 'U':

where the order of \(D\) is at most \(n b\).
The actual order is returned in the argument \(k b\), and is either \(n b\) or \(n b-1\), or \(n\) if \(n \leq n b\).
Note that \(U^{H}\) denotes the conjugate transpose of \(U\).
This is an auxiliary routine called by ?hetrf. It uses blocked code (calling Level 3 BLAS) to update the submatrix \(A_{11}\) (if uplo \(=\) 'U') or \(A_{22}\) (if uplo = 'L').

Input Parameters
uplo
CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored:
```

 = 'U': upper triangular
 = 'L':lower triangular
 INTEGER. The order of the matrix A. n\geq0.
 INTEGER. The maximum number of columns of the matrix A that should be
 factored. nb should be at least 2 to allow for 2-by-2 pivot blocks.
 COMPLEX for clahef
 DOUBLE COMPLEX for zlahef.
 Array, DIMENSION (lda, n).
On entry, the Hermitian matrix A.
If uplo = 'U', the leading n-by- n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced.
If uplo = 'L', the leading n-by- n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.
Integer. The leading dimension of the array a. $1 d a \geq \max (1, n)$.
COMPLEX for clahef
DOUBLE COMPLEX for zlahef.
Workspace array, DIMENSION (Idw, nb).
$\operatorname{INTEGER}$. The leading dimension of the array $w . l d w \geq \max (1, n)$.

```

\section*{Output Parameters}

INTEGER. The number of columns of \(A\) that were actually factored \(k b\) is either \(n b-1\) or \(n b\), or \(n\) if \(n \leq n b\).

On exit, \(A\) contains details of the partial factorization.
INTEGER.
Array, DIMENSION ( \(n\) ). Details of the interchanges and the block structure of \(D\).
If uplo = 'U', only the last \(k b\) elements of ipiv are set;
if uplo = 'L', only the first \(k b\) elements are set.
If \(\operatorname{ipiv}(k)>0\), then rows and columns \(k\) and \(\operatorname{ipiv}(k)\) are interchanged and \(D(k, k)\) is a 1-by-1 diagonal block.

If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows and columns \(k-1\) and \(-\operatorname{ipiv}(k)\) are interchanged and \(D(k-1: k, k-1: k)\) is a 2-by-2 diagonal block.

If uplo = 'L' and ipiv(k) =ipiv(k+1)<0, then rows and columns \(k\) +1 and \(-\operatorname{ipiv}(k)\) are interchanged and \(D(k: k+1, k: k+1)\) is a 2-by-2 diagonal block.

INTEGER.
\[
\begin{aligned}
& =0 \text { : successful exit } \\
& >0 \text { : if info }=k, D(k, k) \text { is exactly zero. The factorization has been } \\
& \text { completed, but the block diagonal matrix } D \text { is exactly singular. }
\end{aligned}
\]
```

?lahef_aa
Factorizes a panel of a complex Hermitian matrix A
using Aasen's algorithm.

```
```

call clahef_aa(uplo, jl, m, nb, a, lda, ipiv, h, ldh, work)

```
call clahef_aa(uplo, jl, m, nb, a, lda, ipiv, h, ldh, work)
call zlahef_aa(uplo, jl, m, nb, a, lda, ipiv, h, ldh, work)
```

call zlahef_aa(uplo, jl, m, nb, a, lda, ipiv, h, ldh, work)

```

\section*{Description}
?lahef_a factorizes a panel of a complex Hermitian matrix \(A\) using Aasen's algorithm. The panel consists of a set of \(n b\) rows of \(A\) when uplo is ' U ', or a set of \(n b\) columns when uplo is ' L '. In order to factorize the panel, Aasen's algorithm requires the last row, or column, of the previous panel. The first row, or column, of \(A\) is set to be the first row, or column, of an identity matrix, which is used to factorize the first panel. The resulting \(j\)-th row of \(U\), or \(j\)-th column of \(L\), is stored in the \((j-1)\)-st row, or column, of \(A\) (without the unit diagonals), while the diagonal and subdiagonal of \(A\) are overwritten by those of \(T\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{uplo} & CHARACTER*1. \\
\hline & If uplo = 'U': Upper triangular of \(A\) is stored. \\
\hline & If uplo= 'L': Lower triangular of \(A\) is stored.. \\
\hline j1 & INTEGER. The location of the first row, or column, of the panel within the submatrix of \(A\), passed to this routine, for example when called by ?hetrf_aa. For the first panel, \(j 1\) is 1, while for the remaining panels, \(j 1\) is 2 . \\
\hline m & INTEGER. The dimension of the submatrix. \(m \geq 0\). \\
\hline nb & Integer. The dimension of the panel to be factorized. \\
\hline \multirow[t]{3}{*}{a} & COMPLEX for clahef_aa \\
\hline & COMPLEX*16 for zlahef_aa \\
\hline & Array of size ( \(l \mathrm{da}, \mathrm{m}\) ) for the first panel, and size ( \(1 \mathrm{da}, \mathrm{m}+1\) ) for the remaining panels. On entry, a contains the last row, or column, of the previous panel, and the trailing submatrix of \(A\) to be factorized, except for the first panel, only the panel is passed. \\
\hline lda & INTEGER. The leading dimension of the array a. \(1 \mathrm{~d} a \geq \max (1, n)\). \\
\hline \multirow[t]{3}{*}{h} & COMPLEX for clahef_aa \\
\hline & COMPLEX*16 for zlahef_aa \\
\hline & Workspace array of size ( \(1 \mathrm{dh}, \mathrm{nb}\) ) . \\
\hline 1 dh & INTEGER. The leading dimension of the workspace \(h\). \(1 d h \geq \max (1, m)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
a
ipiv
h
work

On exit, the leading panel is factorized.
INTEGER . Array of size ( \(n\) ). Details of the row and column interchanges: the row and column \(k\) were interchanged with the row and column ipiv(k).

Workspace array.
COMPLEX for clahef_aa
COMPLEX*16 for zlahef_aa
Workspace array of size (m).

\section*{?lahef_rook}

Computes a partial factorization of a complex
Hermitian indefinite matrix, using the bounded Bunch-
Kaufman diagonal pivoting method.

\section*{Syntax}
```

call clahef_rook(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)
call zlahef_rook(uplo, n, nb, kb, a, lda, ipiv, w, ldw, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine ?lahef_rook computes a partial factorization of a complex Hermitian matrix \(A\), using the bounded Bunch-Kaufman ("rook") diagonal pivoting method. The partial factorization has the form:
If uplo = 'U':


If uplo = 'L':

where the order of \(D\) is at most \(n b\).
The actual order is returned in the argument \(k b\), and is either \(n b\) or \(n b-1\), or \(n\) if \(n \leq n b\).

Note that \(U^{H}\) denotes the conjugate transpose of \(U\).
This is an auxiliary routine called by ?hetrf_rook. It uses blocked code (calling Level 3 BLAS) to update the submatrix \(A_{11}\) (if uplo \(=\) 'U') or \(A_{22}\) (if uplo \(=\) 'L').

\section*{Input Parameters}
n
n.b
\(a\)

Ida
w
ldw

\section*{Output Parameters}
kb
a
ipiv

CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored:
= 'U': upper triangular
\(=\) 'L': lower triangular
INTEGER. The order of the matrix \(A . n \geq 0\).
INTEGER. The maximum number of columns of the matrix \(A\) that should be factored. \(n b\) should be at least 2 to allow for 2 -by- 2 pivot blocks.

COMPLEX for clahef_rook
DOUBLE COMPLEX for zlahef_rook.
Array, DIMENSION (lda, n).
On entry, the Hermitian matrix \(A\).
If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(A\) contains the upper triangular part of the matrix \(A\), and the strictly lower triangular part of \(A\) is not referenced.

If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(A\) contains the lower triangular part of the matrix \(A\), and the strictly upper triangular part of \(A\) is not referenced.

INTEGER. The leading dimension of the array a. \(1 d a \geq \max (1, n)\).
COMPLEX for clahef_rook
DOUBLE COMPLEX for zlahef_rook.
Workspace array, DIMENSION (/dw, nb).
INTEGER. The leading dimension of the array \(w . l d w \geq \max (1, n)\).

INTEGER. The number of columns of \(A\) that were actually factored \(k b\) is either \(n b-1\) or \(n b\), or \(n\) if \(n \leq n b\).

On exit, \(A\) contains details of the partial factorization.
INTEGER.
Array, DIMENSION ( \(n\) ). Details of the interchanges and the block structure of \(D\).

If uplo = 'U', only the last \(k b\) elements of ipiv are set;
if uplo = 'L', only the first \(k b\) elements are set.

If \(\operatorname{ipiv}(k)>0\), then rows and columns \(k\) and \(\operatorname{ipiv}(k)\) are interchanged and \(D(k, k)\) is a 1-by-1 diagonal block.
\[
\begin{aligned}
& \text { If uplo }=' \mathrm{U} \text { ' and } \operatorname{ipiv}(k)<0 \text { and } \operatorname{ipiv}(k-1)<0 \text {, then rows and } \\
& \text { columns } k \text { and -ipiv }(k) \text { are interchanged, rows and columns } k-1 \text { and }- \\
& \operatorname{ipiv}(k-1) \text { are interchanged, and } D_{k-1: k, k-1: k} \text { is a } 2 \text {-by- } 2 \text { diagonal block. } \\
& \text { If uplo }=\text { 'L' and } \operatorname{ipiv}(k)<0 \text { and } \operatorname{ipiv}(k+1)<0 \text {, then rows and } \\
& \text { columns } k \text { and -ipiv }(k) \text { are interchanged, rows and columns } k+1 \text { and - } \\
& \operatorname{ipiv}(k+1) \text { are interchanged, and } D_{k: k+1, k: k+1} \text { is a } 2-\text { by- } 2 \text { diagonal block. } \\
& \text { INTEGER. } \\
& =0 \text { : successful exit } \\
& >0 \text { : if info }=k, D(k, k) \text { is exactly zero. The factorization has been } \\
& \text { completed, but the block diagonal matrix } D \text { is exactly singular. }
\end{aligned}
\]

\section*{?latbs}

Solves a triangular banded system of equations.

\section*{Syntax}
```

call slatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)
call dlatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)
call clatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)
call zlatbs(uplo, trans, diag, normin, n, kd, ab, ldab, x, scale, cnorm, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routine solves one of the triangular systems
\(A{ }^{*} X=s^{\star} b\), or \(A^{T}{ }^{*} X=s^{\star} b\), or \(A^{H *_{X}}=s^{\star} b\) (for complex flavors)
with scaling to prevent overflow, where \(A\) is an upper or lower triangular band matrix. Here \(A^{T}\) denotes the transpose of \(A, A^{H}\) denotes the conjugate transpose of \(A, x\) and \(b\) are \(n\)-element vectors, and \(s\) is a scaling factor, usually less than or equal to 1 , chosen so that the components of \(x\) will be less than the overflow threshold. If the unscaled problem will not cause overflow, the Level 2 BLAS routine ?tbsv is called. If the matrix \(A\) is singular \(\left(A(j, j)=0\right.\) for some \(j\) ), then \(s\) is set to 0 and a non-trivial solution to \(A \star_{X}=0\) is returned.

\section*{Input Parameters}
```

uplo
trans
CHARACTER*1.
= 'U': upper triangular
= 'L': lower triangular
CHARACTER*1.

```

Specifies whether the matrix \(A\) is upper or lower triangular.

Specifies the operation applied to \(A\).
```

 = 'N': solve A*X = s*b (no transpose)
 = 'T': solve A'T*}x=\mp@subsup{s}{}{*}b\mathrm{ (transpose)
 = 'C': solve AH*x = s*b (conjugate transpose)
 CHARACTER*1.
 Specifies whether the matrix A is unit triangular
$=' N '$: non-unit triangular
= 'U': unit triangular

```

\section*{CHARACTER*1.}
```

Specifies whether cnorm is set.
= 'Y': cnorm contains the column norms on entry;
$=$ 'N': cnorm is not set on entry. On exit, the norms is computed and stored in cnorm.
INTEGER. The order of the matrix $A . n \geq 0$.
INTEGER. The number of subdiagonals or superdiagonals in the triangular matrix $A . k b \geq 0$.
REAL for slatbs
DOUBLE PRECISION for dlatbs
COMPLEX for clatbs
DOUBLE COMPLEX for zlatbs.
Array, DIMENSION (Idab, n).
The upper or lower triangular band matrix A, stored in the first $k b+1$ rows of the array. The j-th column of A is stored in the j-th column of the array $a b$ as follows:

```
```

if uplO = 'U', ab (kd+1+i-j,j) = A(i,j) formax(1, j-kd) \leq i \leq j;

```
if uplO = 'U', ab (kd+1+i-j,j) = A(i,j) formax(1, j-kd) \leq i \leq j;
if uplo = 'L', ab(1+i-j,j) = A(i,j) for j \leq i \leq min(n, j+kd).
if uplo = 'L', ab(1+i-j,j) = A(i,j) for j \leq i \leq min(n, j+kd).
INTEGER. The leading dimension of the array \(a b\). \(1 d a b \geq k b+1\).
REAL for slatbs
DOUBLE PRECISION for dlatbs
COMPLEX for clatbs
DOUBLE COMPLEX for zlat.bs.
Array, DIMENSION ( \(n\) ).
On entry, the right hand side \(b\) of the triangular system.
REAL for slatbs/clatbs
DOUBLE PRECISION for dlatbs/zlatbs.
Array, DIMENSION ( \(n\) ).
```

If NORMIN = 'Y', cnorm is an input argument and cnorm(j) contains the norm of the off-diagonal part of the j-th column of A.

If trans $=$ ' N ', cnorm (j) must be greater than or equal to the infinitynorm, and if trans $=$ ' T ' or ' C ', $\operatorname{cnorm}(j)$ must be greater than or equal to the 1-norm.

Output Parameters

scale
cnorm
info
REAL for slatbs/clatbs
DOUBLE PRECISION for dlatbs/zlatbs.
The scaling factor s for the triangular system as described above. If scale $=0$, the matrix A is singular or badly scaled, and the vector x is an exact or approximate solution to $A x=0$.

If normin $=$ ' N ', cnorm is an output argument and cnorm(j) returns the 1 -norm of the off-diagonal part of the j-th column of A.

INTEGER.
$=0$: successful exit
<0 : if info $=-k$, the k-th argument had an illegal value

?latm1

Computes the entries of a matrix as specified.

Syntax

```
call slatml( mode, cond, irsign, idist, iseed, d, n, info )
call dlatm1( mode, cond, irsign, idist, iseed, d, n, info )
call clatm1( mode, cond, irsign, idist, iseed, d, n, info )
call zlatm1( mode, cond, irsign, idist, iseed, d, n, info )
```

Include Files

- mkl.fi

Description

The ? latm1 routine computes the entries of $D(1 \ldots n)$ as specified by mode, cond and irsign. idist and iseed determine the generation of random numbers.
?latm1 is called by slatmr (for slatm1 and dlatm1), and by clatmr(for clatm1 and zlatm1) to generate random test matrices for LAPACK programs.

Input Parameters

mode
INTEGER. On entry describes how d is to be computed:
mode $=0$ means do not change d.
mode $=1$ sets $d(1)=1$ and $d(2: n)=1.0 /$ cond
mode $=2$ sets $d(1: n-1)=1$ and $d(n)=1.0 /$ cond
mode $=3$ sets $d(i)=$ cond** $(-(i-1) /(n-1))$
mode $=4$ sets $d(i)=1-(i-1) /(n-1) *(1-1 /$ cond $)$
mode $=5$ sets d to random numbers in the range ($1 /$ cond , 1) such that their logarithms are uniformly distributed.
mode $=6$ sets d to random numbers from same distribution as the rest of the matrix.
mode < 0 has the same meaning as abs (mode), except that the order of the elements of d is reversed.

Thus if mode is positive, d has entries ranging from 1 to $1 /$ cond, if negative, from 1 / cond to 1 .

REAL for slatm1,
DOUBLE PRECISION for dlatm1,
REAL for clatm1,
DOUBLE PRECISION for zlatm1,
On entry, used as described under mode above. If used, it must be ≥ 1.
INTEGER.
On entry, if mode is not $-6,0$, or 6 , determines sign of entries of d.
If irsign $=0$, entries of d are unchanged.
If irsign $=1$, each entry of d is multiplied by a random complex number uniformly distributed with absolute value 1.

INTEGER. Specifies the distribution of the random numbers.
For slatm1 and dlatm1:
$=1:$ uniform $(0,1)$
$=2$: uniform $(-1,1)$
$=3:$ normal $(0,1)$
For clatm1 and zlatm1:
$=1$: real and imaginary parts each uniform $(0,1)$
$=2$: real and imaginary parts each uniform ($-1,1$)
$=3:$ real and imaginary parts each normal $(0,1)$
$=4$: complex number uniform in $\operatorname{disk}(0,1)$
INTEGER. Array, size (4).
Specifies the seed of the random number generator. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of iseed(4) are changed on exit, and can be used in the next call to ? latm1 to continue the same random number sequence.

```
REAL for slatm1,
```

DOUBLE PRECISION for dlatm1,

```
COMPLEX for clatm1,
DOUBLE COMPLEX for zlatm1,
Array, size n.
INTEGER. Number of entries of \(d\).
```


Output Parameters

```
iseed On exit, the seed is updated.
d
info
On exit, the seed is updated.
On exit, \(d\) is updated, unless mode \(=0\).
INTEGER.
If info \(=0\), the execution is successful.
If info \(=-1\), mode is not in range -6 to 6 .
If info \(=-2\), mode is neither \(-6,0\) nor 6 , and irsign is neither 0 nor 1 .
If info \(=-3\), mode is neither \(-6,0\) nor 6 and cond is less than 1 .
If info \(=-4\), mode equals 6 or -6 and idist is not in range 1 to 4 .
If info \(=-7, n\) is negative .
```


?latm2

Returns an entry of a random matrix.

Syntax

```
res = slatm2( m, n, i, j, kl, ku, idist, iseed, d, igrade, dl, dr, ipvtng, iwork,
sparse )
res = dlatm2( m, n, i, j, kl, ku, idist, iseed, d, igrade, dl, dr, ipvtng, iwork,
sparse )
res = clatm2( m, n, i, j, kl, ku, idist, iseed, d, igrade, dl, dr, ipvtng, iwork,
sparse )
res = zlatm2( m, n, i, j, kl, ku, idist, iseed, d, igrade, dl, dr, ipvtng, iwork,
sparse )
```


Include Files

- mkl.fi

Description

The ? latm2 routine returns entry (i, j) of a random matrix of dimension (m, n). It is called by the ?latmr routine in order to build random test matrices. No error checking on parameters is done, because this routine is called in a tight loop by ?latmr which has already checked the parameters.

Use of ?latm2 differs from ?latm3 in the order in which the random number generator is called to fill in random matrix entries. With ? latm 2 , the generator is called to fill in the pivoted matrix columnwise.
With ? latm2, the generator is called to fill in the matrix columnwise, after which it is pivoted. Thus, ?latm3
can be used to construct random matrices which differ only in their order of rows and/or columns. ?latm2 is used to construct band matrices while avoiding calling the random number generator for entries outside the band (and therefore generating random numbers).
The matrix whose (i, j) entry is returned is constructed as follows (this routine only computes one entry):

- If i is outside $(1 \ldots m)$ or j is outside ($1 \ldots \mathrm{n}$), returns zero (this is convenient for generating matrices in band format).
- Generate a matrix A with random entries of distribution idist.
- Set the diagonal to D.
- Grade the matrix, if desired, from the left (by $d l$) and/or from the right (by $d r$ or $d l$) as specified by igrade.
- Permute, if desired, the rows and/or columns as specified by ipvtng and iwork.
- Band the matrix to have lower bandwidth $k l$ and upper bandwidth $k u$.
- Set random entries to zero as specified by sparse.

Input Parameters

```
m INTEGER. Number of rows of the matrix.
n INTEGER. Number of columns of the matrix.
i INTEGER. Row of the entry to be returned.
j
kl
ku
idist
iseed
d
INTEGER. Number of rows of the matrix.
INTEGER. Number of columns of the matrix.
INTEGER. Row of the entry to be returned.
INTEGER. Column of the entry to be returned.
INTEGER. Lower bandwidth.
INTEGER. Upper bandwidth.
INTEGER. On entry, idist specifies the type of distribution to be used to generate a random matrix .
for slatm2 and dlatm2:
\(=1\) : uniform \((0,1)\)
\(=2:\) uniform \((-1,1)\)
\(=3:\) normal \((0,1)\)
for clatm2 and zlatm2:
\(=1\) : real and imaginary parts each uniform \((0,1)\)
\(=2\) : real and imaginary parts each uniform ( \(-1,1\) )
\(=3\) : real and imaginary parts each normal \((0,1)\)
\(=4\) : complex number uniform in disk \((0,1)\)
INTEGER. Array, size 4.
Seed for the random number generator.
REAL for slatm2,
DOUBLE PRECISION for dlatm2,
COMPLEX for clatm2,
DOUBLE COMPLEX for zlatm2,
```

Array, size (min (i, j)). Diagonal entries of matrix.

```
igrade
```

dl
$d r$
sparse

INTEGER. Specifies grading of matrix as follows:
$=0$: no grading
= 1: matrix premultiplied by diag $d l$)
$=2$: matrix postmultiplied by diag ($d r$)
= 3: matrix premultiplied by diag($d l$) and postmultiplied by diag ($d r$)
= 4: matrix premultiplied by diag $d l$) and postmultiplied by inv(diag(dl))
For slatm2 and slatm2:
= 5: matrix premultiplied by diag ($d l$) and postmultiplied by diag (dl)
For clatm2 and zlatm2:
= 5: matrix premultiplied by diag ($d l$) and postmultiplied by diag(conjg (dl))
= 6: matrix premultiplied by diag ($d l$) and postmultiplied by diag ($d l$)
REAL for slatm2,
DOUBLE PRECISION for dlatm2,
COMPLEX for clatm2,
DOUBLE COMPLEX for zlatm2,
Array, size (i or j), as appropriate.
Left scale factors for grading matrix.
REAL for slatm2,
DOUBLE PRECISION for dlatm2,
COMPLEX for clatm2,
DOUBLE COMPLEX for zlatm2,
Array, size (i or j), as appropriate.
Right scale factors for grading matrix.
INTEGER. On entry specifies pivoting permutations as follows:
$=0$: none
=1: row pivoting
$=2$: column pivoting
$=3$: full pivoting, i.e., on both sides

INTEGER.

Array, size (i or j), as appropriate. This array specifies the permutation used. The row (or column) in position k was originally in position iwork (k). This differs from iwork for ?latm3.

REAL for slatm2,
DOUBLE PRECISION for dlatm2,
REAL for clatm2,

DOUBLE PRECISION for zlatm2,
Specifies the sparsity of the matrix. If sparse matrix is to be generated, sparse should lie between 0 and 1. A uniform (0,1) random number x is generated and compared to sparse. If x is larger the matrix entry is unchanged and if x is smaller the entry is set to zero. Thus on the average a fraction sparse of the entries will be set to zero.

Output Parameters

```
iseed INTEGER.
    On exit, the seed is updated.
    REAL for slatm2,
    DOUBLE PRECISION for dlatm2,
    COMPLEX for clatm2,
    DOUBLE COMPLEX for zlatm2,
    Entry of a random matrix.
```


?latm3

Returns set entry of a random matrix.

Syntax

```
res = slatm3( m, n, i, j, isub, jsub, kl, ku, idist, iseed, d, igrade, dl, dr, ipvtng,
iwork, sparse )
res = dlatm3( m, n, i, j, isub, jsub, kl, ku, idist, iseed, d, igrade, dl, dr, ipvtng,
iwork, sparse )
res = clatm3( m, n, i, j, isub, jsub, kl, ku, idist, iseed, d, igrade, dl, dr, ipvtng,
iwork, sparse )
res = zlatm3( m, n, i, j, isub, jsub, kl, ku, idist, iseed, d, igrade, dl, dr, ipvtng,
iwork, sparse )
```


Include Files

- mkl.fi

Description

The ? latm3 routine returns the (isub, jsub) entry of a random matrix of dimension (m, n) described by the other parameters. (isub, jsub) is the final position of the (i, j) entry after pivoting according to ipvtng and iwork. ? latm3 is called by the ?latmr routine in order to build random test matrices. No error checking on parameters is done, because this routine is called in a tight loop by ?latmr which has already checked the parameters.

Use of ?latm3 differs from ?latm2 in the order in which the random number generator is called to fill in random matrix entries. With ? latm2, the generator is called to fill in the pivoted matrix columnwise. With ? latm3, the generator is called to fill in the matrix columnwise, after which it is pivoted. Thus, ? latm3 can be used to construct random matrices which differ only in their order of rows and/or columns. ?latm2 is used to construct band matrices while avoiding calling the random number generator for entries outside the band (and therefore generating random numbers in different orders for different pivot orders).

The matrix whose (isub, jsub) entry is returned is constructed as follows (this routine only computes one entry):

- If isub is outside ($1 . . m$) or $j s u b$ is outside ($1 . . n$), returns zero (this is convenient for generating matrices in band format).
- Generate a matrix A with random entries of distribution idist.
- Set the diagonal to D.
- Grade the matrix, if desired, from the left (by $d l$) and/or from the right (by $d r$ or $d l$) as specified by igrade.
- Permute, if desired, the rows and/or columns as specified by ipvtng and iwork.
- Band the matrix to have lower bandwidth $k l$ and upper bandwidth $k u$.
- Set random entries to zero as specified by sparse.

Input Parameters

m	INTEGER. Number of rows of matrix.
n	INTEGER. Number of columns of matrix.
i	INTEGER. Row of unpivoted entry to be returned.
j	INTEGER. Column of unpivoted entry to be returned.
isub	INTEGER. Row of pivoted entry to be returned.
jsub	INTEGER. Column of pivoted entry to be returned.
kl	INTEGER. Lower bandwidth.
ku	INTEGER. Upper bandwidth.
idist	INTEGER. On entry, idist specifies the type of distribution to be used to generate a random matrix.
	for slatm2 and dlatm2:
	$=1:$ uniform $(0,1)$
	$=2:$ uniform $(-1,1)$
	= 3: normal (0,1)
	for clatm2 and zlatm2:
	$=1$: real and imaginary parts each uniform $(0,1)$
	$=2$: real and imaginary parts each uniform ($-1,1$)
	= 3: real and imaginary parts each normal (0,1)
	$=4$: complex number uniform in $\operatorname{disk}(0,1)$
iseed	INTEGER. Array, size 4.
	Seed for random number generator.
d	REAL for slatm3,
	DOUBLE PRECISION for dlatm3,
	COMPLEX for clatm3,
	DOUBLE COMPLEX for zlatm3,

Array, size (min (i, j)). Diagonal entries of matrix.
igrade
$d 1$
$d r$

INTEGER. Specifies grading of matrix as follows:
$=0$: no grading
= 1: matrix premultiplied by diag($d l$)
$=2$: matrix postmultiplied by diag ($d r$)
= 3: matrix premultiplied by diag($d l$) and postmultiplied by diag ($d r$)
= 4: matrix premultiplied by diag($d l$) and postmultiplied by inv(diag(dl))

For slatm2 and slatm2:
= 5: matrix premultiplied by diag $d l$) and postmultiplied by diag ($d l$)
For clatm2 and zlatm2:
= 5: matrix premultiplied by diag ($d l$) and postmultiplied by diag(conjg (dl))
= 6: matrix premultiplied by diag $d I)$ and postmultiplied by diag $(d l)$
REAL for slatm3,
DOUBLE PRECISION for dlatm3,
COMPLEX for clatm3,
DOUBLE COMPLEX for zlatm3,
Array, size (i or j, as appropriate).
Left scale factors for grading matrix.
REAL for slatm3,
DOUBLE PRECISION for dlatm3,
COMPLEX for clatm3,
DOUBLE COMPLEX for zlatm3,
Array, size (i or j, as appropriate).
Right scale factors for grading matrix.
INTEGER. On entry specifies pivoting permutations as follows:
If ipvtng = 0: none.
If ipvtng $=1$: row pivoting.
If ipvtng $=2$: column pivoting.
If ipvtng $=3$: full pivoting, i.e., on both sides.
REAL for slatm3,
DOUBLE PRECISION for dlatm3,
REAL for clatm3,
DOUBLE PRECISION for zlatm3,

On entry, specifies the sparsity of the matrix if sparse matrix is to be generated. sparse should lie between 0 and 1. A uniform(0,1) random number x is generated and compared to sparse; if x is larger the matrix entry is unchanged and if x is smaller the entry is set to zero. Thus on the average a fraction sparse of the entries will be set to zero.

INTEGER.
Array, size (i or j, as appropriate). This array specifies the permutation used. The row (or column) originally in position k is in position iwork (k) after pivoting. This differs from iwork for ? latm2.

Output Parameters

```
isub On exit, row of pivoted entry is updated.
jsub On exit, column of pivoted entry is updated.
iseed On exit, the seed is updated.
res REAL for slatm3,
    DOUBLE PRECISION for dlatm3,
    COMPLEX for clatm3,
    DOUBLE COMPLEX for zlatm3,
    Entry of a random matrix.
```


?latm5

Generates matrices involved in the Generalized Sylvester equation.

Syntax

```
call slatm5( prtype, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, r, ldr, l,
ldl, alpha, qblcka, qblckb )
call dlatm5( prtype, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, r, ldr, l,
ldl, alpha, qblcka, qblckb )
call clatm5( prtype, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, r, ldr, l,
ldl, alpha, qblcka, qblckb )
call zlatm5( prtype, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, I, ldr, I,
ldl, alpha, qblcka, qblckb )
```

Include Files

- mkl.fi

Description

The ?latm5 routine generates matrices involved in the Generalized Sylvester equation:

```
A * R - L * B = C
D * R - L * E = F
```

They also satisfy the diagonalization condition:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
I & -L \\
& I
\end{array}\right]\left[\begin{array}{cc}
A & -C \\
& B
\end{array}\right]\left[\begin{array}{ll}
I & R \\
& I
\end{array}\right]=\left[\begin{array}{ll}
A & \\
& B
\end{array}\right]} \\
& {\left[\begin{array}{cc}
I & -L \\
& I
\end{array}\right]\left[\begin{array}{cc}
D & -F \\
& E
\end{array}\right]\left[\begin{array}{ll}
I & R \\
& I
\end{array}\right]=\left[\begin{array}{ll}
D & \\
& E
\end{array}\right]}
\end{aligned}
$$

Input Parameters

prtype
INTEGER. Specifies the type of matrices to generate.

- If prtype $=1, A$ and B are Jordan blocks, D and E are identity matrices.

A:
If ($i==j$) then $A_{i, j}=1.0$.
If $(j==i+1)$ then $A_{i, j}=-1.0$.
Otherwise $A_{i, j}=0.0, i, j=1 \ldots m$
B:
If ($i==j$) then $B_{i, j}=1.0$ - alpha.
If $(j=i+1)$ then $B_{i, j}=1.0$.
Otherwise $B_{i, j}=0.0$, $i, j=1 \ldots n$.
D :
If $(i==j)$ then $D_{i, j}=1.0$.
Otherwise $D_{i, j}=0.0, i, j=1 \ldots m$.
E:
If ($i==j$) then $E_{i, j}=1.0$
Otherwise $E_{i, j}=0.0$, $i, j=1 \ldots n$.
$L=R$ are chosen from [-10...10], which specifies the right hand sides (C, F).

- If prtype $=2$ or 3: Triangular and/or quasi- triangular.

A:
If $(i \leq j)$ then $A_{i, j}=[-1 \ldots 1]$.
Otherwise $A_{i, j}=0.0, i, j=1 \ldots \mathrm{M}$.
If (prtype $=3$) then $A_{k+1, k+1}=A_{k, k}$;
$A_{k+1, k}=[-1 \ldots 1] ;$
$\operatorname{sign}\left(A_{k}, k+1\right)=-\left(\operatorname{sign}\left(A_{k}+1, k\right)\right.$.
$k=1, m-1, q b l c k a$
B :
If $(i \leq j)$ then $B_{i, j}=[-1 \ldots 1]$.
Otherwise $B_{i, j}=0.0, i, j=1 \ldots n$.
If (prtype $=3$) then $B_{k+1, k+1}=B_{k, k}$

```
\(B_{k+1, k}=[-1 \ldots 1]\)
\(\operatorname{sign}\left(B_{k, k+1}\right)=-\left(\operatorname{sign}\left(B_{k}+1, k\right)\right.\)
\(k=1, n-1, q b 1 c k b\).
\(D\) :
If \((i \leq j)\) then \(D_{i, j}=[-1 \ldots 1]\).
```

Otherwise $D_{i, j}=0.0, i, j=1 \ldots m$.
E :
If (i<= j) then $E_{i, j}=[-1 \ldots 1]$.

Otherwise $E_{i, j}=0.0$, i, $j=1 \ldots N$.
L, R are chosen from [-10...10], which specifies the right hand sides (C, $F)$.

- If prtype $=4$ Full

$$
\begin{aligned}
A_{i, j} & =[-10 \ldots 10] \\
D_{i, j} & =[-1 \ldots 1] i, j=1 \ldots m \\
B_{i, j} & =[-10 \ldots 10] \\
E_{i, j} & =[-1 \ldots 1] i, j=1 \ldots n \\
R_{i, j} & =[-10 \ldots 10] \\
L_{i, j} & =[-1 \ldots 1] i=1 \ldots m, j=1 \ldots n
\end{aligned}
$$

L and R specifies the right hand sides (C, F).

- If prtype $=5$ special case common and/or close eigs.
m
n
alpha

INTEGER. Specifies the order of A and D and the number of rows in C, F, R and L.

INTEGER. Specifies the order of B and E and the number of columns in C, F, R and L.

INTEGER. The leading dimension of a.
INTEGER. The leading dimension of b.
INTEGER. The leading dimension of c.
INTEGER. The leading dimension of d.
INTEGER. The leading dimension of e.
INTEGER. The leading dimension of f.
INTEGER. The leading dimension of r.
INTEGER. The leading dimension of 1 .
REAL for slatm5,
DOUBLE PRECISION for dlatm5,
REAL for clatm5,
DOUBLE PRECISION for zlatm5,
qblcka
qbIckb

Output Parameters

a
b

C
d
e

Parameter used in generating prtype $=1$ and 5 matrices.
INTEGER. When prtype $=3$, specifies the distance between 2-by-2 blocks on the diagonal in A. Otherwise, qblcka is not referenced. qblcka >1.

INTEGER. When prtype $=3$, specifies the distance between 2-by-2 blocks on the diagonal in B. Otherwise, $q b l c k b$ is not referenced. $q b l c k b>1$.

REAL for slatm5,
DOUBLE PRECISION for dlatm5,
COMPLEX for clatm5,
DOUBLE COMPLEX for zlatm5,
Array, size ($I d a, m$). On exit a contains them-by-m array A initialized according to prtype.

REAL for slatm5,
DOUBLE PRECISION for dlatm5,
COMPLEX for clatm5,
DOUBLE COMPLEX for zlatm5,
Array, size ($1 \mathrm{db}, n$). On exit b contains the n-by- n array B initialized according to prtype.

REAL for slatm5,
DOUBLE PRECISION for dlatm5,
COMPLEX for clatm5,
DOUBLE COMPLEX for zlatm5,
Array, size ($1 d c, n$). On exit c contains the m-by- n array C initialized according to prtype.

REAL for slatm5,
DOUBLE PRECISION for dlatm5,
COMPLEX for clatm5,
DOUBLE COMPLEX for zlatm5,
Array, size ($I d d, m$). On exit d contains the m-by- m array D initialized according to prtype.

REAL for slatm5,
DOUBLE PRECISION for dlatm5,
COMPLEX for clatm5,
DOUBLE COMPLEX for zlatm5,
Array, size (lde, n). On exit e contains the n-by-n array E initialized according to prtype.
f
r

1

REAL for slatm5,
DOUBLE PRECISION for dlatm5,
COMPLEX for clatm5,
DOUBLE COMPLEX for zlatm5,
Array, size $(I d f, n)$. On exit f contains the m-by- n array F initialized according to prtype.

REAL for slatm5,
DOUBLE PRECISION for dlatm5,
COMPLEX for clatm5,
DOUBLE COMPLEX for zlatm5,
Array, size $(I d r, n)$. On exit R contains the m-by- n array R initialized according to prtype.

REAL for slatm5,
DOUBLE PRECISION for dlatm5,
COMPLEX for clatm5,
DOUBLE COMPLEX for zlatm5,
Array, size ($I d l, n$). On exit 1 contains the m-by-narray L initialized according to prtype.

?latm6

Generates test matrices for the generalized eigenvalue problem, their corresponding right and left eigenvector matrices, and also reciprocal condition numbers for all eigenvalues and the reciprocal condition numbers of eigenvectors corresponding to the 1th and 5th eigenvalues.

Syntax

```
call slatm6( type, n, a, lda, b, x, Idx, y, ldy, alpha, beta, wx, wy, s, dif )
call dlatm6( type, n, a, lda, b, x, Idx, y, ldy, alpha, beta, wx, wy, s, dif )
call clatm6( type, n, a, lda, b, x, ldx, y, ldy, alpha, beta, wx, wy, s, dif )
call zlatm6( type, n, a, lda, b, x, ldx, y, ldy, alpha, beta, wx, wy, s, dif )
```


Include Files

- mkl.fi

Description

The ?latm6 routine generates test matrices for the generalized eigenvalue problem, their corresponding right and left eigenvector matrices, and also reciprocal condition numbers for all eigenvalues and the reciprocal condition numbers of eigenvectors corresponding to the 1th and 5th eigenvalues.
There two kinds of test matrix pairs:

$$
(A, B)=\operatorname{inverse}(Y H) *(D a, D b) * \text { inverse }(X)
$$

Type 1:

$$
D a=\left[\begin{array}{ccccc}
1+a & 0 & 0 & 0 & 0 \\
0 & 2+a & 0 & 0 & 0 \\
0 & 0 & 3+a & 0 & 0 \\
0 & 0 & 0 & 4+a & 0 \\
0 & 0 & 0 & 0 & 5+2
\end{array}\right] \quad D b=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Type 2:

$$
D a=\left[\begin{array}{ccccc}
1+i & 0 & 0 & 0 & 0 \\
0 & 1-i & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & (1+a)+(1+b) i & 0 \\
0 & 0 & 0 & 0 & (1+a)-(1+b) i
\end{array}\right] \quad D b=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

In both cases the same inverse $(Y H)$ and inverse (X) are used to compute (A, B), giving the exact eigenvectors to (A, B) as $(Y H, X)$:

$$
Y H=\left[\begin{array}{ccccc}
1 & 0 & -y & y & -y \\
0 & 1 & -y & y & -y \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \mathrm{X}=\left[\begin{array}{ccccc}
1 & 0 & -x & -x & x \\
0 & 1 & x & -x & -x \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

,
where a, b, x and y will have all values independently of each other.
Input Parameters
type
n
Ida
Idx
Idy
alpha, beta

WX

INTEGER. Specifies the problem type.
INTEGER. Size of the matrices A and B.
INTEGER. The leading dimension of a and of b.
INTEGER. The leading dimension of x.
INTEGER. The leading dimension of y.
REAL for slatm6,
DOUBLE PRECISION for dlatm6,
COMPLEX for clatm6,
DOUBLE COMPLEX for zlatm6,
Weighting constants for matrix A.
REAL for slatm6,

```
DOUBLE PRECISION for dlatm6,
COMPLEX for clatm6,
DOUBLE COMPLEX for zlatm6,
Constant for right eigenvector matrix.
REAL for slatm6,
DOUBLE PRECISION for dlatm6,
COMPLEX for clatm6,
DOUBLE COMPLEX for zlatm6,
Constant for left eigenvector matrix.
```


Output Parameters

a
b

X

Y

S

REAL for slatm6,
DOUBLE PRECISION for dlatm6, COMPLEX for clatm6,

DOUBLE COMPLEX for zlatm6,
Array, size (Ida, n). On exit, a contains the n-by- n matrix initialized according to type.

REAL for slatm26,
DOUBLE PRECISION for dlatm6,
COMPLEX for clatm6,
DOUBLE COMPLEX for zlatm6,
Array, size (lda, n). On exit, b contains the n-by- n matrix initialized according to type.

REAL for slatm6,
DOUBLE PRECISION for dlatm6,
COMPLEX for clatm6,
DOUBLE COMPLEX for zlatm6,
Array, size ($1 d x, n$). On exit, x contains the n-by- n matrix of right eigenvectors.

REAL for slatm6,
DOUBLE PRECISION for dlatm6,
COMPLEX for clatm6,
DOUBLE COMPLEX for zlatm6,
Array, size (ldy, n). On exit, y is the n-by- n matrix of left eigenvectors.
REAL for slatm6,
DOUBLE PRECISION for dlatm6,

```
REAL for clatm6,
DOUBLE PRECISION for zlatm6,
```

Array, size (n). $s(i)$ is the reciprocal condition number for eigenvalue i.
REAL for slatm6,
DOUBLE PRECISION for dlatm6,
REAL for clatm6,
DOUBLE PRECISION for zlatm6,

Array, $\operatorname{size}(n)$. dif(i) is the reciprocal condition number for eigenvector i.

?latme
 Generates random non-symmetric square matrices with specified eigenvalues.

Syntax

```
call slatme( n, dist, iseed, d, mode, cond, dmax, ei, rsign, upper, sim, ds, modes,
conds, kl, ku, anorm, a, lda, work, info )
call dlatme( n, dist, iseed, d, mode, cond, dmax, ei, rsign, upper, sim, ds, modes,
conds, kl, ku, anorm, a, lda, work, info )
call clatme( n, dist, iseed, d, mode, cond, dmax, ei, rsign, upper, sim, ds, modes,
conds, kl, ku, anorm, a, lda, work, info )
call zlatme( n, dist, iseed, d, mode, cond, dmax, ei, rsign, upper, sim, ds, modes,
conds, kl, ku, anorm, a, lda, work, info )
```


Include Files

- mkl.fi

Description

The ?latme routine generates random non-symmetric square matrices with specified eigenvalues. ?latme operates by applying the following sequence of operations:

1. Set the diagonal to d, where d may be input or computed according to mode, cond, dmax, and rsign as described below.
2. If upper = 'T', the upper triangle of a is set to random values out of distribution dist.
3. If sim='T', a is multiplied on the left by a random matrix X, whose singular values are specified by $d s$, modes, and conds, and on the right by X inverse.
4. If $k l<n-1$, the lower bandwidth is reduced to $k l$ using Householder transformations. If $k u<n-1$, the upper bandwidth is reduced to ku.
5. If anorm is not negative, the matrix is scaled to have maximum-element-norm anorm.

NOTE

Since the matrix cannot be reduced beyond Hessenberg form, no packing options are available.

Input Parameters

n
d

INTEGER. The number of columns (or rows) of A.
CHARACTER*1. On entry, dist specifies the type of distribution to be used to generate the random eigen-/singular values, and on the upper triangle (see upper).

If dist = 'U': uniform(0, 1)
If dist $=$ 'S': uniform($-1,1$)
If dist $=$ 'N': normal(0, 1)
If dist $=$ ' D ': uniform on the complex disc $|z|<1$.
INTEGER. Array, size 4.
On entry iseed specifies the seed of the random number generator. The elements should lie between 0 and 4095 inclusive, and iseed(4) should be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers.

```
REAL for slatme,
DOUBLE PRECISION for dlatme,
COMPLEX for clatme,
DOUBLE COMPLEX for zlatme,
```

Array, size (n). This array is used to specify the eigenvalues of A.
If mode $=0$, then d is assumed to contain the eigenvalues. Otherwise they are computed according to mode, cond, dmax, and rsign and placed in d.

INTEGER. On entry mode describes how the eigenvalues are to be specified:
mode $=0$ means use d (with ei for slatme and dlatme) as input.
mode $=1$ sets $d(1)=1$ and $d[1: n-1]=1.0 /$ cond.
mode $=2$ sets $d(1: n-1)=1$ and $d(n)=1.0 /$ cond.
mode $=3$ sets $d(i)=c_{\text {and }}{ }^{*}(-(i-1) /(n-1))$.
mode $=4$ sets $d(i)=1-(i-1) /(n-1) *(1-1 /$ cond $)$.
mode $=5$ sets d to random numbers in the range ($1 /$ cond, 1) such that their logarithms are uniformly distributed.
mode $=6$ sets d to random numbers from same distribution as the rest of the matrix.
mode <0 has the same meaning as abs (mode), except that the order of the elements of d is reversed.

Thus if mode is between 1 and $4, d$ has entries ranging from 1 to 1 /cond, if between -1 and $-4, d$ has entries ranging from $1 /$ cond to 1 .

REAL for slatme,
DOUBLE PRECISION for dlatme,
REAL for clatme,

DOUBLE PRECISION for zlatme,
On entry, this is used as described under mode above. If used, it must be \geq 1.

REAL for slatme,
DOUBLE PRECISION for dlatme,
COMPLEX for clatme,
DOUBLE COMPLEX for zlatme,
If mode is not $-6,0$ or 6 , the contents of d as computed according to mode and cond are scaled by dmax $/ \max (\operatorname{abs}(d(i)))$. Note that dmax needs not be positive or real: if dmax is negative or complex (or zero), d will be scaled by a negative or complex number (or zero). If rsign='F' then the largest (absolute) eigenvalue will be equal to dmax.

CHARACTER*1. Used by slatme and dlatme only.
Array, size (n).
If mode $=0$, and $e i(1)$ is not ' ' (space character), this array specifies which elements of d (on input) are real eigenvalues and which are the real and imaginary parts of a complex conjugate pair of eigenvalues. The elements of ei may then only have the values 'R' and 'I'.
If ei $(j)=' R$ ' and ei $(j+1)=$ 'I', then the j-th eigenvalue is cmplx $(d(j), d(j+1))$, and the $(j+1)$-th is the complex conjugate thereof.
If $e i(j)=e i(j+1)=\prime^{\prime}$ ', then the j-th eigenvalue is $d(j)$ (i.e., real). ei(1) may not be 'I', nor may two adjacent elements of ei both have the value 'I'.

If mode is not 0 , then $e i$ is ignored. If mode is 0 and $e i(1)='$ ', then the eigenvalues will all be real.
CHARACTER*1. If mode is not 0,6 , or -6 , and rsign $=$ ' T ', then the elements of d, as computed according to mode and cond, are multiplied by a random sign (+1 or -1) for slatme and dlatme or by a complex number from the unit circle $|z|=1$ for clatme and zlatme.

If rsign = ' F ', the elements of d are not multiplied. rsign may only have the values 'T' or 'F'.

CHARACTER*1. If upper $=$ ' T ', then the elements of a above the diagonal will be set to random numbers out of dist.

If upper = 'F', they will not. upper may only have the values 'T' or 'F'.
CHARACTER*1. If sim = 'T', then a will be operated on by a "similarity transform", i.e., multiplied on the left by a matrix X and on the right by X inverse. $X=U S V$, where U and V are random unitary matrices and S is a (diagonal) matrix of singular values specified by $d s$, modes, and conds.
If sim = ' F ', then a will not be transformed.
REAL for slatme,

DOUBLE PRECISION for dlatme,
REAL for clatme,
DOUBLE PRECISION for zlatme,
This array is used to specify the singular values of X, in the same way that d specifies the eigenvalues of a. If mode $=0$, the $d s$ contains the singular values, which may not be zero.

INTEGER.
Similar to mode, but for specifying the diagonal of S. modes $=-6$ and +6 are not allowed (since they would result in randomly ill-conditioned eigenvalues.)

REAL for slatme,
DOUBLE PRECISION for dlatme,
REAL for clatme,
DOUBLE PRECISION for zlatme,
Similar to cond, but for specifying the diagonal of S.
INTEGER. This specifies the lower bandwidth of the matrix. $k l=1$ specifies upper Hessenberg form. If $k l$ is at least $n-1$, then A will have full lower bandwidth.

INTEGER. This specifies the upper bandwidth of the matrix. $k u=1$
specifies lower Hessenberg form.
If $k u$ is at least $n-1$, then a will have full upper bandwidth.
If $k u$ and $k u$ are both at least $n-1$, then a will be dense. Only one of $k u$ and $k l$ may be less than $n-1$.

REAL for slatme,
DOUBLE PRECISION for dlatme,
REAL for clatme,
DOUBLE PRECISION for zlatme,
If anorm is not negative, then a is scaled by a non-negative real number to make the maximum-element-norm of a to be anorm.

INTEGER. Number of rows of matrix A.
REAL for slatme,
DOUBLE PRECISION for dlatme,
COMPLEX for clatme,
DOUBLE COMPLEX for zlatme,
Array, size (3*n). Workspace.

Output Parameters

```
iseed
```

INTEGER.

On exit, the seed is updated.
d
$d s$
a

Modified if mode is nonzero.
Modified if mode is nonzero.
REAL for slatme,
DOUBLE PRECISION for dlatme,
COMPLEX for clatme,
DOUBLE COMPLEX for zlatme,
Array, size (lda, n). On exit, a is the desired test matrix.
INTEGER.
If info $=0$, execution is successful.
If info $=-1, n$ is negative .
If info $=-2$, dist is an illegal string.
If info $=-5$, mode is not in range -6 to 6 .
If info $=-6$, cond is less than 1.0 , and mode is not $-6,0$, or 6 .
If info $=-9$, rsign is not 'T' or ' F '.
If info $=-10$, upper is not 'T' or ' F '.
If info $=-11$, sim is not 'T' or ' F '.
If info $=-12$, modes $=0$ and $d s$ has a zero singular value.
If info $=-13$, modes is not in the range -5 to 5 .
If info $=-14$, modes is nonzero and conds is less than 1. .
If info $=-15, k l$ is less than 1.
If info $=-16, k u$ is less than 1 , or $k l$ and $k u$ are both less than $n-1$.
If info $=-19$, lda is less than m.
If info $=1$, error return from ? latm1 (computing d).
If info $=2$, cannot scale to $d \max$ (max. eigenvalue is 0).
If info $=3$, error return from slatm1(for slatme and clatme), dlatm1 (for dlatme and zlatme).
If info $=4$, error return from ?large.
If info = 5, zero singular value from slatm1(for slatme and clatme), dlatm1(for dlatme and zlatme).
?latmr
Generates random matrices of various types.

Syntax

```
call slatmr (m, n, dist, iseed, sym, d, mode, cond, dmax, rsign, grade, dl, model,
condl, dr, moder, condr, pivtng, ipivot, kl, ku, sparse, anorm, pack, a, lda, iwork,
info)
```

```
call dlatmr (m, n, dist, iseed, sym, d, mode, cond, dmax, rsign, grade, dl, model,
condl, dr, moder, condr, pivtng, ipivot, kl, ku, sparse, anorm, pack, a, lda, iwork,
info)
call clatmr (m, n, dist, iseed, sym, d, mode, cond, dmax, rsign, grade, dl, model,
condl, dr, moder, condr, pivtng, ipivot, kl, ku, sparse, anorm, pack, a, lda, iwork,
info)
call zlatmr (m, n, dist, iseed, sym, d, mode, cond, dmax, rsign, grade, dl, model,
condl, dr, moder, condr, pivtng, ipivot, kl, ku, sparse, anorm, pack, a, lda, iwork,
info)
```


Description

The ? latmr routine operates by applying the following sequence of operations:

1. Generate a matrix A with random entries of distribution dist:

If $s y m=$ 'S', the matrix is symmetric,
If sym $=$ 'H', the matrix is Hermitian,
If sym $=$ ' N ', the matrix is nonsymmetric.
2. Set the diagonal to D, where D may be input or computed according to mode, cond, dmax and rsign as described below.
3. Grade the matrix, if desired, from the left or right as specified by grade. The inputs $d l$, model, condl, $d r$, moder and condr also determine the grading as described below.
4. Permute, if desired, the rows and/or columns as specified by pivtng and ipivot.
5. Set random entries to zero, if desired, to get a random sparse matrix as specified by sparse.
6. Make A a band matrix, if desired, by zeroing out the matrix outside a band of lower bandwidth kl and upper bandwidth $k u$.
7. Scale A, if desired, to have maximum entry anorm.
8. Pack the matrix if desired. See options specified by the pack parameter.

NOTE

If two calls to ?latmr differ only in the pack parameter, they generate mathematically equivalent matrices. If two calls to ? latmr both have full bandwidth ($k 1=m-1$ and $k u=n-1$), and differ only in the pivtng and pack parameters, then the matrices generated differ only in the order of the rows and columns, and otherwise contain the same data. This consistency cannot be and is not maintained with less than full bandwidth.

Input Parameters

m
n
dist

INTEGER. Number of rows of A.
INTEGER. Number of columns of A.
CHARACTER. On entry, dist specifies the type of distribution to be used to generate a random matrix .
If dist = 'U', real and imaginary parts are independent uniform(0,1).
If dist $=$ 'S', real and imaginary parts are independent uniform($-1,1$).
If dist $=$ ' N ', real and imaginary parts are independent normal(0,1).

If dist $=$ ' D ', distribution is uniform on interior of unit disk.

INTEGER. Array, size 4.
On entry, iseed specifies the seed of the random number generator. They should lie between 0 and 4095 inclusive, and iseed (4) should be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers.

CHARACTER. If sym = 'S', generated matrix is symmetric.
If $s y m=' H '$, generated matrix is Hermitian.
If sym = ' N ', generated matrix is nonsymmetric.
REAL for slatmr,
DOUBLE PRECISION for dlatmr,
COMPLEX for clatmr,
DOUBLE COMPLEX for zlatmr,
On entry this array specifies the diagonal entries of the diagonal of $A . d$ may either be specified on entry, or set according to mode and cond as described below. If the matrix is Hermitian, the real part of d is taken. May be changed on exit if mode is nonzero.

INTEGER. On entry describes how d is to be used:
mode $=0$ means use d as input.
mode $=1$ sets $d(1)=1$ and $d(2: n)=1.0 /$ cond.
mode $=2$ sets $d(1: n-1)=1$ and $d(n)=1.0 /$ cond.
mode $=3$ sets $d(i)=\operatorname{cond}{ }^{*} *(-(i-1) /(n-1))$.
mode $=4$ sets $d(i)=1-(i-1) /(n-1) *(1-1 /$ cond $)$.
mode $=5$ sets d to random numbers in the range ($1 /$ cond, 1) such that their logarithms are uniformly distributed.
mode $=6$ sets d to random numbers from same distribution as the rest of the matrix.
mode <0 has the same meaning as abs (mode), except that the order of the elements of d is reversed.

Thus if mode is between 1 and $4, d$ has entries ranging from 1 to 1 /cond, if between -1 and $-4, D$ has entries ranging from $1 /$ cond to 1 .

REAL for slatmr,
DOUBLE PRECISION for dlatmr,
REAL for clatmr,
DOUBLE PRECISION for zlatmr,
On entry, used as described under mode above. If used, cond must be ≥ 1. REAL for slatmr,

DOUBLE PRECISION for dlatmr,
COMPLEX for clatmr,
DOUBLE COMPLEX for zlatmr,
If mode is not $-6,0$, or 6 , the diagonal is scaled by dmax / $\max (\mathrm{abs}(d(i)))$, so that maximum absolute entry of diagonal is abs (dmax) . If dmax is complex (or zero), the diagonal is scaled by a complex number (or zero).

CHARACTER. If mode is not $-6,0$, or 6 , specifies the sign of the diagonal as follows:

For slatmr and dlatmr, if rsign $=$ ' T ', diagonal entries are multiplied 1 or -1 with a probability of 0.5 .

For clatmr and zlatmr, if rsign = 'T', diagonal entries are multiplied by a random complex number uniformly distributed with absolute value 1.
If rsign = 'F', diagonal entries are unchanged.
CHARACTER. Specifies grading of matrix as follows:
If grade = 'N', there is no grading
If grade = 'L', matrix is premultiplied by diag($d \mathrm{~d}$) (only if matrix is nonsymmetric)

If grade = 'R', matrix is postmultiplied by diag($d r$) (only if matrix is nonsymmetric)
If grade = 'B', matrix is premultiplied by diag($d l$) and postmultiplied by diag($d r$) (only if matrix is nonsymmetric)

If grade $=$ ' H ', matrix is premultiplied by diag($d l$) and postmultiplied by diag(conjg(dl)) (only if matrix is Hermitian or nonsymmetric)
If grade = 'S', matrix is premultiplied by diag(dl) and postmultiplied by diag (αl) (only if matrix is symmetric or nonsymmetric)
If grade = ' E ', matrix is premultiplied by diag($d \mathrm{ll}$) and postmultiplied by inv(diag(dl)) (only if matrix is nonsymmetric)

NOTE

if grade $=$ ' E ', then m must equal n.

REAL for slatmr,
DOUBLE PRECISION for dlatmr,
COMPLEX for clatmr,
DOUBLE COMPLEX for zlatmr,
Array, size (m).
If model $=0$, then on entry this array specifies the diagonal entries of a diagonal matrix used as described under grade above.

If model is not zero, then $d l$ is set according to model and condl, analogous to the way D is set according to mode and cond (except there is no dmax parameter for dl).

If grade $=$ ' E ', then dl cannot have zero entries.
Not referenced if grade $=$ ' N ' or 'R'. Changed on exit.
INTEGER. This specifies how the diagonal array $d l$ is computed, just as mode specifies how D is computed.

REAL for slatmr,
DOUBLE PRECISION for dlatmr,
REAL for clatmr,
DOUBLE PRECISION for zlatmr,
When model is not zero, this specifies the condition number of the computed $d l$.

REAL for slatmr,
DOUBLE PRECISION for dlatmr,
COMPLEX for clatmr,
DOUBLE COMPLEX for zlatmr,
If moder $=0$, then on entry this array specifies the diagonal entries of a diagonal matrix used as described under grade above.

If moder is not zero, then $d r$ is set according to moder and condr, analogous to the way d is set according to mode and cond (except there is no dmax parameter for $d r$).

Not referenced if grade $=$ 'N', 'L', 'H'S' or 'E'.
INTEGER. This specifies how the diagonal array $d r$ is to be computed, just as mode specifies how d is to be computed.

REAL for slatmr and clatmr,
DOUBLE PRECISION for dlatmr and zlatmr,
When moder is not zero, this specifies the condition number of the computed $d r$.

CHARACTER. On entry specifies pivoting permutations as follows:
If pivtng $=$ ' N ' or ' ': no pivoting permutation.
If pivtng = 'L': left or row pivoting (matrix must be nonsymmetric).
If pivtng = 'R': right or column pivoting (matrix must be nonsymmetric).
If pivtng = 'B' or 'F': both or full pivoting, i.e., on both sides. In this case, m must equal n.
ipivot

If two calls to ? latmr both have full bandwidth ($k I=m-1$ and $k u=$ $n-1$), and differ only in the pivtng and pack parameters, then the matrices generated differs only in the order of the rows and columns, and otherwise contain the same data. This consistency cannot be maintained with less than full bandwidth.

INTEGER. Array, size (n or m) This array specifies the permutation used. After the basic matrix is generated, the rows, columns, or both are permuted.

If row pivoting is selected, ?latmr starts with the last row and interchanges row m and row ipivot (m), then moves to the next-to-last row, interchanging rows ($m-1$) and row ipivot(m-1), and so on. In terms of "2-cycles", the permutation is (1 ipivot(1)) (2 ipivot(2)) ... (mipivot (m)) where the rightmost cycle is applied first. This is the inverse of the effect of pivoting in LINPACK. The idea is that factoring (with pivoting) an identity matrix which has been inverse-pivoted in this way should result in a pivot vector identical to ipivot. Not referenced if pivtng $='^{\prime}$ '.

REAL for slatmr,
DOUBLE PRECISION for dlatmr,
REAL for clatmr,
DOUBLE PRECISION for zlatmr,
On entry, specifies the sparsity of the matrix if a sparse matrix is to be generated. sparse should lie between 0 and 1 . To generate a sparse matrix, for each matrix entry a uniform $(0,1)$ random number x is generated and compared to sparse; if x is larger the matrix entry is unchanged and if x is smaller the entry is set to zero. Thus on the average a fraction sparse of the entries is set to zero.

INTEGER. On entry, specifies the lower bandwidth of the matrix. For example, $k I=0$ implies upper triangular, $k l=1$ implies upper Hessenberg, and $k I$ at least $m-1$ implies the matrix is not banded. Must equal $k u$ if matrix is symmetric or Hermitian.

INTEGER. On entry, specifies the upper bandwidth of the matrix. For example, $k u=0$ implies lower triangular, $k u=1$ implies lower Hessenberg, and kuat least $n-1$ implies the matrix is not banded. Must equal $k l$ if matrix is symmetric or Hermitian.

REAL for slatmr,
DOUBLE PRECISION for dlatmr,
REAL for clatmr,
DOUBLE PRECISION for zlatmr,
On entry, specifies maximum entry of output matrix (output matrix is multiplied by a constant so that its largest absolute entry equal anorm) if anorm is nonnegative. If anorm is negative no scaling is done.
for slatmr,
for dlatmr,
for clatmr,
for zlatmr,
On entry, specifies packing of matrix as follows:
If pack = 'N': no packing
If pack = 'U': zero out all subdiagonal entries (if symmetric or Hermitian)
If pack = 'L': zero out all superdiagonal entries (if symmetric or Hermitian)
If pack = 'C': store the upper triangle columnwise (only if matrix symmetric or Hermitian or square upper triangular)
If pack = 'R': store the lower triangle columnwise (only if matrix symmetric or Hermitian or square lower triangular) (same as upper half rowwise if symmetric) (same as conjugate upper half rowwise if Hermitian)

If pack = 'B': store the lower triangle in band storage scheme (only if matrix symmetric or Hermitian)

If pack = 'Q': store the upper triangle in band storage scheme (only if matrix symmetric or Hermitian)

If pack = ' Z': store the entire matrix in band storage scheme (pivoting can be provided for by using this option to store A in the trailing rows of the allocated storage)

Using these options, the various LAPACK packed and banded storage schemes can be obtained:

LAPACK storage scheme	Value of pack
GB	' Z '
PB, HB or TB	'B' or ' Q '
PP, HP or TP	'C' or 'R'

If two calls to ?latmr differ only in the pack parameter, they generate mathematically equivalent matrices.

INTEGER. On entry, lda specifies the first dimension of a as declared in the calling program.

If pack = 'N', 'U' or 'L', lda must be at least max ($1, m$).
If pack = 'C' or 'R', Ida must be at least 1 .
If pack $=$ ' B ', or ' Q ', lda must be min ($k u+1, n$).
If pack = ' Z ', lda must be at least $k u u+k l l+1$, where $k u u=$ $\min (k u, n-1)$ and $k l l=\min (k l, n-1)$.

INTEGER. Array, size (n or m). Workspace. Not referenced if pivtng $=$ ' N '. Changed on exit.

Output Parameters

iseed	On exit, the seed is changed.
d	May be changed on exit if mode is nonzero.

On exit, array is changed.
On exit, array is changed.
REAL for slatmr,
DOUBLE PRECISION for dlatmr,
COMPLEX for clatmr,
DOUBLE COMPLEX for zlatmr,
On exit, a is the desired test matrix. Only those entries of a which are significant on output is referenced (even if a is in packed or band storage format). The unoccupied corners of a in band format are zeroed out.

INTEGER.

If info $=0$, the execution is successful.
If info $=-1, m$ is negative or unequal to n and $s y m=' S '$ or 'H'.
If info $=-2, n$ is negative .
If info $=-3$, dist is an illegal string.
If info $=-5$, sym is an illegal string..
If info $=-7$, mode is not in range -6 to 6 .
If info $=-8$, cond is less than 1.0, and mode is neither $-6,0$ nor 6.
If info $=-10$, mode is neither $-6,0$ nor 6 and rsign is an illegal string.
If info $=-11$, grade is an illegal string, or grade $=$ ' E ' and m is not equal to n, or grade='L', 'R', 'B', 'S' or 'E' and sym = 'H', or grade = 'L', 'R', 'B', 'H' or 'E' and sym = 'S'
If info $=-12$, grade $=$ 'E'and dl contains zero.
If info $=-13$, model is not in range -6 to 6 and grade $=$ 'L', 'B', 'H', 'S' or 'E'.

If info $=-14$, condl is less than 1.0, grade $=$ 'L', 'B', 'H', 'S' or 'E', and model is neither $-6,0$ nor 6.

If info $=-16$, moder is not in range -6 to 6 and grade $=$ ' R ' or 'B'.

If info $=-17$, condr is less than 1.0 , grade $=$ ' R ' or 'B', and moder is neither $-6,0$ nor 6 .

If info $=-18$, pivtng is an illegal string, or pivtng $='^{\prime} B^{\prime}$ or ' F^{\prime} and m is not equal to n, or pivtng $=$ ' L ' or ' R ' and sym $=$ ' S ' or 'H'.

If info = -19, ipivot contains out of range number and pivtng is not equal to ' N ' .
If info $=-20, k l$ is negative.
If info $=-21, k u$ is negative, or $s y m=' S '$ or 'H' and $k u$ not equal to $k l$.

If info $=-22$, sparse is not in range 0 to 1 .
If info $=-24$, pack is an illegal string, or pack = 'U', 'L', 'B' or ' Q ' and sym $=$ ' N ', or pack $=$ ' C' and sym $=$ ' N ' and either $k l$ is not equal to 0 or n is not equal to m, or pack $=$ ' R^{\prime} and sym $=$ ' N^{\prime}, and either $k u$ is not equal to 0 or n is not equal to m.

If info $=-26$, Ida is too small.
If info $=1$, error return from ?latm1 (computing D).
If info $=2$, cannot scale to dmax (max. entry is 0) .
If info $=3$, error return from ?latm1 (computing $d l$).
If info $=4$, error return from ?latm1 (computing $d r$).
If info = 5, anorm is positive, but matrix constructed prior to attempting to scale it to have norm anorm, is zero .

?latdf

Uses the LU factorization of the n-by-n matrix computed by ?getc2 and computes a contribution to the reciprocal Dif-estimate.

Syntax

```
call slatdf( ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv )
call dlatdf( ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)
call clatdf( ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv )
call zlatdf( ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv )
```


Include Files

- mkl.fi

Description

The routine ?latdf uses the $L U$ factorization of the n-by-n matrix Z computed by ?getc 2 and computes a contribution to the reciprocal Dif-estimate by solving $Z^{\star} x=b$ for x, and choosing the right-hand side b such that the norm of x is as large as possible. On entry rhs $=b$ holds the contribution from earlier solved subsystems, and on return rhs $=x$.

The factorization of Z returned by ?getc2 has the form $Z=P^{\star} L^{\star} U^{\star} Q$, where P and Q are permutation matrices. L is lower triangular with unit diagonal elements and U is upper triangular.

Input Parameters

ijob

INTEGER.

ijob $=2$: First compute an approximative null-vector e of Z using ? gecon, e is normalized, and solve for $Z^{\star} X= \pm e-£$ with the sign giving the greater value of 2 -norm (x). This option is about 5 times as expensive as default.
ijob $\Rightarrow=2$ (default): Local look ahead strategy where all entries of the righthand side b is chosen as either +1 or -1 .
n

INTEGER. The number of columns of the matrix Z.
REAL for slatdf/clatdf
DOUBLE PRECISION for dlatdf/zlatdf.
Array, DIMENSION $(I d z, n)$
On entry, the $L U$ part of the factorization of the n-by-n matrix Z computed by ?getc 2 : $Z=P^{\star} L^{\star} U^{\star} Q$.

INTEGER. The leading dimension of the array $Z . I d a \geq \max (1, n)$.
REAL for slatdf/clatdf
DOUBLE PRECISION for dlatdf/zlatdf.
Array, DIMENSION (n).
On entry, rhs contains contributions from other subsystems.
REAL for slatdf/clatdf
DOUBLE PRECISION for dlatdf/zlatdf.
On entry, the sum of squares of computed contributions to the Dif-estimate under computation by ?tgsyL, where the scaling factor rdscal has been factored out. If trans $=$ ' T ', rdsum is not touched.

Note that rdsum only makes sense when ?tgsy2 is called by ?tgsyl.
REAL for slatdf/clatdf
DOUBLE PRECISION for dlatdf/zlatdf.
On entry, scaling factor used to prevent overflow in rdsum.
If trans $=T^{\prime}, r d s c a l$ is not touched.
Note that rdscal only makes sense when ?tgsy2 is called by ?tgsyL.
INTEGER.
Array, DIMENSION (n).
The pivot indices; for $1 \leq i \leq n$, row i of the matrix has been interchanged with row ipiv(i).

INTEGER.
Array, DIMENSION (n).
The pivot indices; for $1 \leq j \leq n$, column j of the matrix has been interchanged with column $\operatorname{jpiv}(j)$.

Output Parameters

rhs
rdsum
On exit, rhs contains the solution of the subsystem with entries according to the value of $i j o b$.
On exit, the corresponding sum of squares updated with the contributions from the current sub-system.
If trans $=$ ' T ', rdsum is not touched.
rdscal On exit, rdscal is updated with respect to the current contributions in rdsum.

If trans $=$ 'T', rdscal is not touched.

?latps

Solves a triangular system of equations with the matrix held in packed storage.

Syntax

```
call slatps( uplo, trans, diag, normin, n, ap, x, scale, cnorm, info )
call dlatps( uplo, trans, diag, normin, n, ap, x, scale, cnorm, info )
call clatps( uplo, trans, diag, normin, n, ap, x, scale, cnorm, info )
call zlatps( uplo, trans, diag, normin, n, ap, x, scale, cnorm, info )
```


Include Files

- mkl.fi

Description

The routine ?latps solves one of the triangular systems
$A \star_{X}=s^{\star} b$, or $A^{T} \star_{X}=s^{\star} b$, or $A^{H *_{X}}=s^{\star} b$ (for complex flavors)
with scaling to prevent overflow, where A is an upper or lower triangular matrix stored in packed form. Here A^{T} denotes the transpose of A, A^{H} denotes the conjugate transpose of A, x and b are n-element vectors, and s is a scaling factor, usually less than or equal to 1 , chosen so that the components of x will be less than the overflow threshold. If the unscaled problem does not cause overflow, the Level 2 BLAS routine ?tpsv is called. If the matrix A is singular $(A(j, j)=0$ for some j), then s is set to 0 and a non-trivial solution to $A^{\star} X=0$ is returned.

Input Parameters

```
uplo CHARACTER*1.
    Specifies whether the matrix A is upper or lower triangular.
    = 'U': upper triangular
    = 'L': uower triangular
CHARACTER*1.
Specifies the operation applied to A.
= 'N': solve A*}X=\mp@subsup{S}{}{\star}b\mathrm{ (no transpose)
='T': solve AT* 的= s^b (transpose)
= 'C': solve A A** }=\mp@subsup{A}{}{*}b\mathrm{ (conjugate transpose)
CHARACTER*1.
```

Specifies whether the matrix A is unit triangular.
$=$ ' N ': non-unit triangular
= 'U': unit triangular
normin
n

X
cnorm

CHARACTER*1.
Specifies whether cnorm is set.
$=$ 'Y': cnorm contains the column norms on entry;
$=$ 'N': cnorm is not set on entry. On exit, the norms will be computed and stored in cnorm.

INTEGER. The order of the matrix A. $n \geq 0$.
REAL for slatps
DOUBLE PRECISION for dlatps
COMPLEX for clatps
DOUBLE COMPLEX for zlatps.
Array, DIMENSION $(n(n+1) / 2)$.
The upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array ap as follows:

```
if uplo = 'U', ap(i + (j-1)j/2) = A(i,j) for 1\leq i\leq j;
if uplo = 'L', ap(i + (j-1)(2n-j)/2) = A(i, j) for j\leqi\leqn.
REAL for slatpsDOUBLE PRECISION for dlatps
COMPLEX for clatps
DOUBLE COMPLEX for zlatps.
Array, DIMENSION ( \(n\) )
```

On entry, the right hand side b of the triangular system.
REAL for slatps/clatps
DOUBLE PRECISION for dlatps/zlatps.
Array, DIMENSION (n).
If normin $=$ 'Y', cnorm is an input argument and cnorm (j) contains the norm of the off-diagonal part of the j-th column of A.

If trans $=$ ' N ', cnorm(j) must be greater than or equal to the infinitynorm, and if trans $=$ ' T ' or ' C ', $\operatorname{cnorm}(j)$ must be greater than or equal to the 1-norm.

Output Parameters

X

On exit, x is overwritten by the solution vector x.
REAL for slatps/clatps
DOUBLE PRECISION for dlatps/zlatps.
The scaling factor s for the triangular system as described above.
If scale $=0$, the matrix A is singular or badly scaled, and the vector x is an exact or approximate solution to $A \star_{X}=0$.

If normin $=$ ' N ', cnorm is an output argument and cnorm(j) returns the 1 -norm of the off-diagonal part of the j-th column of A.

```
info INTEGER.
= 0: successful exit
< 0: if info = -k, the k
```

?latrd
Reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal/unitary similarity transformation.

Syntax

```
call slatrd( uplo, n, nb, a, lda, e, tau, w, ldw )
call dlatrd( uplo, n, nb, a, lda, e, tau, w, ldw )
call clatrd( uplo, n, nb, a, lda, e, tau, w, ldw )
call zlatrd( uplo, n, nb, a, lda, e, tau, w, ldw )
```


Include Files

- mkl.fi

Description

The routine ?latrd reduces $n b$ rows and columns of a real symmetric or complex Hermitian matrix A to symmetric/Hermitian tridiagonal form by an orthogonal/unitary similarity transformation $Q^{T \star} A \star Q$ for real flavors, $Q^{H \star A *} Q$ for complex flavors, and returns the matrices V and W which are needed to apply the transformation to the unreduced part of A.

If uplo = 'U', ?latrd reduces the last $n b$ rows and columns of a matrix, of which the upper triangle is supplied;
if uplo = 'L', ? latrd reduces the first $n b$ rows and columns of a matrix, of which the lower triangle is supplied.
This is an auxiliary routine called by ?sytrd/?hetrd.

Input Parameters

```
uplo
```

n
nb
a

CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix A is stored:

> = 'U': upper triangular
> $=$ 'L': lower triangular

INTEGER. The order of the matrix A.
INTEGER. The number of rows and columns to be reduced.
REAL for slatrd
DOUBLE PRECISION for dlatrd
COMPLEX for clatrd
DOUBLE COMPLEX for zlatrd.

Ida
ldw

Output Parameters

e

tau

W

Array, DIMENSION (/da, n).
On entry, the symmetric/Hermitian matrix A
If uplo = 'U', the leading n-by- n upper triangular part of a contains the upper triangular part of the matrix A, and the strictly lower triangular part of a is not referenced.

If uplo = 'L', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.

INTEGER. The leading dimension of the array a. $1 \mathrm{~d} a \geq(1, n)$.
INTEGER.
The leading dimension of the output array $w . \operatorname{ldw} \geq \max (1, n)$.

a	On exit, if uplo = 'U', the last $n b$ columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of a; the elements above the diagonal with the array tau, represent the orthogonal/unitary matrix Q as a product of elementary reflectors;
	if uplo = 'L', the first $n b$ columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of a; the elements below the diagonal with the array tau, represent the orthogonal/ unitary matrix Q as a product of elementary reflectors.
e	REAL for slatrd/clatrd
	DOUBLE PRECISION for dlatrd/zlatrd.
	If uplo = 'U', e($n-n b: n-1)$ contains the superdiagonal elements of the last $n b$ columns of the reduced matrix;
	if uplo = 'L', e(1:nb) contains the subdiagonal elements of the first $n b$ columns of the reduced matrix.
tau	REAL for slatrd
	DOUBLE PRECISION for dlatrd
	COMPLEX for clatrd
	DOUBLE COMPLEX for zlatrd.
	Array, DIMENSION (Ida, n).
	The scalar factors of the elementary reflectors, stored in $\operatorname{tau}(n-n b: n-1)$ if uplo = 'U', and in tau(1:nb) if uplo = 'L'.
w	REAL for slatrd
	DOUBLE PRECISION for dlatrd
	COMPLEX for clatrd
	DOUBLE COMPLEX for zlatrd.
	Array, DIMENSION (Idw, n).

The n-by-nb matrix W required to update the unreduced part of A.

Application Notes

If uplo = 'U', the matrix Q is represented as a product of elementary reflectors
$Q=H(n) * H(n-1) * \ldots * H(n-n b+1)$
Each $H(i)$ has the form
$H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{\prime}$
where tau is a real/complex scalar, and v is a real/complex vector with $v(i: n)=0$ and $v(i-1)=1 ; v(1$: $i-1)$ is stored on exit in a(1: i-1, i), and tau in tau(i-1).
If uplo = 'L', the matrix Q is represented as a product of elementary reflectors
$Q=H(1){ }^{*} H(2) * \ldots{ }^{*} H(n b)$
Each $H(i)$ has the form $H(i)=I-\tan ^{\star} V^{\star} V^{\prime}$
where tau is a real/complex scalar, and v is a real/complex vector with $v(1$: i) $=0$ and $v(i+1)=1 ; v(i$ $+1: n$) is stored on exit in a(i+1:n, i), and tau in tau(i).

The elements of the vectors v together form the n-by- $n b$ matrix V which is needed, with W, to apply the transformation to the unreduced part of the matrix, using a symmetric/Hermitian rank-2k update of the form:
$A:=A-V W^{\prime}-W V^{\prime}$.
The contents of a on exit are illustrated by the following examples with $n=5$ and $n b=2$:

$$
\begin{array}{lll}
\text { if } u p l o=' \mathrm{U} ': ~ & \text { if } u p l o=' L ' \\
{\left[\begin{array}{ccccc}
a & a & a & V_{4} & V_{4} \\
& a & a & V_{4} & V_{5} \\
& a & 1 & V_{5} \\
& & d & 1 \\
& & & & d
\end{array}\right] \quad\left[\begin{array}{ccccc}
d & & & & \\
1 & d & & & \\
V_{1} & 1 & a & & \\
V_{1} & V_{2} & a & a & \\
V_{1} & V_{2} & a & a & a
\end{array}\right]}
\end{array}
$$

where d denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and v_{i} denotes an element of the vector defining $H(i)$.

?latrs

Solves a triangular system of equations with the scale factor set to prevent overflow.

Syntax

```
call slatrs( uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info )
call dlatrs( uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info )
```

```
call clatrs( uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info )
call zlatrs( uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info )
```


Include Files

- mkl.fi

Description

The routine solves one of the triangular systems

$$
A^{\star} X=s^{\star} b \text {, or } A^{T^{*}} X=s^{\star} b \text {, or } A^{H \star} X=s^{\star} b \text { (for complex flavors) }
$$

with scaling to prevent overflow. Here A is an upper or lower triangular matrix, A^{T} denotes the transpose of A, A^{H} denotes the conjugate transpose of A, x and b are n-element vectors, and s is a scaling factor, usually less than or equal to 1 , chosen so that the components of x will be less than the overflow threshold. If the unscaled problem will not cause overflow, the Level 2 BLAS routine ? trsv is called. If the matrix A is singular $(A(j, j)=0$ for some $j)$, then s is set to 0 and a non-trivial solution to $A^{*} x=0$ is returned.

Input Parameters

```
uplo
trans
diag
normin
n
a
```

CHARACTER*1.
Specifies whether the matrix A is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular

CHARACTER*1.

Specifies the operation applied to A.
$=N^{\prime}$ ': solve $A^{\star} X=s^{\star} b$ (no transpose)
$=' T ':$ solve $A^{T}{ }^{*} X=s^{\star} b$ (transpose)
$=' C$ ': solve $A^{H \star}{ }_{X}=s^{\star} b$ (conjugate transpose)
CHARACTER*1.
Specifies whether or not the matrix A is unit triangular.
= 'N': non-unit triangular
$={ }^{\prime} \mathrm{N}$ ': non-unit triangular
CHARACTER*1.
Specifies whether cnorm has been set or not.
$=$ 'Y': cnorm contains the column norms on entry;
$=$ ' N ': cnorm is not set on entry. O
n exit, the norms will be computed and stored in cnorm.
INTEGER. The order of the matrix A. $n \geq 0$
REAL for slatrs
DOUBLE PRECISION for dlatrs
COMPLEX for clatrs
DOUBLE COMPLEX for zlatrs.

Array, DIMENSION (Ida, n). Contains the triangular matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced.

If uplo = 'L', the leading n-by-n lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced.
If diag = 'U', the diagonal elements of A are also not referenced and are assumed to be 1 .

INTEGER. The leading dimension of the array a. Ida $\max (1, n)$.
REAL for slatrs
DOUBLE PRECISION for dlatrs
COMPLEX for clatrs
DOUBLE COMPLEX for zlatrs.
Array, DIMENSION (n).
On entry, the right hand side b of the triangular system.
REAL for slatrs/clatrs
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (n).
If normin $=$ 'Y', cnorm is an input argument and cnorm (j) contains the norm of the off-diagonal part of the j-th column of A.

If trans $=$ ' N ', cnorm (j) must be greater than or equal to the infinitynorm, and if trans $=$ ' T ' or 'C', $\operatorname{cnorm}(j)$ must be greater than or equal to the 1-norm.

Output Parameters

X
scale
cnorm
info

On exit, x is overwritten by the solution vector x.
REAL for slatrs/clatrs
DOUBLE PRECISION for dlatrs/zlatrs.
Array, DIMENSION (Ida, n). The scaling factor s for the triangular system as described above.

If scale $=0$, the matrix A is singular or badly scaled, and the vector x is an exact or approximate solution to $A^{\star} x=0$.

If normin $=$ ' N ', cnorm is an output argument and cnorm(j) returns the 1 -norm of the off-diagonal part of the j-th column of A.

INTEGER.
$=0$: successful exit
<0 : if info $=-k$, the k-th argument had an illegal value

Application Notes

A rough bound on x is computed; if that is less than overflow, ?trsv is called, otherwise, specific code is used which checks for possible overflow or divide-by-zero at every operation.

A columnwise scheme is used for solving $A x=b$. The basic algorithm if A is lower triangular is

```
x[1:n] := b[1:n]
for j = 1, ..., n
x(j) := x(j) / A(j,j)
x[j+1:n] := x[j+1:n] - x(j)*a[j+1:n,j]
end
```

Define bounds on the components of x after j iterations of the loop:
$M(j)=$ bound on $x[1: j]$
$G(j)=$ bound on $x[j+1: n]$
Initially, let $M(0)=0$ and $G(0)=\max \{x(i), i=1, \ldots, n\}$.
Then for iteration $j+1$ we have
$M(j+1) \leq G(j) /|a(j+1, j+1)|$
$G(j+1) \leq G(j)+M(j+1) *|a[j+2: n, j+1]|$
$\leq G(j)(1+c n o r m(j+1) /|a(j+1, j+1)|$,
where corm $(j+1)$ is greater than or equal to the infinity-norm of column $j+1$ of a, not counting the diagonal. Hence

$$
G(j) \leq G(0) \prod_{1 \leq i \leq j}(1+\operatorname{cnorm}(i) /|A(i, i)|)
$$

and

$$
|x(j)| \leq(G(0) /|A(j, j)|) \prod_{1 \leq i \leq j}(1+\operatorname{cnorm}(i) /|A(i, i)|)
$$

Since $|x(j)| \leq M(j)$, we use the Level 2 BLAS routine ?trsv if the reciprocal of the largest $M(j)$, $j=1, \ldots, n$, is larger than max (underflow, overflow).

The bound on $x(j)$ is also used to determine when a step in the columnwise method can be performed without fear of overflow. If the computed bound is greater than a large constant, x is scaled to prevent overflow, but if the bound overflows, x is set to $0, x(j)$ to 1 , and scale to 0 , and a nontrivial solution to $A x=$ 0 is found.

Similarly, a row-wise scheme is used to solve $A^{T} X=b$ or $A^{H} X=b$. The basic algorithm for A upper triangular is
for $j=1, \ldots, n$
$x(j):=(b(j)-A[1: j-1, j] ' x[1: j-1]) / A(j, j)$
end
We simultaneously compute two bounds

```
G(j) = bound on ( b(i) - A[1:i-1,i]'*x[1:i-1]), 1\leq i\leq j
M(j) = bound on x(i), 1\leq i\leq j
```

The initial values are $G(0)=0, M(0)=\max \{b(i), i=1, \ldots, n\}$, and we add the constraint $G(j)$ $\geq G(j-1)$ and $M(j) \geq M(j-1)$ for $j \geq 1$.

Then the bound on $x(j)$ is
$M(j) \leq M(j-1) *(1+\operatorname{cnorm}(j)) /|A(j, j)|$

$$
\leq \operatorname{MI}(0) \prod_{1 \leq i \leq j}(1+\operatorname{cnOrm}(i) / A(i, j))
$$

and we can safely call ? trsv if $1 / M(n)$ and $1 / G(n)$ are both greater than max (underflow, 1/overflow).

?latrz

Factors an upper trapezoidal matrix by means of orthogonal/unitary transformations.

Syntax

```
call slatrz( m, n, l, a, lda, tau, work )
call dlatrz( m, n, l, a, lda, tau, work )
call clatrz( m, n, l, a, lda, tau, work )
call zlatrz( m, n, l, a, lda, tau, work )
```

Include Files

- mkl.fi

Description

The routine ? latrz factors the m-by- $(m+/)$ real/complex upper trapezoidal matrix

```
[A1 A2] = [A(1:m,1:m) A(1: m, n-1+1:n)]
```

as ($R 0$) * Z, by means of orthogonal/unitary transformations. Z is an ($m+l$)-by-($m+l$) orthogonal/unitary matrix and R and $A 1$ are m-by - m upper triangular matrices.

Input Parameters

m
n
1
a

INTEGER. The number of rows of the matrix $A . m \geq 0$.
INTEGER. The number of columns of the matrix $A . n \geq 0$.
INTEGER. The number of columns of the matrix A containing the meaningful part of the Householder vectors.
$n-m \geq 1 \geq 0$.
REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
DOUBLE COMPLEX for zlatrz.

```
Ida INTEGER. The leading dimension of the array a. lda\geq max (1,m).
work
INTEGER. The leading dimension of the array a. \(1 d a \geq \max (1, m)\).
REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
DOUBLE COMPLEX for zlatrz.
Workspace array, DIMENSION (m).
```

Array, DIMENSION (/da, n).
On entry, the leading m-by-n upper trapezoidal part of the array a must contain the matrix to be factorized.

Output Parameters

a
On exit, the leading m-by- m upper triangular part of a contains the upper triangular matrix R, and elements $n-I+1$ to n of the first m rows of a, with the array tau, represent the orthogonal/unitary matrix Z as a product of m elementary reflectors.

REAL for slatrz
DOUBLE PRECISION for dlatrz
COMPLEX for clatrz
DOUBLE COMPLEX for zlatrz.
Array, DIMENSION (m).
The scalar factors of the elementary reflectors.

Application Notes

The factorization is obtained by Householder's method. The k-th transformation matrix, $z(k)$, which is used to introduce zeros into the $(m-k+1)$-th row of A, is given in the form

where for real flavors

$$
T(k)=I-t a u^{*} u(k)^{*} T(k)^{T}, \quad u(k)=\left[\begin{array}{c}
0 \\
z(k)
\end{array}\right]
$$

and for complex flavors

$$
T(k)=I-t a u^{*} u(k)^{*} T(k)^{H}, \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
$$

tau is a scalar and $z(k)$ is an l-element vector. tau and $z(k)$ are chosen to annihilate the elements of the k-th row of A2.

The scalar tau is returned in the k-th element of tau and the vector $u(k)$ in the k-th row of $A 2$, such that the elements of $z(k)$ are in $a(k, l+1), \ldots, a(k, n)$.
The elements of r are returned in the upper triangular part of $A 1$.
Z is given by
$Z=Z(1) * Z(2) * \ldots * Z(m)$.

?latsqr

Computes a blocked Tall-Skinny QR matrix
factorization.

```
call slatsqr(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
call dlatsqr(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
call clatsqr(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
call zlatsqr(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
```


Description

? latsqr computes a blocked Tall-Skinny QR (TSQR) factorization of an m-by-n matrix A, where $m \geq n: A=$ $Q^{*} R$.
TSQR performs QR by a sequence of orthogonal transformations, representing Q as a product of other orthogonal matrices
$Q=Q(1) * Q(2) * \ldots * Q(k)$
where each $Q(i)$ zeros out subdiagonal entries of a block of mb rows of A :
$Q(1)$ zeros out the subdiagonal entries of rows 1 : MB of A,
$Q(2)$ zeros out the bottom $m b-n$ rows of rows [1:n, $m b+1: 2 * m b-n$] of A,
$Q(3)$ zeros out the bottom $m b-n$ rows of rows $\left[1: n, 2^{*} m b-n+1: 3^{*} m b-2_{n}\right.$] of $A \ldots$
$Q(1)$ is computed by geqrt, which represents $Q(1)$ by Householder vectors stored under the diagonal of rows 1 :mb of a, and by upper triangular block reflectors, stored in array $t(1: l d t, 1: n)$. For more information see geqrt.
$Q(i)$ for $i>1$ is computed by tpqrt, which represents $Q(i)$ by Householder vectors stored in rows [($i-$ $1)^{*}(m b-n)+n+1: i^{*}(m b-n)+n$] of a, and by upper triangular block reflectors, stored in array $t(1: l d t,(i$ $\left.-1)_{n}+1: i^{*} n\right)$. The last $Q(k)$ may use fewer rows. For more information, see tpqrt. For more details of the overall algorithm, see [DEMMEL12]

Input Parameters

m	INTEGER. The number of rows of the matrix $A . m \geq 0$.
n	INTEGER. The number of columns of the matrix $A . m \geq n \geq 0$.
mb	INTEGER. The row block size to be used in the blocked QR. mb $>\mathrm{n}$.
$n .6$	INTEGER. The column block size to be used in the blocked QR. $n \geq n b \geq 1$.
a	REAL forslatsqr
	DOUBLE PRECISION for dlatsqr
	COMPLEX for clatsqr
	COMPLEX*16 for zlatsqr
	Array of size (lda, n). On entry, the m-by-n matrix A.
Ida	INTEGER. The leading dimension of the array a. $1 \mathrm{da} \geq \mathrm{max}(1, \mathrm{~m})$.
$1 d t$	INTEGER. The leading dimension of the array t. $1 d t \geq n b$.
lwork	INTEGER. The dimension of the array work. 1 work $\geq n b^{*}$ n. If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

Output Parameters

a
t
On exit, the elements on and above the diagonal of the array contain the n -by- n upper triangular matrix R and the elements below the diagonal represent Q by the columns of blocked V.

REAL for slatsqr
DOUBLE PRECISION for dlatsqr
COMPLEX for clatsqr
COMPLEX*16 for zlatsqr
Array of size (ldt, n * Number_of_row_blocks) where
Number_of_row_blocks $=$ ceiling $((m-n) /(m b-n))$ The blocked upper triangular block reflectors stored in compact form as a sequence of upper triangular blocks.

```
work
info
```

```
REAL forslatsqr
```

REAL forslatsqr
DOUBLE PRECISION for dlatsqr
DOUBLE PRECISION for dlatsqr
COMPLEX for clatsqr
COMPLEX for clatsqr
COMPLEX*16 for zlatsqr
COMPLEX*16 for zlatsqr
Workspace array of size (max(1, lwork)).
Workspace array of size (max(1, lwork)).
INTEGER.
INTEGER.
info = 0: successful exit.
info = 0: successful exit.
info < 0: if info = -i, the i-th argument had an illegal value.

```
info < 0: if info = -i, the i-th argument had an illegal value.
```

?lauu2
Computes the product $U^{*} U^{T}\left(U^{*} U^{H}\right)$ or $L^{T}{ }^{*} L\left(L^{H} * L\right)$,
where U and L are upper or lower triangular matrices (unblocked algorithm).

Syntax

```
call slauu2( uplo, n, a, lda, info )
call dlauu2( uplo, n, a, lda, info )
call clauu2( uplo, n, a, lda, info )
call zlauu2( uplo, n, a, lda, info )
```


Include Files

- mkl.fi

Description

The routine ? lauu2 computes the product $U^{\star} U^{T}$ or $L^{T \star} L$ for real flavors, and $U^{\star} U^{H}$ or $L^{H \star} L$ for complex flavors. Here the triangular factor U or L is stored in the upper or lower triangular part of the array a. If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor U in A. If uplo = ' L ' or 'l', then the lower triangle of the result is stored, overwriting the factor L in A. This is the unblocked form of the algorithm, calling BLAS Level 2 Routines.

Input Parameters

```
uplo
n
a
CHARACTER*1.
Specifies whether the triangular factor stored in the array a is upper or lower triangular:
= 'U': Upper triangular
= 'L': Lower triangular
INTEGER. The order of the triangular factor \(U\) or \(L . n \geq 0\).
REAL for slauu2
DOUBLE PRECISION for dlauu2
COMPLEX for clauu2
```

DOUBLE COMPLEX for zlauu2.
Array, DIMENSION (Ida, n). On entry, the triangular factor U or L.
Integer. The leading dimension of the array $a .1 d a \geq \max (1, n)$.

Output Parameters

a
On exit,
if uplo = 'U', then the upper triangle of a is overwritten with the upper triangle of the product $U^{\star} U^{T}\left(U^{\star} U^{H}\right)$;
if uplo = ' L' ', then the lower triangle of a is overwritten with the lower triangle of the product $L^{T_{\star}} L\left(L^{H_{\star}} L\right)$.

INTEGER.
= 0 : successful exit
<0 : if info $=-k$, the k-th argument had an illegal value

?lauum

Computes the product $U^{\star} U^{T}\left(U^{\star} U^{H}\right)$ or $L^{T \star} L^{(}\left(L^{H} * L\right)$,
where U and L are upper or lower triangular matrices
(blocked algorithm).
Syntax

```
call slauum( uplo, n, a, lda, info )
call dlauum( uplo, n, a, lda, info )
call clauum( uplo, n, a, lda, info )
call zlauum( uplo, n, a, lda, info )
```


Include Files

```
- mkl.fi
```


Description

The routine ? lauum computes the product $U^{\star} U^{T}$ or $L^{T \star} L$ for real flavors, and $U^{\star} U^{H}$ or $L^{H \star} L$ for complex flavors. Here the triangular factor U or L is stored in the upper or lower triangular part of the array a. If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor U in A. If uplo = 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor L in A. This is the blocked form of the algorithm, calling BLAS Level 3 Routines.

Input Parameters

The data types are given for the Fortran interface.

```
uplo CHARACTER*1.
```

Specifies whether the triangular factor stored in the array a is upper or lower triangular:
= 'U': Upper triangular

```
= 'L': Lower triangular
INTEGER. The order of the triangular factor \(U\) or \(L . n \geq 0\).
REAL for slauum
DOUBLE PRECISION for dlauum
COMPLEX for claum
DOUBLE COMPLEX for zlauum.
Array of size (Ida, n).
On entry, the triangular factor \(U\) or \(L\).
INTEGER. The leading dimension of the array a. \(1 d a \geq \max (1, n)\).
```

n
a

Ida

Output Parameters

a
info

On exit,
if uplo = 'U', then the upper triangle of a is overwritten with the upper triangle of the product $U^{\star} U^{T}\left(U^{\star} U^{H}\right)$;
if uplo = 'L', then the lower triangle of a is overwritten with the lower triangle of the product $L^{T \star} L\left(L^{H \star} L\right)$.

INTEGER.
If info $=0$, the execution is successful.
If info $=-k$, the k-th parameter had an illegal value.
If info $=-1011$, memory allocation error occurred.

?orbdb1/?unbdb1

Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.

Syntax

```
call sorbdb1( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work,
lwork, info )
call dorbdb1( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work,
lwork, info )
call cunbdb1( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work,
lwork, info )
call zunbdb1( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work,
lwork, info )
```


Include Files

- mkl.fi, lapack.f90

Description

The routines ?orbdb1/?unbdb1 simultaneously bidiagonalize the blocks of a tall and skinny matrix X with orthonormal columns:

$$
\left[\frac{x_{11}}{x_{21}}\right]=\left[\begin{array}{l|l}
p_{1} & \\
\hline & p_{2}
\end{array}\right]\left[\begin{array}{c}
b_{11} \\
\frac{0}{b_{21}} \\
0
\end{array}\right] q_{1}^{\mathrm{T}}
$$

The size of x_{11} is p by q, and x_{12} is $(m-p)$ by q. q must not be larger than $p, m-p$, or $m-q$.
Tall and Skinny Matrix Routines

$q \leq \min (p, m-p, m-q)$?orbdb1/?unbdb1
$p \leq \min (q, m-p, m-q)$?orbdb2/?unbdb2
$m-p \leq \min (p, q, m-q)$?orbdb3/?unbdb3
$m-q \leq \min (p, q, m-p)$?orbdb4/?un.bdb4

The orthogonal/unitary matrices p_{1}, p_{2}, and q_{1} are p-by- $p,(m-p)$-by-($\left.m-p\right)$, $(m-q)$-by- $(m-q)$, respectively.
p_{1}, p_{2}, and q_{1} are represented as products of elementary reflectors. See the description of ?orcsd2by1/?uncsd2by1 for details on generating p_{1}, p_{2}, and q_{1} using ?orgqr and ?orglq.
The upper-bidiagonal matrices b_{11} and b_{12} of size q by q are represented implicitly by angles theta(1), \ldots, theta (q) and $p h i(1), \ldots, p h i(q-1)$. Every entry in each bidiagonal band is a product of a sine or cosine of theta with a sine or cosine of phi. See [Sutton09] or the description of ?orcsd/?uncsd for details.

Input Parameters

m
p
q
work
I work

REAL for sorbdbl
DOUBLE PRECISION for dorbdb1
COMPLEX for cunbdb1
DOUBLE COMPLEX for zunbdb1
Workspace array, DIMENSION (I work).
INTEGER. The size of the work array. 1 work $\geq m-q$
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

Output Parameters

The columns of tril (x11) specify reflectors for p_{1} and the rows of triu $(x 11,1)$ specify reflectors for q_{1}, where $\operatorname{tril}(A)$ denotes the lower triangle of A, and triu (A) denotes the upper triangle of A.

On exit, the columns of tril(x21) specify the reflectors for p_{2}
REAL for sorbdb1
DOUBLE PRECISION for dorbdb1
COMPLEX for cunbdb1
DOUBLE COMPLEX for zunbdb1
Array, DIMENSION (q). The entries of bidiagonal blocks b_{11} and b_{21} can be computed from the angles theta and phi. See the Description section for details.

REAL for sorbdbl
DOUBLE PRECISION for dorbdb1
COMPLEX for cunbdb1
DOUBLE COMPLEX for zunbdb1
Array, DIMENSION ($q-1$). The entries of bidiagonal blocks b_{11} and b_{21} can be computed from the angles theta and phi. See the Description section for details.

REAL for sorbdb1
DOUBLE PRECISION for dorbdb1
COMPLEX for cunbdb1
DOUBLE COMPLEX for zunbdb1
Array, DIMENSION (p).
Scalar factors of the elementary reflectors that define p_{1}.
REAL for sorbdb1
DOUBLE PRECISION for dorbdb1

```
COMPLEX for cunbdb1
DOUBLE COMPLEX for zunbdb1
Array, DIMENSION (m-p).
Scalar factors of the elementary reflectors that define p}\mp@subsup{p}{2}{}\mathrm{ .
tauq1
info
REAL for sorbdb1
DOUBLE PRECISION for dorbdb1
COMPLEX for cunbdb1
DOUBLE COMPLEX for zunbdb1
Array, DIMENSION ( \(q\) ).
Scalar factors of the elementary reflectors that define \(q_{1}\).
\(=0\) : successful exit
\(<0\) : if info \(=-i\), the \(i\)-th argument has an illegal value.
```


See Also

?orcsd/?uncsd Computes the CS decomposition of a block-partitioned orthogonal/unitary matrix. ?orcsd2by1/?uncsd2by1 Computes the CS decomposition of a block-partitioned orthogonal/ unitary matrix.
? orbdb2/?unbdb2 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
? orbdb3/?unbdb3 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
?orbdb4/?unbdb4 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
? orbdb5/?unbdb5 Orthogonalizes a column vector with respect to the orthonormal basis matrix.
? orbdb6/?unbdb6 Orthogonalizes a column vector with respect to the orthonormal basis matrix.
xerbla

?orbdb2/?unbdb2

Simultaneously bidiagonalizes the blocks of a tall and
skinny matrix with orthonormal columns.

Syntax

```
call sorbdb2( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work,
lwork, info )
call dorbdb2( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work,
lwork, info )
call cunbdb2( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work,
lwork, info )
call zunbdb2( m, p, q, x11, Idx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work,
lwork, info )
```

Include Files

- mkl.fi, lapack.f90

Description

The routines ?orbdb2/?unbdb2 simultaneously bidiagonalize the blocks of a tall and skinny matrix X with orthonormal columns:

$$
\left[\frac{x_{11}}{x_{21}}\right]=\left[\begin{array}{l|l}
p_{1} & \\
\hline & p_{2}
\end{array}\right]\left[\begin{array}{c}
b_{11} \\
0 \\
\frac{b_{21}}{} \\
0
\end{array}\right] q_{1}^{\mathrm{T}}
$$

The size of x_{11} is p by q, and x_{12} is $(m-p)$ by $q . q$ must not be larger than $p, m-p$, or $m-q$.
Tall and Skinny Matrix Routines

$q \leq \min (p, m-p, m-q)$?orbdb1/?unbdb1
$p \leq \min (q, m-p, m-q)$?orbdb2/?unbdb2
$m-p \leq \min (p, q, m-q)$?orbdb3/?unbdb3
$m-q \leq \min (p, q, m-p)$?orbdb4/?unbdb4

The orthogonal/unitary matrices p_{1}, p_{2}, and q_{1} are p-by- $p,(m-p)$-by- $(m-p)$, $(m-q)$-by- $(m-q)$, respectively.
p_{1}, p_{2}, and q_{1} are represented as products of elementary reflectors. See the description of ?orcsd2by1/ ?uncsd2by1 for details on generating p_{1}, p_{2}, and q_{1} using ?orgqr and ?orglq.

The upper-bidiagonal matrices b_{11} and b_{12} of size p by p are represented implicitly by angles theta (1), ..., theta (q) and phi(1), ..., phi (q-1). Every entry in each bidiagonal band is a product of a sine or cosine of theta with a sine or cosine of phi. See [Sutton09] or the description of ?orcsd/?uncsd for details.

Input Parameters

m
p
q
x11
$1 d x 11$
$x 21$

INTEGER. The number of rows in x_{11} plus the number of rows in x_{21}.
INTEGER. The number of rows in $x_{11} .0 \leq p \leq \min (q, m-p, m-q)$.
INTEGER. The number of columns in x_{11} and $x_{21} .0 \leq q \leq m$.
REAL for sorbdb2
DOUBLE PRECISION for dorbdb2
COMPLEX for cunbdb2
DOUBLE COMPLEX for zunbdb2
Array, DIMENSION (Idx11,q).
On entry, the top block of the orthogonal/unitary matrix to be reduced.
INTEGER. The leading dimension of the array $X_{11} .1 d x 11 \geq p$.
REAL for sorbdb2
DOUBLE PRECISION for dorbdb2
COMPLEX for cunbdb2
DOUBLE COMPLEX for zunbdb2
Array, DIMENSION ($/ d x 21, q$).

```
Idx21
```

```
work
```

lwork

Output Parameters

On entry, the bottom block of the orthogonal/unitary matrix to be reduced.

INTEGER. The leading dimension of the array $X_{21} . I d \times 21 \geq m-p$.
REAL for sorbdb2
DOUBLE PRECISION for dorbdb2
COMPLEX for cunbdb2
DOUBLE COMPLEX for zunbdb2
Workspace array, DIMENSION (lwork).
INTEGER. The size of the work array. lwork $\geq m-q$
If lwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

On exit: the columns of tril(x11) specify reflectors for p_{1} and the rows of $\operatorname{triu}(x 11,1)$ specify reflectors for q_{1}.

On exit, the columns of tril (x21) specify the reflectors for p_{2}
REAL for sorbdb2
DOUBLE PRECISION for dorbdb2
COMPLEX for cunbdb2
DOUBLE COMPLEX for zunbdb2
Array, DIMENSION (q). The entries of bidiagonal blocks b_{11} and b_{21} can be computed from the angles theta and phi. See the Description section for details.

REAL for sorbdb2
DOUBLE PRECISION for dorbdb2
COMPLEX for cunbdb2
DOUBLE COMPLEX for zunbdb2
Array, DIMENSION ($q-1$). The entries of bidiagonal blocks b_{11} and b_{21} can be computed from the angles theta and phi. See the Description section for details.

REAL for sorbdb2
DOUBLE PRECISION for dorbdb2
COMPLEX for cunbdb2
DOUBLE COMPLEX for zunbdb2
Array, DIMENSION (p).
Scalar factors of the elementary reflectors that define p_{1}.
REAL for sorbdb2

DOUBLE PRECISION for dorbdb2
COMPLEX for cunbdb2
DOUBLE COMPLEX for zunbdb2
Array, DIMENSION ($m-p$).
Scalar factors of the elementary reflectors that define p_{2}.
tauq1
info
REAL for sorbdb2
DOUBLE PRECISION for dorbdb2
COMPLEX for cunbdb2
DOUBLE COMPLEX for zunbdb2
Array, DIMENSION (q).
Scalar factors of the elementary reflectors that define q_{1}.
INTEGER.
$=0$: successful exit
<0 : if info $=-i$, the i-th argument has an illegal value.

See Also

?orcsd/?uncsd
?orcsd2by1/?uncsd2by1 Computes the CS decomposition of a block-partitioned orthogonal/ unitary matrix.
? orbdb1/?unbdb1 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
? orbdb3/?unbdb3 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
? orbdb4/?unbdb4 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
? orbdb5/?unbdb5 Orthogonalizes a column vector with respect to the orthonormal basis matrix.
? orbdb6/?unbdb6 Orthogonalizes a column vector with respect to the orthonormal basis matrix.
xerbla

?orbdb3/?unbdb3

Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.

Syntax

```
call sorbdb3( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work,
lwork, info )
call dorbdb3( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work,
lwork, info )
call cunbdb3( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work,
lwork, info )
call zunbdb3( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work,
lwork, info )
```


Include Files

- mkl.fi, lapack.f90

Description

The routines ?orbdb3/?unbdb3 simultaneously bidiagonalize the blocks of a tall and skinny matrix X with orthonormal columns:

$$
\left[\frac{x_{11}}{x_{21}}\right]=\left[\begin{array}{l|l}
p_{1} & \\
\hline & p_{2}
\end{array}\right]\left[\begin{array}{c}
b_{11} \\
0 \\
\frac{b_{21}}{} \\
0
\end{array}\right] q_{1}^{\mathrm{T}}
$$

The size of x_{11} is p by q, and x_{12} is $(m-p)$ by q. $m-p$ must not be larger than p, q, or $m-q$.
Tall and Skinny Matrix Routines

$q \leq \min (p, m-p, m-q)$?orbdb1/?unbdb1
$p \leq \min (q, m-p, m-q)$?orbdb2/?unbdb2
$m-p \leq \min (p, q, m-q)$?orbdb3/?unbdb3
$m-q \leq \min (p, q, m-p)$?orbdb4/?unbdb4

The orthogonal/unitary matrices p_{1}, p_{2}, and q_{1} are $p-$ by- $p,(m-p)$-by- $(m-p),(m-q)$-by- $(m-q)$, respectively. p_{1}, p_{2}, and q_{1} are represented as products of elementary reflectors. See the description of ?orcsd2by1/ ?uncsd2by1 for details on generating p_{1}, p_{2}, and q_{1} using ?orgqr and ?orglq.
The upper-bidiagonal matrices b_{11} and b_{12} of size ($m-p$) by ($m-p$) are represented implicitly by angles theta(1), ..., theta(q) and phi(1), ..., phi (q-1). Every entry in each bidiagonal band is a product of a sine or cosine of theta with a sine or cosine of phi. See [Sutton09] or the description of ?orcsd/?uncsd for details.

Input Parameters

m	INTEGER. The number of rows in x_{11} plus the number of rows in x_{21}.
p	INTEGER. The number of rows in $x_{11} \cdot 0 \leq p \leq m, m-p \leq \min (p, q, \quad m-q)$.
	INTEGER. The number of columns in x_{11} and $x_{21} \cdot 0 \leq q \leq m$.
	REAL for sorbdb3
	DOUBLE PRECISION for dorbdb3
	COMPLEX for cunbdb3
	DOUBLE COMPLEX for zunbdb3
	Array, DIMENSION (/dx11, $q)$.
	On entry, the top block of the orthogonal/unitary matrix to be reduced.
$x 21$	INTEGER. The leading dimension of the array $X_{11} \cdot I d x 11 \geq p$.

COMPLEX for cunbdb3
DOUBLE COMPLEX for zunbdb3
Array, DIMENSION ($/ d x 21, q$).
On entry, the bottom block of the orthogonal/unitary matrix to be reduced.
$1 d x 21$
work
lwork

Output Parameters
taup1

On exit: the columns of tril(x11) specify reflectors for p_{1} and the rows of triu($x 11,1$) specify reflectors for q_{1}.

On exit, the columns of tril(x21) specify the reflectors for p_{2}
REAL for sorbdb3
DOUBLE PRECISION for dorbdb3
COMPLEX for cunbdb3
DOUBLE COMPLEX for zunbdb3
Array, DIMENSION (q). The entries of bidiagonal blocks b_{11} and b_{21} can be computed from the angles theta and phi. See the Description section for details.

REAL for sorbdb3
DOUBLE PRECISION for dorbdb3
COMPLEX for cunbdb3
DOUBLE COMPLEX for zunbdb3
Array, DIMENSION $(q-1)$. The entries of bidiagonal blocks b_{11} and b_{21} can be computed from the angles theta and phi. See the Description section for details.

REAL for sorbdb3
DOUBLE PRECISION for dorbdb3
COMPLEX for cunbdb3
DOUBLE COMPLEX for zunbdb3

Array, DIMENSION (p).
Scalar factors of the elementary reflectors that define p_{1}.
taup2
tauq1
info

REAL for sorbdb3
DOUBLE PRECISION for dorbdb3
COMPLEX for cunbdb3
DOUBLE COMPLEX for zunbdb3
Array, DIMENSION ($m-p$).
Scalar factors of the elementary reflectors that define p_{2}.
REAL for sorbdb3
DOUBLE PRECISION for dorbdb3
COMPLEX for cunbdb3
DOUBLE COMPLEX for zunbdb3
Array, DIMENSION (q).
Scalar factors of the elementary reflectors that define q_{1}.
INTEGER.
$=0$: successful exit
<0: if info $=-i$, the i-th argument has an illegal value.

See Also

?orcsd/?uncsd
?orcsd2by1/?uncsd2by1 Computes the CS decomposition of a block-partitioned orthogonal/ unitary matrix.
?orbdb1/?unbdb1 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
?orbdb2/?unbdb2 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
?orbdb 4 / ?unbdb4 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
?orbdb5/?unbdb5 Orthogonalizes a column vector with respect to the orthonormal basis matrix.
?orbdb6/?unbdb6 Orthogonalizes a column vector with respect to the orthonormal basis matrix.
xerbla

?orbdb4/?unbdb4

Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.

Syntax

```
call sorbdb4( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, phantom,
work, lwork, info )
call dorbdb4( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, phantom,
work, lwork, info )
call cunbdb4( m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, phantom,
work, lwork, info )
```

call zunbdb4 (m, p, q, x11, Idx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, phantom, work, lwork, info)

Include Files

- mkl.fi, lapack.f90

Description

The routines ? orbdb4/? unbdb4 simultaneously bidiagonalize the blocks of a tall and skinny matrix X with orthonormal columns:

$$
\left[\frac{x_{11}}{x_{21}}\right]=\left[\begin{array}{l|l}
p_{1} & \\
\hline & p_{2}
\end{array}\right]\left[\begin{array}{c}
b_{11} \\
0 \\
\frac{b_{21}}{} \\
0
\end{array}\right] q_{1}^{\mathrm{T}}
$$

The size of x_{11} is p by q, and x_{12} is $(m-p)$ by q. $m-q$ must not be larger than q, p, or $m-p$.
Tall and Skinny Matrix Routines

$q \leq \min (p, m-p, m-q)$?orbdb1/?unbdb1
$p \leq \min (q, m-p, m-q)$?orbdb2/?unbdb2
$m-p \leq \min (p, q, m-q)$?orbdb3/?unbdb3
$m-q \leq \min (p, q, m-p)$?orbdb4/?unbdb4

The orthogonal/unitary matrices p_{1}, p_{2}, and q_{1} are p-by- $p,(m-p)$-by- $(m-p),(m-q)$-by- $(m-q)$, respectively.
p_{1}, p_{2}, and q_{1} are represented as products of elementary reflectors. See the description of ?orcsd2by1/ ?uncsd2by1 for details on generating p_{1}, p_{2}, and q_{1} using ?orgqr and ?orglq.

The upper-bidiagonal matrices b_{11} and b_{12} of size ($m-q$) by ($m-q$) are represented implicitly by angles theta(1), ..., theta(q) and phi(1), ..., phi (q-1). Every entry in each bidiagonal band is a product of a sine or cosine of theta with a sine or cosine of phi. See [Sutton09] or the description of ?orcsd/?uncsd for details.

Input Parameters

m
p
q

INTEGER. The number of rows in x_{11} plus the number of rows in x_{21}.
INTEGER. The number of rows in $x_{11} .0 \leq p \leq m$.
INTEGER. The number of columns in x_{11} and $x_{21} .0 \leq q \leq m$ and $0 \leq m-q \leq$ $\min (p, m-p, q)$.

REAL for sorbdb4
DOUBLE PRECISION for dorbdb4
COMPLEX for cunbdb 4
DOUBLE COMPLEX for zunbdb4
Array, DIMENSION (Idx11,q).
On entry, the top block of the orthogonal/unitary matrix to be reduced.
INTEGER. The leading dimension of the array $X_{11} .1 d x 11 \geq p$.

REAL for sorbdb4
DOUBLE PRECISION for dorbdb4
COMPLEX for cunbdb4
DOUBLE COMPLEX for zunbdb4
Array, DIMENSION (/dx21,q).
On entry, the bottom block of the orthogonal/unitary matrix to be reduced.
Integer. The leading dimension of the array X_{21}. $1 d \times 21 \geq m-p$.
REAL for sorbdb4
DOUBLE PRECISION for dorbdb4
COMPLEX for cunbdb4
DOUBLE COMPLEX for zunbdb4
Workspace array, DIMENSION (lwork).
Integer. The size of the work array. lwork $\geq m-q$
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by xerbla.

Output Parameters

x11
$x 21$
theta
phi
taup1

On exit: the columns of tril (x11) specify reflectors for p_{1} and the rows of triu(x11,1) specify reflectors for q_{1}.

On exit, the columns of tril (x21) specify the reflectors for p_{2}
REAL for sorbdb4
DOUBLE PRECISION for dorbdb4
COMPLEX for cunbdb 4
DOUBLE COMPLEX for zunbdb4
Array, DIMENSION (q). The entries of bidiagonal blocks b_{11} and b_{21} can be computed from the angles theta and phi. See the Description section for details.

REAL for sorbdb4
DOUBLE PRECISION for dorbdb 4
COMPLEX for cunbdb 4
DOUBLE COMPLEX for zunbdb4
Array, DIMENSION $(q-1)$. The entries of bidiagonal blocks b_{11} and b_{21} can be computed from the angles theta and phi. See the Description section for details.

REAL for sorbdb4
DOUBLE PRECISION for dorbdb4

COMPLEX for cunbdb4
DOUBLE COMPLEX for zunbdb4
Array, DIMENSION (p).
Scalar factors of the elementary reflectors that define p_{1}.
taup2
tauq1
phantom
info

REAL for sorbdb4
DOUBLE PRECISION for dorbdb4
COMPLEX for cunbdb 4
DOUBLE COMPLEX for zunbdb4
Array, DIMENSION ($m-p$).
Scalar factors of the elementary reflectors that define p_{2}.
REAL for sorbdb4
DOUBLE PRECISION for dorbdb4
COMPLEX for cunbdb 4
DOUBLE COMPLEX for zunbdb4
Array, DIMENSION (q).
Scalar factors of the elementary reflectors that define q_{1}.
REAL for sorbdb4
DOUBLE PRECISION for dorbdb4
COMPLEX for cunbdb 4
DOUBLE COMPLEX for zunbdb4
Array, DIMENSION (m).
The routine computes an m-by-1 column vector y that is orthogonal to the columns of $[x 11 ; x 21]$. phantom $(1: p)$ and phantom $(p+1: m)$ contain Householder vectors for $y(1: p)$ and $y(p+1: m)$, respectively.

INTEGER.
$=0$: successful exit
<0 : if info $=-i$, the i-th argument has an illegal value.
See Also
?orcsd/?uncsd
?orcsd2by1/?uncsd2by1 Computes the CS decomposition of a block-partitioned orthogonal/ unitary matrix.
? orbdb1/?unbdb1 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
?orbdb2/?unbdb2 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
? orbdb3/?unbdb3 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
? orbdb5/?unbdb5 Orthogonalizes a column vector with respect to the orthonormal basis matrix. ? orbdb6/?unbdb6 Orthogonalizes a column vector with respect to the orthonormal basis matrix. xerbla

?orbdb5/?unbdb5

Orthogonalizes a column vector with respect to the orthonormal basis matrix.

Syntax

```
call sorbdb5( m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info )
call dorbdb5( m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info )
call cunbdb5( m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info )
call zunbdb5( m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info )
```


Include Files

- mkl.fi, lapack.f90

Description

The ?orbdb5/?unbdb5 routines orthogonalize the column vector

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

with respect to the columns of

$$
q=\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right]
$$

The columns of Q must be orthonormal.
If the projection is zero according to Kahan's "twice is enough" criterion, then some other vector from the orthogonal complement is returned. This vector is chosen in an arbitrary but deterministic way.

Input Parameters

m1
m2
n
x1
incxl

INTEGER
The dimension of $x 1$ and the number of rows in $q 1.0 \leq m 1$.
INTEGER
The dimension of $x 2$ and the number of rows in $q 2.0 \leq m 2$.
INTEGER
The number of columns in $q 1$ and $q 2.0 \leq n$.
REAL for sordb5
DOUBLE PRECISION for dordb5
COMPLEX for cundb5
COMPLEX*16 for zundb5
Array of size $m 1$.
The top part of the vector to be orthogonalized.
INTEGER

Increment for entries of x .
REAL for sordb5
DOUBLE PRECISION for dordb5
COMPLEX for cundb 5
COMPLEX*16 for zundb5
Array of size $m 2$.
The bottom part of the vector to be orthogonalized.
INTEGER
Increment for entries of $x 2$.
REAL for sordb5
DOUBLE PRECISION for dordb5
COMPLEX for cundb5
COMPLEX*16 for zundb5
Array of size ($I d q 1, n$).
The top part of the orthonormal basis matrix.
INTEGER
The leading dimension of $q 1$. $1 d q 1 \geq m 1$.
REAL for sordb5
DOUBLE PRECISION for dordb5
COMPLEX for cundb 5
COMPLEX*16 for zundb5
Array of size ($1 \mathrm{dq} 2, n$).
The bottom part of the orthonormal basis matrix.
INTEGER
The leading dimension of $q 2$. $1 d q 2 \geq m 2$.
REAL for sordb5
DOUBLE PRECISION for dordb5
COMPLEX for cundb5
COMPLEX*16 for zundb5
Workspace array of size lwork.
INTEGER
The size of the array work. lwork \geqq n.

Output Parameters

```
x2
info
The bottom part of the projected vector.
INTEGER.
\(=0\) : successful exit
\(<0\) : if info \(=-i\), the \(i\)-th argument has an illegal value.
```


See Also

?orcsd/?uncsd
?orcsd2by1/?uncsd2by1 Computes the CS decomposition of a block-partitioned orthogonal/ unitary matrix.
?orbdb1/?unbdb1 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
?orbdb2/?unbdb2 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
?orbdb3/?unbdb3 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
?orbdb4/?unbdb4 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
?orbdb6/?unbdb6 Orthogonalizes a column vector with respect to the orthonormal basis matrix. xerbla

?orbdb6/?unbdb6

Orthogonalizes a column vector with respect to the orthonormal basis matrix.

Syntax

```
call sorbdb6( m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info )
call dorbdb6( m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info )
call cunbdb6( m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info )
call zunbdb6( m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info )
```

Include Files

- mkl.fi, lapack.f90

Description

The ?orbdb6/?unbdb6 routines orthogonalize the column vector

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

with respect to the columns of

$$
q=\left[\begin{array}{l}
q_{1} \\
q_{2}
\end{array}\right]
$$

The columns of Q must be orthonormal.
If the projection is zero according to Kahan's "twice is enough" criterion, then the zero vector is returned.

Input Parameters

m1
m2
n

INTEGER
The dimension of $x 1$ and the number of rows in $q 1.0 \leq m 1$.
INTEGER
The dimension of $x 2$ and the number of rows in q2. $0 \leq m 2$.
INTEGER
The number of columns in $q 1$ and $q 2.0 \leq n$.
REAL for sordb5
DOUBLE PRECISION for dordb5
COMPLEX for cundb5
COMPLEX*16 for zundb5
Array of size $m 1$.
The top part of the vector to be orthogonalized.
INTEGER
Increment for entries of $x 1$.
REAL for sordb5
DOUBLE PRECISION for dordb5
COMPLEX for cundb5
COMPLEX*16 for zundb5
Array of size $m 2$.
The bottom part of the vector to be orthogonalized.
INTEGER
Increment for entries of $x 2$.
REAL for sordb5
DOUBLE PRECISION for dordb5
COMPLEX for cundb5
COMPLEX*16 for zundb5
Array of size ($1 \mathrm{dq} 1, \mathrm{n}$).
The top part of the orthonormal basis matrix.
INTEGER
The leading dimension of $q 1.1 d q 1 \geq m 1$.
REAL for sordb5
DOUBLE PRECISION for dordb5
COMPLEX for cundb5
COMPLEX*16 for zundb5

	Array of size $(1 \mathrm{dq} 2, n)$.
	The bottom part of the orthonormal basis matrix.
ldq2	INTEGER
Work	The leading dimension of q2. $1 \mathrm{dq} 2 \geq \mathrm{m} 2$.
	REAL for sordb5
	DOUBLE PRECISION for dordb5
	COMPLEX for cundb5
	COMPLEX*16 for zundb5
	Workspace array of size 1 work.
	INTEGER
	The size of the array work. 1 work $\geq n$.

Output Parameters

```
x1
x2
info
The top part of the projected vector.
The bottom part of the projected vector.
INTEGER.
= 0: successful exit
\(<0\) : if info \(=-i\), the \(i\)-th argument has an illegal value.
```


See Also

?orcsd/?uncsd
?orcsd2by1/?uncsd2by1 Computes the CS decomposition of a block-partitioned orthogonal/ unitary matrix.
? orbdb1/?unbdb1 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
?orbdb2/?unbdb2 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
?orbdb3/?unbdb3 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
? orbdb4/?unbdb4 Simultaneously bidiagonalizes the blocks of a tall and skinny matrix with orthonormal columns.
? orbdb5/?unbdb5 Orthogonalizes a column vector with respect to the orthonormal basis matrix.
xerbla
?org2l/?ung2l
Generates all or part of the orthogonal/unitary matrix
Q from a QL factorization determined by ?geqlf
(unblocked algorithm).
Syntax

```
call sorg2l( m, n, k, a, lda, tau, work, info )
call dorg2l( m, n, k, a, lda, tau, work, info )
```

```
call cung2l( m, n, k, a, lda, tau, work, info )
call zung2l( m, n, k, a, lda, tau, work, info )
```


Include Files

- mkl.fi

Description

The routine ?org2l/?ung2l generates an m-by-n real/complex matrix Q with orthonormal columns, which is defined as the last n columns of a product of k elementary reflectors of order m :

```
Q = H(k)* . .* H(2)*H(1) as returned by ?geqlf.
```


Input Parameters

m	INTEGER. The number of rows of the matrix Q. $m \geq 0$.
n	INTEGER. The number of columns of the matrix Q. $m \geq n \geq 0$.
k	INTEGER. The number of elementary reflectors whose product defines the matrix $Q . n \geq k \geq 0$.
a	REAL for sorg2l
	DOUBLE PRECISION for dorg2l
	COMPLEX for cung2l
	DOUBLE COMPLEX for zung2l.
	Array, DIMENSION (Ida,n).
	On entry, the $(n-k+i)$-th column must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ?geqlf in the last k columns of its array argument A.
Ida	INTEGER. The leading dimension of the array a. Ida $\max (1, m)$.
tau	REAL for sorg2l
	DOUBLE PRECISION for dorg2l
	COMPLEX for cung2l
	DOUBLE COMPLEX for zung2l.
	Array, DIMENSION (k).
	tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by ?geqle.
work	REAL for sorg2l
	DOUBLE PRECISION for dorg2l
	COMPLEX for cung2l
	DOUBLE COMPLEX for zung2l.
	Workspace array, DIMENSION (n).

Output Parameters

a
info

On exit, the m-by- n matrix Q.
INTEGER.
= 0: successful exit
<0 : if info $=-i$, the i-th argument has an illegal value

?org2r/?ung2r

Generates all or part of the orthogonal/unitary matrix
Q from a $Q R$ factorization determined by ?geqrf
(unblocked algorithm).

Syntax

```
call sorg2r( m, n, k, a, lda, tau, work, info )
call dorg2r( m, n, k, a, lda, tau, work, info )
call cung2r( m, n, k, a, lda, tau, work, info )
call zung2r( m, n, k, a, lda, tau, work, info )
```

Include Files

- mkl.fi

Description

The routine ?org $2 r /$?ung $2 r$ generates an m-by- n real/complex matrix Q with orthonormal columns, which is defined as the first n columns of a product of k elementary reflectors of order m
$Q=H(1) * H(2) * \ldots * H(k)$
as returned by ?geqre.

Input Parameters

m	INTEGER. The number of rows of the matrix $Q . m \geq 0$.
n	INTEGER. The number of columns of the matrix Q. $m \geq n \geq 0$.
k	INTEGER. The number of elementary reflectors whose product defines the matrix $Q . n \geq k \geq 0$.
a	REAL for sorg2r
	DOUBLE PRECISION for dorg2r
	COMPLEX for cung2r
	DOUBLE COMPLEX for zung2r.
	Array, DIMENSION (Ida, n).
	On entry, the i-th column must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ?geqrf in the first k columns of its array argument a.
Ida	INTEGER. The first DIMENSION of the array a. $1 \mathrm{da} \geq \mathrm{max}(1, m)$

```
tau
work
REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
DOUBLE COMPLEX for zung2r.
Array, DIMENSION (k).
tau( \(i\) ) must contain the scalar factor of the elementary reflector \(H(i)\), as returned by ?geqre.
REAL for sorg2r
DOUBLE PRECISION for dorg2r
COMPLEX for cung2r
DOUBLE COMPLEX for zung2r.
Workspace array, DIMENSION (n).
```


Output Parameters

a
info
On exit, the m-by-n matrix Q.
INTEGER.
= 0: successful exit
<0 : if info $=-i$, the i-th argument has an illegal value

?orgl2/?ungl2

Generates all or part of the orthogonal/unitary matrix
Q from an $L Q$ factorization determined by ?gelqf
(unblocked algorithm).

Syntax

```
call sorgl2( m, n, k, a, lda, tau, work, info )
call dorgl2( m, n, k, a, lda, tau, work, info )
call cungl2( m, n, k, a, lda, tau, work, info )
call zungl2( m, n, k, a, lda, tau, work, info )
```

Include Files

- mkl.fi

Description

The routine ?orgl2/?ungl2 generates a m-by-n real/complex matrix Q with orthonormal rows, which is defined as the first m rows of a product of k elementary reflectors of order n
$Q=H(k){ }^{\star} \ldots{ }^{\star} H(2){ }^{\star} H(1)$ for real flavors, or $Q=(H(k))^{H_{\star}} \ldots{ }^{\star}(H(2))^{H_{\star}}(H(1))^{H}$ for complex flavors as returned by ?gelqf.

Input Parameters

n
k
a

Ida

tau
work

INTEGER. The number of columns of the matrix Q. $n \geq m$.
INTEGER. The number of elementary reflectors whose product defines the matrix $Q . m \geq k \geq 0$.

REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
DOUBLE COMPLEX for zungl2.
Array, DIMENSION (Ida, n). On entry, the i-th row must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ?gelqf in the first k rows of its array argument a.

INTEGER. The leading dimension of the array a. $1 d a \geq \max (1, m)$.
REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
DOUBLE COMPLEX for zungl2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by ?gelqf.

REAL for sorgl2
DOUBLE PRECISION for dorgl2
COMPLEX for cungl2
DOUBLE COMPLEX for zungl2.
Workspace array, DIMENSION (m).

Output Parameters

a

On exit, the m-by-n matrix Q.
INTEGER.
$=0$: successful exit
< 0 : if info $=-i$, the i-th argument has an illegal value.

?orgr2/?ungr2

Generates all or part of the orthogonal/unitary matrix
Q from an $R Q$ factorization determined by ?gerqf (unblocked algorithm).

Syntax

```
call sorgr2( m, n, k, a, lda, tau, work, info )
call dorgr2( m, n, k, a, lda, tau, work, info )
call cungr2( m, n, k, a, lda, tau, work, info )
```

```
call zungr2( m, n, k, a, lda, tau, work, info )
```


Include Files

- mkl.fi

Description

The routine ?orgr2/?ungr2 generates an m-by-n real matrix Q with orthonormal rows, which is defined as the last m rows of a product of k elementary reflectors of order n
$Q=H(1){ }^{\star} H(2) \star \ldots{ }^{\star} H(k)$ for real flavors, or $Q=(H(1))^{H_{\star}}(H(2))^{H_{\star}} \ldots *(H(k))^{H}$ for complex flavors as returned by ?gerqf.

Input Parameters

m	INTEGER. The number of rows of the matrix $Q . m \geq 0$.
n	INTEGER. The number of columns of the matrix $Q . n \geq m$
k	INTEGER.

The number of elementary reflectors whose product defines the matrix Q. $m \geq k \geq 0$.

REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
DOUBLE COMPLEX for zungr2.
Array, DIMENSION (Ida, n).
On entry, the ($m-k+i$)-th row must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ?gerqf in the last k rows of its array argument a.

INTEGER. The leading dimension of the array a. Ida $\max (1, m)$.
REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
DOUBLE COMPLEX for zungr2.
Array, DIMENSION (k).tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by ?gerqf.

REAL for sorgr2
DOUBLE PRECISION for dorgr2
COMPLEX for cungr2
DOUBLE COMPLEX for zungr2.
Workspace array, DIMENSION (m).

Output Parameters

a
info

On exit, the m-by- n matrix Q.
INTEGER.
= 0: successful exit
< 0 : if info $=-i$, the i-th argument has an illegal value

?orm2l/?unm2l

Multiplies a general matrix by the orthogonal/unitary
matrix from a QL factorization determined by ?geqlf (unblocked algorithm).

Syntax

```
call sorm2l( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call dorm2l( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call cunm2l( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call zunm2l( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
```

Include Files

- mkl.fi

Description

The routine ?orm2l/?unm2l overwrites the general real/complex m-by-n matrix C with $Q^{\star} C$ if side $=$ 'L' and trans $=$ ' N ', or
$Q^{T \star} C / Q^{H \star} C$ if side = 'L' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors), or
$C^{\star} Q$ if side $=$ ' R ' and trans $=' N$ ', or
$C^{\star} Q^{T} / C^{\star} Q^{H}$ if side $=$ 'R' and trans $=' T$ ' (for real flavors) or trans = ' C' (for complex flavors).
Here Q is a real orthogonal or complex unitary matrix defined as the product of k elementary reflectors $Q=H(k) \star \ldots \star H(2) \star H(1)$ as returned by ?geqlf.
Q is of order m if side $=$ 'L' and of order n if side $=$ 'R'.

Input Parameters

side
trans
m

CHARACTER*1.
$=$ 'L': apply Q or Q^{T} / Q^{H} from the left
$=$ 'R': apply Q or Q^{T} / Q^{H} from the right
CHARACTER*1.
$=$ 'N': apply Q (no transpose)
$=$ 'T': apply Q^{T} (transpose, for real flavors)
$=$ 'C': apply Q^{H} (conjugate transpose, for complex flavors)
INTEGER. The number of rows of the matrix C. $m \geq 0$.

INTEGER. The number of columns of the matrix $C . n \geq 0$.
INTEGER. The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ ' R ', $n \geq k \geq 0$.
REAL for sorm21
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
DOUBLE COMPLEX for zunm2l.
Array, DIMENSION ($/ d a, k$).
The i-th column must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ? geqle in the last k columns of its array argument a. The array a is modified by the routine but restored on exit.

INTEGER. The leading dimension of the array a.
If side $=$ 'L', $\operatorname{lda} \geq \max (1, m)$
if side $=$ 'R', Ida $\geq \max (1, n)$.
REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
DOUBLE COMPLEX for zunm2l.
Array, DIMENSION (k). tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by ?geqle.

REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
DOUBLE COMPLEX for zunm2l.
Array, DIMENSION (Idc, n).
On entry, the m-by- n matrix C.
INTEGER. The leading dimension of the array C. $1 d c \geq \max (1, m)$.
REAL for sorm2l
DOUBLE PRECISION for dorm2l
COMPLEX for cunm2l
DOUBLE COMPLEX for zunm2l.
Workspace array, DIMENSION:
(n) if side $=$ 'L',
(m) if side $=$ ' R^{\prime}.

Output Parameters

c
info

On exit, c is overwritten by $Q^{\star} C$ or $Q^{T *} C / Q^{H \star} C$, or $C^{\star} Q$, or $C^{\star} Q^{T} / C^{\star} Q^{H}$. INTEGER.
$=0$: successful exit
<0 : if info $=-i$, the i-th argument had an illegal value

?orm2r/?unm2r

Multiplies a general matrix by the orthogonal/unitary
matrix from a $Q R$ factorization determined by ?geqrf (unblocked algorithm).

Syntax

```
call sorm2r( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call dorm2r( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call cunm2r( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call zunm2r( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
```


Include Files

- mkl.fi

Description

The routine ?orm $2 r /$?unm $2 r$ overwrites the general real/complex m-by- n matrix C with
$Q^{\star} C$ if side $=$ 'L' and trans $=$ 'N', or
$Q^{T \star} C / Q^{H \star} C$ if side = 'L' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors), or
$C^{\star} Q$ if side $=$ ' R ' and trans $=' N$ ', or
$C^{\star} Q^{T} / C^{\star} Q^{H}$ if side $=$ 'R' and trans $=' T$ ' (for real flavors) or trans $=$ ' C^{\prime} (for complex flavors).
Here Q is a real orthogonal or complex unitary matrix defined as the product of k elementary reflectors $Q=H(1) * H(2) * \ldots * H(k)$ as returned by ?geqrf.
Q is of order m if side $=$ 'L' and of order n if side $=$ 'R'.

Input Parameters

side
trans

```
CHARACTER*1.
    = 'L': apply Q or QT / Q Q from the left
    = 'R': apply Q or Q Q / Q from the right
    CHARACTER*1.
    = 'N': apply Q (no transpose)
    = 'T': apply Q (transpose, for real flavors)
    = 'C': apply QH (conjugate transpose, for complex flavors)
```

m

INTEGER. The number of rows of the matrix C. $m \geq 0$.
INTEGER. The number of columns of the matrix C. $n \geq 0$.
INTEGER. The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ ' R ', $n \geq k \geq 0$.
REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
DOUBLE COMPLEX for zunm2r.
Array, DIMENSION (Ida,k).
The i-th column must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ? geqrf in the first k columns of its array argument a. The array a is modified by the routine but restored on exit.

INTEGER. The leading dimension of the array a.
If side $=$ 'L', lda $\geq \max (1, m)$;
if side $=$ 'R', lda $\max (1, n)$.
REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
DOUBLE COMPLEX for zunm2r.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by ?geqrf.

REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
DOUBLE COMPLEX for zunm2r.
Array, DIMENSION ($/ d c, n$).
On entry, the m-by- n matrix C.
INTEGER. The leading dimension of the array c. $1 d c \geq \max (1, m)$.
REAL for sorm2r
DOUBLE PRECISION for dorm2r
COMPLEX for cunm2r
DOUBLE COMPLEX for zunm2r.

Workspace array, DIMENSION
(n) if side $=$ 'L',
(m) if side = 'R'.

Output Parameters

c
info

On exit, c is overwritten by $Q^{\star} C$ or $Q^{T *} C / Q^{H \star} C$, or $C^{\star} Q$, or $C^{\star} Q^{T} / C^{\star} Q^{H}$.
INTEGER.
$=0$: successful exit
< 0: if info $=-i$, the i-th argument had an illegal value

?orml2/?unml2

Multiplies a general matrix by the orthogonal/unitary matrix from a $L Q$ factorization determined by ?gelqf (unblocked algorithm).

Syntax

```
call sorml2( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call dorml2( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call cunml2( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call zunml2( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
```

Include Files

- mkl.fi

Description

The routine ?orml2/?unml2 overwrites the general real/complex m-by-n matrix C with $Q^{\star} C$ if side $=$ 'L' and trans $=$ ' N ', or
$Q^{T \star} C / Q^{H \star} C$ if side $=$ 'L' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors), or $C^{\star} Q$ if side $=$ ' R^{\prime} and trans $=$ ' N ', or
$C^{\star} Q^{T} / C^{\star} Q^{H}$ if side $=$ 'R' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors).
Here Q is a real orthogonal or complex unitary matrix defined as the product of k elementary reflectors $Q=H(k){ }^{*} \ldots{ }^{\star} H(2){ }^{*} H(1)$ for real flavors, or $Q=(H(k))^{H_{\star}} \ldots{ }^{\star}(H(2))^{H_{\star}}(H(1))^{H}$ for complex flavors as returned by ?gelqf.
Q is of order m if side $=$ 'L' and of order n if side $=$ 'R'.

Input Parameters

```
side
trans
    CHARACTER*1.
    = 'L': apply Q or QT / Q ' from the left
    = 'R': apply Q or Q Q / Q from the right
    CHARACTER*1.
```

$=$ 'N': apply Q (no transpose)
$=$ 'T': apply Q^{T} (transpose, for real flavors)
$=$ ' C': apply Q^{H} (conjugate transpose, for complex flavors)
INTEGER. The number of rows of the matrix $C . m \geq 0$.
INTEGER. The number of columns of the matrix C. $n \geq 0$.
INTEGER. The number of elementary reflectors whose product defines the matrix Q.

If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ 'R', $n \geq k \geq 0$.
REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
DOUBLE COMPLEX for zunml2.
Array, DIMENSION
(Ida, m) if side = 'L',
$(I d a, n)$ if side = 'R'
The i-th row must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ?gelqf in the first k rows of its array argument a. The array a is modified by the routine but restored on exit.

INTEGER. The leading dimension of the array a. $1 d a \geq \max (1, k)$.
REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
DOUBLE COMPLEX for zunml2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by ?gelqf.

REAL for sorml2
DOUBLE PRECISION for dorml2
COMPLEX for cunml2
DOUBLE COMPLEX for zunml2.
Array, DIMENSION (Idc, n) On entry, the m-by-n matrix C.
INTEGER. The leading dimension of the array c. $1 d c \geq \max (1, m)$.
REAL for sorml2
DOUBLE PRECISION for dorml2

COMPLEX for cunml2
DOUBLE COMPLEX for zunml2.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side $=$ ' R^{\prime}

Output Parameters

```
c
info
```

On exit, c is overwritten by $Q^{\star} C$ or $Q^{T *} C / Q^{H *} C$, or $C^{\star} Q$, or $C^{\star} Q^{T} / C^{\star} Q^{H}$.
INTEGER.
= 0: successful exit
< 0 : if info $=-i$, the i-th argument had an illegal value

?ormr2/?unmr2

Multiplies a general matrix by the orthogonal/unitary matrix from a $R Q$ factorization determined by ?gerqf (unblocked algorithm).

Syntax

```
call sormr2( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call dormr2( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call cunmr2( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
call zunmr2( side, trans, m, n, k, a, lda, tau, c, ldc, work, info )
```

Include Files

- mkl.fi

Description

The routine ?ormr2/?unmr2 overwrites the general real/complex m-by-n matrix C with $Q^{\star} C$ if side $=$ 'L' and trans $=$ ' N ', or
$Q^{T \star} C / Q^{H \star} C$ if side = 'L' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors), or $C^{\star} Q$ if side $=$ ' R ' and trans $=' N$ ', or $C^{\star} Q^{T} / C^{\star} Q^{H}$ if side $=$ 'R' and trans $=$ ' T^{\prime} (for real flavors) or trans $={ }^{\prime} C^{\prime}$ (for complex flavors).

Here Q is a real orthogonal or complex unitary matrix defined as the product of k elementary reflectors $Q=H(1){ }^{*} H(2) * \ldots * H(k)$ for real flavors, or $Q=(H(1))^{H \star}(H(2))^{H \star} \ldots{ }^{*}(H(k))^{H}$ as returned by ? gerqf. Q is of order m if side $=$ 'L' and of order n if side $=$ 'R'.

Input Parameters

side
CHARACTER*1.
$=$ 'L': apply Q or Q^{T} / Q^{H} from the left
$=$ 'R': apply Q or Q^{T} / Q^{H} from the right

CHARACTER*1.
= 'N': apply Q (no transpose)
$=$ ' ${ }^{T}$ ': apply Q^{T} (transpose, for real flavors)
$=$ ' C': apply Q^{H} (conjugate transpose, for complex flavors)
Integer. The number of rows of the matrix $C . m \geq 0$.
INTEGER. The number of columns of the matrix C. $n \geq 0$.
integer. The number of elementary reflectors whose product defines the matrix Q.

If side = 'L', $m \geq k \geq 0$;
if side $=$ 'R', $n \geq k \geq 0$.
REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
DOUBLE COMPLEX for zunmr2.
Array, DIMENSION
$(I d a, m)$ if side = 'L',
$(I d a, n)$ if side = 'R'
The i-th row must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ?gerqf in the last k rows of its array argument a. The array a is modified by the routine but restored on exit.

INTEGER.
The leading dimension of the array a. Id $a \geq \max (1, k)$.
REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
DOUBLE COMPLEX for zunmr2.
Array, DIMENSION (k).
tau(i) must contain the scalar factor of the elementary reflector $H(i)$, as returned by ?gerqf.

REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
DOUBLE COMPLEX for zunmr2.
Array, DIMENSION ($/ d c, n$).
On entry, the m-by- n matrix C.

```
ldc
work
INTEGER. The leading dimension of the array \(c .1 d c \geq \max (1, m)\).
REAL for sormr2
DOUBLE PRECISION for dormr2
COMPLEX for cunmr2
DOUBLE COMPLEX for zunmr2.
Workspace array, DIMENSION
\((n)\) if side = 'L',
( \(m\) ) if side \(=\) ' \(\mathrm{R}^{\prime}\)
```


Output Parameters

c
info

On exit, c is overwritten by $Q^{\star} C$ or $Q^{T *} C / Q^{H *} C$, or $C^{\star} Q$, or $C^{\star} Q^{T} / C^{\star} Q^{H}$. INTEGER.
= 0: successful exit
<0 : if info $=-i$, the i-th argument had an illegal value

?ormr3/?unmr3

Multiplies a general matrix by the orthogonal/unitary
matrix from a RZ factorization determined by ?tzrzf
(unblocked algorithm).

Syntax

```
call sormr3( side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info )
call dormr3( side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info )
call cunmr3( side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info )
call zunmr3( side, trans, m, n, k, l, a, lda, tau, c, ldc, work, info )
```

Include Files

- mkl.fi

Description

The routine ?ormr3/?unmr3 overwrites the general real/complex m-by-n matrix C with $Q^{*} C$ if side $=$ 'L' and trans $=$ ' N ', or
$Q^{T \star} C / Q^{H \star} C$ if side = 'L' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors), or $C^{\star} Q$ if side $=' R$ ' and trans $=' N$ ', or
$C^{\star} Q^{T} / C^{\star} Q^{H}$ if side = 'R' and trans = 'T' (for real flavors) or trans = 'C' (for complex flavors).
Here Q is a real orthogonal or complex unitary matrix defined as the product of k elementary reflectors $Q=H(1) * H(2) * \ldots * H(k)$ as returned by ?tzrzf.
Q is of order m if side $=$ 'L' and of order n if side $=$ 'R'.

Input Parameters

side

trans
m
n
k

1
a

Ida
tau

CHARACTER*1.
$=$ 'L': apply Q or Q^{T} / Q^{H} from the left
$=$ ' R^{\prime} : apply Q or Q^{T} / Q^{H} from the right
CHARACTER*1.
$=$ ' N ': apply Q (no transpose)
$=$ ' T ': apply Q^{T} (transpose, for real flavors)
$=$ ' C': apply Q^{H} (conjugate transpose, for complex flavors)
INTEGER. The number of rows of the matrix C. $m \geq 0$.
INTEGER. The number of columns of the matrix C. $n \geq 0$.
INTEGER. The number of elementary reflectors whose product defines the matrix Q.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ 'R', $n \geq k \geq 0$.
INTEGER. The number of columns of the matrix A containing the meaningful part of the Householder reflectors.

$$
\begin{aligned}
& \text { If side }=\text { 'L', } m \geq 1 \geq 0, \\
& \text { if side }=\text { 'R', } n \geq 1 \geq 0 .
\end{aligned}
$$

REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
DOUBLE COMPLEX for zunmr3.
Array, DIMENSION
(Ida, m) if side = 'L',
(Ida, n) if side = 'R'
The i-th row must contain the vector which defines the elementary reflector $H(i)$, for $i=1,2, \ldots, k$, as returned by ?tzrzf in the last k rows of its array argument a. The array a is modified by the routine but restored on exit.

INTEGER.
The leading dimension of the array $a . l d a \geq \max (1, k)$.
REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
DOUBLE COMPLEX for zunmr3.
Array, DIMENSION (k).

```
                                    tau(i) must contain the scalar factor of the elementary reflector H(i), as
                                    returned by ?tzrzf.
REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
DOUBLE COMPLEX for zunmr3.
Array, DIMENSION (Idc, n).
On entry, the m-by-n matrix C.
INTEGER. The leading dimension of the array c. Idc\geq max (1,m).
REAL for sormr3
DOUBLE PRECISION for dormr3
COMPLEX for cunmr3
DOUBLE COMPLEX for zunmr3.
Workspace array, DIMENSION
(n) if side = 'L',
(m) if side = 'R'.
```


Output Parameters

```
c
info
```

On exit, c is overwritten by $Q^{\star} C$ or $Q^{T *} C / Q^{H \star} C$, or $C^{\star} Q$, or $C^{\star} Q^{T} / C^{\star} Q^{H}$. INTEGER.
$=0$: successful exit
<0 : if info $=-i$, the i-th argument had an illegal value

?pbtf2

Computes the Cholesky factorization of a symmetric/
Hermitian positive-definite band matrix (unblocked algorithm).

Syntax

```
call spbtf2( uplo, n, kd, ab, ldab, info )
call dpbtf2( uplo, n, kd, ab, ldab, info )
call cpbtf2( uplo, n, kd, ab, ldab, info )
call zpbtf2( uplo, n, kd, ab, ldab, info )
```

Include Files

- mkl.fi

Description

The routine computes the Cholesky factorization of a real symmetric or complex Hermitian positive definite band matrix A.

The factorization has the form
$A=U^{T} \star U$ for real flavors, $A=U^{H \star} U$ for complex flavors if uplo $=' U '$, or
$A=L^{\star} L^{T}$ for real flavors, $A=L^{\star} L^{H}$ for complex flavors if uplo $=' L '$,
where U is an upper triangular matrix, and L is lower triangular. This is the unblocked version of the algorithm, calling BLAS Level 2 Routines.

Input Parameters

uplo
n
kd
ab

Idab

Output Parameters

$a b$
info

CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix A is stored:
= 'U': upper triangular
$=$ 'L': lower triangular
INTEGER. The order of the matrix $A . n \geq 0$.
INTEGER. The number of super-diagonals of the matrix A if uplo = 'U', or the number of sub-diagonals if uplo = 'L'.
$k o \geq 0$.
REAL for spbtf2
DOUBLE PRECISION for dpbtf2
COMPLEX for cpbtf2
DOUBLE COMPLEX for zpbtf2.
Array, DIMENSION ($/ d a b, n$).
On entry, the upper or lower triangle of the symmetric/ Hermitian band matrix A, stored in the first $k d+1$ rows of the array. The j-th column of A is stored in the j-th column of the array $a b$ as follows:
if uplo = 'U', ab $(k d+1+i-j, j)=A(i, j$ for max $(1, j-k d) \leq i \leq j$; if uplo = 'L', ab $(1+i-j, j)=A(i, j$ for $j \leq i \leq \min (n, j+k d)$.

INTEGER. The leading dimension of the array $a b$. $1 d a b \geq k d+1$.

On exit, If info $=0$, the triangular factor U or L from the Cholesky factorization $A=U^{T \star} U\left(A=U^{H \star} U\right)$, or $A=L^{\star} L^{T}\left(A=L^{\star} L^{H}\right)$ of the band matrix A, in the same storage format as A.

INTEGER.
$=0$: successful exit
<0 : if info $=-k$, the k-th argument had an illegal value
> 0 : if info $=k$, the leading minor of order k is not positive definite, and the factorization could not be completed.

?potf2

Computes the Cholesky factorization of a symmetric/
Hermitian positive-definite matrix (unblocked algorithm).

Syntax

```
call spotf2( uplo, n, a, lda, info )
call dpotf2( uplo, n, a, lda, info )
call cpotf2( uplo, n, a, lda, info )
call zpotf2( uplo, n, a, lda, info )
```


Include Files

- mkl.fi

Description

The routine ?potf2 computes the Cholesky factorization of a real symmetric or complex Hermitian positive definite matrix A. The factorization has the form
$A=U^{T} * U$ for real flavors, $A=U^{H \star} U$ for complex flavors if uplo $=' U '$, or
$A=L^{\star} L^{T}$ for real flavors, $A=L^{\star} L^{H}$ for complex flavors if uplo = 'L',
where U is an upper triangular matrix, and L is lower triangular.
This is the unblocked version of the algorithm, calling BLAS Level 2 Routines

Input Parameters

uplo
n
a

CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix A is stored.
= 'U': upper triangular
= 'L': lower triangular
INTEGER. The order of the matrix $A . n \geq 0$.
REAL for spotf2
DOUBLE PRECISION or dpotf2
COMPLEX for cpotf2
DOUBLE COMPLEX for zpotf2.
Array, DIMENSION (Ida, n).
On entry, the symmetric/Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of a contains the upper triangular part of the matrix A, and the strictly lower triangular part of a is not referenced.

If uplo = 'L', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.

INTEGER. The leading dimension of the array a.
$I d a \geq \max (1, n)$.

Output Parameters

a
On exit, If info $=0$, the factor U or L from the Cholesky factorization $A=U^{T} \star U\left(A=U^{H \star} U\right)$, or $A=L^{\star} L^{T}\left(A=L^{\star} L^{H}\right)$.

INTEGER.
= 0 : successful exit
<0 : if info $=-k$, the k-th argument had an illegal value
>0 : if info $=k$, the leading minor of order k is not positive definite, and the factorization could not be completed.

?ptts2
 Solves a tridiagonal system of the form $A * X=B$ using the $L^{\star} D^{\star} L^{H} / L^{\star} D^{\star} L^{H}$ factorization computed by ?pttrf.

Syntax

```
call sptts2( n, nrhs, d, e, b, ldb )
call dptts2( n, nrhs, d, e, b, ldb )
call cptts2( iuplo, n, nrhs, d, e, b, ldb )
call zptts2( iuplo, n, nrhs, d, e, b, ldb )
```


Include Files

- mkl.fi

Description

The routine ? ptts 2 solves a tridiagonal system of the form
$A * X=B$
Real flavors sptts2/dptts2 use the $L^{\star} D^{\star} L^{T}$ factorization of A computed by spttrf/dpttrf, and complex flavors cptts2/zptts2 use the $U^{H \star} D^{\star} U$ or $L^{\star} D^{\star} L^{H}$ factorization of A computed by cpttrf/zpttrf.
D is a diagonal matrix specified in the vector $d, U($ or L) is a unit bidiagonal matrix whose superdiagonal (subdiagonal) is specified in the vector e, and X and B are n-by-nrhs matrices.

Input Parameters

iuplo
n

INTEGER. Used with complex flavors only.
Specifies the form of the factorization, and whether the vector e is the superdiagonal of the upper bidiagonal factor U or the subdiagonal of the lower bidiagonal factor L.
$=1: A=U^{H \star} D^{\star} U, e$ is the superdiagonal of U;
$=0: A=L^{\star} D^{\star} L^{H}, e$ is the subdiagonal of L
INTEGER. The order of the tridiagonal matrix $A . n \geq 0$.
nrhs
d
e

B
$1 d b$

INTEGER. The number of right hand sides, that is, the number of columns of the matrix B. nrhs ≥ 0.

REAL for sptts2/cptts2
DOUBLE PRECISION for dptts2/zptts2.
Array, DIMENSION (n).
The n diagonal elements of the diagonal matrix D from the factorization of A.

REAL for sptts2
DOUBLE PRECISION for dptts2
COMPLEX for cptts2
DOUBLE COMPLEX for zptts2.
Array, DIMENSION ($n-1$).
Contains the ($n-1$) subdiagonal elements of the unit bidiagonal factor L from the $L^{\star} D^{\star} L^{T}$ (for real flavors) or $L^{\star} D^{\star} L^{H}$ (for complex flavors when iuplo = 0) factorization of A.

For complex flavors when iuplo $=1$, e contains the ($n-1$) superdiagonal elements of the unit bidiagonal factor U from the factorization $A=U^{H \star} D^{\star} U$.

REAL for sptts2/cptts2
DOUBLE PRECISION for dptts2/zptts2.
Array, DIMENSION (/db, nrhs).
On entry, the right hand side vectors B for the system of linear equations.
INTEGER. The leading dimension of the array $B . I d b \geq \max (1, n)$.

Output Parameters

b
On exit, the solution vectors, X.
?rscl
Multiplies a vector by the reciprocal of a real scalar.
Syntax

```
call srscl( n, sa, sx, incx )
call drscl( n, sa, sx, incx )
call csrscl( n, sa, sx, incx )
call zdrscl( n, sa, sx, incx )
```

Include Files

- mkl.fi

Description

The routine ?rscl multiplies an n-element real/complex vector x by the real scalar $1 / a$. This is done without overflow or underflow as long as the final result x / a does not overflow or underflow.

Input Parameters

n
sa

SX
incx

INTEGER. The number of components of the vector x.
REAL for srscl/csrscl
DOUBLE PRECISION for drscl/zdrscl.
The scalar a which is used to divide each component of the vector x. sa must be ≥ 0, or the subroutine will divide by zero.

REAL for srscl
DOUBLE PRECISION for drscl
COMPLEX for csrscl
DOUBLE COMPLEX for zdrscl.
Array, DIMENSION(1+(n-1)*|incx|).
The n-element vector x.
INTEGER. The increment between successive values of the vector $s x$.
If incx $>0, s x(1)=x(1)$, and $s x(1+(i-1) * i n c x)=x(i), 1<i \leq n$.

Output Parameters

$s x$
On exit, the result x / a.

?syswapr

Applies an elementary permutation on the rows and columns of a symmetric matrix.

Syntax

```
call ssyswapr( uplo, n, a, lda, il, i2 )
call dsyswapr( uplo, n, a, lda, il, i2 )
call csyswapr( uplo, n, a, lda, il, i2 )
call zsyswapr( uplo, n, a, lda, il, i2 )
call syswapr( a,il,i2[,uplo] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine applies an elementary permutation on the rows and columns of a symmetric matrix.

Input Parameters

The data types are given for the Fortran interface.

> uplo

CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix A has been factored:

```
    If uplo = 'U', the array a stores the upper triangular factor U of the factorization \(A=U \star D^{\star} U^{T}\).
If uplo = 'L', the array a stores the lower triangular factor \(L\) of the factorization \(A=L^{\star} D^{\star} L^{T}\).
INTEGER. The order of matrix \(A ; n \geq 0\).
INTEGER. The number of right-hand sides; nrhs \(\geq 0\).
REAL for ssyswapr
DOUBLE PRECISION for dsyswapr
COMPLEX for csyswapr
DOUBLE COMPLEX for zsyswapr
Array of size (Ida, n).
The array a contains the block diagonal matrix \(D\) and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?sytrf.
INTEGER. The leading dimension of the array a. Ida \(\geq \max (1, n)\).
INTEGER. Index of the first row to swap.
INTEGER. Index of the second row to swap.
```


Output Parameters

If info $=0$, the symmetric inverse of the original matrix.
If info = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced.
If info = 'L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine syswapr interface are as follows:

a	Holds the matrix A of size (n, n).
i1	Holds the index for swap.
i2	Holds the index for swap.
uplo	Indicates how the matrix A has been factored. Must be 'U' or 'L'.

See Also

?sytrf

?heswapr

Applies an elementary permutation on the rows and columns of a Hermitian matrix.

Syntax

```
call cheswapr( uplo, n, a, lda, il, i2 )
call zheswapr( uplo, n, a, lda, il, i2 )
call heswapr( a, il, i2 [,uplo] )
```

Include Files

- mkl.fi, lapack.f90

Description

The routine applies an elementary permutation on the rows and columns of a Hermitian matrix.

Input Parameters

The data types are given for the Fortran interface.

```
uplo CHARACTER*1.Must be 'U' or 'L'.
    Indicates how the input matrix }A\mathrm{ has been factored:
    If uplo = 'U', the array a stores the upper triangular factor U of the
    factorization A = U* D* U'H
    If uplo = 'L', the array a stores the lower triangular factor L of the
    factorization A = L*D* L'H.
    INTEGER. The order of matrix A; n\geq0.
    INTEGER. The number of right-hand sides; nrhs\geq0.
    COMPLEX for cheswapr
    DOUBLE COMPLEX for zheswapr
    Array of size (Ida, n).
    The array a contains the block diagonal matrix D and the multipliers used to
    obtain the factor U or L as computed by ?hetrf.
    INTEGER. The leading dimension of the array a. Ida\geqmax (1,n).
    INTEGER. Index of the first row to swap.
    INTEGER. Index of the second row to swap.
```


Output Parameters

a
If info $=0$, the inverse of the original matrix.
If info = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced.
If info = 'L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.

Specific details for the routine heswapr interface are as follows:

a	Holds the matrix A of size (n, n).
il	Holds the index for swap.
i2	Holds the index for swap.
uplo	Must be 'U' or 'L'.

See Also

?hetrf
?syswapr1
?syswapr1
Applies an elementary permutation on the rows and columns of a symmetric matrix.

Syntax

```
call ssyswaprl( uplo, n, a, lda, il, i2 )
call dsyswapr1( uplo, n, a, lda, il, i2 )
call csyswaprl( uplo, n, a, lda, il, i2 )
call zsyswaprl( uplo, n, a, lda, il, i2 )
call syswapr1( a,il,i2[,uplo] )
```


Include Files

- mkl.fi, lapack.f90

Description

The routine applies an elementary permutation on the rows and columns of a symmetric matrix.

Input Parameters

```
uplo
n
nrhs
a
CHARACTER*1. Must be 'U' or 'L'.
Indicates how the input matrix }A\mathrm{ has been factored:
If uplo = 'U', the array a stores the upper triangular factor U of the
factorization A =U*D* UT
If uplo = 'L', the array a stores the lower triangular factor L of the
factorization A = L*D* * L'.
INTEGER. The order of matrix A; n\geq0.
INTEGER. The number of right-hand sides; nrhs\geq0.
REAL for ssyswapr1
DOUBLE PRECISION for dsyswapr1
COMPLEX for csyswapr1
DOUBLE COMPLEX for zsyswapr1
Array of dimension (lda,n).
```

The array a contains the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ?sytrf.

INTEGER. The leading dimension of the array a. Ida $a \max (1, n)$.
INTEGER. Index of the first row to swap.
INTEGER. Index of the second row to swap.

Output Parameters

a
If info $=0$, the symmetric inverse of the original matrix.
If info = 'U', the upper triangular part of the inverse is formed and the part of A below the diagonal is not referenced.

If info = 'L', the lower triangular part of the inverse is formed and the part of A above the diagonal is not referenced.

LAPACK 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or reconstructible arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine syswapr1 interface are as follows:

a	Holds the matrix A of size (n, n).
i1	Holds the index for swap.
i2	Holds the index for swap.
uplo	Indicates how the matrix A has been factored. Must be ' U' or 'L'.

See Also

?sytrf

?sygs2/?hegs2

Reduces a symmetric/Hermitian positive-definite generalized eigenproblem to standard form, using the factorization results obtained from ?potrf (unblocked algorithm).

Syntax

```
call ssygs2( itype, uplo, n, a, lda, b, ldb, info )
call dsygs2( itype, uplo, n, a, lda, b, ldb, info )
call chegs2( itype, uplo, n, a, lda, b, ldb, info )
call zhegs2( itype, uplo, n, a, lda, b, ldb, info )
```

Include Files

- mkl.fi

Description

The routine ?sygs2/?hegs2 reduces a real symmetric-definite or a complex Hermitian positive-definite generalized eigenproblem to standard form.

If itype $=1$, the problem is

```
A*}X=\lambda*\mp@subsup{B}{}{*}
```

and A is overwritten by inv $\left(U^{H}\right) \star A^{\star} \operatorname{inv}(U)$ or inv $(L) \star A^{\star} \operatorname{inv}\left(L^{H}\right)$ for complex flavors and by $\operatorname{inv}\left(U^{T}\right) \star A \star \operatorname{inv}(U)$ or $\operatorname{inv}(L) \star A \star \operatorname{inv}\left(L^{T}\right)$ for real flavors.
If itype $=2$ or 3 , the problem is
$A^{\star} B^{\star} x=\lambda^{\star} x$, or $B^{\star} A^{\star} x=\lambda^{\star} x$,
and A is overwritten by $U^{\star} A^{\star} U^{H}$ or $L^{H \star} A^{\star} L$ for complex flavors and by $U^{\star} A^{\star} U^{T}$ or $L^{T \star} A^{\star} L$ for real flavors. Here U^{T} and L^{T} are the transpose while U^{H} and L^{H} are conjugate transpose of U and L.
B must be previously factorized by ?potrf as follows:

- $U^{H \star} U$ or $L^{\star} L^{H}$ for complex flavors
- $U^{T} \star U$ or $L^{\star} L^{T}$ for real flavors

Input Parameters
itype
n
a

Ida

INTEGER.
For complex flavors:
= 1: compute $\operatorname{inv}\left(U^{H}\right) \star A^{\star} \operatorname{inv}(U)$ or $\operatorname{inv}(L) \star A \star \operatorname{inv}\left(L^{H}\right)$;
$=2$ or 3 : compute $U^{\star} A^{\star} U^{H} \operatorname{or} L^{H \star} A^{\star} L$.
For real flavors:
$=1:$ compute $\operatorname{inv}\left(U^{T}\right) \star A * \operatorname{inv}(U)$ or inv $(L) * A * \operatorname{inv}\left(L^{T}\right)$;
$=2$ or 3 : compute $U^{\star} A^{\star} U^{T} \operatorname{or} L^{T \star} A^{\star} L$.
CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric/Hermitian matrix A is stored, and how B has been factorized.
= 'U': upper triangular
= 'L': lower triangular
INTEGER. The order of the matrices A and $B . n \geq 0$.
REAL for ssygs2
DOUBLE PRECISION for dsygs2
COMPLEX for chegs 2
DOUBLE COMPLEX for zhegs2.
Array, DIMENSION (Ida, n).
On entry, the symmetric/Hermitian matrix A.
If uplo = 'U', the leading n-by- n upper triangular part of a contains the upper triangular part of the matrix A, and the strictly lower triangular part of a is not referenced.

If uplo = 'L', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.

INTEGER.

The leading dimension of the array $a . I d a \geq \max (1, n)$.
b
REAL for ssygs2
DOUBLE PRECISION for dsygs2
COMPLEX for chegs 2
DOUBLE COMPLEX for zhegs2.
Array, DIMENSION ($/ d b, n$).
The triangular factor from the Cholesky factorization of B as returned by ?potrf.

INTEGER. The leading dimension of the array b. $1 d b \geq \max (1, n)$.

Output Parameters

a
On exit, If info $=0$, the transformed matrix, stored in the same format as A.

INTEGER.
$=0$: successful exit.
<0 : if info $=-i$, the i-th argument had an illegal value.

?sytd2/?hetd2

Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation(unblocked algorithm).

Syntax

```
call ssytd2( uplo, n, a, lda, d, e, tau, info )
call dsytd2( uplo, n, a, lda, d, e, tau, info )
call chetd2( uplo, n, a, lda, d, e, tau, info )
call zhetd2( uplo, n, a, lda, d, e, tau, info )
```


Include Files

- mkl.fi

Description

The routine ?sytd2/?hetd2 reduces a real symmetric/complex Hermitian matrix A to real symmetric tridiagonal form T by an orthogonal/unitary similarity transformation: $Q^{T \star} A^{\star} Q=T\left(Q^{H \star} A^{\star} Q=T\right)$.

Input Parameters

uplo	CHARACTER*1.
	Specifies whether the upp
Hermitian matrix A is sto	
	$=$ 'U': upper triangular
	$=' L ': ~ l o w e r ~ t r i a n g u l a r ~$

n
a

Ida

Output Parameters

a
d
e
tau

INTEGER. The order of the matrix $A . n \geq 0$.
REAL for ssytd2
DOUBLE PRECISION for dsytd2
COMPLEX for chetd2
DOUBLE COMPLEX for zhetd2.
Array, DIMENSION (/da, n).
On entry, the symmetric/Hermitian matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of a contains the upper triangular part of the matrix A, and the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.

INTEGER. The leading dimension of the array a. $1 d a \geq \max (1, n)$.

On exit, if uplo = 'U', the diagonal and first superdiagonal of a are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array tau, represent the orthogonal/unitary matrix Q as a product of elementary reflectors;
if uplo = 'L', the diagonal and first subdiagonal of a are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array tau, represent the orthogonal/ unitary matrix Q as a product of elementary reflectors.

REAL for ssytd2/chetd2
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION (n).
The diagonal elements of the tridiagonal matrix T :
$d(i)=a(i, i)$.
REAL for ssytd2/chetd2
DOUBLE PRECISION for dsytd2/zhetd2.
Array, DIMENSION ($n-1$).
The off-diagonal elements of the tridiagonal matrix T :
$e(i)=a(i, i+1)$ if uplo = 'U',
$e(i)=a(i+1, i)$ if uplo $=$ 'L'.
REAL for ssytd2
DOUBLE PRECISION for dsytd2
COMPLEX for chetd2
DOUBLE COMPLEX for zhetd2.

Array, DIMENSION (n).
The first $n-1$ elements contain scalar factors of the elementary reflectors. $\operatorname{tau}(n)$ is used as workspace.
info INTEGER.
$=0$: successful exit
<0 : if info $=-i$, the i-th argument had an illegal value.
?sytf2
Computes the factorization of a real/complex symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm).

Syntax

```
call ssytf2( uplo, n, a, lda, ipiv, info )
call dsytf2( uplo, n, a, lda, ipiv, info )
call csytf2( uplo, n, a, lda, ipiv, info )
call zsytf2( uplo, n, a, lda, ipiv, info )
```

Include Files

- mkl.fi

Description

The routine ?sytf2 computes the factorization of a real/complex symmetric matrix A using the BunchKaufman diagonal pivoting method:
$A=U^{\star} D^{\star} U^{T}$, or $A=L^{\star} D^{\star} L^{T}$,
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling BLAS Level 2 Routines.

Input Parameters

```
uplo
n
a
CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored
= 'U': upper triangular
\(=\) 'L': lower triangular
INTEGER. The order of the matrix \(A . n \geq 0\).
REAL for ssytf2
DOUBLE PRECISION for dsytf2
COMPLEX for csytf2
DOUBLE COMPLEX for zsytf2.
Array, DIMENSION (Ida, \(n\) ).
```

On entry, the symmetric matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of a contains the upper triangular part of the matrix A, and the strictly lower triangular part of a is not referenced.

If uplo = 'L', the leading n-by- n lower triangular part of a contains the lower triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.

INTEGER.
The leading dimension of the array $a . l d a \geq \max (1, n)$.

Output Parameters

a
On exit, the block diagonal matrix D and the multipliers used to obtain the factor U or L.

INTEGER.
Array, DIMENSION (n).
Details of the interchanges and the block structure of D
If ipiv(k) > ip, then rows and columns k and $\operatorname{ipiv}(k)$ are interchanged and $D(k, k)$ is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) = ipiv(k-1) < 0, then rows and columns $k-1$ and $-\operatorname{ipiv}(k)$ are interchanged and $D(k-1: k, k-1: k)$ is a 2-by-2 diagonal block.

If uplo = 'L' and $\operatorname{ipiv}(k)=\operatorname{ipiv}(k+1)<0$, then rows and columns $k+1$ and $-\operatorname{ipiv}(k)$ were interchanged and $D(k: k+1, k: k+1)$ is a 2 -by- 2 diagonal block.

INTEGER.
$=0$: successful exit
<0 : if info $=-k$, the k-th argument has an illegal value
> 0: if info $=k, D(k, k)$ is exactly zero. The factorization are completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.

?sytf2_rook
 Computes the factorization of a real/complex symmetric indefinite matrix, using the bounded Bunch-Kaufman diagonal pivoting method (unblocked algorithm).

Syntax

```
call ssytf2_rook( uplo, n, a, lda, ipiv, info )
call dsytf2_rook( uplo, n, a, lda, ipiv, info )
call csytf2_rook( uplo, n, a, lda, ipiv, info)
call zsytf2_rook( uplo, n, a, lda, ipiv, info )
```


Include Files

- mkl.fi

Description

The routine ?sytf2_rook computes the factorization of a real/complex symmetric matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting method:
$A=U^{\star} D^{\star} U^{\mathbb{T}}$, or $A=L^{\star} D^{\star} L^{T}$,
where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling BLAS Level 2 Routines.

Input Parameters

```
uplo
n
a
Ida
```


Output Parameters

a
ipiv
On exit, the block diagonal matrix D and the multipliers used to obtain the factor U or L.

INTEGER.
Array, DIMENSION (n).
Details of the interchanges and the block structure of D

If ipiv(k) > 0, then rows and columns k and $\operatorname{ipiv}(k)$ were interchanged and $D_{k, k}$ is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) < 0 and ipiv(k-1) < 0, then rows and columns k and $-\operatorname{ipiv}(k)$ were interchanged, rows and columns $k-1$ and -$\operatorname{ipiv}(k-1)$ were interchanged, and $D_{k-1: k, k-1: k}$ is a 2-by-2 diagonal block.
If uplo $=$ 'L' and ipiv(k) <0 and ipiv($k+1$) <0, then rows and columns k and $-\operatorname{ipiv}(k)$ were interchanged, rows and columns $k+1$ and $\operatorname{ipiv}(k+1)$ were interchanged, and $D_{k: k+1, k: k+1}$ is a 2-by-2 diagonal block.

INTEGER.
$=0$: successful exit
<0 : if info $=-k$, the k-th argument has an illegal value
>0 : if info $=k, D(k, k)$ is exactly zero. The factorization are completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.

?hetf2

Computes the factorization of a complex Hermitian
matrix, using the diagonal pivoting method (unblocked algorithm).

Syntax

```
call chetf2( uplo, n, a, lda, ipiv, info )
call zhetf2( uplo, n, a, lda, ipiv, info )
```


Include Files

- mkl.fi

Description

The routine computes the factorization of a complex Hermitian matrix A using the Bunch-Kaufman diagonal pivoting method:

```
A = U* D* U}\mp@subsup{U}{}{H}\mathrm{ or }A=\mp@subsup{L}{}{\star}\mp@subsup{D}{}{\star}\mp@subsup{L}{}{H
```

where U (or L) is a product of permutation and unit upper (lower) triangular matrices, U^{H} is the conjugate transpose of U, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling BLAS Level 2 Routines.

Input Parameters

```
uplo
n
CHARACTER*1. \(A\) is stored:
= 'U': Upper triangular
= 'L': Lower triangular
INTEGER. The order of the matrix \(A . n \geq 0\).
```

Specifies whether the upper or lower triangular part of the Hermitian matrix

A

Output Parameters

a
ipiv
info

COMPLEX for chetf2
DOUBLE COMPLEX for zhetf2.
Array, DIMENSION (Ida, n).
On entry, the Hermitian matrix A.
If uplo = 'U', the leading n-by- n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced.
If uplo = 'L', the leading n-by- n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.

INTEGER. The leading dimension of the array a. $1 d a \geq \max (1, n)$.

On exit, the block diagonal matrix D and the multipliers used to obtain the factor U or L.

INTEGER. Array, DIMENSION (n).
Details of the interchanges and the block structure of D
If ipiv(k) > \quad, then rows and columns k and $\operatorname{ipiv}(k)$ were interchanged and $D(k, k)$ is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) = ipiv($k-1$) < 0, then rows and columns $k-1$ and $-i p i v(k)$ were interchanged and $D(k-1: k, k-1: k)$ is a $2-b y-2$ diagonal block.

If uplo = 'L' and ipiv(k) = ipiv($k+1$) < 0, then rows and columns $k+1$ and $-i p i v(k)$ were interchanged and $D(k: k+1, k: k+1)$ is a 2 -by-2 diagonal block.

INTEGER.
$=0$: successful exit
< 0: if info $=-k$, the k-th argument had an illegal value
> 0: if info $=k, D(k, k)$ is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations.

?hetf2_rook

Computes the factorization of a complex Hermitian matrix, using the bounded Bunch-Kaufman diagonal pivoting method (unblocked algorithm).

Syntax

```
call chetf2_rook( uplo, n, a, lda, ipiv, info )
call zhetf2_rook( uplo, n, a, lda, ipiv, info )
```


Include Files

- mkl.fi

Description

The routine computes the factorization of a complex Hermitian matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting method:

$A=U^{\star} D^{\star} U^{H}$ or $A=L^{\star} D^{\star} L^{H}$

where U (or L) is a product of permutation and unit upper (lower) triangular matrices, U^{H} is the conjugate transpose of U, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling BLAS Level 2 Routines.

Input Parameters

uplo
n
a

Ida

Output Parameters

a
ipiv

CHARACTER*1.
Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
INTEGER. The order of the matrix $A . n \geq 0$.
COMPLEX for chetf2_rook
DOUBLE COMPLEX for zhetf2_rook.
Array, DIMENSION (/da, n).
On entry, the Hermitian matrix A.
If uplo = 'U', the leading n-by- n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced.

If uplo = 'L', the leading n-by- n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced.

INTEGER. The leading dimension of the array a. $1 d a \geq \max (1, n)$.

On exit, the block diagonal matrix D and the multipliers used to obtain the factor U or L.

INTEGER. Array, DIMENSION (n).
Details of the interchanges and the block structure of D.
If $\operatorname{ipiv}(k)>0$, then rows and columns k and $\operatorname{ipiv}(k)$ were interchanged and $D(k, k)$ is a 1-by-1 diagonal block.
If uplo = 'U' and ipiv(k) < 0 and ipiv(k-1) < 0, then rows and columns k and -ipiv (k) were interchanged, rows and columns $k-1$ and -$\operatorname{ipiv}(k-1)$ were interchanged, and $D_{k-1: k, k-1: k}$ is a 2-by-2 diagonal block.
If uplo $=$ 'L'andipiv(k) <0 and ipiv $(k+1)<0$, then rows and columns k and -ipiv (k) were interchanged, rows and columns $k+1$ and $\operatorname{ipiv}(k+1)$ were interchanged, and $D_{k: k+1, k: k+1}$ is a 2-by-2 diagonal block.

```
info INTEGER.
= 0: successful exit
< 0: if info = -k, the k
> 0: if info = k, D(k,k) is exactly zero. The factorization has been
completed, but the block diagonal matrix D is exactly singular, and division
by zero will occur if it is used to solve a system of equations.
```


?tgex2

Swaps adjacent diagonal blocks in an upper (quasi)
triangular matrix pair by an orthogonal/unitary equivalence transformation.

Syntax

```
call stgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, jl, n1, n2, work, lwork,
info )
call dtgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, jl, nl, n2, work, lwork,
info )
call ctgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, jl, info )
call ztgex2( wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, jl, info )
```


Include Files

- mkl.fi

Description

The real routines stgex2/dtgex2 swap adjacent diagonal blocks $(A 11, B 11)$ and ($A 22, B 22$) of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair (A, B) by an orthogonal equivalence transformation. (A, B) must be in generalized real Schur canonical form (as returned by sgges/dgges), that is, A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper triangular.
The complex routines ctgex $2 / z$ tgex2 swap adjacent diagonal 1-by-1 blocks $(A 11, B 11)$ and $(A 22, B 22)$ in an upper triangular matrix pair (A, B) by an unitary equivalence transformation.
(A, B) must be in generalized Schur canonical form, that is, A and B are both upper triangular.
All routines optionally update the matrices Q and Z of generalized Schur vectors:
For real flavors,

```
Q(in)*A(in)*Z(in)}\mp@subsup{}{}{T}=Q(out)*A(out)*Z(out)
Q(in)*B(in)*Z(in)T}=Q(out)*B(out)*Z(out)T
```

For complex flavors,

```
Q(in)*A(in)*Z(in)}\mp@subsup{}{}{H}=Q(out)*A(out)*Z(out) H
Q(in)*B(in)*Z(in)}\mp@subsup{}{}{H}=Q(out)*B(out)*Z(out) 'A.
```


Input Parameters

wantq
LOGICAL.
If wantq $=$. TRUE.$:$ update the left transformation matrix Q;
If want $q=$. FALSE.$:$ do not update Q.

```
wantz
n
a,b
lda
ldb
q, z
ldq
Idz
j1
n1
n2
work
lwork
```


Output Parameters

a

```
B
Q
z
info
On exit, the updated matrix \(B\).
On exit, the updated matrix \(Q\).
Not referenced if wantq \(=\). FALSE..
On exit, the updated matrix \(Z\).
Not referenced if wantz \(=\).FALSE..
INTEGER.
=0: Successful exit For stgex2/dtgex2: If info \(=1\), the transformed matrix \((A, B)\) would be too far from generalized Schur form; the blocks are not swapped and \((A, B)\) and \((Q, Z)\) are unchanged. The problem of swapping is too ill-conditioned. If info \(=-16\) : Iwork is too small. Appropriate value for lwork is returned in work(1).
For ctgex2/ztgex2:
If info \(=1\), the transformed matrix pair \((A, B)\) would be too far from generalized Schur form; the problem is ill-conditioned.
```


?tgsy2

Solves the generalized Sylvester equation (unblocked algorithm).

Syntax

```
call stgsy2( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale,
rdsum, rdscal, iwork, pq, info )
call dtgsy2( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale,
rdsum, rdscal, iwork, pq, info )
call ctgsy2( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale,
rdsum, rdscal, iwork, pq, info )
call ztgsy2( trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale,
rdsum, rdscal, iwork, pq, info )
```


Include Files

- mkl.fi

Description

The routine ? tgsy2 solves the generalized Sylvester equation:

```
A*R-L* B=scale*C
D*R-L*E=scale*F
```

 (1)
 using Level 1 and 2 BLAS, where R and L are unknown m-by- n matrices, $(A, D),(B, E)$ and (C, F) are given matrix pairs of size m-by $-m, n$-by- n and m-by- n, respectively. For stgsy2/dtgsy2, pairs (A, D) and (B, E) must be in generalized Schur canonical form, that is, A, B are upper quasi triangular and D, E are upper triangular. For ctgsy2/ztgsy2, matrices A, B, D and E are upper triangular (that is, (A, D) and (B, E) in generalized Schur form).

The solution (R, L) overwrites (C, F).
$0 \leq$ scale ≤ 1 is an output scaling factor chosen to avoid overflow.

In matrix notation, solving equation (1) corresponds to solve

```
Z*}X=scale*
```

where Z is defined for real flavors as

$$
Z=\left[\begin{array}{ll}
\operatorname{kron}\left(I_{n}, A\right) & -\operatorname{kron}\left(B^{T}, I_{\infty}\right) \tag{2}\\
\operatorname{kron}\left(I_{n}, D\right) & -\operatorname{kron}\left(E^{T}, I_{\infty}\right)
\end{array}\right]
$$

and for complex flavors as

$$
Z=\left[\begin{array}{ll}
\operatorname{kron}\left(I_{n}, A\right) & -\operatorname{kron}\left(B^{H}, I_{*}\right) \tag{3}\\
\operatorname{kron}\left(I_{n}, D\right) & -\operatorname{kron}\left(E^{H}, I_{*}\right)
\end{array}\right]
$$

Here I_{k} is the identity matrix of size k and $X^{T}\left(X^{H}\right)$ is the transpose (conjugate transpose) of $X . \operatorname{kron}(X, Y)$ denotes the Kronecker product between the matrices X and Y.

For real flavors, if trans $=$ ' T ', solve the transposed system
$z^{T *} y=$ scale $* b$
for y, which is equivalent to solving for R and L in

```
A }\mp@subsup{}{}{T}*R+\mp@subsup{D}{}{T}*L=scale* C
R* }\mp@subsup{B}{}{T}+\mp@subsup{L}{}{\star}\mp@subsup{E}{}{T}=\mathrm{ scale* ( }-F
```

For complex flavors, if trans $=$ ' C ', solve the conjugate transposed system
$z^{H \star} y=$ scale ${ }^{*} b$
for y, which is equivalent to solving for R and L in

$$
\begin{align*}
& A^{H} R^{+}+D^{H \star} L=\operatorname{scal}^{\star} C \tag{5}\\
& R^{\star} B^{H}+L^{\star} E^{H}=\operatorname{scale}^{\star}(-F)
\end{align*}
$$

These cases are used to compute an estimate of $\operatorname{Dif}[(A, D),(B, E)]=\operatorname{sigma} \min (Z)$ using reverse communication with ?lacon.
?tgsy2 also (for ijob ≥ 1) contributes to the computation in ? tgsyl of an upper bound on the separation between two matrix pairs. Then the input $(A, D),(B, E)$ are sub-pencils of the matrix pair (two matrix pairs) in ?tgsyl. See ?tgsyl for details.

Input Parameters

trans
ijob

CHARACTER*1.
If trans $=$ ' N ', solve the generalized Sylvester equation (1);
If trans $=$ 'T': solve the transposed system (4).
If $\operatorname{trans}=$ ' C': solve the conjugate transposed system (5).
INTEGER. Specifies what kind of functionality is to be performed.
If ijob $=0$: solve (1) only.

If i job $=1$: a contribution from this subsystem to a Frobenius norm-based estimate of the separation between two matrix pairs is computed (look ahead strategy is used);

If i job $=2$: a contribution from this subsystem to a Frobenius norm-based estimate of the separation between two matrix pairs is computed (?gecon on sub-systems is used).
Not referenced if trans $=$ 'T'.
INTEGER. On entry, m specifies the order of A and D, and the row dimension of C, F, R and L.

INTEGER. On entry, n specifies the order of B and E, and the column dimension of C, F, R and L.

REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
DOUBLE COMPLEX for ztgsy2.
Arrays, DIMENSION ($/ d a, m$) and ($/ d b, n$), respectively. On entry, a contains an upper (quasi) triangular matrix A, and b contains an upper (quasi) triangular matrix B.

INTEGER. The leading dimension of the array a. 1 da $\geq \max (1, m)$.
INTEGER.
The leading dimension of the array $b . l d b \geq \max (1, n)$.
REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
DOUBLE COMPLEX for ztgsy2.
Arrays, DIMENSION ($/ d c, n$) and ($/ d f, n$), respectively. On entry, c contains the right-hand-side of the first matrix equation in (1), and f contains the right-hand-side of the second matrix equation in (1).

INTEGER. The leading dimension of the array c. $I d c \geq \max (1, m)$.
REAL for stgsy2
DOUBLE PRECISION for dtgsy2
COMPLEX for ctgsy2
DOUBLE COMPLEX for ztgsy2.
Arrays, DIMENSION (Idd, m) and (Ide, n), respectively. On entry, d contains an upper triangular matrix D, and e contains an upper triangular matrix E.

INTEGER. The leading dimension of the array $d . l d d \geq \max (1, m)$.
INTEGER. The leading dimension of the array e. 1 de $\geq \max (1, n)$.
INTEGER. The leading dimension of the array f. $I d E \geq \max (1, m)$.

```
rdsum
```

rdscal
iwork

Output Parameters

C
f
scale
rdsum
rdscal
$p q$
info

REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, the sum of squares of computed contributions to the Difestimate under computation by ?tgsyL, where the scaling factor rdscal has been factored out.

REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On entry, scaling factor used to prevent overflow in rdsum.
INTEGER. Used with real flavors only.
Workspace array, DIMENSION $(m+n+2)$.

On exit, if ijob $=0, c$ is overwritten by the solution R.
On exit, if i job $=0, f$ is overwritten by the solution L.
REAL for stgsy2/ctgsy2
DOUBLE PRECISION for dtgsy2/ztgsy2.
On exit, $0 \leq$ scale ≤ 1. If $0<$ scale <1, the solutions R and L (C and F on entry) hold the solutions to a slightly perturbed system, but the input matrices A, B, D and E are not changed. If scale $=0, R$ and L hold the solutions to the homogeneous system with $C=F=0$. Normally scale $=$ 1.

On exit, the corresponding sum of squares updated with the contributions from the current sub-system.
If trans = 'T', rdsum is not touched.
Note that rdsum only makes sense when ?tgsy2 is called by ?tgsyl.
On exit, rdscal is updated with respect to the current contributions in rdsum.

If trans = 'T', rdscal is not touched.
Note that rdscal only makes sense when ?tgsy2 is called by ?tgsyl.
INTEGER. Used with real flavors only.
On exit, the number of subsystems (of size 2-by-2, 4-by-4 and 8-by-8) solved by the routine stgsy2/dtgsy2.

INTEGER. On exit, if info is set to
$=0$: Successful exit
< 0: If info $=-i$, the i-th argument has an illegal value.
>0 : The matrix pairs (A, D) and (B, E) have common or very close eigenvalues.
?trti2
Computes the inverse of a triangular matrix (unblocked algorithm).

Syntax

```
call strti2( uplo, diag, n, a, lda, info )
call dtrti2( uplo, diag, n, a, lda, info )
call ctrti2( uplo, diag, n, a, lda, info )
call ztrti2( uplo, diag, n, a, lda, info )
```

Include Files

- mkl.fi

Description

The routine ? trti2 computes the inverse of a real/complex upper or lower triangular matrix.
This is the Level $2 B L A S$ version of the algorithm.

Input Parameters

uplo
diag
CHARACTER*1.
= 'U': upper triangular
$=$ ' L': lower triangular
CHARACTER*1.
n
a
Specifies whether the matrix A is upper or lower triangular.

Specifies whether or not the matrix A is unit triangular.
$=$ ' N ': non-unit triangular
$=' \mathrm{~N}$ ': non-unit triangular
INTEGER. The order of the matrix $A . n \geq 0$.
REAL for strti2
DOUBLE PRECISION for dtrti2
COMPLEX for ctrti2
DOUBLE COMPLEX for ztrti2.
Array, DIMENSION (Ida, n).
On entry, the triangular matrix A.
If uplo = 'U', the leading n-by-n upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by- n lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of a is not referenced.
If $d i a g=$ ' U ', the diagonal elements of a are also not referenced and are
assumed to be 1.
INTEGER. The leading dimension of the array $a . I d a \geq \max (1, n)$.

Output Parameters

a
On exit, the (triangular) inverse of the original matrix, in the same storage format.
info INTEGER.
$=0$: successful exit
<0 : if info $=-k$, the k-th argument had an illegal value

clag2z

Converts a complex single precision matrix to a
complex double precision matrix.
Syntax

```
call clag2z( m, n, sa, ldsa, a, lda, info )
```

Include Files

- mkl.fi

Description

This routine converts a complex single precision matrix $S A$ to a complex double precision matrix A.
Note that while it is possible to overflow while converting from double to single, it is not possible to overflow when converting from single to double.
This is an auxiliary routine so there is no argument checking.

Input Parameters

m	INTEGER. The number of lines of the matrix $A(m \geq 0)$.
n	INTEGER. The number of columns in the matrix $A(n \geq 0)$.
a	INTEGER. The leading dimension of the array $s a ; I d s a \geq \max (1, m)$.
IdOUBLE PRECISION array, DIMENSION (Ida, $n)$.	
	On entry, contains the m-by- n coefficient matrix A.
	INTEGER. The leading dimension of the array $a ; I d a \geq \max (1, m)$.

Output Parameters

sa
REAL array, DIMENSION (Idsa, n).
On exit, contains the m-by- n coefficient matrix $S A$.
INTEGER.
If info $=0$, the execution is successful.

dlag2s

Converts a double precision matrix to a single precision matrix.

Syntax

```
call dlag2s( m, n, a, lda, sa, ldsa, info )
```


Include Files

- mkl.fi

Description

This routine converts a double precision matrix $S A$ to a single precision matrix A.
RMAX is the overflow for the single precision arithmetic. dlag2s checks that all the entries of A are between RMAX and RMAX. If not, the convertion is aborted and a flag is raised.
This is an auxiliary routine so there is no argument checking.

Input Parameters

m	INTEGER. The number of rows of the matrix $A(m \geq 0)$.
n	INTEGER. The number of columns in the matrix $A(n \geq 0)$.
a	DOUBLE PRECISION array, DIMENSION (/da, n).
	On entry, contains the m-by-n coefficient matrix A.
Ida	INTEGER. The leading dimension of the array a; Id $a \geq \max (1, m)$.
Idsa	INTEGER. The leading dimension of the array sa; Idsa \geq max $(1, m)$.
Output Parameters	
sa	REAL array, DIMENSION (/dsa, n).
	On exit, if info $=0$, contains the m-by-n coefficient matrix $S A$; if info $>$ 0 , the content of sa is unspecified.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=1$, an entry of the matrix A is greater than the single precision overflow threshold; in this case, the content of sa on exit is unspecified.

slag2d
Converts a single precision matrix to a double precision matrix.

Syntax

```
call slag2d( m, n, sa, ldsa, a, lda, info )
```

Include Files

- mkl.fi

Description

The routine converts a single precision matrix $S A$ to a double precision matrix A.
Note that while it is possible to overflow while converting from double to single, it is not possible to overflow when converting from single to double.
This is an auxiliary routine so there is no argument checking.

Input Parameters

```
m
n INTEGER. The number of columns in the matrix A(n\geq0).
sa REAL array, DIMENSION (Idsa,n).
On entry, contains the \(m\)-by- \(n\) coefficient matrix \(S A\).
INTEGER. The leading dimension of the array sa; Idsa \(\geq \max (1, m)\).
INTEGER. The leading dimension of the array \(a ; I d a \geq \max (1, m)\).
```


Output Parameters

a
DOUBLE PRECISION array, DIMENSION (Ida, n).
On exit, contains the m-by- n coefficient matrix A.
INTEGER.
If info $=0$, the execution is successful.

zlag2c

Converts a complex double precision matrix to a
complex single precision matrix.

Syntax

```
call zlag2c( m, n, a, lda, sa, ldsa, info )
```


Include Files

- mkl.fi

Description

The routine converts a double precision complex matrix $S A$ to a single precision complex matrix A.
RMAX is the overflow for the single precision arithmetic. zlag2c checks that all the entries of A are between RMAX and RMAX. If not, the convertion is aborted and a flag is raised.

This is an auxiliary routine so there is no argument checking.

Input Parameters

m
INTEGER. The number of lines of the matrix $A(m \geq 0)$.
INTEGER. The number of columns in the matrix $A(n \geq 0)$.
DOUBLE COMPLEX array, DIMENSION (Ida, n).
lda
Idsa

Output Parameters

sa
info
a

On entry, contains the m-by-n coefficient matrix A.
INTEGER. The leading dimension of the array $a ; I d a \geq \max (1, m)$.
INTEGER. The leading dimension of the array sa; Idsa $\geq \max (1, m)$.

COMPLEX array, DIMENSION (Idsa, n).
On exit, if info $=0$, contains the m-by- n coefficient matrix $S A$; if info $>$ 0 , the content of $s a$ is unspecified.

INTEGER.
If info $=0$, the execution is successful.
If info $=1$, an entry of the matrix A is greater than the single precision overflow threshold; in this case, the content of sa on exit is unspecified.

?larfp

Generates a real or complex elementary reflector.

Syntax

```
call slarfp(n, alpha, x, incx, tau)
call dlarfp(n, alpha, x, incx, tau)
call clarfp(n, alpha, x, incx, tau)
call zlarfp(n, alpha, x, incx, tau)
```


Include Files

- mkl.fi

Description

The ?larfp routines generate a real or complex elementary reflector H of order n, such that

```
H * (alpha) = (beta),
    ( x ) ( 0 )
```

and $H^{\prime}{ }^{*} H=I$ for real flavors, conjg($\left.H\right)^{\prime} \star^{*} H=I$ for complex flavors.
Here
alpha and beta are scalars, beta is real and non-negative,
x is $(n-1)$-element vector.
H is represented in the form

```
H = I - tau*( 1 )* (1 v'),
    ( v )
```

where tau is scalar, and v is $(n-1)$-element vector .
For real flavors if the elements of x are all zero, then $\operatorname{tau}=0$ and H is taken to be the unit matrix. Otherwise $1 \leq t a u \leq 2$.

For complex flavors if the elements of x are all zero and alpha is real, then $\operatorname{tau}=0$ and H is taken to be the unit matrix. Otherwise $1 \leq$ real (tau) ≤ 2, and abs (tau-1 ≤ 1.

Input Parameters

n
alpha

X
incx

INTEGER. Specifies the order of the elementary reflector.
REAL for slarfp
DOUBLE PRECISION for dlarfp
COMPLEX for clarfp
DOUBLE COMPLEX for zlarfp
Specifies the scalar alpha.
REAL for slarfp
DOUBLE PRECISION for dlarfp
COMPLEX for clarfp
DOUBLE COMPLEX for zlarfp
Array, DIMENSION at least $(1+(n-1) * a b s(i n c x))$. It contains the vector x.

INTEGER. Specifies the increment for the elements of x.
The value of incx must not be zero.

Output Parameters

```
alpha Overwritten by the value beta.
y
tau
```

Overwritten by the value beta.
Overwritten by the vector v.
REAL for slarfp
DOUBLE PRECISION for dlarfp
COMPLEX for clarfp
DOUBLE COMPLEX for zlarfp
Contains the scalar tau.
ila?lc
Scans a matrix for its last non-zero column.

Syntax

```
value = ilaslc(m, n, a, lda)
value = iladlc(m, n, a, lda)
value = ilaclc(m, n, a, lda)
value = ilazlc(m, n, a, lda)
```


Include Files

- mkl.fi

Description

The ila?lc routines scan a matrix A for its last non-zero column.

Input Parameters

m
n
a
lda

INTEGER. Specifies number of rows in the matrix A.
INTEGER. Specifies number of columns in the matrix A.
REAL for ilaslc
DOUBLE PRECISION for iladlc
COMPLEX for ilaclc
DOUBLE COMPLEX for ilazlc
Array, DIMENSION (Ida, *). The second dimension of a must be at least $\max (1, n)$.

Before entry the leading n-by-n part of the array a must contain the matrix A.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub) program. The value of $I d a$ must be at least $\max (1, m)$.

Output Parameters

```
value
```

INTEGER
Number of the last non-zero column.

ila?lr

Scans a matrix for its last non-zero row.
Syntax

```
value = ilaslr(m, n, a, lda)
value = iladlr(m, n, a, lda)
value = ilaclr(m, n, a, lda)
value = ilazlr(m, n, a, lda)
```

Include Files

- mkl.fi

Description

The ila?lr routines scan a matrix A for its last non-zero row.

Input Parameters

m
n
INTEGER. Specifies number of rows in the matrix A.
INTEGER. Specifies number of columns in the matrix A.
a
REAL for ilaslr
DOUBLE PRECISION for iladlr
COMPLEX for ilaclr
DOUBLE COMPLEX for idazlr
Array, DIMENSION (Ida, *). The second dimension of a must be at least $\max (1, n)$.

Before entry the leading n-by-n part of the array a must contain the matrix A.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, m)$.

Output Parameters

value
INTEGER
Number of the last non-zero row.

?gsvj0

Pre-processor for the routine ?gesvj.

Syntax

```
call sgsvj0(jobv, m, n, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work, lwork,
info)
call dgsvj0(jobv, m, n, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work, lwork,
info)
call cgsvj0(jobv, m, n, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work, lwork,
info)
call zgsvj0(jobv, m, n, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work, lwork,
info)
```


Include Files

- mkl.fi

Description

This routine is called from ?gesvj as a pre-processor and that is its main purpose. It applies Jacobi rotations in the same way as ?gesvj does, but it does not check convergence (stopping criterion).
The routine ? gsvjo enables ?gesvj to use a simplified version of itself to work on a submatrix of the original matrix.

Input Parameters
jobv
CHARACTER*1. Must be 'V', 'A', or 'N'.
Specifies whether the output from this routine is used to compute the matrix V.

If jobv = 'V', the product of the Jacobi rotations is accumulated by postmultiplying the $n-b y-n$ array v.

If jobv = 'A', the product of the Jacobi rotations is accumulated by postmultiplying the $m v$-by- n array v.

If jobv = 'N', the Jacobi rotations are not accumulated.
INTEGER. The number of rows of the input matrix $A(m \geq 0)$.
INTEGER. The number of columns of the input matrix $B(m \geq n \geq 0)$.
REAL for sgsvj0
DOUBLE PRECISION for dgsvj0.
COMPLEX for cgsvj0
DOUBLE COMPLEX for zgsvj0
Array, DIMENSION (lda, n). Contains the $m-b y-n$ matrix A, such that $A * \operatorname{diag}(D)$ represents the input matrix.

INTEGER. The leading dimension of a; at least max $(1, m)$.
REAL for sgsvj0
DOUBLE PRECISION for dgsvj0.
COMPLEX for cgsvj0
DOUBLE COMPLEX for zgsvj0
Array, DIMENSION (n). Contains the diagonal matrix D that accumulates the scaling factors from the fast scaled Jacobi rotations. On entry A^{\star} diag (D) represents the input matrix.

REAL for sgsvj0
DOUBLE PRECISION for dgsvj0.
REAL for cgsvj0
DOUBLE PRECISION for zgsvj0.
Array, DIMENSION (n). Contains the Euclidean norms of the columns of the matrix $A * \operatorname{diag}(D)$.

INTEGER. The leading dimension of b; at least max $(1, p)$.
If jobv = ' A ', then $m v$ rows of v are post-multiplied by a sequence of Jacobi rotations.

If jobv = ' N ', then $m v$ is not referenced.
REAL for sgsvj0
DOUBLE PRECISION for dgsvj0.
COMPLEX for cgsvj0
DOUBLE COMPLEX for zgsvj0
Array, DIMENSION ($1 d v, n$).

If jobv = ' V ', then n rows of v are post-multiplied by a sequence of Jacobi rotations.

If jobv = ' A ', then $m v$ rows of v are post-multiplied by a sequence of Jacobi rotations.
If jobv = 'N', then v is not referenced.
INTEGER. The leading dimension of the array $v ; I d v \geq 1$
$l d v \geq n$ if jobv $=$ ' V ';
$l d v \geq m v$ if jobv = 'A'.
REAL for sgsvj0
DOUBLE PRECISION for dgsvj0.
REAL for cgsvj0
DOUBLE PRECISION for zgsvj0.
The relative machine precision (epsilon) returned by the routine ?lamch.
REAL for sgsvj0
DOUBLE PRECISION for dgsvj0.
REAL for cgsvj0
DOUBLE PRECISION for zgsvj0.
Value of safe minimum returned by the routine ?lamch.
REAL for sgsvj0
DOUBLE PRECISION for dgsvj0.
REAL for cgsvj0
DOUBLE PRECISION for zgsvj0.
The threshold for Jacobi rotations. For a pair $A(:, p), A(:, q)$ of pivot columns, the Jacobi rotation is applied only if $\operatorname{abs}(\cos (\operatorname{angle}(A(:, p), A(:, q))))>t o l$.

INTEGER.
The number of sweeps of Jacobi rotations to be performed.
REAL for sgsvj0
DOUBLE PRECISION for dgsvj0.
COMPLEX for cgsvj0
DOUBLE COMPLEX for zgsvj0
Workspace array, DIMENSION (lwork).
lwork
INTEGER. The size of the array work; at least max $(1, m)$.

Output Parameters

a
d
v
info

On exit, $A * \operatorname{diag}(D)$ represents the input matrix post-multiplied by a sequence of Jacobi rotations, where the rotation threshold and the total number of sweeps are given in tol and nsweep, respectively

On exit, $A * \operatorname{diag}(D)$ represents the input matrix post-multiplied by a sequence of Jacobi rotations, where the rotation threshold and the total number of sweeps are given in tol and nsweep, respectively.

On exit, contains the Euclidean norms of the columns of the output matrix $A^{\star} \operatorname{diag}(D)$.

If jobv $=$ ' V ', then n rows of v are post-multiplied by a sequence of Jacobi rotations.
If jobv = 'A', then $m v$ rows of v are post-multiplied by a sequence of Jacobi rotations.
If jobv $=$ ' N ', then v is not referenced.
INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.

?gsvj1

Pre-processor for the routine ?gesvj, applies Jacobi rotations targeting only particular pivots.

Syntax

```
call sgsvjl(jobv, m, n, nl, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work,
lwork, info)
call dgsvjl(jobv, m, n, nl, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work,
lwork, info)
call cgsvjl(jobv, m, n, nl, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work,
lwork, info)
call zgsvjl(jobv, m, n, nl, a, lda, d, sva, mv, v, ldv, eps, sfmin, tol, nsweep, work,
lwork, info)
```


Include Files

- mkl.fi

Description

This routine is called from ?gesvj as a pre-processor and that is its main purpose. It applies Jacobi rotations in the same way as ? gesvj does, but it targets only particular pivots and it does not check convergence (stopping criterion).
The routine ? gsvj1 applies few sweeps of Jacobi rotations in the column space of the input m-by-n matrix A. The pivot pairs are taken from the $(1,2)$ off-diagonal block in the corresponding n-by- n Gram matrix $A^{\prime} * A$. The block-entries (tiles) of the $(1,2)$ off-diagonal block are marked by the [x]'s in the following scheme:

row-cycling in the nblr-by-nblc[x] blocks, row-cyclic pivoting inside each [x] block
In terms of the columns of the matrix A, the first $n 1$ columns are rotated 'against' the remaining $n-n 1$ columns, trying to increase the angle between the corresponding subspaces. The off-diagonal block is n1-by($n-n 1$) and it is tiled using quadratic tiles. The number of sweeps is specified by nsweep, and the orthogonality threshold is set by tol.

Input Parameters

```
jobv
m
n
n1
a
Ida
d
sva
CHARACTER*1. Must be 'V','A', or 'N'.
Specifies whether the output from this routine is used to compute the matrix \(V\).
If jobv = ' \(V\) ', the product of the Jacobi rotations is accumulated by postmultiplying the \(n-b y-n\) array \(v\).
If jobv = 'A', the product of the Jacobi rotations is accumulated by postmultiplying the \(m v\)-by- \(n\) array \(v\).
If jobv = ' N ', the Jacobi rotations are not accumulated.
INTEGER. The number of rows of the input matrix \(A(m \geq 0)\).
INTEGER. The number of columns of the input matrix \(B(m \geq n \geq 0)\).
INTEGER. Specifies the 2-by-2 block partition. The first \(n 1\) columns are rotated 'against' the remaining \(n-n 1\) columns of the matrix \(A\).
REAL for sgsvj1
DOUBLE PRECISION for dgsvj1.
COMPLEX for cgsvj1
DOUBLE COMPLEX for zgsvj1.
Array, DIMENSION (Ida, \(n\) ). Contains the \(m\)-by- \(n\) matrix \(A\), such that \(A * \operatorname{diag}(D)\) represents the input matrix.
INTEGER. The leading dimension of \(a\); at least max \((1, m)\).
REAL for sgsvj1
DOUBLE PRECISION for dgsvj1.
COMPLEX for cgsvj1
DOUBLE COMPLEX for zgsvj1.
Arrays, DIMENSION (n). Contains the diagonal matrix \(D\) that accumulates the scaling factors from the fast scaled Jacobi rotations. On entry \(A^{*} \operatorname{diag}(D)\) represents the input matrix.
sva
REAL for sgsvj1
```

DOUBLE PRECISION for dgsvj1.
REAL for cgsvj1
DOUBLE PRECISION for zgsvj1.
Arrays, DIMENSION (n). Contains the Euclidean norms of the columns of the matrix $A * \operatorname{diag}(D)$.

INTEGER. The leading dimension of b; at least max $(1, p)$.
If jobv = 'A', then mv rows of v are post-multiplied by a sequence of Jacobi rotations.

If jobv $=$ ' N ', then $m v$ is not referenced.
REAL for sgsvj1
DOUBLE PRECISION for dgsvj1.
COMPLEX for cgsvj1
DOUBLE COMPLEX for zgsvj1.
Array, DIMENSION ($1 d v, n$).
If jobv = ' V ', then n rows of v are post-multiplied by a sequence of Jacobi rotations.

If jobv = 'A', then mv rows of v are post-multiplied by a sequence of Jacobi rotations.
If jobv = 'N', then v is not referenced.
INTEGER. The leading dimension of the array $v ; I d v \geq 1$
$l d v \geq n$ if jobv = 'V';
$I d v \geq m v$ if jobv = 'A'.
REAL for sgsvj1
DOUBLE PRECISION for dgsvj1.
REAL for cgsvj1
DOUBLE PRECISION for zgsvj1.
The relative machine precision (epsilon) returned by the routine ?lamch.
REAL for sgsvj 1
DOUBLE PRECISION for dgsvj1.
REAL for cgsvj1
DOUBLE PRECISION for zgsvj1.
Value of safe minimum returned by the routine ?lamch.
REAL for sgsvj 1
DOUBLE PRECISION for dgsvj1.
REAL for cgsvj1
DOUBLE PRECISION for zgsvj1.

	The threshold for Jacobi rotations. For a pair $A(:, p), A(:, q)$ of pivot columns, the Jacobi rotation is applied only if abs (cos (angle(A(:,p),A(:,q))))>tol.
nsweep	INTEGER.
	The number of sweeps of Jacobi rotations to be performed.
work	REAL for sgsvj1
	DOUBLE PRECISION for dgsvj1.
	COMPLEX for cgsvj1
	DOUBLE COMPLEX for zgsvj1.
	Workspace array, DIMENSION (lwork).
1 work	INTEGER. The size of the array work; at least max $(1, m)$.
Output Parameters	
a	On exit, $A * \operatorname{diag}(D)$ represents the input matrix post-multiplied by a sequence of Jacobi rotations, where the rotation threshold and the total number of sweeps are given in tol and nsweep, respectively
d	On exit, A^{*} diag (D) represents the input matrix post-multiplied by a sequence of Jacobi rotations, where the rotation threshold and the total number of sweeps are given in tol and nsweep, respectively.
sva	On exit, contains the Euclidean norms of the columns of the output matrix A*diag (D).
V	If jobv = 'V', then n rows of v are post-multiplied by a sequence of Jacobi rotations.
	If jobv = 'A', then mv rows of v are post-multiplied by a sequence of Jacobi rotations.
	If jobv = 'N', then v is not referenced.
info	INTEGER.
	If info $=0$, the execution is successful.
	If info $=-i$, the i-th parameter had an illegal value.

?sfrk

Performs a symmetric rank-k operation for matrix in RFP format.

Syntax

```
call ssfrk(transr, uplo, trans, n, k, alpha, a, lda, beta, c)
call dsfrk(transr, uplo, trans, n, k, alpha, a, lda, beta, c)
```

Include Files

- mkl.fi

Description

The ?sfrk routines perform a matrix-matrix operation using symmetric matrices. The operation is defined as

```
C := alpha\star A\star A
```

or

```
C := alpha* A}\mp@subsup{A}{}{T}*A+beta*C
```

where:
alpha and beta are scalars,
C is an n-by-n symmetric matrix in rectangular full packed (RFP) format,
A is an n-by- k matrix in the first case and a k-by- n matrix in the second case.

Input Parameters

transr
uplo
trans
n
k
alpha
a

CHARACTER*1.
if transr $=$ ' N ' or 'n', the normal form of RFP C is stored;
if transr= 'T' or 't', the transpose form of RFP C is stored.
CHARACTER*1. Specifies whether the upper or lower triangular part of the array c is used.

If uplo = 'U' or 'u', then the upper triangular part of the array c is used.
If uplo = 'L' or 'l', then the low triangular part of the array c is used.
CHARACTER*1. Specifies the operation:
if trans $=$ ' N ' or 'n', then $C:=a l p h a^{\star} A \star A^{T}+$ beta* C;
if trans $=$ 'T' or 't', then $C:=a l p h a \star A^{T \star} A+\operatorname{beta}^{*} C$;
INTEGER. Specifies the order of the matrix C. The value of n must be at least zero.

INTEGER. On entry with trans $=$ ' N ' or 'n', k specifies the number of columns of the matrix A, and on entry with trans $=$ 'T' or 't', k specifies the number of rows of the matrix A.

The value of k must be at least zero.
REAL for ssfrk
DOUBLE PRECISION for dsfrk
Specifies the scalar alpha.
REAL for ssfrk
DOUBLE PRECISION for dsfrk
Array, DIMENSION (lda,ka), where $k a$ is k when trans $=$ 'N' or 'n', and is n otherwise. Before entry with trans $=$ 'N' or ' n ', the leading n-by- k part of the array a must contain the matrix A, otherwise the leading k-by- n part of the array a must contain the matrix A.

```
lda
beta
c
```


Output Parameters

```
C
    If trans = 'N' or 'n', then c contains C := alpha*A*A' + beta*C;
    if trans = 'T' or 't', then c contains C := alpha*A'*A + beta*C;
```

?hfrk
Performs a Hermitian rank-k operation for matrix in RFP format.

Syntax

```
call chfrk(transr, uplo, trans, n, k, alpha, a, lda, beta, c)
call zhfrk(transr, uplo, trans, n, k, alpha, a, lda, beta, c)
```

Include Files

- mkl.fi

Description

The ?hfrk routines perform a matrix-matrix operation using Hermitian matrices. The operation is defined as

$$
C:=\text { alpha* } A^{\star} A^{H}+b^{*} a^{\star} C
$$

or

```
C := alpha\star A}\mp@subsup{A}{}{H\star}A+beta*C
```

where:
alpha and beta are real scalars,
C is an n-by-n Hermitian matrix in RFP format,
A is an n-by- k matrix in the first case and a k-by- n matrix in the second case.
Input Parameters
transr
CHARACTER*1.
if transr $=$ ' N ' or ' n ', the normal form of RFP C is stored;

Output Parameters

c
if transr $=$ ' C ' or ' C ', the conjugate-transpose form of RFP C is stored.
CHARACTER*1. Specifies whether the upper or lower triangular part of the array c is used.
If uplo = 'U' or 'u', then the upper triangular part of the array c is used.
If uplo = 'L' or 'l', then the low triangular part of the array c is used.
CHARACTER*1. Specifies the operation:
if trans $=$ ' N ' or 'n', then $C:=a l p h a \star A \star A^{H}+$ beta* C;
if trans $=$ ' C ' or ' C ', then $C:=a l p h a \star A^{H \star} A+$ beta* C.
INTEGER. Specifies the order of the matrix C. The value of n must be at least zero.

INTEGER. On entry with trans $=$ ' N ' or 'n', k specifies the number of columns of the matrix a, and on entry with trans $=$ 'T' or 't' or 'C' or ' c ', k specifies the number of rows of the matrix a.

The value of k must be at least zero.
COMPLEX for chfrk
DOUBLE COMPLEX for zhfrk
Specifies the scalar alpha.
COMPLEX for chfrk
DOUBLE COMPLEX for zhfrk
Array, DIMENSION (Ida, ka), where $k a$ is k when trans $='^{\prime}{ }^{\prime}$ or 'n', and is n otherwise. Before entry with trans $=$ 'N' or ' n ', the leading n-by- k part of the array a must contain the matrix A, otherwise the leading $k-b y-n$ part of the array a must contain the matrix A.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. When trans $=$ ' N ' or ' n ', then Ida must be at least $\max (1, n)$, otherwise Ida must be at least max $(1, k)$.

COMPLEX for chfrk
DOUBLE COMPLEX for zhfrk
Specifies the scalar beta.
COMPLEX for chfrk
DOUBLE COMPLEX for zhfrk
Array, size $\left(n^{\star}(n+1) / 2\right)$. Before entry contains the Hermitian matrix C in in RFP format.

```
If trans = 'N' or 'n', then c contains C := alpha*A\star AH + beta*C;
if trans = 'C' or 'c', then c contains C := alpha* A H*A + beta*C;
```


?tfsm

Solves a matrix equation (one operand is a triangular matrix in RFP format).

Syntax

```
call stfsm(transr, side, uplo, trans, diag, m, n, alpha, a, b, ldb)
call dtfsm(transr, side, uplo, trans, diag, m, n, alpha, a, b, ldb)
call ctfsm(transr, side, uplo, trans, diag, m, n, alpha, a, b, ldb)
call ztfsm(transr, side, uplo, trans, diag, m, n, alpha, a, b, ldb)
```


Include Files

- mkl.fi

Description

The ?tfsm routines solve one of the following matrix equations:

$$
\mathrm{op}(A) * X=\operatorname{alpha} * B,
$$

or

$$
X^{\star} \circ p(A)=\text { alpha*B, }
$$

where:
alpha is a scalar,
X and B are m-by-n matrices,
A is a unit, or non-unit, upper or lower triangular matrix in rectangular full packed (RFP) format. $o p(A)$ can be one of the following:

- $\operatorname{op}(A)=A$ or op $(A)=A^{T}$ for real flavors
- $\mathrm{op}(A)=A$ or op $(A)=A^{H}$ for complex flavors

The matrix B is overwritten by the solution matrix X.

Input Parameters

transr	CHARACTER*1.
	if transr = 'N' or 'n', the normal form of RFP A is stored;
	if transr = 'T' or 't', the transpose form of RFP A is stored;
	if transr $=$ ' C' or 'c', the conjugate-transpose form of RFP A is stored.
side	CHARACTER*1. Specifies whether op (A) appears on the left or right of X in the equation:
	if side $=$ 'L' or 'l', then op $(A) * X=$ alpha* B;
	if side $=$ 'R' or 'r', then $X^{\star} \mathrm{op}(A)=$ alpha*B.
uplo	CHARACTER*1. Specifies whether the RFP matrix A is upper or lower triangular:
	if uplo = 'U' or 'u', then the matrix is upper triangular;

a
b
if uplo = 'L' or 'l', then the matrix is low triangular.
CHARACTER*1. Specifies the form of op (A) used in the matrix multiplication:
if trans $=$ ' N ' or ' n ', then op $(A)=A$;
if trans $=$ 'T' or 't', then op $(A)=A '$;
if trans $=$ ' C' or 'C', then op $(A)=\operatorname{conjg}(A ')$.
CHARACTER*1. Specifies whether the RFP matrix A is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag $=$ ' N ' or ' n ', then the matrix is not unit triangular.
INTEGER. Specifies the number of rows of B. The value of m must be at least zero.

INTEGER. Specifies the number of columns of B. The value of n must be at least zero.

REAL for stfsm
DOUBLE PRECISION for $d t f s m$
COMPLEX for ctfsm
DOUBLE COMPLEX for ztfsm
Specifies the scalar alpha.
When alpha is zero, then a is not referenced and b need not be set before entry.

REAL for stfsm
DOUBLE PRECISION for dtfsm
COMPLEX for ctfsm
DOUBLE COMPLEX for $z t f s m$
Array, size $\left(n^{*}(n+1) / 2\right)$. Contains the matrix A in RFP format.
REAL for stfsm
DOUBLE PRECISION for $d t f s m$
COMPLEX for ctfsm
DOUBLE COMPLEX for ztfsm
Array, size (1, ldb* n)
Before entry, the leading m-by-n part of the array b must contain the righthand side matrix B.

INTEGER. Specifies the leading dimension of b as declared in the calling (sub)program. The value of $I d b$ must be at least max $(1, m)$.

Output Parameters

?lansf

Returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix in RFP format.

Syntax

```
val = slansf(norm, transr, uplo, n, a, work)
val = dlansf(norm, transr, uplo, n, a, work)
```

Include Files

- mkl.fi

Description

T
The function ?lansf returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n-by- n real symmetric matrix A in the rectangular full packed (RFP) format.

Input Parameters

norm
transr
uplo
n
a

CHARACTER*1. Specifies the value to be returned by the routine:
$=' M$ ' or 'm': val $=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)$, largest absolute value of the matrix A.
$=$ '1' or 'O' or '○': val $=\operatorname{norm1}(A)$, 1 -norm of the matrix A (maximum column sum),
$=$ 'I' or 'i': val $=$ normI (A), infinity norm of the matrix A (maximum row sum),
$=$ ' $\mathrm{F}^{\prime}, \mathrm{f}^{\prime}$ ', 'E' or 'e': val $=\operatorname{normF}(A)$, Frobenius norm of the matrix A (square root of sum of squares).

CHARACTER*1.
Specifies whether the RFP format of matrix A is normal or transposed format.

If transr = 'N': RFP format is normal;
if transr = 'T': RFP format is transposed.
CHARACTER*1.
Specifies whether the RFP matrix A came from upper or lower triangular matrix.

If uplo = 'U': RFP matrix A came from an upper triangular matrix;
if uplo = 'L': RFP matrix A came from a lower triangular matrix.
INTEGER. The order of the matrix $A . n \geq 0$.
When $n=0$, ?lansf is set to zero.
REAL for slansf
DOUBLE PRECISION for dlansf

Array, DIMENSION $\left(n^{*}(n+1) / 2\right)$.
The upper (if uplo = 'U') or lower (if uplo = 'L') part of the symetric matrix A stored in RFP format.
work
REAL for slansf.
DOUBLE PRECISION for dlansf.
Workspace array, DIMENSION (max (1, lwork)), where
lwork $\geq n$ when norm = 'I' or '1' or 'O'; otherwise, work is not referenced.

Output Parameters

val
REAL for slansf
DOUBLE PRECISION for dlansf
Value returned by the function.

?lanhf

Returns the value of the 1-norm, or the Frobenius
norm, or the infinity norm, or the element of largest
absolute value of a Hermitian matrix in RFP format.

Syntax

```
val = clanhf(norm, transr, uplo, n, a, work)
val = zlanhf(norm, transr, uplo, n, a, work)
```

Include Files

- mkl.fi

Description

The function ?lanhf returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an n-by- n complex Hermitian matrix A in the rectangular full packed (RFP) format.

Input Parameters

norm
CHARACTER*1.
Specifies the value to be returned by the routine:
$=$ 'M' or 'm': val $=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)$, largest absolute value of the matrix A.
$=$ '1' or 'O' or '०': val $=\operatorname{norm1}(A)$, 1-norm of the matrix A (maximum column sum),
$=$ 'I' or 'i': val $=$ normI (A), infinity norm of the matrix A (maximum row sum),
$=' F^{\prime}, f^{\prime}, ' E$ ' or 'e': val $=\operatorname{normF}(A)$, Frobenius norm of the matrix A (square root of sum of squares).

```
transr
uplo
n
a
work
COMPLEX for clanhf.
DOUBLE COMPLEX for zlanhf.
Workspace array, DIMENSION (max (1, l work)), where
IWork\geqn when norm = 'I' or 'I' or 'O'; otherwise, work is not
referenced.
```


Output Parameters

val
COMPLEX for clanhf
DOUBLE COMPLEX for zlanhf
Value returned by the function.
?tfttp
Copies a triangular matrix from the rectangular full packed format (TF) to the standard packed format (TP).

Syntax

```
call stfttp( transr, uplo, n, arf, ap, info )
call dtfttp( transr, uplo, n, arf, ap, info )
call ctfttp( transr, uplo, n, arf, ap, info )
call ztfttp( transr, uplo, n, arf, ap, info )
```


Include Files

- mkl.fi

Description

The routine copies a triangular matrix A from the Rectangular Full Packed (RFP) format to the standard packed format. For the description of the RFP format, see Matrix Storage Schemes.

Input Parameters

```
transr
uplo
n
arf
```

```
CHARACTER*1.
    = 'N': arf is in the Normal format,
    = 'T': arf is in the Transpose format (for stfttp and dtfttp),
    = 'C': arf is in the Conjugate-transpose format (for ctfttp and ztfttp).
CHARACTER*1.
```

Specifies whether A is upper or lower triangular:
$=$ ' U ': A is upper triangular,
= 'L': A is lower triangular.
INTEGER. The order of the matrix $A . n \geq 0$.
REAL for stfttp,
DOUBLE PRECISION for dtfttp,
COMPLEX for ctfttp,
DOUBLE COMPLEX for ztfttp.
Array, size at least max $\left(1, n^{*}(n+1) / 2\right)$.
On entry, the upper or lower triangular matrix A stored in the RFP format.

Output Parameters

ap

REAL for stfttp,
DOUBLE PRECISION for dtfttp,
COMPLEX for ctfttp,
DOUBLE COMPLEX for ztfttp.
Array, size at least max $\left(1, n^{*}(n+1) / 2\right)$.
On exit, the upper or lower triangular matrix A, packed columnwise in a linear array.

The j-th column of A is stored in the array ap as follows:
if uplo $=$ ' U ', ap $(i+(j-1) * j / 2)=A(i, j)$ for $1 \leq i \leq j$,
if uplo $=$ 'L', ap($i+(j-1) *(2 n-j) / 2)=A(i, j)$ for $j \leq i \leq n$.
INTEGER. If info $=0$, the execution is successful.
If info < 0 , the i-th parameter had an illegal value.

If info $=-1011$, memory allocation error occurred.
?tfttr
Copies a triangular matrix from the rectangular full
packed format (TF) to the standard full format (TR).

Syntax

```
call stfttr( transr, uplo, n, arf, a, lda, info )
call dtfttr( transr, uplo, n, arf, a, lda, info )
call ctfttr( transr, uplo, n, arf, a, lda, info )
call ztfttr( transr, uplo, n, arf, a, lda, info )
```

Include Files

- mkl.fi

Description

The routine copies a triangular matrix A from the Rectangular Full Packed (RFP) format to the standard full format. For the description of the RFP format, see Matrix Storage Schemes.

Input Parameters

transr
uplo
n
arf

Ida

CHARACTER*1.
$=$ ' N ': arf is in the Normal format,
$=$ 'T': arf is in the Transpose format (for stfttr and dtfttr),
$=$ ' C^{\prime} : arf is in the Conjugate-transpose format (for ctfttr and ztfttr).
CHARACTER*1.
Specifies whether A is upper or lower triangular:
= 'U': A is upper triangular,
$=$ ' L ': A is lower triangular.
INTEGER. The order of the matrices arf and $a . n \geq 0$.
REAL for stfttr,
DOUBLE PRECISION for dtfttr,
COMPLEX for ctfttr,
DOUBLE COMPLEX for ztfttr.
Array, size at least $\max \left(1, n^{*}(n+1) / 2\right)$.
On entry, the upper or lower triangular matrix A stored in the RFP format.
INTEGER. The leading dimension of the array $a . \quad$ da $\geq \max (1, n)$.

Output Parameters

```
a
    REAL for stfttr,
    DOUBLE PRECISION for dtfttr,
    COMPLEX for ctfttr,
    DOUBLE COMPLEX for ztfttr.
    Array, size (Ida, *).
```

 On exit, the triangular matrix \(A\). If up \(10=\) ' \(U\) ', the leading \(n\)-by- \(n\) upper
 triangular part of the array a contains the upper triangular matrix, and the
 strictly lower triangular part of \(a\) is not referenced. If uplo = 'L', the leading
 \(n\)-by- \(n\) lower triangular part of the array a contains the lower triangular
 matrix, and the strictly upper triangular part of \(a\) is not referenced.
 info

INTEGER. If info $=0$, the execution is successful.
If info < 0 , the i-th parameter had an illegal value.
If info $=-1011$, memory allocation error occurred.

```
?tplqt2
?tplqt2 computes an LQ factorization of a real or
complex "triangular-pentagonal" matrix, which is
composed of a triangular block and a pentagonal using
the compact WY representation for Q.
call stplqt2(m, n, l, a, lda, b, ldb, t, ldt, info)
call dtplqt2(m, n, l, a, lda, b, ldb, t, ldt, info)
call ctplqt2(m, n, l, a, lda, b, ldb, t, ldt, info)
call ztplqt2(m, n, l, a, lda, b, ldb, t, ldt, info)
```


Description

?tplqt2 computes a LQ a factorization of a real or complex "triangular-pentagonal" matrix C, which is composed of a triangular block A and pentagonal block B, using the compact $W Y$ representation for Q.

The input matrix C is an m-by- $(m+n)$ matrix:
$C=[A][B]$
where A is a lower triangular m-by- m matrix, and B is an m-by- n pentagonal matrix consisting of an m-by- $(n-$ 1) rectangular matrix $B 1$ to the left of an m-by- 1 lower trapezoidal matrix $B 2$:
[B] = [B1][B2]
$[B 1]<-m$-by-($n-1$) rectangular
[B2]<-m-by-1 lower trapezoidal.
The lower trapezoidal matrix $B 2$ consists of the first I columns of an $n-b y-n$ lower triangular matrix, where 0 $\leq l \leq \min (m, n)$. If $l=0, b$ is rectangular m-by- n; if $m=l=n, b$ is lower triangular.
The matrix W stores the elementary reflectors $H(i)$ in the i-th row above the diagonal (of A) in the m-by-(m $+n$) input matrix C :
[C] = [A][B]
[A] <- lower triangular m-by- m
[B] <- m-by-n pentagonal
so that W can be represented as
$[W]=[I][V]$
[I] <- m-by-m identity matrix
[V] <- m-by-n, same form as B.
Thus, all of information needed for W is contained on exit in the array b, called V in the preceding. Note that V has the same form as B; that is,
[V] $=[V 1$] [$V 2$]
[V1] <- m-by-($n-1$) rectangular
[V2] <- m-by-1 lower trapezoidal.
The rows of V represent the vectors which define the $H(i)$ elementary reflectors .
The $(m+n)$-by- $(m+n)$ block reflector H is then given by $H=I-W^{H} * T^{*} W$ where W^{H} is the conjugate transpose of W and T is the upper triangular factor of the block reflector.

Input Parameters

m
n

1
a
lda
b

1 db
ldt

Output Parameters

INTEGER. The total number of rows of the matrix $B . m \geq 0$.
INTEGER. The number of columns of the matrix B, and the order of the triangular matrix A. $n \geq 0$.

INTEGER. The number of rows of the lower trapezoidal part of $B . \min (m, n)$ $\geq 1 \geq 0$.

REAL for stplqt2
DOUBLE PRECISION for dtplqt2
COMPLEX for ctplqt2
COMPLEX*16 for ztplqt2
Array of size $(l d a, m)$. On entry, the lower triangular m-by-m matrix A.
INTEGER. The leading dimension of the array a. Ida $\max (1, m)$.
REAL for stplqt2
DOUBLE PRECISION for dtplqt2
COMPLEX for ctplqt2
COMPLEX*16 for ztplqt2
Array of size $(I d b, n)$. On entry, the pentagonal $m-b y-n$ matrix B. The first $n-$ I columns are rectangular, and the last I columns are lower trapezoidal.

INTEGER. The leading dimension of the array b. $1 \mathrm{db} \geq \max (1, m)$.
INTEGER. The leading dimension of the array $t . I d t \geq \max (1, m)$

On exit, the elements on and below the diagonal of the array contain the lower triangular matrix L.

```
b
t
info
On exit, b contains the pentagonal matrix \(V\).
REAL for stplqt2
DOUBLE PRECISION for dtplqt2
COMPLEX for ctplqt2
COMPLEX*16 for ztplqt2
Array of size (ldt,m). The \(n\)-by- \(n\) upper triangular factor \(T\) of the block reflector.
INTEGER.
info \(=0\) : successful exit.
info < 0 : if info \(=-i\), the \(i\)-th argument had an illegal value.
```

```
?tpqrt2
Computes a QR factorization of a real or complex
"triangular-pentagonal" matrix, which is composed of
a triangular block and a pentagonal block, using the
compact WY representation for Q.
Syntax
```

```
call stpqrt2(m, n, l, a, lda, b, ldb, t, ldt, info)
```

call stpqrt2(m, n, l, a, lda, b, ldb, t, ldt, info)
call dtpqrt2(m, n, l, a, lda, b, ldb, t, ldt, info)
call dtpqrt2(m, n, l, a, lda, b, ldb, t, ldt, info)
call ctpqrt2(m, n, l, a, lda, b, ldb, t, ldt, info)
call ctpqrt2(m, n, l, a, lda, b, ldb, t, ldt, info)
call ztpqrt2(m, n, l, a, lda, b, ldb, t, ldt, info)
call ztpqrt2(m, n, l, a, lda, b, ldb, t, ldt, info)
call tpqrt2(a, b, t [, info])

```
call tpqrt2(a, b, t [, info])
```

Include Files

- mkl.fi, lapack.f90

Description

The input matrix C is an $(n+m)$-by- n matrix

$$
C=\left[\begin{array}{c}
A \\
B
\end{array}\right] \leftarrow n \times n \times n \text { pentagonal }
$$

where A is an n-by- n upper triangular matrix, and B is an m-by- n pentagonal matrix consisting of an ($m-1$)$b y-n$ rectangular matrix $B 1$ on top of an 1 -by-n upper trapezoidal matrix $B 2$:

$$
B=\left[\begin{array}{c}
B 1 \\
B 2
\end{array}\right] \leftarrow(m-l) \times n \text { rectangular }
$$

The upper trapezoidal matrix $B 2$ consists of the first l rows of an n-by- n upper triangular matrix, where $0 \leq$ $I \leq \min (m, n)$. If $I=0, B$ is an m-by- n rectangular matrix. If $m=l=n, B$ is upper triangular. The matrix W contains the elementary reflectors $H(i)$ in the i th column below the diagonal (of A) in the ($n+m$)-by-n input matrix C so that W can be represented as

Thus, V contains all of the information needed for W, and is returned in array b.

NOTE

V has the same form as B :

$$
V=\left[\begin{array}{c}
V 1 \\
V 2
\end{array}\right] \leftarrow(m-l) \times n \text { rectangular }
$$

The columns of V represent the vectors which define the $H(i)$ s.
The $(m+n)$-by- $(m+n)$ block reflector H is then given by
$H=I-W^{\star} T^{\star} W^{\mathbb{T}}$ for real flavors, and
$H=I-W^{*} T^{*} W^{H}$ for complex flavors
where W^{\top} is the transpose of W, W^{H} is the conjugate transpose of W, and T is the upper triangular factor of the block reflector.

Input Parameters

m
n

1

INTEGER. The total number of rows in the matrix $B(m \geq 0)$.
INTEGER. The number of columns in B and the order of the triangular matrix $A(n \geq 0)$.

INTEGER. The number of rows of the upper trapezoidal part of $B(\min (m, n)$ $\geq 1 \geq 0$).

```
a,b
Ida
I db
ldt
REAL for stpqrt2
DOUBLE PRECISION for dtpqrt2
COMPLEX for ctpqrt2
COMPLEX*16 for ztpqrt2.
Arrays: \(a\), size (lda, \(n\) ) contains the \(n\)-by- \(n\) upper triangular matrix \(A\).
\(b\), size ( \(1 \mathrm{db}, n\) ), the pentagonal \(m\)-by-n matrix \(B\). The first ( \(m-1\) ) rows contain the rectangular \(B 1\) matrix, and the next 1 rows contain the upper trapezoidal B2 matrix.
INTEGER. The leading dimension of \(a\); at least max \((1, n)\).
INTEGER. The leading dimension of \(b\); at least max \((1, m)\).
INTEGER. The leading dimension of \(t\); at least max \((1, n)\).
```


Output Parameters

a
The elements on and above the diagonal of the array contain the upper triangular matrix R.

The pentagonal matrix V.
REAL for stpqrt2
DOUBLE PRECISION for dtpqrt2
COMPLEX for ctpqrt2
COMPLEX*16 for ztpqrt2.
Array, size (ldt, n).
The upper $n-b y-n$ upper triangular factor T of the block reflector.
INTEGER.
If info $=0$, the execution is successful.
If info <0 and info $=-i$, the i th argument had an illegal value.
If info $=-1011$, memory allocation error occurred.

?tprfb

Applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex matrix, which is composed of two blocks.

Syntax

```
call stprfb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb,
work, ldwork)
call dtprfb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb,
work, ldwork)
call ctprfb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb,
work, ldwork)
```

```
call ztprfb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb,
work, ldwork)
call tprfb(t, v, a, b[, direct][, storev][, side][, trans])
```


Include Files

- mkl.fi, lapack.f90

Description

The ?tprfb routine applies a real or complex "triangular-pentagonal" block reflector H, H^{\top}, or H^{H} from either the left or the right to a real or complex matrix C, which is composed of two blocks A and B.

The block B is $m-b y-n$. If side $=$ ' R ', A is $m-b y-k$, and if side $=$ 'L', A is of size $k-b y-n$.

$$
\begin{array}{lcc}
& \text { direct }=' \mathrm{~F} & \text { direct }=' \mathrm{~B} \\
\text { side }=' \mathrm{R} ' & C=\left[\begin{array}{ll}
A & B
\end{array}\right] & C=\left[\begin{array}{ll}
B & A
\end{array}\right] \\
\text { side }=' \mathrm{~L} ' & C=\left[\begin{array}{c}
A \\
B
\end{array}\right] & C=\left[\begin{array}{c}
B \\
A
\end{array}\right]
\end{array}
$$

The pentagonal matrix V is composed of a rectangular block $V 1$ and a trapezoidal block $V 2$. The size of the trapezoidal block is determined by the parameter 1 , where $0 \leq l \leq k$. if $l=k$, the $V 2$ block of V is triangular; if $l=0$, there is no trapezoidal block, thus $V=V 1$ is rectangular.

	direct='F'	direct='B'
storev='C'	V2 is upper trapezoidal (first 1 rows of $k-b y-k$ upper triangular)	V2 is lower trapezoidal (last 1 rows of k-by- k lower triangular matrix)
storev='R'	$F=\left[\begin{array}{ll} T & T y \end{array}\right]$ V2 is lower trapezoidal (first 1 columns of k -by- k lower triangular matrix)	$V=\left[\begin{array}{ll} V 2 & V 1 \end{array}\right]$ V2 is upper trapezoidal (last l columns of k -by- k upper triangular matrix)

	side='L'	side='R'

storev='C'	V is m-by- k V2 is $1-$ by $-k$	V is n-by- k V2 is $1-b y-k$
storev='R'	V is k-by- m V2 is k-by-1	V is k-by-n $V 2$ is k-by- 1

Input Parameters

side
trans
direct
storev
m
n
k

1
v

CHARACTER*1.
$=$ 'L': apply H, H^{\top}, or H^{H} from the left,
$=$ 'R': apply H, H^{\top}, or H^{H} from the right.
CHARACTER*1.
= 'N': apply H (no transpose),
$=$ ' T ': apply H^{\top} (transpose),
$=$ 'C': apply H^{H} (conjugate transpose).
CHARACTER*1.
Indicates how H is formed from a product of elementary reflectors:
= 'F': $H=H(1) H(2) \ldots H(k)$ (Forward),
$=$ 'B': $H=H(k) \ldots H(2) H(1)$ (Backward).
CHARACTER*1.
Indicates how the vectors that define the elementary reflectors are stored:
$=$ ' C ': Columns,
$=$ 'R': Rows.
INTEGER. The total number of rows in the matrix $B(m \geq 0)$.
INTEGER. The number of columns in $B(n \geq 0)$.
INTEGER. The order of the matrix T, which is the number of elementary reflectors whose product defines the block reflector. ($k \geq 0$)

INTEGER. The order of the trapezoidal part of V. $(k \geq 1 \geq 0)$.
REAL for stprfb
DOUBLE PRECISION for dtprfb
COMPLEX for ctprfb
COMPLEX*16 for ztprfb.
DIMENSION ($l d v, k$) if storev $=$ ' C ',
DIMENSION $(I d v, m)$ if storev $=$ 'R' and side $=$ 'L',
DIMENSION $(I d v, n)$ if storev $=$ 'R' and side $=$ 'R'.
The pentagonal matrix V, which contains the elementary reflectors $H(1)$, $H(2), \ldots, H(k)$.
$I d v$
t
$l d t$
a
b

1 db
work
ldwork

INTEGER. The leading dimension of the array v.
If storev $=$ ' C ' and side $=$ 'L', at least max $(1, m)$.
If storev $=$ 'C' and side $=$ 'R', at least $\max (1, n)$.
If storev $=$ 'R', at least k.
REAL for stprfb
DOUBLE PRECISION for dtprfb
COMPLEX for ctprfb
COMPLEX*16 for ztprfb.
Array size ($l d t, k$). The triangular $k-b y-k$ matrix T in the representation of the block reflector.

INTEGER. The leading dimension of the array $t(l d t \geq k)$.
REAL for stprfb
DOUBLE PRECISION for dtprfb
COMPLEX for ctprfb
COMPLEX*16 for ztprfb.
DIMENSION (Ida, n) if side = 'L',
DIMENSION $(I d a, k)$ if side $=$ 'R'.
The k-by- n or m-by- k matrix A.
INTEGER. The leading dimension of the array a.
If side $=$ ' L ', at least $\max (1, k)$.
If side $=$ ' R ', at least $\max (1, m)$.
REAL for stprfb
DOUBLE PRECISION for dtprfb
COMPLEX for ctprfb
COMPLEX* 16 for ztprfb.
Array size $(I d b, n)$, the $m-b y-n$ matrix B.
INTEGER. The leading dimension of the array $b(1 d b \geq \max (1, m))$.
REAL for stprfb
DOUBLE PRECISION for dtprfb
COMPLEX for ctprfb
COMPLEX*16 for ztprfb.
DIMENSION (1 dwork, n) if side = 'L',
DIMENSION (1 dwork, k) if side = 'R'.
Workspace array.
INTEGER. The leading dimension of the array work.

If side $=$ 'L', at least k.
If side $=$ 'R', at least m.

Output Parameters

a
b
info

Contains the corresponding block of $H^{*} C, H^{\top}$ C, $H^{H *} C, C^{*} H, C^{*} H^{\top}$, or $C^{*} H^{H}$.
Contains the corresponding block of $H^{*} C, H^{\top *} C, H^{H *} C, C^{*} H, C^{*} H^{\top}$, or $C^{*} H^{H}$.
INTEGER. If info $=0$, the execution is successful.
If info < 0 , the i-th parameter had an illegal value.
If info $=-1011$, memory allocation error occurred.

```
?tpttf
Copies a triangular matrix from the standard packed
format (TP) to the rectangular full packed format (TF).
```

Syntax

```
call stpttf( transr, uplo, n, ap, arf, info )
call dtpttf( transr, uplo, n, ap, arf, info )
call ctpttf( transr, uplo, n, ap, arf, info )
call ztpttf( transr, uplo, n, ap, arf, info )
```

Include Files

- mkl.fi

Description

The routine copies a triangular matrix A from the standard packed format to the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

Input Parameters

transr
uplo
n
ap

CHARACTER*1.
$=$ ' N ': arf must be in the Normal format,
$=$ 'T': arf must be in the Transpose format (for stpttf and dtpttf),
$=$ 'C': arf must be in the Conjugate-transpose format (for ctpttf and ztpttf).

CHARACTER*1.
Specifies whether A is upper or lower triangular:
$=$ ' U ': A is upper triangular,
$=$ ' L ': A is lower triangular.
INTEGER. The order of the matrix $A . n \geq 0$.
REAL for stpttf,

DOUBLE PRECISION for dtpttf,
COMPLEX for ctpttf,
DOUBLE COMPLEX for ztpttf.
Array, size at least max $\left(1, n^{*}(n+1) / 2\right)$.
On entry, the upper or lower triangular matrix A, packed columnwise in a linear array.
The j-th column of A is stored in the array ap as follows:
if uplo $=$ 'U', ap $\left(i+(j-1) *_{j} / 2\right)=A(i, j)$ for $1 \leq i \leq j$,
if uplo $=$ 'L', ap $(i+(j-1) *(2 n-j) / 2)=A(i, j)$ for $j \leq i \leq n$.

Output Parameters

```
arf
    info
```

```
REAL for stpttf,
DOUBLE PRECISION for dtpttf,
COMPLEX for ctfttp,
DOUBLE COMPLEX for ztpttf.
```

Array, size at least $\max \left(1, n^{*}(n+1) / 2\right)$.
On exit, the upper or lower triangular matrix A stored in the RFP format.
INTEGER.
$=0$: successful exit,
<0 : if info $=-i$, the i-th parameter had an illegal value.
If info $=-1011$, memory allocation error occurred.

?tpttr

Copies a triangular matrix from the standard packed format (TP) to the standard full format (TR).

Syntax

```
call stpttr( uplo, n, ap, a, lda, info)
call dtpttr( uplo, n, ap, a, lda, info)
call ctpttr( uplo, n, ap, a, lda, info)
call ztpttr( uplo, n, ap, a, lda, info)
```

Include Files

- mkl.fi

Description

The routine copies a triangular matrix A from the standard packed format to the standard full format.

Input Parameters

uplo
n
$a p$

Ida

Output Parameters

a
info

CHARACTER*1.
Specifies whether A is upper or lower triangular:
= 'U': A is upper triangular,
$=$ ' L ': A is lower triangular.
INTEGER. The order of the matrices ap and a. $n \geq 0$.
REAL for stpttr,
DOUBLE PRECISION for dtpttr,
COMPLEX for ctpttr,
DOUBLE COMPLEX for ztpttr.
On entry, the upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array ap as follows:
if uplo $=$ 'U', ap $(i+(j-1) * j / 2)=A(i, j)$ for $1 \leq i \leq j$,
if uplo $=$ 'L', ap $(i+(j-1) *(2 n-j) / 2)=A(i, j)$ for $j \leq i \leq n$.
INTEGER. The leading dimension of the array $a . I d a \geq \max (1, n)$.

```
REAL for stpttr,
DOUBLE PRECISION for dtpttr,
COMPLEX for ctpttr,
DOUBLE COMPLEX for ztpttr.
```

Array, size (/da, *).
On exit, the triangular matrix A. If uplo $=$ ' U ', the leading $n-b y-n$ upper triangular part of the array a contains the upper triangular part of the matrix A, and the strictly lower triangular part of a is not referenced. If uplo = 'L', the leading n-by- n lower triangular part of the array a contains the lower triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.

INTEGER.
If info $=0$, the execution is successful.
If info $=-i$, the i-th parameter had an illegal value.
If info $=-1011$, memory allocation error occurred.

?trttf

Copies a triangular matrix from the standard full
format (TR) to the rectangular full packed format (TF).

Syntax

```
call strttf( transr, uplo, n, a, lda, arf, info )
call dtrttf( transr, uplo, n, a, lda, arf, info )
```

```
call ctrttf( transr, uplo, n, a, lda, arf, info )
call ztrttf( transr, uplo, n, a, lda, arf, info )
```

Include Files

- mkl.fi

Description

The routine copies a triangular matrix A from the standard full format to the Rectangular Full Packed (RFP) format. For the description of the RFP format, see Matrix Storage Schemes.

Input Parameters

transr
uplo
n
a
lda

Output Parameters

arf

CHARACTER*1.
$=$ ' N ': arf must be in the Normal format,
$=$ ' T ': arf must be in the Transpose format (for strttf and dtrttf),
$=$ 'C': arf must be in the Conjugate-transpose format (for ctrttf and ztrttf).

CHARACTER*1.
Specifies whether A is upper or lower triangular:
$=$ ' U ': A is upper triangular,
$=$ ' L ': A is lower triangular.
INTEGER. The order of the matrix $A . n \geq 0$.
REAL for strttf,
DOUBLE PRECISION for dtrttf,
COMPLEX for ctrttf,
DOUBLE COMPLEX for ztrttf.
Array, size (Ida, n).
On entry, the triangular matrix A. If uplo = ' U ', the leading n-by- n upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of a is not referenced. If uplo = 'L', the leading n-by- n lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of a is not referenced.

INTEGER. The leading dimension of the array $a . I d a \geq \max (1, n)$.

```
REAL for strttf,
DOUBLE PRECISION for dtrttf,
COMPLEX for ctrttf,
DOUBLE COMPLEX for ztrttf.
```

Array, size at least $\max \left(1, n^{*}(n+1) / 2\right)$.

On exit, the upper or lower triangular matrix A stored in the RFP format.
info
Integer. If info $=0$, the execution is successful.
If info < 0 , the i-th parameter had an illegal value.
If info $=-1011$, memory allocation error occurred.

?trttp

Copies a triangular matrix from the standard full format (TR) to the standard packed format (TP).

Syntax

```
call strttp( uplo, n, a, lda, ap, info )
call dtrttp( uplo, n, a, lda, ap, info )
call ctrttp( uplo, n, a, lda, ap, info )
call ztrttp( uplo, n, a, lda, ap, info )
```

Include Files

- mkl.fi

Description

The routine copies a triangular matrix A from the standard full format to the standard packed format.

Input Parameters

```
uplo
n
a
Ida
CHARACTER*1.
Specifies whether A is upper or lower triangular:
= 'U': A is upper triangular,
= 'L':A is lower triangular.
INTEGER. The order of the matrix A, n\geq0.
REAL for strttp,
DOUBLE PRECISION for dtrttp,
COMPLEX for ctrttp,
DOUBLE COMPLEX for ztrttp.
Array, size (Ida, n).
On entry, the triangular matrix \(A\). If uplo = ' \(U\) ', the leading \(n\)-by- \(n\) upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of \(a\) is not referenced. If uplo = ' L ', the leading \(n\)-by-n lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of \(a\) is not referenced.
INTEGER. The leading dimension of the array \(a . \quad I d a \geq \max (1, n)\).
```


Output Parameters

```
ap REAL for strttp,
    DOUBLE PRECISION for dtrttp,
    COMPLEX for ctrttp,
    DOUBLE COMPLEX for ztrttp.
    Array, size at least max (1, n* (n+1)/2).
On exit, the upper or lower triangular matrix \(A\), packed columnwise in a linear array. The \(j\)-th column of \(A\) is stored in the array \(a p\) as follows:
if uplo = 'U', ap( \(i+(j-1) * j / 2)=A(i, j)\) for \(1 \leq i \leq j\),
if uplo = 'L', ap \((i+(j-1) *(2 n-j) / 2)=A(i, j)\) for \(j \leq i \leq n\).
INTEGER. If info \(=0\), the execution is successful.
If info < 0 , the \(i\)-th parameter had an illegal value.
If info \(=-1011\), memory allocation error occurred.
```


?pstf2
 Computes the Cholesky factorization with complete pivoting of a real symmetric or complex Hermitian positive semi-definite matrix.

Syntax

```
call spstf2( uplo, n, a, lda, piv, rank, tol, work, info )
call dpstf2( uplo, n, a, lda, piv, rank, tol, work, info )
call cpstf2( uplo, n, a, lda, piv, rank, tol, work, info )
call zpstf2( uplo, n, a, lda, piv, rank, tol, work, info )
```


Include Files

- mkl.fi

Description

The real flavors spstf2 and dpstf2 compute the Cholesky factorization with complete pivoting of a real symmetric positive semi-definite matrix A. The complex flavors cpstf2 and zpstf2 compute the Cholesky factorization with complete pivoting of a complex Hermitian positive semi-definite matrix A. The factorization has the form:

```
PT* A * P = U' * U, if uplo = 'U' for real flavors,
PT* A * P = UH * U, if uplo = 'U' for complex flavors,
PT* A * P = L * L', if uplo = 'L' for real flavors,
P}\mp@subsup{}{T}{*}A*P=L* L'H, if uplo = 'L' for complex flavors
```

where U is an upper triangular matrix and L is lower triangular, and P is stored as vector piv.
This algorithm does not check that A is positive semi-definite. This version of the algorithm calls level 2 BLAS.

Input Parameters

uplo
n
a

Output Parameters

piv
a
rank
info

CHARACTER*1.
Specifies whether the upper or lower triangular part of the symmetric or Hermitian matrix A is stored:
= 'U': Upper triangular,
= 'L': Lower triangular.
INTEGER. The order of the matrix $A . n \geq 0$.
REAL for spstf2,
DOUBLE PRECISION for dpstf2,
COMPLEX for cpstf2,
DOUBLE COMPLEX for zpstf2.
Array, DIMENSION (/da, *).
On entry, the symmetric matrix A. If uplo = ' U ', the leading $n-b y-n$ upper triangular part of the array a contains the upper triangular part of the matrix A, and the strictly lower triangular part of a is not referenced. If uplo = 'L', the leading n-by- n lower triangular part of the array a contains the lower triangular part of the matrix A, and the strictly upper triangular part of a is not referenced.

REAL for spstf2 and cpstf2,
DOUBLE PRECISION for dpstf2 and zpstf2.
A user-defined tolerance.
If tol < $0, n * u l p * \max (A(k, k))$ will be used (ulp is the Unit in the Last Place, or Unit of Least Precision). The algorithm terminates at the ($k-1$)-st step if the pivot is not greater than tol.

INTEGER. The leading dimension of the matrix $A . I d a \geq \max (1, n)$.
REAL for spstf2 and cpstf2,
DOUBLE PRECISION for dpstf2 and zpstf2.
Workspace array, DIMENSION at least max (1, 2*n).

INTEGER. Array. DIMENSION at least max $(1, n)$.
piv is such that the non-zero entries are $P(\operatorname{piv}(k), k)=1$.
On exit, if info $=0$, the factor U or L from the Cholesky factorization stored the same way as the matrix A is stored on entry.

INTEGER.
The rank of A, determined by the number of steps the algorithm completed.
INTEGER.
<0 : if info $=-k$, the k-th parameter had an illegal value,

$$
=0: \text { the algorithm completed successfully, }
$$

>0 : the matrix A is rank-deficient with the computed rank, returned in rank, or indefinite.

dlat2s

Converts a double-precision triangular matrix to a single-precision triangular matrix.

Syntax

```
call dlat2s( uplo, n, a, lda, sa, ldsa, info )
```

Include Files

- mkl.fi

Description

This routine converts a double-precision triangular matrix A to a single-precision triangular matrix $S A$. dlat2s checks that all the elements of A are between $-R M A X$ and $R M A X$, where $R M A X$ is the overflow for the single-precision arithmetic. If this condition is not met, the conversion is aborted and a flag is raised. The routine does no parameter checking.

Input Parameters

```
uplo
n
a
lda
ldsa
CHARACTER*1.
Specifies whether the matrix \(A\) is upper or lower triangular:
\(=\) ' U ': \(A\) is upper triangular,
\(=\) ' L ': \(A\) is lower triangular.
INTEGER. The number of rows and columns of the matrix \(A . n \geq 0\).
DOUBLE PRECISION.
Array, DIMENSION (Ida, *).
On entry, the \(n-b y-n\) triangular matrix \(A\).
INTEGER. The leading dimension of the array \(a . I d a \geq \max (1, n)\).
INTEGER. The leading dimension of the array sa. Idsa \(\geq \max (1, n)\).
```


Output Parameters

sa
REAL.
Array, DIMENSION (/dsa, *).
Only the part of sa determined by uplo is referenced. On exit,

- if info $=0$, the n-by- n triangular matrix $S A$,
- if info >0, the content of the part of sa determined by uplo is unspecified.

INTEGER.
$=0$: successful exit,
>0 : an element of the matrix A is greater than the single-precision overflow threshold; in this case, the content of the part of sa determined by uplo is unspecified on exit.

zlat2c

Converts a double complex triangular matrix to a complex triangular matrix.

Syntax

```
call zlat2c( uplo, n, a, lda, sa, ldsa, info )
```


Include Files

- mkl.fi

Description

This routine is declared in mkl_lapack.fi.
The routine converts a DOUBLE COMPLEX triangular matrix A to a COMPLEX triangular matrix SA. zlat2c checks that the real and complex parts of all the elements of A are between $-R M A X$ and $R M A X$, where $R M A X$ is the overflow for the single-precision arithmetic. If this condition is not met, the conversion is aborted and a flag is raised. The routine does no parameter checking.

Input Parameters

```
uplo
n
a
Ida
Idsa
CHARACTER*1.
    Specifies whether the matrix A is upper or lower triangular:
    = 'U':A is upper triangular,
    = 'L':A is lower triangular.
    INTEGER. The number of rows and columns in the matrix A. n\geq0.
    DOUBLE COMPLEX.
    Array, DIMENSION (/da, *).
    On entry, the n-by-n triangular matrix A.
    INTEGER. The leading dimension of the array a. Ida \geqmax (1,n).
    INTEGER. The leading dimension of the array sa. Idsa \geqmax (1,n).
```


Output Parameters

```
sa
```

COMPLEX.
Array, DIMENSION (/dsa, *).
Only the part of sa determined by uplo is referenced. On exit,

- if info $=0$, the n-by- n triangular matrix sa,
- if info >0, the content of the part of sa determined by uplo is unspecified.

INTEGER.

> =0: successful exit,
>0 : the real or complex part of an element of the matrix A is greater than the single-precision overflow threshold; in this case, the content of the part of sa determined by uplo is unspecified on exit.

?lacp2

Copies all or part of a real two-dimensional array to a complex array.

Syntax

```
call clacp2( uplo, m, n, a, lda, b, ldb )
call zlacp2( uplo, m, n, a, lda, b, ldb )
```


Include Files

- mkl.fi

Description

The routine copies all or part of a real matrix A to another matrix B.

Input Parameters

```
uplo
m
n
\(a\)
lda
1 db
CHARACTER*1.
Specifies the part of the matrix \(A\) to be copied to \(B\).
If uplo = 'U', the upper triangular part of \(A\);
if uplo = 'L', the lower triangular part of \(A\).
Otherwise, all of the matrix \(A\) is copied.
INTEGER. The number of rows in the matrix \(A(m \geq 0)\).
INTEGER. The number of columns in \(A(n \geq 0)\).
REAL for clacp2
DOUBLE PRECISION for zlacp2
Array, size at least (lda, \(n\) ), contains the \(m\)-by-n matrix \(A\).
If uplo = 'U', only the upper triangle or trapezoid is accessed; if uplo =
'L', only the lower triangle or trapezoid is accessed.
INTEGER. The leading dimension of \(a ; 1 d a \geq \max (1, m)\).
INTEGER. The leading dimension of the output array \(b ; 1 d b \geq \max (1, m)\).
```


Output Parameters

b
COMPLEX for clacp2
DOUBLE COMPLEX for zlacp2.
Array, size $(I d b, n)$.

On exit, $B=A$ in the locations specified by uplo.
info
INTEGER. If info $=0$, the execution is successful.
If info <0, the i-th parameter had an illegal value.
If info $=-1011$, memory allocation error occurred.

?la_gbamv

Performs a matrix-vector operation to calculate error bounds.

Syntax

```
call sla_gbamv(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)
call dla_gbamv(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)
call cla_gbamv(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)
call zla_gbamv(trans, m, n, kl, ku, alpha, ab, ldab, x, incx, beta, y, incy)
```

Include Files

- mkl.fi

Description

The ?la_gbamv function performs one of the matrix-vector operations defined as

```
y := alpha*abs(A)*abs(x) + beta*abs(y),
```

or
$y:=a l p h a \star a b s(A)^{T \star}$ abs $(x)+b e t a * a b s(y)$,
where:
alpha and beta are scalars,
x and y are vectors,
A is an m-by- n matrix, with $k l$ sub-diagonals and $k u$ super-diagonals.
This function is primarily used in calculating error bounds. To protect against underflow during evaluation, the function perturbs components in the resulting vector away from zero by $(n+1)$ times the underflow threshold. To prevent unnecessarily large errors for block structure embedded in general matrices, the function does not perturb symbolically zero components. A zero entry is considered symbolic if all multiplications involved in computing that entry have at least one zero multiplicand.

Input Parameters

trans
INTEGER. Specifies the operation to be performed:

```
If trans = 'BLAS_NO_TRANS', then y := alpha*abs (A)*abs(x) +
beta*abs(y)
If trans = 'BLAS_TRANS', then y := alpha*abs ( }\mp@subsup{A}{}{T}\mathrm{ )*abs(x) +
beta*abs(y)
If trans = 'BLAS_CONJ_TRANS', then y := alpha*abs( }\mp@subsup{A}{}{T})*abs(x) 
beta*abs(y)
```

The parameter is unchanged on exit.
m
n
beta

INTEGER. Specifies the number of rows of the matrix A.
The value of m must be at least zero. Unchanged on exit.
INTEGER. Specifies the number of columns of the matrix A.
The value of n must be at least zero. Unchanged on exit.
INTEGER. Specifies the number of sub-diagonals within the band of A.
$k l \geq 0$.
INTEGER. Specifies the number of super-diagonals within the band of A.
$k u \geq 0$.
REAL for sla_gbamv and cla_gbamv
DOUBLE PRECISION for dla_gbamv and zla_gbamv
Specifies the scalar alpha. Unchanges on exit.
REAL for sla_gbamv
DOUBLE PRECISION for dla_gbamv
COMPLEX for cla_gbamv
DOUBLE COMPLEX for zla_gbamv
Array, DIMENSION (Idab, *).
Before entry, the leading m-by- n part of the array $a b$ must contain the matrix of coefficients. The second dimension of ab must be at least $\max (1, n)$. Unchanged on exit.

INTEGER. Specifies the leading dimension of $a b$ as declared in the calling (sub)program. The value of ldab must be at least max $(1, m)$. Unchanged on exit.

REAL for sla_gbamv
DOUBLE PRECISION for dla_gbamv
COMPLEX for cla_gbamv
DOUBLE COMPLEX for zla_gbamv
Array, DIMENSION
$(1+(n-1) * a b s(i n c x))$ when trans $=N^{\prime} N^{\prime}$ or 'n'
and at least
$(1+(m-1) * a b s(i n c x))$ otherwise.
Before entry, the incremented array x must contain the vector x.
INTEGER. Specifies the increment for the elements of x. incx must not be zero.

REAL for sla_gbamv and cla_gbamv
DOUBLE PRECISION for dla_gbamv and zla_gbamv
Specifies the scalar beta. When beta is zero, you do not need to set y on input.

```
Y
```

REAL for sla_gbamv and cla_gbamv
DOUBLE PRECISION for dla_gbamv and zla_gbamv

Array, DIMENSION at least
$(1+(m-1) * a b s(i n c y))$ when trans $={ }^{\prime} N$ ' or 'n'
and at least
$(1+(n-1) * a b s(i n c y))$ otherwise.
Before entry with beta non-zero, the incremented array y must contain the vector y.

INTEGER. Specifies the increment for the elements of y.
The value of incy must not be zero. Unchanged on exit.

Output Parameters

Y
Updated vector y.

?la_gbrcond

Estimates the Skeel condition number for a general banded matrix.

Syntax

```
call sla_gbrcond( trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, cmode, c, info, work,
iwork )
call dla_gbrcond( trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, cmode, c, info, work,
iwork )
Include Files
```

- mkl.fi

Description

The function estimates the Skeel condition number of

```
op(A) * op2(C)
```

where
the cmode parameter determines op2 as follows:

cmode Value	op2(C)	
1	C	
0	I	
-1	$\operatorname{inv}(C)$	

The Skeel condition number
$\operatorname{cond}(A)=\operatorname{norminf}(|\operatorname{inv}(A)||A|)$
is computed by computing scaling factors R such that
$\operatorname{diag}(R) * A * o p 2(C)$
is row equilibrated and by computing the standard infinity-norm condition number.

Input Parameters

trans	CHARACTER*1. Must be 'N' or 'T' or 'C'.
	Specifies the form of the system of equations:
	If trans $=$ ' N ', the system has the form $A * X=B$.
	If trans $=$ ' T ', the system has the form $A^{T *} X=B$.
	If trans $=$ ' C', the system has the form $A^{H * X}=B$.
n	INTEGER. The number of linear equations, that is, the order of the matrix $A ; n \geq$ 0.
kI	INTEGER. The number of subdiagonals within the band of $A ; k l \geq 0$.
ku	INTEGER. The number of superdiagonals within the band of $A ; k u \geq 0$.
$a b, a f b, c$ work	REAL for sla_gbrcond
	DOUBLE PRECISION for dla_gbrcond

Arrays:
$a b(l d a b, *)$ contains the original band matrix A stored in rows from 1 to $k l+k u$ +1 . The j-th column of A is stored in the j-th column of the array $a b$ as follows:
$a b(k u+1+i-j, j)=A(i, j)$
for
$\max (1, j-k u) \leq i \leq \min (n, j+k l)$
$a f b(l d a f b, *)$ contains details of the LU factorization of the band matrix A, as returned by ? gbtrf. U is stored as an upper triangular band matrix with $k l+k u$ superdiagonals in rows 1 to $k l+k u+1$, and the multipliers used during the factorization are stored in rows $k l+k u+2$ to $2 * k l+k u+1$.

C, DIMENSIONn. The vector C in the formula op $(A) * \mathrm{op}^{2}(C)$.
work is a workspace array of DIMENSION ($5^{*} n$).
The second dimension of $a b$ and $a f b$ must be at least max $(1, n)$.
INTEGER. The leading dimension of the array $a b$. $l d a b \geq k l+k u+1$.
INTEGER. The leading dimension of $a f b$. $1 d a f b \geq 2 * k l+k u+1$.
INTEGER.
Array with DIMENSIONn. The pivot indices from the factorization $A=P^{\star} L^{\star} U$ as computed by ?gbtrf. Row i of the matrix was interchanged with row ipiv(i).

INTEGER. Determines op2 (C) in the formula op (A) * op2 (C) as follows:
If cmode $=1, \operatorname{op} 2(C)=C$.
If cmode $=0, \operatorname{op} 2(C)=I$.
If cmode $=-1$, op2 $(C)=\operatorname{inv}(C)$.
INTEGER. Workspace array with DIMENSIONn.

Output Parameters

info INTEGER.
If info $=0$, the execution is successful.
If $i>0$, the i-th parameter is invalid.

See Also

?gbtrf
?la_gbrcond_c
Computes the infinity norm condition number of
op $(A) *$ inv $($ diag(c)) for general banded matrices. $o p(A) * i n v(d i a g(c))$ for general banded matrices.

Syntax

```
call cla_gbrcond_c( trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, c, capply, info, work,
rwork )
call zla_gbrcond_c( trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, c, capply, info, work,
rwork )
```


Include Files

- mkl.fi

Description

The function computes the infinity norm condition number of

```
op(A) * inv(diag(c))
```

where the c is a REAL vector for cla_gbrcond_c and a DOUBLE PRECISION vector for zla_gbrcond_c.

Input Parameters

CHARACTER*1. Must be 'N' or 'T' or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $A^{*} X=B$ (No transpose)
If trans $=$ 'T', the system has the form $A^{T *} X=B$ (Transpose)
If trans $=$ ' C', the system has the form $A^{H * X}=B$ (Conjugate Transpose $=$ Transpose)
n
ku
$a b, a f b$, work
INTEGER. The number of linear equations, that is, the order of the matrix $A ; n \geq$ 0.

INTEGER. The number of subdiagonals within the band of $A ; k l \geq 0$.
INTEGER. The number of superdiagonals within the band of $A ; k u \geq 0$.
COMPLEX for cla_gbrcond_c
DOUBLE COMPLEX for zla_gbrcond_c
Arrays:
$a b(l d a b, *)$ contains the original band matrix A stored in rows from 1 to $k l+k u$
+1 . The j-th column of A is stored in the j-th column of the array $a b$ as follows:

```
ab(ku+1+i-j,j) = A(i,j)
for
\(\max (1, j-k u) \leq i \leq \min (n, j+k l)\)
\(a f b(l d a f b, *)\) contains details of the LU factorization of the band matrix \(A\), as returned by ?gbtrf. \(U\) is stored as an upper triangular band matrix with \(k l+k u\) superdiagonals in rows 1 to \(k l+k u+1\), and the multipliers used during the factorization are stored in rows \(k l+k u+2\) to \(2 * k l+k u+1\).
work is a workspace array of DIMENSION (5*n).
The second dimension of \(a b\) and \(a f b\) must be at least max \((1, n)\).
INTEGER. The leading dimension of the array \(a b\). \(1 d a b \geq k I+k u+1\).
INTEGER. The leading dimension of \(a f b\). \(l d a f b \geq 2 * k l+k u+1\).
INTEGER.
Array with DIMENSIONn. The pivot indices from the factorization \(A=P^{\star} L^{\star} U\) as computed by ?gbtrf. Row \(i\) of the matrix was interchanged with row ipiv(i).
REAL for cla_gbrcond_c
DOUBLE PRECISION for zla_gbrcond_c
Array \(c\) with DIMENSIONn. The vector \(c\) in the formula
op (A) * inv(diag(C)).
Array rwork with DIMENSION \(n\) is a workspace.
capply
LOGICAL. If .TRUE., then the function uses the vector \(c\) from the formula \(o p(A)\) * inv(diag(C)).
```


Output Parameters

```
info
```

INTEGER.
If info $=0$, the execution is successful.
If $i>0$, the i-th parameter is invalid.

See Also

?gbtrf
?la_gbrcond_x
Computes the infinity norm condition number of op(A)*diag (x) for general banded matrices.

Syntax

```
call cla_gbrcond_x( trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, x, info, work, rwork )
call zla_gbrcond_x( trans, n, kl, ku, ab, ldab, afb, ldafb, ipiv, x, info, work, rwork )
```

Include Files

- mkl.fi

Description

The function computes the infinity norm condition number of

```
op(A) * diag(x)
```

where the x is a COMPLEX vector for cla_gbrcond_x and a DOUBLE COMPLEX vector for zla_gbrcond_x.

Input Parameters

trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $A^{*} X=B$ (No transpose)
If trans $=$ ' T ', the system has the form $A^{T *} X=B$ (Transpose)
If trans $=$ ' C', the system has the form $A^{H * X}=B$ (Conjugate Transpose $=$ Transpose)

INTEGER. The number of linear equations, that is, the order of the matrix $A ; n \geq$ 0.

INTEGER. The number of subdiagonals within the band of $A ; k l \geq 0$.
INTEGER. The number of superdiagonals within the band of $A ; k u \geq 0$.
COMPLEX for cla_gbrcond_x
DOUBLE COMPLEX for zla_gbrcond_x
Arrays:
$a b(I d a b, *)$ contains the original band matrix A stored in rows from 1 to $k l+k u$ +1 . The j-th column of A is stored in the j-th column of the array $a b$ as follows:
$a b(k u+1+i-j, j)=A(i, j)$
for
$\max (1, j-k u) \leq i \leq \min (n, j+k l)$
$\operatorname{afb}(\operatorname{ldafb}, *)$ contains details of the LU factorization of the band matrix A, as returned by ?gbtrf. U is stored as an upper triangular band matrix with $k l+k u$ superdiagonals in rows 1 to $k l+k u+1$, and the multipliers used during the factorization are stored in rows $k l+k u+2$ to $2 * k l+k u+1$.
x, DIMENSION n. The vector x in the formula op (A) * diag (x).
work is a workspace array of DIMENSION ($2 * n$).
The second dimension of $a b$ and $a f b$ must be at least max $(1, n)$.
INTEGER. The leading dimension of the array $a b$. $l d a b \geq k l+k u+1$.
INTEGER. The leading dimension of $a f b$. $l d a f b \geq 2 * k l+k u+1$.
INTEGER.
Array with DIMENSIONn. The pivot indices from the factorization $A=P^{\star} L^{\star} U$ as computed by ?gbtrf. Row i of the matrix was interchanged with row ipiv(i).

REAL for cla_gbrcond_x
DOUBLE PRECISION for zla_gbrcond_x

Array rwork with DIMENSION n is a workspace.

Output Parameters

```
info
```

INTEGER.
If info $=0$, the execution is successful.
If $i>0$, the i-th parameter is invalid.

See Also

? gbtrf

?la_gbrfsx_extended

Improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

Syntax

```
call sla_gbrfsx_extended( prec_type, trans_type, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res,
ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
call dla_gbrfsx_extended( prec_type, trans_type, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res,
ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
call cla_gbrfsx_extended( prec_type, trans_type, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res,
ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
call zla_gbrfsx_extended( prec_type, trans_type, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
ipiv, colequ, c, b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res,
ayb, dy, y_tail, rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
```


Include Files

- mkl.fi

Description

The ?la_gbrfsx_extended subroutine improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. The ?gbrfsx routine calls ?la_gbrfsx_extended to perform iterative refinement.

In addition to normwise error bound, the code provides maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

Use ?la_gbrfsx_extended to set only the second fields of err_bnds_norm and err_bnds_comp.

Input Parameters

prec_type
INTEGER.
Specifies the intermediate precision to be used in refinement. The value is defined by ilaprec (p), where p is a CHARACTER and:

If $p=$ 'S': Single.

If $p=$ ' D ': Double.
If $p=$ 'I': Indigenous.
If $p=$ 'X', 'E': Extra.
INTEGER.
Specifies the transposition operation on A. The value is defined by ilatrans (t), where t is a CHARACTER and:

If $t=$ 'N': No transpose.
If $t=$ 'T': Transpose.
If $t=$ 'C': Conjugate Transpose.
INTEGER. The number of linear equations; the order of the matrix $A ; n \geq 0$.
INTEGER. The number of subdiagonals within the band of $A ; k l \geq 0$.
INTEGER. The number of superdiagonals within the band of $A ; k u \geq 0$.
INTEGER. The number of right-hand sides; the number of columns of the matrix B.

REAL for sla_gbrfsx_extended
DOUBLE PRECISION for dla_gbrfsx_extended
COMPLEX for cla_gbrfsx_extended
DOUBLE COMPLEX for zla_gbrfsx_extended.
Arrays: $a b(l d a b, *), a f b(l d a f b, *), b(l d b, *), y(l d y, *)$.
The array $a b$ contains the original n-by-n matrix A. The second dimension of $a b$ must be at least max $(1, n)$.
The array $a f b$ contains the factors L and U from the factorization $A=$ $P^{\star} L^{\star} U$) as computed by ?gbtrf. The second dimension of afb must be at least $\max (1, n)$.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least $\max (1, n r h s)$.

The array y on entry contains the solution matrix X as computed by ? gbtrs. The second dimension of y must be at least max ($1, n r h s$).

INTEGER. The leading dimension of the array $a b ; I d a b \geq \max (1, n)$.
INTEGER. The leading dimension of the array $a f b ; \operatorname{ldafb} \geq \max (1, n)$.
INTEGER.
Array, DIMENSION at least max $(1, n)$. Contains the pivot indices from the factorization $A=P^{\star} L^{\star} U$) as computed by ?gbtrf; row i of the matrix was interchanged with row ipiv(i).

LOGICAL. If colequ = .TRUE., column equilibration was done to A before calling this routine. This is needed to compute the solution and error bounds correctly.
c
ldb
ldy
n_norms
err_bnds_norm

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
c contains the column scale factors for A. If colequ $=$. FALSE., c is not accessed.

If c is input, each element of c should be a power of the radix to ensure a reliable solution and error estimates. Scaling by power of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of the array $y ; l d y \geq \max (1, n)$.
INTEGER. Determines which error bounds to return. See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

If n_{-}norms ≥ 1, returns normwise error bounds.
If n_norms ≥ 2, returns componentwise error bounds.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:
Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.
The first index in err_bnds_norm(i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_norm (: ,err) contains the following three fields:

err=1	"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * \operatorname{damch}(\varepsilon)$ for double precision flavors.
$\operatorname{err}=2$	"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$
for single precision flavors and	

$\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * s l a m c h(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1/(norm(1/
z,inf)*norm(z,inf)) for some appropriately scaled matrix Z.
Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1.
Use this subroutine to set only the second field above.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

The array is indexed by the right-hand side i, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) $=0.0$), then err_bnds_comp is not accessed. If n_err_bnds <3, then at most the first (:, $n_{-} e r r_{-} b n d s$) entries are returned.
The first index in err_bnds_comp (i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_comp (:,err) contains the follwoing three fields:
err=1
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n) *slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors.
err=2
err=3
"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * s l a m c h(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * d \operatorname{lamch}(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are $1 /$ (norm(1/
z,inf) *norm(z,inf)) for some appropriately scaled matrix Z.
Let $z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of $a * \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .
Use this subroutine to set only the second field above.

REAL for sla_gbrfsx_extended
DOUBLE PRECISION for dla_gbrfsx_extended
COMPLEX for cla_gbrfsx_extended
DOUBLE COMPLEX for zla_gbrfsx_extended.
Workspace arrays of DIMENSIONn.
res holds the intermediate residual.
$d y$ holds the intermediate solution.
$y_{\text {_ }}$ tail holds the trailing bits of the intermediate solution.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSIONn.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.
ithresh
rthresh
dz_ub
ignore_cwise

Output Parameters

y

berr_out

INTEGER. The maximum number of residual computations allowed for refinement. The default is 10 . For 'aggressive', set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Determines when to stop refinement if the error estimate stops decreasing. Refinement stops when the next solution no longer satisfies

```
norm(dx_{i+1}) < rthresh * norm(dx_i)
```

where norm (z) is the infinity norm of Z.

```
rthresh satisfies
```

$0<r$ rhresh≤ 1.
The default value is 0.5 . For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Determines when to start considering componentwise convergence. Componentwise $d z_{-} u b$ convergence is only considered after each component of the solution y is stable, that is, the relative change in each component is less than $d z_{-} u b$. The default value is 0.25 , requiring the first bit to be stable.

LOGICAL
If . TRUE., the function ignores componentwise convergence. Default value is . FALSE.

REAL for sla_gbrfsx_extended
DOUBLE PRECISION for dla_gbrfsx_extended
COMPLEX for cla_gbrfsx_extended
DOUBLE COMPLEX for zla_gbrfsx_extended.
The improved solution matrix Y.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max ($1, n r h s$). Contains the componentwise relative backward error for right-hand-side j from the formula
$\max (i)(\mathrm{abs}(\operatorname{res}(i)) /(\mathrm{abs}(\mathrm{op}(A)) * \operatorname{abs}(y)+\operatorname{abs}(B)$)(i))
where $\mathrm{abs}(z)$ is the componentwise absolute value of the matrix or vector Z. This is computed by ?la_lin_berr.

```
err_bnds_norm, Values of the corresponding input parameters improved after iterative
err_bnds_comp refinement and stored in the second column of the array ( 1:nrhs, 2 ).
The other elements are kept unchanged.
    INTEGER. If info = 0, the execution is successful. The solution to every
    right-hand side is guaranteed.
    If info = -i, the i-th parameter had an illegal value.
```


See Also

```
?gbrfsx
?gbtrf
?gbtrs
?lamch
ilaprec
ilatrans
?la_lin_berr
```


?la_gbrpvgrw

```
Computes the reciprocal pivot growth factor norm (A) /
norm (U) for a general band matrix.
```


Syntax

```
call sla_gbrpvgrw( n, kl, ku, ncols, ab, ldab, afb, ldafb )
call dla_gbrpvgrw( n, kl, ku, ncols, ab, ldab, afb, ldafb )
call cla_gbrpvgrw( n, kl, ku, ncols, ab, ldab, afb, ldafb )
call zla_gbrpvgrw( n, kl, ku, ncols, ab, ldab, afb, ldafb )
```


Include Files

- mkl.fi

Description

The ? la_gbrpvgrw routine computes the reciprocal pivot growth factor norm (A)/norm (U). The max absolute element norm is used. If this is much less than 1 , the stability of the $L U$ factorization of the equilibrated matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable.

Input Parameters

n
kI
ku
ncols
$a b, a f b$

INTEGER. The number of linear equations, the order of the matrix A; $n \geq 0$.

INTEGER. The number of subdiagonals within the band of $A ; k l \geq 0$.
INTEGER. The number of superdiagonals within the band of $A ; k u \geq 0$.
INTEGER. The number of columns of the matrix $A ; n c o l s \geq 0$.
REAL for sla_gbrpvgrw
DOUBLE PRECISION for dla_gbrpvgrw
COMPLEX for cla_gbrpvgrw

DOUBLE COMPLEX for zla_gbrpvgrw.
Arrays: $a b(I d a b, *), ~ a f b(I d a f b, *)$.
$a b$ contains the original band matrix A (see Matrix Storage Schemes) stored in rows from 1 to $k l+k u+1$. The j-th column of A is stored in the j-th column of the array $a b$ as follows:

```
ab(ku+1+i-j,j) = A(i,j)
```

for

```
max(1,j-ku) \leqi\leq min(n,j+kl)
```

afb contains details of the LU factorization of the band matrix A, as returned by ?gbtrf. U is stored as an upper triangular band matrix with $k l+k u$ superdiagonals in rows 1 to $k l+k u+1$, and the multipliers used during the factorization are stored in rows $k l+k u+2$ to $2 * k l+k u$ +1 .

INTEGER. The leading dimension of $a b ; l d a b \geq k l+k u+1$.
INTEGER. The leading dimension of $a f b ;$ ldafb $\geq 2 * k l+k u+1$.

See Also

?gbtrf

?la_geamv

Computes a matrix-vector product using a general matrix to calculate error bounds.

Syntax

```
call sla_geamv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call dla_geamv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call cla_geamv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
call zla_geamv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
```


Include Files

- mkl.fi

Description

The ?la_geamv routines perform a matrix-vector operation defined as

```
y := alpha*abs(A)* (x) + beta*abs(y),
```

or
$y:=$ alpha*abs $\left(A^{T}\right) * a b s(x)+b e t a * a b s(y)$,
where:
alpha and beta are scalars,
x and y are vectors,
A is an m-by- n matrix.

This function is primarily used in calculating error bounds. To protect against underflow during evaluation, the function perturbs components in the resulting vector away from zero by $(n+1)$ times the underflow threshold. To prevent unnecessarily large errors for block structure embedded in general matrices, the function does not perturb symbolically zero components. A zero entry is considered symbolic if all multiplications involved in computing that entry have at least one zero multiplicand.

Input Parameters

trans	CHARACTER*1. Specifies the operation:
	if trans $=$ BLAS_NO_TRANS, then $y:=a l p h a * a b s(A) * a b s(x)+$ beta*abs (y)
	if trans $=$ BLAS_TRANS, then $y:=a l p h a * a b s\left(A^{T}\right) * a b s(x)+$ beta*abs (y)
	if trans $=$ 'BLAS_CONJ_TRANS, then $y:=a l p h a * a b s\left(A^{T}\right) * a b s(x)+$ beta*abs (y).
m	INTEGER. Specifies the number of rows of the matrix A. The value of m must be at least zero.
n	INTEGER. Specifies the number of columns of the matrix A. The value of n must be at least zero.
alpha	REAL for sla_geamv and for cla_geamv
	DOUBLE PRECISION for dla_geamv and zla_geamv
	Specifies the scalar alpha.
a	REAL for sla_geamv
	DOUBLE PRECISION for dla_geamv
	COMPLEX for cla_geamv
	DOUBLE COMPLEX for zla_geamv
	Array, DIMENSION (Ida, *). Before entry, the leading m-by-n part of the array a must contain the matrix of coefficients. The second dimension of a must be at least max $(1, n)$.
Ida	INTEGER. Specifies the leading dimension of a as declared in the calling (sub) program. The value of Ida must be at least max $(1, m)$.
x	REAL for sla_geamv
	DOUBLE PRECISION for dla_geamv
	COMPLEX for cla_geamv
	DOUBLE COMPLEX for zla_geamv
	Array, DIMENSION at least ($1+(n-1) * a b s(i n c x))$ when trans $={ }^{\prime} N$ ' or ' n ' and at least $(1+(m-1) * a b s(i n c x))$ otherwise. Before entry, the incremented array x must contain the vector X.
incx	INTEGER. Specifies the increment for the elements of x.
	The value of incx must be non-zero.
beta	REAL for sla_geamv and for cla_geamv

DOUBLE PRECISION for dla_geamv and zla_geamv
Specifies the scalar beta. When beta is zero, you do not need to set y on input.

REAL for sla_geamv and for cla_geamv
DOUBLE PRECISION for dla_geamv and zla_geamv
Array, DIMENSION at least $(1+(m-1) * a b s(i n c y))$ when trans $=' N$ ' or ' n ' and at least $(1+(n-1) * a b s(i n c y))$ otherwise. Before entry with non-zero beta, the incremented array y must contain the vector Y.

INTEGER. Specifies the increment for the elements of y.
The value of incy must be non-zero.

Output Parameters

$y \quad$ Updated vector Y.
?la_gercond
Estimates the Skeel condition number for a general
matrix.

Syntax

```
call sla_gercond( trans, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork )
call dla_gercond( trans, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork )
```

Include Files

- mkl.fi

Description

The function estimates the Skeel condition number of
$\mathrm{op}(A)$ * op2(C)
where
the cmode parameter determines op2 as follows:

cmode Value	op2(C)	
1	C	
0	I	
-1	$\operatorname{inv}(C)$	

The Skeel condition number
$\operatorname{cond}(A)=\operatorname{norminf}(|\operatorname{inv}(A)||A|$
is computed by computing scaling factors R such that
$\operatorname{diag}(R) * A *$ op2 (C)
is row equilibrated and by computing the standard infinity-norm condition number.

Input Parameters

trans
n

Ida
Idaf
ipiv
cmode
iwork
info

Output Parameters

CHARACTER*1. Must be 'N' or 'T' or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $A * X=B$ (No transpose).
If trans $=$ ' T ', the system has the form $A^{T *} X=B$ (Transpose).
If trans $=$ ' C ', the system has the form $A^{H *} X=B$ (Conjugate Transpose $=$ Transpose).

INTEGER. The number of linear equations, that is, the order of the matrix $A ; n \geq$ 0.

REAL for sla_gercond
DOUBLE PRECISION for dla_gercond

Arrays:

$a(l d a, *)$ contains the original general n-by- n matrix A.
$a f(I d a f, *)$ contains factors L and U from the factorization of the general matrix $A=P^{*} L^{*} U$, as returned by ?getrf.
C, DIMENSIONn. The vector C in the formula op $(A) * \mathrm{op}^{2(C)}$.
work is a workspace array of DIMENSION ($3^{*} n$).
The second dimension of a and $a f$ must be at least max $(1, n)$.
INTEGER. The leading dimension of the array a. 1 da $\geq \max (1, n)$.
INTEGER. The leading dimension of $a f . l d a f \geq \max (1, n)$.
INTEGER.
Array with DIMENSIONn. The pivot indices from the factorization $A=P^{\star} L^{\star} U$ as computed by ?getrf. Row i of the matrix was interchanged with row ipiv(i).

INTEGER. Determines op2 (C) in the formula op (A) * op2 (C) as follows:
If cmode $=1$, op2 $(C)=C$.
If cmode $=0$, op2 $(C)=I$.
If cmode $=-1$, op2 $(C)=\operatorname{inv}(C)$.
INTEGER. Workspace array with DIMENSIONn.

INTEGER.
If info $=0$, the execution is successful.
If $i>0$, the i-th parameter is invalid.

See Also

? getrf

```
?la_gercond_c
Computes the infinity norm condition number of
op(A)*inv(diag(c)) for general matrices.
Syntax
```

```
call cla_gercond_c( trans, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork )
```

call cla_gercond_c(trans, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
call zla_gercond_c(trans, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)

```
call zla_gercond_c( trans, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork )
```

Include Files

- mkl.fi

Description

The function computes the infinity norm condition number of

```
op(A) * inv(diag(c))
```

where the c is a REAL vector for cla_gercond_c and a DOUBLE PRECISION vector for zla_gercond_c.
Input Parameters
trans CHARACTER*1. Must be 'N' or 'T' or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $A^{*} X=B$ (No transpose)
If trans $=$ ' T ', the system has the form $A^{T *} X=B$ (Transpose)
If trans $=$ ' C', the system has the form $A^{H *} X=B$ (Conjugate Transpose $=$
Transpose)
n
lda
Idaf
ipiv
C, rwork

INTEGER. The number of linear equations, that is, the order of the matrix $A ; n \geq$ 0.

```
a, af,work COMPLEX for cla_gercond_c
    DOUBLE COMPLEX for zla_gercond_c
    Arrays:
```

 \(a(l d a, *)\) contains the original general \(n\)-by-n matrix \(A\).
 \(a f\left(\operatorname{lda} \mathrm{I}^{*}\right)\) contains the factors \(L\) and \(U\) from the factorization \(A=P^{\star} L^{\star} U\) as
 returned by ?getrf.
 work is a workspace array of DIMENSION (\(2 * n\)).
 The second dimension of \(a\) and af must be at least max \((1, n)\).
 INTEGER. The leading dimension of the array a. \(\operatorname{Ida\geq max}(1, n)\).
 INTEGER. The leading dimension of af. Idaf \(\geq \max (1, n)\).
 INTEGER.
 Array with DIMENSIONn. The pivot indices from the factorization \(A=P^{\star} L^{\star} U\) as
 computed by ?getrf. Row \(i\) of the matrix was interchanged with row ipiv(i).
 REAL for cla_gercond_c
 DOUBLE PRECISION for zla_gercond_c
 Array c with DIMENSIONn. The vector c in the formula op (A) * inv(diag(c)).

Array rwork with DIMENSION n is a workspace.
capply
LOGICAL. If capply=.TRUE., then the function uses the vector c from the formula

```
op(A) * inv(diag(C)).
```


Output Parameters

```
info
```

INTEGER.
If info $=0$, the execution is successful.
If $i>0$, the i-th parameter is invalid.

See Also

? getrf
?la_gercond_x
Computes the infinity norm condition number of op $(A) * \operatorname{diag}(x)$ for general matrices.

Syntax

```
call cla_gercond_x( trans, n, a, lda, af, ldaf, ipiv, x, info, work, rwork )
call zla_gercond_x( trans, n, a, lda, af, ldaf, ipiv, x, info, work, rwork )
```

Include Files

- mkl.fi

Description

The function computes the infinity norm condition number of $o p(A)$ * $\operatorname{diag}(x)$
where the x is a COMPLEX vector for cla_gercond_x and a DOUBLE COMPLEX vector for zla_gercond_x.

Input Parameters

trans
n
a, af, x, work

CHARACTER*1. Must be 'N' or 'T' or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $A^{*} X=B$ (No transpose)
If trans $=$ ' T ', the system has the form $A^{T *} X=B$ (Transpose)
If trans $=$ ' C', the system has the form $A^{H *} X=B$ (Conjugate Transpose $=$ Transpose)

INTEGER. The number of linear equations, that is, the order of the matrix $A ; n \geq$ 0.

COMPLEX for cla_gercond_x
DOUBLE COMPLEX for zla_gercond_x

Arrays:

a(lda,*) contains the original general n-by- n matrix A.
$a f(I d a f, *)$ contains the factors L and U from the factorization $A=P^{\star} L^{\star} U$ as returned by ?getrf.
x, DIMENSION n. The vector x in the formula op (A) * diag (x). work is a workspace array of DIMENSION ($2 * n$).

The second dimension of a and $a f$ must be at least max $(1, n)$.
INTEGER. The leading dimension of the array a. $1 d a \geq \max (1, n)$.
$\operatorname{INTEGER}$. The leading dimension of af. Idaf $\geq \max (1, n)$.
INTEGER.
Array with DIMENSIONn. The pivot indices from the factorization $A=P^{\star} L^{\star} U$ as computed by ?getrf. Row i of the matrix was interchanged with row ipiv(i).
rwork
REAL for cla_gercond_x
DOUBLE PRECISION for zla_gercond_x
Array rwork with DIMENSION n is a workspace.

Output Parameters

info
INTEGER.
If info $=0$, the execution is successful.
If $i>0$, the i-th parameter is invalid.

See Also

?getrf

?la_gerfsx_extended

Improves the computed solution to a system of linear equations for general matrices by performing extraprecise iterative refinement and provides error bounds and backward error estimates for the solution.

Syntax

```
call sla_gerfsx_extended( prec_type, trans_type, n, nrhs, a, lda, af, ldaf, ipiv,
colequ, c, b, ldb, y, ldy, berr_out, n_norms, errs_n, errs_c, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
call dla_gerfsx_extended( prec_type, trans_type, n, nrhs, a, lda, af, ldaf, ipiv,
colequ, c, b, ldb, y, ldy, berr_out, n_norms, errs_n, errs_c, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
call cla_gerfsx_extended( prec_type, trans_type, n, nrhs, a, lda, af, ldaf, ipiv,
colequ, c, b, ldb, y, ldy, berr_out, n_norms, errs_n, errs_c, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
call zla_gerfsx_extended( prec_type, trans_type, n, nrhs, a, lda, af, ldaf, ipiv,
colequ, c, b, ldb, y, ldy, berr_out, n_norms, errs_n, errs_c, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
```


Include Files

- mkl.fi

Description

The ?la_gerfsx_extended subroutine improves the computed solution to a system of linear equations for general matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. The ?gerfsx routine calls ?la_gerfsx_extended to perform iterative refinement.
In addition to normwise error bound, the code provides maximum componentwise error bound, if possible. See comments for errs_n and errs_c for details of the error bounds.
Use ?la_gerfsx_extended to set only the second fields of errs_n and errs_c.
Input Parameters

```
prec_type
trans_type
n
nrhs
a, af,b, y
```

INTEGER.
Specifies the intermediate precision to be used in refinement. The value is defined by ilaprec (p), where p is a CHARACTER and:

If $p=$ 'S': Single.
If $p=$ 'D': Double.
If $p=$ 'I': Indigenous.
If $p=$ 'X', 'E': Extra.
INTEGER.
Specifies the transposition operation on A. The value is defined by ilatrans(t), where t is a CHARACTER and:

If $t=$ 'N': No transpose.
If $t=$ 'T': Transpose.
If $t=$ 'C': Conjugate Transpose.
INTEGER. The number of linear equations; the order of the matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; the number of columns of the matrix B.

REAL for sla_gerfsx_extended
DOUBLE PRECISION for dla_gerfsx_extended
COMPLEX for cla_gerfsx_extended
DOUBLE COMPLEX for zla_gerfsx_extended.
Arrays: $a(l d a, *), a f(l d a f, *), b(l d b, *), y(l d y, *)$.
The array a contains the original matrix n-by- n matrix A. The second dimension of a must be at least max $(1, n)$.

The array af contains the factors L and U from the factorization $A=$ $\left.P^{\star} L^{\star} U\right)$ as computed by ?getrf. The second dimension of af must be at least $\max (1, n)$.

The array b contains the matrix B whose columns are the right-hand sides for the systems of equations. The second dimension of b must be at least $\max (1, n r h s)$.

The array y on entry contains the solution matrix X as computed by ? getrs. The second dimension of y must be at least max ($1, n r h s$).

INTEGER. The leading dimension of the array $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of the array $a f ; I d a \leq \max (1, n)$.
INTEGER.
Array, DIMENSION at least max $(1, n)$. Contains the pivot indices from the factorization $A=P^{\star} L^{\star} U$) as computed by ?getrf; row i of the matrix was interchanged with row ipiv(i).

LOGICAL. If colequ = .TRUE., column equilibration was done to A before calling this routine. This is needed to compute the solution and error bounds correctly.

REAL for single precision flavors (sla_gerfsx_extended, cla_gerfsx_extended)

DOUBLE PRECISION for double precision flavors (dla_gerfsx_extended, zla_gerfsx_extended).
c contains the column scale factors for A. If colequ $=$. FALSE., c is not used.

If c is input, each element of c should be a power of the radix to ensure a reliable solution and error estimates. Scaling by power of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of the array $y ; \operatorname{ldy} \geq \max (1, n)$.
INTEGER. Determines which error bounds to return. See errs_n and errs_c descriptions in Output Arguments section below.

If $n _n o r m s \geq 1$, returns normwise error bounds.
If n_norms ≥ 2, returns componentwise error bounds.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error, which is defined as follows:
Normwise relative error in the i-th solution vector

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

The first index in errs_n(i,:) corresponds to the i-th right-hand side.
The second index in errs_n (: err) contains the following three fields:

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

The array is indexed by the right-hand side i, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) $=0.0$), then errs_c is not accessed. If $n_{-} e r r_{-} b n d s<3$, then at most the first (:, n_err_bnds) entries are returned.
The first index in errs_c (i,:) corresponds to the i-th right-hand side.
The second index in errs_c (:,err) contains the follwoing three fields:

err=1	"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n) *slamch (ε) for single precision flavors and $\operatorname{sqrt}(n) *$ dlamch (ε) for double precision flavors.
err=2	"Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold sqrt $(n) * \operatorname{slamch}(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * \operatorname{dlamch}(\varepsilon)$ for double precision flavors. This error bound should only be trusted if the previous boolean is true.
err=3	Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * s l a m c h(\varepsilon)$ for single precision flavors and $\operatorname{sqrt}(n) * \operatorname{damch}(\varepsilon)$ for double precision flavors to determine if the error estimate is "guaranteed". These reciprocal condition numbers are $1 /$ (norm(1/ z,inf) *norm(z,inf)) for some appropriately scaled matrix Z.
	Let $z=s^{\star}\left(a^{\star} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of a^{*} diag (x) by a power of the radix so all absolute row sums of z are approximately 1 . Use this subroutine to set only the second field above.
REAL for sla_gerfsx_extended	
DOUBLE PRECISION for dla_gerfsx_extended	
COMPLEX for cla_gerfsx_extended	
DOUBLE	gerfsx_extended.

ayb
rcond
ithresh
rthresh
$d z _u b$
ignore_cwise

Workspace arrays of DIMENSIONn.
res holds the intermediate residual.
dy holds the intermediate solution.
y_{-}tail holds the trailing bits of the intermediate solution.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Workspace array, DIMENSIONn.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

INTEGER. The maximum number of residual computations allowed for refinement. The default is 10 . For 'aggressive', set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in errs_n and errs_c may no longer be trustworthy.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Determines when to stop refinement if the error estimate stops decreasing. Refinement stops when the next solution no longer satisfies

```
norm(dx_{i+1}) < rthresh * norm(dx_i)
```

where norm (z) is the infinity norm of Z.

rthresh satisfies

$0<r$ rhreshs 1.
The default value is 0.5 . For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices.

REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Determines when to start considering componentwise convergence.
Componentwise $d z$ _ub convergence is only considered after each component of the solution y is stable, that is, the relative change in each component is less than $d z_{-} u b$. The default value is 0.25 , requiring the first bit to be stable.

LOGICAL
If . TRUE., the function ignores componentwise convergence. Default value is. FALSE.

Output Parameters

y
REAL for sla_gerfsx_extended
DOUBLE PRECISION for dla_gerfsx_extended
COMPLEX for cla_gerfsx_extended
DOUBLE COMPLEX for zla_gerfsx_extended.
The improved solution matrix Y.
REAL for single precision flavors
DOUBLE PRECISION for double precision flavors.
Array, DIMENSION at least max ($1, n r h s$). Contains the componentwise relative backward error for right-hand-side j from the formula

```
max(i) ( abs(res(i)) / ( abs(op(A))*abs(y) + abs(B) )(i) )
```

where abs (z) is the componentwise absolute value of the matrix or vector Z. This is computed by ?la_lin_berr.

Values of the corresponding input parameters improved after iterative refinement and stored in the second column of the array (1:nrhs, 2). The other elements are kept unchanged.

INTEGER. If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, the i-th parameter had an illegal value.

See Also

```
?gerfsx
?getrf
?getrs
?lamch
ilaprec
ilatrans
?la_lin_berr
```


?la_heamv

Computes a matrix-vector product using a Hermitian indefinite matrix to calculate error bounds.

Syntax

```
call cla_heamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call zla_heamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
```


Include Files

- mkl.fi

Description

The ?la_heamv routines perform a matrix-vector operation defined as
$y:=a l p h a * a b s(A) * a b s(x)+b e t a * a b s(y)$,
where:
alpha and beta are scalars,
x and y are vectors,
A is an n-by- n Hermitian matrix.
This function is primarily used in calculating error bounds. To protect against underflow during evaluation, the function perturbs components in the resulting vector away from zero by $(n+1)$ times the underflow threshold. To prevent unnecessarily large errors for block structure embedded in general matrices, the function does not perturb symbolically zero components. A zero entry is considered symbolic if all multiplications involved in computing that entry have at least one zero multiplicand.

Input Parameters

uplo
n
alpha
a

Ida

X
incx
beta

CHARACTER*1.
Specifies whether the upper or lower triangular part of the array A is to be referenced:

If uplo = 'BLAS_UPPER', only the upper triangular part of A is to be referenced,

If uplo = 'BLAS_LOWER', only the lower triangular part of A is to be referenced.

INTEGER. Specifies the number of rows and columns of the matrix A. The value of n must be at least zero.

REAL for cla_heamv
DOUBLE PRECISION for zla_heamv
Specifies the scalar alpha.
COMPLEX for cla_heamv
DOUBLE COMPLEX for zla_heamv
Array, DIMENSION (Ida, *). Before entry, the leading m-by-n part of the array a must contain the matrix of coefficients. The second dimension of a must be at least max $(1, n)$.

INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, n)$.

COMPLEX for cla_heamv
DOUBLE COMPLEX for zla_heamv
Array, DIMENSION at least ($1+(n-1) * a b s(i n c x))$. Before entry, the incremented array x must contain the vector X.

INTEGER. Specifies the increment for the elements of x.
The value of incx must be non-zero.
REAL for cla_heamv
DOUBLE PRECISION for zla_heamv
Specifies the scalar beta. When beta is zero, you do not need to set y on input.

```
y REAL for cla_heamv
    DOUBLE PRECISION for zla_heamv
    Array, DIMENSION at least (1 + (n - 1)*abs(incy)) otherwise. Before
        entry with non-zero beta, the incremented array y must contain the vector
        Y
        INTEGER. Specifies the increment for the elements of }y\mathrm{ .
        The value of incy must be non-zero.
```


Output Parameters

 Updated vector \(Y\).
    ```
?la_hercond_c
Computes the infinity norm condition number of
op(A)*inv(diag(c)) for Hermitian indefinite matrices.
Syntax
```

```
call cla_hercond_c( uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork )
```

call cla_hercond_c(uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
call zla_hercond_c(uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)

```
call zla_hercond_c( uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork )
```

Include Files

- mkl.fi

Description

The function computes the infinity norm condition number of

```
op(A) * inv(diag(c))
```

where the c is a REAL vector for cla_hercond_c and a DOUBLE PRECISION vector for zla_hercond_c.
Input Parameters

```
uplo
n
a
lda
af
CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of A to store:
If uplo = 'U', the upper triangle of \(A\) is stored,
If uplo = 'L', the lower triangle of \(A\) is stored.
INTEGER. The number of linear equations, that is, the order of the matrix \(A ; n \geq\) 0.
COMPLEX for cla_hercond_c
DOUBLE COMPLEX for zla_hercond_c
Array, DIMENSION ( Ida, *). On entry, the \(n\)-by-n matrix A. The second dimension of a must be at least max \((1, n)\).
INTEGER. The leading dimension of the array a. \(1 \mathrm{da} \mathrm{Z} \max (1, n)\).
COMPLEX for cla_hercond_c
```

| | DOUBLE COMPLEX for zla_hercond_c |
| :---: | :---: |
| | Array, DIMENSION (Idaf, *). The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ?hetrf. The second dimension of af must be at least max $(1, n)$. |
| Idaf | INTEGER. The leading dimension of the array af. Idaf max $(1, n)$. |
| ipiv | INTEGER. |
| | Array with DIMENSIONn. Details of the interchanges and the block structure of D as determined by ?hetrf. |
| C | REAL for cla_hercond_c |
| | DOUBLE PRECISION for zla_hercond_c |
| | Array c with DIMENSIONn. The vector c in the formula |
| | op (A) * inv(diag(C)). |
| capply | LOGICAL. If .TRUE ., then the function uses the vector c from the formula |
| | op(A) * inv(diag(C)). |
| work | COMPLEX for cla_hercond_c |
| | DOUBLE COMPLEX for zla_hercond_c |
| | Array DIMENSION 2*n. Workspace. |
| rwork | REAL for cla_hercond_c |
| | DOUBLE PRECISION for zla_hercond_c |
| | Array DIMENSIONn. Workspace. |
| Output Parameters | |
| info | INTEGER. |
| | If info $=0$, the execution is successful. |
| | If $i>0$, the i-th parameter is invalid. |

See Also

?hetrf

?la_hercond_x

Computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.

Syntax

```
call cla_hercond_x( uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork )
call zla_hercond_x( uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork )
```

Include Files

- mkl.fi

Description

The function computes the infinity norm condition number of

```
op(A) * diag(x)
```

where the x is a COMPLEX vector for cla_hercond_x and a DOUBLE COMPLEX vector for zla_hercond_x.

Input Parameters

```
uplo
n
a
lda
af
    ldaf
ipiv
x
work
rwork
                            CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of A to store:
If uplo = 'U', the upper triangle of \(A\) is stored,
If uplo = 'L', the lower triangle of \(A\) is stored.
INTEGER. The number of linear equations, that is, the order of the matrix \(A ; n \geq\) 0.
COMPLEX for cla_hercond_c
DOUBLE COMPLEX for zla_hercond_c
Array, DIMENSION (lda, *). On entry, the \(n\)-by-n matrix A. The second dimension of a must be at least max \((1, n)\).
INTEGER. The leading dimension of the array a. \(1 d a \geq \max (1, n)\).
COMPLEX for cla_hercond_c
DOUBLE COMPLEX for zla_hercond_c
Array, DIMENSION (Idaf, *). The block diagonal matrix D and the multipliers used to obtain the factor \(U\) or \(L\) as computed by ?hetrf. The second dimension of af must be at least max \((1, n)\).
INTEGER. The leading dimension of the array \(a f . I d a f \geq \max (1, n)\).
INTEGER.
Array with DIMENSIONn. Details of the interchanges and the block structure of \(D\) as determined by ?hetrf.
COMPLEX for cla_hercond_c
DOUBLE COMPLEX for zla_hercond_c
Array \(x\) with DIMENSIONn. The vector \(x\) in the formula
op(A) * inv(diag(x)).
COMPLEX for cla_hercond_c
DOUBLE COMPLEX for zla_hercond_c
Array DIMENSION 2*n. Workspace.
REAL for cla_hercond_c
DOUBLE PRECISION for zla_hercond_c
Array DIMENSIONn. Workspace.
```


Output Parameters

info INTEGER.
If info $=0$, the execution is successful.
If $i>0$, the i-th parameter is invalid.

See Also

?hetrf

?la_herfsx_extended

Improves the computed solution to a system of linear equations for Hermitian indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

Syntax

```
call cla_herfsx_extended( prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c,
b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
call zla_herfsx_extended( prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c,
b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
```


Include Files

- mkl.fi

Description

The ?la_herfsx_extended subroutine improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. The ?herfsx routine calls ?la_herfsx_extended to perform iterative refinement.
In addition to normwise error bound, the code provides maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.
Use ?la_herfsx_extended to set only the second fields of err_bnds_norm and err_bnds_comp.
Input Parameters

```
prec_type
uplo
INTEGER. defined by ilaprec (p), where \(p\) is a CHARACTER and:
If \(p=\) 'S': Single.
If \(p=\) 'D': Double.
If \(p=\) 'I': Indigenous.
If \(p=\) 'X', 'E': Extra.
CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of A to store:
```

Specifies the intermediate precision to be used in refinement. The value is

If uplo = 'U', the upper triangle of A is stored, If uplo = 'L', the lower triangle of A is stored.

INTEGER. The number of linear equations; the order of the matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; the number of columns of the matrix B.

COMPLEX for cla_herfsx_extended
DOUBLE COMPLEX for zla_herfsx_extended.
Arrays: $a(l d a, *), a f(l d a f, *), \quad b(l d b, *), y(I d y, *)$.
The array a contains the original n-by- n matrix A. The second dimension of a must be at least max $(1, n)$.

The array af contains the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ?hetrf. The second dimension of af must be at least max $(1, n)$.

The array b contains the right-hand-side of the matrix B. The second dimension of b must be at least max ($1, n r h s$).

The array y on entry contains the solution matrix X as computed by ?hetrs. The second dimension of y must be at least max ($1, n r h s$).

INTEGER. The leading dimension of the array $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of the array af; ldaf $\max (1, n)$.
INTEGER.
Array, DIMENSIONn. Details of the interchanges and the block structure of D as determined by ?hetrf.

LOGICAL. If colequ = .TRUE., column equilibration was done to A before calling this routine. This is needed to compute the solution and error bounds correctly.

REAL for cla_herfsx_extended
DOUBLE PRECISION for zla_herfsx_extended.
c contains the column scale factors for A. If colequ $=$. FALSE.,c is not used.
If c is input, each element of c should be a power of the radix to ensure a reliable solution and error estimates. Scaling by power of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.
$\operatorname{INTEGER}$. The leading dimension of the array $b ; \operatorname{ldb} \geq \max (1, n)$.
INTEGER. The leading dimension of the array $y ; \operatorname{ldy} \geq \max (1, n)$.
INTEGER. Determines which error bounds to return. See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

If $n _n o r m s \geq 1$, returns normwise error bounds.

If n_norms ≥ 2, returns componentwise error bounds.

REAL for cla_herfsx_extended
DOUBLE PRECISION for zla_herfsx_extended.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error.

Normwise relative error in the i-th solution vector is defined as follows:

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

The first index in err_bnds_norm(i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_norm (: ,err) contains the following three fields:

| err=1 | "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold sqrt (n) * slamch (ε) for cla_herfsx_extended and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for zla_herfsx_extended. |
| :---: | :---: |
| err=2 | "Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for cla_herfsx_extended and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for zla_herfsx_extended. This error bound should only be trusted if the previous boolean is true. |
| err=3 | Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for cla_herfsx_extended and $\operatorname{sqrt}(n)$ *dlamch(ε) for zla_herfsx_extended to determine if the error estimate is "guaranteed". These reciprocal condition numbers are $1 /$ (norm (1/ z,inf) *norm(z,inf)) for some appropriately scaled matrix Z. |

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1.
Use this subroutine to set only the second field above.
err_bnds_comp
REAL for cla_herfsx_extended
DOUBLE PRECISION for zla_herfsx_extended.
Array, DIMENSION ($n r h s, n_{\text {_ }} e r r_{-}$bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the i-th solution vector:

The array is indexed by the right-hand side i, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) $=0.0$), then err_bnds_comp is not accessed. If n_{-}err_bnds <3, then at most the first (:, n_err_bnds) entries are returned.
The first index in err_bnds_comp (i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_comp (: err) contains the follwoing three fields:

| err=1 | "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for cla_herfsx_extended and $\operatorname{sqrt}(n)$ *dlamch(ε) for zla_herfsx_extended. |
| :---: | :---: |
| err=2 | "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for cla_herfsx_extended and $\operatorname{sqrt(n)}$ *dlamch(ε) for zla_herfsx_extended. This error bound should only be trusted if the previous boolean is true. |
| err=3 | Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold sqrt(n)*slamch (ε) for |

res, dy, y_tail
cla_herfsx_extended and $\operatorname{sqrt}(n) * \operatorname{dlamch}(\varepsilon)$ for zla_herfsx_extended to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1/(norm(1/
$z, i n f) *$ norm (z,inf)) for some appropriately scaled matrix Z.

Let $z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of $a \star \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .
Use this subroutine to set only the second field above.

COMPLEX for cla_herfsx_extended
DOUBLE COMPLEX for zla_herfsx_extended.
Workspace arrays of DIMENSIONn.
res holds the intermediate residual.
$d y$ holds the intermediate solution.
$y_{_}$tail holds the trailing bits of the intermediate solution.
REAL for cla_herfsx_extended
DOUBLE PRECISION for zla_herfsx_extended.
Workspace array, DIMENSIONn.
REAL for cla_herfsx_extended
DOUBLE PRECISION for zla_herfsx_extended.
Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

INTEGER. The maximum number of residual computations allowed for refinement. The default is 10 . For 'aggressive', set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.

REAL for cla_herfsx_extended
DOUBLE PRECISION for zla_herfsx_extended.
Determines when to stop refinement if the error estimate stops decreasing. Refinement stops when the next solution no longer satisfies
$\operatorname{norm}\left(d x _\{i+1\}\right)<r$ hresh * $\operatorname{norm}\left(d x _i\right)$
where norm (z) is the infinity norm of Z.

rthresh satisfies

$0<r$ rhreshs 1.
The default value is 0.5 . For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices.

REAL for cla_herfsx_extended
DOUBLE PRECISION for zla_herfsx_extended.
Determines when to start considering componentwise convergence.
Componentwise $d z_{-} u b$ convergence is only considered after each component of the solution y is stable, that is, the relative change in each component is less than $d z_{-} u b$. The default value is 0.25 , requiring the first bit to be stable.

LOGICAL
If . TRUE., the function ignores componentwise convergence. Default value is . FALSE.

Output Parameters

Y
err_bnds_norm,
err_bnds_comp
info

```
COMPLEX for cla_herfsx_extended
DOUBLE COMPLEX for zla_herfsx_extended.
```

The improved solution matrix Y.
REAL for cla_herfsx_extended
DOUBLE PRECISION for zla_herfsx_extended.
Array, DIMENSIONnrhs. berr_out (j) contains the componentwise relative backward error for right-hand-side j from the formula

```
max(i) (abs(res(i)) / ( abs(op(A))*abs(y) + abs(B) )(i) )
```

where abs (z) is the componentwise absolute value of the matrix or vector Z. This is computed by ?la_lin_berr.

Values of the corresponding input parameters improved after iterative refinement and stored in the second column of the array (1:nrhs, 2). The other elements are kept unchanged.

INTEGER. If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, the i-th parameter had an illegal value.

See Also

?herfsx
?hetrf
?hetrs
?lamch
ilaprec
ilatrans
?la_lin_berr

?la_herpvgrw

Computes the reciprocal pivot growth factor norm (A) / norm (U) for a Hermitian indefinite matrix.

Syntax

```
call cla_herpvgrw( uplo, n, info, a, lda, af, ldaf, ipiv, work )
call zla_herpvgrw( uplo, n, info, a, lda, af, ldaf, ipiv, work )
```


Include Files

- mkl.fi

Description

The ?la_herpvgrw routine computes the reciprocal pivot growth factor norm (A)/norm (U). The max absolute element norm is used. If this is much less than 1 , the stability of the $L U$ factorization of the equilibrated matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable.

Input Parameters

| uplo | CHARACTER*1. Must be 'U' or 'L'. |
| :---: | :---: |
| | Specifies the triangle of A to store: |
| | If uplo = ' U ', the upper triangle of A is stored, |
| | If uplo = 'L', the lower triangle of A is stored. |
| n | integer. The number of linear equations, the order of the matrix A; $n \geq 0$. |
| info | INTEGER. The value of INFO returned from ?hetrf, that is, the pivot in column info is exactly 0 . |
| $a, ~ a f$ | COMPLEX for cla_herpvgrw |
| | DOUBLE COMPLEX for zla_herpvgrw. |
| | Arrays: a (lda,*) , af (ldaf,*). |
| | a contains the $n-$ by $-n$ matrix A. The second dimension of a must be at least max $(1, n)$. |
| | af contains the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ?hetrf. The second dimension of af must be at least max $(1, n)$. |
| lda | INTEGER. The leading dimension of array a; 1 da 2 max $(1, n)$. |
| ldaf | INTEGER. The leading dimension of array af; ldaf $\mathrm{max}^{(1, n)}$. |
| ipiv | INTEGER. |
| | Array, DIMENSIONn. Details of the interchanges and the block structure of D as determined by ?hetrf. |
| work | REAL for cla_herpvgrw |
| | DOUBLE PRECISION for zla_herpvgrw. |

Array, DIMENSION 2*n. Workspace.

See Also

?hetrf
?la_lin_berr
Computes component-wise relative backward error.

Syntax

```
call sla_lin_berr(n, nz, nrhs, res, ayb, berr )
call dla_lin_berr(n, nz, nrhs, res, ayb, berr)
call cla_lin_berr(n, nz, nrhs, res, ayb, berr)
call zla_lin_berr(n, nz, nrhs, res, ayb, berr)
```

Include Files

- mkl.fi

Description

The ?la_lin_berr computes a component-wise relative backward error from the formula:

```
max(i) ( abs(R(i))/( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
```

where abs (Z) is the component-wise value of the matrix or vector Z.

Input Parameters

| n | INTEGER. The number of linear equations, the order of the matrix $A ; n \geq 0$. |
| :---: | :---: |
| $n z$ | INTEGER. The parameter for guarding against spuriously zero residuals. $(n z+1) *$ slamch ('Safe minimum') is added to $R(i)$ in the numerator of the relative backward error formula. The default value is n. |
| nrhs | INTEGER. Number of right-hand sides, the number of columns in the matrices $A Y B, R E S$, and $B E R R$; nrhs ≥ 0. |
| res, ayb | REAL for sla_lin_berr, cla_lin_berr |
| | DOUBLE PRECISION for dla_lin_berr, zla_lin_berr |
| | Arrays, DIMENSION ($n, n r h s$) . |
| | res is the residual matrix, that is, the matrix R in the relative backward error formula. |
| | $a y b$ is the denominator of that formula, that is, the matrix $\mathrm{abs}\left(\mathrm{op}\left(A_{_} s\right)\right) * \mathrm{abs}(Y)+\mathrm{abs}\left(B_{-}\right)$. The matrices A, Y, and B are from iterative refinement. See description of ?la gerfsx extended. |

Output Parameters

berr
REAL for sla_lin_berr
DOUBLE PRECISION for dla_lin_berr
COMPLEX for cla_lin_berr

DOUBLE COMPLEX for zla_lin_berr
The component-wise relative backward error.

See Also

?lamch
?la_gerfsx_extended
?la_porcond
Estimates the Skeel condition number for a symmetric positive-definite matrix.

Syntax

```
call sla_porcond( uplo, n, a, lda, af, ldaf, cmode, c, info, work, iwork )
call dla_porcond( uplo, n, a, lda, af, ldaf, cmode, c, info, work, iwork )
```

Include Files

- mkl.fi

Description

The function estimates the Skeel condition number of

```
op(A) * op2(C)
```

where
the cmode parameter determines op2 as follows:

| cmode Value | op2(C) | |
| :--- | :--- | :--- |
| 1 | C | |
| 0 | I | |
| -1 | $\operatorname{inv}(C)$ | |

The Skeel condition number
$\operatorname{cond}(A)=\operatorname{norminf}(|\operatorname{inv}(A)||A|)$
is computed by computing scaling factors R such that

```
diag(R)* A* op2 (C)
```

is row equilibrated and by computing the standard infinity-norm condition number.
Input Parameters
uplo
n

CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of A to store:
If uplo = 'U', the upper triangle of A is stored,
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The number of linear equations, that is, the order of the matrix $A ; n \geq$ 0.

```
a, af, c, work
Ida
Idaf
cmode
iwork
INTEGER. Workspace array with DIMENSIONn.
```


Output Parameters

```
info
```

INTEGER.
If info $=0$, the execution is successful.
If $i>0$, the i-th parameter is invalid.

See Also

?potrf
?la_porcond_c
Computes the infinity norm condition number of $o p(A) * i n v(d i a g(c))$ for Hermitian positive-definite matrices.

Syntax

```
call cla_porcond_c( uplo, n, a, lda, af, ldaf, c, capply, info, work, rwork )
call zla_porcond_c( uplo, n, a, lda, af, ldaf, c, capply, info, work, rwork )
```


Include Files

- mkl.fi

Description

The function computes the infinity norm condition number of $o p(A)$ * $\operatorname{inv(diag(c))~}$
where the c is a REAL vector for cla_porcond_c and a DOUBLE PRECISION vector for zla_porcond_c. Input Parameters

| uplo | CHARACTER*1. Must be 'U' or 'L'. |
| :---: | :---: |
| | Specifies the triangle of A to store: |
| | If uplo = 'U', the upper triangle of A is stored, |
| | If uplo = 'L', the lower triangle of A is stored. |
| n | INTEGER. The number of linear equations, that is, the order of the matrix $A ; n \geq$ 0. |
| a | COMPLEX for cla_porcond_c |
| | DOUBLE COMPLEX for zla_porcond_c |
| | Array, DIMENSION (Ida, *). On entry, the n-by-n matrix A. The second dimension of a must be at least max $(1, n)$. |
| Ida | INTEGER. The leading dimension of the array a. $1 \mathrm{da} 2 \mathrm{max}(1, n)$. |
| af | COMPLEX for cla_porcond_c |
| | DOUBLE COMPLEX for zla_porcond_c |
| | Array, DIMENSION (Idaf, *). The triangular factor L or U from the Cholesky factorization |
| | $A=U^{H} * U$ or $A=L^{*} L^{H}$, |
| | as computed by ?potrf. |
| | The second dimension of af must be at least max (1, n). |
| Idaf | INTEGER. The leading dimension of the array af. 1 daf $\geq \max (1, n)$. |
| c | REAL for cla_porcond_c |
| | DOUBLE PRECISION for zla_porcond_c |
| | Array c with DIMENSIONn. The vector c in the formula |
| | op(A) * inv(diag (C)). |
| capply | LOGICAL. If . TRUE., then the function uses the vector c from the formula |
| | op (A) * inv(diag(c)). |
| work | COMPLEX for cla_porcond_c |
| | DOUBLE COMPLEX for zla_porcond_c |
| | Array DIMENSION 2*n. Workspace. |
| rwork | REAL for cla_porcond_c |
| | DOUBLE PRECISION for zla_porcond_c |
| | Array DIMENSIONn. Workspace. |

Output Parameters

info INTEGER.
If info $=0$, the execution is successful.
If $i>0$, the i-th parameter is invalid.

See Also

?potrf
?la_porcond_x
Computes the infinity norm condition number of op(A)*diag (x) for Hermitian positive-definite matrices.
Syntax

```
call cla_porcond_x( uplo, n, a, lda, af, ldaf, x, info, work, rwork )
call zla_porcond_x( uplo, n, a, lda, af, ldaf, x, info, work, rwork )
```

Include Files

- mkl.fi

Description

The function computes the infinity norm condition number of $o p(A) * \operatorname{diag}(x)$
where the x is a COMPLEX vector for cla_porcond_x and a DOUBLE COMPLEX vector for zla_porcond_x. Input Parameters
uplo
n
a

Ida
$a f$

CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of A to store:
If uplo = 'U', the upper triangle of A is stored,
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The number of linear equations, that is, the order of the matrix $A ; n \geq$ 0.

COMPLEX for cla_porcond_c
DOUBLE COMPLEX for zla_porcond_c
Array, DIMENSION (Ida, *). On entry, the n-by- n matrix A.
The second dimension of a must be at least max $(1, n)$.
$\operatorname{INTEGER}$. The leading dimension of the array $a . I d a \geq \max (1, n)$.
COMPLEX for cla_porcond_c
DOUBLE COMPLEX for zla_porcond_c
Array, DIMENSION (Idaf, *). The triangular factor L or U from the Cholesky factorization
$A=U^{H} * U$ or $A=L^{*} L^{H}$,

| | as computed by ?potrf. |
| :---: | :---: |
| | The second dimension of af must be at least max $(1, n)$. |
| ldaf | INTEGER. The leading dimension of the array af. 1 da $£ \geq \max (1, n)$. |
| x | COMPLEX for cla_porcond_c |
| | DOUBLE COMPLEX for zla_porcond_c |
| | Array x with DIMENSIONn. The vector x in the formula |
| | op (A) * inv(diag (x)). |
| work | COMPLEX for cla_porcond_c |
| | DOUBLE COMPLEX for zla_porcond_c |
| | Array DIMENSION $2^{*} n$. Workspace. |
| rwork | REAL for cla_porcond_c |
| | DOUBLE PRECISION for zla_porcond_c |
| | Array DIMENSIONn. Workspace. |

Output Parameters

info
INTEGER.
If info $=0$, the execution is successful.
If $i>0$, the i-th parameter is invalid.

See Also

?potrf

?la_porfsx_extended

Improves the computed solution to a system of linear equations for symmetric or Hermitian positive-definite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

Syntax

```
call sla_porfsx_extended( prec_type, uplo, n, nrhs, a, lda, af, ldaf, colequ, c, b, ldb,
y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, rcond,
ithresh, rthresh, dz_ub, ignore_cwise, info )
call dla_porfsx_extended( prec_type, uplo, n, nrhs, a, lda, af, ldaf, colequ, c, b, ldb,
y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, rcond,
ithresh, rthresh, dz_ub, ignore_cwise, info )
call cla_porfsx_extended( prec_type, uplo, n, nrhs, a, lda, af, ldaf, colequ, c, b, ldb,
y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, rcond,
ithresh, rthresh, dz_ub, ignore_cwise, info )
call zla_porfsx_extended( prec_type, uplo, n, nrhs, a, lda, af, ldaf, colequ, c, b, ldb,
y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail, rcond,
ithresh, rthresh, dz_ub, ignore_cwise, info )
```


Include Files

- mkl.fi

Description

The ?la_porfsx_extended subroutine improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. The ?herfsx routine calls ?la_porfsx_extended to perform iterative refinement.
In addition to normwise error bound, the code provides maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.
Use ?la_porfsx_extended to set only the second fields of err_bnds_norm and err_bnds_comp.
Input Parameters

```
prec_type
uplo
n
nrhs
a, af, b, y
```

INTEGER.
Specifies the intermediate precision to be used in refinement. The value is defined by ilaprec (p), where p is a CHARACTER and:

If $p=$ 'S': Single.
If $p=$ 'D': Double.
If $p=$ 'I': Indigenous.
If $p=$ 'X', 'E': Extra.
CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of A to store:
If uplo = 'U', the upper triangle of A is stored,
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The number of linear equations; the order of the matrix $A ; n \geq 0$.
INTEGER. The number of right-hand sides; the number of columns of the matrix B.

REAL for sla_porfsx_extended
DOUBLE PRECISION for dla_porfsx_extended
COMPLEX for cla_porfsx_extended
DOUBLE COMPLEX for zla_porfsx_extended.
Arrays: $a(l d a, *), a f(l d a f, *), b(l d b, *), \quad y(l d y, *)$.
The array a contains the original n-by- n matrix A. The second dimension of a must be at least max $(1, n)$.

The array af contains the triangular factor L or U from the Cholesky factorization as computed by ?potrf:
$A=U^{T} * U$ or $A=L^{*} L^{T}$ for real flavors,
$A=U^{H} * U$ or $A=L * L^{H}$ for complex flavors.
The second dimension of af must be at least max $(1, n)$.

Ida
ldaf
colequ

C

1 db
Idy
n_norms
err_bnds_norm

The array b contains the right-hand-side of the matrix B. The second dimension of b must be at least max ($1, n r h s$).

The array y on entry contains the solution matrix X as computed by ?potrs. The second dimension of y must be at least max ($1, n r h s$).

INTEGER. The leading dimension of the array $a ; l d a \geq \max (1, n)$.
INTEGER. The leading dimension of the array $a f ; I d a \geq \geq \max (1, n)$.
LOGICAL. If colequ $=$.TRUE., column equilibration was done to A before calling this routine. This is needed to compute the solution and error bounds correctly.

REAL for sla_porfsx_extended and cla_porfsx_extended
DOUBLE PRECISION for dla_porfsx_extended and zla_porfsx_extended.
c contains the column scale factors for A. If colequ $=$. FALSE.,c is not used.
If c is input, each element of c should be a power of the radix to ensure a reliable solution and error estimates. Scaling by power of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of the array $y ; \operatorname{ldy} \geq \max (1, n)$.
INTEGER. Determines which error bounds to return. See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

If n_norms ≥ 1, returns normwise error bounds.
If n_norms ≥ 2, returns componentwise error bounds.
REAL for sla_porfsx_extended and cla_porfsx_extended
DOUBLE PRECISION for dla_porfsx_extended and zla_porfsx_extended.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error.
Normwise relative error in the i-th solution vector is defined as follows:

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

The first index in err_bnds_norm(i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_norm (: err) contains the following three fields:
$e r r=1$
err=2
$e r r=3$
"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for sla_porfsx_extended/cla_porfsx_extended and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for dla_porfsx_extended/zla_porfsx_extended .
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for
sla_porfsx_extended/cla_porfsx_extended and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for dla_porfsx_extended/zla_porfsx_extended . This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for sla_porfsx_extended/cla_porfsx_extended and $\operatorname{sqrt}(n) *$ dlamch (ε) for dla_porfsx_extended/zla_porfsx_extended to determine if the error estimate is "guaranteed". These reciprocal condition numbers are $1 /$ (norm(1/
z,inf)*norm(z,inf)) for some appropriately scaled matrix Z.

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1.
Use this subroutine to set only the second field above.

REAL for sla_porfsx_extended and cla_porfsx_extended
DOUBLE PRECISION for dla_porfsx_extended and
zla_porfsx_extended.
Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:

Componentwise relative error in the i-th solution vector:

The array is indexed by the right-hand side i, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) $=0.0$), then err_bnds_comp is not accessed. If $n_{-} e r r_{-}$bnds <3, then at most the first (:, n_err_bnds) entries are returned.
The first index in err_bnds_comp (i,:) corresponds to the i-th right-hand side.

The second index in err_bnds_comp (: err) contains the follwoing three fields:

| err $=1$ | "Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for sla_porfsx_extended/cla_porfsx_extended and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for dla_porfsx_extended/zla_porfsx_extended |
| :---: | :---: |
| err=2 | "Guaranteed" error bpound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for
 sla_porfsx_extended/cla_porfsx_extended and sqrt (n) *dlamch (ε) for dla_porfsx_extended/zla_porfsx_extended . This error bound should only be trusted if the previous boolean is true. |
| err=3 | Reciprocal condition number. Estimated componentwise reciprocal condition number. Compared with the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for sla_porfsx_extended/cla_porfsx_extended and $\operatorname{sqrt}(n) * \operatorname{dlamch}(\varepsilon)$ for dla_porfsx_extended/zla_porfsx_extended to determine if the error estimate is "guaranteed". These reciprocal condition numbers are 1/(norm(1/
 z,inf)*norm(z,inf)) for some appropriately |
| | Let $z=s^{\star}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of a^{\star} diag (x) by a power of the radix so all absolute row sums of z are approximately 1 . |

Use this subroutine to set only the second field above.
$a y b$
rcond
ithresh
rthresh
$d z _u b$

REAL for sla_porfsx_extended DOUBLE PRECISION for dla_porfsx_extended

COMPLEX for cla_porfsx_extended
DOUBLE COMPLEX for zla_porfsx_extended.
Workspace arrays of DIMENSIONn.
res holds the intermediate residual.
$d y$ holds the intermediate solution.
$y_{_}$tail holds the trailing bits of the intermediate solution.
REAL for sla_porfsx_extended and cla_porfsx_extended
DOUBLE PRECISION for dla_porfsx_extended and zla_porfsx_extended.

Workspace array, DIMENSIONn.
REAL for sla_porfsx_extended and cla_porfsx_extended
DOUBLE PRECISION for dla_porfsx_extended and zla_porfsx_extended.

Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

INTEGER. The maximum number of residual computations allowed for refinement. The default is 10 . For 'aggressive', set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.

REAL for sla_porfsx_extended and cla_porfsx_extended
DOUBLE PRECISION for dla_porfsx_extended and zla_porfsx_extended.
Determines when to stop refinement if the error estimate stops decreasing. Refinement stops when the next solution no longer satisfies
norm(dx_\{i+1\}) < rthresh * norm(dx_i)
where norm (z) is the infinity norm of Z.

```
rthresh satisfies
0 < rthresh\leq 1.
```

The default value is 0.5 . For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices.

REAL for sla_porfsx_extended and cla_porfsx_extended

```
ignore_cwise
```


Output Parameters

Y

```
berr_out
```

err_bnds_norm,
err_bnds_comp
info

See Also

?porfsx
?potrf
?potrs
?lamch
ilaprec
ilatrans
?la_lin_berr

DOUBLE PRECISION for dla_porfsx_extended and
zla_porfsx_extended.
Determines when to start considering componentwise convergence. Componentwise $d z_{-} u b$ convergence is only considered after each component of the solution y is stable, that is, the relative change in each component is less than $d z_{-} u b$. The default value is 0.25 , requiring the first bit to be stable.

LOGICAL
If . TRUE., the function ignores componentwise convergence. Default value is. FALSE.

REAL for sla_porfsx_extended
DOUBLE PRECISION for dla_porfsx_extended
COMPLEX for cla_porfsx_extended
DOUBLE COMPLEX for zla_porfsx_extended.
The improved solution matrix Y.

```
REAL for sla_porfsx_extended and cla_porfsx_extended
DOUBLE PRECISION for dla_porfsx_extended and
zla_porfsx_extended.
```

Array, DIMENSIONnrhs. berr_out (j) contains the componentwise relative backward error for right-hand-side j from the formula

```
max(i) (abs(res(i)) / (abs(op(A))*abs(y) + abs(B) )(i) )
```

where abs (z) is the componentwise absolute value of the matrix or vector Z. This is computed by ?la_lin_berr.

Values of the corresponding input parameters improved after iterative refinement and stored in the second column of the array (1 :nrhs, 2). The other elements are kept unchanged.

INTEGER. If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, the i-th parameter had an illegal value.

?la_porpvgrw

Computes the reciprocal pivot growth factor norm (A) / norm (U) for a symmetric or Hermitian positivedefinite matrix.

Syntax

```
call sla_porpvgrw( uplo, ncols, a, lda, af, ldaf, work )
call dla_porpvgrw( uplo, ncols, a, lda, af, ldaf, work )
call cla_porpvgrw( uplo, ncols, a, lda, af, ldaf, work )
call zla_porpvgrw( uplo, ncols, a, lda, af, ldaf, work )
```


Include Files

- mkl.fi

Description

The ?la_porpvgrw routine computes the reciprocal pivot growth factor norm (A)/norm (U). The max absolute element norm is used. If this is much less than 1 , the stability of the $L U$ factorization of the equilibrated matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable.

Input Parameters

```
uplo
ncols
```

$a, a f$

Ida
Idaf

CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of A to store:
If uplo = ' U ', the upper triangle of A is stored,
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The number of columns of the matrix $A ; n c o l s \geq 0$.
REAL for sla_porpvgrw
DOUBLE PRECISION for dla_porpvgrw
COMPLEX for cla_porpvgrw
DOUBLE COMPLEX for zla_porpvgrw.
Arrays: a(lda,*), af(ldaf,*).
The array a contains the input n-by- n matrix A. The second dimension of a must be at least max $(1, n)$.

The array af contains the triangular factor L or U from the Cholesky factorization as computed by ?potrf:
$\mathrm{A}=\mathrm{U}^{\mathrm{T}} * \mathrm{U}$ or $\mathrm{A}=\mathrm{L}^{*} \mathrm{~L}^{\mathrm{T}}$ for real flavors,
$A=U^{H} * U$ or $A=L * L^{H}$ for complex flavors.
The second dimension of af must be at least max $(1, n)$.
INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.
INTEGER. The leading dimension of $a f ; l d a \geq \geq \max (1, n)$.

REAL for sla_porpvgrw and cla_porpvgrw
DOUBLE PRECISION for dla_porpvgrw and zla_porpvgrw.
Workspace array, dimension $2^{*} n$.

See Also

?potrf

?laqhe

Scales a Hermitian matrix.

Syntax

```
call claqhe( uplo, n, a, lda, s, scond, amax, equed )
call zlaqhe( uplo, n, a, lda, s, scond, amax, equed )
```


Include Files

- mkl.fi

Description

The routine equilibrates a Hermitian matrix A using the scaling factors in the vector s.

Input Parameters

uplo
n
a

Ida

S

CHARACTER*1.
Specifies whether to store the upper or lower part of the Hermitian matrix A.

If uplo = 'U', the upper triangular part of A;
if uplo = 'L', the lower triangular part of A.
INTEGER. The order of the matrix A.
$n \geq 0$.
COMPLEX for claqhe
DOUBLE COMPLEX for zlaqhe
Array, DIMENSION (Ida, n). On entry, the Hermitian matrix A.
If uplo = 'U', the leading n-by- n upper triangular part of a contains the upper triangular part of matrix A and the strictly lower triangular part of a is not referenced.
If uplo = 'L', the leading n-by- n lower triangular part of a contains the lower triangular part of matrix A and the strictly upper triangular part of a is not referenced.

INTEGER. The leading dimension of the array a.
$I d a \geq \max (n, 1)$.
REAL for claqhe
DOUBLE PRECISION for zlaqhe

Array, DIMENSION (n). The scale factors for A.
scond
amax

REAL for claqhe
DOUBLE PRECISION for zlaqhe
Ratio of the smallest $s(i)$ to the largest $s(i)$.
REAL for claqhe
DOUBLE PRECISION for zlaqhe
Absolute value of largest matrix entry.

Output Parameters

a
equed

If equed $=$ ' Y ', a contains the equilibrated matrix diag $(s) * A * \operatorname{diag}(s)$. CHARACTER*1.

Specifies whether or not equilibration was done.
If equed = 'N': No equilibration.
If equed $=$ 'Y': Equilibration was done, that is, A has been replaced by $\operatorname{diag}(s) * A * \operatorname{diag}(s)$.

Application Notes

The routine uses internal parameters thresh, large, and small. The parameter thresh is a threshold value used to decide if scaling should be done based on the ratio of the scaling factors. If scond $<$ thresh, scaling is done.
The large and small parameters are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

```
?laqhp
Scales a Hermitian matrix stored in packed form.
Syntax
```

```
call claqhp( uplo, n, ap, s, scond, amax, equed )
```

call claqhp(uplo, n, ap, s, scond, amax, equed)
call zlaqhp(uplo, n, ap, s, scond, amax, equed)

```
call zlaqhp( uplo, n, ap, s, scond, amax, equed )
```

Include Files

- mkl.fi

Description

The routine equilibrates a Hermitian matrix A using the scaling factors in the vector s.
Input Parameters

```
uplo
```

CHARACTER*1.

Specifies whether to store the upper or lower part of the Hermitian matrix A.

If uplo = 'U', the upper triangular part of A;
n
ap
S
amax
if uplo = 'L', the lower triangular part of A.
INTEGER. The order of the matrix A.
$n \geq 0$.
COMPLEX for claqhp
DOUBLE COMPLEX for zlaqhp
Array, DIMENSION $\left(n^{*}(n+1) / 2\right)$. The Hermitian matrix A.

- If uplo = 'U', the upper triangular part of the Hermitian matrix A is stored in the packed array ap as follows:
$a p(i+(j-1) * j / 2)=A(i, j)$ for $1 \leq i \leq j$.
- If uplo = 'L', the lower triangular part of Hermitian matrix A is stored in the packed array ap as follows:

$$
a p(i+(j-1) *(2 n-j) / 2)=A(i, j) \text { for } j \leq i \leq n .
$$

REAL for claqhp
DOUBLE PRECISION for zlaqhp
Array, DIMENSION (n). The scale factors for A.
REAL for claqhp
DOUBLE PRECISION for zlaqhp
Ratio of the smallest $s(i)$ to the largest $s(i)$.
REAL for claqhp
DOUBLE PRECISION for zlaqhp
Absolute value of largest matrix entry.

Output Parameters

a
If equed $=$ 'Y', a contains the equilibrated matrix diag $(s) * A * \operatorname{diag}(s)$ in the same storage format as on input.
equed
CHARACTER*1.
Specifies whether or not equilibration was done.
If equed $=$ ' N ': No equilibration.
If equed $=$ 'Y': Equilibration was done, that is, A has been replaced by diag(s)*A*diag(s).

Application Notes

The routine uses internal parameters thresh, large, and small. The parameter thresh is a threshold value used to decide if scaling should be done based on the ratio of the scaling factors. If scond < thresh, scaling is done.

The large and small parameters are threshold values used to decide if scaling should be done based on the absolute size of the largest matrix element. If amax > large or amax < small, scaling is done.

?larcm

Multiplies a square real matrix by a complex matrix.

Syntax

```
call clarcm( m, n, a, lda, b, ldb, c, ldc, rwork )
call zlarcm( m, n, a, lda, b, ldb, c, ldc, rwork )
```


Description

The routine performs a simple matrix-matrix multiplication of the form $C=A^{\star} B$,
where A is m-by- m and real, B is m-by- n and complex, and C is m-by- n and complex.

Input Parameters

m
n
a
b
$1 d b$
ldc
rwork

INTEGER. The number of rows and columns of matrix A and the number of rows of matrix $C(m \geq 0)$.

INTEGER. The number of columns of matrix B and the number of columns of matrix C
$(n \geq 0)$.
REAL for clarcm
DOUBLE PRECISION for zlarcm
Array, size (Ida, m). Contains the m-by- m matrix A.

INTEGER. The leading dimension of the array $a, 1 d a \geq \max (1, m)$.

COMPLEX for clarcm
DOUBLE COMPLEX for zlarcm
Array, DIMENSION ($1 \mathrm{db}, n$). Contains the m-by- n matrix B.
INTEGER. The leading dimension of the array $b, I d b \geq \max (1, m)$ for columnmajor layout; $I d b \geq \max (1, n)$ for row-major layout .

INTEGER. The leading dimension of the array $c, I d c \geq \max (1, m)$ for columnmajor layout; $I d c \geq \max (1, n)$ for row-major layout .

REAL for clarcm
DOUBLE PRECISION for zlarcm
Workspace array, DIMENSION ($2 \star m^{\star} n$).

Output Parameters

C

COMPLEX for clarcm
DOUBLE COMPLEX for zlarcm
Array, size (Idc, n). Contains the m-by- n matrix C.

Return Values

This function returns a value info. If info $=0$, the execution is successful. If info $=-i$, parameter i had an illegal value.

```
?la_gerpvgrw
Computes the reciprocal pivot growth factor norm(A) /
norm(U) for a general matrix.
```


Syntax

```
call sla_gerpvgrw( n, ncols, a, lda, af, ldaf )
call dla_gerpvgrw( n, ncols, a, lda, af, ldaf)
call cla_gerpvgrw( n, ncols, a, lda, af, ldaf)
call zla_gerpvgrw( n, ncols, a, lda, af, ldaf)
```

Include Files

- mkl.fi

Description

The ?la_gerpvgrw routine computes the reciprocal pivot growth factor norm (A)/norm (U). The max absolute element norm is used. If this is much less than 1 , the stability of the $L U$ factorization of the equilibrated matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable.

Input Parameters

```
n
ncols
a, af
```

Ida
ldaf

INTEGER. The number of linear equations, the order of the matrix A; $n \geq 0$.

INTEGER. The number of columns of the matrix $A ; n c o l s \geq 0$.
REAL for sla_gerpvgrw
DOUBLE PRECISION for dla_gerpvgrw
COMPLEX for cla_gerpvgrw
DOUBLE COMPLEX for zla_gerpvgrw.
Arrays: a(lda,*), af(ldaf,*).
The array a contains the input n-by- n matrix A. The second dimension of a must be at least max $(1, n)$.
The array af contains the factors L and U from the factorization triangular factor L or U from the Cholesky factorization $A=P * L * U$ as computed by ?getrf. The second dimension of af must be at least $\max (1, n)$.

INTEGER. The leading dimension of $a ; ~ l d a \geq \max (1, n)$.
INTEGER. The leading dimension of $a f ; l d a \leq \max (1, n)$.

See Also

? getrf

?larscl2

Performs reciprocal diagonal scaling on a vector.

Syntax

```
call slarscl2(m, n, d, x, ldx)
call dlarscl2(m, n, d, x, ldx)
call clarscl2(m, n, d, x, ldx)
call zlarscl2(m, n, d, x, ldx)
```


Include Files

- mkl.fi

Description

The ?larscl2 routines perform reciprocal diagonal scaling on a vector

$$
x:=D^{-1 *} x,
$$

where:
x is a vector, and
D is a diagonal matrix.

Input Parameters

m
n
d
x
ldx

INTEGER. Specifies the number of rows of the matrix D and the number of elements of the vector x. The value of m must be at least zero.

INTEGER. The number of columns of D and x. The value of n must be at least zero.

REAL for slarscl2 and clarscl2.
DOUBLE PRECISION for dlarscl2 and zlarscl2.
Array, DIMENSIONm. Diagonal matrix D stored as a vector of length m.
REAL for slarscl2.
DOUBLE PRECISION for dlarscl2.
COMPLEX for clarscl2.
DOUBLE COMPLEX for zlarscl2.
Array, DIMENSION ($I d x, n$). The vector x to scale by D.
INTEGER.
The leading dimension of the vector x. The value of $I d x$ must be at least zero.

Output Parameters

?lascl2

Performs diagonal scaling on a vector.

Syntax

```
call slascl2(m, n, d, x, ldx)
call dlascl2(m, n, d, x, ldx)
call clascl2(m, n, d, x, ldx)
call zlascl2(m, n, d, x, ldx)
```


Include Files

- mkl.fi

Description

The ?lascl2 routines perform diagonal scaling on a vector

$$
x:=D^{\star} x,
$$

where:
x is a vector, and
D is a diagonal matrix.

Input Parameters

m
n
d

X
$1 d x$

INTEGER. Specifies the number of rows of the matrix D and the number of elements of the vector x. The value of m must be at least zero.

INTEGER. The number of columns of D and x. The value of n must be at least zero.

REAL for slascl2 and clascl2.
DOUBLE PRECISION for dlascl2 and zlascl2.
Array, DIMENSIONm. Diagonal matrix D stored as a vector of length m.
REAL for slascl2.
DOUBLE PRECISION for dlascl2.
COMPLEX for clascl2.
DOUBLE COMPLEX for zlascl2.
Array, DIMENSION (Idx,n). The vector x to scale by D.
INTEGER.
The leading dimension of the vector x. The value of $I d x$ must be at least zero.

Output Parameters

x
Scaled vector x.

```
?la_syamv
Computes a matrix-vector product using a symmetric
indefinite matrix to calculate error bounds.
Syntax
```

```
call sla_syamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
```

call sla_syamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call dla_syamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call dla_syamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call cla_syamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call cla_syamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
call zla_syamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)

```
call zla_syamv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
```

Include Files

- mkl.fi

Description

The ?la_syamv routines perform a matrix-vector operation defined as

```
y := alpha*abs (A)*abs (x) + beta*abs (y),
```

where:
alpha and beta are scalars,
x and y are vectors,
A is an n-by- n Hermitian matrix.
This function is primarily used in calculating error bounds. To protect against underflow during evaluation, the function perturbs components in the resulting vector away from zero by $(n+1)$ times the underflow threshold. To prevent unnecessarily large errors for block structure embedded in general matrices, the function does not perturb symbolically zero components. A zero entry is considered symbolic if all multiplications involved in computing that entry have at least one zero multiplicand.

Input Parameters

```
uplo
n
alpha
a
```

Specifies whether the upper or lower triangular part of the array A is to be referenced:

If uplo = 'BLAS_UPPER', only the upper triangular part of A is to be referenced,

If uplo = 'BLAS_LOWER', only the lower triangular part of A is to be referenced.

INTEGER. Specifies the number of rows and columns of the matrix A. The value of n must be at least zero.

REAL for sla_syamv and cla_syamv
DOUBLE PRECISION for dla_syamv and zla_syamv.
Specifies the scalar alpha.
REAL for sla_syamv
DOUBLE PRECISION for dla_syamv
COMPLEX for cla_syamv

| | DOUBLE COMPLEX for zla_syamv. |
| :---: | :---: |
| | Array, DIMENSION (lda, *). Before entry, the leading m-by-n part of the array a must contain the matrix of coefficients. The second dimension of a must be at least max $(1, n)$. |
| Ida | INTEGER. Specifies the leading dimension of a as declared in the calling (sub)program. The value of Ida must be at least max $(1, n)$. |
| X | REAL for sla_syamv |
| | DOUBLE PRECISION for dla_syamv |
| | COMPLEX for cla_syamv |
| | DOUBLE COMPLEX for zla_syamv. |
| | Array, DIMENSION at least (1+(n-1)*abs (incx)). Before entry, the incremented array x must contain the vector X. |
| incx | INTEGER. Specifies the increment for the elements of x. |
| | The value of incx must be non-zero. |
| beta | REAL for sla_syamv and cla_syamv |
| | DOUBLE PRECISION for dla_syamv and zla_syamv |
| | Specifies the scalar beta. When beta is zero, you do not need to set y on input. |
| Y | REAL for sla_syamv and cla_syamv |
| | DOUBLE PRECISION for dla_syamv and zla_syamv |
| | Array, DIMENSION at least $(1+(n-1) * a b s(i n c y))$ otherwise. Before entry with non-zero beta, the incremented array y must contain the vector Y. |
| incy | INTEGER. Specifies the increment for the elements of y. |
| | The value of incy must be non-zero. |

Output Parameters

y
Updated vector Y.

?la_syrcond

Estimates the Skeel condition number for a symmetric indefinite matrix.

Syntax

```
call sla_syrcond( uplo, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork )
call dla_syrcond( uplo, n, a, lda, af, ldaf, ipiv, cmode, c, info, work, iwork )
```

Include Files

- mkl.fi

Description

The function estimates the Skeel condition number of
op (A) * op2 (C)
where
the cmode parameter determines op2 as follows:

| cmode Value | op2(C) | |
| :--- | :--- | :--- |
| 1 | C | |
| 0 | I | |
| -1 | $\operatorname{inv}(C)$ | |

The Skeel condition number

```
cond(A) = norminf(|inv(A)| |A|)
```

is computed by computing scaling factors R such that
$\operatorname{diag}(R){ }^{*} A * o p 2(C)$
is row equilibrated and by computing the standard infinity-norm condition number.

Input Parameters

| uplo | CHARACTER*1. Must be 'U' or 'L'. |
| :---: | :---: |
| | Specifies the triangle of A to store: |
| | If uplo = 'U', the upper triangle of A is stored, |
| | If uplo = 'L', the lower triangle of A is stored. |
| n | INTEGER. The number of linear equations, that is, the order of the matrix A; $n \geq$ 0. |
| a, af, c, work | REAL for sla_syrcond |
| | DOUBLE PRECISION for dla_syrcond |
| | Arrays: |
| | ab (lda,*) contains the n-by-n matrix A. |
| | af (ldaf,*) contains the The block diagonal matrix D and the multipliers used to obtain the factor L or U as computed by ?sytrf. |
| | The second dimension of a and $a f$ must be at least max ($1, n$). |
| | C, DIMENSION. The vector C in the formula op (A) * op2 (C). |
| | work is a workspace array of DIMENSION ($3 * n$). |
| Ida | INTEGER. The leading dimension of the array $a b . l$ da $\mathrm{max}^{\text {max }}(1, n)$. |
| Idaf | INTEGER. The leading dimension of $a f$. Idaf \geq max $(1, n)$. |
| ipiv | INTEGER. |

Array with DIMENSIONn. Details of the interchanges and the block structure of D as determined by ?sytrf.

```
cmode INTEGER. Determines op2(C) in the formula op (A) * op2(C) as follows:
    If cmode = 1,op2(C)=C.
    If cmode = 0,op2(C) = I.
    If cmode = -1, op2(C) = inv(C).
iwork INTEGER. Workspace array with DIMENSIONn.
```


Output Parameters

```
info
```

INTEGER.
If info $=0$, the execution is successful.
If $i>0$, the i-th parameter is invalid.

See Also

?sytrf

?la_syrcond_c

Computes the infinity norm condition number of op(A)*inv(diag(c)) for symmetric indefinite matrices.

Syntax

```
call cla_syrcond_c( uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork )
call zla_syrcond_c( uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork )
```

Include Files

- mkl.fi

Description

The function computes the infinity norm condition number of

```
op(A) * inv(diag(c))
```

where the c is a REAL vector for cla_syrcond_c and a DOUBLE PRECISION vector for zla_syrcond_c.

Input Parameters

uplo
n
a

CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of A to store:
If uplo = 'U', the upper triangle of A is stored,
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The number of linear equations, that is, the order of the matrix $A ; n \geq$ 0.

COMPLEX for cla_syrcond_c
DOUBLE COMPLEX for zla_syrcond_c
Array, DIMENSION (lda, *). On entry, the n-by-n matrix A. The second dimension of a must be at least max $(1, n)$.

Ida
$a f$

Idaf

C
work
rwork

INTEGER. The leading dimension of the array a. $1 d a \geq \max (1, n)$.
COMPLEX for cla_syrcond_c
DOUBLE COMPLEX for zla_syrcond_c
Array, DIMENSION (Idaf, *). The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ?sytrf. The second dimension of af must be at least max $(1, n)$.

INTEGER. The leading dimension of the array $a f . I d a f \geq \max (1, n)$.
INTEGER.
Array with DIMENSIONn. Details of the interchanges and the block structure of D as determined by ?sytrf.

REAL for cla_syrcond_c
DOUBLE PRECISION for zla_syrcond_C
Array c with DIMENSIONn. The vector c in the formula
op (A) * inv(diag(C)).
LOGICAL. If .TRUE., then the function uses the vector c from the formula
op (A) * inv(diag(c)).
COMPLEX for cla_syrcond_c
DOUBLE COMPLEX for zla_syrcond_c
Array DIMENSION 2*n. Workspace.
REAL for cla_syrcond_c
DOUBLE PRECISION for zla_syrcond_c
Array DIMENSIONn. Workspace.

Output Parameters

info

INTEGER.
If info $=0$, the execution is successful.
If $i>0$, the i-th parameter is invalid.

See Also

?sytrf
?la_syrcond_x
Computes the infinity norm condition number of op(A)*diag(x) for symmetric indefinite matrices.

Syntax

```
call cla_syrcond_x( uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork )
call zla_syrcond_x( uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork )
```


Include Files

- mkl.fi

Description

The function computes the infinity norm condition number of

```
op(A) * diag(x)
```

where the x is a COMPLEX vector for cla_syrcond_x and a DOUBLE COMPLEX vector for zla_syrcond_x.

Input Parameters

uplo
n
a

Ida
$a f$
ldaf
ipiv

X
work
rwork

CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of A to store:
If uplo = 'U', the upper triangle of A is stored,
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The number of linear equations, that is, the order of the matrix $A ; n \geq$
0.

COMPLEX for cla_syrcond_c
DOUBLE COMPLEX for zla_syrcond_c
Array, DIMENSION (Ida, *). On entry, the n-by-n matrix A. The second dimension of a must be at least max $(1, n)$.

INTEGER. The leading dimension of the array a. 1 da $\geq \max (1, n)$.
COMPLEX for cla_syrcond_c
DOUBLE COMPLEX for zla_syrcond_c
Array, DIMENSION (Idaf, *). The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ?sytrf. The second dimension of af must be at least max $(1, n)$.

INTEGER. The leading dimension of the array $a f$. $I d a f \geq \max (1, n)$.
INTEGER.
Array with DIMENSIONn. Details of the interchanges and the block structure of D as determined by ?sytrf.

COMPLEX for cla_syrcond_c
DOUBLE COMPLEX for zla_syrcond_c
Array x with DIMENSION n. The vector x in the formula
op(A) * inv(diag(x)).
COMPLEX for cla_syrcond_c
DOUBLE COMPLEX for zla_syrcond_c
Array DIMENSION 2*n. Workspace.
REAL for cla_syrcond_c
DOUBLE PRECISION for zla_syrcond_c

Array DIMENSIONn. Workspace.

Output Parameters

```
info
```

INTEGER.
If info $=0$, the execution is successful.
If $i>0$, the i-th parameter is invalid.

See Also

?sytrf

?la_syrfsx_extended

Improves the computed solution to a system of linear equations for symmetric indefinite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

Syntax

```
call sla_syrfsx_extended( prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c,
b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
call dla_syrfsx_extended( prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c,
b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
call cla_syrfsx_extended( prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c,
b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
call zla_syrfsx_extended( prec_type, uplo, n, nrhs, a, lda, af, ldaf, ipiv, colequ, c,
b, ldb, y, ldy, berr_out, n_norms, err_bnds_norm, err_bnds_comp, res, ayb, dy, y_tail,
rcond, ithresh, rthresh, dz_ub, ignore_cwise, info )
```


Include Files

- mkl.fi

Description

The ?la_syrfsx_extended subroutine improves the computed solution to a system of linear equations by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution. The ?syrfsx routine calls ?la_syrfsx_extended to perform iterative refinement.

In addition to normwise error bound, the code provides maximum componentwise error bound, if possible. See comments for err_bnds_norm and err_bnds_comp for details of the error bounds.

Use ?la_syrfsx_extended to set only the second fields of err_bnds_norm and err_bnds_comp.

Input Parameters

```
prec_type
```

INTEGER.
Specifies the intermediate precision to be used in refinement. The value is defined by ilaprec (p), where p is a CHARACTER and:

| | If $p=$ 'S': Single. |
| :---: | :---: |
| | If $p=$ 'D': Double. |
| | If $p=$ 'I': Indigenous. |
| | If $p=$ 'X', 'E': Extra. |
| uplo | CHARACTER*1. Must be 'U' or 'L'. |
| | Specifies the triangle of A to store: |
| | If uplo = 'U', the upper triangle of A is stored, |
| | If uplo = 'L', the lower triangle of A is stored. |
| n | INTEGER. The number of linear equations; the order of the matrix A; $n \geq 0$. |
| nrhs | INTEGER. The number of right-hand sides; the number of columns of the matrix B. |
| $a, a f, b, y$ | REAL for sla_syrfsx_extended |
| | DOUBLE PRECISION for dla_syrfsx_extended |
| | COMPLEX for cla_syrfsx_extended |
| | DOUBLE COMPLEX for zla_syrfsx_extended. |
| | Arrays: $\mathrm{a}(\mathrm{lda}, *), \mathrm{af}(l d a f, *), \mathrm{b}(\mathrm{ldb}, *), \quad y(l d y, *)$. |
| | The array a contains the original n-by- n matrix A. The second dimension of a must be at least max $(1, n)$. |
| | The array af contains the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ?sytrf. |
| | The second dimension of af must be at least max $(1, n)$. |
| | The array b contains the right-hand-side of the matrix B. The second dimension of b must be at least max ($1, n r h s$). |
| | The array y on entry contains the solution matrix X as computed by ?sytrs. The second dimension of y must be at least max ($1, n r h s$). |
| Ida | INTEGER. The leading dimension of the array $a ; 1 d a \geq \max (1, n)$. |
| Idaf | INTEGER. The leading dimension of the array af; lda \geq max $(1, n)$. |
| ipiv | INTEGER. |
| | Array with DIMENSIONn. Details of the interchanges and the block structure of D as determined by ?sytrf. |
| colequ | LOGICAL. If colequ = .TRUE., column equilibration was done to A before calling this routine. This is needed to compute the solution and error bounds correctly. |
| c | REAL for sla_syrfsx_extended and cla_syrfsx_extended |
| | DOUBLE PRECISION for dla_syrfsx_extended and zla_syrfsx_extended. |
| | c contains the column scale factors for A. If colequ $=$.FALSE., c is not used. |

If c is input, each element of c should be a power of the radix to ensure a reliable solution and error estimates. Scaling by power of the radix does not cause rounding errors unless the result underflows or overflows. Rounding errors during scaling lead to refining with a matrix that is not equivalent to the input matrix, producing error estimates that may not be reliable.

INTEGER. The leading dimension of the array $b ; 1 d b \geq \max (1, n)$.
INTEGER. The leading dimension of the array $y ; \operatorname{ldy} \geq \max (1, n)$.
INTEGER. Determines which error bounds to return. See err_bnds_norm and err_bnds_comp descriptions in Output Arguments section below.

If $n _n o r m s \geq 1$, returns normwise error bounds.
If n_norms ≥ 2, returns componentwise error bounds.
REAL for sla_syrfsx_extended and cla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended and zla_syrfsx_extended.
Array, DIMENSION ($n r h s, n_{-} e r r_{-} b n d s$). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the normwise relative error.

Normwise relative error in the i-th solution vector is defined as follows:

The array is indexed by the type of error information as described below. There are currently up to three pieces of information returned.

The first index in err_bnds_norm(i,:) corresponds to the i-th right-hand side.
The second index in err_bnds_norm (: ,err) contains the following three fields:

```
err=1
err=2
    "Trust/don't trust" boolean. Trust the answer if
    the reciprocal condition number is less than the
    threshold sqrt(n)*slamch (\varepsilon) for
    sla_syrfsx_extended/cla_syrfsx_extended
    and sqrt(n)*dlamch(\varepsilon) for
    dla_syrfsx_extended/zla_syrfsx_extended
    .
"Guaranteed" error bound. The estimated forward error, almost certainly within a factor of 10 of the true error so long as the next entry is greater than the threshold \(\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)\) for
sla_syrfsx_extended/cla_syrfsx_extended and \(\operatorname{sqrt}(n) * d l a m c h(\varepsilon)\) for
```

dla_syrfsx_extended/zla_syrfsx_extended . This error bound should only be trusted if the previous boolean is true.

Reciprocal condition number. Estimated normwise reciprocal condition number. Compared with the threshold sqrt(n)*slamch(ε) for sla_syrfsx_extended/cla_syrfsx_extended and $\operatorname{sqrt}(n) * d l a m c h(\varepsilon)$ for dla_syrfsx_extended/zla_syrfsx_extended to determine if the error estimate is "guaranteed". These reciprocal condition numbers are $1 /$ (norm(1/
z,inf) *norm(z,inf)) for some appropriately scaled matrix Z.

Let $z=s^{*} a$, where s scales each row by a power of the radix so all absolute row sums of z are approximately 1.
Use this subroutine to set only the second field above.

REAL for sla_syrfsx_extended and cla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended and zla_syrfsx_extended.

Array, DIMENSION (nrhs, n_err_bnds). For each right-hand side, contains information about various error bounds and condition numbers corresponding to the componentwise relative error, which is defined as follows:
Componentwise relative error in the i-th solution vector:

The array is indexed by the right-hand side i, on which the componentwise relative error depends, and by the type of error information as described below. There are currently up to three pieces of information returned for each right-hand side. If componentwise accuracy is nit requested (params (3) $=0.0$), then err_bnds_comp is not accessed. If n_{-}err_bnds <3, then at most the first (: , n_err_bnds) entries are returned.
The first index in err_bnds_comp (i,:) corresponds to the i-th right-hand side.
The second index in err_bnds_comp (: ,err) contains the follwoing three fields:

$$
e r r=1
$$

"Trust/don't trust" boolean. Trust the answer if the reciprocal condition number is less than the threshold $\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for

```
sla_syrfsx_extended/cla_syrfsx_extended
and sqrt(n)*dlamch(\varepsilon) for
dla_syrfsx_extended/zla_syrfsx_extended
```

err=2
err=3 Reciprocal condition number. Estimated
componentwise reciprocal condition number.
Compared with the threshold
$\operatorname{sqrt}(n) * \operatorname{slamch}(\varepsilon)$ for
sla_syrfsx_extended/cla_syrfsx_extended
and $\operatorname{sqrt}(n) * \operatorname{dlamch}(\varepsilon)$ for
dla_syrfsx_extended/zla_syrfsx_extended
to determine if the error estimate is
"guaranteed". These reciprocal condition
numbers are $1 /$ (norm(1/
$z, i n f) * \operatorname{norm}(z, \inf)$) for some appropriately
scaled matrix Z.

Let $z=s^{*}\left(a^{*} \operatorname{diag}(x)\right)$, where x is the solution for the current right-hand side and s scales each row of $a^{\star} \operatorname{diag}(x)$ by a power of the radix so all absolute row sums of z are approximately 1 .

Use this subroutine to set only the second field above.
res, dy, y_tail
ayb

REAL for sla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended
COMPLEX for cla_syrfsx_extended
DOUBLE COMPLEX for zla_syrfsx_extended.
Workspace arrays of DIMENSIONn.
res holds the intermediate residual.
$d y$ holds the intermediate solution.
$y_{\text {_ }}$ tail holds the trailing bits of the intermediate solution.
REAL for sla_syrfsx_extended and cla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended and
zla_syrfsx_extended.
Workspace array, DIMENSIONn.

```
rcond
ithresh
```

rthresh
$d z _u b$
ignore_cwise

Output Parameters

Y

REAL for sla_syrfsx_extended and cla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended and zla_syrfsx_extended.

Reciprocal scaled condition number. An estimate of the reciprocal Skeel condition number of the matrix A after equilibration (if done). If rcond is less than the machine precision, in particular, if rcond $=0$, the matrix is singular to working precision. Note that the error may still be small even if this number is very small and the matrix appears ill-conditioned.

INTEGER. The maximum number of residual computations allowed for refinement. The default is 10 . For 'aggressive', set to 100 to permit convergence using approximate factorizations or factorizations other than LU. If the factorization uses a technique other than Gaussian elimination, the guarantees in err_bnds_norm and err_bnds_comp may no longer be trustworthy.

REAL for sla_syrfsx_extended and cla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended and zla_syrfsx_extended.

Determines when to stop refinement if the error estimate stops decreasing. Refinement stops when the next solution no longer satisfies

```
norm(dx_{i+1}) < rthresh * norm(dx_i)
```

where norm (z) is the infinity norm of Z.

```
rthresh satisfies
0 < rthresh\leq 1.
```

The default value is 0.5 . For 'aggressive' set to 0.9 to permit convergence on extremely ill-conditioned matrices.

REAL for sla_syrfsx_extended and cla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended and zla_syrfsx_extended.

Determines when to start considering componentwise convergence. Componentwise $d z$ u ub convergence is only considered after each component of the solution y is stable, that is, the relative change in each component is less than $d z_{-} u b$. The default value is 0.25 , requiring the first bit to be stable.

LOGICAL
If . TRUE., the function ignores componentwise convergence. Default value is . FALSE.

REAL for sla_syrfsx_extended
DOUBLE PRECISION for dla_syrfsx_extended
COMPLEX for cla_syrfsx_extended
DOUBLE COMPLEX for zla_syrfsx_extended.

The improved solution matrix Y.

```
berr_out
```

REAL for sla_syrfsx_extended and cla_syrfsx_extended DOUBLE PRECISION for dla_syrfsx_extended and zla_syrfsx_extended.
Array, DIMENSIONnrhs. berr_out (j) contains the componentwise relative backward error for right-hand-side j from the formula

```
max(i) ( abs(res(i)) / ( abs(op(A))*abs(y) + abs(B) )(i) )
```

where abs (z) is the componentwise absolute value of the matrix or vector Z. This is computed by ?la_lin_berr.

Values of the corresponding input parameters improved after iterative refinement and stored in the second column of the array (1:nrhs, 2). The other elements are kept unchanged.

INTEGER. If info $=0$, the execution is successful. The solution to every right-hand side is guaranteed.
If info $=-i$, the i-th parameter had an illegal value.

See Also

```
?syrfsx
?sytrf
?sytrs
?lamch
ilaprec
ilatrans
?la_lin_berr
```


?la_syrpvgrw

```
Computes the reciprocal pivot growth factor norm (A) / norm ( \(U\) ) for a symmetric indefinite matrix.
```


Syntax

```
call sla_syrpvgrw( uplo, n, info, a, lda, af, ldaf, ipiv, work )
call dla_syrpvgrw( uplo, n, info, a, lda, af, ldaf, ipiv, work )
call cla_syrpvgrw( uplo, n, info, a, lda, af, ldaf, ipiv, work )
call zla_syrpvgrw( uplo, n, info, a, lda, af, ldaf, ipiv, work )
```


Include Files

- mkl.fi

Description

The ?la_syrpvgrw routine computes the reciprocal pivot growth factor norm (A)/norm (U). The max absolute element norm is used. If this is much less than 1 , the stability of the $L U$ factorization of the equilibrated matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable.

Input Parameters

uplo
n
$a, a f$
lda
Idaf
ipiv
work

CHARACTER*1. Must be 'U' or 'L'.
Specifies the triangle of A to store:
If uplo = 'U', the upper triangle of A is stored,
If uplo = 'L', the lower triangle of A is stored.
INTEGER. The number of linear equations, the order of the matrix A; $n \geq 0$.

INTEGER. The value of INFO returned from ?sytrf, that is, the pivot in column info is exactly 0.

REAL for sla_syrpvgrw
DOUBLE PRECISION for dla_syrpvgrw
COMPLEX for cla_syrpvgrw
DOUBLE COMPLEX for zla_syrpvgrw.
Arrays: a(lda,*), af(ldaf,*).
The array a contains the input n-by- n matrix A. The second dimension of a must be at least max $(1, n)$.

The array af contains the block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ?sytrf.

The second dimension of af must be at least max $(1, n)$. INTEGER. The leading dimension of $a ; 1 d a \geq \max (1, n)$.

INTEGER. The leading dimension of $a f ; l d a f \geq \max (1, n)$.
INTEGER.
Array, DIMENSIONn. Details of the interchanges and the block structure of D as determined by ?sytrf.

REAL for sla_syrpvgrw and cla_syrpvgrw
DOUBLE PRECISION for dla_syrpvgrw and zla_syrpvgrw.
Workspace array, dimension $2 *_{n}$.

See Also

?sytrf

?la_wwaddw

Adds a vector into a doubled-single vector.
Syntax

```
call sla_wwaddw( n, x, y, w )
call dla_wwaddw( n, x, y, w )
call cla_wwaddw( n, x, y, w )
call zla_wwaddw( n, x, y, w )
```


Include Files

- mkl.fi

Description

The ? la_wwaddw routine adds a vector W into a doubled-single vector (X, Y). This works for all existing IBM hex and binary floating-point arithmetics, but not for decimal.

Input Parameters

```
n
x,y, w
```

```
INTEGER. The length of vectors }X,Y\mathrm{ , and W .
REAL for sla_wwaddw
DOUBLE PRECISION for dla_wwaddw
COMPLEX for cla_wwaddw
DOUBLE COMPLEX for zla_wwaddw.
Arrays DIMENSIONn.
x and y contain the first and second parts of the doubled-single
accumulation vector, respectively.
w contains the vector W to be added.
```


Output Parameters

```
x,y
Contain the first and second parts of the doubled-single accumulation vector, respectively, after adding the vector \(W\).
```

mkl_?tppack
Copies a triangular/symmetric matrix or submatrix
from standard full format to standard packed format.
Syntax

```
call mkl_stppack (uplo, trans, n, ap, i, j, rows, cols, a, lda, info )
call mkl_dtppack (uplo, trans, n, ap, i, j, rows, cols, a, lda, info )
call mkl_ctppack (uplo, trans, n, ap, i, j, rows, cols, a, lda, info )
call mkl_ztppack (uplo, trans, n, ap, i, j, rows, cols, a, lda, info )
call mkl_tppack (ap, i, j, rows, cols, a[, uplo] [, trans] [, info])
```


Include Files

- mkl.fi, lapack.f90

Description

The routine copies a triangular or symmetric matrix or its submatrix from standard full format to packed format

```
AP i:i+rows-1, j:j+cols-1 }:= op (A
```

Standard packed formats include:

- TP: triangular packed storage
- SP: symmetric indefinite packed storage
- HP: Hermitian indefinite packed storage
- PP: symmetric or Hermitian positive definite packed storage

Full formats include:

- GE: general
- TR: triangular
- SY: symmetric indefinite
- HE: Hermitian indefinite
- PO: symmetric or Hermitian positive definite

NOTE

Any elements of the copied submatrix rectangular outside of the triangular part of the matrix $A P$ are skipped.

Input Parameters

The data types are given for the Fortran interface.

```
uplo
trans
n
i, j
rows
cols
a
CHARACTER*1. Specifies whether the matrix \(A P\) is upper or lower triangular.
If uplo = ' U ', \(A P\) is upper triangular.
If uplo = ' L ': \(A P\) is lower triangular.
CHARACTER*1. Specifies whether or not the copied block of \(A\) is transposed or not.
If trans \(=\) ' N ', no transpose: op \((A)=A\).
If trans \(=\) ' \(T\) ',transpose: op \((A)=A^{T}\).
If trans \(=\) 'C',conjugate transpose: op \((A)=A^{H}\). For real data this is the same as trans \(=\) ' T '.
INTEGER. The order of the matrix \(A P ; n \geq 0\)
INTEGER. Coordinates of the left upper corner of the destination submatrix in \(A P\).
If uplo='U', \(1 \leq i \leq j \leq n\).
If uplo='L', \(1 \leq j \leq i \leq n\).
INTEGER. Number of rows in the destination submatrix. \(0 \leq r o w s \leq n-i+1\).
INTEGER. Number of columns in the destination submatrix. \(0 \leq c o l s \leq n-j+\) 1.
REAL for mkl_stppack
DOUBLE PRECISION for mkl_dtppack
COMPLEX for mkl_ctppack
DOUBLE COMPLEX for mkl_ztppack
```

Pointer to the source submatrix.

Array a(lda, *) contains the rows-by-cols submatrix stored as unpacked rows-by-columns if trans $=$ ' N ', or unpacked columns-by-rows if trans $=' T$ ' or trans $=$ ' C^{\prime}. The size of a must be at least lda* cols for trans $=$ ' N ' or lda* rows for trans='T' or trans='C'.

NOTE

If there are elements outside of the triangular part of $A P$, they are skipped and are not copied from a.

INTEGER. The leading dimension of the array a.
lda $\geq \max (1$, rows $)$ for trans $=' \mathrm{~N}$ ' and and $\operatorname{lda} \geq \max (1$, cols) for trans $=$ 'T' or trans $=$ 'C'.

Output Parameters

ap
REAL for mkl_stppack
DOUBLE PRECISION for mkl_dtppack
COMPLEX for mkl_ctppack
DOUBLE COMPLEX for mkl_ztppack
Array of size at least $\max (1, n(n+1) / 2)$. The array ap contains either the upper or the lower triangular part of the matrix $A P$ (as specified by uplo) in packed storage (see Matrix Storage Schemes). The submatrix of ap from row i to row $i+$ rows -1 and column j to column $j+$ cols - 1 is overwritten with a copy of the source matrix.

INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i-th parameter had an illegal value.
mkl_?tpunpack
Copies a triangular/symmetric matrix or submatrix
from standard packed format to full format.
Syntax

```
call mkl_stpunpack (uplo, trans, n, ap, i, j, rows, cols, a, lda, info )
call mkl_dtpunpack (uplo, trans, n, ap, i, j, rows, cols, a, lda, info )
call mkl_ctpunpack (uplo, trans, n, ap, i, j, rows, cols, a, lda, info )
call mkl_ztpunpack (uplo, trans, n, ap, i, j, rows, cols, a, lda, info )
call mkl_tpunpack (ap, i, j, rows, cols, a[, uplo] [, trans] [, info])
```

Include Files

- mkl.fi, lapack.f90

Description

The routine copies a triangular or symmetric matrix or its submatrix from standard packed format to full format.

```
A := op(AP i:i+rows-1, j:j+cols-1)
```

Standard packed formats include:

- TP: triangular packed storage
- SP: symmetric indefinite packed storage
- HP: Hermitian indefinite packed storage
- PP: symmetric or Hermitian positive definite packed storage

Full formats include:

- GE: general
- TR: triangular
- SY: symmetric indefinite
- HE: Hermitian indefinite
- PO: symmetric or Hermitian positive definite

NOTE

Any elements of the copied submatrix rectangular outside of the triangular part of $A P$ are skipped.

Input Parameters

The data types are given for the Fortran interface.

| uplo | CHARACTER*1. Specifies whether matrix $A P$ is upper or lower triangular. |
| :---: | :---: |
| | If uplo = 'U', $A P$ is upper triangular. |
| | If uplo = 'L': $A P$ is lower triangular. |
| trans | CHARACTER*1. Specifies whether or not the copied block of $A P$ is transposed. |
| | If trans = 'N', no transpose: op ($A P$) = AP. |
| | If trans $=$ ' T ',transpose: op $(A P)=A P^{T}$. |
| | If trans = ' C^{\prime},conjugate transpose: op $(A P)=A P^{\mathrm{H}}$. For real data this is the same as trans $=$ ' T '. |
| n | INTEGER. The order of the matrix $A P ; n \geq 0$. |
| $a p$ | REAL for mkl_stpunpack |
| | DOUBLE PRECISION for mkl_dtpunpack |
| | COMPLEX for mkl_ctpunpack |
| | DOUBLE COMPLEX for mkl_ztpunpack |
| | Array, size at least $\max (1, n(n+1) / 2)$. The array ap contains either the upper or the lower triangular part of the matrix $A P$ (as specified by uplo) in packed storage (see Matrix Storage Schemes). It is the source for the submatrix of $A P$ from row i to row $i+$ rows -1 and column j to column $j+\operatorname{cols}-1$ to be copied. |
| i, j | INTEGER. Coordinates of left upper corner of the submatrix in $A P$ to copy. |
| | If uplo='U', $1 \leq i \leq j \leq n$. |

If $u p l o=' L^{\prime}, 1 \leq j \leq i \leq n$.
rows
cols
lda

INTEGER. Number of rows to copy. $0 \leq$ rows $\leq n-i+1$.
INTEGER. Number of columns to copy. $0 \leq c o l s \leq n-j+1$.
INTEGER. The leading dimension of array a.
$I d a \geq \max (1$, rows $)$ for trans $=' N$ ' and and $I d a \geq \max (1, c o l s)$ for trans $=$ ' T ' or trans $=$ ' C '.

Output Parameters

a

REAL for mkl_stpunpack
DOUBLE PRECISION for mkl_dtpunpack
COMPLEX for mkl_ctpunpack
DOUBLE COMPLEX for mkl_ztpunpack
Pointer to the destination matrix. The size of a must be at least lda* cols for trans $=$ ' N ' or lda* rows for trans='T' or trans $=$ ' C '. On exit, array a is overwritten with a copy of the unpacked rows-bycols submatrix of ap unpacked rows-by-columns if trans $=$ ' N ', or unpacked columns-by-rows if trans $=$ ' T ' or trans $=$ ' C^{\prime}.

NOTE

If there are elements outside of the triangular part of ap indicated by uplo, they are skipped and are not copied to a.

INTEGER. If info $=0$, the execution is successful. If info $=-i$, the i-th parameter had an illegal value.

Additional LAPACK Routines

```
call clasyf_aa(uplo, jl, m, nb, a, lda, ipiv, h, ldh, work, info)
call zlasyf_aa(uplo, jl, m, nb, a, lda, ipiv, h, ldh, work, info)
call slasyf_rk(uplo, n, nb, kb, a, lda, e, ipiv, w, ldw, info)
call dlasyf_rk(uplo, n, nb, kb, a, lda, e, ipiv, w, ldw, info)
call clasyf_rk(uplo, n, nb, kb, a, lda, e, ipiv, w, ldw, info)
call zlasyf_rk(uplo, n, nb, kb, a, lda, e, ipiv, w, ldw, info)
call chetf2_rk(uplo, n, a, lda, e, ipiv, info)
call zhetf2_rk(uplo, n, a, lda, e, ipiv, info)
call clahef_rk(uplo, n, nb, kb, a, lda, e, ipiv, w, ldw, info)
call zlahef_rk(uplo, n, nb, kb, a, lda, e, ipiv, w, ldw, info)
call ssytf2_rk(uplo, n, a, lda, e, ipiv, info)
call dsytf2_rk(uplo, n, a, lda, e, ipiv, info)
call csytf2_rk(uplo, n, a, lda, e, ipiv, info)
call zsytf2_rk(uplo, n, a, lda, e, ipiv, info)
```

```
call chetri_3x(uplo, n, a, lda, e, ipiv, work, nb, info)
call zhetri_3x(uplo, n, a, lda, e, ipiv, work, nb, info)
call ssytri_3x(uplo, n, a, lda, e, ipiv, work, nb, info)
call dsytri_3x(uplo, n, a, lda, e, ipiv, work, nb, info)
call csytri_3x(uplo, n, a, lda, e, ipiv, work, nb, info)
call zsytri_3x(uplo, n, a, lda, e, ipiv, work, nb, info)
call ssyconvf(uplo, way, n, a, lda, e, ipiv, info)
call dsyconvf(uplo, way, n, a, lda, e, ipiv, info)
call csyconvf(uplo, way, n, a, lda, e, ipiv, info)
call zsyconvf(uplo, way, n, a, lda, e, ipiv, info)
call ssyconvf_rook(uplo, way, n, a, lda, e, ipiv, info)
call dsyconvf_rook(uplo, way, n, a, lda, e, ipiv, info)
call csyconvf_rook(uplo, way, n, a, lda, e, ipiv, info)
call zsyconvf_rook(uplo, way, n, a, lda, e, ipiv, info)
```

For descriptions of these functions, please see https://www.netlib.org/lapack/explore-html/files.html.

LAPACK Utility Functions and Routines

This section describes LAPACK utility functions and routines.
Summary information about these routines is given in the following table:
LAPACK Utility Routines

| Routine Name | Data
 Types | Description |
| :---: | :---: | :---: |
| ilaver | | Returns the version of the Lapack library. |
| ilaenv | | Environmental enquiry function which returns values for tuning algorithmic performance. |
| iparmq | | Environmental enquiry function which returns values for tuning algorithmic performance. |
| ieeeck | | Checks if the infinity and NaN arithmetic is safe. Called by ilaenv. |
| ?labad | s, d | Returns the square root of the underflow and overflow thresholds if the exponent-range is very large. |
| ? lamch | s, d | Determines machine parameters for floating-point arithmetic. |
| ? $1 \mathrm{amc1}$ | s, d | Called from ?lamc2. Determines machine parameters given by beta, t, rnd, ieee1. |
| ? 1 amc 2 | s, d | Used by ?lamch. Determines machine parameters specified in its arguments list. |
| ? 1 amc 3 | s, d | Called from ?lamc1-?lamc5. Intended to force a and b to be stored prior to doing the addition of a and b. |
| ? lamc4 | s, d | This is a service routine for ? lamc2. |
| ? lamc5 | s, d | Called from ?lamc2. Attempts to compute the largest machine floating-point number, without overflow. |

| Routine Name | Data
 Types | Description |
| :--- | :--- | :--- |
| chla_transtype | | Translates a BLAST-specified integer constant to the character string
 specifying a transposition operation. |
| iladiag | Translates a character string specifying whether a matrix has a unit
 diagonal or not to the relevant BLAST-specified integer constant. | |
| ilaprec | Translates a character string specifying an intermediate precision to
 the relevant BLAST-specified integer constant. | |
| ilatrans | Translates a character string specifying a transposition operation to
 the BLAST-specified integer constant. | |
| ilauplo | Translates a character string specifying an upper- or lower-triangular
 matrix to the relevant BLAST-specified integer constant. | |
| xerbla_array | Assists other languages in calling the xerbla function. | |

See Also

Isame Tests two characters for equality regardless of the case.
lsamen Tests two character strings for equality regardless of the case.
second/dsecnd Returns elapsed time in seconds. Use to estimate real time between two calls to this function.
xerbla Error handling function called by BLAS, LAPACK, Vector Math, and Vector Statistics functions.
ilaver
Returns the version of the LAPACK library.

Syntax

```
call ilaver( vers_major, vers_minor, vers_patch )
```


Include Files

- mkl.fi

Description

This routine returns the version of the LAPACK library.

Output Parameters

```
vers_major
```

vers_minor
vers_patch

INTEGER.
Returns the major version of the LAPACK library.
INTEGER.
Returns the minor version from the major version of the LAPACK library.
INTEGER.
Returns the patch version from the minor version of the LAPACK library.

```
ilaenv
Environmental enquiry function that returns values for
tuning algorithmic performance.
Syntax
value = ilaenv( ispec, name, opts, n1, n2, n3, n4 )
```

Include Files

- mkl.fi

Description

The enquiry function ilaenv is called from the LAPACK routines to choose problem-dependent parameters for the local environment. See ispec below for a description of the parameters.

This version provides a set of parameters that should give good, but not optimal, performance on many of the currently available computers.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

ispec

INTEGER.
Specifies the parameter to be returned as the value of ilaenv:
$=1$: the optimal blocksize; if this value is 1 , an unblocked algorithm will give the best performance.
$=2$: the minimum block size for which the block routine should be used; if the usable block size is less than this value, an unblocked routine should be used.
$=3$: the crossover point (in a block routine, for n less than this value, an unblocked routine should be used)
$=4$: the number of shifts, used in the nonsymmetric eigenvalue routines (deprecated)
= 5: the minimum column dimension for blocking to be used; rectangular blocks must have dimension at least k-by- m, where k is given by ilaenv (2, ...) and mby ilaenv (5, ...)
$=6$: the crossover point for the SVD (when reducing an m-by- n matrix to bidiagonal form, if $\max (\mathrm{m}, \mathrm{n}) / \mathrm{min}(\mathrm{m}, \mathrm{n})$ exceeds this value, a $Q R$ factorization is used first to reduce the matrix to a triangular form.)
$=7$: the number of processors
$=8$: the crossover point for the multishift $Q R$ and $Q Z$ methods for nonsymmetric eigenvalue problems (deprecated).
= 9: maximum size of the subproblems at the bottom of the computation tree in the divide-and-conquer algorithm (used by ?gelsd and ?gesdd)
$=10$: ieee NaN arithmetic can be trusted not to trap

n1, n2, n3, n4

Output Parameters

value

INTEGER.
If value ≥ 0 : the value of the parameter specified by ispec;
If value $=-k<0$: the k-th argument had an illegal value.

Application Notes

The following conventions have been used when calling ilaenv from the LAPACK routines:

1. opts is a concatenation of all of the character options to subroutine name, in the same order that they appear in the argument list for name, even if they are not used in determining the value of the parameter specified by ispec.
2. The problem dimensions $n 1, n 2, n 3, n 4$ are specified in the order that they appear in the argument list for name. $n 1$ is used first, $n 2$ second, and so on, and unused problem dimensions are passed a value of -1.
3. The parameter value returned by ilaenv is checked for validity in the calling subroutine. For example, ilaenv is used to retrieve the optimal blocksize for strtri as follows:
```
nb = ilaenv( 1, 'strtri', uplo // diag, n, -1, -1, -1> )
if( nb.le.1 ) nb = max( 1, n )
```


See Also

?hseqr
iparmq

iparmq

Environmental enquiry function which returns values for tuning algorithmic performance.

Syntax

```
value = iparmq( ispec, name, opts, n, ilo, ihi, lwork )
```


Include Files

- mkl.fi

Description

The function sets problem and machine dependent parameters useful for ?hseqr and its subroutines. It is called whenever ilaenv is called with $12 \leq i s p e c \leq 16$.

Input Parameters

ispec

name
opts
n
ilo, ihi

INTEGER
Specifies the parameter to be returned as the value of iparmq:
= 12: (inmin) Matrices of order nmin or less are sent directly to ?lahqr, the implicit double shift QR algorithm. nmin must be at least 11.
= 13: (inwin) Size of the deflation window. This is best set greater than or equal to the number of simultaneous shifts $n s$. Larger matrices benefit from larger deflation windows.
= 14: (inibl) Determines when to stop nibbling and invest in an (expensive) multi-shift QR sweep. If the aggressive early deflation subroutine finds $l d$ converged eigenvalues from an order $n w$ deflation window and $l d>\left(n w^{*} n i b b l e\right) / 100$, then the next QR sweep is skipped and early deflation is applied immediately to the remaining active diagonal block. Setting iparmq (ispec=14)=0 causes TTQRE to skip a multi-shift QR sweep whenever early deflation finds a converged eigenvalue. Setting iparmq(ispec=14) greater than or equal to 100 prevents $T T Q R E$ from skipping a multi-shift $Q R$ sweep.
= 15: (nshfts) The number of simultaneous shifts in a multi-shift QR iteration.
= 16: (iacc22) iparmq is set to 0,1 or 2 with the following meanings.
0 : During the multi-shift QR sweep, ?laqr5 does not accumulate reflections and does not use matrix-matrix multiply to update the far-fromdiagonal matrix entries.

1: During the multi-shift QR sweep, ? laqr5 and/or ?laqr3 accumulates reflections and uses matrix-matrix multiply to update the far-from-diagonal matrix entries.
2: During the multi-shift QR sweep, ?laqr5 accumulates reflections and takes advantage of 2-by-2 block structure during matrix-matrix multiplies.
(If ?trrm is slower than ?gemm, then iparmq (ispec=16)=1 may be more efficient than iparmq (ispec=16) $=2$ despite the greater level of arithmetic work implied by the latter choice.)

CHARACTER* (*). The name of the calling subroutine.
CHARACTER* (*). This is a concatenation of the string arguments to TTQRE.
INTEGER. n is the order of the Hessenberg matrix H.

INTEGER.

It is assumed that H is already upper triangular in rows and columns 1:ilo-1 and ihi+1:n.

INTEGER.
The amount of workspace available.

Output Parameters

value

INTEGER.

If value ≥ 0 : the value of the parameter specified by iparmq;
If value $=-\mathrm{k}<0$: the k -th argument had an illegal value.

Application Notes

The following conventions have been used when calling ilaenv from the LAPACK routines:

1. opts is a concatenation of all of the character options to subroutine name, in the same order that they appear in the argument list for name, even if they are not used in determining the value of the parameter specified by ispec.
2. The problem dimensions $n 1, n 2, n 3, n 4$ are specified in the order that they appear in the argument list for name. $n 1$ is used first, $n 2$ second, and so on, and unused problem dimensions are passed a value of -1.
3. The parameter value returned by ilaenv is checked for validity in the calling subroutine. For example, ilaenv is used to retrieve the optimal blocksize for strtri as follows:
```
nb = ilaenv( 1, 'strtri', uplo // diag, n, -1, -1, -1> )
if( nb.le.1 ) nb = max( 1, n )
```


ieeeck

Checks if the infinity and NaN arithmetic is safe.
Called by ilaenv.

Syntax

```
ival = ieeeck( ispec, zero, one )
```


Include Files

- mkl.fi

Description

The function ieeeck is called from ilaenv to verify that infinity and possibly NaN arithmetic is safe, that is, will not trap.

Input Parameters

ispec

INTEGER.
Specifies whether to test just for infinity arithmetic or both for infinity and NaN arithmetic:

If ispec = 0: Verify infinity arithmetic only.

```
    If ispec = 1: Verify infinity and NaN arithmetic.
zero
one
REAL. Must contain the value 0.0
This is passed to prevent the compiler from optimizing away this code.
REAL. Must contain the value 1.0
This is passed to prevent the compiler from optimizing away this code.
```


Output Parameters

```
ival
```

INTEGER.
If ival $=0$: Arithmetic failed to produce the correct answers.
If ival = 1: Arithmetic produced the correct answers.

?labad
 Returns the square root of the underflow and overflow thresholds if the exponent-range is very large.

Syntax

```
call slabad( small, large )
call dlabad( small, large )
```


Include Files

- mkl.fi

Description

The routine takes as input the values computed by slamch/dlamch for underflow and overflow, and returns the square root of each of these values if the log of large is sufficiently large. This subroutine is intended to identify machines with a large exponent range, such as the Crays, and redefine the underflow and overflow limits to be the square roots of the values computed by ?lamch. This subroutine is needed because ?lamch does not compensate for poor arithmetic in the upper half of the exponent range, as is found on a Cray.

Input Parameters

small
large

REAL for slabad
DOUBLE PRECISION for dlabad.
The underflow threshold as computed by ?lamch.
REAL for slabad
DOUBLE PRECISION for dlabad.
The overflow threshold as computed by ? lamch.

Output Parameters

small
On exit, if log10 (large) is sufficiently large, the square root of small, otherwise unchanged.
large On exit, if log10(large) is sufficiently large, the square root of large, otherwise unchanged.

?lamch
Determines machine parameters for floating-point arithmetic.

Syntax

```
val = slamch( cmach )
val = dlamch( cmach )
```

Include Files

- mkl.fi

Description

The function ?lamch determines single precision and double precision machine parameters.
Input Parameters
cmach

> CHARACTER*1. Specifies the value to be returned by ?lamch:
> = 'E' or 'e', val = eps
> = 's' or 's', val = sfmin
> = 'B' or 'b', val = base
> = 'P' or 'p', val = eps*base
> = 'n' or 'n', val = t
> = 'R' or 'r', val = rnd
> = 'м' or 'm', val = emin
> = 'u' or 'u', val = rmin
> = 'L' or '1', val = emax
> = 'o' or 'o', val = rmax
> where
> $e p s=$ relative machine precision;
> sfmin = safe minimum, such that $1 /$ sfmin does not overflow;
> base = base of the machine;
> prec $=e p s *$ base;
> $t=$ number of (base) digits in the mantissa;
> rnd $=1.0$ when rounding occurs in addition, 0.0 otherwise;
> emin = minimum exponent before (gradual) underflow;
> rmin = underflow_threshold - base**(emin-1);
> emax $=$ largest exponent before overflow;

```
rmax = overflow_threshold - (base**emax)*(1-eps).
```


NOTE

You can use a character string for cmach instead of a single character in order to make your code more readable. The first character of the string determines the value to be returned. For example, 'Precision' is interpreted as ' p '.

Output Parameters

val
REAL for slamch
DOUBLE PRECISION for dlamch
Value returned by the function.
?lamc1
Called from ?lamc2. Determines machine parameters given by beta, t, rnd, ieee1.

Syntax

```
call slamcl( beta, t, rnd, ieeel )
call dlamc1( beta, t, rnd, ieee1 )
```

Include Files

- mkl.fi

Description

The routine ? lamcl determines machine parameters given by beta, t, rnd, ieee1.

Output Parameters

| beta | INTEGER. The base of the machine. |
| :--- | :--- |
| t | INTEGER. The number of (beta) digits in the mantissa. |
| rnd | LOGICAL. |

Specifies whether proper rounding (rnd = .TRUE.) or chopping (rnd $=$. FALSE.) occurs in addition. This may not be a reliable guide to the way in which the machine performs its arithmetic.
ieee1 LOGICAL.
Specifies whether rounding appears to be done in the ieee 'round to nearest' style.

?lamc2

Used by ?lamch. Determines machine parameters specified in its arguments list.

Syntax

```
call slamc2( beta, t, rnd, eps, emin, rmin, emax, rmax )
call dlamc2( beta, t, rnd, eps, emin, rmin, emax, rmax )
```


Include Files

- mkl.fi

Description

The routine ?lamc2 determines machine parameters specified in its arguments list.

Output Parameters

```
beta INTEGER. The base of the machine.
t INTEGER. The number of (beta) digits in the mantissa.
rnd LOGICAL.
```

Specifies whether proper rounding (rnd =. TRUE.) or chopping (rnd
$=$.FALSE.) occurs in addition. This may not be a reliable guide to the way in which the machine performs its arithmetic.
eps
emin
rmin
emax
rmax

REAL for slamc2
DOUBLE PRECISION for dlamc2
The smallest positive number such that
fl(1.0 - eps) < 1.0,
where $f l$ denotes the computed value.
INTEGER. The minimum exponent before (gradual) underflow occurs.
REAL for slamc2
DOUBLE PRECISION for dlamc2
The smallest normalized number for the machine, given by
base ${ }^{\text {emin-1 }}$,
where base is the floating point value of beta.
INTEGER.The maximum exponent before overflow occurs.
REAL for slamc2
DOUBLE PRECISION for dlamc2
The largest positive number for the machine, given by base $\begin{aligned} & \text { emax (1 - eps) , }\end{aligned}$ where base is the floating point value of beta.
?lamc3
Called from ?lamc1-?lamc5. Intended to force a and
b to be stored prior to doing the addition of a and b.

Syntax

```
val = slamc3( a, b )
val = dlamc3( a, b )
```


Include Files

- mkl.fi

Description

The routine is intended to force A and B to be stored prior to doing the addition of A and B, for use in situations where optimizers might hold one of these in a register.

Input Parameters

a, b
REAL for slamc3
DOUBLE PRECISION for dlamc3

The values a and b.

Output Parameters

val

```
REAL for slamc3
DOUBLE PRECISION for dlamc3
```

The result of adding values a and b.
?lamc4
This is a service routine for ?lamc2.

Syntax

```
call slamc4( emin, start, base )
call dlamc4( emin, start, base )
```

Include Files

- mkl.fi

Description

This is a service routine for ?lamc2.
Input Parameters
start
base

REAL for slamc4
DOUBLE PRECISION for dlamc4
The starting point for determining emin.
INTEGER. The base of the machine.

Output Parameters

emin
INTEGER. The minimum exponent before (gradual) underflow, computed by setting $a=$ start and dividing by base until the previous a can not be recovered.
?lamc5
Called from ?lamc2. Attempts to compute the largest
machine floating-point number, without overflow.
Syntax

```
call slamc5( beta, p, emin, ieee, emax, rmax)
call dlamc5( beta, p, emin, ieee, emax, rmax)
```


Include Files

- mkl.fi

Description

The routine ?lamc5 attempts to compute rmax, the largest machine floating-point number, without overflow. It assumes that emax $+\mathrm{abs}(e m i n)$ sum approximately to a power of 2 . It will fail on machines where this assumption does not hold, for example, the Cyber 205 (emin $=-28625$, emax $=28718$). It will also fail if the value supplied for emin is too large (that is, too close to zero), probably with overflow.

Input Parameters

```
beta INTEGER. The base of floating-point arithmetic.
p INTEGER. The number of base beta digits in the mantissa of a floating-point
    value.
    INTEGER. The minimum exponent before (gradual) underflow.
LOGICAL. A logical flag specifying whether or not the arithmetic system is thought to comply with the IEEE standard.
```


Output Parameters

emax
rmax

INTEGER. The largest exponent before overflow.
REAL for slamc5
DOUBLE PRECISION for dlamc5
The largest machine floating-point number.

chla_transtype

Translates a BLAST-specified integer constant to the character string specifying a transposition operation.

Syntax

```
val = chla_transtype( trans )
```


Include Files

- mkl.fi

Description

The chla_transtype function translates a BLAST-specified integer constant to the character string specifying a transposition operation.
The function returns a CHARACTER*1. If the input is not an integer indicating a transposition operator, then val is ' X '. Otherwise, the function returns the constant value corresponding to trans.

Input Parameters

trans

INTEGER.

Specifies the form of the system of equations:
If trans = BLAS_NO_TRANS = 111: No transpose.
If trans $=$ BLAS_TRANS $=112$: Transpose.
If trans = BLAS_CONJ_TRANS = 113: Conjugate Transpose.

Output Parameters

Character that specifies a transposition operation.

iladiag

Translates a character string specifying whether a matrix has a unit diagonal to the relevant BLASTspecified integer constant.

Syntax

```
val = iladiag( diag )
```

Include Files

- mkl.fi

Description

The iladiag function translates a character string specifying whether a matrix has a unit diagonal or not to the relevant BLAST-specified integer constant.
The function returns an INTEGER. If val < 0 , the input is not a character indicating a unit or non-unit diagonal. Otherwise, the function returns the constant value corresponding to diag.

Input Parameters

diag
CHARACTER*1.
Specifies the form of the system of equations:
If diag $=$ ' N ': A is non-unit triangular.
If diag = 'U': A is unit triangular.

Output Parameters

```
val
INTEGER
Value returned by the function.
```


ilaprec

Translates a character string specifying an intermediate precision to the relevant BLAST-specified integer constant.

Syntax

```
val = ilaprec( prec )
```


Include Files

- mkl.fi

Description

The ilaprec function translates a character string specifying an intermediate precision to the relevant BLAST-specified integer constant.
The function returns an INTEGER. If val < 0 , the input is not a character indicating a supported intermediate precision. Otherwise, the function returns the constant value corresponding to prec.

Input Parameters

```
prec CHARACTER*1.
    Specifies the form of the system of equations:
    If prec = 'S':Single.
    If prec = 'D': Double.
    If prec = 'I': Indigenous.
    If prec = 'X', 'E': Extra.
```


Output Parameters

val
INTEGER
Value returned by the function.

ilatrans

Translates a character string specifying a transposition operation to the BLAST-specified integer constant.

Syntax

val $=$ ilatrans(trans)
Include Files

- mkl.fi

Description

The ilatrans function translates a character string specifying a transposition operation to the BLASTspecified integer constant.

The function returns a INTEGER. If val < 0, the input is not a character indicating a transposition operator. Otherwise, the function returns the constant value corresponding to trans.

Input Parameters

trans CHARACTER*1.
Specifies the form of the system of equations:
If trans $=$ 'N': No transpose.
If trans = 'T': Transpose.
If trans = 'C': Conjugate Transpose.

Output Parameters

```
val
```

INTEGER
Character that specifies a transposition operation.

ilauplo
 Translates a character string specifying an upper- or
 lower-triangular matrix to the relevant BLAST-
 specified integer constant.

Syntax

```
val = ilauplo( uplo )
```

Include Files

- mkl.fi

Description

The ilauplo function translates a character string specifying an upper- or lower-triangular matrix to the relevant BLAST-specified integer constant.

The function returns an INTEGER. If val < 0, the input is not a character indicating an upper- or lowertriangular matrix. Otherwise, the function returns the constant value corresponding to uplo.

Input Parameters

diag
CHARACTER.
Specifies the form of the system of equations:
If diag = 'U': A is upper triangular.
If diag = 'L': A is lower triangular.

Output Parameters

val
INTEGER

Value returned by the function.

```
xerbla_array
Assists other languages in calling the xerbla function.
Syntax
call xerbla_array( srname_array, srname_len, info )
```


Include Files

- mkl.fi

Description

The routine assists other languages in calling the error handling xerbla function. Rather than taking a Fortran string argument as the function name, xerbla_array takes an array of single characters along with the array length. The routine then copies up to 32 characters of that array into a Fortran string and passes that to xerbla. If called with a non-positive srname_len, the routine will call xerbla with a string of all blank characters.
If some macro or other device makes xerbla_array available to C99 by a name lapack_xerbla and with a common Fortran calling convention, a c99 program could invoke xerbla via:

```
{
    int flen = strlen(__func__);
    lapack_xerbla(__func__, &flen, &info);
}
```

Providing xerbla_array is not necessary for intercepting LAPACK errors. xerbla_array calls xerbla.

Output Parameters

```
srname_array
srname_len
info
```

CHARACTER (1).
Array, dimension (srname_len). The name of the routine that called xerbla_array.

INTEGER.
The length of the name in srname_array.

INTEGER.
Position of the invalid parameter in the parameter list of the calling routine.

LAPACK Test Functions and Routines

This section describes LAPACK test functions and routines.

```
?latms
Generates a general m-by-n matrix with specific
singular values.
Syntax
```

```
call slatms (m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work,
```

call slatms (m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work,
info)

```
info)
```

```
call dlatms (m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work,
info)
call clatms (m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work,
info)
call zlatms (m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work,
info)
```


Description

The ?latms routine generates random matrices with specified singular values, or symmetric/Hermitian matrices with specified eigenvalues for testing LAPACK programs.
It applies this sequence of operations:

1. Set the diagonal to d, where d is input or computed according to mode, cond, dmax, and sym as described in Input Parameters.
2. Generate a matrix with the appropriate band structure, by one of two methods:

Method A

Method B:

1. Generate a dense $m-b y-n$ matrix by multiplying d on the left and the right by random unitary matrices, then:
2. Reduce the bandwidth according to $k l$ and $k u$, using Householder transformations.

Convert the bandwidth-0 (i.e., diagonal) matrix to a bandwidth-1 matrix using Givens rotations, "chasing" out-of-band elements back, much as in QR; then convert the bandwidth-1 to a bandwidth-2 matrix, etc.

Note that for reasonably small bandwidths (relative to m and n) this requires less storage, as a dense matrix is not generated. Also, for symmetric or Hermitian matrices, only one triangle is generated.

Method A is chosen if the bandwidth is a large fraction of the order of the matrix, and $1 d a$ is at least m (so a dense matrix can be stored.) Method B is chosen if the bandwidth is small (less than $(1 / 2) *_{n}$ for symmetric or Hermitian or less than $.3^{*} n+m$ for nonsymmetric), or lda is less than m and not less than the bandwidth.

Pack the matrix if desired, using one of the methods specified by the pack parameter.
If Method B is chosen and band format is specified, then the matrix is generated in the band format and no repacking is necessary.

Input Parameters

The data types are given for the Fortran interface.

| m | INTEGER. The number of rows of the matrix A |
| :--- | :--- |
| n | INTEGER. The number of columns of the matrix |
| dist | CHARACTER*1. Specifies the type of distribution |
| | random singular values or eigenvalues: |
| | - 'U': uniform distribution $(0,1)$ |
| | - 'S': symmetric uniform distribution $(-1,1)$ |
| | - 'N': normal distribution $(0,1)$ |

iseed
d
dmax

INTEGER. Array with size 4.
Specifies the seed of the random number generator. Values should lie between 0 and 4095 inclusive, and iseed(4) should be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of the array are modified, and can be used in the next call to ?latms to continue the same random number sequence.

CHARACTER*1.
If sym='S' or 'H', the generated matrix is symmetric or Hermitian, with eigenvalues specified by d, cond, mode, and dmax; they can be positive, negative, or zero.

If sym='P', the generated matrix is symmetric or Hermitian, with eigenvalues (which are singular, non-negative values) specified by d, cond, mode, and dmax.

If sym=' N ', the generated matrix is nonsymmetric, with singular, nonnegative values specified by d, cond, mode, and dmax.

REAL for slatms and clatms
DOUBLE PRECISION for dlatms and zlatms
Array, size ($\operatorname{MIN}(m, n)$)
This array is used to specify the singular values or eigenvalues of A (see the description of sym). If mode $=0$, then d is assumed to contain the eigenvalues or singular values, otherwise elements of d are computed according to mode, cond, and dmax.

INTEGER. Describes how the singular/eigenvalues are specified.

- mode $=0$: use d as input
- mode $=1:$ set $d(1)=1$ and $d(2: n)=1.0 /$ cond
- mode $=2$: set $d(1: n-1)=1$ and $d(n)=1.0 /$ cond
- mode $=3$: set $d(i)=\operatorname{cond}^{-(i-1) /(n-1)}$
- mode $=4$: set $d(i)=1-(i-1) /(n-1) *(1-1 /$ cond $)$
- mode $=5$: set elements of d to random numbers in the range ($1 /$ cond, 1) such that their logarithms are uniformly distributed.
- mode $=6$: set elements of d to random numbers from same distribution as the rest of the matrix.
mode <0 has the same meaning as ABS(mode), except that the order of the elements of d is reversed. Thus, if mode is positive, d has entries ranging from 1 to $1 /$ cond, if negative, from $1 /$ cond to 1 .

If sym='S' or 'H', and mode is not 0,6 , nor -6 , then the elements of d are also given a random sign (multiplied by +1 or -1).

REAL for slatms and clatms
DOUBLE PRECISION for dlatms and zlatms
Used in setting d as described for the mode parameter. If used, con $d \geq 1$.
REAL for slatms and clatms
DOUBLE PRECISION for dlatms and zlatms

If mode is not $-6,0$ nor 6 , the contents of d, as computed according to mode and cond, are scaled by dmax / max (abs(d(i))); thus, the maximum absolute eigenvalue or singular value (the norm) is abs (dmax).

NOTE

dmax need not be positive: if dmax is negative (or zero), d will be scaled by a negative number (or zero).

INTEGER. Specifies the lower bandwidth of the matrix. For example, $k l=0$ implies upper triangular, $k l=1$ implies upper Hessenberg, and $k l$ being at least $m-1$ means that the matrix has full lower bandwidth. $k l$ must equal $k u$ if the matrix is symmetric or Hermitian.

INTEGER. Specifies the upper bandwidth of the matrix. For example, $k u=0$ implies lower triangular, $k u=1$ implies lower Hessenberg, and $k u$ being at least $n-1$ means that the matrix has full upper bandwidth. $k l$ must equal $k u$ if the matrix is symmetric or Hermitian.

CHARACTER*1. Specifies packing of matrix:

- 'N': no packing
- 'U': zero out all subdiagonal entries (if symmetric or Hermitian)
- 'L': zero out all superdiagonal entries (if symmetric or Hermitian)
- 'B': store the lower triangle in band storage scheme (only if matrix symmetric, Hermitian, or lower triangular)
- 'Q': store the upper triangle in band storage scheme (only if matrix symmetric, Hermitian, or upper triangular)
- 'Z': store the entire matrix in band storage scheme (pivoting can be provided for by using this option to store A in the trailing rows of the allocated storage)
Using these options, the various LAPACK packed and banded storage schemes can be obtained:

| | 'Z'' | ' \mathbf{B}^{\prime} | 'Q' | ' C' | 'R' |
| :--- | :--- | :--- | :--- | :--- | :--- |
| GB: general band | x | | | | |
| PB: symmetric positive definite band | | x | x | | |
| SB: symmetric band | | x | x | | |
| HB: Hermitian band | | x | x | | |
| TB: triangular band | | x | x | | |
| PP: symmetric positive definite packed | | | | x | x |
| SP: symmetric packed | | | | x | x |
| HP: Hermitian packed | | | | x | x |
| TP: triangular packed | | | | x | x |

If two calls to ?latms differ only in the pack parameter, they generate mathematically equivalent matrices.

INTEGER. Ida specifies the first dimension of a as declared in the calling program.

If pack='N', 'U', 'L', 'C', or 'R', then lda must be at least m.
If pack='B' or 'Q', then lda must be at least MIN (k I, m - 1) (which is equal to $\operatorname{MIN}(k u, n-1))$.

If pack='Z', lda must be large enough to hold the packed array: MIN(ku, $n-1)+\operatorname{MIN}(k l, m-1)+1$.

Output Parameters

iseed
d
a
work
info

The array iseed contains the updated seed.
The array d contains the updated seed.

NOTE

The array d is not modified if mode $=0$.

REAL for slatms
DOUBLE PRECISION for dlatms
COMPLEX for clatms
DOUBLE COMPLEX for zlatms
Array of size lda by n.
The array a contains the generated m-by- n matrix A.
a is first generated in full (unpacked) form, and then packed, if so specified by pack. Thus, the first m elements of the first n columns are always modified. If pack specifies a packed or banded storage scheme, all Ida elements of the first n columns are modified; the elements of the array which do not correspond to elements of the generated matrix are set to zero.

REAL for slatms
DOUBLE PRECISION for dlatms
COMPLEX for clatms
DOUBLE COMPLEX for zlatms
Array of size $(3 * \operatorname{MAX}(n, m))$
Workspace.
INTEGER. If info $=0$, the execution is successful.
If info < 0 , the i-th parameter had an illegal value.
If info $=-1011$, memory allocation error occurred.
If info $=2$, cannot scale to dmax (maximum singular value is 0).
If info = 3, error return from ?lagge, ?laghe, or ?lagsy.

Additional LAPACK Routines (Included for Compatibility with Netlib LAPACK)

```
call chesv_aa_2stage (uplo, n , nrhs, a , lda, tb, ltb, ipiv, ipiv2, b , ldb,
info);
call dsysv_aa_2stage (uplo, n , nrhs, a , lda, tb, ltb, ipiv, ipiv2, b , ldb ,
infO);
call ssysv_aa_2stage (uplo, n , nrhs, a, lda, tb, ltb, ipiv, ipiv2, b, ldb,
info);
call zhesv_aa_2stage (uplo, n , nrhs, a , lda, tb, ltb, ipiv, * ipiv2, b, ldb,
info);
call chetrf_aa_2stage (uplo, n , a, lda, tb, ltb, ipiv, ipiv2, info);
call dsytrf_aa_2stage (uplo, n , a , lda, tb, ltb, ipiv, ipiv2, info);
call ssytrf_aa_2stage (uplo, n , a , lda, tb, ltb, ipiv, ipiv2, info);
call zhetrf_aa_2stage (uplo, n , a, lda, tb, ltb, ipiv, ipiv2, info);
call chetrs_aa_2stage (uplo, n , nrhs, a , lda , tb , ltb, ipiv, ipiv2, b , ldb,
infO);
call dsytrs_aa_2stage (uplo, n , nrhs, a , lda, tb, ltb, ipiv, ipiv2, b , ldb ,
info);
call ssytrs_aa_2stage (uplo, n , nrhs, a , lda, tb , ltb, ipiv, ipiv2, b , ldb,
infO);
call zhetrs_aa_2stage (uplo, n , nrhs, a, lda, tb , ltb, ipiv, ipiv2, b, ldb,
info);
call csytrf_aa_2stage (uplo, n , a , lda, tb, ltb, ipiv, ipiv2, info);
call zsytrf_aa_2stage (uplo, n , a , lda, tb, ltb, ipiv, ipiv2, info);
call csytrs_aa_2stage (uplo, n , nrhs, a, lda, tb, ltb, ipiv, ipiv2, * b, ldb,
infO);
call zsytrs_aa_2stage (uplo, n , nrhs, a , lda, tb, ltb, ipiv, ipiv2, * b, ldb ,
info);
call ssyevd_2stage(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
call dsyevd_2stage(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
call ssyevr_2stage(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz,
isuppz, work, lwork, iwork, liwork, info)
call dsyevr_2stage(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz,
isuppz, work}, lwork, iwork, liwork, info
call ssyevx_2stage(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz,
work, lwork, iwork, ifail, info)
call dsyevx_2stage(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz,
work, lwork, iwork, ifail, info)
call ssygv_2stage(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)
call dsygv_2stage(itype, jobz, uplo, n, a, lda, b, ldb, w, work, lwork, info)
call cheev_2stage (jobz, uplo, n, a, lda, w, work, lwork, rwork, info)
call zheev_2stage(jobz, uplo, n, a, lda, w, work, lwork, rwork, info)
call cheevd_2stage(jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork,
info)
```

call zheevd_2stage(jobz, uplo, $n, ~ a, ~ l d a, ~ w, ~ w o r k, ~ l w o r k, ~ r w o r k, ~ l r w o r k, ~ i w o r k, ~ l i w o r k, ~$ info)
call cheevr_2stage(jobz, range, uplo, $n, a, ~ l d a, ~ v l, ~ v u, ~ i l, i u, ~ a b s t o l, ~ m, ~ w, ~ z, ~ l d z, ~$ isuppz, work, lwork, rwork, lrwork, iwork, liwork, infol
call zheevr_2stage(jobz, range, uplo, $n, ~ a, ~ l d a, ~ v l, ~ v u, ~ i l, ~ i u, ~ a b s t o l, ~ m, ~ w, ~ z, ~ l d z, ~$ isuppz, work, lwork, rwork, lrwork, iwork, liwork, info)
call cheevx_2stage(jobz, range, uplo, $n, ~ a, ~ l d a, ~ v l, ~ v u, ~ i l, i u, ~ a b s t o l, ~ m, ~ w, ~ z, ~ l d z, ~$ work, lwork, rwork, iwork, ifail, info)
call zheevx_2stage(jobz, range, uplo, $n, ~ a, ~ l d a, ~ v l, ~ v u, ~ i l, ~ i u, ~ a b s t o l, ~ m, ~ w, ~ z, ~ l d z, ~$ work, lwork, rwork, iwork, ifail, infol

call ssbevd_2stage(jobz, uplo, $n, k d, a b, l d a b, w, z, l d z, ~ w o r k, ~ l w o r k, ~ i w o r k, ~ l i w o r k, ~$ info)
call dsbevd_2stage(jobz, uplo, $n, k d, a b, l d a b, ~ w, ~ z, ~ l d z, ~ w o r k, ~ l w o r k, ~ i w o r k, ~ l i w o r k, ~$ info)
call ssbevx_2stage (jobz, range, uplo, $n, k d, a b, l d a b, ~ q, ~ l d q, ~ v l, ~ v u, i l, i u, ~ a b s t o l, ~ m, ~$ w, z, ldz, work, lwork, iwork, ifail, info)
call dsbevx_2stage(jobz, range, uplo, $n, k d, a b, l d a b, ~ q, ~ l d q, ~ v l, ~ v u, ~ i l, i u, ~ a b s t o l, ~ m, ~$ w, z, ldz, work, lwork, iwork, ifail, info)

call chbevd_2stage(jobz, uplo, $n, k d, a b, l d a b, ~ w, ~ z, ~ l d z, ~ w o r k, ~ l w o r k, ~ r w o r k, ~ l r w o r k, ~$ iwork, liwor̄k, infol
call zhbevd_2stage(jobz, uplo, $n, k d, a b, l d a b, w, z, l d z, ~ w o r k, ~ l w o r k, ~ r w o r k, ~ l r w o r k, ~$ iwork, liwork, info)
call chbevx_2stage(jobz, range, uplo, $n, k d, a b, l d a b, ~ q, ~ l d q, ~ v l, ~ v u, ~ i l, ~ i u, ~ a b s t o l, ~ m, ~$ w, z, ldz, work, lwork, rwork, iwork, ifail, info)
call zhbevx_2stage(jobz, range, uplo, $n, k d, a b, l d a b, ~ q, ~ l d q, ~ v l, ~ v u, ~ i l, ~ i u, ~ a b s t o l, ~ m, ~$ w, z, ldz, work, lwork, rwork, iwork, ifail, info)

call chetrd_hb2st(stagel, vect, uplo, $n, k d, a b, l d a b, d, e, h o u s, ~ l h o u s, ~ w o r k, ~ l w o r k, ~$ info)
call zhetrd_hb2st(stage1, vect, uplo, $n, k d, a b, l d a b, d, e, h o u s, ~ l h o u s, ~ w o r k, ~ l w o r k, ~$ info)

call chb2st_kernels(uplo, wantz, ttype, st, ed, sweep, $n, ~ n b, i b, a, l d a, ~ v, ~ t a u, ~ l d v t$, work)

```
call zhb2st_kernels(uplo, wantz, ttype, st, ed, sweep, n, nb, ib, a, lda, v, tau, ldvt,
work)
call ssb2st_kernels(uplo, wantz, ttype, st, ed, sweep, n, nb, ib, a, lda, v, tau, ldvt,
work)
call dsb2st_kernels(uplo, wantz, ttype, st, ed, sweep, n, nb, ib, a, lda, v, tau, ldvt,
work)
call iparam2stage(ispec, name, opts, ni, nbi, ibi, nxi)
```

For descriptions of these functions, please see https://www.netlib.org/lapack/explore-html/files.html.

ScaLAPACK Routines

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library implements routines from the ScaLAPACK package for distributed-memory architectures. Routines are supported for both real and complex dense and band matrices to perform the tasks of solving systems of linear equations, solving linear least-squares problems, eigenvalue and singular value problems, as well as performing a number of related computational tasks.

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) ScaLAPACK routines are written in FORTRAN 77 with exception of a few utility routines written in C to exploit the IEEE arithmetic. All routines are available in all precision types: single precision, double precision, complexm, and double complex precision. See themkl_scalapack.h header file for C declarations of ScaLAPACK routines.

NOTE

ScaLAPACK routines are provided only for Intel ${ }^{\circledR} 64$ or Intel ${ }^{\circledR}$ Many Integrated Core architectures.

See descriptions of ScaLAPACK computational routines that perform distinct computational tasks, as well as driver routinesfor solving standard types of problems in one call. Additionally, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library implements ScaLAPACKAuxiliary Routines, Utility Functions and Routines, and Matrix Redistribution/ Copy Routines. The library includes routines for both real and complex data.
The <install_directory>/examples/scalapackf directory contains sample code demonstrating the use of ScaLAPACK $\overline{\text { routines. }}$
Generally, ScaLAPACK runs on a network of computers using MPI as a message-passing layer and a set of prebuilt communication subprograms (BLACS), as well as a set of BLAS optimized for the target architecture. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) version of ScaLAPACK is optimized for Intel ${ }^{\circledR}$ processors. For the detailed system and environment requirements, seeInte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Release Notes and Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide.
For full reference on ScaLAPACK routines and related information, see [SLUG].

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Overview of ScaLAPACK Routines

The model of the computing environment for ScaLAPACK is represented as a one-dimensional array of processes (for operations on band or tridiagonal matrices) or also a two-dimensional process grid (for operations on dense matrices). To use ScaLAPACK, all global matrices or vectors should be distributed on this array or grid prior to calling the ScaLAPACK routines.
ScaLAPACK is closely tied to other components, including BLAS, BLACS, LAPACK, and PBLAS.

ScaLAPACK Array Descriptors

ScaLAPACK uses two-dimensional block-cyclic data distribution as a layout for dense matrix computations. This distribution provides good work balance between available processors, and also allows use of BLAS Level 3 routines for optimal local computations. Information about the data distribution that is required to establish the mapping between each global matrix (array) and its corresponding process and memory location is contained in the array called the array descriptor associated with each global matrix. The size of the array descriptor is denoted as dlen_.
Let A be a two-dimensional block cyclicly distributed matrix with the array descriptor array desca. The meaning of each array descriptor element depends on the type of the matrix A. The tables "Array descriptor for dense matrices" and "Array descriptor for narrow-band and tridiagonal matrices" describe the meaning of each element for the different types of matrices.

Array descriptor for dense matrices (dlen_=9)

| Element
 Name | Stored in | Description | Element Index
 Number |
| :--- | :--- | :--- | :--- |
| $d t y p e _a$ | desca(dtype_) | Descriptor type (=1 for dense matrices). | 1 |
| $c t x t _a$ | desca(ctxt_) | BLACS context handle for the process grid. | 2 |
| $m_{-} a$ | $\operatorname{desca}\left(m_{-}\right)$ | Number of rows in the global matrix A. | 3 |
| $n _a$ | $\operatorname{desca}\left(n_{-}\right)$ | Number of columns in the global matrix A. | 4 |
| $m b _a$ | desca $\left(m b_{-}\right)$ | Row blocking factor. | 5 |

| Element
 Name | Stored in | Description | Element Index Number |
| :---: | :---: | :---: | :---: |
| nb_a | desca(nb_) | Column blocking factor. | 6 |
| rssc_a | desca(rsrc_) | Process row over which the first row of the global matrix A is distributed. | 7 |
| csrc_a | desca(csrc_) | Process column over which the first column of the global matrix A is distributed. | 8 |
| Ild_a | desca(lld_) | Leading dimension of the local matrix A. | 9 |
| Array descriptor for narrow-band and tridiagonal matrices (d/en_=7) | | | |
| Element Name | Stored in | Description | Element Index Number |
| dtype_a | desca(dtype_) | Descriptor type
 - dtype_a=501: 1-by-P grid,
 - dtype_a=502: P-by-1 grid. | 1 |
| ctxt_a | desca(ctxt_) | BLACS context handle indicating the BLACS process grid over which the global matrix A is distributed. The context itself is global, but the handle (the integer value) can vary. | 2 |
| n_a | $\operatorname{desca}\left(n_{-}\right)$ | The size of the matrix dimension being distributed. | 3 |
| $n b _a$ | desca(nb_) | The blocking factor used to distribute the distributed dimension of the matrix A. | 4 |
| src_a | desca(src_) | The process row or column over which the first row or column of the matrix A is distributed. | 5 |
| Ild_a | desca(lld_) | The leading dimension of the local matrix storing the local blocks of the distributed matrix A. The minimum value of $I l d=a$ depends on dtype_a.
 - dtype_a=501: $/ l d _a \geq \max (s i z e ~ o f ~$ undistributed dimension, 1),
 - dtype_a=502: $/ l d _a \geq \max \left(n b _a, 1\right)$. | 6 |
| Not applicable | | Reserved for future use. | 7 |
| Similar notations are used for different matrices. For example: $I l d _b$ is the leading dimension of the local matrix storing the local blocks of the distributed matrix B and dtype_z is the type of the global matrix Z. | | | |
| The number of rows and columns of a global dense matrix that a particular process in a grid receives data distributing is denoted by $L O C_{r}()$ and $L O C_{C}()$, respectively. To compute these numbers, you can ScaLAPACK tool routine numroc.
 After the block-cyclic distribution of global data is done, you may choose to perform an operation on a submatrix $\operatorname{sub}(A)$ of the global matrix A defined by the following 6 values (for dense matrices): | | | |
| | | | |
| m | The number of rows of sub (A) | | |
| n | The number of columns of $\operatorname{sub}(A)$ | | |
| a | A pointer to the local matrix containing the entire global matrix A | | |
| ia | The row index of $\operatorname{sub}(A)$ in the global matrix A | | |
| ja | The column index of $\operatorname{sub}(A)$ in the global matrix A | | |

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Naming Conventions for ScaLAPACK Routines

For each routine introduced in this chapter, you can use the ScaLAPACK name. The naming convention for ScaLAPACK routines is similar to that used for LAPACK routines. A general rule is that each routine name in ScaLAPACK, which has an LAPACK equivalent, is simply the LAPACK name prefixed by initial letter p.
ScaLAPACK names have the structure p?yyzzz or p?yyzz, which is described below.
The initial letter p is a distinctive prefix of ScaLAPACK routines and is present in each such routine.
The second symbol ? indicates the data type:

| s | real, single precision |
| :--- | :--- |
| d | real, double precision |
| c | complex, single precision |
| z | complex, double precision |

The second and third letters yy indicate the matrix type as:

| ge | general |
| :--- | :--- |
| gb | general band |
| $g g$ | a pair of general matrices (for a generalized problem) |
| $d t$ | general tridiagonal (diagonally dominant-like) |
| db | general band (diagonally dominant-like) |
| po | symmetric or Hermitian positive-definite |
| pb | symmetric or Hermitian positive-definite band |
| pt | symmetric or Hermitian positive-definite tridiagonal |
| sy | symmetric |
| st | symmetric tridiagonal (real) |
| he | Hermitian |
| or | orthogonal |
| tr | triangular (or quasi-triangular) |
| tz | trapezoidal |
| un | unitary |

For computational routines, the last three letters $\mathbf{z z z}$ indicate the computation performed and have the same meaning as for LAPACK routines.
For driver routines, the last two letters $\mathbf{z z}$ or three letters $\mathbf{z z z}$ have the following meaning:

```
sv a simple driver for solving a linear system
svx an expert driver for solving a linear system
ls a driver for solving a linear least squares problem
ev a simple driver for solving a symmetric eigenvalue problem
evd
evx
svd
gvx
a simple driver for solving a linear system
an expert driver for solving a linear system
a driver for solving a linear least squares problem
a simple driver for solving a symmetric eigenvalue problem
a simple driver for solving an eigenvalue problem using a divide and conquer algorithm
an expert driver for solving a symmetric eigenvalue problem
a driver for computing a singular value decomposition
an expert driver for solving a generalized symmetric definite eigenvalue problem
```

Simple driver here means that the driver just solves the general problem, whereas an expert driver is more versatile and can also optionally perform some related computations (such, for example, as refining the solution and computing error bounds after the linear system is solved).

ScaLAPACK Computational Routines

In the sections that follow, the descriptions of ScaLAPACK computational routines are given. These routines perform distinct computational tasks that can be used for:

- Solving Systems of Linear Equations
- Orthogonal Factorizations and LLS Problems
- Symmetric Eigenproblems
- Nonsymmetric Eigenproblems
- Singular Value Decomposition
- Generalized Symmetric-Definite Eigenproblems

See also the respective driver routines.

Systems of Linear Equations: ScaLAPACK Computational Routines

ScaLAPACK supports routines for the systems of equations with the following types of matrices:

- general
- general banded
- general diagonally dominant-like banded (including general tridiagonal)
- symmetric or Hermitian positive-definite
- symmetric or Hermitian positive-definite banded
- symmetric or Hermitian positive-definite tridiagonal

A diagonally dominant-like matrix is defined as a matrix for which it is known in advance that pivoting is not required in the $L U$ factorization of this matrix.
For the above matrix types, the library includes routines for performing the following computations: factoring the matrix; equilibrating the matrix; solving a system of linear equations; estimating the condition number of a matrix; refining the solution of linear equations and computing its error bounds; inverting the matrix. Note that for some of the listed matrix types only part of the computational routines are provided (for example, routines that refine the solution are not provided for band or tridiagonal matrices). See Table "Computational Routines for Systems of Linear Equations" for full list of available routines.

To solve a particular problem, you can either call two or more computational routines or call a corresponding driver routine that combines several tasks in one call. Thus, to solve a system of linear equations with a general matrix, you can first call p?getrf($L U$ factorization) and then p ?getrs(computing the solution). Then, you might wish to call p?gerfs to refine the solution and get the error bounds. Alternatively, you can just use the driver routine p?gesvx which performs all these tasks in one call.

Table "Computational Routines for Systems of Linear Equations" lists the ScaLAPACK computational routines for factorizing, equilibrating, and inverting matrices, estimating their condition numbers, solving systems of equations with real matrices, refining the solution, and estimating its error.
Computational Routines for Systems of Linear Equations

| Matrix type, storage
 scheme | Factorize
 matrix | Equilibrate
 matrix | Solve
 system | Condition
 number | Estimate
 error |
| :--- | :--- | :--- | :--- | :--- | :--- |
| general (partial pivoting)
 general band (partial
 pivoting)
 general band (no
 pivoting)
 general tridiagonal (no
 pivoting)
 symmetric/Hermitian
 positive-definite
 symmetric/Hermitian
 positive-definite, band
 symmetric/Hermitian
 positive-definite, | p?gbtrf | | | | |

In this table ? stands for s (single precision real), d (double precision real), c (single precision complex), or z (double precision complex).

Matrix Factorization: ScaLAPACK Computational Routines

This section describes the ScaLAPACK routines for matrix factorization. The following factorizations are supported:

- LU factorization of general matrices
- LU factorization of diagonally dominant-like matrices
- Cholesky factorization of real symmetric or complex Hermitian positive-definite matrices

You can compute the factorizations using full and band storage of matrices.

```
p?getrf
Computes the LU factorization of a general m-by-n
distributed matrix.
```


Syntax

```
call psgetrf(m, n, a, ia, ja, desca, ipiv, info)
```

call psgetrf(m, n, a, ia, ja, desca, ipiv, info)
call pdgetrf(m, n, a, ia, ja, desca, ipiv, info)
call pdgetrf(m, n, a, ia, ja, desca, ipiv, info)
call pcgetrf(m, n, a, ia, ja, desca, ipiv, info)
call pcgetrf(m, n, a, ia, ja, desca, ipiv, info)
call pzgetrf(m, n, a, ia, ja, desca, ipiv, info)

```
call pzgetrf(m, n, a, ia, ja, desca, ipiv, info)
```


Include Files

Description

The p?getrfroutine forms the $L U$ factorization of a general $m-b y-n$ distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1$, ja:ja+n-1) as
$A=P^{*} L * U$
where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if $m>n$) and U is upper triangular (upper trapezoidal if $m<n$). L and U are stored in $\operatorname{sub}(A)$.

The routine uses partial pivoting, with row interchanges.

NOTE

This routine supports the Progress Routine feature. See mkl_progress for details.

Input Parameters

m
n
a
ia, ja
desca

Output Parameters

a
ipiv
info
(global) INTEGER. The number of rows in the distributed matrix sub (A); $m \geq 0$.
(global) INTEGER. The number of columns in the distributed matrix $\operatorname{sub}(A)$; $n \geq 0$.
(local)
REAL for psgetrf
DOUBLE PRECISION for pdgetrf
COMPLEX for pcgetrf
DOUBLE COMPLEX for pzgetrf.
Pointer into the local memory to an array of local size (lld_a, LOCC (ja $+n-1)$).

Contains the local pieces of the distributed matrix $\operatorname{sub}(A)$ to be factored.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

Overwritten by local pieces of the factors L and U from the factorization $A=$ $P * L * U$. The unit diagonal elements of L are not stored.
(local) INTEGER Array of size LOCr (m_a) + mb_a.
Contains the pivoting information: local row i was interchanged with global row ipiv(i). This array is tied to the distributed matrix A.
(global) INTEGER.
If info $=0$, the execution is successful.
info < 0 : if the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
If info $=i>0, u_{i a+i, j a+j-1}$ is 0 . The factorization has been completed, but the factor U is exactly singular. Division by zero will occur if you use the factor U for solving a system of linear equations.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?gbtrf
Computes the LU factorization of a general n-by-n
banded distributed matrix.
Syntax
```

```
call psgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)
```

call psgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)
call pdgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)
call pdgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)
call pcgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)
call pcgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)
call pzgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)

```
call pzgbtrf(n, bwl, bwu, a, ja, desca, ipiv, af, laf, work, lwork, info)
```

Include Files

Description

The p?gbtrf routine computes the $L U$ factorization of a general n-by- n real/complex banded distributed matrix $A(1: n, j a: j a+n-1)$ using partial pivoting with row interchanges.

The resulting factorization is not the same factorization as returned from the LAPACK routine ? gbtrf. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form
$A(1: n, j a: j a+n-1)=P^{*} L^{*} U^{*} Q$
where P and Q are permutation matrices, and L and U are banded lower and upper triangular matrices, respectively. The matrix Q represents reordering of columns for the sake of parallelism, while P represents reordering of rows for numerical stability using classic partial pivoting.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

n
bwl
bwu
a
(global) INTEGER. The number of rows and columns in the distributed submatrix $A(1: n, j a: j a+n-1) ; n \geq 0$.
(global) INTEGER. The number of sub-diagonals within the band of A ($0 \leq b w l \leq n-1)$.
(global) INTEGER. The number of super-diagonals within the band of A ($0 \leq b w u \leq n-1$).
(local)
REAL for psgbtrf
DOUBLE PRECISION for pdgbtrf
COMPLEX for pcgbtrf
DOUBLE COMPLEX for pzgbtrf.
Pointer into the local memory to an array of local size (Ild_a, LOCC (ja $+n-1)$) where
lld_a a *bwl + 2*bwu +1.
Contains the local pieces of the $n-b y-n$ distributed banded matrix $A(1: n$, ja:ja+n-1) to be factored.
ja
desca
laf
work
lwork
(global) INTEGER. The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_a = 501, then dlen_ \geq 7;
else if dtype_a $=1$, then $d l e n_{-} \geq 9$.
(local) INTEGER. The size of the array $a f$.
Must be $l a f \geq\left(n b _a+b w u\right) *(b w l+b w u)+6 *(b w l+b w u) *(b w l+2 * b w u)$.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
(local) Same type as a. Workspace array of size lwork.
(local or global) INTEGER. The size of the work array (lwork ≥ 1). If lwork is too small, the minimal acceptable size will be returned in work(1) and an error code is returned.

Output Parameters

a
$a f$
work(1)
info

On exit, this array contains details of the factorization. Note that additional permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.
(local) INTEGER array.
The size of ipiv must be $\geq n b _a$.
Contains pivot indices for local factorizations. Note that you should not alter the contents of this array between factorization and solve.
(local)
REAL for psgbtrf
DOUBLE PRECISION for pdgbtrf
COMPLEX for pcgbtrf
DOUBLE COMPLEX for pzgbtrf.
Array of size laf.
Auxiliary fill-in space. The fill-in space is created in a call to the factorization routine p?gbtrf and is stored in $a f$.

Note that if a linear system is to be solved using p?gbtrs after the factorization routine, af must not be altered after the factorization.

On exit, work (1) contains the minimum value of 1 work required.
(global) INTEGER.

If info $=0$, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info> 0:
If info $=k \leq$ NPROCS, the submatrix stored on processor info and factored locally was not nonsingular, and the factorization was not completed.
If info $=k>$ NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?dbtrf
Computes the LU factorization of a n-by-n diagonally dominant-like banded distributed matrix.

Syntax

```
call psdbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)
call pddbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)
call pcdbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)
call pzdbtrf(n, bwl, bwu, a, ja, desca, af, laf, work, lwork, info)
```


Include Files

Description

The p?dbtrfroutine computes the LU factorization of a n-by- n real/complex diagonally dominant-like banded distributed matrix $A(1: n, j a: j a+n-1)$ without pivoting.

NOTE

A matrix is called diagonally dominant-like if pivoting is not required for LU to be numerically stable.

Note that the resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

Input Parameters

n
bwl
bwu
a
ja
desca
laf
work
lwork
(global) INTEGER. The number of rows and columns in the distributed submatrix $A(1: n, j a: j a+n-1) ; n \geq 0$.
(global) INTEGER. The number of sub-diagonals within the band of A $(0 \leq b w l \leq n-1)$.
(global) INTEGER. The number of super-diagonals within the band of A
$(0 \leq$ bwu $\leq n-1)$.
(local)
REAL for psdbtrf
DOUBLE PRECISION for pddbtrf
COMPLEX for pcdbtrf
DOUBLE COMPLEX for pzdbtrf.
Pointer into the local memory to an array of local size (lld_a, LOCC (ja $+n-1)$).

Contains the local pieces of the $n-b y-n$ distributed banded matrix $A(1: n$, ja:ja+n-1) to be factored.
(global) INTEGER. The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_a = 501, then dlen_ \geq 7;
else if dtype_a = 1 , then dlen_ ≥ 9.
(local) INTEGER. The size of the array af.
Must be $l a f \geq \mathrm{NB}^{*}(b w l+b w u)+6 *(\max (b w l, b w u))^{2}$.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
(local) Same type as a. Workspace array of size lwork.
(local or global) INTEGER. The size of the work array, must be 1 work \geq (max (bwl,bwu)) ${ }^{2}$. If lwork is too small, the minimal acceptable size will be returned in work(1) and an error code is returned.

On exit, this array contains details of the factorization. Note that additional permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.
(local)
REAL for psdbtrf

DOUBLE PRECISION for pddbtrf
COMPLEX for pcdbtrf
DOUBLE COMPLEX for pzdbtrf.
Array of size laf.
Auxiliary fill-in space. The fill-in space is created in a call to the factorization routine p?dbtrf and is stored in $a f$.

Note that if a linear system is to be solved using p?dbtrs after the factorization routine, af must not be altered after the factorization.
work (1)
info
On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
If info=0, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info> 0 :
If info $=k \leq$ NPROCS, the submatrix stored on processor info and factored locally was not diagonally dominant-like, and the factorization was not completed.

If info $=k>$ nPRocs, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?dttrf
Computes the LU factorization of a diagonally dominant-like tridiagonal distributed matrix.

Syntax

```
call psdttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)
call pddttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)
call pcdttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)
call pzdttrf(n, dl, d, du, ja, desca, af, laf, work, lwork, info)
```


Include Files

Description

The p?dttrfroutine computes the $L U$ factorization of an n-by- n real/complex diagonally dominant-like tridiagonal distributed matrix $A(1: n, j a: j a+n-1)$ without pivoting for stability.
The resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:
$A(1: n, j a: j a+n-1)=P * L * U^{*} P^{T}$,
where P is a permutation matrix, and L and U are banded lower and upper triangular matrices, respectively.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Input Parameters

n
$d l, d, d u$
ja
desca
lwork
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed submatrix $A(1: n, j a: j a+n-1)(n \geq 0)$.
(local)
REAL for pspttrf
DOUBLE PRECISON for pdpttrf
COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.
Pointers to the local arrays of size nb_a each.
On entry, the array $d l$ contains the local part of the global vector storing the subdiagonal elements of the matrix. Globally, $d l(1)$ is not referenced, and $d l$ must be aligned with d.

On entry, the array d contains the local part of the global vector storing the diagonal elements of the matrix.

On entry, the array $d u$ contains the local part of the global vector storing the super-diagonal elements of the matrix. $d u(n)$ is not referenced, and $d u$ must be aligned with d.
(global) INTEGER. The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_a = 501, then dlen_ ≥ 7;
else if dtype_a = 1 , then dlen_ ≥ 9.
(local) INTEGER. The size of the array af.
Must be $1 a f \geq 2 *(N B+2)$.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
(local) Same type as d. Workspace array of size lwork.
(local or global) INTEGER. The size of the work array, must be at least lwork $\geq 8 *$ NPCOL.

Output Parameters

$d l, d, d u$
$a f$
work(1)
info

On exit, overwritten by the information containing the factors of the matrix.
(local)
REAL for psdttrf
DOUBLE PRECISION for pddttrf
COMPLEX for pcdttrf
DOUBLE COMPLEX for pzdttrf.
Array of size laf.
Auxiliary fill-in space. The fill-in space is created in a call to the factorization routine p?dttrf and is stored in af.

Note that if a linear system is to be solved using p?dttrs after the factorization routine, af must not be altered.

On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
If info=0, the execution is successful.

```
info < 0:
```

If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info> 0:
If info $=k \leq$ NPROCS, the submatrix stored on processor info and factored locally was not diagonally dominant-like, and the factorization was not completed.
If info $=k>$ NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?potrf

Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite distributed matrix.

Syntax

```
call pspotrf(uplo, n, a, ia, ja, desca, info)
call pdpotrf(uplo, n, a, ia, ja, desca, info)
call pcpotrf(uplo, n, a, ia, ja, desca, info)
call pzpotrf(uplo, n, a, ia, ja, desca, info)
```

Include Files

Description

The p?potrfroutine computes the Cholesky factorization of a real symmetric or complex Hermitian positivedefinite distributed n-by- n matrix $A(i a: i a+n-1, j a: j a+n-1)$, denoted below as $\operatorname{sub}(A)$.

The factorization has the form

$$
\begin{aligned}
& \operatorname{sub}(A)=U^{H *} U \text { if uplo='U', or } \\
& \operatorname{sub}(A)=L^{*} L^{H} \text { if uplo=' } L^{\prime}
\end{aligned}
$$

where L is a lower triangular matrix and U is upper triangular.

Input Parameters

uplo
n
a
ia, ja
desca
(global) CHARACTER*1.
Indicates whether the upper or lower triangular part of $\operatorname{sub}(A)$ is stored. Must be 'U' or 'L'.

If uplo = 'U', the array a stores the upper triangular part of the matrix $\operatorname{sub}(A)$ that is factored as $U^{H *} U$.
If uplo = 'L', the array a stores the lower triangular part of the matrix $\operatorname{sub}(A)$ that is factored as $L^{*} L^{H}$.
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for pspotrf
DOUBLE PRECISON for pdpotrf
COMPLEX for pcpotrf
DOUBLE COMPLEX for pzpotrf.
Pointer into the local memory to an array of size (Ild_a, LOCC(ja+n-1)).
On entry, this array contains the local pieces of the n-by-n symmetric/ Hermitian distributed matrix $\operatorname{sub}(A)$ to be factored.
Depending on uplo, the array a contains either the upper or the lower triangular part of the matrix $\operatorname{sub}(A)$ (see uplo).
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

Output Parameters

a
info

The upper or lower triangular part of a is overwritten by the Cholesky factor U or L, as specified by uplo.
(global) INTEGER.
If info $=0$, the execution is successful;
info < 0 : if the i-th argument is an array, and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

If info $=k>0$, the leading minor of order k, $A(i a: i a+k-1$, ja:ja+k-1), is not positive-definite, and the factorization could not be completed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?pbtrf
Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite banded distributed
matrix.
```


Syntax

```
call pspbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)
```

call pspbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)
call pdpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)
call pdpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)
call pcpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)
call pcpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)
call pzpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)

```
call pzpbtrf(uplo, n, bw, a, ja, desca, af, laf, work, lwork, info)
```


Include Files

Description

The p?pbtrfroutine computes the Cholesky factorization of an n-by- n real symmetric or complex Hermitian positive-definite banded distributed matrix $A(1: n, j a: j a+n-1)$.

The resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:
$A(1: n, j a: j a+n-1)=P^{*} U^{H} * U^{*} P^{T}$, if uplo='U', or
$A(1: n, j a: j a+n-1)=P * L^{*} H * P^{T}$, if uplo='L',
where P is a permutation matrix and U and L are banded upper and lower triangular matrices, respectively.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

Input Parameters

uplo
n
(global) CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', upper triangle of $A(1: n, j a: j a+n-1)$ is stored;
If uplo = 'L', lower triangle of $A(1: n, j a: j a+n-1)$ is stored.
(global) INTEGER. The order of the distributed submatrix $A(1: n$, ja: ja $+n-1$).
($n \geq 0$).
bw
a
ja
desca
laf
work
lwork

Output Parameters

a
$a f$
(global) INTEGER.
The number of superdiagonals of the distributed matrix if uplo $=$ ' U ', or the number of subdiagonals if uplo $=$ 'L' $(b w \geq 0)$.
(local)
REAL for pspbtrf
DOUBLE PRECISON for pdpbtrf
COMPLEX for pcpbtrf
DOUBLE COMPLEX for pzpbtrf.
Pointer into the local memory to an array of size (Ild_a, LOCC (ja+n-1)).
On entry, this array contains the local pieces of the upper or lower triangle of the symmetric/Hermitian band distributed matrix $A(1: n, j a: j a+n-1)$ to be factored.
(global) INTEGER. The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_a = 501, then dlen_ \geq 7;
else if dtype_a $=1$, then dlen_ ≥ 9.
(local) INTEGER. The size of the array af.
Must be laf $\geq\left(\mathrm{NB}+2 *{ }^{*} \mathrm{bw}\right) * b w$.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
(local) Same type as a. Workspace array of size lwork.
(local or global) INTEGER. The size of the work array, must be $1 w o r k \geq b w^{2}$.

On exit, if info $=0$, contains the permuted triangular factor U or L from the Cholesky factorization of the band matrix $A(1: n, j a: j a+n-1)$, as specified by uplo.
(local)
REAL for pspbtrf
DOUBLE PRECISON for pdpbtrf
COMPLEX for pcpbtrf
DOUBLE COMPLEX for pzpbtrf.

Array of size laf. Auxiliary fill-in space. The fill-in space is created in a call to the factorization routine p?pbtrf and stored in $a f$. Note that if a linear system is to be solved using p?pbtrs after the factorization routine,af must not be altered.
work(1)
info
On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
If info=0, the execution is successful.

```
info < 0:
```

If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info>0:
If info $=k \leq$ NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.

If info $=k>$ NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?pttrf

Computes the Cholesky factorization of a symmetric
(Hermitian) positive-definite tridiagonal distributed
matrix.

Syntax

```
call pspttrf(n, d, e, ja, desca, af, laf, work, lwork, info)
call pdpttrf(n, d, e, ja, desca, af, laf, work, lwork, info)
call pcpttrf(n, d, e, ja, desca, af, laf, work, lwork, info)
call pzpttrf(n, d, e, ja, desca, af, laf, work, lwork, info)
```


Include Files

Description

The p?pttrfroutine computes the Cholesky factorization of an n-by- n real symmetric or complex hermitian positive-definite tridiagonal distributed matrix $A(1: n$, ja: ja+n-1).

The resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.

The factorization has the form:
$A(1: n, j a: j a+n-1)=P * L * D * L^{H * P}{ }^{T}$, or
$A(1: n, j a: j a+n-1)=P^{*} U^{H} * D^{*} U^{*} P^{T}$,
where P is a permutation matrix, and U and L are tridiagonal upper and lower triangular matrices, respectively.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

Input Parameters

n
(global) INTEGER. The order of the distributed submatrix $A(1: n, j a: j a$ $+n-1)$
($n \geq 0$).
d, e
(local)
REAL for pspttrf
DOUBLE PRECISON for pdpttrf
COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.
Pointers into the local memory to arrays of size nb_a each.
On entry, the array d contains the local part of the global vector storing the main diagonal of the distributed matrix A.
On entry, the array e contains the local part of the global vector storing the upper diagonal of the distributed matrix A.
(global) INTEGER. The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_a = 501, then dlen_ \geq 7;
else if dtype_a = 1 , then dlen_ ≥ 9.
(local) INTEGER. The size of the array af.
Must be laf $\geq n b _a+2$.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
(local) Same type as d and e. Workspace array of size lwork.
(local or global) INTEGER. The size of the work array, must be at least lwork $\geq 8 *$ NPCOL.

Output Parameters

$$
d, e
$$

On exit, overwritten by the details of the factorization.
af
work(1)
info
(local)
REAL for pspttrf
DOUBLE PRECISION for pdpttrf
COMPLEX for pcpttrf
DOUBLE COMPLEX for pzpttrf.
Array of size laf.
Auxiliary fill-in space. The fill-in space is created in a call to the factorization routine p?pttrf and stored in af.
Note that if a linear system is to be solved using p?pttrs after the factorization routine, af must not be altered.

On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
If info=0, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info> 0:
If info $=k \leq$ NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.
If info $=k>$ NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

Solving Systems of Linear Equations: ScaLAPACK Computational Routines

This section describes the ScaLAPACK routines for solving systems of linear equations. Before calling most of these routines, you need to factorize the matrix of your system of equations (see Routines for Matrix Factorization in this chapter). However, the factorization is not necessary if your system of equations has a triangular matrix.

```
p?getrs
Solves a system of distributed linear equations with a
general square matrix, using the LU factorization
computed by p?getrf.
```


Syntax

```
call psgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
```

call psgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pdgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pdgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pcgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)

```
call pcgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
```

```
call pzgetrs(trans, n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
```


Include Files

Description

The p?getrsroutine solves a system of distributed linear equations with a general n-by- n distributed matrix $\operatorname{sub}(A)=A($ ia:ia+n-1, ja:ja+n-1) using the $L U$ factorization computed by p?getrf.

The system has one of the following forms specified by trans:

```
sub(A)*X = sub(B) (no transpose),
sub(A)
sub(A)}\mp@subsup{)}{}{H*}X=\operatorname{sub}(B)\mathrm{ (conjugate transpose),
```

where $\operatorname{sub}(B)=B(i b: i b+n-1, j b: j b+n r h s-1)$.

Before calling this routine, you must call p?getrf to compute the $L U$ factorization of $\operatorname{sub}(A)$.

Input Parameters

| trans | (global) CHARACTER*1. Must be 'N' or 'T' or 'C'. |
| :---: | :---: |
| | Indicates the form of the equations: |
| | If trans $=$ ' N ', then $\operatorname{sub}(A) * X=\operatorname{sub}(B)$ is solved for X. |
| | If trans $=$ ' T', then $\operatorname{sub}(A)^{T *} X=\operatorname{sub}(B)$ is solved for X. |
| | If trans $=$ ' C', then $\operatorname{sub}(A)^{H} * X=\operatorname{sub}(B)$ is solved for X. |
| n | (global) INTEGER. The number of linear equations; the order of the matrix $\operatorname{sub}(A)(n \geq 0)$. |
| nrhs | (global) INTEGER. The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$. |
| a, b | (local) |
| | REAL for psgetrs |
| | DOUBLE PRECISION for pdgetrs |
| | COMPLEX for pcgetrs |
| | DOUBLE COMPLEX for pzgetrs. |
| | Pointers into the local memory to arrays of local sizes (lld_a, LOCC (ja $+n-1)$) and (Ild b, LOCC(jb+nrhs-1)), respectively. |

On entry, the array a contains the local pieces of the factors L and U from the factorization $\operatorname{sub}(A)=P * L * U$; the unit diagonal elements of L are not stored. On entry, the array b contains the right hand sides $\operatorname{sub}(B)$.
ia, ja
desca
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
ipiv (local) INTEGER Array of size of $L O C r\left(m_{2} a\right)+$ mb_a. Contains the pivoting information: local row i of the matrix was interchanged with the global row ipiv(i).

This array is tied to the distributed matrix A.
(global) INTEGER. The row and column indices in the global matrix B indicating the first row and the first column of the matrix $\operatorname{sub}(B)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix B.

Output Parameters

b info

On exit, overwritten by the solution distributed matrix X.
INTEGER. If info $=0$, the execution is successful. info <0 :
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?gbtrs

Solves a system of distributed linear equations with a
general band matrix, using the LU factorization
computed by p?gbtrf.

Syntax

```
call psgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, af, laf, work,
lwork, info)
call pdgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, af, laf, work,
lwork, info)
call pcgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, af, laf, work,
lwork, info)
call pzgbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, af, laf, work,
lwork, info)
```


Include Files

Description

The p?gbtrs routine solves a system of distributed linear equations with a general band distributed matrix $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ using the $L U$ factorization computed by p?gbtrf.
The system has one of the following forms specified by trans:
$\operatorname{sub}(A) * X=\operatorname{sub}(B)$ (no transpose),
$\operatorname{sub}(A)^{T *} \mathrm{X}=\operatorname{sub}(B)$ (transpose),
$\operatorname{sub}(A)^{H * X}=\operatorname{sub}(B)$ (conjugate transpose),
where $\operatorname{sub}(B)=B(i b: i b+n-1,1: n r h s)$.

Before calling this routine,you must call p?gbtrf to compute the $L U$ factorization of $\operatorname{sub}(A)$.

Input Parameters

| trans | (global) CHARACTER*1. Must be 'N' or 'T' or 'C'. |
| :---: | :---: |
| | Indicates the form of the equations: |
| | If trans $=$ ' N ', then $\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$ is solved for X. |
| | If trans $=$ 'T', then $\operatorname{sub}(A)^{T *} X=\operatorname{sub}(B)$ is solved for X. |
| | If trans $=$ ' C', then $\operatorname{sub}(A)^{H} * X=\operatorname{sub}(B)$ is solved for X. |
| n | (global) INTEGER. The number of linear equations; the order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$. |
| bwl | (global) INTEGER. The number of sub-diagonals within the band of A ($0 \leq$ bwl $\leq n-1$). |
| bwu | (global) INTEGER. The number of super-diagonals within the band of $A(0$ $\leq b_{w u} \leq n-1$). |
| nrhs | (global) INTEGER. The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$. |
| a, b | (local) |
| | REAL for psgbtrs |
| | DOUBLE PRECISION for pdgbtrs |
| | COMPLEX for pcgbtrs |
| | DOUBLE COMPLEX for pzgbtrs. |
| | Pointers into the local memory to arrays of local sizes (lld_a, LOCC (ja $+n-1)$) and (Ild_b,LOCC(nrhs)), respectively. |

The array a contains details of the $L U$ factorization of the distributed band matrix A.
On entry, the array b contains the local pieces of the right hand sides B (ib:ib+n-1, 1:nrhs).
(global) INTEGER. The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_a $=501$, then dlen_ ≥ 7;
else if dtype_a $=1$, then $d l e n_{-} \geq 9$.
(global) INTEGER. The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_b = 502, then dlen_ ≥ 7;
else if dtype_b = 1 , then $d l e n_{-} \geq 9$.
laf
work
lwork

Output Parameters

ipiv
b
$a f$
work(1)
info
(local) INTEGER. The size of the array af.
Must be $l a f \geq n b _a^{*}(b w l+b w u)+6^{*}(b w l+b w u)^{*}\left(b w l+2^{*} b w u\right)$.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
(local) Same type as a. Workspace array of size lwork.
(local or global) INTEGER. The size of the work array, must be at least lwork $\geq n r h s *\left(n b _a+2 * b w l+4 * b w u\right)$.
(local) INTEGER array.
The size of ipiv must be $\geq n b _a$.
Contains pivot indices for local factorizations. Note that you should not alter the contents of this array between factorization and solve.

On exit, overwritten by the local pieces of the solution distributed matrix X.
(local)
REAL for psgbtrs
DOUBLE PRECISION for pdgbtrs
COMPLEX for pcgbtrs
DOUBLE COMPLEX for pzgbtrs.
Array of size laf.
Auxiliary Fill-in space. The fill-in space is created in a call to the factorization routine p?gbtrf and is stored in af.

Note that if a linear system is to be solved using p?gbtrs after the factorization routine, af must not be altered after the factorization.

On exit, work (1) contains the minimum value of lwork required for optimum performance.

INTEGER. If info $=0$, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right) ;$ if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?dbtrs
Solves a system of linear equations with a diagonally dominant-like banded distributed matrix using the factorization computed by p?dbtrf.

Syntax

```
call psdbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
call pddbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
call pcdbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
call pzdbtrs(trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
```


Include Files

Description

The p ?dbtrsroutine solves for X one of the systems of equations:
$\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$,
$(\operatorname{sub}(A))^{T *} X=\operatorname{sub}(B)$, or
$(\operatorname{sub}(A))^{H *} X=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ is a diagonally dominant-like banded distributed matrix, and $\operatorname{sub}(B)$
denotes the distributed matrix $B(i b: i b+n-1,1: n r h s)$.
This routine uses the $L U$ factorization computed by p?dbtrf.

Input Parameters

trans
n
bwl
bwu
nrhs
a, b
(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans $={ }^{\prime} \mathrm{N}^{\prime}$, then $\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$ is solved for X.
If trans $=$ ' T ', then $(\operatorname{sub}(A))^{T *} X=\operatorname{sub}(B)$ is solved for X.
If trans $=$ ' C^{\prime}, then $(\operatorname{sub}(A))^{H *} X=\operatorname{sub}(B)$ is solved for X.
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$. (global) Integer. The number of subdiagonals within the band of A ($0 \leq b w l \leq n-1$).
(global) INTEGER. The number of superdiagonals within the band of A ($0 \leq$ bwu $\leq n-1$).
(global) Integer. The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.
(local)
REAL for psdbtrs
DOUBLE PRECISON for pddbtrs
COMPLEX for pcdbtrs
DOUBLE COMPLEX for pzdbtrs.

Pointers into the local memory to arrays of local sizes (IId_a, LOCC (ja $+n-1)$) and (lld_b,LOCC(nrhs)), respectively.
On entry, the array a contains details of the $L U$ factorization of the band matrix A, as computed by p?dbtrf.

On entry, the array b contains the local pieces of the right hand side distributed matrix $\operatorname{sub}(B)$.
(global) INTEGER. The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
If dtype_a $=501$, then dlen_ ≥ 7;
else if dtype_a $=1$, then $d l_{\text {en }} \geq 9$.
(global) InTEGER. The row index in the global matrix B indicating the first row of the matrix to be operated on (which may be either all of B or a submatrix of B).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix B.

If dtype_b = 502, then dlen_ ≥ 7;
else if $d t y p e _b=1$, then $d l e n_{-} \geq 9$.
(local)
REAL for psabtrs
DOUBLE PRECISION for pddbtrs
COMPLEX for pcdbtrs
DOUBLE COMPLEX for pzdbtrs.
Arrays of size laf and lwork, respectively The array af contains auxiliary fill-in space. The fill-in space is created in a call to the factorization routine p?dbtrf and is stored in af.
The array work is a workspace array.
(local) Integer. The size of the array $a f$.
Must be laf ${ }^{2} \mathrm{NB}^{*}(b w l+b w u)+6^{*}(\max (b w l, b w u))^{2}$.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
(local or global) Integer. The size of the array work, must be at least
lwork $\geq(\max (b w l, b w u))^{2}$.

Output Parameters

b
On exit, this array contains the local pieces of the solution distributed matrix X.

```
work (1) On exit, work (1) contains the minimum value of lwork required for
    optimum performance.
    INTEGER. If info=0, the execution is successful. info < 0:
    If the i-th argument is an array and the j-th entry had an illegal value, then
    info = -(i*100+j); if the i-th argument is a scalar and had an illegal value,
    then info = -i.
```


See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?dttrs
Solves a system of linear equations with a diagonally dominant-like tridiagonal distributed matrix using the factorization computed by p?dttrf.

Syntax

```
call psdttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
call pddttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
call pcdttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
call pzdttrs(trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
```


Include Files

Description

The p?dttrsroutine solves for X one of the systems of equations:
$\operatorname{sub}(A) * X=\operatorname{sub}(B)$,
$(\operatorname{sub}(A))^{T *} X=\operatorname{sub}(B)$, or
$(\operatorname{sub}(A))^{H *} X=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ is a diagonally dominant-like tridiagonal distributed matrix, and $\operatorname{sub}(B)$ denotes the distributed matrix B ($i b: i b+n-1,1$:nrhs).

This routine uses the $L U$ factorization computed by p?dttrf.

Input Parameters

trans
n
(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans $=' \mathrm{~N}$ ', then $\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$ is solved for X.
If trans $=' \mathrm{~T}$ ', then $(\operatorname{sub}(A))^{T *} X=\operatorname{sub}(B)$ is solved for X.
If trans $=' C^{\prime}$, then $(\operatorname{sub}(A))^{H *} X=\operatorname{sub}(B)$ is solved for X.
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.

| nrhs | (global) INTEGER. The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$. |
| :---: | :---: |
| $d 1, d, d u$ | (local) |
| | REAL for psdttrs |
| | DOUBLE PRECISON for pddttrs |
| | COMPLEX for pcdttrs |
| | DOUBLE COMPLEX for pzdttrs. |
| | Pointers to the local arrays of size nb_a each. |
| | On entry, these arrays contain details of the factorization. Globally, $d \mathcal{l}(1)$ and $d u(n)$ are not referenced; $d l$ and $d u$ must be aligned with d. |
| ja | (global) INTEGER. The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A). |
| desca | (global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A. |
| | If dtype_a = 501 or dtype_a = 502, then dlen_ ${ }^{\text {a }}$ 7; |
| | else if dtype_a $=1$, then dlen_ ≥ 9. |
| b | (local) Same type as d. |
| | Pointer into the local memory to an array of local size (lld_b, LOCC(nrhs)) |
| | On entry, the array b contains the local pieces of the n-by-nrhs right hand side distributed matrix $\operatorname{sub}(B)$. |
| ib | (global) INTEGER. The row index in the global matrix B indicating the first row of the matrix to be operated on (which may be either all of B or a submatrix of B). |
| descb | (global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix B. |
| | If dtype_b = 502, then dlen_ ≥ 7; |
| | else if dtype_b $=1$, then dlen_ ≥ 9. |
| af, work | (local) REAL for psdttrs |
| | DOUBLE PRECISION for pddttrs |
| | COMPLEX for pcdttrs |
| | DOUBLE COMPLEX for pzdttrs. |
| | Arrays of size laf and (lwork), respectively. |
| | The array af contains auxiliary fill-in space. The fill-in space is created in a call to the factorization routine p ?dttrf and is stored in af. If a linear system is to be solved using p?dttrs after the factorization routine,af must not be altered. |
| | The array work is a workspace array. |

```
laf (local) INTEGER. The size of the array af.
    Must be la }\geq\mathrm{ NB* (bwl+bwu) +6*(bwl+bwu)*(bwl+2*bwu).
```

If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in af(1).

I work (local or global) INTEGER. The size of the array work, must be at least lwork $\geq 10 *$ NPCOL +4 *nrhs.

Output Parameters

b
On exit, this array contains the local pieces of the solution distributed matrix X.

On exit, work (1) contains the minimum value of 1 work required for optimum performance.

INTEGER. If info=0, the execution is successful. info <0 :
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?potrs
Solves a system of linear equations with a Choleskyfactored symmetric/Hermitian distributed positive-
definite matrix.

Syntax

```
call pspotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pdpotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pcpotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pzpotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
```


Include Files

Description

The p?potrs routine solves for X a system of distributed linear equations in the form:
$\operatorname{sub}(A) * X=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ is an $n-b y-n$ real symmetric or complex Hermitian positive definite distributed matrix, and $\operatorname{sub}(B)$ denotes the distributed matrix $B(i b: i b+n-1, j b: j b+n r h s-1)$.

This routine uses Cholesky factorization
$\operatorname{sub}(A)=U^{H *} U, \operatorname{or} \operatorname{sub}(A)=L^{*} L^{H}$
computed by p?potrf.

Input Parameters

uplo
n
nrhs
a, b
ia, ja
desca
i.b, jb
descb

Output Parameters

b
info
(global) CHARACTER*1. Must be 'U' or 'L'.
If uplo = ' U ', upper triangle of $\operatorname{sub}(A)$ is stored;
If uplo = 'L', lower triangle of $\operatorname{sub}(A)$ is stored.
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) INTEGER. The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.
(local)
REAL for pspotrs
DOUBLE PRECISION for pdpotrs
COMPLEX for pcpotrs
DOUBLE COMPLEX for pzpotrs.
Pointers into the local memory to arrays of local sizes

```
(lld_a,LOCC(ja+n-1)) and (lld_b,LOCC(jb+nrhs-1)), respectively.
```

The array a contains the factors L or U from the Cholesky factorization $\operatorname{sub}(A)=L^{*} L^{H}$ or $\operatorname{sub}(A)=U^{H *} U$, as computed by p?potrf.

On entry, the array b contains the local pieces of the right hand sides sub (B).
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(global) INTEGER. The row and column indices in the global matrix B indicating the first row and the first column of the matrix $\operatorname{sub}(B)$, respectively.
(local) INTEGER array of size dlen_. The array descriptor for the distributed matrix B.

Overwritten by the local pieces of the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
info < 0 : if the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?pbtrs

Solves a system of linear equations with a Choleskyfactored symmetric/Hermitian positive-definite band matrix.

Syntax

```
call pspbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork, info)
call pdpbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork, info)
call pcpbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork, info)
call pzpbtrs(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork, info)
```


Include Files

Description

The p?pbtrs routine solves for X a system of distributed linear equations in the form:

$$
\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)
$$

where $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ is an $n-b y-n$ real symmetric or complex Hermitian positive definite distributed band matrix, and $\operatorname{sub}(B)$ denotes the distributed matrix $B(i b: i b+n-1,1: n r h s)$.
This routine uses Cholesky factorization

$$
\operatorname{sub}(A)=P^{*} U^{H *} U^{*} P^{T}, \operatorname{or} \operatorname{sub}(A)=P^{*} L^{*} L^{H * P^{T}}
$$

computed by p?p.btrf.

Input Parameters

uplo
n
bw
nrhs
a, b
(global) CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', upper triangle of $\operatorname{sub}(A)$ is stored;
If uplo = 'L', lower triangle of $\operatorname{sub}(A)$ is stored.
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) INTEGER. The number of superdiagonals of the distributed matrix if $u p l o=' U '$, or the number of subdiagonals if uplo = 'L' $\left(b_{w} \geq 0\right)$.
(global) INTEGER. The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.
(local)
REAL for pspbtrs
DOUBLE PRECISION for pdpbtrs
COMPLEX for pcpbtrs
DOUBLE COMPLEX for pzpbtrs.
Pointers into the local memory to arrays of local sizes (lld_a, LOCC (ja
$+n-1)$) and (lld_b,LOCC(nrhs-1)), respectively.
The array a contains the permuted triangular factor U or L from the Cholesky factorization $\operatorname{sub}(A)=P^{*} U^{H *} U^{*} P^{T}$, or $\operatorname{sub}(A)=P^{*} L^{*} L^{H *} P^{T}$ of the band matrix A, as returned by p?pbtrf.

On entry, the array b contains the local pieces of the n-by-nrhs right hand side distributed matrix $\operatorname{sub}(B)$.
(global) INTEGER. The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
If dtype_a = 501, then dlen_ \geq 7;
else if dtype_a $=1$, then dlen_ ≥ 9.
(global) INTEGER. The row index in the global matrix B indicating the first row of the matrix $\operatorname{sub}(B)$.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix B.

If dtype_b $=502$, then dlen_ ≥ 7;
else if dtype_b $=1$, then $d l e n_{-} \geq 9$.
(local) Arrays, same type as a.
The array af is of size laf. It contains auxiliary fill-in space. The fill-in space is created in a call to the factorization routine p ? dbtrf and is stored in af.

The array work is a workspace array of size lwork.
(local) INTEGER. The size of the array $a f$.
Must be laf nrhs*bw.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
(local or global) INTEGER. The size of the array work, must be at least lwork \geq bw 2.

Output Parameters

b
work(1)
info
On exit, if info=0, this array contains the local pieces of the n-by-nrhs solution distributed matrix X.

On exit, work (1) contains the minimum value of lwork required for optimum performance.

INTEGER. If info $=0$, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?pttrs

Solves a system of linear equations with a symmetric
(Hermitian) positive-definite tridiagonal distributed
matrix using the factorization computed by p?pttrf.

Syntax

```
call pspttrs(n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork, info)
call pdpttrs(n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork, info)
call pcpttrs(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork, info)
call pzpttrs(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork, info)
```


Include Files

Description

The p?pttrs routine solves for X a system of distributed linear equations in the form:

$$
\operatorname{sub}(A)^{*} X=\operatorname{sub}(B),
$$

where $\operatorname{sub}(A)=A(1: n, j a: j a+n-1)$ is an $n-b y-n$ real symmetric or complex Hermitian positive definite tridiagonal distributed matrix, and $\operatorname{sub}(B)$ denotes the distributed matrix B ($i b: i b+n-1,1: n r h s)$.

This routine uses the factorization

```
sub(A) = P**L*D*L
```

computed by p?pttrf.

Input Parameters

| uplo | (global, used in complex flavors only) |
| :---: | :---: |
| | CHARACTER*1. Must be 'U' or 'L'. |
| | If uplo = 'U', upper triangle of $\operatorname{sub}(A)$ is stored; |
| | If uplo = 'L', lower triangle of $\operatorname{sub}(A)$ is stored. |
| n | (global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$. |
| nrhs | (global) INTEGER. The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$. |
| d, e | (local) |
| | REAL for pspttrs |
| | DOUBLE PRECISON for pdpttrs |
| | COMPLEX for pcpttrs |
| | DOUBLE COMPLEX for pzpttrs. |
| | Pointers into the local memory to arrays of size nb_a each. |
| | These arrays contain details of the factorization as returned by p?pttrf |
| ja | (global) INTEGER. The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A). |

desca
b

Output Parameters

b
work(1))
info
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

If dtype_a $=501$ or dtype_a $=502$, then dlen_ ≥ 7;
else if dtype_a $=1$, then dlen_ ≥ 9.
(local) Same type as d, e.
Pointer into the local memory to an array of local size
(Ild_b, LOCC (nrhs)).
On entry, the array b contains the local pieces of the n-by-nrhsright hand side distributed matrix $\operatorname{sub}(B)$.
(global) INTEGER. The row index in the global matrix B indicating the first row of the matrix to be operated on (which may be either all of B or a submatrix of B).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix B.

If dtype_b = 502, then dlen_ ≥ 7;
else if dtype_b = 1 , then $d l e n_{-} \geq 9$.
(local) REAL for pspttrs
DOUBLE PRECISION for pdpttrs
COMPLEX for pcpttrs
DOUBLE COMPLEX for pzpttrs.
Arrays of size laf and (lwork), respectively. The array af contains auxiliary fill-in space. The fill-in space is created in a call to the factorization routine p?pttrf and is stored in af.

The array work is a workspace array.
(local) INTEGER. The size of the array af.
Must be laf $\geq n b _a+2$.
If laf is not large enough, an error code is returned and the minimum acceptable size will be returned in $a f(1)$.
(local or global) INTEGER. The size of the array work, must be at least lwork $\geq(10+2 * \min (100, \text { nrhs }))^{*}$ NPCOL $+4 *$ nrhs.

On exit, this array contains the local pieces of the solution distributed matrix X.

On exit, work (1) contains the minimum value of lwork required for optimum performance.

INTEGER. If info=0, the execution is successful.
info < 0 :
if the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p? trtrs

Solves a system of linear equations with a triangular distributed matrix.

Syntax

```
call pstrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pdtrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pctrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pztrtrs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
```


Include Files

Description

The p?trtrsroutine solves for X one of the following systems of linear equations:
$\operatorname{sub}(A)^{*} X=\operatorname{sub}(B)$,
$(\operatorname{sub}(A))^{T *} X=\operatorname{sub}(B)$, or
$(\operatorname{sub}(A))^{H *} X=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ is a triangular distributed matrix of order n, and $\operatorname{sub}(B)$ denotes the distributed matrix B ($i b: i b+n-1, j b: j b+n r h s-1)$.
A check is made to verify that $\operatorname{sub}(A)$ is nonsingular.

Input Parameters

| uplo | (global) CHARACTER*1. Must be 'U' or 'L'. |
| :---: | :---: |
| | Indicates whether $\operatorname{sub}(A)$ is upper or lower triangular: |
| | If uplo = 'U', then $\operatorname{sub}(A)$ is upper triangular. |
| | If uplo = 'L', then $\operatorname{sub}(A)$ is lower triangular. |
| trans | (global) CHARACTER*1. Must be 'N' or 'T' or 'C'. |
| | Indicates the form of the equations: |
| | If trans $=$ ' N ', then $\operatorname{sub}(A) * X=\operatorname{sub}(B)$ is solved for X. |
| | If trans $=$ ' T ', then $\operatorname{sub}(A)^{T * X}=\operatorname{sub}(B)$ is solved for X. |
| | If trans $=$ ' C^{\prime} ', then $\operatorname{sub}(A)^{H *} X=\operatorname{sub}(B)$ is solved for X. |
| diag | (global) CHARACTER*1. Must be ' N ' or ' U '. |
| | If diag $=$ ' N ', then $\operatorname{sub}(A)$ is not a unit triangular matrix. |
| | If diag = ' U ', then $\operatorname{sub}(A)$ is unit triangular. |

n
(global) Integer. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
nrhs
a, b
ia, ja
desca
ib, jb
descb

Output Parameters

b
info
(global) INTEGER. The number of right-hand sides; i.e., the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.
(local)
REAL for pstrtrs
DOUBLE PRECISION for pdtrtrs
COMPLEX for pctrtrs
DOUBLE COMPLEX for pztrtrs.
Pointers into the local memory to arrays of local sizes (Ild_a, LOCC (ja $+n-1)$) and (lld_b,LOCC(jb+nrhs-1)), respectively.
The array a contains the local pieces of the distributed triangular matrix $\operatorname{sub}(A)$.

If uplo = 'U', the leading n-by-n upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular matrix, and the strictly lower triangular part of sub (A) is not referenced.

If uplo = 'L', the leading n-by- n lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular matrix, and the strictly upper triangular part of sub (A) is not referenced.
If diag = 'U', the diagonal elements of $\operatorname{sub}(A)$ are also not referenced and are assumed to be 1.
On entry, the array b contains the local pieces of the right hand side distributed matrix $\operatorname{sub}(B)$.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(global) INTEGER. The row and column indices in the global matrix B indicating the first row and the first column of the matrix $\operatorname{sub}(B)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix B.

On exit, if info $=0, \operatorname{sub}(B)$ is overwritten by the solution matrix X.
INTEGER. If info $=0$, the execution is successful.
info < 0 :
if the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info> 0 :
if info $=i$, the i-th diagonal element of $\operatorname{sub}(A)$ is zero, indicating that the submatrix is singular and the solutions X have not been computed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

Estimating the Condition Number: ScaLAPACK Computational Routines

This section describes the ScaLAPACK routines for estimating the condition number of a matrix. The condition number is used for analyzing the errors in the solution of a system of linear equations. Since the condition number may be arbitrarily large when the matrix is nearly singular, the routines actually compute the reciprocal condition number.

p?gecon

Estimates the reciprocal of the condition number of a general distributed matrix in either the 1 -norm or the infinity-norm.

Syntax

```
call psgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork, iwork, liwork, info)
call pdgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork, iwork, liwork, info)
call pcgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork, rwork, lrwork, info)
call pzgecon(norm, n, a, ia, ja, desca, anorm, rcond, work, lwork, rwork, lrwork, info)
```

Include Files

Description

The p?gecon routine estimates the reciprocal of the condition number of a general distributed real/complex matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ in either the 1-norm or infinity-norm, using the $L U$ factorization computed by p?getrf.
An estimate is obtained for $\left\|(\operatorname{sub}(A))^{-1}\right\|$, and the reciprocal of the condition number is computed as

$$
\operatorname{rcon} d=\frac{1}{\|\operatorname{sub}(A)\| \times\left\|(\operatorname{sub}(A))^{-1}\right\|}
$$

Input Parameters

norm
n
(global) CHARACTER*1. Must be '1' or 'O' or 'I'.
Specifies whether the 1-norm condition number or the infinity-norm condition number is required.
If norm = '1' or 'O', then the 1-norm is used;
If norm $=$ ' I', then the infinity-norm is used.
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
a
(local)
REAL for psgecon
DOUBLE PRECISION for pdgecon
COMPLEX for pcgecon
DOUBLE COMPLEX for pzgecon.
Pointer into the local memory to an array of size (lld_a,LOCC (ja+n-1)).
The array a contains the local pieces of the factors L and U from the factorization $\operatorname{sub}(A)=P * L * U$; the unit diagonal elements of L are not stored.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(global) REAL for single precision flavors, DOUBLE PRECISION for double precision flavors.

If norm = '1' or 'O', the 1-norm of the original distributed matrix $\operatorname{sub}(A)$;
If norm $=$ 'I', the infinity-norm of the original distributed matrix $\operatorname{sub}(A)$.
(local)
REAL for psgecon
DOUBLE PRECISION for pdgecon
COMPLEX for pcgecon
DOUBLE COMPLEX for pzgecon.
The array work of size lwork is a workspace array.
(local or global) INTEGER. The size of the array work.
For real flavors:
lwork must be at least
lwork $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)+2 * \operatorname{LOCC}\left(n+\bmod \left(j a-1, n b _a\right)\right)$
$+\max \left(2, \max \left(n b _a \star \max (1, i c e i l(N P R O W-1, N P C O L)), \operatorname{LOCC}(n\right.\right.$
$\left.+\bmod \left(j a-1, n b _a\right)\right)+n b _a * \max (1$, iceil(NPCOL-1, NPROW)))).
For complex flavors:
lwork must be at least
lwork $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)+\max (2$,
$\max \left(n b _a * i c e i l(N P R O W-1, N P C O L), \operatorname{LOCC}\left(n+\bmod \left(j a-1, n b _a\right)\right)+\right.$
nb_a*iceil(NPCOL-1, NPROW))).
LOCr and LOCc values can be computed using the ScaLAPACK tool function numroc; NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

NOTE

iceil (x, y) is the ceiling of x / y, and $\bmod (x, y)$ is the integer remainder of x / y.
iwork
Iiwork
rwork
lrwork
(local) INTEGER. Workspace array of size liwork. Used in real flavors only.
(local or global) INTEGER. The size of the array iwork; used in real flavors only. Must be at least

```
liwork\geqLOCr(n+mod(ia-1,mb_a)).
```

(local) REAL for pcgecon
DOUBLE PRECISION for pzgecon
Workspace array of size lrwork. Used in complex flavors only.
(local or global) INTEGER. The size of the array rwork; used in complex flavors only. Must be at least

Irwork $\geq \max \left(1,2 * \operatorname{LOCC}\left(n+\bmod \left(j a-1, n b _a\right)\right)\right)$.

Output Parameters

rcond
work(1)
iwork(1)
rwork(1)
info
(global) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The reciprocal of the condition number of the distributed matrix sub (A). See Description.

On exit, work (1) contains the minimum value of lwork required for optimum performance.

On exit, iwork(1) contains the minimum value of liwork required for optimum performance (for real flavors).

On exit, rwork (1) contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) INTEGER. If info=0, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right) ;$ if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?pocon
Estimates the reciprocal of the condition number (in
the 1 -norm) of a symmetric / Hermitian positive-
definite distributed matrix.

Syntax

```
call pspocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork, iwork, liwork, info)
```

```
call pdpocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork, iwork, liwork, info)
call pcpocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork, rwork, lrwork, info)
call pzpocon(uplo, n, a, ia, ja, desca, anorm, rcond, work, lwork, rwork, lrwork, info)
```

Include Files

Description

The p?poconroutine estimates the reciprocal of the condition number (in the 1 - norm) of a real symmetric or complex Hermitian positive definite distributed matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$, using the Cholesky factorization $\operatorname{sub}(A)=U^{H *} U$ or $\operatorname{sub}(A)=L^{*} L^{H}$ computed by p?potrf.
An estimate is obtained for $\left\|(\operatorname{sub}(A))^{-1}\right\|$, and the reciprocal of the condition number is computed as

Input Parameters

| uplo | (global) CHARACTER*1. Must be 'U' or 'L'. |
| :---: | :---: |
| | Specifies whether the factor stored in $\operatorname{sub}(A)$ is upper or lower triangular. |
| | If $u p l o=' U ', \operatorname{sub}(A)$ stores the upper triangular factor U of the Cholesky factorization $\operatorname{sub}(A)=U^{H *} U$. |
| | If uplo = 'L', $\operatorname{sub}(A)$ stores the lower triangular factor L of the Cholesky factorization $\operatorname{sub}(A)=L^{*} L^{H}$. |
| n | (global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$. |
| a | (local) |
| | REAL for pspocon |
| | DOUBLE PRECISION for pdpocon |
| | COMPLEX for pcpocon |
| | DOUBLE COMPLEX for pzpocon. |
| | Pointer into the local memory to an array of size (lld_a,LOCC (ja+n-1)). |
| | The array a contains the local pieces of the factors L or U from the Cholesky factorization $\operatorname{sub}(A)=U^{H *} U$, or $\operatorname{sub}(A)=L^{*} L^{H}$, as computed by p?potrf. |
| ia, ja | (global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively. |
| desca | (global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A. |
| anorm | (global) REAL for single precision flavors, |
| | DOUBLE PRECISION for double precision flavors. |

I work
iwork
Iiwork

The 1-norm of the symmetric/Hermitian distributed matrix $\operatorname{sub}(A)$.
(local)
REAL for pspocon
DOUBLE PRECISION for pdpocon
COMPLEX for pcpocon
DOUBLE COMPLEX for pzpocon.
The array work of size lwork is a workspace array.
(local or global) INTEGER. The size of the array work.
For real flavors:
lwork must be at least

```
lwork\geq 2*LOCr(n+mod(ia-1,mb_a)) +2*LOCC(n+mod(ja-1,nb_a))
+max(2, max(nb_a*iceil(NPROW-1, NPCOL), LOCC(n
+mod(ja-1,nb_a))+nb_a*iceil(NPCOL-1, NPROW))).
```


For complex flavors:

lwork must be at least
lwork $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)+\max (2$,
$\max \left(n b _a * \max (1, i c e i l(N P R O W-1, N P C O L)), \operatorname{LOCC}\left(n+\bmod \left(j a-1, n b _a\right)\right)\right.$
$\left.+n b _a * \max (1, i c e i l(N P C O L-1, ~ N P R O W))\right)$).
If 1 work $=-1$, then lwork is a global input and a workspace query is assumed. The routine only calculates the minimum and optimal size for all work arrays. Each value is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

NOTE

iceil (x, y) is the ceiling of x / y, and $\bmod (x, y)$ is the integer remainder of x / y.
(local) INTEGER. Workspace array of size liwork. Used in real flavors only.
(local or global) INTEGER. The size of the array iwork; used in real flavors only. Must be at least liwork $\geq L O C r\left(n+\bmod \left(i a-1, m b _a\right)\right)$.

If liwork $=-1$, then liwork is a global input and a workspace query is assumed. The routine only calculates the minimum and optimal size for all work arrays. Each value is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local) REAL for pcpocon
DOUBLE PRECISION for pzpocon
Workspace array of size lrwork. Used in complex flavors only.
(local or global) INTEGER. The size of the array rwork; used in complex flavors only. Must be at least $\operatorname{lrwork} \geq 2 * \operatorname{LOCC}\left(n+\bmod \left(j a-1, n b _a\right)\right)$.

If lrwork $=-1$, then lrwork is a global input and a workspace query is assumed. The routine only calculates the minimum and optimal size for all work arrays. Each value is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

rcond
work(1)
iwork(1)
rwork(1)
info
(global) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
The reciprocal of the condition number of the distributed matrix sub (A).
On exit, work (1) contains the minimum value of lwork required for optimum performance.

On exit, iwork(1) contains the minimum value of liwork required for optimum performance (for real flavors).

On exit, rwork (1) contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) INTEGER. If info $=0$, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?trcon
Estimates the reciprocal of the condition number of a triangular distributed matrix in either 1-norm or infinity-norm.

Syntax

```
call pstrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork, iwork, liwork,
info)
call pdtrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork, iwork, liwork,
info)
call pctrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork, rwork, lrwork,
info)
call pztrcon(norm, uplo, diag, n, a, ia, ja, desca, rcond, work, lwork, rwork, lrwork,
info)
```


Include Files

Description

The p?trconroutine estimates the reciprocal of the condition number of a triangular distributed matrix $\operatorname{sub}(A)=A($ ia:ia+n-1, ja:ja+n-1), in either the 1-norm or the infinity-norm.

The norm of $\operatorname{sub}(A)$ is computed and an estimate is obtained for $\left\|(\operatorname{sub}(A))^{-1}\right\|$, then the reciprocal of the condition number is computed as

Input Parameters

norm
(global) CHARACTER*1. Must be '1' or 'O' or 'I'.
Specifies whether the 1-norm condition number or the infinity-norm condition number is required.

If norm = '1' or 'O', then the 1-norm is used;
If norm $=$ 'I', then the infinity-norm is used.
(global) CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', $\operatorname{sub}(A)$ is upper triangular. If uplo $=$ ' L ', $\operatorname{sub}(A)$ is lower triangular.
(global) CHARACTER*1. Must be 'N' or 'U'.
If diag $=$ ' N ', $\operatorname{sub}(A)$ is non-unit triangular. If diag $=' U ', \operatorname{sub}(A)$ is unit triangular.
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A),(n \geq 0)$.
(local)
REAL for pstrcon
DOUBLE PRECISION for pdtrcon
COMPLEX for pctrcon
DOUBLE COMPLEX for pztrcon.
Pointer into the local memory to an array of size (lld_a, LOCC (ja+n-1)).
The array a contains the local pieces of the triangular distributed matrix $\operatorname{sub}(A)$.
If uplo = 'U', the leading n-by- n upper triangular part of this distributed matrix contains the upper triangular matrix, and its strictly lower triangular part is not referenced.

If uplo = 'L', the leading n-by-n lower triangular part of this distributed matrix contains the lower triangular matrix, and its strictly upper triangular part is not referenced.

If diag = 'U', the diagonal elements of $\operatorname{sub}(A)$ are also not referenced and are assumed to be 1.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
desca
work
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A. (local)
REAL for pstrcon
DOUBLE PRECISION for pdtrcon
COMPLEX for pctrcon
DOUBLE COMPLEX for pztrcon.
The array work of size lwork is a workspace array.
(local or global) INTEGER. The size of the array work.
For real flavors:
lwork must be at least
lwork $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)+\operatorname{LOCC}\left(n+\bmod \left(j a-1, n b _a\right)\right)$
$+\max \left(2, \max \left(n b _a \star \max (1, i c e i l(N P R O W-1, N P C O L))\right.\right.$,
LOCC(n+mod(ja-1, nb_a))+nb_a*max(1,iceil(NPCOL-1, NPROW)))).
For complex flavors:
lwork must be at least
lwork $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)+\max (2$, max(nb_a*iceil(NPROW-1, NPCOL), LOCC(n+mod(ja-1, nb_a))+nb_a*iceil(NPCOL-1, NPROW))).

NOTE

iceil (x, y) is the ceiling of x / y, and $\bmod (x, y)$ is the integer remainder of x / y.
(local) INTEGER. Workspace array of size liwork. Used in real flavors only.
(local or global) INTEGER. The size of the array iwork; used in real flavors only. Must be at least

Iiwork \geq LOCr(n+mod(ia-1,mb_a)).
(local) REAL for pcpocon
DOUBLE PRECISION for pzpocon
Workspace array of size lrwork. Used in complex flavors only.
(local or global) INTEGER. The size of the array rwork; used in complex flavors only. Must be at least
lrwork \geq LOCC (n+mod (ja-1, nb_a)).

Output Parameters

rcond
(global) REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
work(1)
iwork(1)
rwork(1)
info

The reciprocal of the condition number of the distributed matrix sub (A).
On exit, work (1) contains the minimum value of lwork required for optimum performance.

On exit, iwork (1) contains the minimum value of liwork required for optimum performance (for real flavors).

On exit, rwork (1) contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) INTEGER. If info=0, the execution is successful.
info < 0:
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right) ;$ if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

Refining the Solution and Estimating Its Error: ScaLAPACK Computational Routines

This section describes the ScaLAPACK routines for refining the computed solution of a system of linear equations and estimating the solution error. You can call these routines after factorizing the matrix of the system of equations and computing the solution (see Routines for Matrix Factorization and Solving Systems of Linear Equations).

p?gerfs
 Improves the computed solution to a system of linear equations and provides error bounds and backward error estimates for the solution.

Syntax

```
call psgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)
call pdgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)
call pcgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)
call pzgerfs(trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv, b, ib, jb,
descb, x, ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)
```


Include Files

Description

The p?gerfs routine improves the computed solution to one of the systems of linear equations
$\operatorname{sub}(A)^{*} \operatorname{sub}(X)=\operatorname{sub}(B)$,
$\operatorname{sub}(A)^{T *} \operatorname{sub}(X)=\operatorname{sub}(B)$, or
$\operatorname{sub}(A)^{H *} \operatorname{sub}(X)=\operatorname{sub}(B)$ and provides error bounds and backward error estimates for the solution.
Here $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1), \operatorname{sub}(B)=B(i b: i b+n-1, j b: j b+n r h s-1)$, and $\operatorname{sub}(X)=X(i x: i x$ +n-1, jx:jx+nrhs-1).

Input Parameters

```
trans
n
nrhs
\(a, a f, b, x\)
```

ia, ja
desca
iaf, jaf
descaf
ib, jb
(global) CHARACTER*1. Must be 'N' or 'T' or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' N ', the system has the form $\operatorname{sub}(A)^{*} \operatorname{sub}(X)=\operatorname{sub}(B)$ (No transpose);

If trans $=$ ' T ', the system has the form $\operatorname{sub}(A)^{T *} \operatorname{sub}(X)=\operatorname{sub}(B)$ (Transpose);
If trans $=$ ' C ', the system has the form $\operatorname{sub}(A)^{H *} \operatorname{sub}(X)=\operatorname{sub}(B)$ (Conjugate transpose).
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) INTEGER. The number of right-hand sides, i.e., the number of columns of the matrices $\operatorname{sub}(B)$ and $\operatorname{sub}(X)(n r h s \geq 0)$.
(local)
REAL for psgerfs
DOUBLE PRECISION for pdgerfs
COMPLEX for pcgerfs
DOUBLE COMPLEX for pzgerfs.
Pointers into the local memory to arrays of local sizes a(lld_a, LOCc (ja $+n-1)), a f\left(l l d _a f, \operatorname{LOCC}(j a f+n-1)\right), b\left(l l d _b, L O C C(j b+n r h s-1)\right)$, and $x\left(l l d _x, \operatorname{LOCC}(j x+n r h s-1)\right)$, respectively.
The array a contains the local pieces of the distributed matrix $\operatorname{sub}(A)$.
The array af contains the local pieces of the distributed factors of the matrix sub $(A)=P^{\star} L^{\star} U$ as computed by p?getrf.
The array b contains the local pieces of the distributed matrix of right hand sides sub(B).
On entry, the array x contains the local pieces of the distributed solution matrix $\operatorname{sub}(X)$.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(global) INTEGER. The row and column indices in the global matrix $A F$ indicating the first row and the first column of the matrix $\operatorname{sub}(A F)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A F$.
(global) INTEGER. The row and column indices in the global matrix B indicating the first row and the first column of the matrix $\operatorname{sub}(B)$, respectively.

```
descb
ix, jx
descx
ipiv
work
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(B\).
(global) INTEGER. The row and column indices in the global matrix \(X\) indicating the first row and the first column of the matrix \(\operatorname{sub}(X)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(X\).
(local) INTEGER.
Array of size LOCr \(\left(m_{-} a f\right)+m b \_a f\).
This array contains pivoting information as computed by p?getrf. If ipiv \((i)=j\), then the local row \(i\) was swapped with the global row \(j\).
This array is tied to the distributed matrix \(A\).
(local)
REAL for psgerfs
DOUBLE PRECISION for pdgerfs
COMPLEX for pcgerfs
DOUBLE COMPLEX for pzgerfs.
The array work of size lwork is a workspace array.
(local or global) INTEGER. The size of the array work.
For real flavors:
lwork must be at least
lwork \(\geq\) 3*LOCr(n+mod(ia-1,mb_a))
```

For complex flavors:
lwork must be at least
lwork $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)$

NOTE

$\bmod (x, y)$ is the integer remainder of x / y.
(local) INTEGER. Workspace array, size liwork. Used in real flavors only.
(local or global) INTEGER. The size of the array iwork; used in real flavors only. Must be at least
liwork \geq LOCr (n+mod (ib-1, mb_b)).
(local) REAL for pcgerfs
DOUBLE PRECISION for pzgerfs
Workspace array, size lrwork. Used in complex flavors only.
(local or global) INTEGER. The size of the array rwork; used in complex flavors only. Must be at least lrwork $\geq \operatorname{LOCr}\left(n+\bmod \left(i b-1, m b _b\right)\right)$).

Output Parameters

```
x
ferr, berr
```

work(1)
iwork(1)
rwork(1)
info

On exit, contains the improved solution vectors.
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays of size LOCc(jb+nrhs-1) each.
The array ferr contains the estimated forward error bound for each solution vector of $\operatorname{sub}(X)$.
If XTRUE is the true solution corresponding to $\operatorname{sub}(X)$, ferr is an estimated upper bound for the magnitude of the largest element in ($\operatorname{sub}(X)$ - XTRUE) divided by the magnitude of the largest element in $\operatorname{sub}(X)$. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

This array is tied to the distributed matrix X.
The array berr contains the component-wise relative backward error of each solution vector (that is, the smallest relative change in any entry of $\operatorname{sub}(A)$ or $\operatorname{sub}(B)$ that makes $\operatorname{sub}(X)$ an exact solution). This array is tied to the distributed matrix X.

On exit, work (1) contains the minimum value of lwork required for optimum performance.

On exit, iwork(1) contains the minimum value of liwork required for optimum performance (for real flavors).

On exit, rwork (1) contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) INTEGER. If info $=0$, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?porfs

Improves the computed solution to a system of linear
equations with symmetric/Hermitian positive definite
distributed matrix and provides error bounds and backward error estimates for the solution.

Syntax

```
call psporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b, ib, jb, descb, x,
ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)
call pdporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b, ib, jb, descb, x,
ix, jx, descx, ferr, berr, work, lwork, iwork, liwork, info)
call pcporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b, ib, jb, descb, x,
ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)
```

```
call pzporfs(uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, b, ib, jb, descb, x,
ix, jx, descx, ferr, berr, work, lwork, rwork, lrwork, info)
```


Include Files

Description

The p?porfsroutine improves the computed solution to the system of linear equations
$\operatorname{sub}(A)^{*} \operatorname{sub}(X)=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ is a real symmetric or complex Hermitian positive definite distributed matrix and
$\operatorname{sub}(B)=B(i b: i b+n-1, j b: j b+n r h s-1)$,
$\operatorname{sub}(X)=X(i x: i x+n-1, j x: j x+n r h s-1)$
are right-hand side and solution submatrices, respectively. This routine also provides error bounds and backward error estimates for the solution.

Input Parameters

n
nrhs
$a, a f, b, x$
(global) CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix $\operatorname{sub}(A)$ is stored.
If uplo = 'U', $\operatorname{sub}(A)$ is upper triangular. If uplo $=$ 'L', $\operatorname{sub}(A)$ is lower triangular.
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) INTEGER. The number of right-hand sides, i.e., the number of columns of the matrices $\operatorname{sub}(B)$ and $\operatorname{sub}(X)(n r h s \geq 0)$.
(local)
REAL for psporfs
DOUBLE PRECISION for pdporfs
COMPLEX for pcporfs
DOUBLE COMPLEX for pzporfs.
Pointers into the local memory to arrays of local sizes

```
a(lld_a, LOCC(ja+n-1)), af(lld_af,LOCC(jaf+n-1)),
b(lld_b, LOCC(jb+nrhs-1)), and x(IId_x, LOCC(jx+nrhs-1)),
respectively.
```

The array a contains the local pieces of the n-by- n symmetric/Hermitian distributed matrix sub (A).
If uplo = 'U', the leading $n-b y-n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo = 'L', the leading $n-b y-n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the distributed matrix, and its strictly upper triangular part is not referenced.

The array af contains the factors L or U from the Cholesky factorization $\operatorname{sub}(A)=L^{*} L^{H}$ or $\operatorname{sub}(A)=U^{H *} U$, as computed by p?potrf.

On entry, the array b contains the local pieces of the distributed matrix of right hand sides $\operatorname{sub}(B)$.

On entry, the array x contains the local pieces of the solution vectors $\operatorname{sub}(X)$.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(global) INTEGER. The row and column indices in the global matrix $A F$ indicating the first row and the first column of the matrix $\operatorname{sub}(A F)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A F$.
(global) INTEGER. The row and column indices in the global matrix B indicating the first row and the first column of the matrix $\operatorname{sub}(B)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix B.
(global) INTEGER. The row and column indices in the global matrix X indicating the first row and the first column of the matrix $\operatorname{sub}(X)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix X.
(local)
REAL for psporfs
DOUBLE PRECISION for pdporfs
COMPLEX for pcporfs
DOUBLE COMPLEX for pzporfs.
The array work of size lwork is a workspace array.
(local) INTEGER. The size of the array work.
For real flavors:
lwork must be at least
lwork \geq 3*LOCr(n+mod(ia-1,mb_a))
For complex flavors:
lwork must be at least
lwork $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)$
iwork
Iiwork
rwork
lrwork

NOTE

$\bmod (x, y)$ is the integer remainder of x / y.
(local) INTEGER. Workspace array of size liwork. Used in real flavors only.
(local or global) INTEGER. The size of the array iwork; used in real flavors only. Must be at least
liwork \geq LOCr (n+mod(ib-1,mb_b)).
(local) REAL for pcporfs
DOUBLE PRECISION for pzporfs
Workspace array of size lrwork. Used in complex flavors only.
(local or global) InTEGER. The size of the array rwork; used in complex flavors only. Must be at least 1 rwork $\geq \operatorname{LOCr}\left(n+\bmod \left(i b-1, m b _b\right)\right)$).

Output Parameters

X
ferr, berr
work(1)
iwork(1)
rwork(1)
info

If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also
 p?trrfs
 Provides error bounds and backward error estimates
 for the solution to a system of linear equations with a distributed triangular coefficient matrix.

Overview for details of ScaLAPACK array descriptor structures and related notations.

Syntax

```
call pstrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, x, ix, jx,
descx, ferr, berr, work, lwork, iwork, liwork, info)
call pdtrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, x, ix, jx,
descx, ferr, berr, work, lwork, iwork, liwork, info)
call pctrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, x, ix, jx,
descx, ferr, berr, work, lwork, rwork, lrwork, info)
call pztrrfs(uplo, trans, diag, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, x, ix, jx,
descx, ferr, berr, work, lwork, rwork, lrwork, info)
```


Include Files

Description

The p?trrfsroutine provides error bounds and backward error estimates for the solution to one of the systems of linear equations
$\operatorname{sub}(A) * \operatorname{sub}(X)=\operatorname{sub}(B)$,
$\operatorname{sub}(A)^{T *} \operatorname{sub}(X)=\operatorname{sub}(B)$, or
$\operatorname{sub}(A)^{H *} \operatorname{sub}(X)=\operatorname{sub}(B)$,
where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ is a triangular matrix,
$\operatorname{sub}(B)=B(i b: i b+n-1, j b: j b+n r h s-1)$, and
$\operatorname{sub}(X)=X(i x: i x+n-1, j x: j x+n r h s-1)$.
The solution matrix X must be computed by p?trtrs or some other means before entering this routine. The routine p?trrfs does not do iterative refinement because doing so cannot improve the backward error.

Input Parameters

```
uplo
trans (global) CHARACTER*1.Must be 'N' or 'T' or 'C'.
Specifies the form of the system of equations:
If trans = 'N', the system has the form sub(A)*sub(X) = sub(B) (No
transpose);
```

If trans $=$ ' T ', the system has the form $\operatorname{sub}(A)^{T *} \operatorname{sub}(X)=\operatorname{sub}(B)$ (Transpose);

If trans $=$ ' C', the system has the form $\operatorname{sub}(A)^{H *} \operatorname{sub}(X)=\operatorname{sub}(B)$
(Conjugate transpose).
CHARACTER*1. Must be 'N' or 'U'.
If diag $=$ ' N ', then $\operatorname{sub}(A)$ is non-unit triangular.
If diag $=$ ' U ', then $\operatorname{sub}(A)$ is unit triangular.
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) INTEGER. The number of right-hand sides, that is, the number of columns of the matrices $\operatorname{sub}(B)$ and $\operatorname{sub}(X)(n r h s \geq 0)$.
(local)
REAL for pstrrfs
DOUBLE PRECISION for pdtrrfs
COMPLEX for pctrrfs
DOUBLE COMPLEX for pztrrfs.
Pointers into the local memory to arrays of local sizes a(lld_a, LOCc (ja $+n-1)$), b(lld_b, LOCC(jb+nrhs-1)), and $x\left(l l d _x, L O C C(j x+n r h s-1)\right)$, respectively.

The array a contains the local pieces of the original triangular distributed matrix $\operatorname{sub}(A)$.
If uplo = 'U', the leading $n-b y-n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo = 'L', the leading $n-b y-n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the distributed matrix, and its strictly upper triangular part is not referenced.
If diag = 'U', the diagonal elements of $\operatorname{sub}(A)$ are also not referenced and are assumed to be 1 .

On entry, the array b contains the local pieces of the distributed matrix of right hand sides sub(B).

On entry, the array x contains the local pieces of the solution vectors $\operatorname{sub}(X)$.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(global) INTEGER. The row and column indices in the global matrix B indicating the first row and the first column of the matrix $\operatorname{sub}(B)$, respectively.
descb
ix, jx
descx
work
lwork
iwork
liwork
rwork
lrwork
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix B.
(global) INTEGER. The row and column indices in the global matrix X indicating the first row and the first column of the matrix $\operatorname{sub}(X)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix X.
(local)
REAL for pstrrfs
DOUBLE PRECISION for pdtrrfs
COMPLEX for pctrrfs
DOUBLE COMPLEX for pztrrfs.
The array work of size lwork is a workspace array.
(local) INTEGER. The size of the array work.
For real flavors:
lwork must be at least lwork $\geq 3 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)$
For complex flavors:
lwork must be at least
lwork $\geq 2 * \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right)$

NOTE

$\bmod (x, y)$ is the integer remainder of x / y.
(local) INTEGER. Workspace array of size liwork. Used in real flavors only. (local or global) INTEGER. The size of the array iwork; used in real flavors only. Must be at least
liwork \geq LOCr (n+mod(ib-1,mb_b)).
(local) REAL for pctrrfs
DOUBLE PRECISION for pztrrfs
Workspace array of size lrwork. Used in complex flavors only.
(local or global) INTEGER. The size of the array rwork; used in complex flavors only. Must be at least lrwork $\geq \operatorname{LOCr}\left(n+\bmod \left(i b-1, m b _b\right)\right)$).

Output Parameters

ferr, berr

REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays of size LOCc(jb+nrhs-1) each.
work(1)
iwork(1)
rwork(1)
info

The array ferr contains the estimated forward error bound for each solution vector of $\operatorname{sub}(X)$.

If XTRUE is the true solution corresponding to $\operatorname{sub}(X)$, ferr is an estimated upper bound for the magnitude of the largest element in (sub (X) - XTRUE) divided by the magnitude of the largest element in $\operatorname{sub}(X)$. The estimate is as reliable as the estimate for rcond, and is almost always a slight overestimate of the true error.

This array is tied to the distributed matrix X.
The array berr contains the component-wise relative backward error of each solution vector (that is, the smallest relative change in any entry of $\operatorname{sub}(A)$ or $\operatorname{sub}(B)$ that makes $\operatorname{sub}(X)$ an exact solution). This array is tied to the distributed matrix X.

On exit, work (1) contains the minimum value of lwork required for optimum performance.

On exit, iwork(1) contains the minimum value of liwork required for optimum performance (for real flavors).

On exit, rwork (1) contains the minimum value of lrwork required for optimum performance (for complex flavors).
(global) INTEGER. If info $=0$, the execution is successful.

```
info < 0:
```

If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

Matrix Inversion: ScaLAPACK Computational Routines

This sections describes ScaLAPACK routines that compute the inverse of a matrix based on the previously obtained factorization. Note that it is not recommended to solve a system of equations $A x=b$ by first computing A^{-1} and then forming the matrix-vector product $x=A^{-1} b$. Call a solver routine instead (see Solving Systems of Linear Equations); this is more efficient and more accurate.

```
p?getri
Computes the inverse of a LU-factored distributed
matrix.
```


Syntax

```
call psgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)
call pdgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)
call pcgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)
call pzgetri(n, a, ia, ja, desca, ipiv, work, lwork, iwork, liwork, info)
```

Include Files

Description

The p?getriroutine computes the inverse of a general distributed matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a$ $+n-1$) using the $L U$ factorization computed by p ?getrf. This method inverts U and then computes the inverse of $\operatorname{sub}(A)$ by solving the system
$\operatorname{inv}(\operatorname{sub}(A)) * L=\operatorname{inv}(U)$
for inv(sub(A)).

Input Parameters

n
a
ia, ja
desca
work
lwork
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for psgetri
DOUBLE PRECISION for pdgetri
COMPLEX for pcgetri
DOUBLE COMPLEX for pzgetri.
Pointer into the local memory to an array of local size (lld_a, LOCC (ja $+n-1)$).
On entry, the array a contains the local pieces of the L and U obtained by the factorization $\operatorname{sub}(A)=P^{*} L^{*} U$ computed by p ?getrf.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local)
REAL for psgetri
DOUBLE PRECISION for pdgetri
COMPLEX for pcgetri
DOUBLE COMPLEX for pzgetri.
The array work of size lwork is a workspace array.
(local) INTEGER. The size of the array work. lwork must be at least
lwork $\geq \operatorname{LOCr}\left(n+\bmod \left(i a-1, m b _a\right)\right) * n b _a$.

NOTE

$\underline{\bmod (x, y)}$ is the integer remainder of x / y.

The array work is used to keep at most an entire column block of $\operatorname{sub}(A)$.
(local) INTEGER. Workspace array used for physically transposing the pivots, size liwork.
(local or global) INTEGER. The size of the array iwork.
The minimal value liwork of is determined by the following code:

```
if NPROW == NPCOL then
liwork = LOCc(n_a + mod(ja-1,nb_a)) + nb_a
else
liwork = LOCc(n a + mod(ja-1,nb a)) +
max (ceil (ceil (LOCr(m_a)/mb_a) / (l cm/NPROW) ),nb_a)
end if
```

where 1 cm is the least common multiple of process rows and columns (NPROW and NPCOL).

Output Parameters

ipiv
work(1)
iwork(1)
info
(local) INTEGER.
Array of size $\operatorname{LOCr}\left(m_{-} a\right)+m b _a$.
This array contains the pivoting information.
If ipiv(i)=j, then the local row i was swapped with the global row j.
This array is tied to the distributed matrix A.
On exit, work (1) contains the minimum value of 1 work required for optimum performance.

On exit, iwork (1) contains the minimum value of liwork required for optimum performance.
(global) INTEGER. If info=0, the execution is successful.
info < 0:
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info> 0:
If info $=i, U(i, i)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?potri
Computes the inverse of a symmetric/Hermitian
positive definite distributed matrix.

Syntax

```
call pspotri(uplo, n, a, ia, ja, desca, info)
call pdpotri(uplo, n, a, ia, ja, desca, info)
```

```
call pcpotri(uplo, n, a, ia, ja, desca, info)
call pzpotri(uplo, n, a, ia, ja, desca, info)
```


Include Files

Description

The p?potriroutine computes the inverse of a real symmetric or complex Hermitian positive definite distributed matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ using the Cholesky factorization $\operatorname{sub}(A)=U^{H * U}$ or $\operatorname{sub}(A)=L^{*} L^{H}$ computed by p?potrf.

Input Parameters

uplo
n
a
ia, ja
desca
(global) CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix $\operatorname{sub}(A)$ is stored.
If uplo = 'U', upper triangle of $\operatorname{sub}(A)$ is stored. If uplo = 'L', lower triangle of $\operatorname{sub}(A)$ is stored.
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for pspotri
DOUBLE PRECISION for pdpotri
COMPLEX for pcpotri
DOUBLE COMPLEX for pzpotri.
Pointer into the local memory to an array of local size (IId_a, LOCC (ja $+n-1)$).
On entry, the array a contains the local pieces of the triangular factor U or L from the Cholesky factorization $\operatorname{sub}(A)=U^{H *} U$, or $\operatorname{sub}(A)=L^{*} L^{H}$, as computed by p?potrf.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

Output Parameters

a
info

On exit, overwritten by the local pieces of the upper or lower triangle of the (symmetric/Hermitian) inverse of $\operatorname{sub}(A)$.
(global) INTEGER. If info=0, the execution is successful.
info < 0:
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right) ;$ if the i-th argument is a scalar and had an illegal value, then info $=-i$.

```
info> 0:
```

If info $=i$, the element (i, i) of the factor U or L is zero, and the inverse could not be computed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?trtri
Computes the inverse of a triangular distributed matrix.

Syntax

```
call pstrtri(uplo, diag, n, a, ia, ja, desca, info)
call pdtrtri(uplo, diag, n, a, ia, ja, desca, info)
call pctrtri(uplo, diag, n, a, ia, ja, desca, info)
call pztrtri(uplo, diag, n, a, ia, ja, desca, info)
```

Include Files

Description

The p?trtriroutine computes the inverse of a real or complex upper or lower triangular distributed matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$.

Input Parameters

```
uplo
diag
```

n
a
(global) CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the distributed matrix $\operatorname{sub}(A)$ is upper or lower triangular.
If uplo = 'U', $\operatorname{sub}(A)$ is upper triangular.
If uplo = 'L', $\operatorname{sub}(A)$ is lower triangular.
CHARACTER*1. Must be 'N' or 'U'.
Specifies whether or not the distributed matrix $\operatorname{sub}(A)$ is unit triangular.
If diag $=$ ' N ', then $\operatorname{sub}(A)$ is non-unit triangular.
If diag = 'U', then $\operatorname{sub}(A)$ is unit triangular.
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for pstrtri
DOUBLE PRECISION for pdtrtri
COMPLEX for pctrtri
DOUBLE COMPLEX for pztrtri.
Pointer into the local memory to an array of local size (lld_a, LOCC (ja $+n-1)$).

The array a contains the local pieces of the triangular distributed matrix $\operatorname{sub}(A)$.

If uplo = 'U', the leading $n-b y-n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular matrix to be inverted, and the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced.
If uplo = 'L', the leading $n-b y-n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular matrix, and the strictly upper triangular part of sub (A) is not referenced.
ia, ja
desca

Output Parameters

a
info
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

On exit, overwritten by the (triangular) inverse of the original matrix.
(global) INTEGER. If info $=0$, the execution is successful.
info < 0 :
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info> 0 :
If info $=k, A(i a+k-1, j a+k-1)$ is exactly zero. The triangular matrix $\operatorname{sub}(A)$ is singular and its inverse cannot be computed.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

Matrix Equilibration: ScaLAPACK Computational Routines

ScaLAPACK routines described in this section are used to compute scaling factors needed to equilibrate a matrix. Note that these routines do not actually scale the matrices.

```
p?geequ
Computes row and column scaling factors intended to
equilibrate a general rectangular distributed matrix
and reduce its condition number.
```


Syntax

```
call psgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)
call pdgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)
call pcgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)
call pzgeequ(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, info)
```

Include Files

Description

The p ? geequroutine computes row and column scalings intended to equilibrate an m-by- n distributed matrix $\operatorname{sub}(A)=A($ ia:ia $+m-1, j a: j a+n-1)$ and reduce its condition number. The output array returns the row scale factors r_{i}, and the array c returns the column scale factors c_{j}. These factors are chosen to try to make the largest element in each row and column of the matrix B with elements $b_{i j}=r_{i} * a_{i j} * c_{j}$ have absolute value 1 .
r_{i} and c_{j} are restricted to be between $S M L N U M=$ smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of $\operatorname{sub}(A)$ but works well in practice.

SMLNUM and BIGNUM are parameters representing machine precision. You can use the ?lamch routines to compute them. For example, compute single precision values of SMLNUM and BIGNUM as follows:

```
SMLNUM = slamch ('s')
BIGNUM = 1 / SMLNUM
```

The auxiliary function p?laqge uses scaling factors computed by p?geequ to scale a general rectangular matrix.

Input Parameters

m
n
a
ia, ja
desca
(global) INTEGER. The number of rows to be operated on, that is, the number of rows of the distributed matrix $\operatorname{sub}(A)(m \geq 0)$.
(global) INTEGER. The number of columns to be operated on, that is, the number of columns of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for psgeequ
DOUBLE PRECISION for pdgeequ
COMPLEX for pcgeequ
DOUBLE COMPLEX for pzgeequ .
Pointer into the local memory to an array of local size (lld_a, LOCC (ja $+n-1)$).
The array a contains the local pieces of the $m-b y-n$ distributed matrix whose equilibration factors are to be computed.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

Output Parameters

r, c
(local) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays of sizes LOCr (m_a) and LOCC (n_a), respectively.

If info $=0$, or info>ia+m-1, the array r(ia:ia+m-1) contains the row scale factors for $\operatorname{sub}(A) . r$ is aligned with the distributed matrix A, and replicated across every process column. r is tied to the distributed matrix A.

If info $=0$, the array $c(j a: j a+n-1)$ contains the column scale factors for $\operatorname{sub}(A) . c$ is aligned with the distributed matrix A, and replicated down every process row. c is tied to the distributed matrix A.
(global) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info $=0$ or info>ia $+m-1$, rowend contains the ratio of the smallest $r(i)$ to the largest $r(i)$ ($\mathrm{i} a \leq i \leq i a+m-1$). If rowend ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by r(ia:ia+m-1).

If info $=0$, colcnd contains the ratio of the smallest $c(j)$ to the largest $c(j)(j a \leq j \leq j a+n-1)$.

If colcno ≥ 0.1, it is not worth scaling by $c(j a: j a+n-1)$.
(global) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest matrix element. If amax is very close to overflow or very close to underflow, the matrix should be scaled.
(global) INTEGER. If info $=0$, the execution is successful.
info < 0:
If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right) ;$ if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info> 0:
If info $=i$ and
$i \leq m$, the i-th row of the distributed matrix
$\operatorname{sub}(A)$ is exactly zero;
$i>m$, the $(i-m)$-th column of the distributed
matrix $\operatorname{sub}(A)$ is exactly zero.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?poequ

Computes row and column scaling factors intended to equilibrate a symmetric (Hermitian) positive definite distributed matrix and reduce its condition number.

Syntax

```
call pspoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)
call pdpoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)
call pcpoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)
```

```
call pzpoequ(n, a, ia, ja, desca, sr, sc, scond, amax, info)
```


Include Files

Description

The p?poequ routine computes row and column scalings intended to equilibrate a real symmetric or complex Hermitian positive definite distributed matrix $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$ and reduce its condition number (with respect to the two-norm). The output arrays sr and sc return the row and column scale factors

$$
S(i)=\frac{1}{\sqrt{a_{i, i}}}
$$

These factors are chosen so that the scaled distributed matrix B with elements $b_{i j}=s(i) * a_{i j} * s(j)$ has ones on the diagonal.
This choice of $s r$ and $s c$ puts the condition number of B within a factor n of the smallest possible condition number over all possible diagonal scalings.

The auxiliary function p?laqsy uses scaling factors computed by p?geequ to scale a general rectangular matrix.

Input Parameters

n
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for pspoequ
DOUBLE PRECISION for pdpoequ
COMPLEX for pcpoequ
DOUBLE COMPLEX for pzpoequ.
Pointer into the local memory to an array of local size (lld_a, LOCC (ja $+n-1)$).

The array a contains the n-by- n symmetric/Hermitian positive definite distributed matrix $\operatorname{sub}(A)$ whose scaling factors are to be computed. Only the diagonal elements of $\operatorname{sub}(A)$ are referenced.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
desca
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

Output Parameters

Sr, SC
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.

Arrays of sizes LOCr (m_a) and LOCC (n_a), respectively.
If info $=0$, the array sr(ia:ia+n-1) contains the row scale factors for $\operatorname{sub}(A) . s r$ is aligned with the distributed matrix A, and replicated across every process column. sr is tied to the distributed matrix A.

If info $=0$, the array $\operatorname{sc}(j a: j a+n-1)$ contains the column scale factors for $\operatorname{sub}(A) . S C$ is aligned with the distributed matrix A, and replicated down every process row. Sc is tied to the distributed matrix A.
(global)
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
If info $=0$, scond contains the ratio of the smallest $\operatorname{sr}(i)$ (or $\operatorname{sc}(j)$) to the largest $s r(i)$ (or $s c(j))$, with
$i a \leq i \leq i a+n-1$ and $j a \leq j \leq j a+n-1$.
If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth scaling by sr (or SC).
(global)
REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Absolute value of the largest matrix element. If amax is very close to overflow or very close to underflow, the matrix should be scaled.
(global) INTEGER.
If info $=0$, the execution is successful.

```
info < 0:
```

If the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.
info> 0 :
If info $=k$, the k-th diagonal entry of $\operatorname{sub}(A)$ is nonpositive.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

Orthogonal Factorizations: ScaLAPACK Computational Routines

This section describes the ScaLAPACK routines for the $Q R(R Q)$ and $L Q(Q L)$ factorization of matrices. Routines for the $R Z$ factorization as well as for generalized $Q R$ and $R Q$ factorizations are also included. For the mathematical definition of the factorizations, see the respective LAPACK sections or refer to [SLUG].
Table "Computational Routines for Orthogonal Factorizations" lists ScaLAPACK routines that perform orthogonal factorization of matrices.

| Matrix type, factorization | Factorize without pivoting | Factorize with pivoting | Generate matrix Q | Apply matrix \mathbf{Q} |
| :---: | :---: | :---: | :---: | :---: |
| general matrices, QR factorization | p?geqre | p? geqpf | p?orgqr
 p?ungqr | p?ormqr
 p?unmqr |
| general matrices, RQ factorization | p?gerqf | | p?orgrq
 p?ungrq | p?ormrq
 p?unmrq |
| general matrices, LQ factorization | p?gelqf | | p?orglq
 p?unglq | p?ormlq
 p?unmlq |
| general matrices, QL factorization | p?geqlf | | p?orgql
 p?ungql | p?ormql
 p?unmql |
| trapezoidal matrices, RZ factorization | p?tzrzf | | | p?ormrz p?unmrz |
| pair of matrices, generalized QR factorization
 pair of matrices, generalized RQ factorization | p?ggqrf
 p?ggrqf | | | |

```
p?geqrf
Computes the QR factorization of a general m-by-n
matrix.
Syntax
```

```
call psgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)
```

call psgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)

```
call pzgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)
```


Include Files

Description

The p?geqrf routine forms the $Q R$ factorization of a general m-by- n distributed matrix $\operatorname{sub}(A)=A($ ia:ia $+m-1, j a: j a+n-1)$ as
$A=Q^{*} R$.

Input Parameters

(global) INTEGER. The number of rows in the distributed matrix $\operatorname{sub}(A) ;(m \geq$ $0)$.
n
a
(global) INTEGER. The number of columns in the distributed matrix $\operatorname{sub}(A)$; ($n \geq 0$).
(local)
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Pointer into the local memory to an array of local size (lld_a, LOCC (ja $+n-1)$).

Contains the local pieces of the distributed matrix $\operatorname{sub}(A)$ to be factored.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the submatrix $A(i a: i a+m-1$, ja:ja+n-1), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A
(local).
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf.
COMPLEX for pcgeqrf.
DOUBLE COMPLEX for pzgeqrf
Workspace array of size lwork.
(local or global) INTEGER, size of work, must be at least lwork \geq nb_a * (mp0+nq0+nb_a), where
iroff $=\bmod \left(i a-1, m b _a\right), i C o f f=\bmod \left(j a-1, n b _a\right)$, iarow $=$ indxg $2 p\left(i a, ~ m b _a, ~ M Y R O W, ~ r s r c _a, ~ N P R O W\right), ~$ iacol $=$ indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL), $m p 0=$ numroc (m+iroff, mb_a, MYROW, iarow, NPROW), nq0 = numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL), and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then l work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
tau
work(1)
info

The elements on and above the diagonal of $\operatorname{sub}(A)$ contain the $\min (m, n)$-byn upper trapezoidal matrix R (R is upper triangular if $m \geq n$); the elements below the diagonal, with the array tau, represent the orthogonal/unitary matrix Q as a product of elementary reflectors (see Application Notes below).
(local)
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf
COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Array of size LOCC (ja+min $(m, n)-1)$.
Contains the scalar factor of elementary reflectors. tau is tied to the distributed matrix A.

On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$, the execution is successful.
<0, if the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

The matrix Q is represented as a product of elementary reflectors
$Q=H(j a) * H(j a+1) * \ldots * H(j a+k-1)$,
where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(i)=I-\tan ^{*} v^{*} v^{\prime}$
where tau is a real/complex scalar, and v is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1 ; v(i+1: m)$ is stored on exit in $A(i a+i: i a+m-1, j a+i-1)$, and tau in tau(ja+i-1).
See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?geqpf
Computes the QR factorization of a general m-by-n
matrix with pivoting.
```


Syntax

```
call psgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)
call pdgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, info)
call pcgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, rwork, lrwork, info)
call pzgeqpf(m, n, a, ia, ja, desca, ipiv, tau, work, lwork, rwork, lrwork, info)
```


Include Files

Description

The p?geqpf routine forms the $Q R$ factorization with column pivoting of a general m-by- n distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)$ as
$\operatorname{sub}(A) * P=Q * R$.

Input Parameters

m
n
a
ia, ja
desca
work
lwork
(global) INTEGER. The number of rows in the matrix $\operatorname{sub}(A)(m \geq 0)$.
(global) INTEGER. The number of columns in the matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf
COMPLEX for pcgeqpf
DOUBLE COMPLEX for pzgeqpf.
Pointer into the local memory to an array of local size (lld_a, IOCc (ja $+n-1)$).

Contains the local pieces of the distributed matrix $\operatorname{sub}(A)$ to be factored.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the submatrix $A(i a: i a+m-1$, ja:ja+n-1), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local).
REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf.
COMPLEX for pcgeqpf.
DOUBLE COMPLEX for pzgeqpf
Workspace array of size lwork.
(local or global) INTEGER, size of work, must be at least
For real flavors:
lwork $\geq \max (3, m p 0+n q 0)+\operatorname{LOCC}(j a+n-1)+n q 0$.
For complex flavors:
I work $\geq \max (3, m p 0+n q 0)$.
Here
iroff $=\bmod \left(i a-1, m b _a\right), i C O f f=\bmod \left(j a-1, n b _a\right)$,
iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
rwork
lrwork

```
mp0 = numroc(m+iroff, mb a, MYROW, iarOW, NPROW ),
nq0 = numroc(n+icoff, nb_a, MYCOL, iacol, NPCOL),
LOCC (ja+n-1) = numroc(ja+n-1, nb_a, MYCOL, csrc_a, NPCOL),
and numroc, indxg2p are ScaLAPACK tool functions.
```

You can determine MYROW, MYCOL, NPROW and NPCOL by calling the blacs_gridinfosubroutine.

If lwork $=-1$, then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local).
REAL for pcgeqpf.
DOUBLE PRECISION for pzgeqpf.
Workspace array of size lrwork (complex flavors only).
(local or global) INTEGER, size of rwork (complex flavors only). The value of lrwork must be at least
lwork $\geq L O C C(j a+n-1)+n q 0$.
Here

```
iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mp0 = numroc(m+iroff, mb_a, MYROW, iarow, NPROW ),
nq0 = numroc(n+icoff, nb_a, MYCOL, iacol, NPCOL),
LOCC (ja+n-1) = numroc(ja+n-1, nb_a, MYCOL,Csrc_a, NPCOL),
and numroc, indxg2p are ScaLAPACK tool functions.
```

You can determine MYROW, MYCOL, NPROW and NPCOL by calling the blacs_gridinfosubroutine.
If lrwork $=-1$, then lrwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
The elements on and above the diagonal of $\operatorname{sub}(A)$ contain the $\min (m, n)$-byn upper trapezoidal matrix R (R is upper triangular if $m \geq n$); the elements below the diagonal, with the array tau, represent the orthogonal/unitary matrix Q as a product of elementary reflectors (see Application Notes below).
(local) INTEGER. Array of size LOCC (ja+n-1).
ipiv(i) $=k$, the local i-th column of $\operatorname{sub}(A) * P$ was the global k-th column of $\operatorname{sub}(A)$. ipiv is tied to the distributed matrix A.

```
tau
work(1)
rwork(1)
info
(local)
REAL for psgeqpf
DOUBLE PRECISION for pdgeqpf
COMPLEX for pcgeqpf
DOUBLE COMPLEX for pzgeqpf.
Array of size LOCC (ja+min (m,n)-1).
Contains the scalar factor tau of elementary reflectors. tau is tied to the distributed matrix \(A\).
On exit, work (1) contains the minimum value of 1 work required for optimum performance.
On exit, rwork (1) contains the minimum value of lrwork required for optimum performance.
(global) INTEGER.
\(=0\), the execution is successful.
\(<0\), if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```


Application Notes

The matrix Q is represented as a product of elementary reflectors
$Q=H(1)^{*} H(2)^{*} \ldots * H(k)$
where $k=\min (m, n)$.
Each $H(i)$ has the form
$H=I-\tan ^{*} v^{*} v^{\prime}$
where tau is a real/complex scalar, and v is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1 ; v(i+1: m)$ is stored on exit in $A(i a+i: i a+m-1, j a+i-1)$.

The matrix P is represented in ipiv as follows: if ipiv $(j)=i$ then the j-th column of P is the i-th canonical unit vector.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?orgqr

Generates the orthogonal matrix Q of the $Q R$
factorization formed by p?geqre.

Syntax

```
call psorgqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorgqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```

Include Files

Description

The p?orgqrroutine generates the whole or part of m-by- n real distributed matrix Q denoting A (ia:ia+m-1, ja:ja+n-1) with orthonormal columns, which is defined as the first n columns of a product of k elementary reflectors of order m
$Q=H(1) * H(2) * \ldots * H(k)$
as returned by p?geqre.

Input Parameters

m
n
k
a
ia, ja
desca
tau
work

I work
(global) INTEGER. The number of rows in the matrix $\operatorname{sub}(Q)(m \geq 0)$.
(global) INTEGER. The number of columns in the matrix $\operatorname{sub}(Q)(m \geq n \geq 0)$.
(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(n \geq k \geq 0)$.
(local)
REAL for psorgqr
DOUBLE PRECISION for pdorgqr
Pointer into the local memory to an array of local size (IId_a, LOCC (ja $+n-1))$. The j-th column must contain the vector that defines the elementary reflector $H(j)$, $j a \leq j \leq j a+k-1$, as returned by p?geqrf in the k columns of its distributed matrix argument $A(i a: *, j a: j a+k-1)$.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the submatrix $A(i a: i a+m-1$, ja:ja+n-1), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local)
REAL for psorgqr
DOUBLE PRECISION for pdorgqr
Array of size LOCC (ja+k-1).
Contains the scalar factor $\operatorname{tau}(j)$ of elementary reflectors $H(j)$ as returned by p?geqrf. tau is tied to the distributed matrix A.
(local)
REAL for psorgqr
DOUBLE PRECISION for pdorgqr
Workspace array of size of lwork.
(local or global) INTEGER, size of work.
Must be at least 1 work $\geq n b$ _a* (nqa0 $\left.+m p a 0+n b _a\right)$, where

```
iroffa = mod(ia-1, mb_a), iCOffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
```

```
iacol = indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarOw, NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL);
```

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
work(1)
info

Contains the local pieces of the $m-b y-n$ distributed matrix Q .
On exit, (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?ungqr
Generates the complex unitary matrix Q of the $Q R$
factorization formed by p?geqrf.

Syntax

```
call pcungqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzungqr(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


Include Files

Description

This routine generates the whole or part of $m-b y-n$ complex distributed matrix Q denoting $A(i a: i a+m-1$, ja:ja+n-1) with orthonormal columns, which is defined as the first n columns of a product of k elementary reflectors of order m
$Q=H(1) * H(2) * \ldots * H(k)$
as returned by p?geqrf.

Input Parameters

(global) INTEGER. The number of rows in the matrix $\operatorname{sub}(Q) ;(m \geq 0)$.
(global) INTEGER. The number of columns in the matrix $\operatorname{sub}(Q)(m \geq n \geq 0)$.
k
a
ia, ja
desca
tau
work

I work
(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(n \geq k \geq 0)$.
(local)
COMPLEX for pcungqr
DOUBLE COMPLEX for pzungqr
Pointer into the local memory to an array of size (IId_a, LOCC (ja+n-1)). The j-th column must contain the vector that defines the elementary reflector $H(j)$, jáj $\leq j a+k-1$, as returned by p ? geqre in the k columns of its distributed matrix argument $A(i a: *, j a: j a+k-1)$.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the submatrix A, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local)
COMPLEX for pcungqr
DOUBLE COMPLEX for pzungqr
Array of size LOCC (ja+k-1).
Contains the scalar factor $\operatorname{tau}(j)$ of elementary reflectors $H(j)$ as returned by p?geqrf. tau is tied to the distributed matrix A.
(local)
COMPLEX for pcungqr
DOUBLE COMPLEX for pzungqr
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least
lwork $\geqq n b _a *\left(n q a 0+m p a 0+n b _a\right)$, where
iroffa $=\bmod \left(i a-1, m b _a\right)$,
$i c o f f a=\bmod \left(j a-1, n b _a\right)$,
iarow $=$ indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL $)$,
mpa0 $=$ numroc $\left(m+i r o f f a, ~ m b _a\right.$, MYROW, iarow, NPROW $)$,
$n q a 0=$ numroc $\left(n+i c o f f a, n b _a\right.$, MYCOL, iacol, NPCOL $)$
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If lwork $=-1$, then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
work(1)
info

Contains the local pieces of the m-by-n distributed matrix Q.
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?ormqr
Multiplies a general matrix by the orthogonal matrix Q
of the QR factorization formed by p?geqre.

Syntax

```
call psormqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pdormqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
```


Include Files

Description

The p?ormqrroutine overwrites the general real m-by-n distributed matrix sub $(C)=C(i c: i c+m-1, j c: j c$ $+n-1$) with

$$
\begin{array}{lll}
& \text { side }='^{\prime} \mathrm{L}^{\prime} & \text { side }='^{\prime} \mathrm{R}^{\prime} \\
\text { trans }=\text { ' } \mathrm{N}^{\prime}: & Q^{*} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q \\
\text { trans }=\mathrm{I}^{\prime}: & Q^{T *} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q^{T}
\end{array}
$$

where Q is a real orthogonal distributed matrix defined as the product of k elementary reflectors

$$
Q=H(1) H(2) \ldots H(k)
$$

as returned by p?geqre. Q is of order mif side = 'L' and of order n if side = 'R'.

Input Parameters

```
side (global) CHARACTER
= 'L':Q or Q }\mp@subsup{Q}{}{T}\mathrm{ is applied from the left.
= 'R':Q or Q Q is applied from the right.
(global) CHARACTER
= 'N', no transpose, Q is applied.
='T', transpose, Q }\mp@subsup{Q}{}{T}\mathrm{ is applied.
```

m
n
k
a
ia, ja
desca
tau

C
ic, jc
descc
(global) INTEGER. The number of rows in the distributed matrix sub(C) ($m \geq 0$) .
(global) INTEGER. The number of columns in the distributed matrix sub(C) ($n \geq 0$) .
(global) INTEGER. The number of elementary reflectors whose product defines the matrix Q. Constraints:
If side $=$ 'L', $m \geq k \geq 0$
If side $=$ 'R', $n \geq k \geq 0$.
(local)
REAL for psormqr
DOUBLE PRECISION for pdormqr.
Pointer into the local memory to an array of size (lld_a, LOCC (ja+n-1)). The j-th column must contain the vector that defines the elementary reflector $H(j)$, ja $\leq j \leq j a+k-1$, as returned by p?geqrf in the k columns of its distributed matrix argument $A\left(i a:^{*}, j a: j a+k-1\right) . A(i a: *, j a: j a+k-1)$ is modified by the routine but restored on exit.

```
If side = 'L',lld_a \geq max(1, LOCr(ia+m-1))
If side = 'R',lld_a }\geq\mathrm{ max(1, LOCr(ia+n-1))
```

(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the submatrix A, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local)
REAL for psormqr
DOUBLE PRECISION for pdormqr
Array of size LOCC (ja+k-1).
Contains the scalar factor $\operatorname{tau}(j)$ of elementary reflectors $H(j)$ as returned by p? geqrf. tau is tied to the distributed matrix A.
(local)
REAL for psormqr
DOUBLE PRECISION for pdormqr
Pointer into the local memory to an array of local size (lld_c, LOCC (jc $+n-1)$).

Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.
(global) INTEGER. The row and column indices in the global matrix C indicating the first row and the first column of the matrix $\operatorname{sub}(C)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix C.
work
l work
(local)
REAL for psormqr
DOUBLE PRECISION for pdormqr.
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least:
if side = 'L',
lwork $\geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2,(n q c 0+m p c 0) * n b _a\right)+n b _a * n b _a$
else if side = 'R',
lwork $\geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2\right.$, (nqc0+max (npa0+numroc (numroc (n
$\left.\left.\left.\left.\left.+i \operatorname{coffc}, ~ n b _a, ~ 0, ~ 0, ~ N P C O L\right), ~ n b _a, ~ 0, ~ 0, ~ l c m q\right), ~ m p c 0\right)\right) * n b _a\right)$
$+n b _a * n b _a$
end if
where

```
lcmq = lcm/NPCOL with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
npa0= numroc(n+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0= numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0= numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
```


Output Parameters

c
work(1)
info

Overwritten by the product $Q^{*} \operatorname{sub}(C)$, or $Q^{T *} \operatorname{sub}(C)$, or $\operatorname{sub}(C) * Q^{T}$, or $\operatorname{sub}(C) * Q$.

On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$: the execution is successful.
< 0 : if the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

p?unmqr

Multiplies a complex matrix by the unitary matrix Q of
the QR factorization formed by p?geqre.

Syntax

```
call pcunmqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pzunmqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
```


Include Files

Description

This routine overwrites the general complex m-by-n distributed matrix sub (C) $=C(i c: i c+m-1, j c: j c+n-1)$ with

$$
\begin{aligned}
& \text { side }=\text { ' } \mathrm{L} \text { ' side }=\text { 'R' } \\
& \text { trans }=\text { 'N': } \quad Q^{*} \operatorname{sub}(C) \quad \operatorname{sub}(C)^{*} Q \\
& \text { trans }=\text { 'T': } \quad Q^{H * s u b(C)} \\
& \operatorname{sub}(C) * Q^{H}
\end{aligned}
$$

where Q is a complex unitary distributed matrix defined as the product of k elementary reflectors $Q=H(1) H(2) \ldots H(k)$ as returned by p?geqre. Q is of order m if side $=$ 'L' and of order n if side ='R'.

Input Parameters

m
n
k
(global) CHARACTER
$=$ ' L ' $: Q$ or Q^{H} is applied from the left.
$={ }^{\prime} R^{\prime}: Q$ or Q^{H} is applied from the right.
(global) CHARACTER
$=$ ' N^{\prime}, no transpose, Q is applied.
$=C^{\prime}$ ', conjugate transpose, Q^{H} is applied.
(global) INTEGER. The number of rows in the distributed matrix sub(C) ($m \geq 0$).
(global) INTEGER. The number of columns in the distributed matrix sub(C) ($n \geq 0$).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix Q. Constraints:
If side = 'L', $m \geq k \geq 0$

If side $=$ ' R ', $n \geq k \geq 0$.
a
ia, ja
desca
tau

C
ic, jc
descc
work
lwork
(local)
COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr.
Pointer into the local memory to an array of size (lld_a, LOCC (ja+k-1)). The j-th column must contain the vector that defines the elementary reflector $H(j)$, ja $\leq j \leq j a+k-1$, as returned by p ? geqre in the k columns of its distributed matrix argument $A\left(i a:^{*}, j a: j a+k-1\right) . A(i a: *, j a: j a+k-1)$ is modified by the routine but restored on exit.

If side $=$ 'L', lld_a $\geq \max (1$, LOCr(ia+m-1))
If side $=$ 'R', lld_a $\geq \max (1, \operatorname{LOCr}(i a+n-1))$
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the submatrix A, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local)
COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr
Array of size LOCC (ja+k-1).
Contains the scalar factor $\operatorname{tau}(j)$ of elementary reflectors $H(j)$ as returned by p?geqrf. tau is tied to the distributed matrix A.
(local)
COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr.
Pointer into the local memory to an array of local size (lld_c, LOCC (jc $+n-1)$).

Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.
(global) INTEGER. The row and column indices in the global matrix C indicating the first row and the first column of the submatrix C, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix C.
(local)
COMPLEX for pcunmqr
DOUBLE COMPLEX for pzunmqr.
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least:
If side = 'L',
lwork $\geq \max \left(\left(n b _a^{\star}\left(n b _a-1\right)\right) / 2,(n q c 0+m p c 0) * n b _a\right)+n b _a * n b _a$

```
else if side = 'R',
lwork\geqmax((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 +
numroc(numroc(n+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0,
lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
where
lcmq = lcm/NPCOL with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(n+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
```


Output Parameters

c
work (1)
info

Overwritten by the product $Q^{*} \operatorname{sub}(C)$, or $Q^{H *} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{H}$, or $\operatorname{sub}(C) * Q$.

On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
$=0$: the execution is successful.
< 0 : if the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?gelqf
Computes the LQ factorization of a general
rectangular matrix.

Syntax

```
call psgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgelqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
```


Include Files

Description

The p?gelqf routine computes the $L Q$ factorization of a real/complex distributed $m-b y-n$ matrix $\operatorname{sub}(A)=$ $A(i a: i a+m-1, j a: j a+n-1)=L^{*} Q$.

Input Parameters

m
n
a
l work
(global) INTEGER. The number of rows in the distributed submatrix $\operatorname{sub}(A)$ ($m \geq 0$).
(global) INTEGER. The number of columns in the distributed submatrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for psgelqf
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Pointer into the local memory to an array of local size (lld_a, LOCc (ja $+n-1)$).

Contains the local pieces of the distributed matrix sub (A) to be factored.
(global) INTEGER. The row and column indices in the global array A indicating the first row and the first column of the submatrix A(ia:ia $+m-1, j a: j a+n-1)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local)
REAL for psgelqf
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Workspace array of size of 1 work.
(local or global) INTEGER, size of work, must be at least lwork $\geq m b _a^{\star}$ (mp0 + nq0 + mb_a), where
iroff = mod(ia-1, mb_a),

```
iCOff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL),
mp0 = numroc(m+iroff, mb_a, MYROW, iarow, NPROW),
nq0 = numroc(n+icoff, nb_a, MYCOL, iacol, NPCOL)
```

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

NOTE

$\bmod (x, y)$ is the integer remainder of x / y.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a
The elements on and below the diagonal of $\operatorname{sub}(A)$ contain the m-by$\min (m, n)$ lower trapezoidal matrix $L(L$ is lower trapezoidal if $m \leq n$); the elements above the diagonal, with the array tau, represent the orthogonal/ unitary matrix Q as a product of elementary reflectors (see Application Notes below).
(local)
REAL for psgelqf
DOUBLE PRECISION for pdgelqf
COMPLEX for pcgelqf
DOUBLE COMPLEX for pzgelqf
Array of size LOCr (ia+min $(m, n)-1)$.
Contains the scalar factors of elementary reflectors. tau is tied to the distributed matrix A.
work(1)
info
On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$: the execution is successful.
<0 : if the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

Application Notes

The matrix Q is represented as a product of elementary reflectors
$Q=H(i a+k-1)^{*} H(i a+k-2)^{*} \ldots * H(i a)$,
where $k=\min (m, n)$
Each $H(i)$ has the form
$H(i)=I-\tan ^{*} v^{*} v^{\prime}$
where tau is a real/complex scalar, and v is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1 ; v(i+1: n)$ is stored on exit in $A(i a+i-1, j a+i: j a+n-1)$, and tau in $\operatorname{tau}(i a+i-1)$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?orglq
Generates the real orthogonal matrix Q of the $L Q$
factorization formed by p?gelqf.

Syntax

```
call psorglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


Include Files

Description

The p?orglq routine generates the whole or part of m-by-n real distributed matrix Q denoting A (ia:ia $+m-1, j a: j a+n-1$) with orthonormal rows, which is defined as the first m rows of a product of k elementary reflectors of order n
$Q=H(k)^{*} \ldots * H(2)^{*} H(1)$
as returned by p?gelqf.

Input Parameters

m
n
k
a
(global) INTEGER. The number of rows in the matrix $\operatorname{sub}(Q) ;(m \geq 0)$.
(global) INTEGER. The number of columns in the matrix $\operatorname{sub}(Q)(n \geq m \geq 0)$.
(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(m \geq k \geq 0)$.
(local)
REAL for psorglq
DOUBLE PRECISION for pdorglq
Pointer into the local memory to an array of local size (lld_a, LOCC (ja $+n-1)$). On entry, the i-th row must contain the vector that defines the elementary reflector $H(i)$, $i a \leq i \leq i a+k-1$, as returned by p?gelqf in the k rows of its distributed matrix argument $A\left(i a: i a+k-1, j a:^{*}\right)$.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the submatrix A (ia:ia $+m-1, j a: j a+n-1)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
work
lwork
(local)
REAL for psorglq
DOUBLE PRECISION for pdorglq
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least
lwork $\geq m b$ _a* $\left(m p a 0+n q a 0+m b _a\right)$, where
iroffa $=\bmod \left(i a-1, m b _a\right)$,
icoffa $=\bmod \left(j a-1, n b _a\right)$,
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpaO = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 $=$ numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL)

NOTE

$\underline{\bmod (x, y)}$ is the integer remainder of x / y.
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Output Parameters

a

tau
work(1)
info
Contains the local pieces of the m-by- n distributed matrix Q to be factored.
(local)
REAL for psorglq
DOUBLE PRECISION for pdorglq
Array of size LOCr (ia+k-1).
Contains the scalar factors $\operatorname{tau}(j)$ of elementary reflectors $H(j)$. tau is tied to the distributed matrix A.

On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$: the execution is successful.
< 0 : if the i-th argument is an array and the j-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the i-th argument is a scalar and had an illegal value, then info $=-i$.

See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?unglq
Generates the unitary matrix Q of the LQ factorization
formed by p?gelqf.
```


Syntax

```
call pcunglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```

call pcunglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzunglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```
call pzunglq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


Include Files

Description

This routine generates the whole or part of m-by- n complex distributed matrix Q denoting A (ia: ia $+m-1, j a: j a+n-1)$ with orthonormal rows, which is defined as the first m rows of a product of k elementary reflectors of order n
$Q=(H(k))^{H} \ldots{ }^{*}(H(2))^{H *}(H(1))^{H}$ as returned by p?gelqf.

Input Parameters

m
n
k
a
ia, ja
desca
tau
work
(global) INTEGER. The number of rows in the matrix $\operatorname{sub}(Q)(m \geq 0)$.
(global) INTEGER. The number of columns in the matrix $\operatorname{sub}(Q)(n \geq m \geq 0)$.
(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q(m \geq k \geq 0)$.
(local)
COMPLEX for pcunglq
DOUBLE COMPLEX for pzunglq
Pointer into the local memory to an array of local size (IId_a, LOCC (ja $+n-1)$). On entry, the i-th row must contain the vector that defines the elementary reflector $H(i)$, $i a \leq i \leq i a+k-1$, as returned by p?gelqf in the k rows of its distributed matrix argument $A\left(i a: i a+k-1, j a:^{*}\right)$.
(global) INTEGER. The row and column indices in the global matrix A indicating the first row and the first column of the submatrix A (ia:ia $+m-1, j a: j a+n-1)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local)
COMPLEX for pcunglq
DOUBLE COMPLEX for pzunglq
Array of size LOCr (ia+k-1).
Contains the scalar factors $\operatorname{tau}(j)$ of elementary reflectors $H(j)$. tau is tied to the distributed matrix A.
(local)
COMPLEX for pcunglq
DOUBLE COMPLEX for pzunglq

Workspace array of size of lwork.

```
(local or global) INTEGER, size of work, must be at least
``` lwork \(\geq m b\) _a* (mpa0 \(\left.+n q a 0+m b \_a\right)\), where iroffa \(=\bmod \left(i a-1, m b \_a\right)\),
icoffa \(=\bmod \left(j a-1, n b _a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL),
mpa0 \(=\) numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 \(=\) numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).

If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
work(1)
info

Contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(Q\) to be factored.
On exit, work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?ormlq}

Multiplies a general matrix by the orthogonal matrix \(Q\)
of the \(L Q\) factorization formed by p?gelqf.

\section*{Syntax}
```

call psormlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, work, lwork, info)
call pdormlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, work, lwork, info)

```

\section*{Include Files}

\section*{Description}

The p?ormlq routine overwrites the general real m-by-n distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c\) \(+n-1\)) with
\[
\begin{array}{lll}
& \text { side }=^{\prime} \mathrm{L} ' & \text { side }=^{\prime} \mathrm{R}^{\prime} \\
\text { trans }=\mathrm{I}^{\prime}: & Q^{*} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q \\
\text { trans }=\mathrm{I}^{\prime}: & Q^{T *} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q^{T}
\end{array}
\]
where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
\(Q=H(k) \ldots H(2) H(1)\)
as returned by p?gelqf. \(Q\) is of order mif side = 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
(global) CHARACTER
\(=' L ': Q\) or \(Q^{T}\) is applied from the left.
\(={ }^{\prime} \mathrm{R}^{\prime}: Q\) or \(Q^{T}\) is applied from the right.
(global) CHARACTER
\(=\) ' \(N\) ', no transpose, \(Q\) is applied.
\(=\) 'T', transpose, \(Q^{T}\) is applied.
(global) Integer. The number of rows in the distributed matrix sub(C) (\(m \geq 0\)).
(global) Integer. The number of columns in the distributed matrix sub(\(C\)) (\(n \geq 0\)).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:

If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) 'R', \(n \geq k \geq 0\).
(local)
REAL for psormlq
DOUBLE PRECISION for pdormlq.
Pointer into the local memory to an array of size (Ild_a,LOCC(ja+m-1)), if side = 'L' and (Ild_a, \(\operatorname{LOCC}(j a+n-1))\), if side = 'R'. The \(i\)-th row must contain the vector that defines the elementary reflector \(H(i), i a \leq i \leq i a\) \(+k-1\), as returned by \(p\) ?gelqf in the \(k\) rows of its distributed matrix argument \(A(i a: i a+k-1, ~ j a: *)\).
\(A\left(i a: i a+k-1, j a:^{*}\right)\) is modified by the routine but restored on exit.
(global) InTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
```

tau
c
ic, jc
descc
work
lwork
(local)
REAL for psormlq
DOUBLE PRECISION for pdormlq
Array of size LOCC (ja+k-1).
Contains the scalar factor $\operatorname{tau}(j)$ of elementary reflectors $H(j)$ as returned by p?gelqf. tau is tied to the distributed matrix $A$.
(local)
REAL for psormlq
DOUBLE PRECISION for pdormlq
Pointer into the local memory to an array of local size (lld_c, LOCc (jc $+n-1)$ ).
Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.
(global) INTEGER. The row and column indices in the global matrix $C$ indicating the first row and the first column of the submatrix $C$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $C$.
(local)
REAL for psormlq
DOUBLE PRECISION for pdormlq.
Workspace array of size of lwork.
(local or global) INTEGER, size of the array work; must be at least:

```
```

If side = 'L',

```
If side = 'L',
lwork\geqmax((mb_a*(mb_a-1))/2, (mpc0+maxmqa0) + numroc(numroc(m
lwork\geqmax((mb_a*(mb_a-1))/2, (mpc0+maxmqa0) + numroc(numroc(m
+ iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), nqc0))*
+ iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), nqc0))*
mb_a) + mb_a*mb_a
mb_a) + mb_a*mb_a
else if side = 'R',
else if side = 'R',
lwork\geqmax ((mb_a* (mb_a-1))/2, (mpc0+nqc0)*mb_a + mb_a*mb_a
lwork\geqmax ((mb_a* (mb_a-1))/2, (mpc0+nqc0)*mb_a + mb_a*mb_a
end if
end if
where
where
lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),
lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL),
iacol = indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
```

icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),

```
```

iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),

```

\section*{NOTE}
```

mod}(x,y)\mathrm{ is the integer remainder of x/y.

```
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

C
Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime} * \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C)^{*} Q\)
work(1)
On exit work (1) contains the minimum value of 1 work required for optimum performance.
info
(global) INTEGER.
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?unmlq}

Multiplies a general matrix by the unitary matrix \(Q\) of the \(L Q\) factorization formed by p?gelqf.

\section*{Syntax}
```

call pcunmlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pzunmlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)

```

\section*{Include Files}

\section*{Description}

This routine overwrites the general complex m-by-n distributed matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\) with
side = 'L'
\[
\text { side }='^{\prime} \mathrm{R}^{\prime}
\]
```

trans = 'N': }\quad\mp@subsup{Q}{}{*}\textrm{sub}(C)\quad\operatorname{sub}(C)*
trans = 'T': }\quad\mp@subsup{Q}{}{H*}\operatorname{sub}(C
sub(C)* Q H

```
where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors \(Q=H(k)^{\prime} \ldots H(2)^{\prime} H(1)^{\prime}\)
as returned by p?gelqf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
side (global) CHARACTER
\(=\) ' \(L\) ' \(: Q\) or \(Q^{H}\) is applied from the left.
\(={ }^{\prime} \mathrm{R}^{\prime}: Q\) or \(Q^{H}\) is applied from the right.
trans
m
\(n\)
k
a
ia, ja
desca
tau
(global) CHARACTER
\(=\) ' N ', no transpose, \(Q\) is applied.
\(=\) ' C', conjugate transpose, \(Q^{H}\) is applied.
(global) INTEGER. The number of rows in the distributed matrix sub(C) (\(m \geq 0\)) .
(global) INTEGER. The number of columns in the distributed matrix sub(\(C\)) (\(n \geq 0\)) .
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:

If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) ' \(R\) ', \(n \geq k \geq 0\).
(local)
COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq.
Pointer into the local memory to an array of size (lld_a,LOCC(ja+m-1)), if side \(=\) 'L' and (Ild_a, LOCC(ja+n-1)), if side = 'R', where lld_a \(\max (1\), LOCr (ia+k-1)). The \(i\)-th column must contain the vector that defines the elementary reflector \(H(i)\), \(i a \leq i \leq i a+k-1\), as returned by \(p\) ? gelqf in the \(k\) rows of its distributed matrix argument \(A(i a: i a+k-1\), \(\left.j a:^{*}\right) . A(\) ia:ia+k-1, ja:*) is modified by the routine but restored on exit.
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq
Array of size LOCC (ia+k-1).

Contains the scalar factor \(\operatorname{tau}(j)\) of elementary reflectors \(H(j)\) as returned by p?gelqf. tau is tied to the distributed matrix \(A\).

C
ic, jc
descc
work

I work
(local)
COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq.
Pointer into the local memory to an array of local size (IId_C, LOCC (jc \(+n-1)\)).

Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
(global) INTEGER. The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
COMPLEX for pcunmlq
DOUBLE COMPLEX for pzunmlq.
Workspace array of size of lwork.
(local or global) INTEGER, size of the array work; must be at least:
If side = 'L',
lwork \(\geq \max \left(\left(m b _a *\left(m b _a-1\right)\right) / 2,(m p c 0+\operatorname{maxmqa} 0)+\right.\) numroc (numroc (m + iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), nq(0))*mb_a) + mb_a*mb_a
else if side = 'R',
lwork \(\geq \max \left(\left(m b _a^{*}\left(m b _a-1\right)\right) / 2,(m p c 0+n q c 0) * m b _a+m b _a * m b _a\right.\)
end if
where
```

lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),

```
iroffa \(=\bmod \left(i a-1, m b _a\right)\),
icoffa \(=\bmod \left(j a-1, ~ n b _a\right)\),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL),
mqa0 \(=\) numroc (m + icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc \(=\bmod \left(i c-1, m b _c\right)\),
icoffc \(=\bmod \left(j c-1, n b _c\right)\),
icrow \(=\) indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol \(=\) indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc (m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 \(=\) numroc (n+icoffc, nb_c, MYCOL, iccol, NPCOL),

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
c
work(1)
info
Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C) * Q\)

On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?geqlf

```

Computes the QL factorization of a general matrix.

\section*{Syntax}
```

call psgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgeqlf(m, n, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include Files}

\section*{Description}

The p ? geqlf routine forms the \(Q L\) factorization of a real/complex distributed \(m\)-by- \(n\) matrix \(\operatorname{sub}(A)=A(\) ia: ia \(+m-1, j a: j a+n-1)=Q^{*} L\).

\section*{Input Parameters}
m
n
(global) INTEGER. The number of rows in the matrix \(\operatorname{sub}(Q) ;(m \geq 0)\).
(global) INTEGER. The number of columns in the matrix \(\operatorname{sub}(Q)(n \geq 0)\).
a
(local)
REAL for psgeqlf
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Pointer into the local memory to an array of local size (lld_a, LOCc (ja \(+n-1)\)). Contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be factored.
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\) (ia:ia+m-1, ja:ja+n-1), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
REAL for psgeqlf
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least lwork \(\geq n b _a *(m p 0\) + nq0 + nb_a), where
iroff \(=\bmod \left(i a-1, m b _a\right)\),
icoff \(=\bmod \left(j a-1, n b _a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL),
mp0 \(=\) numroc (m+iroff, mb_a, MYROW, iarow, NPROW),
nq0 \(=\) numroc (n+iCOff, nb_a, MYCOL, iacol, NPCOL)

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
numroc and indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
On exit, if \(m \geq n\), the lower triangle of the distributed submatrix \(A(i a+m-n: i a\) \(+m-1\), ja: \(j a+n-1\)) contains the \(n\)-by- \(n\) lower triangular matrix \(L\); if \(m \leq n\), the elements on and below the \((n-m)\)-th superdiagonal contain the \(m\)-by- \(n\) lower trapezoidal matrix \(L\); the remaining elements, with the array tau, represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local)
REAL for psgeqlf
DOUBLE PRECISION for pdgeqlf
COMPLEX for pcgeqlf
DOUBLE COMPLEX for pzgeqlf
Array of size LOCC (\(j a+n-1\)).
Contains the scalar factors of elementary reflectors. tau is tied to the distributed matrix \(A\).
work(1)
info
On exit, work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(j a+k-1) * \ldots * H(j a+1) * H(j a)\)
where \(k=\min (m, n)\)
Each \(H(i)\) has the form
\(H(i)=I-\operatorname{ta}^{*} v^{*} v^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(m-k+i+1: m)=0\) and \(v(m-k+i)=1\); \(v(1: m-k+i-1)\) is stored on exit in \(A(i a: i a+m-k+i-2, j a+n-k+i-1)\), and tau in \(\operatorname{tau}(j a+n-k+i-1)\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?orgql}

Generates the orthogonal matrix Q of the QL factorization formed by p?geqle.

\section*{Syntax}
```

call psorgql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorgql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include Files}

\section*{Description}

The p?orgql routine generates the whole or part of \(m\)-by-n real distributed matrix \(Q\) denoting \(A\) (ia:ia \(+m-1, j a: j a+n-1)\) with orthonormal rows, which is defined as the first \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
\(Q=H(k)^{*} \ldots * H(2) * H(1)\)
as returned by p?geqle.

\section*{Input Parameters}
m
n
k
a
ia, ja
desca
tau
work
l work
(global) INTEGER. The number of rows in the matrix \(\operatorname{sub}(Q),(m \geq 0)\).
(global) INTEGER. The number of columns in the matrix \(\operatorname{sub}(Q),(m \geq n \geq 0)\).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(n \geq k \geq 0)\).
(local)
REAL for psorgql
DOUBLE PRECISION for pdorgql
Pointer into the local memory to an array of local size (Ild_a, LOCC (ja \(+n-1)\)). On entry, the \(j\)-th column must contain the vector that defines the elementary reflector \(H(j), j a+n-k \leq j \leq j a+n-1\), as returned by p?geqlf in the \(k\) columns of its distributed matrix argument \(A\left(i a:^{*}, j a+n-k: j a+n-1\right)\).
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\) (ia:ia \(+m-1, j a: j a+n-1)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
REAL for psorgql
DOUBLE PRECISION for pdorgql
Array of size LOCC (ja+n-1).
Contains the scalar factors \(\operatorname{tau}(j)\) of elementary reflectors \(H(j)\). tau is tied to the distributed matrix \(A\).
(local)
REAL for psorgql
DOUBLE PRECISION for pdorgq1
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least
lwork \(\geq n b\) _a* (nqa0 \(\left.+m p a 0+n b _a\right)\), where
iroffa \(=\bmod \left(i a-1, m b _a\right)\),
```

icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
\(a\)
work(1)
info

Contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(Q\) to be factored.
On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?ungql}

Generates the unitary matrix Q of the QL factorization
formed by p?geqle.

\section*{Syntax}
```

call pcungql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzungql(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include Files}

\section*{Description}

This routine generates the whole or part of \(m\)-by- \(n\) complex distributed matrix \(Q\) denoting \(A\) (ia: ia \(+m-1, j a: j a+n-1)\) with orthonormal rows, which is defined as the first \(n\) columns of a product of \(k\) elementary reflectors of order \(m\)
\(Q=(H(k))^{H} \ldots{ }^{*}(H(2))^{H *}(H(1))^{H}\) as returned by p?geqle.

\section*{Input Parameters}
m
\(n\)
\(k\)
\(a\)
ia, ja
desca
tau
work
lwork
(global) INTEGER. The number of rows in the matrix \(\operatorname{sub}(Q)(m \geq 0)\).
(global) INTEGER. The number of columns in the matrix \(\operatorname{sub}(Q)(m \geq n \geq 0)\).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(n \geq k \geq 0)\).
(local)
COMPLEX for pcungql
DOUBLE COMPLEX for pzungql
Pointer into the local memory to an array of local size (IId_a, LOCC \((j a+n-1))\). On entry, the \(j\)-th column must contain the vector that defines the elementary reflector \(H(j), j a+n-k \leq j \leq j a\) \(+n-1\), as returned by p?geqlf in the \(k\) columns of its distributed matrix argument \(A(i a: *, j a+n-k:\) ja+n-1).
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\) (ia: ia \(+m-1, j a: j a+n-1)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
COMPLEX for pcungql
DOUBLE COMPLEX for pzungql
Array of size \(\operatorname{LOCr}(i a+n-1)\).
Contains the scalar factors \(\operatorname{tau}(j)\) of elementary reflectors \(H(j)\). tau is tied to the distributed matrix \(A\).
(local)
COMPLEX for pcungql
DOUBLE COMPLEX for pzungql
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least
lwork \(\geq n b\) _a* \(\left(n q a 0+m p a 0+n b _a\right)\), where
iroffa \(=\bmod \left(i a-1, m b _a\right)\),
icoffa \(=\bmod \left(j a-1, ~ n b _a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpaO = numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
\(n q a 0=\) numroc(\(n+i c o f f a, n b _a\), MYCOL, iacol, NPCOL \()\)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
\(a\)
work(1)
info

Contains the local pieces of the \(m\)-by- \(n\) distributed matrix \(Q\) to be factored.
On exit, work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?ormql
Multiplies a general matrix by the orthogonal matrix Q
of the QL factorization formed by p?geqlf.

```

\section*{Syntax}
```

call psormql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pdormql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)

```

\section*{Include Files}

\section*{Description}

The p?ormqlroutine overwrites the general real \(m\)-by-n distributed matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c\) \(+n-1)\) with
\begin{tabular}{lll}
& side \(=\) 'L' & side \(={ }^{\prime} \mathrm{R}^{\prime}\) \\
trans \(=\) 'N': & \(Q^{*} \operatorname{sub}(C)\) & \(\operatorname{sub}(C)^{*} Q\) \\
trans \(=\) 'T': & \(Q^{T *} \operatorname{sub}(C)\) & \(\operatorname{sub}(C)^{*} Q^{T}\)
\end{tabular}
where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
\(Q=H(k)^{\prime} \ldots H(2)^{\prime} H(1)^{\prime}\)
as returned by p?geqle. \(Q\) is of order mif side = 'L' and of order \(n\) if side = 'R'.

\section*{Input Parameters}
side
(global) CHARACTER
\(=\) 'L' \(: Q\) or \(Q^{T}\) is applied from the left.
\(=\) 'R': \(Q\) or \(Q^{T}\) is applied from the right.
(global) CHARACTER
\(=\) ' \(N\) ', no transpose, \(Q\) is applied.
\(=' T\) ', transpose, \(Q^{T}\) is applied.
(global) INTEGER. The number of rows in the distributed matrix sub(C), (\(m \geq 0\)) .
(global) INTEGER. The number of columns in the distributed matrix sub(C), (\(n \geq 0\)) .
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:

If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) ' \(R^{\prime}\), \(n \geq k \geq 0\).
(local)
REAL for psormql
DOUBLE PRECISION for pdormql.
Pointer into the local memory to an array of size (IId_a, LOCC (ja+k-1)). The \(j\)-th column must contain the vector that defines the elementary reflector \(H(j)\), ja \(\leq j \leq j a+k-1\), as returned by p?gelqf in the \(k\) columns of its distributed matrix argument \(A\left(i a:^{*}, j a: j a+k-1\right) . A\left(i a:^{*}, j a: j a+k-1\right)\) is modified by the routine but restored on exit.

If side \(=\) 'L',lld_a \(\geq \max (1\), LOCr(ia+m-1)),
If side \(=\) 'R', lld_a \(\geq \max (1, \operatorname{LOCr}(i a+n-1))\).
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
REAL for psormql
DOUBLE PRECISION for pdormql.
Array of size LOCC (ja+n-1).
Contains the scalar factor \(\operatorname{tau}(j)\) of elementary reflectors \(H(j)\) as returned by p?geqlf. tau is tied to the distributed matrix \(A\).
(local)
REAL for psormql
DOUBLE PRECISION for pdormql.
Pointer into the local memory to an array of local size (lld_c, LOCC (jc \(+n-1)\)).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
```

ic, jc
descc
work

```
l work
(global) INTEGER. The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
REAL for psormql
DOUBLE PRECISION for pdormql.
Workspace array of size of lwork.
(local or global) INTEGER, dimension of work, must be at least:
```

If side = 'L',
lwork\geqmax((nb_a* (nb_a-1))/2, (nqc0+mpc0)*nb_a + nb_a*nb_a
else if side ='R',
lwork\geqmax((nb_a*(nb_a-1))/2, (nqc0+max(npa0 +
numroc(numroc(n+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0,
lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
where
lcmq = lcm/NPCOL with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
npa0= numroc(n + iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, icCOl, NPCOL),

```

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

C
work(1)
info

Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C)^{*} Q\)

On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?unmql
Multiplies a general matrix by the unitary matrix \(Q\) of the QL factorization formed by p?geqle.

\section*{Syntax}
```

call pcunmql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pzunmql(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)

```

\section*{Include Files}

\section*{Description}

This routine overwrites the general complex m-by-n distributed matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\) with
\begin{tabular}{lll}
& side \(=' \mathrm{~L} '\) & side \(={ }^{\prime} \mathrm{R}^{\prime}\) \\
trans \(=\) ' \(^{\prime}:\) & \(Q^{*} \operatorname{sub}(C)\) & \(\operatorname{sub}(C)^{*} Q\) \\
trans \(=\) ' C': \(^{\prime}\) & \(Q^{H *} \operatorname{sub}(C)\) & \(\operatorname{sub}(C)^{*} Q^{H}\)
\end{tabular}
where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors \(Q=H(k)^{\prime} \ldots H(2)^{\prime} H(1)^{\prime}\)
as returned by \(p\) ? geqle. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side = 'R'.
Input Parameters
side (global) CHARACTER
\(=\) 'L': \(Q\) or \(Q^{H}\) is applied from the left.
\(=R^{\prime}\) ': \(Q\) or \(Q^{H}\) is applied from the right.
trans (global) CHARACTER
\(=\) 'N', no transpose, \(Q\) is applied.
m
\(n\)
k
a
ia, ja
desca
tau

C
ic, jc
\(={ }^{\prime} C^{\prime}\), conjugate transpose, \(Q^{H}\) is applied.
(global) INTEGER. The number of rows in the distributed matrix sub(C) (\(m \geq 0\)) .
(global) Integer. The number of columns in the distributed matrix sub(C) (\(n \geq 0\)) .
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) 'R', \(n \geq k \geq 0\).
(local)
COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql.
Pointer into the local memory to an array of size (IId_a, LOCC (ja+k-1)). The \(j\)-th column must contain the vector that defines the elementary reflector \(H(j)\), ja \(\leq j \leq j a+k-1\), as returned by \(p\) ?geqlf in the \(k\) columns of its distributed matrix argument \(A\left(i a:^{*}, j a: j a+k-1\right) . A(i a: *, j a: j a+k-1)\) is modified by the routine but restored on exit.

If side \(=\) 'L',lld_a \(\geq \max (1, \operatorname{LOCr}(i a+m-1))\),
If side \(=\) 'R', lld_a \(\geq \max (1, \operatorname{LOCr}(i a+n-1))\).
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql
Array of size LOCC (ia+n-1).
Contains the scalar factor \(\operatorname{tau}(j)\) of elementary reflectors \(H(j)\) as returned by p?geqle. tau is tied to the distributed matrix \(A\).
(local)
COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql.
Pointer into the local memory to an array of local size (lld_c, LOCC (jc \(+n-1)\)).
Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
(global) INTEGER. The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively.
descc
work
lwork
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
COMPLEX for pcunmql
DOUBLE COMPLEX for pzunmql.
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least:
If side = 'L',
1 work \(\geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2,(n q c 0+\operatorname{mpc} 0) * n b _a+n b _a^{\star} n b _a\right.\)
else if side ='R',
lwork \(\geq \max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2,(n q c 0+\max n p a 0)+\right.\) numroc (numroc \((n\) \(\left.\left.\left.\left.\left.+i C O f f c, n b _a, 0,0, N P C O L\right), ~ n b _a, 0,0,1 c m q\right), m p c 0\right)\right) * n b _a\right)\)
\(+n b _a * n b _a\)
end if
where
lcmp \(=l \mathrm{~cm} / \mathrm{NPCOL}\) with \(l \mathrm{~cm}=\mathrm{ilcm}\) (NPROW, NPCOL),
iroffa \(=\bmod \left(i a-1, m b _a\right)\),
icoffa \(=\bmod \left(j a-1, n b _a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
npa0 \(=\) numroc (\(\left.n+i r o f f a, ~ m b _a, ~ M Y R O W, ~ i a r o w, ~ N P R O W\right), ~\)
iroffc \(=\bmod \left(i c-1, m b _c\right)\),
icoffc \(=\bmod \left(j c-1, n b _c\right)\),
icrow \(=\) indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol \(=\) indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 \(=\) numroc (m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 \(=\) numroc (n+icoffc, nb_c, MYCOL, iccol, NPCOL),

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).

If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
c
Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C)^{*} Q\)

On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?gerqf
Computes the \(R Q\) factorization of a general
rectangular matrix.

\section*{Syntax}
```

call psgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include Files}

\section*{Description}

The p?gerqf routine forms the \(Q R\) factorization of a general \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)=A(\) ia:ia \(+m-1\), ja:ja+n-1) as
\(A=R^{*} Q\)

\section*{Input Parameters}
m
n
a
(global) INTEGER. The number of rows in the distributed matrix \(\operatorname{sub}(A)\); (\(m \geq 0\)) .
(global) INTEGER. The number of columns in the distributed matrix \(\operatorname{sub}(A)\); (\(n \geq 0\)) .
(local)
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf

COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Pointer into the local memory to an array of local size (lld_a, LOCC (ja \(+n-1)\)).

Contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be factored.
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\) (ia:ia \(+m-1\), ja:ja+n-1), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\)
(local).
REAL for psgeqrf
DOUBLE PRECISION for pdgeqrf.
COMPLEX for pcgeqrf.
DOUBLE COMPLEX for pzgeqrf
Workspace array of size lwork.
(local or global) INTEGER, size of work, must be at least lwork \(\geq m b\) _a* \(\left(m p 0+n q 0+m b _a\right)\), where
iroff \(=\bmod \left(i a-1, ~ m b _a\right)\),
iCOff \(=\bmod \left(j a-1, n b _a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, Csrc_a, NPCOL),
mp0 \(=\) numroc (m+iroff, mb_a, MYROW, iarow, NPROW),

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
nq0 \(=\) numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL) and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
\(a\)
On exit, if \(m \leq n\), the upper triangle of \(A(i a: i a+m-1, j a: j a+n-1)\) contains the \(m\)-by- \(m\) upper triangular matrix \(R\); if \(m \geq n\), the elements on and above the (\(m\) - \(n\))-th subdiagonal contain the \(m\)-by-n upper trapezoidal matrix \(R\); the
```

    remaining elements, with the array tau, represent the orthogonal/unitary
    matrix Q as a product of elementary reflectors (see Application Notes
    below).
    (local)
    REAL for psgeqre
    DOUBLE PRECISION for pdgeqrf
    COMPLEX for pcgeqrf
DOUBLE COMPLEX for pzgeqrf.
Array of size LOCr(ia+m-1).
Contains the scalar factor of elementary reflectors. tau is tied to the
distributed matrix A.
On exit, work(1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
$=0$, the execution is successful.
$<0$, if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

```

\section*{Application Notes}

The matrix \(Q\) is represented as a product of elementary reflectors
\(Q=H(i a)^{*} H(i a+1)^{*} \ldots * H(i a+k-1)\),
where \(k=\min (m, n)\).
Each \(H(i)\) has the form
\(H(i)=I-\tan ^{*} v^{*} v^{\prime}\)
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(n-k+i+1: n)=0\) and \(v(n-k+i)=1\); \(v(1: n-k+i-1)\) is stored on exit in \(A(i a+m-k+i-1, j a: j a+n-k+i-2)\), and tau in \(\operatorname{tau}(i a+m-k+i-1)\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?orgrq
Generates the orthogonal matrix \(Q\) of the \(R Q\)
factorization formed by p?gerqf.

\section*{Syntax}
```

call psorgrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorgrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```

Include Files

\section*{Description}

The p?orgrqroutine generates the whole or part of \(m\)-by- \(n\) real distributed matrix \(Q\) denoting \(A\) (ia:ia \(+m-1, j a: j a+n-1\)) with orthonormal rows that is defined as the last \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
\(Q=H(1) * H(2) * \ldots * H(k)\)
as returned by p?gerqf.

\section*{Input Parameters}
m
n
k
a
ia, ja
desca
tau
work

I work
(global) INTEGER. The number of rows in the matrix \(\operatorname{sub}(Q),(m \geq 0)\).
(global) INTEGER. The number of columns in the matrix \(\operatorname{sub}(Q),(n \geq m \geq 0)\).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(m \geq k \geq 0)\).
(local)
REAL for psorgrq
DOUBLE PRECISION for pdorgrq
Pointer into the local memory to an array of local size (lld_a, LOCC (ja \(+n-1)\)). The \(i\)-th row must contain the vector that defines the elementary reflector \(H(i)\), iasisia+m-1, as returned by p?gerqf in the \(k\) rows of its distributed matrix argument \(A(i a+m-k: i a+m-1, j a: *)\).
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
REAL for psorgrq
DOUBLE PRECISION for pdorgrq
Array of size LOCC (ja+k-1).
Contains the scalar factor \(\operatorname{tau}(i)\) of elementary reflectors \(H(i)\) as returned by p?gerqf. tau is tied to the distributed matrix \(A\).
(local)
REAL for psorgrq
DOUBLE PRECISION for pdorgrq
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least
lwork \(\geq m b\) _a* (mpa0 + nqa0 \(\left.+m b _a\right)\), where
iroffa \(=\bmod \left(i a-1, m b _a\right)\),
icoffa \(=\bmod \left(j a-1, n b _a\right)\),
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
```

iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m+iroffa, mb_a, MYROW, iarOw, NPROW),
nqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

```

\section*{NOTE}
```

mod}(x,y)\mathrm{ is the integer remainder of x/y.

```

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
work(1)
info

Contains the local pieces of the \(m\)-by-n distributed matrix Q .
On exit, work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?ungrq}

Generates the unitary matrix \(Q\) of the \(R Q\) factorization
formed by p?gerqf.

\section*{Syntax}
```

call pcungrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzungrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Include Files}

\section*{Description}

This routine generates the \(m\)-by- \(n\) complex distributed matrix \(Q\) denoting \(A(i a: i a+m-1, j a: j a+n-1)\) with orthonormal rows, which is defined as the last \(m\) rows of a product of \(k\) elementary reflectors of order \(n\)
\(Q=(H(1))^{H *}(H(2))^{H *} \ldots *(H(k))^{H}\) as returned by p?gerqf.

\section*{Input Parameters}
m
(global) INTEGER. The number of rows in the matrix \(\operatorname{sub}(Q) ;(m \geq 0)\).
\(n\)
k
a
ia, ja
desca
tau
work
lwork
(global) INTEGER. The number of columns in the matrix \(\operatorname{sub}(Q)(n \geq m \geq 0)\).
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q(m \geq k \geq 0)\).
(local)
COMPLEX for pcungrq
DOUBLE COMPLEX for pzungrqc
Pointer into the local memory to an array of size (lld_a, LOCC (ja+n-1)). The \(i\)-th row must contain the vector that defines the elementary reflector \(H(i), i a+m-k \leq i \leq i a+m-1\), as returned by p?gerqf in the \(k\) rows of its distributed matrix argument \(A(i a+m-k: i a+m-1, j a: *)\).
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
COMPLEX for pcungrq
DOUBLE COMPLEX for pzungrq
Array of size LOCr (ia+m-1).
Contains the scalar factor tau(i) of elementary reflectors \(H(i)\) as returned by p?gerqf. tau is tied to the distributed matrix \(A\).
(local)
COMPLEX for pcungrq
DOUBLE COMPLEX for pzungrq
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least
lwork \(\geq m b\) _a*(mpa0 \(\left.+n q a 0+m b _a\right)\), where
iroffa \(=\bmod \left(i a-1, ~ m b _a\right)\),
icoffa \(=\bmod \left(j a-1, n b _a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, CSrc_a, NPCOL),
mpa0 \(=\) numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 \(=\) numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL)

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
work(1)
info

Contains the local pieces of the \(m\)-by-n distributed matrix \(Q\).
On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?ormr3}

Applies an orthogonal distributed matrix to a general m-by-n distributed matrix.

\section*{Syntax}
```

call psormr3 (side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info )
call pdormr3 (side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info )

```

\section*{Description}
p?ormr3 overwrites the general real m-by-n distributed matrix sub(\(C\)) \(=C(i c: i c+m-1, j c: j c+n-1)\) with
\begin{tabular}{|l|l|l|}
\hline & side \(=\) 'L' & side \(=\) 'R' \\
\hline trans \(=\) ' \(\mathrm{N'}^{\prime}\) & \(Q^{*} \operatorname{sub}(C)\) & \(\operatorname{sub}(C) * Q\) \\
\hline trans \(=\) 'T' & \begin{tabular}{l}
\(Q^{T} * \operatorname{sub}(C)\) \\
\(Q^{*} \operatorname{sub}(C)\)
\end{tabular} & \(\operatorname{sub}(C) * Q^{T}\) \\
\hline
\end{tabular}
where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors
\(Q=\mathrm{H}(1) \mathrm{H}(2) \ldots \mathrm{H}(k)\)
as returned by p?tzrzf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) 'R'.

\section*{Input Parameters}
side
(global)
CHARACTER.
\(=\) 'L': apply \(Q\) or \(Q^{T}\) from the Left;
\(=\) 'R': apply \(Q\) or \(Q^{T}\) from the Right.
(global)
CHARACTER.
= 'N': No transpose, apply Q;
\(=\) 'T': Transpose, apply \(Q^{T}\).
(global)
INTEGER.
The number of rows to be operated on i.e the number of rows of the distributed submatrix \(\operatorname{sub}(C) . m>=0\).
(global)
INTEGER.
The number of columns to be operated on i.e the number of columns of the distributed submatrix \(\operatorname{sub}(C) . n>=0\).
(global)
INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q\).
If side \(=\) 'L', \(m>=k>=0\),
if side \(=\) 'R', \(n>=k>=0\).
(global)
INTEGER.
The columns of the distributed submatrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors.
If side \(=\) 'L', \(m>=1>=0\),
if side \(=\) ' R ', \(n>=I>=0\).
(local)
REAL for psormr3
DOUBLE PRECISION for pdormr3
Pointer into the local memory to an array of size (lld_a,LOCC (ja+m-1)) if side='L', and (Ild_a, LOCC(ja+n-1)) if side='R', where Ild_a >= \(\operatorname{MAX}(1, \operatorname{LOCr}(i a+k-1))\);
On entry, the \(i\)-th row must contain the vector which defines the elementary reflector \(\mathrm{H}(i)\), ia \(<=i<=i a+k-1\), as returned by p?tzrzf in the \(k\) rows of its distributed matrix argument \(A\left(i a: i a+k-1, j a:^{*}\right)\).
\(A\left(i a: i a+k-1, j a:^{*}\right)\) is modified by the routine but restored on exit.
(global)
INTEGER.
The row index in the global array a indicating the first row of \(\operatorname{sub}(A)\).
(global)

INTEGER.
The column index in the global array a indicating the first column of \(\operatorname{sub}(A)\).
(global and local)

\section*{INTEGER.}

Array of size dlen_.
The array descriptor for the distributed matrix \(A\).
(local)
REAL for psormr3
DOUBLE PRECISION for pdormr3
Array, size LOCc(ia+k-1).
This array contains the scalar factors \(\operatorname{tau}(\mathrm{i})\) of the elementary reflectors \(H(i)\) as returned by p?tzrzf. tau is tied to the distributed matrix \(A\).
(local)
REAL for psormr3
DOUBLE PRECISION for pdormr3
Pointer into the local memory to an array of size (IId_c, LOCC (jc+n-1)).
On entry, the local pieces of the distributed matrix \(\operatorname{sub}(C)\).
(global)
INTEGER.
The row index in the global array \(c\) indicating the first row of sub(\(C\)).
(global)
INTEGER.
The column index in the global array \(c\) indicating the first column of \(\operatorname{sub}(C)\).
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix \(C\).
(local)
REAL for psormr3
DOUBLE PRECISION for pdormr3
Array, size (lwork)
(local)
INTEGER.
The size of the array work.
lwork is local input and must be at least
```

If side = 'L', Iwork > = MpCO + MAX( MAX( 1,NqCO ), numroc( numroc( m
+IROFFC,mb_a,0,0,NPROW ),mb_a,0,0,NqCO ));
if side = 'R', lwork >= NqCO + MAX( 1,MpCO );
where LCMP = LCM / NPROW
LCM = iclm( NPROW, NPCOL ),
IROFFC = MOD( ic-1,mb_c ),
ICOFFC = MOD( jc-1,nb_c),
ICROW = indxg2p( ic,mb_c, MYROW,rsrc_c,NPROW ),
ICCOL = indxg2p( jc, nb_c, MYCOL, csrc_c,NPCOL ),
MpCO = numroc( m+IROFFC, mb_c, MYROW, ICROW,NPROW ),
NqCO = numroc( n+ICOFFC, nb_c,MYCOL,ICCOL,NPCOL ),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If lwork $=-1$, then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

```

\section*{Output Parameters}

C
work
info

On exit, \(\operatorname{sub}(C)\) is overwritten by \(Q^{*} \operatorname{sub}(C)\) or \(Q^{\prime *} \operatorname{sub}(C)\) or \(\operatorname{sub}(C) * Q^{\prime}\) or sub(C)*Q.

On exit, work (1) returns the minimal and optimal lwork.
(local)
INTEGER.
= 0: successful exit
\(<0\) : If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

\section*{Alignment requirements}

The distributed submatrices \(A(i a: *, j a: *)\) and \(C(i c: i c+m-1, j c: j c+n-1)\) must verify some alignment properties, namely the following expressions should be true:
```

If side = 'L',
$\left(n b \_a=m b \_c\right.$.AND. ICOFFA $=$ IROFFC $)$
If side = 'R',
( $n b \_a=n b \_c . A N D$. ICOFFA $\left.=I C O F F C . A N D . ~ I A C O L=I C C O L ~\right)$

```

\section*{p?unmr3}

Applies an orthogonal distributed matrix to a general \(m\)-by-n distributed matrix.

\section*{Syntax}
```

call pcunmr3 (side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info )
call pzunmr3 (side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info )

```

\section*{Description}
p?unmr3 overwrites the general complex m-by-n distributed matrix sub(C) = C(ic:ic+m-1,jc:jc+n-1) with
\[
\begin{array}{lc}
\text { side }=\text { 'L' } & \text { side }=\text { 'R' } \\
\text { trans }=~ ' N ': Q * \operatorname{sub}(C) & \operatorname{sub}(C) * Q \\
\text { trans }=\text { 'C': } Q^{H} * \operatorname{sub}(C) & \operatorname{sub}(C) * Q^{H}
\end{array}
\]
where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors
\(\mathrm{Q}=\mathrm{H}(1)^{\prime} \mathrm{H}(2)^{\prime} \ldots \mathrm{H}(k)^{\prime}\)
as returned by p?tzrzf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) 'R'.

\section*{Input Parameters}
side
trans
m
n
k
(global)
CHARACTER.
\(=\) 'L': apply \(Q\) or \(Q^{\mathrm{H}}\) from the Left;
\(=\) 'R': apply \(Q\) or \(Q^{H}\) from the Right.
(global)
CHARACTER.
= 'N': No transpose, apply Q;
\(=\) ' \(\mathrm{C}^{\prime}\) : Conjugate transpose, apply \(Q^{\mathrm{H}}\).
(global)
INTEGER.
The number of rows to be operated on i.e the number of rows of the distributed submatrix sub(\(C\)). \(m>=0\).
(global)
INTEGER.
The number of columns to be operated on i.e the number of columns of the distributed submatrix \(\operatorname{sub}(C) . n>=0\).
(global)
INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q\).
If side \(=\) 'L', \(m>=k>=0\), if side \(=\) 'R', \(n>=k>=0\).

1
a
(global)
INTEGER.
The columns of the distributed submatrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors.
If side \(=\) 'L', \(m>=I>=0\), if side \(=\) 'R', \(n>=I>=0\).
(local)
COMPLEX for pcunmr3
DOUBLE COMPLEX for pzunmr3
Pointer into the local memory to an array of size (IId_a, LOCC(ja+m-1)) if side='L', and (Ild_a,LOCC (ja+n-1)) if side='R', where Ild_a >= \(\operatorname{MAX}(1, \operatorname{LOCr}(i a+k-1))\);
On entry, the i-th row must contain the vector which defines the elementary reflector \(\mathrm{H}(\mathrm{i})\), ia \(<=\mathrm{i}<=i a+k-1\), as returned by p?tzrzf in the \(k\) rows of its distributed matrix argument \(A\left(i a: i a+k-1, j a:^{*}\right)\).
\(A\left(i a: i a+k-1, j a:^{*}\right)\) is modified by the routine but restored on exit.
(global)
INTEGER.
The row index in the global array a indicating the first row of \(\operatorname{sub}(A)\).
(global)
INTEGER.
The column index in the global array a indicating the first column of \(\operatorname{sub}(A)\).
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix \(A\).
(local)
COMPLEX for pcunmr3
DOUBLE COMPLEX for pzunmr3
Array, size LOCc(\(i a+k-1)\).
This array contains the scalar factors tau(i) of the elementary reflectors \(H(i)\) as returned by p?tzrzf. tau is tied to the distributed matrix \(A\).
(local)
COMPLEX for pcunmr3
DOUBLE COMPLEX for pzunmr3
Pointer into the local memory to an array of size (lld_c, LOCC (jc+n-1)).
On entry, the local pieces of the distributed matrix \(\operatorname{sub}(C)\).
(global)

\section*{INTEGER.}

The row index in the global array \(c\) indicating the first row of sub(\(C\)).
(global)
INTEGER.
The column index in the global array \(c\) indicating the first column of sub(C).
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix \(C\).
(local)
COMPLEX for pcunmr3
DOUBLE COMPLEX for pzunmr3
Array, size (lwork)
On exit, work(1) returns the minimal and optimal lwork.
lwork
(local or global)
INTEGER.
The size of the array work.
lwork is local input and must be at least
If side \(=\) 'L', lwork \(>=\) MpC0 \(+\operatorname{MAX}(\operatorname{MAX}(1, N q C 0)\), numroc(numroc(\(m\)
+IROFFC, \(m b=a, 0,0, N P R O W ~), m b _a, 0,0\), LCMP));
if side \(=\) 'R', lwork \(>=\mathrm{NqC0}+\mathrm{MAX}(1, \mathrm{MpCO})\);
where LCMP = LCM / NPROW with LCM = ICLM (NPROW, NPCOL),
IROFFC \(=\) MOD \(\left(i c-1, M B _C\right)\), ICOFFC \(=\operatorname{MOD}\left(j c-1, n b _c\right)\),
ICROW = indxg2p(ic, MB_C, MYROW, rsrc_c, NPROW),
ICCOL \(=\) indxg2p(jc, \(\left.n b _c, M Y C O L, c s r c _c, N P C O L\right)\),
MpCO = numroc \((m+\) IROFFC, MB_C, MYROW, ICROW, NPROW \()\),
NqCO \(=\) numroc \(\left(n+\right.\) ICOFFC, \(\left.n b _c, M Y C O L, I C C O L, N P C O L\right)\),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}

C
work
info

On exit, sub(C) is overwritten by \(Q^{*} \operatorname{sub}(C)\) or \(Q^{\prime *} \operatorname{sub}(C)\) or \(\operatorname{sub}(C)^{*} Q^{\prime}\) or \(\operatorname{sub}(C)^{*} Q\).
(local)
COMPLEX for pcunmr3
DOUBLE COMPLEX for pzunmr3
Array, size (lwork)
On exit, work (1) returns the minimal and optimal lwork.
(local)
INTEGER.
\(=0\) : successful exit
< 0: If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

\section*{Alignment requirements}

The distributed submatrices \(A\left(i_{a}:^{*}, j a:^{*}\right)\) and \(C(i c: i c+m-1, j c: j c+n-1)\) must verify some alignment properties, namely the following expressions should be true:

If side = 'L', (\(n b _a=\) MB_C and ICOFFA \(=\) IROFFC \()\)
If side = 'R', (\(n b _a=n b _c\) and ICOFFA \(=\) ICOFFC and IACOL \(=\) ICCOL \()\)

\section*{p?ormrq}

Multiplies a general matrix by the orthogonal matrix \(Q\) of the \(R Q\) factorization formed by p?gerqf.

\section*{Syntax}
```

call psormrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pdormrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)

```

\section*{Include Files}

\section*{Description}

The p?ormrqroutine overwrites the general real m-by-n distributed matrix sub (C) = C(ic:ic+m-1,jc:jc \(+n-1\)) with
\[
\begin{array}{lll}
& \text { side }=^{\prime} \mathrm{L}^{\prime} & \text { side }=^{\prime} \mathrm{R}^{\prime} \\
\text { trans }=\text { 'N': } & Q^{*} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q \\
\text { trans }=\text { 'T': } & Q^{T *} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q^{T}
\end{array}
\]
where \(Q\) is a real orthogonal distributed matrix defined as the product of \(k\) elementary reflectors \(Q=H(1) H(2) \ldots H(k)\)
as returned by p?gerqf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) 'R'.

\section*{Input Parameters}
(global) CHARACTER
\(=L^{\prime} L^{\prime}: Q\) or \(Q^{T}\) is applied from the left.
\(={ }^{\prime} \mathrm{R}^{\prime}: Q\) or \(Q^{T}\) is applied from the right.
(global) CHARACTER
\(=\) ' \(N\) ', no transpose, \(Q\) is applied.
\(=\) ' \(\mathrm{T}^{\prime}\), transpose, \(Q^{T}\) is applied.
(global) INTEGER. The number of rows in the distributed matrix sub(C) (\(m \geq 0\)) .
(global) INTEGER. The number of columns in the distributed matrix sub(\(C\)) (\(n \geq 0\)) .
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) 'R', \(n \geq k \geq 0\).
(local)
REAL for psormqr
DOUBLE PRECISION for pdormqr.
Pointer into the local memory to an array of size (Ild_a,LOCC(ja+m-1)) if side \(=\) 'L', and (Ild_a, LOCC (ja+n-1)) if side = 'R'.

The \(i\)-th row must contain the vector that defines the elementary reflector \(H(i)\), ia \(\leq i \leq i a+k-1\), as returned by p?gerqf in the \(k\) rows of its distributed matrix argument \(A\left(i a: i a+k-1, j a:^{*}\right) . A\left(i a: i a+k-1, j a:^{*}\right)\) is modified by the routine but restored on exit.
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
REAL for psormqr
DOUBLE PRECISION for pdormqr
Array of size LOCC (ja+k-1).
Contains the scalar factor \(\operatorname{tau}(i)\) of elementary reflectors \(H(i)\) as returned by p?gerqf. tau is tied to the distributed matrix \(A\).
(local)
REAL for psormrq
DOUBLE PRECISION for pdormrq

Pointer into the local memory to an array of local size (lld_c, LOCC (jc \(+n-1)\)).

Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
ic, jc
descc
work
lwork (global) INTEGER. The row and column indices in the global matrix \(C\) indicating the first row and the first column of the matrix sub(\(C\)), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
REAL for psormrq
DOUBLE PRECISION for pdormrq.
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least:
```

If side = 'L',

```
lwork \(\geq \max \left(\left(m b _a^{*}\left(m b _a-1\right)\right) / 2,(m p c 0+\max (m q a 0+\right.\)
numroc (numroc (n+iroffc, mb_a, 0,0 , NPROW), mb_a, 0, 0,
lcmp), \(\left.n q(0)){ }^{*} m b _a\right)+m b _a \star m b _a\)
else if side ='R',
lwork \(\geq \max \left(\left(m b _a^{*}\left(m b _a-1\right)\right) / 2,(m p c 0+n q c 0) * m b _a\right)+m b _a^{\star} m b _a\)
end if
where
\(l_{c m p}=1 \mathrm{~cm} / \mathrm{NPROW}\) with \(l_{\mathrm{cm}}=\) ilcm (NPROW, NPCOL),
iroffa \(=\bmod \left(i a-1, m b _a\right)\),
icoffa \(=\bmod \left(j a-1, n b _a\right)\),
iacol \(=\) indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 \(=\) numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc \(=\bmod \left(i c-1, m b _c\right)\),
icoffc \(=\bmod \left(j c-1, n b _c\right)\),
icrow \(=\) indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol \(=\) indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 \(=\) numroc (m+iroffc, mb_c, MYROW, icrow, NPROW),
\(n q C 0=\) numroc (n+icoffc, nb_c, MYCOL, iccol, NPCOL),

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then \(l\) work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
c
work (1)
info
Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{*}\) sub (C), or sub(C)* \(Q^{\prime}\), or \(\operatorname{sub}(C) * Q\)

On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?unmrq}

Multiplies a general matrix by the unitary matrix \(Q\) of the \(R Q\) factorization formed by p?gerqf.

\section*{Syntax}
```

call pcunmrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pzunmrq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)

```

\section*{Include Files}

\section*{Description}

This routine overwrites the general complex \(m\)-by- \(n\) distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\) with
```

    side ='L' side ='R'
    trans = 'N': Q*sub(C) sub(C)*Q
trans = 'C': }\quad\mp@subsup{Q}{}{H*sub(C)
sub(C)*QH

```
where \(Q\) is a complex unitary distributed matrix defined as the product of \(k\) elementary reflectors
\(Q=H(1)^{\prime} H(2)^{\prime} \ldots H(k)^{\prime}\)
as returned by p?gerqf. \(Q\) is of order \(m\) if side \(=\) 'L' and of order \(n\) if side \(=\) 'R'.

\section*{Input Parameters}
side
(global) CHARACTER
\(=\) ' L' \(: Q\) or \(Q^{H}\) is applied from the left.
\(=R^{\prime}\) ': \(Q\) or \(Q^{H}\) is applied from the right.

C
(global) CHARACTER
\(=\) ' \(N\) ', no transpose, \(Q\) is applied.
\(=C^{\prime}\) ', conjugate transpose, \(Q^{H}\) is applied.
(global) INTEGER. The number of rows in the distributed matrix sub(C), (\(m \geq 0\)) .
(global) INTEGER. The number of columns in the distributed matrix sub(C), (\(n \geq 0\)) .
(global) INTEGER. The number of elementary reflectors whose product defines the matrix \(Q\). Constraints:
If side \(=\) 'L', \(m \geq k \geq 0\)
If side \(=\) 'R', \(n \geq k \geq 0\).
(local)
COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq.
Pointer into the local memory to an array of size (IId_a, LOCC(ja+m-1)) if side = 'L', and (lld_a,LOCC(ja+n-1)) if side = 'R'. The \(i\)-th row must contain the vector that defines the elementary reflector \(H(i)\), iasisia \(+k-1\), as returned by p?gerqf in the \(k\) rows of its distributed matrix argument \(A\left(i a: i a+k-1, j a:^{*}\right)\). \(A\left(i a: i a+k-1, j a:^{*}\right)\) is modified by the routine but restored on exit.
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq
Array of size LOCC (ja+k-1).
Contains the scalar factor \(\operatorname{tau}(i)\) of elementary reflectors \(H(i)\) as returned by p?gerqf. tau is tied to the distributed matrix \(A\).
(local)
COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq.
Pointer into the local memory to an array of local size (lld_c, LOCC (jc \(+n-1)\)).

Contains the local pieces of the distributed matrix \(\operatorname{sub}(C)\) to be factored.
lwork
```

```
```

ic, jc

```
```

ic, jc
descc
descc
work

```
work
```

```
(global) INTEGER. The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively. (global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
COMPLEX for pcunmrq
DOUBLE COMPLEX for pzunmrq.
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least:
```

```
If side = 'L',
```

If side = 'L',
lwork\geqmax((mb_a*(mb_a-1))/2, (mpc0 +
lwork\geqmax((mb_a*(mb_a-1))/2, (mpc0 +
max (mqa0+numroc(numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a,
max (mqa0+numroc(numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a,
0, 0, lcmp), nqc0))*mb_a) + mb_a*mb_a
0, 0, lcmp), nqc0))*mb_a) + mb_a*mb_a
else if side = 'R',
else if side = 'R',
lwork\geqmax((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a*mb_a
lwork\geqmax((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a*mb_a
end if
end if
where
where
lcmp = lcm/NPROW with lcm = ilcm(NPROW, NPCOL),
lcmp = lcm/NPROW with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, icCOl, NPCOL),

```
nqc0 = numroc(n+icoffc, nb_c, MYCOL, icCOl, NPCOL),
```


## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then $l$ work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

C
work(1)
info

Overwritten by the product $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime *} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{\prime}$, or $\operatorname{sub}(C)^{*} Q$

On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
< 0 : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?tzrzf
Reduces the upper trapezoidal matrix $A$ to upper triangular form.

## Syntax

```
call pstzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdtzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pctzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pztzrzf(m, n, a, ia, ja, desca, tau, work, lwork, info)
```

Include Files

## Description

The p?tzrzfroutine reduces the $m$-by- $n(m \leq n)$ real/complex upper trapezoidal matrix $\operatorname{sub}(A)=A($ ia:ia $+m-1$, ja: $j a+n-1$ ) to upper triangular form by means of orthogonal/unitary transformations. The upper trapezoidal matrix $A$ is factored as
$A=(R 0) * Z$,
where $Z$ is an $n$-by- $n$ orthogonal/unitary matrix and $R$ is an m-by-m upper triangular matrix.

## Input Parameters

m
$n$
a
(global) INTEGER. The number of rows in the matrix $\operatorname{sub}(A) ;(m \geq 0)$.
(global) INTEGER. The number of columns in the matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
REAL for pstzrzf
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf.
DOUBLE COMPLEX for pztzrzf.
ia, ja
desca
work
lwork

Pointer into the local memory to an array of size (lld_a, LOCC (ja+n-1)). Contains the local pieces of the $m$-by-n distributed matrix sub $(A)$ to be factored.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for pstzrzf
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf.
DOUBLE COMPLEX for pztzrzf.
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least
lwork $\geq m b$ _a* $\left(m p 0+n q 0+m b \_a\right)$, where
iroff $=\bmod \left(i a-1, m b \_a\right)$,
iCoff $=\bmod \left(j a-1, n b \_a\right)$,
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mp0 = numroc (m+iroff, mb_a, MYROW, iarow, NPROW),
nq0 $=$ numroc (n+icoff, nb_a, MYCOL, iacol, NPCOL)

## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then $l$ work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
work(1)
tau
On exit, the leading m-by-m upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular matrix $R$, and elements $m+1$ to $n$ of the first $m$ rows of sub $(A)$, with the array tau, represent the orthogonal/unitary matrix $Z$ as a product of $m$ elementary reflectors.

On exit work (1) contains the minimum value of lwork required for optimum performance.
(local)

```
REAL for pstzrzf
DOUBLE PRECISION for pdtzrzf.
COMPLEX for pctzrzf.
DOUBLE COMPLEX for pztzrzf.
Array of size LOCr(ia+m-1).
Contains the scalar factor of elementary reflectors. tau is tied to the
distributed matrix A.
(global) INTEGER.
= 0: the execution is successful.
< 0:if the i-th argument is an array and the j-th entry had an illegal value,
then info = -(i*100+j); if the i-th argument is a scalar and had an illegal
value, then info = -i.
```


## Application Notes

The factorization is obtained by the Householder's method. The $k$-th transformation matrix, $Z(k)$, which is or whose conjugate transpose is used to introduce zeros into the ( $m-k+1$ ) -th row of $\operatorname{sub}(A)$, is given in the form

$$
Z(k)=\left[\begin{array}{cc}
i & 0 \\
0 & T(k)
\end{array}\right]
$$

where
$T(k)=i-\tan u^{*} u(k) * u(k)^{\prime}$,

$$
u(k)=\left[\begin{array}{c}
1 \\
0 \\
Z(k)
\end{array}\right]
$$

tau is a scalar and $Z(k)$ is an $(n-m)$ element vector. tau and $Z(k)$ are chosen to annihilate the elements of the $k$-th row of $\operatorname{sub}(A)$. The scalar tau is returned in the $k$-th element of $\operatorname{tau}$ and the vector $u(k)$ in the $k$-th row of $\operatorname{sub}(A)$, such that the elements of $Z(k)$ are in $a(k, m+1), \ldots, a(k, n)$. The elements of $R$ are returned in the upper triangular part of $\operatorname{sub}(A) . Z$ is given by
$Z=Z(1) * Z(2) * \ldots * Z(m)$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?ormrz
Multiplies a general matrix by the orthogonal matrix
from a reduction to upper triangular form formed by
p?tzrzf.

## Syntax

```
call psormrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
```

```
call pdormrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
```


## Include Files

## Description

This routine overwrites the general real $m$-by- $n$ distributed matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

	side $=^{\prime} \mathrm{L}$	side $={ }^{\prime} \mathrm{R}^{\prime}$
trans $=$ 'N':	$Q^{*} \operatorname{sub}(C)$	$\operatorname{sub}(C)^{*} Q$
trans $=$ 'T' $^{\prime}:$	$Q^{T *} \operatorname{sub}(C)$	$\operatorname{sub}(C)^{*} Q^{T}$

where $Q$ is a real orthogonal distributed matrix defined as the product of $k$ elementary reflectors

$$
Q=H(1) H(2) \ldots H(k)
$$

as returned by p?tzrzf. $Q$ is of order mif side = 'L' and of order $n$ if side = 'R'.

## Input Parameters

a

> (global) CHARACTER
> $=$ ' L': $Q$ or $Q^{T}$ is applied from the left.
> $=$ ' $^{\prime}: Q$ or $Q^{T}$ is applied from the right.
> (global) CHARACTER
> $='^{\prime} \mathrm{N}^{\prime}$, no transpose, $Q$ is applied.
> $='^{\prime}$ ', transpose, $Q^{T}$ is applied.
(global) INTEGER. The number of rows in the distributed matrix sub ( $C$ ) ( $m \geq 0$ ) .
(global) INTEGER. The number of columns in the distributed matrix sub (C) ( $n \geq 0$ ) .
(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q$. Constraints:
If side $=$ 'L', $m \geq k \geq 0$
If side $=$ 'R', $n \geq k \geq 0$.
(global)
The columns of the distributed matrix $\operatorname{sub}(A)$ containing the meaningful part of the Householder reflectors.

If side $=$ 'L', $m \geq 1 \geq 0$
If side $=$ 'R', $n \geq 1 \geq 0$.
(local)
REAL for psormrz
DOUBLE PRECISION for pdormrz.

Pointer into the local memory to an array of size (IId_a, LOCC(ja+m-1)) if side $=$ 'L', and (Ild_a,LOCC(ja+n-1)) if side = 'R', where lld_a $\geq$ $\max (1, \operatorname{LOCr}(i a+k-1))$.

The $i$-th row must contain the vector that defines the elementary reflector $H(i)$, iasisia+k-1, as returned by p?tzrzf in the $k$ rows of its distributed matrix argument $A\left(i a: i a+k-1, j a:^{*}\right)$. $A\left(i a: i a+k-1, j a:^{*}\right)$ is modified by the routine but restored on exit.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psormrz
DOUBLE PRECISION for pdormrz
Array of size LOCC (ia+k-1).
Contains the scalar factor $\operatorname{tau}(i)$ of elementary reflectors $H(i)$ as returned by p?tzrzf. tau is tied to the distributed matrix $A$.
(local)
REAL for psormrz
DOUBLE PRECISION for pdormrz
Pointer into the local memory to an array of local size (Ild_c, LOCc (jc $+n-1)$ ).
Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.
(global) INTEGER. The row and column indices in the global matrix $C$ indicating the first row and the first column of the submatrix $C$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $C$.
(local)
REAL for psormrz
DOUBLE PRECISION for pdormrz.
Workspace array of size of lwork.
(local or global) INTEGER, size of work, must be at least:

```
If side = 'L',
lwork}\\operatorname{max}((mb_a*(mb_a-1))/2, (mpc0 + max(mqa0 +
numroc(numroc(n+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0,
lcmp), nqc()) *mb_a) + mb_a*mb_a
else if side ='R',
lwork\geqmax ((mb_a* (mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a*mb_a
end if
```

where

```
lcmp = lcm/NPROW with lcm = ilcm (NPROW, NPCOL),
iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(n+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),
```


## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

c
Overwritten by the product $Q^{*} \operatorname{sub}(C)$, or $Q^{\prime *} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{\prime}$, or $\operatorname{sub}(C) * Q$
work (1)
info
On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?unmrz
Multiplies a general matrix by the unitary
transformation matrix from a reduction to upper
triangular form determined by p?tzrzf.

## Syntax

```
call pcunmrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunmrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
```


## Include Files

## Description

This routine overwrites the general complex m-by-n distributed matrix sub $(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

$$
\begin{array}{lll} 
& \text { side }=^{\prime} \mathrm{L} ' & \text { side }=^{\prime} \mathrm{R}^{\prime} \\
\text { trans }=\mathrm{I}^{\prime}: & Q^{*} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q \\
\text { trans }=\mathrm{I}^{\prime}: & Q^{H *} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q^{H}
\end{array}
$$

where $Q$ is a complex unitary distributed matrix defined as the product of $k$ elementary reflectors
$Q=H(1)^{\prime} H(2)^{\prime} \ldots H(k)^{\prime}$
as returned by pctzrzf/pztzrzf. $Q$ is of order $m$ if side $=$ 'L' and of order $n$ if side = 'R'.

## Input Parameters

```
side
```

$=$ ' L': $Q$ or $Q^{H}$ is applied from the left.
$=R^{\prime}$ ': $Q$ or $Q^{H}$ is applied from the right.
(global) CHARACTER
$=$ 'N', no transpose, $Q$ is applied.
$=' \mathrm{C}$ ', conjugate transpose, $Q^{H}$ is applied.
(global) INTEGER. The number of rows in the distributed matrix sub(C), ( $m \geq 0$ ) .
(global) INTEGER. The number of columns in the distributed matrix sub( $C$ ), ( $n \geq 0$ ) .
(global) INTEGER. The number of elementary reflectors whose product defines the matrix $Q$. Constraints:
If side $=$ 'L', $m \geq k \geq 0$
If side $=$ 'R', $n \geq k \geq 0$.
(global) INTEGER. The columns of the distributed matrix $\operatorname{sub}(A)$ containing the meaningful part of the Householder reflectors.
If side $=$ 'L', $m \geq 1 \geq 0$
If side $=$ 'R', $n \geq 1 \geq 0$.
(local)
COMPLEX for pcunmrz

DOUBLE COMPLEX for pzunmrz.
Pointer into the local memory to an array of size (Ild_a, LOCC(ja+m-1)) if side $=$ 'L', and (Ild_a, LOCC(ja+n-1)) if side $=$ 'R', where Ild_a $\geq$ $\max (1, \operatorname{LOCr}(j a+k-1))$. The $i$-th row must contain the vector that defines the elementary reflector $H(i)$, $i a \leq i \leq i a+k-1$, as returned by p?gerqf in the $k$ rows of its distributed matrix argument $A($ ia:ia+k-1, ja:*). $A$ (ia:ia $\left.+k-1, j a:^{*}\right)$ is modified by the routine but restored on exit.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz
Array of size LOCC (ia+k-1).
Contains the scalar factor tau(i) of elementary reflectors $H(i)$ as returned by p?gerqf. tau is tied to the distributed matrix $A$.
(local)
COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz.
Pointer into the local memory to an array of local size (lld_c, LOCc (jc $+n-1)$ ).

Contains the local pieces of the distributed matrix $\operatorname{sub}(C)$ to be factored.
(global) INTEGER. The row and column indices in the global matrix $C$ indicating the first row and the first column of the submatrix $C$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $C$.
(local)
COMPLEX for pcunmrz
DOUBLE COMPLEX for pzunmrz.
Workspace array of size 1 work.
(local or global) INTEGER, size of work, must be at least:

```
If side = 'L',
lwork\geqmax((mb_a*(mb_a-1))/2, (mpc0+max(mqa0+numroc(numroc(n
+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), nqC0))*mb_a)
+ mb_a*mb_a
else if side ='R',
lwork\geqmax ((mb_a* (mb_a-1))/2, (mpc0+nqC0)*mb_a) + mb_a*mb_a
end if
```

where

```
lcmp = lcm/NPROW with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(m+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(m+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(n+icoffc, nb_c, MYCOL, iccol, NPCOL),
```


## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

c
Overwritten by the product $Q^{*} \operatorname{sub}(C)$, or $Q^{\prime *}$ sub (C), or $\operatorname{sub}(C)^{*} Q^{\prime}$, or $\operatorname{sub}(C) * Q$

On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?ggqrf
Computes the generalized $Q R$ factorization.

## Syntax

```
call psggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork, info)
```

```
call pdggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork, info)
call pcggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork, info)
call pzggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork, info)
```

Include Files

## Description

The p?ggqrefoutine forms the generalized $Q R$ factorization of an $n-b y-m$ matrix
$\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+m-1)$
and an $n$-by-p matrix
$\operatorname{sub}(B)=B(i b: i b+n-1, j b: j b+p-1):$
as
$\operatorname{sub}(A)=Q^{*} R, \operatorname{sub}(B)=Q^{*} T^{*} Z$,
where $Q$ is an $n$-by- $n$ orthogonal/unitary matrix, $Z$ is a $p$-by- $p$ orthogonal/unitary matrix, and $R$ and $T$ assume one of the forms:
If $n \geq m$

$$
R=\binom{R_{11}}{0} n=m
$$

m
or if $n<m$

$$
\begin{array}{r}
R=\left(\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right) n \\
n
\end{array} m-n
$$

where $R_{11}$ is upper triangular, and

$$
\begin{aligned}
& T=\left(\begin{array}{ll}
0 & T_{12}
\end{array}\right) n, \text { if } n \leq p, \\
& p-n \quad n \\
& \text { or } T=\binom{T_{11}}{T_{21}}\binom{n-p}{p} \text {, if } n>p, \\
& p
\end{aligned}
$$

where $T_{12}$ or $T_{21}$ is an upper triangular matrix.
In particular, if $\operatorname{sub}(B)$ is square and nonsingular, the $G Q R$ factorization of $\operatorname{sub}(A)$ and $\operatorname{sub}(B)$ implicitly gives the $Q R$ factorization of inv $(\operatorname{sub}(B))^{*} \operatorname{sub}(A)$ :
$\operatorname{inv}(\operatorname{sub}(B))^{*} \operatorname{sub}(A)=Z^{H *}(\operatorname{inv}(T) * R)$

## Input Parameters

n
m
p
a
ia, ja
desca
b
ib, jb
descb
work
lwork
(global) INTEGER. The number of rows in the distributed matrices sub ( $A$ ) and $\operatorname{sub}(B) \quad(n \geq 0)$.
(global) INTEGER. The number of columns in the distributed matrix $\operatorname{sub}(A)$ ( $m \geq 0$ ) .

INTEGER. The number of columns in the distributed matrix $\operatorname{sub}(B)(p \geq 0)$.
(local)
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Pointer into the local memory to an array of size (lld_a, LOCC (ja+m-1)). Contains the local pieces of the $n$-by-m matrix $\operatorname{sub}(A)$ to be factored.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Pointer into the local memory to an array of size (lld_b, LOCC (jb+p-1)). Contains the local pieces of the $n$-by-p matrix $\operatorname{sub}(B)$ to be factored.
(global) InTEGER. The row and column indices in the global matrix $B$ indicating the first row and the first column of the submatrix $B$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix B.
(local)
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Workspace array of size of lwork.
(local or global) INTEGER. Sze of work, must be at least
lwork $\geq \max \left(n b \_a^{*}\left(n p a 0+m q a 0+n b \_a\right), \max \left(\left(n b \_a *\left(n b \_a-1\right)\right) / 2\right.\right.$, $(p q b 0+n p b 0)$ * nb_a $\left.)+n b \_a * n b \_a, m b \_b *\left(n p b 0+p q b 0+m b \_b\right)\right)$,
where

```
iroffa = mod(ia-1, mb_A),
icoffa}=\operatorname{mod}(ja-1, nb_a)
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
npa0 = numroc (n+iroffa, mb_a, MYROW, iarow, NPROW),
mqaO = numroc (m+icoffa, nb_a, MYCOL, iacol, NPCOL)
iroffb = mod(ib-1, mb_b),
icOffb = mod}(jb-1, nb_b)
ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW),
ibcol = indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL),
npbo = numroc (n+iroffa, mb_b, MYROW, Ibrow, NPROW),
pqbo = numroc(m+icoffb, nb_b, MYCOL, ibcol, NPCOL)
```


## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If lwork $=-1$, then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
taua, taub
On exit, the elements on and above the diagonal of sub (A) contain the $\min (n, m)$-by- $m$ upper trapezoidal matrix $R$ ( $R$ is upper triangular if $n \geq m$ ); the elements below the diagonal, with the array taua, represent the orthogonal/unitary matrix $Q$ as a product of $\min (n, m)$ elementary reflectors. (See Application Notes below).
(local)
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Arrays of size LOCC (ja+min $(n, m)-1)$ for taua and $\operatorname{LOCr}(i b+n-1)$ for taub.

The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix $Q$. taua is tied to the distributed matrix $A$. (See Application Notes below).

The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix $Z$. taub is tied to the distributed matrix $B$. (See Application Notes below).
work(1)
info

On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(j a) * H(j a+1) * \ldots * H(j a+k-1)$,
where $k=\min (n, m)$.
Each $H(i)$ has the form
$H(i)=i-\operatorname{tau}{ }^{*} v^{*} v^{\prime}$
where taua is a real/complex scalar, and $v$ is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1$; $v(i+1: n)$ is stored on exit in $A(i a+i: i a+n-1, j a+i-1)$, and taua in taua( $j a+i-1)$. To form $Q$ explicitly, use ScaLAPACK subroutine p?orgqr/p? ungqr. To use $Q$ to update another matrix, use ScaLAPACK subroutine p?ormqr/ p?unmqr.
The matrix $Z$ is represented as a product of elementary reflectors
$Z=H(i b) * H(i b+1) * \ldots * H(i b+k-1)$, where $k=\min (n, p)$.
Each $H(i)$ has the form
$H(i)=i-\operatorname{tau} b^{*} v^{*} v^{\prime}$
where taub is a real/complex scalar, and $v$ is a real/complex vector with $v(p-k+i+1: p)=0$ and $v(p-k+i)=1$; $v(1: p-k+i-1)$ is stored on exit in $B(i b+n-k+i-1, j b: j b+p-k+i-2)$, and taub in $\operatorname{taub}(i b+n-k+i-1)$. To form $Z$ explicitly, use ScaLAPACK subroutine p?orgrq/p?ungrq. To use $Z$ to update another matrix, use ScaLAPACK subroutine p?ormrq/p?unmrq.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?ggrqf

Computes the generalized $R Q$ factorization.

## Syntax

```
call psggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork, info)
call pdggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork, info)
call pcggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork, info)
call pzggrqf(m, p, n, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork, info)
```

Include Files

## Description

The p?ggrqfroutine forms the generalized $R Q$ factorization of an m-by-n matrix $\operatorname{sub}(A)=A(i a: i a+m-1$, $j a: j a+n-1)$ and a $p-b y-n$ matrix $\operatorname{sub}(B)=B(i b: i b+p-1, j b: j b+n-1)$ :
$\operatorname{sub}(A)=R^{*} Q, \operatorname{sub}(B)=Z^{*} T^{*} Q$,
where $Q$ is an $n$-by- $n$ orthogonal/unitary matrix, $Z$ is a $p$-by- $p$ orthogonal/unitary matrix, and $R$ and $T$ assume one of the forms:

$$
\begin{gathered}
R=m\left(0 \quad R_{12}\right), \text { if } m \leq n \\
n-m m
\end{gathered}
$$

or

$$
R=\binom{R_{11}}{R_{12}}^{m}-n, \quad \text { if } m>n
$$

n
where $R_{11}$ or $R_{21}$ is upper triangular, and

$$
T=\binom{T_{11}}{0} \frac{n}{n-n}, \text { if } p \geq n
$$

or

$$
\begin{gathered}
T=p\left(\begin{array}{ll}
T_{11} & T_{12}
\end{array}\right) \quad p, \text { if } p<n, \\
p n-p
\end{gathered}
$$

where $T_{11}$ is upper triangular.
In particular, if $\operatorname{sub}(B)$ is square and nonsingular, the $G R Q$ factorization of $\operatorname{sub}(A)$ and $\operatorname{sub}(B)$ implicitly gives the $R Q$ factorization of sub $(A) * \operatorname{inv}(\operatorname{sub}(B))$ :
$\operatorname{sub}(A) * \operatorname{inv}(\operatorname{sub}(B))=\left(R^{*} \operatorname{inv}(T)\right) * Z^{\prime}$
where $\operatorname{inv}(\operatorname{sub}(B))$ denotes the inverse of the matrix $\operatorname{sub}(B)$, and $Z^{\prime}$ denotes the transpose (conjugate transpose) of matrix $Z$.

## Input Parameters

m
p
n
a
(global) INTEGER. The number of rows in the distributed matrices sub ( $A$ ) ( $m \geq 0$ ) .

INTEGER. The number of rows in the distributed matrix $\operatorname{sub}(B)(p \geq 0)$.
(global) INTEGER. The number of columns in the distributed matrices $\operatorname{sub}(A)$ and $\operatorname{sub}(B)(n \geq 0)$.
(local)

REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.
Pointer into the local memory to an array of size (lld_a, LOCC (ja+n-1)). Contains the local pieces of the m-by-n distributed matrix $\operatorname{sub}(A)$ to be factored.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.
Pointer into the local memory to an array of size (IId_b, LOCC (jb+n-1)).
Contains the local pieces of the $p-b y-n$ matrix $\operatorname{sub}(B)$ to be factored.
(global) INTEGER. The row and column indices in the global matrix $B$ indicating the first row and the first column of the submatrix $B$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $B$.
(local)
REAL for psggrqf
DOUBLE PRECISION for pdggrqf
COMPLEX for pcggrqf
DOUBLE COMPLEX for pzggrqf.
Workspace array of size of lwork.
(local or global) INTEGER.
Size of work, must be at least lwork $\geq$ max (mb_a* (mpa0 + nqa0 $\left.0+m b \_a\right)$, $\max \left(\left(m b \_a^{*}\left(m b \_a-1\right)\right) / 2,(p p b 0+n q b 0) * m b \_a\right)+m b \_a^{\star} m b \_a$, $\left.n b \_b^{*}\left(p p b 0+n q b 0+n b \_b\right)\right)$, where
iroffa $=\bmod \left(i a-1, m b \_A\right)$,
icoffa $=\bmod \left(j a-1, n b \_a\right)$,
iarow = indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol $=$ indxg2p(ja, nb_a, MYCOL, csrc_a, NPCOL),
mpaO $=$ numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),

```
nqaO = numroc (m+icoffa, nb_a, MYCOL, iacol, NPCOL)
iroffb = mod(ib-1, mb_b),
icoffb = mod(jb-1, nb_b),
ibrow = indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW),
ibcol = indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL),
ppb0 = numroc (p+iroffb, mb_b, MYROW, ibrow,NPROW),
nqb0 = numroc (n+icoffb, nb_b, MYCOL, ibcol,NPCOL)
```


## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
and numroc, indxg2p are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then $l$ work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
work(1)
info
On exit, if $m \leq n$, the upper triangle of $A(i a: i a+m-1, j a+n-m$ : $j a+n-1)$ contains the $m$-by- $m$ upper triangular matrix $R$; if $m \geq n$, the elements on and above the $(m-n)$-th subdiagonal contain the $m-b y-n$ upper trapezoidal matrix $R$; the remaining elements, with the array taua, represent the orthogonal/ unitary matrix $Q$ as a product of $\min (n, m)$ elementary reflectors (see Application Notes below).
(local)
REAL for psggqrf
DOUBLE PRECISION for pdggqrf
COMPLEX for pcggqrf
DOUBLE COMPLEX for pzggqrf.
Arrays of size LOCr (ia+m-1) for taua and $\operatorname{LOCC}(j b+\min (p, n)-1)$ for taub.

The array taua contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix $Q$. taua is tied to the distributed matrix A.(See Application Notes below).

The array taub contains the scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix $Z$. taub is tied to the distributed matrix B. (See Application Notes below).

On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(i a) * H(i a+1) * \ldots * H(i a+k-1)$,
where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(i)=i-\operatorname{tau} a^{*} v^{*} v^{\prime}$
where taua is a real/complex scalar, and $v$ is a real/complex vector with $v(n-k+i+1: n)=0$ and $v(n-k+i)=1$; $v(1: n-k+i-1)$ is stored on exit in $A(i a+m-k+i-1, j a: j a+n-k+i-2)$, and taua in taua(ia+m-k+i-1). To form $Q$ explicitly, use ScaLAPACK subroutine p?orgrq/p?ungrq. To use $Q$ to update another matrix, use ScaLAPACK subroutine p?ormrq/p?unmrq.

The matrix $Z$ is represented as a product of elementary reflectors
$Z=H(j b) * H(j b+1) * \ldots * H(j b+k-1)$, where $k=\min (p, n)$.
Each $H(i)$ has the form
$H(i)=i-\operatorname{tau}^{*} v^{*} v^{\prime}$
where taub is a real/complex scalar, and $v$ is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1 ; v(i+1: p)$ is stored on exit in $B(i b+i: i b+p-1, j b+i-1)$, and taub in $t a u b(j b+i-1)$. To form $Z$ explicitly, use ScaLAPACK subroutine p?orgqr/p?ungqr. To use $Z$ to update another matrix, use ScaLAPACK subroutine p?ormqr/ p?unmqr.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## Symmetric Eigenvalue Problems: ScaLAPACK Computational Routines

To solve a symmetric eigenproblem with ScaLAPACK, you usually need to reduce the matrix to real tridiagonal form $T$ and then find the eigenvalues and eigenvectors of the tridiagonal matrix $T$. ScaLAPACK includes routines for reducing the matrix to a tridiagonal form by an orthogonal (or unitary) similarity transformation $A=Q T Q^{H}$ as well as for solving tridiagonal symmetric eigenvalue problems. These routines are listed in Table "Computational Routines for Solving Symmetric Eigenproblems".

There are different routines for symmetric eigenproblems, depending on whether you need eigenvalues only or eigenvectors as well, and on the algorithm used (either the QTQ algorithm, or bisection followed by inverse iteration).
Computational Routines for Solving Symmetric Eigenproblems

Operation	Dense symmetric/   Hermitian matrix	Orthogonal/unitary   matrix	Symmetric   tridiagonal   matrix
Reduce to tridiagonal form $A=Q T Q^{H}$	p?sytrd/p?hetrd		
Multiply matrix after reduction	p?ormtr/p?unmtr		
Find all eigenvalues and eigenvectors   of a tridiagonal matrix $T$ by a $Q T Q$   method		steqr2*	
Find selected eigenvalues of a   tridiagonal matrix $T$ via bisection		p?stebz	


Operation	Dense symmetric/   Hermitian matrix	Orthogonal/unitary   matrix
Find selected eigenvectors of a  Symetric   tridiagonal   matrix   tridiagonal matrix $T$ by inverse   iteration  ?stein		

* This routine is described as part of auxiliary ScaLAPACK routines.


## p?syngst <br> Reduces a complex Hermitian-definite generalized eigenproblem to standard form.

## Syntax

```
call pssyngst (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, work, lwork,
info)
call pdsyngst (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, work, lwork,
info)
```


## Description

p?syngst reduces a complex Hermitian-definite generalized eigenproblem to standard form.
p?syngst performs the same function as p?hegst, but is based on rank 2 K updates, which are faster and more scalable than triangular solves (the basis of p?syngst).
$p$ ?syngst calls $p$ ?hegst when uplo='U', hence $p$ ?hengst provides improved performance only when uplo='L', ibtype $=1$.
p?syngst also calls p?hegst when insufficient workspace is provided, hence p?syngst provides improved performance only when lwork $>=2 *$ NPO $* \mathrm{NB}+\mathrm{NQO} * \mathrm{NB}+\mathrm{NB} * \mathrm{NB}$
In the following $\operatorname{sub}(A)$ denotes $A(i a: i a+n-1, j a: j a+n-1)$ and $\operatorname{sub}(B)$ denotes $B(i b: i b+n-1, j b: j b$ $+n-1$ ).
If ibtype $=1$, the problem is $\operatorname{sub}(A)^{*} x=\operatorname{lambda*} \operatorname{sub}(B)^{*} x$, and $\operatorname{sub}(A)$ is overwritten by $\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$ or $\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)$

If ibtype $=2$ or 3 , the problem is $\operatorname{sub}(A) * \operatorname{sub}(B)^{*} x=$ lambda*x or $\operatorname{sub}(B) * \operatorname{sub}(A){ }^{*} x=$ lambda*x, and $\operatorname{sub}(A)$ is overwritten by $U^{*} \operatorname{sub}(A)^{*} U^{H}$ or $L^{H *} \operatorname{sub}(A)^{*} L$.
sub( $B$ ) must have been previously factorized as $U^{H *} U$ or $L^{*} L^{H}$ by p?potrf.
Input Parameters

ibtype	(global)
	INTEGER.
	$=1:$ compute $\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U) \operatorname{or} \operatorname{inv}(L) * \operatorname{sub}(A)^{*} \operatorname{inv}\left(L^{H}\right) ;$
	$=2$ or $3:$ compute $U^{*} \operatorname{sub}(A)^{*} U^{H} \operatorname{or} L^{H *} \operatorname{sub}(A)^{*} L$.
uplo	(global)
	CHARACTER.
	$=$ 'U': Upper triangle of $\operatorname{sub}(A)$ is stored and $\operatorname{sub}(B)$ is factored as $U^{H *} U^{\prime} ;$
	$=$ 'L': Lower triangle of $\operatorname{sub}(A)$ is stored and $\operatorname{sub}(B)$ is factored as $L^{*} L^{H}$.
$n$	(global)

## INTEGER.

The order of the matrices $\operatorname{sub}(A)$ and $\operatorname{sub}(B) . n>=0$.
(local)
REAL for pssyngst
DOUBLE PRECISION for pdsyngst
Pointer into the local memory to an array of size (lld_a, LOCC (ja+n-1)).
On entry, this array contains the local pieces of the $n-b y-n$ Hermitian distributed matrix $\operatorname{sub}(A)$. If uplo $=$ ' $U$ ', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If uplo = 'L', the leading $n-b y-n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
(global)
INTEGER.
A's global row index, which points to the beginning of the submatrix which is to be operated on.
(global)
INTEGER.
A's global column index, which points to the beginning of the submatrix which is to be operated on.
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix $A$.
(local)
REAL for pssyngst
DOUBLE PRECISION for pdsyngst
Pointer into the local memory to an array of size (lld_b, LOCC ( $j b+n-1$ )).
On entry, this array contains the local pieces of the triangular factor from the Cholesky factorization of $\operatorname{sub}(B)$, as returned by p?potrf.
(global)
INTEGER.
$B$ 's global row index, which points to the beginning of the submatrix which is to be operated on.
(global)
INTEGER.
$B$ 's global column index, which points to the beginning of the submatrix which is to be operated on.

```
descb
work
lwork
```

(global and local)

## INTEGER.

Array of size dlen_.
The array descriptor for the distributed matrix $B$.
(local)
REAL for pssyngst
DOUBLE PRECISION for pdsyngst
Array, size (lwork)
(local or global)
INTEGER.
The size of the array work.
lwork is local input and must be at least 1 work $>=\operatorname{MAX}(\mathrm{NB} *(\mathrm{NPO}+1)$, 3 * NB )
When ibtype $=1$ and uplo $=$ ' L ', p?syngst provides improved performance when lwork $>=2$ * NPO * NB $+\mathrm{NQO} * \mathrm{NB}+\mathrm{NB} * \mathrm{NB}$,
where NB = mb_a = nb_a,
NPO = numroc ( $n, N B, 0,0$, NPROW ),
NQO = numroc ( $n, N B, 0,0, N P R O W)$,
numroc is a ScaLAPACK tool functions
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by peerbla.

## Output Parameters

work
a
scale

On exit, if info $=0$, the transformed matrix, stored in the same format as $\operatorname{sub}(A)$.
(global)
REAL for pssyngst
DOUBLE PRECISION for pdsyngst
Amount by which the eigenvalues should be scaled to compensate for the scaling performed in this routine. At present, scale is always returned as 1.0 , it is returned here to allow for future enhancement.
(local)
REAL for pssyngst
DOUBLE PRECISION for pdsyngst
Array, size (lwork)

On exit, work(1) returns the minimal and optimal lwork.
info
(global)
INTEGER.
= 0: successful exit
< 0: If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
p?syntrd
Reduces a real symmetric matrix to symmetric
tridiagonal form.

## Syntax

```
call pssyntrd (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pdsyntrd (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
```


## Description

p?syntrd is a prototype version of p?sytrd which uses tailored codes (either the serial, ?sytrd, or the parallel code, p?syttrd) when the workspace provided by the user is adequate.
p?syntrd reduces a real symmetric matrix $\operatorname{sub}(A)$ to symmetric tridiagonal form $T$ by an orthogonal similarity transformation:
$Q^{\prime *} \operatorname{sub}(A){ }^{*} Q=T$, where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$.

## Features

p?syntrd is faster than p?sytrd on almost all matrices, particularly small ones (i.e. $n<500 * \operatorname{sqrt}(\mathrm{P})$ ), provided that enough workspace is available to use the tailored codes.

The tailored codes provide performance that is essentially independent of the input data layout.
The tailored codes place no restrictions on ia, ja, MB or NB. At present, ia, ja, MB and NB are restricted to those values allowed by p?hetrd to keep the interface simple (see the Application Notes section for more information about the restrictions).

## Input Parameters

```
uplo
```

n
a
(global)
CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric matrix $\operatorname{sub}(A)$ is stored:
= 'U': Upper triangular
= 'L': Lower triangular
(global)
INTEGER.
The number of rows and columns to be operated on, i.e. the order of the distributed submatrix $\operatorname{sub}(A) . n>=0$.
(local)

REAL for pssyntrd
DOUBLE PRECISION for pdsyntrd
Pointer into the local memory to an array of size (lld_a,LOCC (ja+n-1)).
On entry, this array contains the local pieces of the symmetric distributed matrix sub( $A$ ). If uplo = 'U', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If uplo = 'L', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
ia
(global)
INTEGER.
The row index in the global array a indicating the first row of $\operatorname{sub}(A)$.
(global)
INTEGER.
The column index in the global array a indicating the first column of $\operatorname{sub}(A)$.
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix $A$.
(local)
REAL for pssyntrd
DOUBLE PRECISION for pdsyntrd
Array, size (lwork)
(local or global)
INTEGER.
The size of the array work.
lwork is local input and must be at least lwork $>=\operatorname{MAX}(N B *(N P+1), 3$

* NB )

For optimal performance, greater workspace is needed, i.e.
lwork $>=2^{*}(A N B+1) *(4 * N P S+2)+(N P S+4) * N P S$
$A N B=p j l a e n v(I C T X T, 3, ' p ? s y t t r d ', ~ ' L ', ~ 0,0,0,0)$
ICTXT = desca( ctxt_ )
SQNPC $=$ INT $(\operatorname{sqrt}(\operatorname{REAL}(N P R O W * N P C O L ~)))$
numroc is a ScaLAPACK tool function.
pjlaenv is a ScaLAPACK environmental inquiry function.
NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

## Output Parameters

a
$d$

。

On exit, if uplo = ' $U$ ', the diagonal and first superdiagonal of sub( $A$ ) are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements above the first superdiagonal, with the array tau, represent the orthogonal matrix $Q$ as a product of elementary reflectors; if uplo = 'L', the diagonal and first subdiagonal of sub ( $A$ ) are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements below the first subdiagonal, with the array tau, represent the orthogonal matrix $Q$ as a product of elementary reflectors. See Further Details.
(local)
REAL for pssyntrd
DOUBLE PRECISION for pdsyntrd
Array, size LOCc(ja+n-1)
The diagonal elements of the tridiagonal matrix $T: d(\mathrm{i})=A(\mathrm{i}, \mathrm{i}) . d$ is tied to the distributed matrix $A$.
(local)
REAL for pssyntrd
DOUBLE PRECISION for pdsyntrd
Array, size LOCc( $j a+n-1$ ) if uplo $=$ 'U', LOCc $(j a+n-2)$ otherwise.
The off-diagonal elements of the tridiagonal matrix $T$ : $e(\mathrm{i})=A(\mathrm{i}, \mathrm{i}+1)$ if uplo = 'U', e(i) $=A(\mathrm{i}+1, \mathrm{i})$ if uplo = ' L '. e is tied to the distributed matrix $A$.
(local)
REAL for pssyntrd
DOUBLE PRECISION for pdsyntrd
Array, size LOCc(ja+n-1).
This array contains the scalar factors tau of the elementary reflectors. tau is tied to the distributed matrix $A$.
(local)
REAL for pssyntrd
DOUBLE PRECISION for pdsyntrd
Array, size (lwork)
On exit, work (1) returns the optimal lwork.

## (global)

INTEGER.
= 0: successful exit
< 0: If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

If uplo = ' $U$ ', the matrix $Q$ is represented as a product of elementary reflectors
$Q=\mathrm{H}(n-1) \ldots \mathrm{H}(2) \mathrm{H}(1)$.
Each $\mathrm{H}(\mathrm{i})$ has the form
$H(i)=I-\operatorname{tau} * v * v^{\prime}$, where tau is a complex scalar, and $v$ is a complex vector with $v(i+1: n)=0$ and $v(i)=$ 1 ; $v(1: i-1)$ is stored on exit in $A(i a: i a+i-2, j a+i)$, and tau in tau(ja+i-1).

If uplo = 'L', the matrix $Q$ is represented as a product of elementary reflectors
$Q=\mathrm{H}(1) \mathrm{H}(2) \ldots \mathrm{H}(n-1)$.
Each $\mathrm{H}(\mathrm{i})$ has the form
$\mathrm{H}(\mathrm{i})=\mathrm{I}-\operatorname{tau} * \mathrm{v} * \mathrm{v}^{\prime}$, where tau is a complex scalar, and v is a complex vector with $\mathrm{v}(1: \mathrm{i})=0$ and $\mathrm{v}(\mathrm{i}+1)=$ $1 ; \mathrm{v}(\mathrm{i}+2: n)$ is stored on exit in $A(i a+i+1: i a+n-1, j a+i-1)$, and tau in tau(ja+i-1).
The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples with $n=5$ :
if uplo = 'U':
$\left(\begin{array}{ccccc}d & e & v 2 & v 3 & v 4 \\ & d & e & v 3 & v 4 \\ & & d & e & v 3 \\ & & & d & e \\ & & & & \\ & & & & \end{array}\right)$
if uplo = 'L':
$\left(\begin{array}{ccccc}d & & & \\ e & d & & \\ v 1 & e & d & \\ v 1 & v 2 & e & d \\ v 1 & v 2 & v 3 & e & d\end{array}\right)$
where $d$ and $e$ denote diagonal and off-diagonal elements of $T$, and $v i$ denotes an element of the vector defining $\mathrm{H}(i)$.

## Alignment requirements

The distributed submatrix sub( $A$ ) must verify some alignment properties, namely the following expression should be true:
$\left(m b \_a=n b \_a\right.$ and IROFFA $=I C O F F A$ and $\left.I R O F F A=0\right)$ with $I R O F F A=\bmod \left(i a-1, m b \_a\right)$, and $I C O F F A=$ mod( ja-1, nb_a ).

```
p?sytrd
Reduces a symmetric matrix to real symmetric
tridiagonal form by an orthogonal similarity
transformation.
```


## Syntax

```
call pssytrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pdsytrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
```

Include Files

## Description

The p?sytrd routine reduces a real symmetric matrix $\operatorname{sub}(A)$ to symmetric tridiagonal form $T$ by an orthogonal similarity transformation:
$Q^{\prime *} \operatorname{sub}(A) * Q=T$,
where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$.

## Input Parameters

```
uplo
n
a
ia, ja
desca
work
lwork
(global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric matrix \(\operatorname{sub}(A)\) is stored:
If uplo = 'U', upper triangular
If uplo = 'L', lower triangular
(global) INTEGER. The order of the distributed matrix \(\operatorname{sub}(A)(n \geq 0)\).
(local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Pointer into the local memory to an array of size (lld_a, LOCc (ja+n-1)). On entry, this array contains the local pieces of the symmetric distributed matrix sub \((A)\).
If uplo = 'U', the leading \(n-b y-n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced. See Application Notes below.
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Workspace array of size lwork.
(local or global) INTEGER, size of work, must be at least:
lwork \(\geq \max \left(\mathrm{NB}^{*}(n p+1), 3 * N B\right)\),
where NB \(=\) mb_a \(=n b _a\),
\(n p=\) numroc (n, NB, MYROW, iarow, NPROW),
iarow = indxg2p(ia, NB, MYROW, rsrc_a, NPROW).
```

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then $l$ work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

$a$
d
e
tau
work(1)
info

On exit, if uplo = 'U', the diagonal and first superdiagonal of sub $(A)$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements above the first superdiagonal, with the array tau, represent the orthogonal matrix $Q$ as a product of elementary reflectors; if uplo = 'L', the diagonal and first subdiagonal of $\operatorname{sub}(A)$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements below the first subdiagonal, with the array tau, represent the orthogonal matrix $Q$ as a product of elementary reflectors. See Application Notes below.
(local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays of size LOCC (ja+n-1). The diagonal elements of the tridiagonal matrix $T$ :
$d(i)=A(i, i)$.
$d$ is tied to the distributed matrix $A$.
(local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays of size LOCC (ja+n-1) if uplo = 'U', LOCC (ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix $T$ :
$e(i)=A(i, i+1)$ if uplo = 'U',
$e(i)=A(i+1, i)$ if uplo $=$ 'L'.
$e$ is tied to the distributed matrix $A$.
(local)
REAL for pssytrd
DOUBLE PRECISION for pdsytrd.
Arrays of size $\operatorname{LOCC}(j a+n-1)$. This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix $A$.

On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

If uplo = 'U', the matrix $Q$ is represented as a product of elementary reflectors
$Q=H(n-1) \ldots H(2) H(1)$.
Each $H(i)$ has the form
$H(i)=i-\tan * v * v^{\prime}$,
where tau is a real scalar, and $v$ is a real vector with $v(i+1: n)=0$ and $v(i)=1 ; v(1: i-1)$ is stored on exit in A(ia:ia+i-2, ja+i), and tau in tau(ja+i-1).

If uplo = 'L', the matrix $Q$ is represented as a product of elementary reflectors
$Q=H(1) H(2) \ldots H(n-1)$.
Each $H(i)$ has the form
$H(i)=i-\tan * v * v^{\prime}$,
where tau is a real scalar, and $v$ is a real vector with $v(1: i)=0$ and $v(i+1)=1 ; v(i+2: n)$ is stored on exit in $A(i a+i+1: i a+n-1, j a+i-1)$, and tau in $\operatorname{tau}(j a+i-1)$.
The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples with $n=5$ :
If uplo = 'U':

$$
\left[\begin{array}{ccccc}
d & e & v 2 & v 3 & v 4 \\
& d & e & v 3 & v 4 \\
& & d & e & v 4 \\
& & & d & e \\
& & & & d
\end{array}\right]
$$

If uplo = 'L':

$$
\left[\begin{array}{ccccc}
d & & & & \\
e & d & & & \\
v 1 & e & d & & \\
v 1 & v 2 & e & d & \\
v 1 & v 2 & v 3 & e & d
\end{array}\right]
$$

where $d$ and e denote diagonal and off-diagonal elements of $T$, and $v i$ denotes an element of the vector defining $H(i)$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?ormtr
Multiplies a general matrix by the orthogonal
transformation matrix from a reduction to tridiagonal
form determined by p?sytrd.
```


## Syntax

```
call psormtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pdormtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
```


## Include Files

## Description

This routine overwrites the general real distributed $m-b y-n$ matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

$$
\begin{array}{lll} 
& \text { side }=^{\prime} \mathrm{L}^{\prime} & \text { side }=^{\prime} \mathrm{R}^{\prime} \\
\text { trans }=\text { 'N': } & Q^{*} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q \\
\text { trans }='^{\prime} \mathrm{T}^{\prime}: & Q^{T *} \operatorname{sub}(C) & \operatorname{sub}(C)^{*} Q^{T}
\end{array}
$$

where $Q$ is a real orthogonal distributed matrix of order $n q$, with $n q=m$ if side $=$ 'L' and $n q=n$ if side $=$ 'R'.
$Q$ is defined as the product of $n q$ elementary reflectors, as returned by p?sytrd.
If uplo = 'U', $Q=H(n q-1) \ldots H(2) H(1)$;
If uplo $=$ 'L', $Q=H(1) H(2) \ldots H(n q-1)$.

## Input Parameters

side
trans
m
$n$
a
(global) CHARACTER
$=$ ' L': $Q$ or $Q^{T}$ is applied from the left.
$={ }^{\prime} \mathrm{R}^{\prime}: Q$ or $Q^{T}$ is applied from the right.
(global) CHARACTER
$=$ 'N', no transpose, $Q$ is applied.
$=$ 'T', transpose, $Q^{T}$ is applied.
(global) CHARACTER.
= 'U': Upper triangle of $A(i a: *, ~ j a: *)$ contains elementary reflectors from p?sytrd;
$=$ 'L': Lower triangle of $A(i a: *, j a: *)$ contains elementary reflectors from p?sytrd
(global) INTEGER. The number of rows in the distributed matrix sub(C) ( $m \geq 0$ ) .
(global) INTEGER. The number of columns in the distributed matrix sub( $C$ ) ( $n \geq 0$ ) .
(local)

REAL for psormtr
DOUBLE PRECISION for pdormtr.
Pointer into the local memory to an array of size (lld_a,LOCC (ja+m-1)) if side $=$ 'L', and (Ild_a, LOCC (ja+n-1)) if side = 'R'.

Contains the vectors that define the elementary reflectors, as returned by p?sytrd.
If side='L', lld_a $\geq$ max $(1, \operatorname{LOCr}(i a+m-1))$;
If side $=$ 'R', lld_a $\geq \max (1, \operatorname{LOCr}(i a+n-1))$.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psormtr
DOUBLE PRECISION for pdormtr.
Array of size of Itau where
if side $=$ 'L' and uplo = 'U', Itau = LOCc (m_a),
if side $=$ 'L' and uplo = 'L', Itau $=\operatorname{LOCc}(j a+m-2)$,
if side $=$ 'R' and uplo = 'U', Itau $=\operatorname{LOCc}\left(n_{-} a\right)$,
if side $=$ 'R' and uplo $=$ 'L', Itau $=\operatorname{LOCc}(j a+n-2)$.
$\operatorname{tau}(i)$ must contain the scalar factor of the elementary reflector $H(i)$, as returned by p?sytrd. tau is tied to the distributed matrix $A$.
(local) REAL for psormtr
DOUBLE PRECISION for pdormtr.
Pointer into the local memory to an array of size (lld_c, LOCc (jc+n-1)). Contains the local pieces of the distributed matrix sub ( $C$ ).
(global) INTEGER. The row and column indices in the global matrix $C$ indicating the first row and the first column of the submatrix $C$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $C$.
(local)
REAL for psormtr
DOUBLE PRECISION for pdormtr.
Workspace array of size lwork.
(local or global) INTEGER, size of work, must be at least:

```
if uplo = 'U',
iaa= ia; jaa= ja+1, icc= ic; jcc= jc;
```

```
else uplo = 'L',
iaa= ia+1, jaa= ja;
If side = 'L',
icc= ic+1; jcc= jc;
else icc= ic; jcc= jc+1;
end if
end if
If side = 'L',
mi= m-1; ni= n
lwork \geq max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) +
nb_a*nb_a
else
If side = 'R',
mi= m; mi = n-1;
lwork\geqmax((nb_a*(nb_a-1))/2, (nqc0 +
max(npa0+numroc(numroc(ni+iCoffC, nb_a, 0, 0, NPCOL), nb_a,
0, 0, lcmq), mpc0))*nb_a)+ nb_a*nb_a
end if
where lcmq = lcm/NPCOL with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarOW = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
```


## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. If lwork $=-1$, then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

```
C
work(1)
info
Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C) * Q\).
On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```


## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?hengst
Reduces a complex Hermitian-definite generalized
eigenproblem to standard form.

## Syntax

```
call pchengst (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, work, lwork,
info)
call pzhengst (ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, work, lwork,
info)
```


## Description

p?hengst reduces a complex Hermitian-definite generalized eigenproblem to standard form.
p?hengst performs the same function as p?hegst, but is based on rank 2 K updates, which are faster and more scalable than triangular solves (the basis of $p$ ?hengst).
p?hengst calls $p$ ?hegst when uplo='U', hence p?hengst provides improved performance only when uplo='L' and ibtype=1.
p?hengst also calls p?hegst when insufficient workspace is provided, hence p?hengst provides improved performance only when lwork is sufficient (as described in the parameter descriptions).

In the following $\operatorname{sub}(A)$ denotes the submatrix $A(i a: i a+n-1, j a: j a+n-1)$ and $\operatorname{sub}(B)$ denotes the submatrix $B(i b: i b+n-1, j b: j b+n-1)$.

If ibtype $=1$, the problem is $\operatorname{sub}(A)^{*} x=\operatorname{lambda*} \operatorname{sub}(B)^{*} x$, and $\operatorname{sub}(A)$ is overwritten by $\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$ or $\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)$
If ibtype $=2$ or 3 , the problem is $\operatorname{sub}(A)^{*} \operatorname{sub}(B)^{*} x=$ lambda*x or $\operatorname{sub}(B)^{*} \operatorname{sub}(A)^{*} x=$ lambda*x, and $\operatorname{sub}(A)$ is overwritten by $U^{*} \operatorname{sub}(A)^{*} U^{H}$ or $L^{H *} \operatorname{sub}(A)^{*} L$.
sub( $B$ ) must have been previously factorized as $U^{H *} U$ or $L^{*} L^{H}$ by p?potrf.

## Input Parameters

ibtype
(global)
INTEGER.
$=1:$ compute $\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$ or $\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)$;
$=2$ or 3 : compute $U^{*} \operatorname{sub}(A)^{*} U^{H}$ or $L^{H *} \operatorname{sub}(A)^{*} L$.
(global)
CHARACTER.
$=$ 'U': Upper triangle of $\operatorname{sub}(A)$ is stored and $\operatorname{sub}(B)$ is factored as $U^{H *} U^{\prime}$;
$=$ ' $L$ ': Lower triangle of $\operatorname{sub}(A)$ is stored and $\operatorname{sub}(B)$ is factored as $L^{*} L^{H}$.
(global)
INTEGER.
The order of the matrices $\operatorname{sub}(A)$ and $\operatorname{sub}(B) . n>=0$.
(local)
COMPLEX for pchengst
DOUBLE COMPLEX for pzhengst
Pointer into the local memory to an array of size (lld_a,LOCC (ja+n-1)).
On entry, this array contains the local pieces of the $n-b y-n$ Hermitian distributed matrix sub( $A$ ). If uplo = 'U', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If uplo = 'L', the leading $n-b y-n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
(global)
INTEGER.
Global row index of matrix $A$, which points to the beginning of the submatrix on which to operate.
(global)
INTEGER.
Global column index of matrix $A$, which points to the beginning of the submatrix on which to operate.
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix $A$.
(local)
COMPLEX for pchengst
DOUBLE COMPLEX for pzhengst
Pointer into the local memory to an array of size (Ild_b, LOCC (jb+n-1)).
(global)
INTEGER.

Global row index of matrix $B$, which points to the beginning of the submatrix on which to operate.
(global)
INTEGER.
Global column index of matrix $B$, which points to the beginning of the submatrix on which to operate.
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix $B$.
(local)
COMPLEX for pchengst
DOUBLE COMPLEX for pzhengst
Array, size (lwork)
On exit, work( 1 ) returns the minimal and optimal lwork.
(local)
INTEGER.
The size of the array work.
lwork is local input and must be at least lwork >= MAX ( NB * ( NPO +1 ), 3 * NB ).

When ibtype $=1$ and uplo = ' L ', p?hengst provides improved performance when lwork $>=2 * N P O * N B+N Q O * N B+N B * N B$, where $N B=m b \_a=n b \_a, N P O=$ numroc $(n, N B, 0,0$, NPROW $), N Q O=$ numroc ( $n, N B, 0,0$, NPROW ), and numroc is a ScaLAPACK tool function.

MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
scale

On exit, if info $=0$, the transformed matrix, stored in the same format as $\operatorname{sub}(A)$.
(global)
REAL for pchengst
DOUBLE PRECISION for pzhengst
Amount by which the eigenvalues should be scaled to compensate for the scaling performed in this routine.
scale is always returned as 1.0 .

```
work On exit, work(1) returns the minimal and optimal lwork.
info
On exit, work (1) returns the minimal and optimal lwork.
(global)
INTEGER.
\(=0\) : successful exit
< 0: If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```


## p?hentrd

Reduces a complex Hermitian matrix to Hermitian
tridiagonal form.

## Syntax

```
call pchentrd (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, rwork, lrwork, info)
call pzhentrd (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, rwork, lrwork, info)
```


## Description

p?hentrd is a prototype version of p?hetrd which uses tailored codes (either the serial, ?hetrd, or the parallel code, p ?hettrd) when adequate workspace is provided.
p?hentrd reduces a complex Hermitian matrix $\operatorname{sub}(A)$ to Hermitian tridiagonal form $T$ by an unitary similarity transformation:
$Q^{\prime *} \operatorname{sub}(A){ }^{*} Q=T$, where $\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)$.
p?hentrd is faster than p?hetrd on almost all matrices, particularly small ones (i.e. $n<500 * \operatorname{sqrt}(\mathrm{P})$ ), provided that enough workspace is available to use the tailored codes.

The tailored codes provide performance that is essentially independent of the input data layout.
The tailored codes place no restrictions on ia, ja, MB or NB. At present, ia, ja, MB and NB are restricted to those values allowed by p?hetrd to keep the interface simple (see the Application Notes section for more information about the restrictions).

## Input Parameters

## uplo

$n$
a
(global)
CHARACTER.
Specifies whether the upper or lower triangular part of the Hermitian matrix $\operatorname{sub}(A)$ is stored:
= 'U': Upper triangular
= 'L': Lower triangular
(global)
INTEGER.
The number of rows and columns to be operated on, i.e. the order of the distributed submatrix $\operatorname{sub}(A) . n>=0$.
(local)
COMPLEX for pchentrd

DOUBLE COMPLEX for pzhentrd
Pointer into the local memory to an array of size (IId_a, LOCC (ja+n-1)).
On entry, this array contains the local pieces of the Hermitian distributed matrix sub( $A$ ). If uplo $=$ ' U ', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If uplo = 'L', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
(global)
INTEGER.
The row index in the global array a indicating the first row of sub( $A$ ).
(global)
INTEGER.
The column index in the global array a indicating the first column of $\operatorname{sub}(A)$.
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix $A$.
(local)
COMPLEX for pchentrd
DOUBLE COMPLEX for pzhentrd
Array, size (lwork)
(local or global)
INTEGER.
The size of the array work.
lwork is local input and must be at least lwork $>=\operatorname{MAX}(N B *(N P+1), 3$

* NB ).

For optimal performance, greater workspace is needed:
lwork $>=2 *(A N B+1) *(4 * N P S+2)+(N P S+4) * N P S$
$A N B=p j l a e n v(I C T X T, 3, ~ ' p ? h e t t r d ', ~ ' L ', ~ 0,0,0,0)$
ICTXT $=\operatorname{desca}\left(c t x t \_\right)$
SQNPC $=\operatorname{INT}(\operatorname{sqrt}(\operatorname{REAL}(N P R O W * N P C O L ~)))$
$N P S=\operatorname{MAX}($ numroc $(n, 1,0,0, S Q N P C), 2 * A N B)$
numroc is a ScaLAPACK tool function.
pjlaenv is a ScaLAPACK environmental inquiry function.
NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
rwork
lrwork
(local)
COMPLEX for pchentrd
DOUBLE COMPLEX for pzhentrd
Array, size (lrwork)
(local or global)
INTEGER.
The size of the array rwork.
lrwork is local input and must be at least lrwork $>=1$.
For optimal performance, greater workspace is needed, i.e. lrwork $>=$ $\operatorname{MAX}(2 * n)$

## Output Parameters

a
$d$
e
tau

On exit, if uplo = 'U', the diagonal and first superdiagonal of $\operatorname{sub}(A)$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements above the first superdiagonal, with the array tau, represent the unitary matrix $Q$ as a product of elementary reflectors; if uplo $=$ 'L', the diagonal and first subdiagonal of sub $(A)$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements below the first subdiagonal, with the array tau, represent the unitary matrix $Q$ as a product of elementary reflectors. See Application Notes.
(local)
REAL for pchentrd
DOUBLE PRECISION for pzhentrd
Array, size LOCc (ja+n-1)
The diagonal elements of the tridiagonal matrix $T$ : $d(i)=A(i, i) . d$ is tied to the distributed matrix $A$.
(local)
REAL for pchentrd
DOUBLE PRECISION for pzhentrd
Array, size LOCc (ja+n-1) if uplo = 'U', LOCc ( $j a+n-2$ ) otherwise.
The off-diagonal elements of the tridiagonal matrix $T$ : e(i) $=A(i, i+1)$ if uplo = 'U', e(i) $=A(i+1, i)$ if uplo = 'L'. e is tied to the distributed matrix $A$.
(local)
COMPLEX for pchentrd
DOUBLE COMPLEX for pzhentrd
Array, size LOCc(ja+n-1).
This array contains the scalar factors tau of the elementary reflectors. tau is tied to the distributed matrix $A$.

```
work
rwork
info
On exit, work(1) returns the optimal lwork.
On exit, rwork(1) returns the optimal lrwork.
(global)
INTEGER.
\(=0\) : successful exit
\(<0\) : If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```


## Application Notes

If uplo = ' $U$ ', the matrix $Q$ is represented as a product of elementary reflectors
$Q=\mathrm{H}(\mathrm{n}-1) \ldots \mathrm{H}(2) \mathrm{H}(1)$.
Each $\mathrm{H}(\mathrm{i})$ has the form
$\mathrm{H}(\mathrm{i})=\mathrm{I}-\operatorname{tau} * \mathrm{v} * \mathrm{v}^{\prime}$, where tau is a complex scalar, and v is a complex vector with $\mathrm{v}(\mathrm{i}+1: n)=0$ and $\mathrm{v}(\mathrm{i})=$ 1 ; $v(1: i-1)$ is stored on exit in $A(i a: i a+i-2, j a+i)$, and tau in tau(ja+i-1).

If uplo = 'L', the matrix $Q$ is represented as a product of elementary reflectors
$Q=\mathrm{H}(1) \mathrm{H}(2) \ldots \mathrm{H}(n-1)$.
Each $\mathrm{H}(\mathrm{i})$ has the form
$\mathrm{H}(\mathrm{i})=\mathrm{I}-\operatorname{tau} * \mathrm{v}^{*} \mathrm{v}^{\prime}$, where $\operatorname{tau}$ is a complex scalar, and v is a complex vector with $\mathrm{v}(1: \mathrm{i})=0$ and $\mathrm{v}(\mathrm{i}+1)=$ $1 ; \mathrm{v}(\mathrm{i}+2: n)$ is stored on exit in $A(i a+i+1: i a+n-1, j a+i-1)$, and tau in tau(ja+i-1).
The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples with $n=5$ :
if uplo = 'U':
$\left(\begin{array}{ccccc}d & e & v 2 & v 3 & v 4 \\ & d & e & v 3 & v 4 \\ & & d & e & v 3 \\ & & & d & e \\ & & & & d\end{array}\right)$
if uplo = 'L':
$\left(\begin{array}{lllll}d & & & \\ e & d & & \\ v 1 & e & d & \\ v 1 & v 2 & e & d \\ v 1 & v 2 & v 3 & e & d\end{array}\right)$
where $d$ and $e$ denote diagonal and off-diagonal elements of $T$, and $v i$ denotes an element of the vector defining $\mathrm{H}(i)$.

## Alignment requirements

The distributed submatrix sub( $A$ ) must verify some alignment properties, namely the following expression should be true:
$\left(m b \_a=n b \_a\right.$ and IROFFA $=$ ICOFFA and IROFFA $\left.=0\right)$ with IROFFA $=\bmod \left(i a-1, m b \_a\right)$, and ICOFFA $=$ mod( ja-1, nb_a).

```
p?hetrd
Reduces a Hermitian matrix to Hermitian tridiagonal
form by a unitary similarity transformation.
```


## Syntax

```
call pchetrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
```

call pchetrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pzhetrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)

```
call pzhetrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
```


## Include Files

## Description

The p? hetrd routine reduces a complex Hermitian matrix $\operatorname{sub}(A)$ to Hermitian tridiagonal form $T$ by a unitary similarity transformation:

```
Q'*sub(A)*Q = T
where sub(A) = A(ia:ia+n-1,ja:ja+n-1).
Input Parameters
```

uplo (global) CHARACTER.

Specifies whether the upper or lower triangular part of the Hermitian matrix $\operatorname{sub}(A)$ is stored:

If uplo = 'U', upper triangular
If uplo = 'L', lower triangular
(global) INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(local)
COMPLEX for pchetrd
DOUBLE COMPLEX for pzhetrd.
Pointer into the local memory to an array of size (Ild_a, LOCC (ja+n-1)). On entry, this array contains the local pieces of the Hermitian distributed matrix $\operatorname{sub}(A)$.

If uplo = 'U', the leading $n$-by-n upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
If uplo = 'L', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced. (see Application Notes below).
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
COMPLEX for pchetrd
DOUBLE COMPLEX for pzhetrd.

Workspace array of size lwork.
(local or global) INTEGER, size of work, must be at least:
lwork $\geq \max (N B *(n p+1), 3 * N B)$
where NB $=m b \_a=n b \_a$,
$n p=$ numroc ( $n, \mathrm{NB}, \mathrm{MYROW}$, iarow, NPROW),
iarow $=$ indxg2p(ia, NB, MYROW, rsrc_a, NPROW).
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If lwork $=-1$, then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
$d$
e

On exit,
If uplo = 'U', the diagonal and first superdiagonal of $\operatorname{sub}(A)$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements above the first superdiagonal, with the array tau, represent the unitary matrix $Q$ as a product of elementary reflectors;if uplo = 'L', the diagonal and first subdiagonal of $\operatorname{sub}(A)$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements below the first subdiagonal, with the array tau, represent the unitary matrix $Q$ as a product of elementary reflectors (see Application Notes below).
(local)
REAL for pchetrd
DOUBLE PRECISION for pzhetrd.
Arrays of size LOCC ( $j a+n-1$ ). The diagonal elements of the tridiagonal matrix $T$ :
$d(i)=A(i, i)$.
$d$ is tied to the distributed matrix $A$.
(local)
REAL for pchetrd
DOUBLE PRECISION for pzhetrd.
Arrays of size LOCC (ja+n-1) if uplo = 'U'; LOCC(ja+n-2) - otherwise.
The off-diagonal elements of the tridiagonal matrix $T$ :
$e(i)=A(i, i+1)$ if uplo = 'U',
$e(i)=A(i+1, i)$ if uplo $=$ 'L'.
$e$ is tied to the distributed matrix $A$.
(local) COMPLEX for pchetrd
DOUBLE COMPLEX for pzhetrd.
work(1)
info

Array of size LOCC (ja+n-1). This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix $A$.

On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
< 0 : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

If uplo = 'U', the matrix $Q$ is represented as a product of elementary reflectors
$Q=H(n-1)^{*} \ldots * H(2) * H(1)$.
Each $H(i)$ has the form
$H(i)=i-\tan ^{*} v^{*} v^{\prime}$,
where tau is a complex scalar, and $v$ is a complex vector with $v(i+1: n)=0$ and $v(i)=1 ; v(1: i-1)$ is stored on exit in $A($ ia:ia+i-2, ja+i), and tau in tau(ja+i-1).
If uplo = 'L', the matrix $Q$ is represented as a product of elementary reflectors
$Q=H(1)^{*} H(2)^{*} \ldots * H(n-1)$.
Each $H(i)$ has the form
$H(i)=i-\tan ^{*} v^{*} v^{\prime}$,
where tau is a complex scalar, and $v$ is a complex vector with $v(1: i)=0$ and $v(i+1)=1 ; v(i+2: n)$ is stored on exit in $A(i a+i+1: i a+n-1, j a+i-1)$, and tau in $\operatorname{tau}(j a+i-1)$.

The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples with $n=5$ :

```
If uplo = 'U':
```

$$
\left[\begin{array}{ccccc}
d & e & v 2 & v 3 & v 4 \\
& d & e & v 3 & v 4 \\
& & d & e & v 4 \\
& & & d & e \\
& & & & d
\end{array}\right]
$$

If uplo = 'L':

where $d$ and $e$ denote diagonal and off-diagonal elements of $T$, and $v i$ denotes an element of the vector defining $H(i)$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?unmtr

Multiplies a general matrix by the unitary
transformation matrix from a reduction to tridiagonal
form determined by p?hetrd.

## Syntax

```
call pcunmtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunmtr(side, uplo, trans, m, n, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
```


## Include Files

## Description

This routine overwrites the general complex distributed $m$-by-n matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

```
 side = 'L'
 side = 'R'
trans = 'N': }\quad\mp@subsup{Q}{}{*}\textrm{sub}(C)\quad\operatorname{sub}(C)*
trans = 'C': }\quad\mp@subsup{Q}{}{H*}\operatorname{sub}(C)\quad\operatorname{sub}(C)*\mp@subsup{Q}{}{H
```

where $Q$ is a complex unitary distributed matrix of order $n q$, with $n q=m$ if side $=$ ' $L$ ' and $n q=n$ if side = 'R'.
$Q$ is defined as the product of $n q-1$ elementary reflectors, as returned by p?hetrd.
If uplo = 'U', $Q=H(n q-1) \ldots H(2) H(1)$;
If uplo $=$ 'L', $Q=H(1) H(2) \ldots H(n q-1)$.
Input Parameters

```
side
trans
(global) CHARACTER
\(=\) ' L': \(Q\) or \(Q^{H}\) is applied from the left.
\(={ }^{\prime} \mathrm{R}^{\prime}: Q\) or \(Q^{H}\) is applied from the right.
(global) CHARACTER
```

```
 ='N', no transpose, Q is applied.
 = 'C', conjugate transpose, QH}\mathrm{ is applied.
 (global) CHARACTER.
 = 'U': Upper triangle of A(ia:*, ja:*) contains elementary reflectors
from p?hetrd;
= 'L': Lower triangle of A(ia:*,ja:*) contains elementary reflectors
from p?hetrd
 (global) INTEGER. The number of rows in the distributed matrix sub(C)
 (m\geq0).
(global) INTEGER. The number of columns in the distributed matrix sub(\(C\)) (\(n \geq 0\)) .
(local)
REAL for pcunmtr
DOUBLE PRECISION for pzunmtr.
Pointer into the local memory to an array of size (IId_a, LOCC (ja+m-1)) if side \(=\) 'L', and (Ild_a, LOCc (ja+n-1)) if side = 'R'.
Contains the vectors which define the elementary reflectors, as returned by p?hetrd.
If side='L', lld_a \(\geq \max (1, L O C r(i a+m-1))\);
If side \(=\) 'R', lld_a \(\geq \max (1, L O C r(i a+n-1))\).
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
COMPLEX for pcunmtr
DOUBLE COMPLEX for pzunmtr.
Array of size of Itau where
If side \(=\) 'L' and uplo = 'U', Itau \(=\operatorname{LOCC}\left(m_{_} a\right)\),
if side \(=\) 'L' and uplo = 'L', Itau \(=\operatorname{LOCC}(j a+m-2)\),
if side \(=\) 'R' and uplo \(=\) 'U', Itau \(=\operatorname{LOCC}(\) n_a),
if side \(=\) 'R' and uplo \(=\) 'L', Itau \(=\operatorname{LOCC}(j a+n-2)\).
\(\operatorname{tau}(i)\) must contain the scalar factor of the elementary reflector \(H(i)\), as returned by p?hetrd. tau is tied to the distributed matrix \(A\).
(local) COMPLEX for pcunmtr
DOUBLE COMPLEX for pzunmtr.
Pointer into the local memory to an array of size (lld_c, LOCC (jc+n-1)). Contains the local pieces of the distributed matrix sub (C).
```

```
ic, jc
descc
work
lwork
(global) INTEGER. The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(C\), respectively. (global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local)
COMPLEX for pcunmtr
DOUBLE COMPLEX for pzunmtr.
Workspace array of size lwork.
(local or global) INTEGER, size of work, must be at least:
If uplo = 'U',
iaa= ia; jaa= ja+1, icc= ic; jcc= jc;
else uplo = 'L',
```

```
iaa= ia+1, jaa= ja;
```

iaa= ia+1, jaa= ja;
If side = 'L',
icc= ic+1; jcc= jc;
else icc= ic; jcc= jc+1;
end if
end if
If side = 'L',
mi= m-1; ni= n
lwork \geq max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) +
nb_a*nb_a
else
If side = 'R',
mi=m; mi = n-1;
lwork \geq max((nb_a*(nb_a-1))/2, (nqc0 +
max(npa0+numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a,
0, 0, lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
where lcmq = lcm/NPCOL with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),

```
```

iccol = indxg2p(jcc, nb_c, MYCOL, cSrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),

```

\section*{NOTE}
```

mod}(x,y)\mathrm{ is the integer remainder of x/y.

```
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo. If lwork \(=-1\), then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
c
Overwritten by the product \(Q^{*} \operatorname{sub}(C)\), or \(Q^{*} \operatorname{sub}(C)\), or \(\operatorname{sub}(C)^{*} Q^{\prime}\), or \(\operatorname{sub}(C) * Q\).
work (1)
info
On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\); if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?stebz}

Computes the eigenvalues of a symmetric tridiagonal matrix by bisection.

\section*{Syntax}
```

call psstebz(ictxt, range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w, iblock,
isplit, work, iwork, liwork, info)
call pdstebz(ictxt, range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w, iblock,
isplit, work, iwork, liwork, info)

```

\section*{Include Files}

\section*{Description}

The \(p\) ?stebz routine computes the eigenvalues of a symmetric tridiagonal matrix in parallel. These may be all eigenvalues, all eigenvalues in the interval [vlvu], or the eigenvalues indexed il through iu. A static partitioning of work is done at the beginning of p?stebz which results in all processes finding an (almost) equal number of eigenvalues.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline ictxt & (global) INTEGER. The BLACS context handle. \\
\hline \multirow[t]{4}{*}{range} & (global) CHARACTER. Must be 'A' or 'V' or 'I'. \\
\hline & If range \(=\) ' \(A\) ', the routine computes all eigenvalues. \\
\hline & If range \(=\) ' V ', the routine computes eigenvalues in the interval [v], vu]. \\
\hline & If range ='I', the routine computes eigenvalues with indices il through iu. \\
\hline \multirow[t]{3}{*}{order} & (global) CHARACTER. Must be 'B' or 'E'. \\
\hline & If order = 'B', the eigenvalues are to be ordered from smallest to largest within each split-off block. \\
\hline & If order = 'E', the eigenvalues for the entire matrix are to be ordered from smallest to largest. \\
\hline \(n\) & (global) INTEGER. The order of the tridiagonal matrix \(T(n \geq 0)\). \\
\hline \multirow[t]{5}{*}{vl, vu} & (global) \\
\hline & REAL for psstebz \\
\hline & DOUBLE PRECISION for pdstebz. \\
\hline & If range \(=\) ' \(V\) ', the routine computes the lower and the upper bounds for the eigenvalues on the interval [1, vu]. \\
\hline & If range \(=\) 'A' or 'I', vl and vu are not referenced. \\
\hline \multirow[t]{4}{*}{il, iu} & (global) \\
\hline & INTEGER. Constraint: \(1 \leq i l \leq i u \leq n\). \\
\hline & If range \(=\) 'I', the index of the smallest eigenvalue is returned for il and of the largest eigenvalue for iu (assuming that the eigenvalues are in ascending order) must be returned. \\
\hline & If range \(=\) ' A ' or 'V', il and iu are not referenced. \\
\hline \multirow[t]{3}{*}{abstol} & (global) \\
\hline & REAL for psstebz \\
\hline & DOUBLE PRECISION for pdstebz. \\
\hline
\end{tabular}

The absolute tolerance to which each eigenvalue is required. An eigenvalue (or cluster) is considered to have converged if it lies in an interval of width abstol. If abstol \(\leq 0\), then the tolerance is taken as ulp\|TT\|, where ulp is the machine precision, and \(|\mid T \|\) means the 1 -norm of \(T\)
d
\(e\)

Eigenvalues will be computed most accurately when abstol is set to the underflow threshold slamch('U'), not 0 . Note that if eigenvectors are desired later by inverse iteration (p?stein), abstol should be set to 2*p?lamch('S').
(global)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array of size \(n\).
Contains \(n\) diagonal elements of the tridiagonal matrix \(T\). To avoid overflow, the matrix must be scaled so that its largest entry is no greater than the overflow \({ }^{(1 / 2)}\) * underflow \({ }^{(1 / 4)}\) in absolute value, and for greatest accuracy, it should not be much smaller than that.
(global)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array of size n - 1 .
Contains (\(n-1\)) off-diagonal elements of the tridiagonal matrix \(T\). To avoid overflow, the matrix must be scaled so that its largest entry is no greater than overflow \({ }^{(1 / 2)}\) * underflow \({ }^{(1 / 4)}\) in absolute value, and for greatest accuracy, it should not be much smaller than that.
(local)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array of size max \((5 n, 7)\). This is a workspace array.
(local) INTEGER. The size of the work array must be \(\geq \max (5 n, 7)\).
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local) INTEGER. Array of size max \((4 n, 14)\). This is a workspace array.
(local) INTEGER. The size of the iwork array must \(\geq \max (4 n, 14\), NPROCS).

If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
nsplit

W
iblock
isplit
info
(global) INTEGER. The number of diagonal blocks detected in \(T\).
\(1 \leq_{n s p l i t \leq n}^{n}\)
(global)
REAL for psstebz
DOUBLE PRECISION for pdstebz.
Array of size \(n\). On exit, the first \(m\) elements of \(w\) contain the eigenvalues on all processes.
(global) INTEGER.
Array of size \(n\). At each row/column \(j\) where \(e(j)\) is zero or small, the matrix \(T\) is considered to split into a block diagonal matrix. On exit iblock(i) specifies which block (from 1 to the number of blocks) the eigenvalue \(w(i)\) belongs to.

\section*{NOTE}

In the (theoretically impossible) event that bisection does not converge for some or all eigenvalues, info is set to 1 and the ones for which it did not are identified by a negative block number.
(global) INTEGER.
Array of size \(n\).
Contains the splitting points, at which \(T\) breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), and so on, and the nsplit-th submatrix consists of rows/columns isplit(nsplit-1) +1 through isplit(nsplit)=n. (Only the first nsplit elements are used, but since the nsplit values are not known, \(n\) words must be reserved for isplit.)
(global) INTEGER.
If info \(=0\), the execution is successful.
If info \(<0\), if info \(=-i\), the \(i\)-th argument has an illegal value.
If info> 0 , some or all of the eigenvalues fail to converge or are not computed.
If info \(=1\), bisection fails to converge for some eigenvalues; these eigenvalues are flagged by a negative block number. The effect is that the eigenvalues may not be as accurate as the absolute and relative tolerances.
If info \(=2\), mismatch between the number of eigenvalues output and the number desired.

If info = 3: range='I', and the Gershgorin interval initially used is incorrect. No eigenvalues are computed. Probable cause: the machine has a sloppy floating-point arithmetic. Increase the fudge parameter, recompile, and try again.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?stedc}

Computes all eigenvalues and eigenvectors of a
symmetric tridiagonal matrix in parallel.

\section*{Syntax}
```

call psstedc (compz, n, d, e, q, iq, jq, descq, work, lwork, iwork, liwork, info )
call pdstedc (compz, n, d, e, q, iq, jq, descq, work, lwork, iwork, liwork, info )

```

\section*{Description}
p?stedc computes all eigenvalues and eigenvectors of a symmetric tridiagonal matrix in parallel, using the divide and conquer algorithm.

\section*{Input Parameters}
compz
n
d
e
iq
jq

\section*{CHARACTER*1.}
= ' N ': Compute eigenvalues only. (NOT IMPLEMENTED YET)
\(=\) 'I': Compute eigenvectors of tridiagonal matrix also.
\(=\) ' V ': Compute eigenvectors of original dense symmetric matrix also. On entry, \(Z\) contains the orthogonal matrix used to reduce the original matrix to tridiagonal form. (NOT IMPLEMENTED YET)
(global)
INTEGER.
The order of the tridiagonal matrix \(T . n>=0\).
(global)
REAL for psstedc
DOUBLE PRECISION for pdstedc
Array, size (\(n\))
On entry, the diagonal elements of the tridiagonal matrix.
(global)
REAL for psstedc
DOUBLE PRECISION for pdstedc
Array, size (\(n-1\)).
On entry, the subdiagonal elements of the tridiagonal matrix.
(global)
INTEGER.
Q's global row index, which points to the beginning of the submatrix which is to be operated on.
(global)
INTEGER.

Q's global column index, which points to the beginning of the submatrix which is to be operated on.
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix \(Q\).
(local)
REAL for psstedc
DOUBLE PRECISION for pdstedc
Array, size (lwork)
(local)
INTEGER.
The size of the array work.
\(l_{\text {work }}=6 *_{n}+2 * N P * N Q\)
NP = numroc (n, NB, MYROW, DESCQ(rsrc_), NPROW)
\(N Q=\) numroc (\(n, N B, M Y C O L, D E S C Q\left(c s r c _\right.\)) NPCOL)
numroc is a ScaLAPACK tool function.
If 1 work \(=-1\), the 1 work is global input and a workspace query is assumed; the routine only calculates the minimum size for the work array. The required workspace is returned as the first element of work and no error message is issued by pxerbla.
(local)
INTEGER.
Array, size (liwork)
INTEGER.
The size of the array iwork.
liwork \(=2+7 *_{n}+8 * N P C O L\)

\section*{Output Parameters}
d
q

On exit, if info \(=0\), the eigenvalues in descending order.
(local)
REAL for psstedc
DOUBLE PRECISION for pdstedc
Array, local size (Ild_q, LOCc(jq+n-1))
\(q\) contains the orthonormal eigenvectors of the symmetric tridiagonal matrix.

On output, \(q\) is distributed across the \(P\) processes in block cyclic format.
```

work On output, work(1) returns the workspace needed.
iwork On exit, if liwork > 0, iwork(1) returns the optimal liwork.
info (global)
INTEGER.
= 0: successful exit.
< 0: If the i-th argument is an array and the j-th entry had an illegal
value, then info = - (i*100+j), if the i-th argument is a scalar and
had an illegal value, then info = -i.
$>0$ : The algorithm failed to compute the info/ $n+1$ )-th eigenvalue while working on the submatrix lying in global rows and columns $\bmod ($ info, $n+1)$.

```

\section*{p?stein}

Computes the eigenvectors of a tridiagonal matrix using inverse iteration.

\section*{Syntax}
```

call psstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz, work, lwork, iwork,
liwork, ifail, iclustr, gap, info)
call pdstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz, work, lwork, iwork,
liwork, ifail, iclustr, gap, info)
call pcstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz, work, lwork, iwork,
liwork, ifail, iclustr, gap, info)
call pzstein(n, d, e, m, w, iblock, isplit, orfac, z, iz, jz, descz, work, lwork, iwork,
liwork, ifail, iclustr, gap, info)

```

\section*{Include Files}

\section*{Description}

The p?stein routine computes the eigenvectors of a symmetric tridiagonal matrix \(T\) corresponding to specified eigenvalues, by inverse iteration. p?stein does not orthogonalize vectors that are on different processes. The extent of orthogonalization is controlled by the input parameter lwork. Eigenvectors that are to be orthogonalized are computed by the same process. p?stein decides on the allocation of work among the processes and then calls ?stein2 (modified LAPACK routine) on each individual process. If insufficient workspace is allocated, the expected orthogonalization may not be done.

\section*{NOTE}

If the eigenvectors obtained are not orthogonal, increase 1 work and run the code again.
\(p=\) NPROW \(^{*}\) NPCOL is the total number of processes.

\section*{Input Parameters}
n
(global) INTEGER. The order of the matrix \(T(n \geq 0)\).
(global) INTEGER. The number of eigenvectors to be returned.
```

d,e,w
iblock
isplit
orfac
iz,jz
descz
work
(global)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.

## Arrays:

$d$ of size $n$ contains the diagonal elements of $T$.
e of size $n$-1 contains the off-diagonal elements of $T$.
$w$ of size $m$ contains all the eigenvalues grouped by split-off block. The eigenvalues are supplied from smallest to largest within the block. (Here the output array w from p?stebz with order = ' $B$ ' is expected. The array should be replicated in all processes.)
(global) INTEGER.
Array of size $n$. The submatrix indices associated with the corresponding eigenvalues in w: 1 for eigenvalues belonging to the first submatrix from the top, 2 for those belonging to the second submatrix, etc. (The output array iblock from p?stebz is expected here).
(global) INTEGER.
Array of size $n$. The splitting points at which $T$ breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), and so on, and the nsplit-th submatrix consists of rows/columns isplit(nsplit-1)+1 through isplit(nsplit)=n. (The output array isplit from p?stebz is expected here.)
(global)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
orfac specifies which eigenvectors should be orthogonalized. Eigenvectors that correspond to eigenvalues within orfac^||T|| of each other are to be orthogonalized. However, if the workspace is insufficient (see lwork), this tolerance may be decreased until all eigenvectors can be stored in one process. No orthogonalization is done if orfac is equal to zero. A default value of 1000 is used if orfac is negative. orfac should be identical on all processes
(global) INTEGER. The row and column indices in the global matrix $Z$ indicating the first row and the first column of the submatrix $Z$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $Z$.
(local). REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Workspace array of size lwork.
(local) INTEGER.
iwork
liwork
lwork controls the extent of orthogonalization which can be done. The number of eigenvectors for which storage is allocated on each process is $n v e c=$ floor $\left(\left(1\right.\right.$ work $\left.\left.-\max \left(5^{*} n, n p 0 *_{m q 00}\right)\right) / n\right)$. Eigenvectors corresponding to eigenvalue clusters of size (nvec - ceil $(m / p)+1$ ) are guaranteed to be orthogonal (the orthogonality is similar to that obtained from ?stein2).

## NOTE

lwork must be no smaller than max ( $\left.5{ }^{*} n, n p 00 * m q 00\right)+$ ceil (m/ $p){ }^{*} n$ and should have the same input value on all processes.

It is the minimum value of lwork input on different processes that is significant.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local) INTEGER.
Workspace array of size $3 n+p+1$.
(local) INTEGER. The size of the array iwork. It must be greater than $3{ }^{*} n$ $+p+1$.

If liwork $=-1$, then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

## z

work(1) [0]
iwork
(local)
REAL for psstein
DOUBLE PRECISION for pdstein
COMPLEX for pcstein
DOUBLE COMPLEX for pzstein.
Array of size descz(dlen_), $n / \mathrm{NPCOL}+\mathrm{NB}) . z$ contains the computed eigenvectors associated with the specified eigenvalues. Any vector which fails to converge is set to its current iterate after MAXIT iterations (See ?stein2). On output, $z$ is distributed across the $p$ processes in block cyclic format.

On exit, work (1) gives a lower bound on the workspace (lwork) that guarantees the user desired orthogonalization (see orfac). Note that this may overestimate the minimum workspace needed.

On exit, iwork(1) contains the amount of integer workspace required.

On exit, the iwork (2) through iwork ( $p+2$ ) indicate the eigenvectors computed by each process. Process $i$ computes eigenvectors indexed iwork(i+2)+1 through iwork(i+3).
(global) INTEGER. Array of size m. On normal exit, all elements of ifail are zero. If one or more eigenvectors fail to converge after MAXIT iterations (as in ?stein), then info $>0$ is returned. If $\bmod (i n f o, m+1)>0$, then for $i=1$ to $\bmod (i n f 0, m+1)$, the eigenvector corresponding to the eigenvalue $w(i f a i l(i))$ failed to converge ( $w$ refers to the array of eigenvalues on output).

## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
iclustr
(global) INTEGER. Array of size $2 * p$.
This output array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be orthogonalized due to insufficient workspace (see lwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr(2*I-1) to iclustr(2*I), i=1 to infol ( $m+1$ ), could not be orthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr is a zero terminated array: iclustr $(2 * k) \neq 0$ and iclustr $\left(2^{\star} k+1\right)=0$ if and only if $k$ is the number of clusters.
(global)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
This output array contains the gap between eigenvalues whose eigenvectors could not be orthogonalized. The info/m output values in this array correspond to the infol $(m+1)$ clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the $i$-th cluster may be as high as
( $O(n)$ *macheps $) /$ gap $(i)$.
(global) INTEGER.
If info $=0$, the execution is successful.
If info < 0: If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$,

If the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
If info < 0 : if info $=-i$, the $i$-th argument had an illegal value.
If info > 0 : if mod(info, $m+1$ ) $=i$, then $i$ eigenvectors failed to converge in MAXIT iterations. Their indices are stored in the array ifail. If info/ (m $+1)=i$, then eigenvectors corresponding to $i$ clusters of eigenvalues could not be orthogonalized due to insufficient workspace. The indices of the clusters are stored in the array iclustr.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## Nonsymmetric Eigenvalue Problems: ScaLAPACK Computational Routines

This section describes ScaLAPACK routines for solving nonsymmetric eigenvalue problems, computing the Schur factorization of general matrices, as well as performing a number of related computational tasks.
To solve a nonsymmetric eigenvalue problem with ScaLAPACK, you usually need to reduce the matrix to the upper Hessenberg form and then solve the eigenvalue problem with the Hessenberg matrix obtained.

Table "Computational Routines for Solving Nonsymmetric Eigenproblems"lists ScaLAPACK routines for reducing the matrix to the upper Hessenberg form by an orthogonal (or unitary) similarity transformation $A=$ $Q H Q^{H}$, as well as routines for solving eigenproblems with Hessenberg matrices, and multiplying the matrix after reduction.

Computational Routines for Solving Nonsymmetric Eigenproblems

Operation performed	General matrix	Orthogonal/Unitary   matrix	Hessenberg matrix
Reduce to Hessenberg form $A=Q H Q^{H}$	p?gehrd		
Multiply the matrix after reduction		p?ormhr/p?unmhr	
Find eigenvalues and Schur   factorization		p?lahqr, p?hseqr	

```
p?gehrd
Reduces a general matrix to upper Hessenberg form.
Syntax
call psgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pdgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pcgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pzgehrd(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
```


## Include Files

## Description

The p?gehrd routine reduces a real/complex general distributed matrix sub $(A)$ to upper Hessenberg form $H$ by an orthogonal or unitary similarity transformation

$$
\begin{aligned}
& Q^{\prime} \operatorname{sub}(A)^{*} Q=H \\
& \text { where } \operatorname{sub}(A)=A(\text { ia:ia+n-1, ja:ja+n-1). }
\end{aligned}
$$

## Input Parameters

n
ilo, ihi
a
(global)INTEGER. The order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global)INTEGER.
It is assumed that $\operatorname{sub}(A)$ is already upper triangular in rows ia:ia+ilo-2 and ia+ihi:ia+n-1 and columns ja:ja+ilo-2 and ja+ihi:ja+n-1. (See Application Notes below).
If $n>0,1 \leq i l o \leq i h i \leq n ;$ otherwise set $i l o=1$, ihi $=n$.
(local) REAL for psgehrd
DOUBLE PRECISION for pdgehrd
COMPLEX for pcgehrd

DOUBLE COMPLEX for pzgehrd.
Pointer into the local memory to an array of size (IId_a, LOCC (ja+n-1)). On entry, this array contains the local pieces of the $n-b y-n$ general distributed matrix $\operatorname{sub}(A)$ to be reduced.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psgehrd
DOUBLE PRECISION for pdgehrd
COMPLEX for pcgehrd
DOUBLE COMPLEX for pzgehrd.
Workspace array of size lwork.
(local or global) INTEGER, size of the array work. lwork is local input and must be at least

```
lwork\geqNB*NB + NB*max(ihip+1, ihlp+inlq)
where NB = mb_a = nb_a,
iroffa = mod(ia-1, NB),
icoffa = mod(ja-1, NB),
iOff = mod(ia+ilo-2, NB), iarow = indxg2p(ia, NB, MYROW,
rsrc_a, NPROW), ihip = numroc(ihi+iroffa, NB, MYROW, iarow,
NPROW),
ilrow = indxg2p(ia+ilo-1, NB, MYROW, rsrc_a, NPROW),
ihlp = numroc(ihi-ilo+iOff+1, NB, MYROW, ilrow, NPROW),
ilcol = indxg2p(ja+ilo-1, NB, MYCOL, CSrc_a, NPCOL),
inlq = numroc(n-ilo+iOff+1, NB, MYCOL, ilcol, NPCOL),
```


## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
tau
work(1)
info

On exit, the upper triangle and the first subdiagonal of $\operatorname{sub}(A)$ are overwritten with the upper Hessenberg matrix $H$, and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors (see Application Notes below).
(local). REAL for psgehrd
DOUBLE PRECISION for pdgehrd
COMPLEX for pcgehrd
DOUBLE COMPLEX for pzgehrd.
Array of size at least max $(j a+n-2)$.
The scalar factors of the elementary reflectors (see Application Notes below). Elements ja:ja+ilo-2 and ja+ihi:ja+n-2 of the global vector tau are set to zero. tau is tied to the distributed matrix $A$.

On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
< 0 : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of (ihi-ilo) elementary reflectors
$Q=H(i l o) * H(i l o+1) * \ldots * H(i h i-1)$.
Each $H(i)$ has the form
$H(i)=i-\tan ^{*} v^{*} v^{\prime}$
where tau is a real/complex scalar, and $v$ is a real/complex vector with $v(1: i)=0, v(i+1)=1$ and $v(i h i$ $+1: n)=0 ; v(i+2: i h i)$ is stored on exit in a(ia+ilo+i:ia+ihi-1,ja+ilo+i-2), and tau in tau(ja+ilo $+i-2)$. The contents of
a(ia:ia+n-1,ja:ja+n-1) are illustrated by the following example, with $n=7$, ilo $=2$ and $i h i=6$ :
on entry

$$
\left[\begin{array}{ccccccc}
a & a & a & a & a & a & a \\
& a & a & a & a & a & a \\
& a & a & a & a & a & a \\
& a & a & a & a & a & a \\
& a & a & a & a & a & a \\
& a & a & a & a & a & a \\
& & & & & & a
\end{array}\right]
$$

on exit
$\left[\begin{array}{ccccccc}a & a & a & h & h & h & a \\ & a & h & h & h & h & a \\ & h & h & h & h & h & h \\ & v 2 & h & h & h & h & h \\ & v 2 & v 3 & h & h & h & h \\ & v 2 & v 3 & v 4 & h & h & h \\ & & & & & & a\end{array}\right]$
where $a$ denotes an element of the original matrix $\operatorname{sub}(A), H$ denotes a modified element of the upper Hessenberg matrix $H$, and vi denotes an element of the vector defining $H$ (ja+ilo+i-2).

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?ormhr

Multiplies a general matrix by the orthogonal
transformation matrix from a reduction to Hessenberg
form determined by p?gehrd.

## Syntax

```
call psormhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pdormhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
```


## Include Files

## Description

The p?ormhr routine overwrites the general real distributed $m-b y-n$ matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c$ $+n-1$ ) with

$$
\text { side }=\text { ' L' side }=\text { ' } \mathrm{R} '
$$

```
trans = 'N': Q*sub(C) sub(C)*Q
trans = 'T': }\quad\mp@subsup{Q}{}{T*sub(C)
sub(C)*QT
```

where $Q$ is a real orthogonal distributed matrix of order $n q$, with $n q=m$ if side $=$ 'L' and $n q=n$ if side $=$ 'R'.
$Q$ is defined as the product of ihi-ilo elementary reflectors, as returned by p?gehrd.
$Q=H(i l o) H(i l o+1) \ldots H(i h i-1)$.

## Input Parameters

side
trans
m
n
ilo, ihi
a
ia, ja
desca
tau
(global) CHARACTER
$=$ 'L': $Q$ or $Q^{T}$ is applied from the left.
$={ }^{\prime} \mathrm{R}^{\prime}: Q$ or $Q^{T}$ is applied from the right.
(global) CHARACTER
$=$ 'N', no transpose, $Q$ is applied.
$=$ 'T', transpose, $Q^{T}$ is applied.
(global) INTEGER. The number of rows in the distributed matrix sub (C) ( $m \geq 0$ ) .
(global) INTEGER. The number of columns in he distributed matrix sub (C) ( $n \geq 0$ ) .
(global) INTEGER.
ilo and ihi must have the same values as in the previous call of p?gehrd.
$Q$ is equal to the unit matrix except for the distributed submatrix $Q$ (ia
+ilo:ia+ihi-1,ja+ilo:ja+ihi-1).
If side = 'L', $1 \leq i l o \leq i h i \leq m a x(1, m) ;$
If side = 'R', $1 \leq i l o \leq i h i \leq m a x(1, n) ;$
ilo and ihi are relative indexes.
(local)
REAL for psormhr
DOUBLE PRECISION for pdormhr
Pointer into the local memory to an array of size (lld_a, LOCC(ja+m-1)) if side = 'L', and (lld_a, LOCC(ja+n-1)) if side = 'R'.

Contains the vectors which define the elementary reflectors, as returned by p?gehrd.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively. (global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psormhr

DOUBLE PRECISION for pdormhr
Array of size LOCC (ja+m-2) if side $=$ 'L', and LOCC (ja+n-2) if side $=$ 'R'.
$\operatorname{tau}(j)$ contains the scalar factor of the elementary reflector $H(j)$ as returned by $p$ ?gehrd. tau is tied to the distributed matrix $A$.
(local)
REAL for psormhr
DOUBLE PRECISION for pdormhr
Pointer into the local memory to an array of size (lld_c, LOCC (jc+n-1)).
Contains the local pieces of the distributed matrix sub(C).
(global) INTEGER. The row and column indices in the global matrix $C$ indicating the first row and the first column of the submatrix $C$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $C$.
(local)
REAL for psormhr
DOUBLE PRECISION for pdormhr
Workspace array with size lwork.
(local or global) INTEGER.
The size of the array work.
lwork must be at least iaa $=i a+i l o ; ~ j a a=j a+i l o-1 ;$
If side = 'L',

```
mi = ihi-ilo;ni = n; icc = ic + ilo; jcc = jc; lwork \geq
```

$\max \left(\left(n b \_a^{*}\left(n b \_a-1\right)\right) / 2\right.$, $\left.(n q c 0+m p c 0) * n b \_a\right)+n b \_a^{*} n b \_a$
else if side = 'R',
$m i=m ; n i=i h i-i l o ; i c c=i c ; j c c=j c+i l o ; l w o r k \geq$ $\max \left(\left(n b \_a^{*}\left(n b \_a-1\right)\right) / 2, \quad(n q c 0+\max (n p a 0+n u m r o c(n u m r o c(n i\right.$ $\left.\left.\left.\left.\left.+i \operatorname{coffc}, n b \_a, 0,0, N P C O L\right), ~ n b \_a, 0,0,1 c m q\right), m p c 0\right)\right)^{*} n b \_a\right)$
$+n b \_a^{*} n b \_a$
end if
where $1 \mathrm{cmq}=1 \mathrm{~cm} / \mathrm{NPCOL}$ with $1 \mathrm{~cm}=i l \mathrm{~cm}($ NPROW, $N P C O L)$,
iroffa $=\bmod \left(i a a-1, m b \_a\right)$,
icoffa $=\bmod \left(j a a-1, n b \_a\right)$,
iarow $=$ indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc $=\bmod \left(i c c-1, m b \_c\right), i C o f f c=\bmod \left(j c c-1, n b \_c\right)$,
icrow $=$ indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol $=$ indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),

```
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, icCol, NPCOL),
```


## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then $l$ work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

$\operatorname{sub}(C)$ is overwritten by $Q^{*} \operatorname{sub}(C)$, or $Q^{\prime *} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{\prime}$, or $\operatorname{sub}(C) * Q$.
work(1)
info
On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?unmhr
Multiplies a general matrix by the unitary
transformation matrix from a reduction to Hessenberg
form determined by p?gehrd.

## Syntax

```
call pcunmhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunmhr(side, trans, m, n, ilo, ihi, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
```


## Include Files

## Description

This routine overwrites the general complex distributed $m$-by- $n$ matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ with

$$
\text { side }=\text { ' L' side }=\text { ' } \mathrm{R} '
$$

```
trans = 'N': }\quad\mp@subsup{Q}{}{*}\textrm{sub}(C)\quad\operatorname{sub}(C)*
trans = 'H': }\quad\mp@subsup{Q}{}{H*}\operatorname{sub}(C
sub(C)* Q H
```

where $Q$ is a complex unitary distributed matrix of order $n q$, with $n q=m$ if side $=$ 'L' and $n q=n$ if side = 'R'.
$Q$ is defined as the product of ihi-ilo elementary reflectors, as returned by p?gehrd.
$Q=H(i l o) H(i l o+1) \ldots H(i h i-1)$.

## Input Parameters

side
trans
m
n
a
(global) CHARACTER
$=$ ' L': $Q$ or $Q^{H}$ is applied from the left.
$={ }^{\prime} R^{\prime}: Q$ or $Q^{H}$ is applied from the right.
(global) CHARACTER
$=$ 'N', no transpose, $Q$ is applied.
$=$ ' C', conjugate transpose, $Q^{H}$ is applied.
(global) INTEGER. The number of rows in the distributed matrix sub (C) ( $m \geq 0$ ).
(global) INTEGER. The number of columns in the distributed matrix sub (C) ( $n \geq 0$ ).
(global) INTEGER
These must be the same parameters ilo and ihi, respectively, as supplied to $p$ ?gehrd. $Q$ is equal to the unit matrix except in the distributed submatrixQ(ia+ilo:ia+ihi-1,ja+ilo:ja+ihi-1).

If side $=$ 'L', then $1 \leq i l o \leq i h i \leq \max (1, m)$.
If side = 'R', then $1 \leq i l o \leq i h i \leq \max (1, n)$
ilo and ihi are relative indexes.
(local)
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Pointer into the local memory to an array of size (lld_a, LOCC(ja+m-1)) if side = 'L', and (lld_a, LOCC(ja+n-1)) if side = 'R'.

Contains the vectors which define the elementary reflectors, as returned by p?gehrd.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
COMPLEX for pcunmhr

C
ic, jc
descc
work
lwork

DOUBLE COMPLEX for pzunmhr.
Array of size LOCC $(j a+m-2)$, if side $=$ 'L', and LOCC $(j a+n-2)$ if side $=$ 'R'.
$\operatorname{tau}(j)$ contains the scalar factor of the elementary reflector $H(j)$ as returned by $p$ ?gehrd. tau is tied to the distributed matrix $A$.
(local)
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Pointer into the local memory to an array of size (IId_c, LOCC (jc+n-1)).
Contains the local pieces of the distributed matrix sub(C).
(global) INTEGER. The row and column indices in the global matrix $C$ indicating the first row and the first column of the submatrix $C$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $C$.
(local)
COMPLEX for pcunmhr
DOUBLE COMPLEX for pzunmhr.
Workspace array with size lwork.
(local or global)
The size of the array work.

```
lwork must be at least iaa = ia + ilo;jaa = ja+ilo-1;
```

If side = 'L', mi = ihi-ilo; ni = n; icc = ic +ilo; jcc = jc;
lwork $\geq \max \left(\left(n b \_a^{*}\left(n b \_a-1\right)\right) / 2\right.$, $\left.(n q c 0+m p c 0) * n b \_a\right)+n b \_a^{*} n b \_a$
else if side = 'R',

```
mi = m; ni = ihi-ilo; icc = ic; jcc = jc + ilo; lwork \geq
```

$\max \left(\left(n b \_a *\left(n b \_a-1\right)\right) / 2,(n q c 0+\max (n p a 0+n u m r o c(n u m r o c(n i\right.$
+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq ),
$m p c 0)$ ) *nb_a) + nb_a*nb_a
end if
where $\operatorname{lcmq}=1 \mathrm{~cm} / \mathrm{NPCOL}$ with $1 \mathrm{~cm}=$ ilcm (NPROW, NPCOL),
iroffa $=\bmod \left(i a a-1, m b \_a\right)$,
icoffa $=\bmod \left(j a a-1, n b \_a\right)$,
iarow $=$ indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 $=$ numroc (ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc $=\bmod \left(i c c-1, m b \_c\right)$,
icoffc $=\bmod \left(j c c-1, n b \_c\right)$,
icrow $=$ indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol $=$ indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),

```
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, icCol, NPCOL),
```


## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

```
C
work(1))
info
```

$C$ is overwritten by $Q^{*} \operatorname{sub}(C)$ or $Q^{\prime *} \operatorname{sub}(C)$ or $\operatorname{sub}(C)^{*} Q^{\prime}$ or $\operatorname{sub}(C)^{*} Q$.
On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lahqr
Computes the Schur decomposition and/or
eigenvalues of a matrix already in Hessenberg form.

## Syntax

```
call pslahqr(wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z, descz, work,
lwork, iwork, ilwork, info)
call pdlahqr(wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z, descz, work,
lwork, iwork, ilwork, info)
call pclahqr(wantt, wantz, n, ilo, ihi, a, desca, w, iloz, ihiz, z, descz, work, lwork,
iwork, ilwork, info)
call pzlahqr(wantt, wantz, n, ilo, ihi, a, desca, w, iloz, ihiz, z, descz, work, lwork,
iwork, ilwork, info)
```

Include Files

## Description

This is an auxiliary routine used to find the Schur decomposition and/or eigenvalues of a matrix already in Hessenberg form from columns ilo and ihi.

## NOTE

These restrictions apply to the use of p?lahqr:

- The code requires the distributed block size to be square and at least 6 .
- The code requires $A$ and $Z$ to be distributed identically and have identical contexts.
- The matrix A must be in upper Hessenberg form. If elements below the subdiagonal are non-zero, the resulting transformations can be nonsimilar.
- All eigenvalues are distributed to all the nodes.


## Input Parameters

```
wantt
```

(global) LOGICAL
If wantt= .TRUE., the full Schur form $T$ is required;
If wantt $=$.FALSE., only eigenvalues are required.
(global) LOGICAL.
If wantz= .TRUE., the matrix of Schur vectors $Z$ is required;
If wantz $=$.FALSE., Schur vectors are not required.
(global) INTEGER. The order of the Hessenberg matrix $A$ (and $z$ if wantz). $n \geq 0$.
(global) INTEGER.
It is assumed that $A$ is already upper quasi-triangular in rows and columns ihi+1:n, and that $A(i l o, i l o-1)=0$ (unless ilo = 1). p?lahqr works primarily with the Hessenberg submatrix in rows and columns ilo to ihi, but applies transformations to all of $H$ if wantt is . TRUE..
$1 \leq i l o \leq \max (1, i h i)$; ihi $\leq n$.
a
desca
iloz, ihiz
z
(global)
REAL for pslahqr
DOUBLE PRECISION for pdlahqr
COMPLEX for pclahqr
COMPLEX*16 for pzlahqr
Array, of size (lld_a,*). On entry, the upper Hessenberg matrix $A$.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(global) INTEGER. Specify the rows of the matrix $Z$ to which transformations must be applied if wantz is .TRUE.. $1 \leq$ ilozsilo; ihisihizsn.
(global )REAL for pslahqr
DOUBLE PRECISION for pdlahqr
COMPLEX for pclahqr
COMPLEX*16 for pzlahqr

Array. If wantz is . TRUE., on entry $z$ must contain the current matrix $Z$ of transformations accumulated by pdhseqr. If wantz is. FALSE., $z$ is not referenced.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $Z$.
(local)
REAL for pslahqr
DOUBLE PRECISION for pdlahqr
COMPLEX for pclahqr
COMPLEX*16 for pzlahqr
Workspace array with size lwork.
(local) INTEGER. The size of work. lwork is assumed big enough so that lwork $\geq 3 * n+\max \left(2 * \max \left(11 d_{2} z, l l_{d} a\right)+2 * L O C q(n), 7 * c e i l(n /\right.$ $h b l) / l c m(N P R O W, N P C O L)))$.
If lwork $=-1$, then work(1) gets set to the above number and the code returns immediately.
(global and local) INTEGER array of size ilwork. Not referenced and can be NULL pointer.
(local) INTEGER This holds some of the iblk integer arrays. Not referenced and can be NULL pointer.

## Output Parameters

a
work(1)
wr, wi
w
On exit, if wantt is .TRUE., $A$ is upper quasi-triangular in rows and columns ilo:ihi, with any 2-by-2 or larger diagonal blocks not yet in standard form. If wantt is .FALSE., the contents of $A$ are unspecified on exit.

On exit work (1) contains the minimum value of 1 work required for optimum performance.
(global replicated output)
REAL for pslahqr
DOUBLE PRECISION for pdlahqr
Arrays of size $n$ each. The real and imaginary parts, respectively, of the computed eigenvalues ilo to ihiare stored in the corresponding elements of $w r$ and wi. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of wr and wi, say the $i$-th and ( $i$ +1 )-th, with $w i(i)>0$ and $w i(i+1)<0$. If wantt is .TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in $A$. $A$ may be returned with larger diagonal blocks until the next release.
(global replicated output)
COMPLEX for pclahqr
COMPLEX*16 for pzlahqr
z
info

Array of size $n$. The computed eigenvalues ilo to ihi are stored in the corresponding elements of $w$. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of $w$, say the $i$-th and ( $i+1$ )-th, with $w(i)>0$ and $w(i+1)<0$. If wantt is .TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in $A$. A may be returned with larger diagonal blocks until the next release.

On exit $z$ has been updated; transformations are applied only to the submatrix $Z$ (iloz:ihiz, ilo:ihi).
(global) INTEGER.
$=0$ : the execution is successful.
< 0: the parameter number - info is incorrect or inconsistent
> 0: p?lahqr failed to compute all the eigenvalues ilo to ihi in a total of $30 *$ (ihi-ilo+1) iterations; if info $=i$, elements $i+1$ : ihi of wr and wi contain the eigenvalues that have been successfully computed.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?hseqr

Computes eigenvalues and (optionally) the Schur factorization of a matrix reduced to Hessenberg form.

## Syntax

```
call pshseqr(job, compz, n, ilo, ihi, h, desch, wr, wi, z, descz, work, lwork, iwork,
liwork, info)
call pdhseqr(job, compz, n, ilo, ihi, h, desch, wr, wi, z, descz, work, lwork, iwork,
liwork, info)
```


## Include Files

## Description

p?hseqr computes the eigenvalues of an upper Hessenberg matrix $H$ and, optionally, the matrices $T$ and $Z$ from the Schur decomposition $H=Z^{*} T^{*} Z^{\top}$, where $T$ is an upper quasi-triangular matrix (the Schur form), and $Z$ is the orthogonal matrix of Schur vectors.

Optionally $Z$ may be postmultiplied into an input orthogonal matrix $Q$ so that this routine can give the Schur factorization of a matrix $A$ which has been reduced to the Hessenberg form $H$ by the orthogonal matrix $Q$ : $A$ $=Q^{*} H^{*} Q^{\top}=(Q Z)^{*} T^{*}(Q Z)^{\top}$.

## NOTE

These restrictions apply to the use of p?hseqr:

- The code requires the distributed block size to be square and at least 6.
- The code requires $A$ and $Z$ to be distributed identically and have identical contexts.
- The matrix A must be in upper Hessenberg form. If elements below the subdiagonal are non-zero, the resulting transformations can be nonsimilar.
- All eigenvalues are distributed to all the nodes.


## Input Parameters

```
job
```

compz
n
h
desch
z
(global) CHARACTER*1
$=$ ' E ': compute eigenvalues only;
$=$ 'S': compute eigenvalues and the Schur form T .
(global) CHARACTER*1
$=$ ' N ': no Schur vectors are computed;
$=$ 'I': $z$ is initialized to the unit matrix and the matrix $Z$ of Schur vectors of $H$ is returned;
$=$ ' V ': z must contain an orthogonal matrix $Q$ on entry, and the product $Q^{*} Z$ is returned.
(global) INTEGER
The order of the Hessenberg matrix $H . n \geq 0$.
(global) INTEGER
It is assumed that $H$ is already upper triangular in rows and columns 1 :ilo-1 and ihi+1:n. ilo and ihi are normally set by a previous call to $p$ gebal, and then passed to p?gehrd when the matrix output by p?gebal is reduced to Hessenberg form. Otherwise ilo and ihi should be set to 1 and $n$ respectively. If $n>0$, then $1 \leq i l o \leq i h i \leq n$.
If $n=0$, then $i l o=1$ and $i h i=0$.
REAL for pshseqr
DOUBLE PRECISION for pdhseqr
(global) array of size (desch(Ild_),LOC $C_{C}(n)$ )
The upper Hessenberg matrix $H$.
(global and local) INTEGER array of size dlen_
The array descriptor for the distributed matrix $H$.
REAL for pshseqr
DOUBLE PRECISION for pdhseqr
(global) array
If compz = ' $V$ ', on entry $z$ must contain the current matrix $Z$ of accumulated transformations from, for example, p? gehrd.
If compz = 'I', on entry $z$ need not be set.
(global and local) INTEGER array of size dlen_
The array descriptor for the distributed matrix $z$.
REAL for pshseqr
DOUBLE PRECISION for pdhseqr
(local workspace) array of size lwork.
(local ) INTEGER
iwork
liwork

The length of the workspace array work.
If lwork $=-1$, then work (1) gets set to the above number and the code returns immediately.
(local workspace) INTEGER array of size liwork
(local ) INTEGER
The length of the workspace array iwork.
If liwork=-1, then iwork(1) is set to -1 and the code returns immediately.

## OUTPUT Parameters

h

If job $=$ ' S ', $H$ is upper quasi-triangular in rows and columns $i l o: i h i$, with 1-by-1 and 2-by-2 blocks on the main diagonal. The 2-by-2 diagonal blocks (corresponding to complex conjugate pairs of eigenvalues) are returned in standard form, with $h(i, i)=h(i+1, i+1)$ and $h(i+1, i)^{*} h(i, i+1)<0$. If info $=$ 0 and job $=$ ' $E$ ', the contents of $h$ are unspecified on exit.

REAL for pshseqr
DOUBLE PRECISION for pdhseqr
(global) array of size $n$
The real and imaginary parts, respectively, of the computed eigenvalues ilo to ihi are stored in the corresponding elements of wr and wi. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of wr and wi, say the $i$-th and $(i+1)$ th, with wi(i)> 0 and $w i(i+1)<0$. If job $=$ 'S', the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in $h$.

REAL for pshseqr
DOUBLE PRECISION for pdhseqr
(global) array
$z$ is updated; transformations are applied only to the submatrix
z(ilo:ihi,ilo:ihi).
If compz $=$ ' N ', $z$ is not referenced.
If compz $=$ 'I' and info $=0, z$ contains the orthogonal matrix $Z$ of the Schur vectors of $H$.

## INTEGER

$=0$ : successful exit
$<0$ : if info $=-i$, the $i$-th argument had an illegal value (see also below for -7777 and -8888).
$>0$ : if info $=i$, p?hseqr failed to compute all of the eigenvalues.
Elements 1:ilo-1 and $i+1$ :n of wr and wi contain those eigenvalues which have been successfully computed. (Failures are rare.)
If info $>0$ and job $=$ ' $E$ ', then on exit, the remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix rows and columns ilo through info of the final, output value of $H$.

If info $>0$ and job $=$ ' $S^{\prime}$, then on exit (*) (initial value of $H$ ) ${ }^{*} U=U^{*}$ (final value of $H$ ) where $U$ is an orthogonal matrix. The final value of $H$ is upper Hessenberg and quasi-triangular in rows and columns info +1 through ihi.

If info $>0$ and compz $=$ ' $V$ ', then on exit (final value of $Z$ ) $=$ (initial value of $Z)^{*} U$ where $U$ is the orthogonal matrix in (*) (regardless of the value of job.)

If info $>0$ and compz = ' I ', then on exit (final value of $Z$ ) $=U$ where $U$ is the orthogonal matrix in (*) (regardless of the value of job.)
If info $>0$ and compz $=$ ' N ', then $z$ is not accessed.
$=-7777$ : p laqr0 failed to converge and p laqr1 was called instead.
$=-8888:$ p? laqr1 failed to converge and p?laqr0 was called instead.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?trevc
Computes right and/or left eigenvectors of a complex upper triangular matrix in parallel.

## Syntax

```
call pctrevc (side, howmny, select, n, t, desct, vl, descvl, vr, descvr, mm, m, work,
rwork, info)
call pztrevc (side, howmny, select, n, t, desct, vl, descvl, vr, descvr, mm, m, work,
rwork, info)
call pdtrevc (side, howmny, select, n, t, desct, vl, descvl, vr, descvr, mm, m, work,
info)
call pstrevc (side, howmny, select, n, t, desct, vl, descvl, vr, descvr, mm, m, work,
info)
```


## Description

p?trevc computes some or all of the right and/or left eigenvectors of a complex upper triangular matrix $T$ in parallel.
The right eigenvector x and the left eigenvector y of $T$ corresponding to an eigenvalue w are defined by:
$T^{*} \mathrm{x}=\mathrm{w}^{*} \mathrm{x}$,
$\mathrm{y}^{\prime *} T=\mathrm{w}^{*} \mathrm{y}^{\prime}$
where $y^{\prime}$ denotes the conjugate transpose of the vector $y$.
If all eigenvectors are requested, the routine may either return the matrices $X$ and/or $Y$ of right or left eigenvectors of $T$, or the products $Q^{*} X$ and/or $Q^{*} Y$, where $Q$ is an input unitary matrix. If $T$ was obtained from the Schur factorization of an original matrix $A=Q^{*} T^{*} Q^{\prime}$, then $Q^{*} X$ and $Q^{*} Y$ are the matrices of right or left eigenvectors of $A$.

## Input Parameters

side
(global)
CHARACTER*1.
$=$ ' R ': compute right eigenvectors only;
$=$ ' L ': compute left eigenvectors only;
$=$ ' B ': compute both right and left eigenvectors.
(global)
CHARACTER*1.
$=$ ' A ': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors, and backtransform them using the input matrices supplied in vr and/or vi;
$=$ 'S': compute selected right and/or left eigenvectors, specified by the logical array select.
(global)
LOGICAL.
Array, size ( $n$ )
If howmny $=$ 'S', select specifies the eigenvectors to be computed.
If howmny = 'A' or ' B ', select is not referenced. To select the eigenvector corresponding to the $j$-th eigenvalue, select ( $j$ ) must be set to .TRUE..
(global)
INTEGER.
The order of the matrix $T . n>=0$.
(local)
COMPLEX for pctrevc
DOUBLE COMPLEX for pztrevc
DOUBLE PRECISION for pdtrevc
REAL for pstrevc
Array, size (lld_t,LOCC(n)).
The upper triangular matrix $T . T$ is modified, but restored on exit.
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix $T$.
(local)
COMPLEX for pctrevc
DOUBLE COMPLEX for pztrevc
DOUBLE PRECISION for pdtrevc
REAL for pstrevc
Array, size (descvl(/Id_),mm)

On entry, if side $=$ 'L' or 'B' and howmny = 'B', vl must contain an $n$-by- $n$ matrix $Q$ (usually the unitary matrix $Q$ of Schur vectors returned by ?hseqr).
vr
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix VL.
(local)
COMPLEX for pctrevc
DOUBLE COMPLEX for pztrevc
DOUBLE PRECISION for pdtrevc
REAL for pstrevc
Array, size (descvr(lld_), mm).
On entry, if side $=$ 'R' or 'B' and howmny = 'B', vr must contain an $n$-by-n matrix $Q$ (usually the unitary matrix $Q$ of Schur vectors returned by ?hseqr).
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix $V R$.
(global)
INTEGER.
The number of columns in the arrays $v l$ and/or vr. $m m>=m$.
(local)
COMPLEX for pctrevc
DOUBLE COMPLEX for pztrevc
DOUBLE PRECISION for pdtrevc
REAL for pstrevc
Array, size ( $2 * \operatorname{desct}(I / d$ _) )
Additional workspace may be required if p?lattrs is updated to use work.
REAL for pctrevc
DOUBLE PRECISION for pztrevc
Array, size ( desct(Ild_))

## Output Parameters

t
vl

The upper triangular matrix $T . T$ is modified, but restored on exit.
On exit, if side = 'L' or 'B', vl contains:

> if howmny $=$ 'A', the matrix $Y$ of left eigenvectors of $T$;
> if howmny $=$ 'B', the matrix $Q^{*} Y$;
> if howmny $=$ 'S', the left eigenvectors of $T$ specified by select, stored consecutively in the columns of $v 1$, in the same order as their eigenvalues. If side = 'R', vl is not referenced.
> On exit, if side = 'R' or 'B', vr contains:
> if howmny = 'A', the matrix $X$ of right eigenvectors of $T$;
> if howmny = 'B', the matrix $Q^{*} X$;
> if howmny = 'S', the right eigenvectors of $T$ specified by select, stored consecutively in the columns of $v r$, in the same order as their eigenvalues. If side = 'L', vr is not referenced.
> (global)
> INTEGER.
> The number of columns in the arrays $v I$ and/or vr actually used to store the eigenvectors. If howmny = 'A' or 'B', $m$ is set to $n$. Each selected eigenvector occupies one column.
> (global)
> INTEGER.
> $=0:$ successful exit
> $<0:$ if info = -i, the i-th argument had an illegal value

## Application Notes

The algorithm used in this program is basically backward (forward) substitution. Scaling should be used to make the code robust against possible overflow. But scaling has not yet been implemented in p?lattrs which is called by this routine to solve the triangular systems. p?lattrs just calls p?trsv.

Each eigenvector is normalized so that the element of largest magnitude has magnitude 1 ; here the magnitude of a complex number $(x, y)$ is taken to be $|x|+|y|$.

## Singular Value Decomposition: ScaLAPACK Driver Routines

This section describes ScaLAPACK routines for computing the singular value decomposition (SVD) of a general m-by-n matrix $A$ (see LAPACK"Singular Value Decomposition" ).
To find the SVD of a general matrix $A$, this matrix is first reduced to a bidiagonal matrix $B$ by a unitary (orthogonal) transformation, and then SVD of the bidiagonal matrix is computed. Note that the SVD of $B$ is computed using the LAPACK routine ? bodsqr .

Table "Computational Routines for Singular Value Decomposition (SVD)" lists ScaLAPACK computational routines for performing this decomposition.

## Computational Routines for Singular Value Decomposition (SVD)

Operation	General matrix	Orthogonal/unitary matrix
Reduce $A$ to a bidiagonal matrix	p?gebrd	
Multiply matrix after reduction		p ? ormbr/p?unmbr

p?gebrd
Reduces a general matrix to bidiagonal form.

## Syntax

```
call psgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pdgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pcgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pzgebrd(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
```


## Include Files

## Description

The p?gebrd routine reduces a real/complex general $m$-by- $n$ distributed matrix sub $(A)=A(i a: i a+m-1, j a: j a$ $+n-1$ ) to upper or lower bidiagonal form $B$ by an orthogonal/unitary transformation:
$Q^{\prime *} \operatorname{sub}(A)^{* P}=B$.
If $m \geq n, B$ is upper bidiagonal; if $m<n, B$ is lower bidiagonal.

## Input Parameters

m
n
a
ia, ja
desca
work
l work
(global) INTEGER. The number of rows in the distributed matrix $\operatorname{sub}(A)$ ( $m \geq 0$ ) .
(global) Integer. The number of columns in the distributed matrix sub( $A$ ) ( $n \geq 0$ ) .
(local)
REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd
DOUBLE COMPLEX for pzgebrd.
Real pointer into the local memory to an array of size (lld_a, LOCC (ja $+n-1)$ ). On entry, this array contains the distributed matrix sub (A).
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd
DOUBLE COMPLEX for pzgebrd.
Workspace array of size lwork.
(local or global) INTEGER, size of work, must be at least:
lwork $\geq n b^{*}(m p a 0+n q a 0+1)+n q a 0$
where $n b=m b \_a=n b \_a$,

```
iroffa = mod(ia-1, nb),
icoffa = mod(ja-1, nb),
iarow = indxg2p(ia, nb, MYROW, rsrc_a, NPROW),
iacol = indxg2p (ja, nb, MYCOL, csrc_a, NPCOL),
mpa0 = numroc(m +iroffa, nb, MYROW, iarow, NPROW),
nqa0 = numroc(n +icoffa, nb, MYCOL, iacol, NPCOL),
```


## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
e

On exit, if $m \geq n$, the diagonal and the first superdiagonal of $\operatorname{sub}(A)$ are overwritten with the upper bidiagonal matrix $B$; the elements below the diagonal, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors, and the elements above the first superdiagonal, with the array taup, represent the orthogonal matrix $P$ as a product of elementary reflectors. If $m<n$, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix $B$; the elements below the first subdiagonal, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors, and the elements above the diagonal, with the array taup, represent the orthogonal matrix $P$ as a product of elementary reflectors. See Application Notes below. (local)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array of size LOCC (ja+min $(m, n)-1)$ if $m \geq n$ and $\operatorname{LOCr}(i a+m i n(m, n)-1)$ otherwise. The distributed diagonal elements of the bidiagonal matrix $B$ : $d(i)=a(i, i)$.
$d$ is tied to the distributed matrix $A$.
(local)
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Array of size $\operatorname{LOCr}(i a+m i n(m, n)-1)$ if $m \geq n ; \operatorname{LOCC}(j a+m i n(m, n)-2)$ otherwise. The distributed off-diagonal elements of the bidiagonal distributed matrix $B$ :

If $m \geq n, e(i)=a(i, i+1)$ for $i=1,2, \ldots, n-1$; if $m<n, e(i)=$ $a(i+1, i)$ for $i=1,2, \ldots, m-1$. e is tied to the distributed matrix $A$.
tauq, taup
work(1)
info
(local)
REAL for psgebrd
DOUBLE PRECISION for pdgebrd
COMPLEX for pcgebrd
DOUBLE COMPLEX for pzgebrd.
Arrays of size LOCC(ja+min $(m, n)-1)$ for tauq and LOCr (ia $+\min (m, n)-1)$ for taup. Contain the scalar factors of the elementary reflectors that represent the orthogonal/unitary matrices $Q$ and $P$, respectively. tauq and taup are tied to the distributed matrix $A$. See Application Notes below.

On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
< 0 : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrices $Q$ and $P$ are represented as products of elementary reflectors:
If $m \geq n$,
$Q=H(1)^{*} H(2)^{*} \ldots * H(n)$, and $P=G(1)^{*} G(2)^{*} \ldots * G(n-1)$.
Each $H(i)$ and $G(i)$ has the form:
$H(i)=i-\operatorname{tanq} * v^{*} v^{\prime}$ and $G(i)=i-\tan { }^{*} u^{*} u^{\prime}$
where tauq and taup are real/complex scalars, and $v$ and $u$ are real/complex vectors;
$v(1: i-1)=0, v(i)=1$, and $v(i+1: m)$ is stored on exit in $A(i a+i: i a+m-1, j a+i-1)$;
$u(1: i)=0, u(i+1)=1$, and $u(i+2: n)$ is stored on exit in $A(i a+i-1, j a+i+1: j a+n-1)$;
tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1).
If $m<n$,
$Q=H(1) * H(2) * \ldots * H(m-1)$, and $P=G(1)^{*} G(2)^{*} \ldots * G(m)$
Each $H(i)$ and $G(i)$ has the form:
$H(i)=i-\tan ^{*} v^{*} v^{\prime}$ and $G(i)=i-\tan p^{*} u^{*} u^{\prime}$
here tauq and taup are real/complex scalars, and $v$ and $u$ are real/complex vectors;
$v(1: i)=0, v(i+1)=1$, and $v(i+2: m)$ is stored on exit in $A(i a+i: i a+m-1, j a+i-1) ; u(1: i-1)=0, u(i)=1$, and $u(i+1: n)$ is stored on exit in $A(i a+i-1, j a+i+1: j a+n-1)$;
tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1).
The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples:
$m=6$ and $n=5(m>n):$
$\left[\begin{array}{ccccc}d & e & u 1 & u 1 & u 1 \\ v 1 & d & e & u 2 & u 2 \\ v 1 & v 2 & d & e & u 3 \\ v 1 & v 2 & v 3 & d & e \\ v 1 & v 2 & v 3 & v 4 & d \\ v 1 & v 2 & v 3 & v 4 & v 5\end{array}\right]$
$m=5$ and $n=6(m<n):$
$\left[\begin{array}{cccccc}d & u 1 & u 1 & u 1 & u 1 & u 1 \\ e & d & u 2 & u 2 & u 2 & u 2 \\ v 1 & e & d & u 3 & u 3 & u 3 \\ v 1 & v 2 & e & d & u 4 & u 4 \\ v 1 & v 2 & v 3 & e & d & u 5\end{array}\right]$
where $d$ and $e$ denote diagonal and off-diagonal elements of $B$, vi denotes an element of the vector defining $H(i)$, and $u i$ an element of the vector defining $G(i)$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?ormbr
Multiplies a general matrix by one of the orthogonal
matrices from a reduction to bidiagonal form
determined by p?gebrd.

## Syntax

```
call psormbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pdormbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
```


## Include Files

## Description

If vect $=$ ' $Q$ ', the p?ormbr routine overwrites the general real distributed $m$-by-n matrix $\operatorname{sub}(C)=C($ ic:ic $+m-1, j c: j c+n-1)$ with

$$
\begin{array}{lll} 
& \text { side }=' L ' & \text { side }={ }^{\prime} \mathrm{R}^{\prime} \\
\text { trans }=\text { 'N': } & Q \operatorname{sub}(C) & \operatorname{sub}(C) Q \\
\text { trans }=\text { 'T': } & Q^{T} \operatorname{sub}(C) & \operatorname{sub}(C) Q^{T}
\end{array}
$$

If vect $=$ ' $P$ ', the routine overwrites sub(C) with

```
side = L' side ='R'
trans = 'N': Psub(C) sub(C)P
trans = 'T': }\quad\mp@subsup{P}{}{T}\operatorname{sub}(C
sub(C) P}\mp@subsup{P}{}{T
```

Here $Q$ and $P^{T}$ are the orthogonal distributed matrices determined by $p$ ? gebrd when reducing a real distributed matrix $A\left(i a:^{*}, j a:^{*}\right)$ to bidiagonal form: $A\left(i a:^{*}, j a:^{*}\right)=Q^{*} B^{*} P^{T}$. $Q$ and $P^{T}$ are defined as products of elementary reflectors $H(i)$ and $G(i)$ respectively.
Let $n q=m$ if side $=$ 'L' and $n q=n$ if side $=$ 'R'. Therefore $n q$ is the order of the orthogonal matrix $Q$ or $P^{T}$ that is applied.
If vect $=$ ' $Q$ ', $A(i a: *, j a: *)$ is assumed to have been an $n q$-by- $k$ matrix:
If $n q \geq k, Q=H(1) H(2) \ldots H(k)$;
If $n q<k, Q=H(1) H(2) \ldots H(n q-1)$.
If vect $=$ ' $P^{\prime}, A\left(i a:^{*}, j a: *\right)$ is assumed to have been a $k$-by-nq matrix:
If $k<n q, P=G(1) G(2) \ldots G(k)$;
If $k \geq n q, P=G(1) G(2) \ldots G(n q-1)$.
Input Parameters
vect
side
trans
m
n
k
a
(global) CHARACTER.
If vect = ' $Q$ ', then $Q$ or $Q^{T}$ is applied.
If vect $=$ ' $P^{\prime}$, then $P$ or $P^{T}$ is applied.
(global) CHARACTER.
If side $=$ 'L', then $Q$ or $Q^{T}, P$ or $P^{T}$ is applied from the left.
If side $=$ 'R', then $Q$ or $Q^{T}, P$ or $P^{T}$ is applied from the right.
(global) CHARACTER.
If trans $=$ 'N', no transpose, $Q$ or $P$ is applied.
If trans $=$ ' $T$ ', then $Q^{T}$ or $P^{T}$ is applied.
(global) INTEGER. The number of rows in the distributed matrix sub (C).
(global) INTEGER. The number of columns in the distributed matrix sub (C).
(global) INTEGER.
If vect $=$ ' $Q$ ', the number of columns in the original distributed matrix reduced by p?gebrd;

If vect $=$ ' $P$ ', the number of rows in the original distributed matrix reduced by p?gebrd.

Constraints: $k \geq 0$.
(local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.

Pointer into the local memory to an array of size (Ild_a, LOCC (ja $+\min (n q, k)-1))$ if vect=' $Q^{\prime}$, and (Ild_a, LOCc (ja+nq-1)) if vect = ' ${ }^{\prime}$ '.
$n q=m$ if side $=$ 'L', and $n q=n$ otherwise.
The vectors that define the elementary reflectors $H(i)$ and $G(i)$, whose products determine the matrices $Q$ and $P$, as returned by p?gebrd.

If vect $=$ 'Q', lld_a $\geq \max (1, \quad$ LOCr(ia+nq-1));
If vect $=$ 'P', lld_a $\geq_{\max }(1, \operatorname{LOCr}(i a+\min (n q, k)-1))$.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Array of size LOCC (ja+min (nq, k)-1), if vect $=$ ' Q ', and LOCr(ia $+\min (n q, k)-1)$, if vect $=$ ' $P$ '.
$\operatorname{tau}(i)$ must contain the scalar factor of the elementary reflector $H(i)$ or $G$ (i)
which determines $Q$ or $P$, as returned by pdgebrd in its array argument tauq or taup. tau is tied to the distributed matrix $A$.
(local) REAL for psormbr
DOUBLE PRECISION for pdormbr
Pointer into the local memory to an array of size (lld_c, LOCC (jc+n-1)).
Contains the local pieces of the distributed matrix sub ( $C$ ).
(global) INTEGER. The row and column indices in the global matrix $C$ indicating the first row and the first column of the submatrix $C$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $C$.
(local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Workspace array of size lwork.
(local or global) INTEGER, size of work, must be at least:
If side = 'L'
$n q=m ;$
if ((vect = ' $Q$ ' and $n q \geq k$ ) or (vect is not equal to ' $Q$ ' and $n q>k$ )), iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;

```
else
iaa= ia+1; jaa=ja; mi=m-1; ni=n; icc=ic+1; jcc= jc;
end if
else
If side = 'R', nq = n;
if((vect = 'Q' and nq\geqk) or (vect is not equal to 'Q' and
nq>k)),
iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;
else
iaa= ia; jaa= ja+1; mi= m; ni= n-1; icc= ic; jcc= jc+1;
end if
end if
If vect = 'Q',
If side = 'L',Iwork\geqmax((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) +
nb_a * nb_a
else if side = 'R',
lwork }\geq\operatorname{max}((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 +
numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0,
lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
else if vect is not equal to 'Q', if side = 'L',
lwork}\geq\operatorname{max}((mb_a*(mb_a-1))/2, (mpc0 + max(mqa0 +
numroc(numroc(mi+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0,
lcmp), nq(0))*mb_a) + mb_a*mb_a
else if side = 'R',
lwork\geqmax((mb_a* (mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a*mb_a
end if
end if
where lcmp = lcm/NPROW, lcmq = lcm/NPCOL, with lcm =
ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(jaa, nb_a, MYCOL, csrc_a, NPCOL),
mqaO = numroc(mi+iCOffa, nb_a, MYCOL, iacol, NPCOL),
npaO = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
```

```
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
```


## NOTE

$$
\bmod (x, y) \text { is the integer remainder of } x / y .
$$

indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

On exit, if vect=' $Q^{\prime}, \operatorname{sub}(C)$ is overwritten by $Q^{*} \operatorname{sub}(C)$, or $Q^{\prime *} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{\prime}$, or $\operatorname{sub}(C)^{*} Q$; if vect $={ }^{\prime} P^{\prime}, \operatorname{sub}(C)$ is overwritten by $P^{*} \operatorname{sub}(C)$, or $P^{\prime *} \operatorname{sub}(C)$, or $\operatorname{sub}(C) * P$, or $\operatorname{sub}(C) * P^{\prime}$.

On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?unmbr
Multiplies a general matrix by one of the unitary
transformation matrices from a reduction to bidiagonal
form determined by p?gebrd.

## Syntax

```
call pcunmbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
call pzunmbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work,
lwork, info)
```


## Include Files

## Description

If vect = 'Q', the p?unmbr routine overwrites the general complex distributed $m$-by- $n$ matrix $\operatorname{sub}(C)=$ $C(i c: i c+m-1, j c: j c+n-1)$ with

```
side = 'L'
trans = 'N':
 Q*sub(C)
trans = 'C':
QH*
side = 'R'
sub(C)*Q
sub(C)*Q H
```

If vect $=$ ' $P$ ', the routine overwrites $\operatorname{sub}(C)$ with

	side $=' \mathrm{~L} '$	side $={ }^{\prime} \mathrm{R}^{\prime}$
trans $=$ ' $\mathrm{N}^{\prime}:$	$P^{*} \operatorname{sub}(C)$	$\operatorname{sub}(C) * P$
trans $=$ ' $^{\prime}:$	$P H * \operatorname{sub}(C)$	$\operatorname{sub}(C) * P H$

Here $Q$ and $P^{H}$ are the unitary distributed matrices determined by p?gebrd when reducing a complex distributed matrix $A(i a: *, j a: *)$ to bidiagonal form: $A\left(i a:^{*}, ~ j a: *\right)=Q^{*} B^{*} P^{H}$.
$Q$ and $P^{H}$ are defined as products of elementary reflectors $H(i)$ and $G(i)$ respectively.
Let $n q=m$ if side $=$ 'L' and $n q=n$ if side $=$ ' R'. Therefore $n q$ is the order of the unitary matrix $Q$ or $P^{H}$ that is applied.

If vect $=$ ' $Q^{\prime}, A\left(i a:^{*}, j a:^{*}\right)$ is assumed to have been an $n q-b y-k$ matrix:
If $n q \geq k, Q=H(1) H(2) \ldots H(k)$;
If $n q<k, Q=H(1) H(2) \ldots H(n q-1)$.
If vect $=' P^{\prime}, A\left(i a:^{*}, j a:^{*}\right)$ is assumed to have been a $k$-by-nq matrix:
If $k<n q, P=G(1) G(2) \ldots G(k) ;$
If $k \geq n q, P=G(1) G(2) \ldots G(n q-1)$.
Input Parameters
vect
side
trans
m
n
k
(global) CHARACTER.
If vect $=$ ' $Q$ ', then $Q$ or $Q^{H}$ is applied.
If vect $=$ ' $P^{\prime}$, then $P$ or $P^{H}$ is applied.
(global) CHARACTER.
If side ='L', then $Q$ or $Q^{H}, P$ or $P^{H}$ is applied from the left.
If side ='R', then $Q$ or $Q^{H}, P$ or $P^{H}$ is applied from the right.
(global) CHARACTER.
If trans = 'N', no transpose, $Q$ or $P$ is applied.
If trans $=$ ' C', conjugate transpose, $Q^{H}$ or $P^{H}$ is applied.
(global) INTEGER. The number of rows in the distributed matrix sub (C) $m \geq 0$.
(global) INTEGER. The number of columns in the distributed matrix sub (C) $n \geq 0$.
(global) INTEGER.
If vect $=$ ' $Q$ ', the number of columns in the original distributed matrix reduced by p?gebrd;
If vect $=$ ' $P^{\prime}$, the number of rows in the original distributed matrix reduced by p?gebrd.


```
nq = m;
if ((vect = 'Q' and nq \geq k) or (vect is not equal to 'Q' and
nq>k)), iaa= ia; jaa= ja; mi= m; ni= n; icc= ic; jcC= jc;
else
iaa= ia+1; jaa= ja;mi=m-1; ni= n; icc= ic+1; jcc= jc;
end if
else
If side = 'R', nq = n;
if ((vect = 'Q' and nq \geq k) or (vect is not equal to 'Q' and
nq\geqk)),
iaa= ia; jaa= ja;mi= m; ni= n; icC= ic; jcc= jc;
else
iaa= ia; jaa= ja+1;mi= m; ni= n-1; icc= ic; jcc= jc+1;
end if
end if
If vect = 'Q',
If side = 'L', lwork }\geq\operatorname{max}((nb_a*(nb_a-1))/2
 (nqc0+mpc0)*nb_a) + nb_a*nb_a
else if side = 'R',
lwork \geq max((nb_a*(nb_a-1))/2, (nqc0 +
max(npa0+numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a,
0, 0, lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
else if vect is not equal to 'Q',
if side = 'L',
lwork \geq max((mb_a*(mb_a-1))/2, (mpc0 +
max(mqa0+numroc(numroc(mi+iroffc, mb_a, 0, 0, NPROW), mb_a,
0, 0, lcmp), nqc0))*mb_a) + mb_a*mb_a
else if side = 'R',
lwork \geq max((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) +
mb_a*mb_a
end if
end if
where lcmp = lcm/NPROW, lcmq = Icm/NPCOL, with lcm =
ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(jaa, nb_a, MYCOL, CSrc_a, NPCOL),
```

```
mqa0 = numroc(mi+icoffa,nb_a, MYCOL, iacol, NPCOL),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
```


## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If lwork $=-1$, then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

c
work(1)
info
On exit, if vect=' $Q^{\prime}, \operatorname{sub}(C)$ is overwritten by $Q^{*} \operatorname{sub}(C)$, or $Q^{\prime *} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q^{\prime}$, or $\operatorname{sub}(C)^{*} Q$; if vect=' $P^{\prime}, \operatorname{sub}(C)$ is overwritten by $P^{*} \operatorname{sub}(C)$, or $P^{\prime *} \operatorname{sub}(C)$, or $\operatorname{sub}(C) * P$, or $\operatorname{sub}(C) * P^{\prime}$.

On exit work (1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
$=0$ : the execution is successful.
< 0: if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## Generalized Symmetric-Definite Eigenvalue Problems: ScaLAPACK Computational Routines

This section describes ScaLAPACK routines that allow you to reduce the generalized symmetric-definite eigenvalue problems (see LAPACKGeneralized Symmetric-Definite Eigenvalue Problems ) to standard symmetric eigenvalue problem $C y=\lambda y$, which you can solve by calling ScaLAPACK routines (see Symmetric Eigenproblems).
Table "Computational Routines for Reducing Generalized Eigenproblems to Standard Problems" lists these routines.

Computational Routines for Reducing Generalized Eigenproblems to Standard Problems

Operation	Real symmetric matrices	Complex Hermitian matrices
Reduce to standard problems	p?sygst	p?hegst

## p?sygst <br> Reduces a real symmetric-definite generalized <br> eigenvalue problem to the standard form.

## Syntax

```
call pssygst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, info)
call pdsygst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, info)
```


## Include Files

## Description

The p?sygstroutine reduces real symmetric-definite generalized eigenproblems to the standard form.
In the following $\operatorname{sub}(A)$ denotes $A(i a: i a+n-1, j a: j a+n-1)$ and $\operatorname{sub}(B)$ denotes $B(i b: i b+n-1, j b: j b+n-1)$.
If ibtype $=1$, the problem is
$\operatorname{sub}(A)^{*} x=\lambda * \operatorname{sub}(B)^{*} x$,
and $\operatorname{sub}(A)$ is overwritten by $\operatorname{inv}\left(U^{T}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$, or $\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{T}\right)$.
If ibtype $=2$ or 3 , the problem is
$\operatorname{sub}(A)^{*} \operatorname{sub}(B)^{*} x=\lambda^{*} x$, or $\operatorname{sub}(B)^{*} \operatorname{sub}(A)^{*} x=\lambda^{*} x$,
and $\operatorname{sub}(A)$ is overwritten by $U^{*} \operatorname{sub}(A)^{*} U^{T}$, or $L^{T *} \operatorname{sub}(A)^{*} L$.
$\operatorname{sub}(B)$ must have been previously factorized as $U^{T *} U$ or $L^{*} L^{T}$ by p?potrf.

## Input Parameters

ibtype
uplo
n
a
(global) INTEGER. Must be 1 or 2 or 3.
If itype $=1$, compute $\operatorname{inv}\left(U^{T}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$, or $\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{T}\right)$;
If itype $=2$ or 3 , compute $U^{*} \operatorname{sub}(A)^{*} U^{T}$, or $L^{T *} \operatorname{sub}(A)^{*} L$.
(global) CHARACTER. Must be 'U' or 'L'.
If uplo = 'U', the upper triangle of $\operatorname{sub}(A)$ is stored and $\operatorname{sub}(B)$ is factored as $U^{T *} U$.

If uplo = 'L', the lower triangle of $\operatorname{sub}(A)$ is stored and $\operatorname{sub}(B)$ is factored as $L^{*} L^{T}$.
(global) INTEGER. The order of the matrices sub $(A)$ and $\operatorname{sub}(B)(n \geq 0)$. (local)

REAL for pssygst
DOUBLE PRECISION for pdsygst.
Pointer into the local memory to an array of size (lld_a, LOCC (ja+n-1)). On entry, the array contains the local pieces of the $n$-by- $n$ symmetric distributed matrix sub $(A)$.

	If uplo = 'U', the leading $n-b y-n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.
	If uplo = 'L', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
ia, ja	(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
desca	(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
b	(local)
	REAL for pssygst
	DOUBLE PRECISION for pdsygst.
	Pointer into the local memory to an array of size (lld_b, LOCC (jb+n-1)). On entry, the array contains the local pieces of the triangular factor from the Cholesky factorization of sub ( $B$ ) as returned by p?potrf.
ib, jb	(global) INTEGER. The row and column indices in the global matrix $B$ indicating the first row and the first column of the submatrix $B$, respectively.
descb	(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $B$.

## Output Parameters

$a$
scale
info

On exit, if info $=0$, the transformed matrix, stored in the same format as $\operatorname{sub}(A)$.
(global)
REAL for pssygst
DOUBLE PRECISION for pdsygst.
Amount by which the eigenvalues should be scaled to compensate for the scaling performed in this routine. At present, scale is always returned as 1.0 , it is returned here to allow for future enhancement.
(global) INTEGER.
If info $=0$, the execution is successful. If info $<0$, if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?hegst

Reduces a Hermitian positive-definite generalized
eigenvalue problem to the standard form.

## Syntax

```
call pchegst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, info)
```

```
call pzhegst(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, scale, info)
```


## Include Files

## Description

The p?hegst routine reduces complex Hermitian positive-definite generalized eigenproblems to the standard form.
In the following $\operatorname{sub}(A)$ denotes $A(i a: i a+n-1, j a: j a+n-1)$ and $\operatorname{sub}(B)$ denotes $B(i b: i b+n-1, j b: j b+n-1)$.
If ibtype $=1$, the problem is
$\operatorname{sub}(A)^{*} x=\lambda * \operatorname{sub}(B)^{*} x$,
and $\operatorname{sub}(A)$ is overwritten by $\operatorname{inv}\left(U^{H}\right)^{*} \operatorname{sub}(A) * \operatorname{inv}(U)$, or $\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)$.
If ibtype $=2$ or 3 , the problem is
$\operatorname{sub}(A) * \operatorname{sub}(B)^{*} x=\lambda^{*} x$, or $\operatorname{sub}(B)^{*} \operatorname{sub}(A)^{*} x=\lambda^{*} x$,
and $\operatorname{sub}(A)$ is overwritten by $U^{*} \operatorname{sub}(A)^{*} U^{H}$, or $L^{H *} \operatorname{sub}(A) * L$.
$\operatorname{sub}(B)$ must have been previously factorized as $U^{H *} U$ or $L^{*} L^{H}$ by p?potrf.

## Input Parameters

```
ibtype
uplo
n
a
ia, ja
desca
b
(global) INTEGER. Must be 1 or 2 or 3.
If itype \(=1\), compute \(\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)\), or \(\operatorname{inv}(L) * \operatorname{sub}(A) * \operatorname{inv}\left(L^{H}\right)\);
If itype \(=2\) or 3 , compute \(U^{*} \operatorname{sub}(A)^{*} U^{H}\), or \(L^{H *} \operatorname{sub}(A)^{*} L\).
(global) CHARACTER. Must be 'U' or 'L'.
If uplo = 'U', the upper triangle of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factored as \(U^{H *} U\).
If uplo = 'L', the lower triangle of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factored as \(L^{*} L^{H}\).
(global) INTEGER. The order of the matrices sub (\(A\)) and sub (B) (\(n \geq 0\)). (local)
COMPLEX for pchegst
DOUBLE COMPLEX for pzhegst.
Pointer into the local memory to an array of size (Ild_a,LOCC (ja+n-1)). On entry, the array contains the local pieces of the \(n\)-by-n Hermitian distributed matrix \(\operatorname{sub}(A)\). If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
```

	COMPLEX for pchegst
	DOUBLE COMPLEX for pzhegst.
	Pointer into the local memory to an array of size $\left(I I d \_b, L O C C(j b+n-1)\right)$.
On entry, the array contains the local pieces of the triangular factor from	
the Cholesky factorization of sub $(B)$ as returned by p?potrf.	
descb $j b \quad$	(global) INTEGER. The row and column indices in the global matrix $B$
indicating the first row and the first column of the submatrix $B$, respectively.	
	(global and local) INTEGER array of size dlen_. The array descriptor for the
distributed matrix $B$.	

## Output Parameters

$a$
On exit, if info $=0$, the transformed matrix, stored in the same format as $\operatorname{sub}(A)$.
(global)
REAL for pchegst
DOUBLE PRECISION for pzhegst.
Amount by which the eigenvalues should be scaled to compensate for the scaling performed in this routine. At present, scale is always returned as 1.0 , it is returned here to allow for future enhancement.
(global) INTEGER.
If info $=0$, the execution is successful. If info $<0$, if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## ScaLAPACK Driver Routines

Table "ScaLAPACK Driver Routines" lists ScaLAPACK driver routines available for solving systems of linear equations, linear least-squares problems, standard eigenvalue and singular value problems, and generalized symmetric definite eigenproblems.

ScaLAPACK Driver Routines

Type of Problem	Matrix type, storage scheme	Driver
Linear equations	general (partial pivoting)	$\begin{aligned} & \text { p?gesv (simple driver) / p?gesvx } \\ & \text { (expert driver) } \end{aligned}$
	general band (partial pivoting)	p?gbsv (simple driver)
	general band (no pivoting)	p?dbsv (simple driver)
	general tridiagonal (no pivoting)	p?dtsv (simple driver)
	symmetric/Hermitian positive-definite	p?posv (simple driver) / p?posvx (expert driver)
	symmetric/Hermitian positive-definite, band	p?pbsv (simple driver)
	symmetric/Hermitian positive-definite, tridiagonal	p?ptsv (simple driver)
Linear least squares problem	general m-by-n	p?gels


Type of Problem	Matrix type, storage scheme	Driver
Non-symmetric eigenvalue   problem	general	p?geevx (expert driver)
Symmetric eigenvalue problem	symmetric/Hermitian	p?syev / p?heev (simple driver);
		p?syevd / p?heevd (simple driver with
		a divide and conquer algorithm);
		p?syevx / p?heevx (expert driver);
		p?syevr / p?heevr (simple driver with
		MRRR algorithm)
Singular value decomposition		
Generalized symmetric definite   eigenvalue problem	general $m$-by- $n$   symmetric/Hermitian, one matrix also   positive-definite	p?gesvd

## p?geevx <br> Computes for an n-by-n real/complex non-symmetric <br> matrix $A$, the eigenvalues and, optionally, the left <br> and/or right eigenvectors.

## Syntax

```
call psgeevx(balanc, jobvl, jobvr, sense, n, a, desca, wr, wi, vl, descvl, vr, descvr,
ilo, ihi, scale, abnrm, rconde, rcondv, work, lwork, info)
call pdgeevx(balanc, jobvl, jobvr, sense, n, a, desca, wr, wi, vl, descvl, vr, descvr,
ilo, ihi, scale, abnrm, rconde, rcondv, work, lwork, info)
call pcgeevx(balanc, jobvl, jobvr, sense, n, a, desca, w, vl, descvl, vr, descvr, ilo,
ihi, scale, abnrm, rconde, rcondv, work, lwork, info)
call pzgeevx(balanc, jobvl, jobvr, sense, n, a, desca, w, vl, descvl, vr, descvr, ilo,
ihi, scale, abnrm, rconde, rcondv, work, lwork, info)
```


## Include Files

## Description

The p?geevx routine computes for an $n$-by- $n$ real/complex non-symmetric matrix $A$, the eigenvalues and, optionally, the left and/or right eigenvectors.
Optionally also, it computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors (ilo, ihi, scale, and abnrm), reciprocal condition numbers for the eigenvalues (rconde).

The right eigenvector $v$ of $A$ satisfies
$A \cdot v=\lambda \cdot v$
where $\lambda$ is its eigenvalue.
The left eigenvector $u$ of $A$ satisfies.

$$
u^{H} A=\lambda u^{H}
$$

where $u^{H}$ denotes the conjugate transpose of $u$. The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
Balancing a matrix means permuting the rows and columns to make it more nearly upper triangular, and applying a diagonal similarity transformation $D^{*} A^{*} \operatorname{inv}(D)$, where $D$ is a diagonal matrix, to make its rows and columns closer in norm and the condition number of its eigenvalues smaller. The computed reciprocal condition numbers correspond to the balanced matrix. Permuting rows and columns will not change the condition numbers in exact arithmetic, but diagonal scaling will.

## NOTE

The current version doesn't support computation of the reciprocal condition numbers for the right eigenvectors.

## Current Notes and Restrictions

All the p?geevx interfaces call p?lahqr for computing eigenvalues and eigenvectors of the Hessenberg matrices. There are several restrictions for the usage of p? lahqr, which include:

- The current implementation of p ? lahqr requires the distributed block size to be square and at least six (6); unlike simpler codes like LU, this algorithm is extremely sensitive to block size.
- The current implementation of p?lahqr requires that input matrix $A$, the left and right eigenvector matrices $V R$ and/or $V L$ to be distributed identically and have identical context.


## Parameters

balanc	(global). Must be ' N ', ' P ', ' S ', or ' B '. Indicates how the input matrix should be diagonally scaled and/or permuted to improve the conditioning of its eigenvalues.
	If balanc = ' N ', do not diagonally scale or permute;
	If balanc = ' P ', perform permutations to make the matrix more nearly upper triangular. Do not diagonally scale;
	If balanc = 'S', diagonally scale the matrix, that is, replace $A$ by $D^{*} A{ }^{*} \operatorname{inv}(D)$, where $D$ is a diagonal matrix chosen to make the rows and columns of $A$ more equal in norm. Do not permute;
	If balanc = 'B', both diagonally scale and permute $A$.
	Computed reciprocal condition numbers will be for the matrix after balancing and/or permuting. Permuting does not change condition numbers (in exact arithmetic), but balancing does.
jobvl	(global). Must be 'N' or 'v.
	If jobvl = 'n', left eigenvectors of $A$ are not computed;
	If jobvl = ' V ', left eigenvectors of $A$ are computed.
	If sense $=$ ' E ', then jobv/ must be ' V '.
jobvr	(global). Must be 'N' or 'v.
	If jobvr = ' N ', right eigenvectors of $A$ are not computed;
	If jobvr $=$ ' V ', right eigenvectors of $A$ are computed.
	If sense = ' $£$ ', then jobvr must be ' V '.
sense	(global). Must be ' N ' or ' E . Determines which reciprocal condition numbers are computed.
	If sense $=$ ' N ', none are computed.
	If sense $=$ ' E ', computed for eigenvalues only.
n	(global) The order of the distributed matrix $A(n \geq 0)$.
	(local)

Pointer into the local memory to an array of size $I I d \_a * L O C c(n)$. On entry, this array contains the local pieces of the $n$-by- $n$ general distributed matrix $A$ to be reduced.
(global and local) array of size dlen_. The array descriptor for the distributed matrix $A$.
(global output) Arrays, size at least max $(1, n)$ each. Contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having positive imaginary part first.
(global output) Array, size at least max $(1, n)$. Contains the computed eigenvalues.
(local output)
Pointer into the local memory to an array of size (DESCVL(LLD_),LOCc(n)).
If jobvl = ' N ', $v /$ is not referenced. If $j o b v /=$ ' v ', the $v /$ parameter contains the local pieces of the left eigenvectors of the matrix $A$.
(global and local input) array of size dlen_. The array descriptor for the distributed matrix $v /$.
(local output)
Pointer into the local memory to an array of size (DESCVR(LLD_), LOCc(n)).
If jobvr = ' N ', $v r$ is not referenced. If jobvr $=$ ' V ', the $v r$ parameter contains the local pieces of the right eigenvectors of the matrix $A$.
(global and local input) array of size dlen_. The array descriptor for the distributed matrix vr.
(global output)
ilo and ihi are integer values determined when $A$ was balanced.
The balanced $A(i, j)=0$ if $i>j$ and $j=1, \ldots$, ilo-1 or $i=i h i+1, \ldots, n$.
If balanc $=$ ' N ' or ' S ', ilo $=1$ and $i h i=n$.
(global output)
Array, size at least max $(1, n)$. Details of the permutations and scaling factors applied when balancing $A$.

If $P[j-1]$ is the index of the row and column interchanged with row and column $j$, and $\mathrm{D}[j-1]$ is the scaling factor applied to row and column $j$, then
scale[ $j-1]=\mathrm{P}[j-1]$, for $j=1, \ldots, i l o-1$
$=\mathrm{D}[j-1]$, for $j=i l o, \ldots, i h i$
$=\mathrm{P}[j-1]$ for $j=i h i+1, \ldots, n$.
The order in which the interchanges are made is $n$ to $i h i+1$, then 1 to ilo-1.
The one-norm of the balanced matrix (the maximum of the sum of absolute values of elements of any column).

Array, size at least $\max (1, n)$.
rconde[j-1] is the reciprocal condition number of the $j$-th eigenvalue.

rcondv	Not supported in the current version. It could be null pointer.
work	(local)
	Workspace array of size /work.
Iwork	(local or global) size of the array work.
	If Iwork $=-1$, then Iwork is global input and a workspace query is assumed; the function only calculates the minimum size for the work array. These values are returned in the first entry of the work array, and no error message is issued by pxerbla.
info	(global)
	$=0$ : the execution is successful.
	$<0$ : if the $i$-th argument is an array and the $j$-th entry, indexed $j$ - 1 , had an illegal value, then info $=-\left(i^{*} 100+j\right)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

p?gesv
Computes the solution to the system of linear equations with a square distributed matrix and multiple right-hand sides.

## Syntax

```
call psgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pdgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pcgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
call pzgesv(n, nrhs, a, ia, ja, desca, ipiv, b, ib, jb, descb, info)
```

Include Files

## Description

The p?gesvroutine computes the solution to a real or complex system of linear equations sub $(A) * X=$ sub $(B)$, where sub $(A)=A(i a: i a+n-1$, ja:ja+n-1) is an $n$-by- $n$ distributed matrix and $X$ and sub $(B)=$ $B$ (ib:ib+n-1, jb:jb+nrhs-1) are $n$-by-nrhs distributed matrices.
The $L U$ decomposition with partial pivoting and row interchanges is used to factor $\operatorname{sub}(A)$ as $\operatorname{sub}(A)=$ $P^{\star} L^{\star} U$, where $P$ is a permutation matrix, $L$ is unit lower triangular, and $U$ is upper triangular. $L$ and $U$ are stored in $\operatorname{sub}(A)$. The factored form of $\operatorname{sub}(A)$ is then used to solve the system of equations $\operatorname{sub}(A) * X=$ sub ( $B$ ).

## Input Parameters

$n$	(global) INTEGER. The number of rows and columns to be operated on, that
is, the order of the distributed submatrix $\operatorname{sub}(A) \quad(n \geq 0)$.	
$n r h s$	(global) INTEGER. The number of right hand sides, that is, the number of
columns of the distributed submatrices $B$ and $X(n r h s \geq 0)$.	
(local)	
	REAL for psgesv

DOUBLE PRECISION for pdgesv
COMPLEX for pcgesv
DOUBLE COMPLEX for pzgesv.
Pointers into the local memory to arrays of local size a(lld_a, LOCC (ja $+n-1))$ and $b\left(11 d \_b, \operatorname{LOCC}(j b+n r h s-1)\right)$, respectively.

On entry, the array a contains the local pieces of the $n$-by- $n$ distributed matrix $\operatorname{sub}(A)$ to be factored.

On entry, the array $b$ contains the right hand side distributed matrix $\operatorname{sub}(B)$.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(global) INTEGER. The row and column indices in the global matrix $B$ indicating the first row and the first column of $\operatorname{sub}(B)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $B$.

## Output Parameters

a
Overwritten by the factors $L$ and $U$ from the factorization $\operatorname{sub}(A)=P^{*} L^{*} U$; the unit diagonal elements of $L$ are not stored.

Overwritten by the solution distributed matrix $X$.
(local) INTEGER Array of size LOCr (m_a)+mb_a. This array contains the pivoting information. The (local) row i of the matrix was interchanged with the (global) row ipiv(i).

This array is tied to the distributed matrix $A$.
(global) INTEGER. If info $=0$, the execution is successful.
info < 0 :
If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-(i * 100+j)$; if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
info> 0:
If info $=k, U(i a+k-1, j a+k-1)$ is exactly zero. The factorization has been completed, but the factor $U$ is exactly singular, so the solution could not be computed.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?gesvx
Uses the LU factorization to compute the solution to the system of linear equations with a square matrix $A$ and multiple right-hand sides, and provides error bounds on the solution.

## Syntax

```
call psgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv, equed,
r, c, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork, iwork, liwork,
info)
call pdgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv, equed,
r, c, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork, iwork, liwork,
info)
call pcgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv, equed,
r, c, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork, rwork, lrwork,
info)
call pzgesvx(fact, trans, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, ipiv, equed,
r, c, b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork, rwork, lrwork,
info)
```


## Include Files

## Description

The p?gesvx routine uses the $L U$ factorization to compute the solution to a real or complex system of linear equations $A X=B$, where $A$ denotes the $n$-by- $n$ submatrix $A(i a: i a+n-1, j a: j a+n-1), B$ denotes the $n$-bynrhs submatrix $B(i b: i b+n-1, j b: j b+n r h s-1)$ and $X$ denotes the $n$-by-nrhs submatrix $X(i x: i x+n-1$, jx:jx+nrhs-1).
Error bounds on the solution and a condition estimate are also provided.
In the following description, af stands for the subarray $a f(i a f: i a f+n-1, j a f: j a f+n-1)$.
The routine p?gesvx performs the following steps:

1. If fact $=$ ' $E$ ', real scaling factors $R$ and $C$ are computed to equilibrate the system:
```
trans = 'N': diag(R)*A*diag(C) *diag(C) -1*X = diag (R)*B
trans = 'T': (diag(R)*A*diag(C))T *diag (R) -1*X = diag (C)*B
trans = 'C': (diag(R)*A*diag(C)) H * diag(R) -1*X = diag (C)*B
```

Whether or not the system will be equilibrated depends on the scaling of the matrix $A$, but if equilibration is used, $A$ is overwritten by diag $(R) \star A \star \operatorname{diag}(C)$ and $B$ by diag $(R) * B$ (if trans='N') or $\operatorname{diag}(c) * B$ (if trans $=$ ' $T$ ' or 'C').
2. If fact $=$ ' $N$ ' or ' $E$ ', the $L U$ decomposition is used to factor the matrix $A$ (after equilibration if fact $=$ ' $E$ ') as $A=P L U$, where $P$ is a permutation matrix, $L$ is a unit lower triangular matrix, and $U$ is upper triangular.
3. The factored form of $A$ is used to estimate the condition number of the matrix $A$. If the reciprocal of the condition number is less than relative machine precision, steps 4-6 are skipped.
4. The system of equations is solved for $X$ using the factored form of $A$.
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix $X$ is premultiplied by diag( $C$ ) (if $\operatorname{trans}=$ ' N ') or $\operatorname{diag}(R)$ (if trans $=$ 'T' or 'C') so that it solves the original system before equilibration.

## Input Parameters

fact
(global) CHARACTER*1. Must be 'F', 'N', or 'E'.

Specifies whether or not the factored form of the matrix $A$ is supplied on entry, and if not, whether the matrix $A$ should be equilibrated before it is factored.
If fact $=$ ' F ' then, on entry, af and ipiv contain the factored form of $A$. If equed is not ' $N$ ', the matrix $A$ has been equilibrated with scaling factors given by $r$ and $c$. Arrays $a, a f$, and ipiv are not modified.
If fact $=$ ' $N$ ', the matrix $A$ is copied to af and factored.
If fact $=$ ' $E$ ', the matrix $A$ is equilibrated if necessary, then copied to af and factored.
(global) CHARACTER*1. Must be 'N', 'T', or 'C'.
Specifies the form of the system of equations:
If trans $=$ ' $N$ ', the system has the form $A * X=B$ (No transpose);
If trans $=$ ' $T$ ', the system has the form $A^{T *} X=B$ (Transpose);
If trans $=$ ' C', the system has the form $A^{H * X}=B$ (Conjugate transpose);
(global) INTEGER. The number of linear equations; the order of the submatrix $A(n \geq 0)$.
(global) INTEGER. The number of right hand sides; the number of columns of the distributed submatrices $B$ and $X(n r h s \geq 0)$.
(local)
REAL for psgesvx
DOUBLE PRECISION for pdgesvx
COMPLEX for pcgesvx
DOUBLE COMPLEX for pzgesvx.
Pointers into the local memory to arrays of local size a(IId_a, LOCC (ja $+n-1)), a f\left(l l d \_a f, \operatorname{LOCC}(j a+n-1)\right), b\left(l l d \_b, \operatorname{LOCC}(j b+n r h s-1)\right)$, work(lwork).

The array a contains the matrix $A$. If fact $={ }^{\prime} F^{\prime}$ and equed is not ' $N$ ', then $A$ must have been equilibrated by the scaling factors in $r$ and/or $c$.

The array of is an input argument if fact $={ }^{\prime} \mathrm{F}$ '. In this case it contains on entry the factored form of the matrix $A$, that is, the factors $L$ and $U$ from the factorization $A=P^{\star} L^{\star} U$ as computed by p?getrf. If equed is not ' $N^{\prime}$, then $a f$ is the factored form of the equilibrated matrix $A$.

The array $b$ contains on entry the matrix $B$ whose columns are the righthand sides for the systems of equations.
work is a workspace array. The size of work is (/work).
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$ (ia:ia+n-1, ja:ja+n-1), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.

```
iaf, jaf
descaf
ib, jb
descb
ipiv
```

equed
r, c
(global) INTEGER. The row and column indices in the global matrix $A F$ indicating the first row and the first column of the subarray af (iaf:iaf $+n-1$, jaf:jaf+n-1), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A F$.
(global) INTEGER. The row and column indices in the global matrix $B$ indicating the first row and the first column of the submatrix $B$ ( $i b: i b+n-1$, jb:jb+nrhs-1), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $B$.
(local) INTEGER Array of size LOCr (m_a) +mb_a.
The array ipiv is an input argument if fact $=$ ' F '.
On entry, it contains the pivot indices from the factorization $A=P^{\star} L^{\star} U$ as computed by p?getrf; (local) row i of the matrix was interchanged with the (global) row ipiv(i).

This array must be aligned with $A\left(i a: i a+n-1,{ }^{*}\right)$.
(global) CHARACTER*1. Must be 'N', 'R', 'C', or 'B'. equed is an input argument if fact $=' \mathrm{~F}$ '. It specifies the form of equilibration that was done:

If equed = 'N', no equilibration was done (always true if fact $=$ ' $N$ ');
If equed = 'R', row equilibration was done, that is, $A$ has been premultiplied by diag( $r$ );
If equed $=$ ' $C$ ', column equilibration was done, that is, $A$ has been postmultiplied by diag(c);
If equed $=$ ' B ', both row and column equilibration was done; $A$ has been replaced by diag $(r){ }^{*} A \star \operatorname{diag}(C)$.
(local) REAL for single precision flavors;
DOUBLE PRECISION for double precision flavors.
Arrays of size LOCr (m_a) and LOCC (n_a), respectively.
The array $r$ contains the row scale factors for $A$, and the array $c$ contains the column scale factors for $A$. These arrays are input arguments if fact $=$ ' F ' only; otherwise they are output arguments. If equed $=$ ' $\mathrm{R}^{\prime}$ or ' $\mathrm{B}^{\prime}, A$ is multiplied on the left by diag $(r)$; if equed $={ }^{\prime} N$ ' or ' $C$ ', $r$ is not accessed.
If fact $=$ ' $F$ ' and equed $=$ ' $R$ ' or ' $B$ ', each element of $r$ must be positive.
If equed $=$ ' $C$ ' or ' B ', $A$ is multiplied on the right by diag $(c)$; if equed $=$ 'N' or 'R', $c$ is not accessed.
If fact $=$ ' $F$ ' and equed $=$ ' C' or 'B', each element of $c$ must be positive. Array $r$ is replicated in every process column, and is aligned with the distributed matrix $A$. Array $c$ is replicated in every process row, and is aligned with the distributed matrix $A$.
ix, jx
descx

1 work
iwork
liwork
rwork

Irwork

## Output Parameters

X
a
(global) INTEGER. The row and column indices in the global matrix $X$ indicating the first row and the first column of the submatrix $X(i x: i x+n-1$, jx:jx+nrhs-1), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $X$.
(local or global) INTEGER. The size of the array work ; must be at least max (p?gecon(lwork), p?gerfs(lwork))+LOCr(n_a).
(local, psgesvx/pdgesvx only)INTEGER. Workspace array. The size of iwork is (liwork).
(local, psgesvx/pdgesvx only)INTEGER. The size of the array iwork, must be at least LOCr (n_a).
(local) REAL for pcgesvx
DOUBLE PRECISION for pzgesvx.
Workspace array, used in complex flavors only.
The size of rwork is (Irwork).
(local or global, pcgesvx/pzgesvx only)INTEGER. The size of the array rwork; must be at least $2 *$ LOCC (n_a).
(local)
REAL for psgesvx
DOUBLE PRECISION for pdgesvx
COMPLEX for pcgesvx
DOUBLE COMPLEX for pzgesvx.
Pointer into the local memory to an array of local size $x\left(l l d \_x, L O C C(j x\right.$ +nrhs-1)).
If info $=0$, the array $x$ contains the solution matrix $X$ to the original system of equations. Note that $A$ and $B$ are modified on exit if equed $\neq{ }^{\prime} \mathrm{N}^{\prime}$, and the solution to the equilibrated system is:

```
diag(C) -1* X, if trans = 'N' and equed = 'C' or 'B'; and
diag(R)-1*X, if trans = 'T' or 'C' and equed = 'R' or 'B'.
```

Array $a$ is not modified on exit if fact $=$ ' $\mathrm{F}^{\prime}$ or ' $N$ ', or if fact $=$ ' E ' and equed = 'N'.

If equed $\neq$ ' $N$ ', $A$ is scaled on exit as follows:

```
equed = 'R':A = diag (R)*A
equed = 'C':A = A*diag(c)
equed = 'B':A = diag(R)*A*diag(C)
```

af	If fact $=$ ' $N$ ' or ' $E$ ', then af is an output argument and on exit returns the factors $L$ and $U$ from the factorization $A=P^{\star} L^{\star} U$ of the original matrix $A$ (if fact $=$ 'N') or of the equilibrated matrix $A$ (if fact $=' E$ '). See the description of $a$ for the form of the equilibrated matrix.
b	```Overwritten by diag(R)*B if trans = 'N' and equed = 'R' or 'B'; overwritten by diag(c)*B if trans = 'T' and equed = 'C' or 'B'; not changed if equed = 'N'.```
$r, c$	These arrays are output arguments if fact $\neq \mathrm{F}^{\prime}$ '.
	See the description of $r, c$ in Input Arguments section.
rcond	(global)REAL for single precision flavors.
	DOUBLE PRECISION for double precision flavors.
	An estimate of the reciprocal condition number of the matrix $A$ after equilibration (if done). The routine sets rcond $=0$ if the estimate underflows; in this case the matrix is singular (to working precision). However, anytime rcond is small compared to 1.0, for the working precision, the matrix may be poorly conditioned or even singular.
ferr, berr	(local)REAL for single precision flavors
	DOUBLE PRECISION for double precision flavors.
	Arrays of size $\operatorname{LOCC}$ (n_b) each. Contain the component-wise forward and relative backward errors, respectively, for each solution vector.
	Arrays ferr and berr are both replicated in every process row, and are aligned with the matrices $B$ and $X$.
ipiv	If fact $=$ 'N' or 'E', then ipiv is an output argument and on exit contains the pivot indices from the factorization $A=P^{\star} L^{\star} U$ of the original matrix $A$ (if fact $=$ 'N') or of the equilibrated matrix $A$ (if fact $=$ 'E').
equed	If $f a c t \neq ' F^{\prime}$, then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).
work(1)	If info=0, on exit work (1) returns the minimum value of Iwork required for optimum performance.
iwork(1)	If info=0, on exit iwork (1) returns the minimum value of liwork required for optimum performance.
rwork(1)	If info=0, on exit rwork (1) returns the minimum value of Irwork required for optimum performance.
info	INTEGER. If info $=0$, the execution is successful.
	info < 0 : if the $i$ th argument is an array and the $j$ th entry had an illegal value, then info $=-(i * 100+j)$; if the $i$ th argument is a scalar and had an illegal value, then info $=-i$. If info $=i$, and $i \leq n$, then $U(i, i)$ is exactly zero. The factorization has been completed, but the factor $U$ is exactly singular, so the solution and error bounds could not be computed. If info $=i$, and $i=n+1$, then $U$ is nonsingular, but rcond is less than

machine precision. The factorization has been completed, but the matrix is singular to working precision and the solution and error bounds have not been computed.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?gbsv
Computes the solution to the system of linear
equations with a general banded distributed matrix
and multiple right-hand sides.
Syntax
```

```
call psgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork, info)
```

call psgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork, info)
call pdgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork, info)
call pdgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork, info)
call pcgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork, info)
call pcgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork, info)
call pzgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork, info)

```
call pzgbsv(n, bwl, bwu, nrhs, a, ja, desca, ipiv, b, ib, descb, work, lwork, info)
```


## Include Files

## Description

The p?gbsvroutine computes the solution to a real or complex system of linear equations

```
sub (A) * X = sub (B),
```

where sub $(A)=A(1: n, j a: j a+n-1)$ is an $n$-by- $n$ real/complex general banded distributed matrix with bwl subdiagonals and bwu superdiagonals, and $X$ and $\operatorname{sub}(B)=B$ (ib:ib+n-1, 1 :rhs) are $n$-by-nrhs distributed matrices.

The $L U$ decomposition with partial pivoting and row interchanges is used to factor $\operatorname{sub}(A)$ as sub $(A)=$ $P^{\star} L^{\star} U^{\star} Q$, where $P$ and $Q$ are permutation matrices, and $L$ and $U$ are banded lower and upper triangular matrices, respectively. The matrix $Q$ represents reordering of columns for the sake of parallelism, while $P$ represents reordering of rows for numerical stability using classic partial pivoting.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Input Parameters

n
bwl
bwu
nrhs
(global) INTEGER. The number of rows and columns to be operated on, that is, the order of the distributed matrix $\operatorname{sub}(A)(n \geq 0)$.
(global) INTEGER. The number of subdiagonals within the band of $A(0 \leq b w l$ $\leq n-1$ ).
(global) INTEGER. The number of superdiagonals within the band of $A(0 \leq$ $b w u \leq n-1$ ).
(global) INTEGER. The number of right hand sides; the number of columns of the distributed matrix $\operatorname{sub}(B)(n r h s \geq 0)$.

```
a,b
ja
desca
ib
descb
work

\section*{Output Parameters}

\section*{a}

On exit, contains details of the factorization. Note that the resulting factorization is not the same factorization as returned from LAPACK. Additional permutations are performed on the matrix for the sake of parallelism.
b
info

On exit, this array contains the local pieces of the solution distributed matrix \(X\).
(local) INTEGER array.
The size of ipiv must be at least desca (NB). This array contains pivot indices for local factorizations. You should not alter the contents between factorization and solve.

On exit, work (1) contains the minimum value of Iwork required for optimum performance.

INTEGER. If info \(=0\), the execution is successful. info \(<0\) :
If the \(i\) th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\); if the ith argument is a scalar and had an illegal value, then info \(=-i\).
info> 0:
If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not nonsingular, and the factorization was not completed. If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not nonsingular, and the factorization was not completed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?dbsv}

Solves a general band system of linear equations.

\section*{Syntax}
```

call psdbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)
call pddbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)
call pcdbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)
call pzdbsv(n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

```

\section*{Include Files}

\section*{Description}

The p?dbsvroutine solves the following system of linear equations:
\(A(1: n, j a: j a+n-1) * X=B(i b: i b+n-1,1: n r h s)\),
where \(A(1: n, j a: j a+n-1)\) is an \(n\)-by- \(n\) real/complex banded diagonally dominant-like distributed matrix with bandwidth bwl, bwu.

Gaussian elimination without pivoting is used to factor a reordering of the matrix into \(L U\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
```

n
bwl
bwu

```
nrhs
a
ja
desca
b
ib
descb
(global) INTEGER. The order of the distributed submatrix \(A,(n \geq 0)\).
(global) INTEGER. Number of subdiagonals. \(0 \leq b w l \leq n-1\).
(global) INTEGER. Number of subdiagonals. \(0 \leq b w u \leq n-1\).
(global) INTEGER. The number of right-hand sides; the number of columns of the distributed submatrix \(B\), (nrhs \(\geq 0)\).
(local). REAL for psdbsv
DOUBLE PRECISION for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Pointer into the local memory to an array with leading size lld_a \(\geq\) (bwl \(+b w u+1\)) (stored in desca). On entry, this array contains the local pieces of the distributed matrix.
(global) INTEGER. The index in the global matrix \(A\) indicating the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A).
(global and local) INTEGER array of size dlen.
```

If 1d type (dtype_a=501 or 502), dlen \geq 7;
If 2d type (dtype_a=1), dlen \geq 9.

```

The array descriptor for the distributed matrix \(A\).
Contains information of mapping of \(A\) to memory.
(local)
REAL for psdbsv
DOUBLE PRECISON for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Pointer into the local memory to an array of local lead size lld_b \(\geq n b\). On entry, this array contains the local pieces of the right hand sides \(B\) (ib: ib \(+n-1,1: n r h s)\).
(global) INTEGER. The row index in the global matrix \(B\) indicating the first row of the matrix to be operated on (which may be either all of \(b\) or a submatrix of \(B\)).
(global and local) INTEGER array of size dlen.
```

If 1d type (dtype_b =502), dlen \geq 7;
If 2d type (dtype_b =1), dlen \geq 9.

```

The array descriptor for the distributed matrix \(B\).
Contains information of mapping of \(B\) to memory.
work
lwork
(local).
REAL for psdbsv
DOUBLE PRECISON for pddbsv
COMPLEX for pcdbsv
DOUBLE COMPLEX for pzdbsv.
Temporary workspace. This space may be overwritten in between calls to routines. work must be the size given in Iwork.
(local or global) INTEGER. Size of user-input workspace work. If Iwork is too small, the minimal acceptable size will be returned in work (1) and an error code is returned.
```

lwork \geq nb(bwl+bwu)+6max (bwl,bwu)*max (bwl,bwu)
+max((max(bwl,bwu) nrhs), max(bwl,bwu) *max(bwl,bwu))

```

\section*{Output Parameters}
a
b
work
info

On exit, this array contains information containing details of the factorization.
Note that permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.

On exit, this contains the local piece of the solutions distributed matrix \(X\).
On exit, work (1) contains the minimal lwork.
(local) INTEGER. If info \(=0\), the execution is successful.
< 0 : If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
> 0: If info \(=k<\) NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.
If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?dtsv}

Solves a general tridiagonal system of linear equations.

\section*{Syntax}
```

call psdtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork, info)
call pddtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork, info)
call pcdtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork, info)
call pzdtsv(n, nrhs, dl, d, du, ja, desca, b, ib, descb, work, lwork, info)

```

\section*{Include Files}

\section*{Description}

The routine solves a system of linear equations
```

A(1:n, ja:ja+n-1) * X = B(ib:ib+n-1, 1:nrhs),

```
where \(A(1: n, j a: j a+n-1)\) is an \(n\)-by- \(n\) complex tridiagonal diagonally dominant-like distributed matrix.
Gaussian elimination without pivoting is used to factor a reordering of the matrix into \(L U\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
\(n\)
(global) INTEGER. The order of the distributed submatrix \(A(n \geq 0)\).
INTEGER. The number of right hand sides; the number of columns of the distributed matrix \(B\) (nrhs \(\geq 0\)).
(local).REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the lower diagonal of the matrix. Globally, \(d l(1)\) is not referenced, and \(d l\) must be aligned with \(d\). Must be of size \(>\) desca (nb_).
(local). REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the main diagonal of the matrix.
(local). REAL for psdtsv
DOUBLE PRECISION for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer to local part of global vector storing the upper diagonal of the matrix. Globally, \(d u(n)\) is not referenced, and \(d u\) must be aligned with \(d\).
(global) INTEGER. The index in the global matrix \(A\) indicating the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A).
(global and local) INTEGER array of size dlen.

If \(1 d\) type (dtype_a=501 or 502), dlen \(\geq 7\);
If \(2 d\) type (dtype_a=1), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(A\).
Contains information of mapping of \(A\) to memory.
b
ib
descb
work
lwork
(local)
REAL for psdtsv
DOUBLE PRECISON for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv.
Pointer into the local memory to an array of local lead size lld_b \(>n b\). On entry, this array contains the local pieces of the right hand sides \(B\) (ib: ib \(+n-1,1: n r h s)\).
(global) INTEGER. The row index in the global matrix \(B\) indicating the first row of the matrix to be operated on (which may be either all of \(b\) or a submatrix of \(B\)).
(global and local) INTEGER array of size dlen.
If 1d type (dtype_b =502), dlen \(\geq 7\);
If \(2 d\) type (dtype_b \(=1\)), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(B\).
Contains information of mapping of \(B\) to memory.
(local).
REAL for psdtsv
DOUBLE PRECISON for pddtsv
COMPLEX for pcdtsv
DOUBLE COMPLEX for pzdtsv. Temporary workspace. This space may be overwritten in between calls to routines. work must be the size given in Iwork.
(local or global) INTEGER. Size of user-input workspace work. If /work is too small, the minimal acceptable size will be returned in work (1) and an error code is returned. 1 work \(>(12 *\) NPCOL \(+3 *\) nb \()+\max ((10+2 * \min (100\), nrhs)) *NPCOL+4*nrhs, 8*NPCOL)

\section*{Output Parameters}

On exit, this array contains information containing the * factors of the matrix.

On exit, this array contains information containing the * factors of the matrix. Must be of size \(>\) descal \(n b_{-}\)).

On exit, this array contains information containing the * factors of the matrix. Must be of size \(>\) descal \(n b_{-}\)).
b
work
info

On exit, this contains the local piece of the solutions distributed matrix \(X\).
On exit, work (1) contains the minimal /work.
(local) INTEGER. If info \(=0\), the execution is successful.
< 0: If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
\(>0\) : If info \(=k<\) NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.
If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?posv}

Solves a symmetric positive definite system of linear
equations.

\section*{Syntax}
```

call psposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pdposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pcposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
call pzposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)

```

\section*{Include Files}

\section*{Description}

The p?posvroutine computes the solution to a real/complex system of linear equations
```

sub(A)*X = sub(B),

```
where \(\operatorname{sub}(A)\) denotes \(A(i a: i a+n-1, j a: j a+n-1)\) and is an \(n\)-by- \(n\) symmetric/Hermitian distributed positive definite matrix and \(X\) and \(\operatorname{sub}(B)\) denoting \(B\) (ib: ib+n-1,jb:jb+nrhs-1) are \(n\)-by-nrhs distributed matrices. The Cholesky decomposition is used to factor \(\operatorname{sub}(A)\) as
```

sub(A) = UT*U, if uplo = 'U', or
sub(A) = L* L'T, if uplo = 'L',

```
where \(U\) is an upper triangular matrix and \(L\) is a lower triangular matrix. The factored form of \(\operatorname{sub}(A)\) is then used to solve the system of equations.

\section*{Input Parameters}
uplo (global) CHARACTER. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular part of \(\operatorname{sub}(A)\) is stored.
(global) INTEGER. The order of the distributed matrix \(\operatorname{sub}(A)(n \geq 0)\).
nrhs
a
ia, ja
desca
b
ib, jb
descb

\section*{Output Parameters}

INTEGER. The number of right-hand sides; the number of columns of the distributed matrix \(\operatorname{sub}(B)(n r h s \geq 0)\).
(local)
REAL for psposv
DOUBLE PRECISION for pdposv
COMPLEX for pcposv
COMPLEX*16 for pzposv.
Pointer into the local memory to an array of size (IId_a, LOCC (ja+n-1)). On entry, this array contains the local pieces of the \(n\)-by- \(n\) symmetric distributed matrix \(\operatorname{sub}(A)\) to be factored.

If uplo = ' \(U\) ', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.

If uplo \(=\) ' \(L\) ', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the distributed matrix, and its strictly upper triangular part is not referenced.
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
REAL for psposv
DOUBLE PRECISON for pdposv
COMPLEX for pcposv
COMPLEX*16 for pzposv.
Pointer into the local memory to an array of size (lld_b, LOCc (\(j b\) \(+n r h s-1)\)). On entry, the local pieces of the right hand sides distributed matrix \(\operatorname{sub}(B)\).
(global) INTEGER. The row and column indices in the global matrix \(B\) indicating the first row and the first column of the submatrix \(B\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(B\).

On exit, if info \(=0\), this array contains the local pieces of the factor \(U\) or \(L\) from the Cholesky factorization sub \((A)=U^{H *} U\), or \(L^{*} L^{H}\).

On exit, if info \(=0, \operatorname{sub}(B)\) is overwritten by the solution distributed matrix \(X\).
(global) INTEGER.
If info \(=0\), the execution is successful.

If info < 0: If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

If info > 0: If info \(=k\), the leading minor of order \(k\), \(A(i a: i a+k-1\), \(j a: j a+k-1)\) is not positive definite, and the factorization could not be completed, and the solution has not been computed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?posvx}

Solves a symmetric or Hermitian positive definite system of linear equations.

\section*{Syntax}
```

call psposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, equed, sr, sc,
b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork, iwork, liwork, info)
call pdposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, equed, sr, sc,
b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork, iwork, liwork, info)
call pcposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, equed, sr, sc,
b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork, iwork, liwork, info)
call pzposvx(fact, uplo, n, nrhs, a, ia, ja, desca, af, iaf, jaf, descaf, equed, sr, sc,
b, ib, jb, descb, x, ix, jx, descx, rcond, ferr, berr, work, lwork, iwork, liwork, info)

```

\section*{Include Files}

\section*{Description}

The p?posvxroutine uses the Cholesky factorization \(A=U^{T} * U\) or \(A=L \star L^{T}\) to compute the solution to a real or complex system of linear equations
\(A(i a: i a+n-1, j a: j a+n-1) \star X=B(i b: i b+n-1, j b: j b+n r h s-1)\),
where \(A(i a: i a+n-1, j a: j a+n-1)\) is a \(n\)-by-n matrix and \(X\) and \(B(i b: i b+n-1, j b: j b+n r h s-1)\) are \(n\)-bynrhs matrices.
Error bounds on the solution and a condition estimate are also provided.
In the following comments \(y\) denotes \(Y(i y: i y+m-1, j y: j y+k-1)\), an \(m\)-by- \(k\) matrix where \(y\) can be \(a, a f, b\) and \(x\).

The routine p?posvx performs the following steps:
1. If fact \(=\) ' \(E\) ', real scaling factors \(s\) are computed to equilibrate the system:
\(\operatorname{diag}(s r) * A * \operatorname{diag}(S C) * \operatorname{inv}(\operatorname{diag}(S C)) * X=\operatorname{diag}(S r) * B\)
Whether or not the system will be equilibrated depends on the scaling of the matrix \(A\), but if equilibration is used, \(A\) is overwritten by diag (sr)*A*diag (sc) and \(B\) by diag (\(s r\)) * \(B\).
2. If fact \(=\) ' \(N\) ' or ' \(E\) ', the Cholesky decomposition is used to factor the matrix \(A\) (after equilibration if fact \(=\) 'E') as
\(A=U^{T} * U\), if uplo = 'U', or
\(A=L^{\star} L^{T}\), if uplo = 'L',
where \(U\) is an upper triangular matrix and \(L\) is a lower triangular matrix.
3. The factored form of \(A\) is used to estimate the condition number of the matrix \(A\). If the reciprocal of the condition number is less than machine precision, steps 4-6 are skipped
4. The system of equations is solved for \(X\) using the factored form of \(A\).
5. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it.
6. If equilibration was used, the matrix \(X\) is premultiplied by diag(sr) so that it solves the original system before equilibration.

\section*{Input Parameters}
```

fact

```
uplo
n
nrhs
a
\begin{tabular}{|c|c|}
\hline desca & (global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{7}{*}{af} & (local) \\
\hline & REAL for psposvx \\
\hline & DOUBLE PRECISION for pdposvx \\
\hline & COMPLEX for pcposvx \\
\hline & DOUBLE COMPLEX for pzposvx. \\
\hline & Pointer into the local memory to an array of local size (lld_af, LOCC(ja \(+n-1)\)). \\
\hline & If fact = ' F ', then \(a f\) is an input argument and on entry contains the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T} \star U\) or \(A=\) \(L^{\star} L^{T}\), in the same storage format as \(A\). If equed \(\neq{ }^{\prime} N^{\prime}\), then af is the factored form of the equilibrated matrix \(\operatorname{diag}(S r) * A * \operatorname{diag}(S C)\). \\
\hline iaf, jaf & (global) INTEGER. The row and column indices in the global matrix \(A F\) indicating the first row and the first column of the submatrix \(A F\), respectively. \\
\hline descaf & (global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A F\). \\
\hline \multirow[t]{4}{*}{equed} & (global) CHARACTER. Must be 'N' or 'Y'. \\
\hline & equed is an input argument if fact \(={ }^{\prime} F^{\prime}\). It specifies the form of equilibration that was done: \\
\hline & If equed = 'N', no equilibration was done (always true if fact = 'N'); \\
\hline & If equed \(=\) ' \(Y\) ', equilibration was done and \(A\) has been replaced by \(\operatorname{diag}(S r) * A * \operatorname{diag}(S C)\). \\
\hline \multirow[t]{9}{*}{\(s r\)} & (local) \\
\hline & REAL for psposvx \\
\hline & DOUBLE PRECISION for pdposvx \\
\hline & COMPLEX for pcposvx \\
\hline & DOUBLE COMPLEX for pzposvx. \\
\hline & Array of size lld_a. \\
\hline & The array \(s\) contains the scale factors for \(A\). This array is an input argument if fact \(=\) ' F ' only; otherwise it is an output argument. \\
\hline & If equed = 'N', s is not accessed. \\
\hline & If fact \(=\) ' F ' and equed \(=\) 'Y', each element of \(s\) must be positive. \\
\hline \multirow[t]{5}{*}{b} & (local) \\
\hline & REAL for psposvx \\
\hline & DOUBLE PRECISION for pdposvx \\
\hline & COMPLEX for pcposvx \\
\hline & DOUBLE COMPLEX for pzposvx. \\
\hline
\end{tabular}

Pointer into the local memory to an array of local size (lld_b, LOCC (jb \(+n r h s-1)\)). On entry, the \(n\)-by-nrhs right-hand side matrix \(B\).
(global) INTEGER. The row and column indices in the global matrix \(B\) indicating the first row and the first column of the submatrix \(B\), respectively.
(global and local) INTEGER. Array of size dlen_. The array descriptor for the distributed matrix \(B\).
(local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Pointer into the local memory to an array of local size (lld_x, LOCC (jx +nrhs-1)).
(global) INTEGER. The row and column indices in the global matrix \(X\) indicating the first row and the first column of the submatrix \(X\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(X\).
(local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
Workspace array of size /work.
(local or global) INTEGER.
The size of the array work. Iwork is local input and must be at least lwork
\(=\max \left(\mathrm{p}\right.\) ?pocon(lwork), p?porfs(lwork)) \(+\operatorname{LOCr}\left(n_{-} a\right)\).
lwork \(=3 *\) desca(lld_).
If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local) INTEGER. Workspace array of size liwork.
(local or global)
INTEGER. The size of the array iwork. liwork is local input and must be at least liwork \(=\operatorname{desca}\left(l l d _\right) \operatorname{liwork}=\operatorname{LOCr}\left(n_{-} a\right)\).
If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
af
equed
sr

SC
b
x
rcond
ferr

On exit, if fact = 'E' and equed = 'Y', a is overwritten by \(\operatorname{diag}(S r) * a^{\star} \operatorname{diag}(S C)\).

If fact \(=\) ' \(N\) ', then af is an output argument and on exit returns the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T} \star U\) or \(A=\) \(L^{*} L^{T}\) of the original matrix \(A\).

If fact \(=\) 'E', then \(a f\) is an output argument and on exit returns the triangular factor \(U\) or \(L\) from the Cholesky factorization \(A=U^{T} \star U\) or \(A=\) \(L^{\star} L^{T}\) of the equilibrated matrix \(A\) (see the description of \(A\) for the form of the equilibrated matrix).

If \(f a c t \neq ' F^{\prime}\), then equed is an output argument. It specifies the form of equilibration that was done (see the description of equed in Input Arguments section).

This array is an output argument if fact \(\neq \mathcal{F}^{\prime} \mathrm{F}^{\prime}\).
See the description of sr in Input Arguments section.
This array is an output argument if fact \(\mathcal{F}^{\prime} \mathrm{F}^{\prime}\).
See the description of sc in Input Arguments section.
On exit, if equed = 'N', \(b\) is not modified; if trans \(=\) ' \(N\) ' and equed = 'R' or 'B', b is overwritten by diag \((x) * b\); if trans \(=\) 'T' or 'C' and equed \(=\) 'C' or ' B ', \(b\) is overwritten by \(\operatorname{diag}(c) * b\).
(local)
REAL for psposvx
DOUBLE PRECISION for pdposvx
COMPLEX for pcposvx
DOUBLE COMPLEX for pzposvx.
If info \(=0\) the \(n\)-by-nrhs solution matrix \(X\) to the original system of equations.

Note that \(A\) and \(B\) are modified on exit if equed \(\neq{ }^{\prime} N^{\prime}\), and the solution to the equilibrated system is
```

inv(diag(SC))*X if trans = 'N' and equed = 'C' or 'B', or
inv(diag(sr))*Xif trans = 'T' or 'C' and equed = 'R' or 'B'.

```
(global)
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
An estimate of the reciprocal condition number of the matrix \(A\) after equilibration (if done). If rcond is less than the machine precision (in particular, if rcond=0), the matrix is singular to working precision. This condition is indicated by a return code of info \(>0\).

REAL for single precision flavors.

DOUBLE PRECISION for double precision flavors.
Arrays of size at least \(\max \left(L O C, n_{-} b\right)\). The estimated forward error bounds for each solution vector \(X(j)\) (the \(j\)-th column of the solution matrix \(X\)). If \(x\) true is the true solution, ferr \((j)\) bounds the magnitude of the largest entry in \((X(j)\) - xtrue) divided by the magnitude of the largest entry in \(X(j)\). The quality of the error bound depends on the quality of the estimate of norm(inv(A)) computed in the code; if the estimate of norm (inv(A)) is accurate, the error bound is guaranteed.
(local)
REAL for single precision flavors.
DOUBLE PRECISION for double precision flavors.
Arrays of size at least max (LOC, \(\left.n_{-} b\right)\). The componentwise relative backward error of each solution vector \(X(j)\) (the smallest relative change in any entry of \(A\) or \(B\) that makes \(X(j)\) an exact solution).
(local) On exit, work (1) returns the minimal and optimal liwork.
(global) INTEGER.
If info \(=0\), the execution is successful.
\(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value
\(>0\) : if info \(=i\), and \(i\) is \(\leq n\) : if info \(=i\), the leading minor of order \(i\) of \(a\) is not positive definite, so the factorization could not be completed, and the solution and error bounds could not be computed.
\(=n+1\) : rcond is less than machine precision. The factorization has been completed, but the matrix is singular to working precision, and the solution and error bounds have not been computed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?pbsv}

Solves a symmetric/Hermitian positive definite banded system of linear equations.

\section*{Syntax}
```

call pspbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)
call pdpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)
call pcpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)
call pzpbsv(uplo, n, bw, nrhs, a, ja, desca, b, ib, descb, work, lwork, info)

```

\section*{Include Files}

\section*{Description}

The p?pbsvroutine solves a system of linear equations
```

A(1:n, ja:ja+n-1)*X = B(ib:ib+n-1, 1:nrhs),

```
where \(A(1: n, j a: j a+n-1)\) is an \(n\)-by- \(n\) real/complex banded symmetric positive definite distributed matrix with bandwidth bw.

Cholesky factorization is used to factor a reordering of the matrix into \(L^{*} L^{\prime}\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
uplo
n
bw
nrhs
a
ja
desca
b
(global) CHARACTER. Must be 'U' or 'L'.
Indicates whether the upper or lower triangular of \(A\) is stored.
If uplo = 'U', the upper triangular \(A\) is stored
If uplo = 'L', the lower triangular of \(A\) is stored.
(global) INTEGER. The order of the distributed matrix \(A(n \geq 0)\).
(global) INTEGER. The number of subdiagonals in \(L\) or \(U .0 \leq b_{w} \leq n-1\).
(global) INTEGER. The number of right-hand sides; the number of columns in \(B(n r h s \geq 0)\).
(local). REAL for pspbsv
DOUBLE PRECISON for pdpbsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Pointer into the local memory to an array with leading size lld_a \(\geq\) (bw \(+1)\) (stored in desca). On entry, this array contains the local pieces of the distributed matrix sub (\(A\)) to be factored.
(global) INTEGER. The index in the global matrix \(A\) indicating the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
REAL for pspbsv
DOUBLE PRECISON for pdp.bsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Pointer into the local memory to an array of local lead size \(I l d _b \geq n b\). On entry, this array contains the local pieces of the right hand sides \(B\) (ib: ib \(+n-1,1: n r h s)\).
(global) INTEGER. The row index in the global matrix \(B\) indicating the first row of the matrix to be operated on (which may be either all of \(b\) or a submatrix of \(B\)).
(global and local) INTEGER array of size dlen.
If 1D type (dtype_b =502), dlen \(\geq\) 7;
If 2D type (dtype_b =1), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(B\).
Contains information of mapping of \(B\) to memory.
(local).
REAL for pspbsv
DOUBLE PRECISON for pdpbsv
COMPLEX for pcpbsv
DOUBLE COMPLEX for pzpbsv.
Temporary workspace. This space may be overwritten in between calls to routines. work must be the size given in Iwork.
(local or global) INTEGER. Size of user-input workspace work. If Iwork is too small, the minimal acceptable size will be returned in work (1) and an error code is returned. 1 work \(\geq(n b+2 * b w) * b w+\max \left(\left(b w^{\star} n r h s\right)\right.\), \(\left.b w^{\star} b w\right)\)

\section*{Output Parameters}
\(a\)
b
work
info
On exit, this array contains information containing details of the factorization. Note that permutations are performed on the matrix, so that the factors returned are different from those returned by LAPACK.

On exit, contains the local piece of the solutions distributed matrix \(X\).
On exit, work (1) contains the minimal lwork.
(global) INTEGER. If info \(=0\), the execution is successful.
< 0 : If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
> 0 : If info \(=k \leq\) NPROCS, the submatrix stored on processor info and factored locally was not positive definite, and the factorization was not completed.

If info \(=k>\) NPROCS, the submatrix stored on processor info-NPROCS representing interactions with other processors was not positive definite, and the factorization was not completed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?ptsv
Syntax
Solves a symmetric or Hermitian positive definite tridiagonal system of linear equations.
```

call psptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)
call pdptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)
call pcptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)
call pzptsv(n, nrhs, d, e, ja, desca, b, ib, descb, work, lwork, info)

```

\section*{Include Files}

\section*{Description}

The p?ptsvroutine solves a system of linear equations
\(A(1: n, j a: j a+n-1) * X=B(i b: i b+n-1,1: n r h s)\),
where \(A(1: n, j a: j a+n-1)\) is an \(n\)-by- \(n\) real tridiagonal symmetric positive definite distributed matrix.
Cholesky factorization is used to factor a reordering of the matrix into \(L^{*} L^{\prime}\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
n
nrhs
\(d\)
e
ja
desca
(global) INTEGER. The order of matrix \(A(n \geq 0)\).
(global) INTEGER. The number of right-hand sides; the number of columns of the distributed submatrix \(B(n r h s \geq 0)\).
(local)
REAL for psptsv
DOUBLE PRECISON for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Pointer to local part of global vector storing the main diagonal of the matrix.
(local)
REAL for psptsv
DOUBLE PRECISON for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Pointer to local part of global vector storing the upper diagonal of the matrix. Globally, \(d u(\mathrm{n})\) is not referenced, and \(d u\) must be aligned with \(d\).
(global) INTEGER. The index in the global matrix \(A\) indicating the start of the matrix to be operated on (which may be either all of \(A\) or a submatrix of A).
(global and local) INTEGER array of size dlen.

If \(1 d\) type (dtype_a=501 or 502), dlen \(\geq 7\);
If \(2 d\) type (dtype_a=1), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(A\).
Contains information of mapping of \(A\) to memory.
b
i.b
descb
work
lwork
(local)
REAL for psptsv
DOUBLE PRECISON for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Pointer into the local memory to an array of local lead size \(11 d_{-} b \geq n b\).
On entry, this array contains the local pieces of the right hand sides B(ib:ib+n-1, 1:nrhs).
(global) INTEGER. The row index in the global matrix \(B\) indicating the first row of the matrix to be operated on (which may be either all of \(b\) or a submatrix of \(B\)).
(global and local) INTEGER array of size dlen.
If \(1 d\) type (dtype_b \(=502\)), dlen \(\geq 7\);
If \(2 d\) type (dtype_b \(=1\)), dlen \(\geq 9\).
The array descriptor for the distributed matrix \(B\).
Contains information of mapping of \(B\) to memory.
(local).
REAL for psptsv
DOUBLE PRECISON for pdptsv
COMPLEX for pcptsv
DOUBLE COMPLEX for pzptsv.
Temporary workspace. This space may be overwritten in between calls to routines. work must be the size given in Iwork.
(local or global) INTEGER. Size of user-input workspace work. If Iwork is too small, the minimal acceptable size will be returned in work (1) and an error code is returned. 1 work \(>(12 *\) NPCOL \(+3 *\) nb \()+\max ((10+2 * \min (100\), nrhs))*NPCOL+4*nrhs, 8*NPCOL).

\section*{Output Parameters}
d
e
b

On exit, this array contains information containing the factors of the matrix. Must be of size greater than or equal to desca(nb_).

On exit, this array contains information containing the factors of the matrix. Must be of size greater than or equal to desca (nb_).

On exit, this contains the local piece of the solutions distributed matrix \(X\).
\[
\begin{array}{ll}
\text { work } & \text { On exit, work(1) contains the minimal /work. } \\
\text { info } & \text { (local) INTEGER. If info=0, the execution is successful. } \\
& <0: \text { If the } i \text {-th argument is an array and the } j \text {-entry had an illegal value, } \\
& \text { then info }=-(i * 100+j) \text {, if the } i \text {-th argument is a scalar and had an } \\
& \text { illegal value, then info }=-i \text {. } \\
& >0: \text { If info }=k \leq \text { NPROCS, the submatrix stored on processor info and } \\
& \text { factored locally was not positive definite, and the factorization was not } \\
& \text { completed. } \\
& \text { If info }=k>\text { NPROCS, the submatrix stored on processor info-NPROCS } \\
& \text { representing interactions with other processors was not positive definite, } \\
& \text { and the factorization was not completed. }
\end{array}
\]

\section*{See Also}

\section*{Overview for details of ScaLAPACK array descriptor structures and related notations.}

\section*{p?gels}

Solves overdetermined or underdetermined linear systems involving a matrix of full rank.

\section*{Syntax}
```

call psgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, work, lwork, info)
call pdgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, work, lwork, info)
call pcgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, work, lwork, info)
call pzgels(trans, m, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, work, lwork, info)

```

\section*{Include Files}

\section*{Description}

The p?gels routine solves overdetermined or underdetermined real/ complex linear systems involving an \(m\) -by-n matrix sub \((A)=A(i a: i a+m-1, j a: j a+n-1)\), or its transpose/ conjugate-transpose, using a \(Q T Q\) or \(L Q\) factorization of \(\operatorname{sub}(A)\). It is assumed that \(\operatorname{sub}(A)\) has full rank.
The following options are provided:
1. If trans \(=\) ' \(N\) ' and \(m \geq n\) : find the least squares solution of an overdetermined system, that is, solve the least squares problem
```

minimize ||sub(B) - sub(A)*X||

```
2. If trans \(=\) ' \(N\) ' and \(m<n\) : find the minimum norm solution of an underdetermined system \(\operatorname{sub}(A) * X\) \(=\operatorname{sub}(B)\).
3. If trans \(=\) ' \(T\) ' and \(m \geq n\) : find the minimum norm solution of an undetermined system sub \((A)^{T} * X=\) sub (B).
4. If trans \(=\) ' \(T\) ' and \(m<n\) : find the least squares solution of an overdetermined system, that is, solve the least squares problem
```

minimize ||sub(B) - sub(A) T* X||,

```
where sub(\(B\)) denotes \(B(i b: i b+m-1, j b: j b+n r h s-1)\) when trans \(=\) ' \(N\) ' and \(B(i b: i b+n-1\), \(j b: j b+n r h s-1)\) otherwise. Several right hand side vectors \(b\) and solution vectors \(x\) can be handled in a single call; when trans \(=\) ' \(N\) ', the solution vectors are stored as the columns of the \(n\)-by-nrhs right hand side matrix \(\operatorname{sub}(B)\) and the \(m\)-by-nrhs right hand side matrix sub(B) otherwise.

\section*{Input Parameters}
trans
m
n
nrhs
a
ia, ja
desca
b
i.b, jb
descb
work
(global) CHARACTER. Must be 'N', or 'T'.
If trans \(=\) ' \(N\) ', the linear system involves matrix \(\operatorname{sub}(A)\);
If trans \(=\) ' \(T\) ', the linear system involves the transposed matrix \(A^{T}\) (for real flavors only).
(global) INTEGER. The number of rows in the distributed matrix sub (\(A\)) (\(m \geq\) \(0)\).
(global) INTEGER. The number of columns in the distributed matrix sub (\(A\)) (\(n \geq 0\)).
(global) INTEGER. The number of right-hand sides; the number of columns in the distributed submatrices \(\operatorname{sub}(B)\) and \(X\). (nrhs \(\geq 0)\).
(local)
REAL for psgels
DOUBLE PRECISION for pdgels
COMPLEX for pcgels
DOUBLE COMPLEX for pzgels.
Pointer into the local memory to an array of size (lld_a, LOCC(ja+n-1)). On entry, contains the \(m\)-by- \(n\) matrix \(A\).
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
REAL for psgels
DOUBLE PRECISION for pdgels
COMPLEX for pcgels
DOUBLE COMPLEX for pzgels.
Pointer into the local memory to an array of local size (lld_b, LOCC (\(j b\) \(+n r h s-1)\)). On entry, this array contains the local pieces of the distributed matrix \(B\) of right-hand side vectors, stored columnwise; \(\operatorname{sub}(B)\) is \(m\)-bynrhs if trans='N', and \(n\)-by-nrhs otherwise.
(global) INTEGER. The row and column indices in the global matrix \(B\) indicating the first row and the first column of the submatrix \(B\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(B\).
(local)
REAL for psgels
DOUBLE PRECISION for pdgels

COMPLEX for pcgels
DOUBLE COMPLEX for pzgels.
Workspace array with size /work.
lwork
(local or global) INTEGER.
The size of the array worklwork is local input and must be at least lwork \(\geq\) ltau \(+\max (l w f, l w S)\), where if \(m>n\), then

Itau \(=\) numroc (ja+min \(\left.(m, n)-1, n b _a, ~ M Y C O L, ~ C S r c _a, ~ N P C O L\right), ~\)
\(l w f=n b _a^{\star}\left(m p a 0+n q a 0+n b _a\right)\)
\(l w s=\max \left(\left(n b _a^{*}\left(n b _a-1\right)\right) / 2,(n r h s q b 0+m p b 0) * n b _a\right)+\)
\(n b _a * n b _a\)
else
ltau \(=\) numroc (ia+min \(\left.(m, n)-1, ~ m b _a, ~ M Y R O W, ~ r s r c _a, ~ N P R O W\right), ~\)
lwf = mb_a * (mpa0 + nqa0 + mb_a)
lws \(=\max \left(\left(m b _a^{*}\left(m b _a-1\right)\right) / 2,(n p b 0+\max (n q a 0+\right.\)
numroc (numroc (n+iroffb, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), \(n r h s q b 0)\)) *mb_a) + mb_a*mb_a
end if,
where \(\operatorname{lcmp}=1 \mathrm{~cm} / \mathrm{NPROW}\) with \(1 \mathrm{~cm}=\) ilcm (NPROW, NPCOL),
```

iroffa = mod(ia-1, mb_a),

```
icoffa \(=\bmod \left(j a-1, n b _a\right)\),
iarow \(=\) indxg2p(ia, mb_a, MYROW, rsrc_a, NPROW),
iacol= indxg2p(ja, nb_a, MYROW, rsrc_a, NPROW)
mpa0 \(=\) numroc (m+iroffa, mb_a, MYROW, iarow, NPROW),
nqa0 \(=\) numroc (n+icoffa, nb_a, MYCOL, iacol, NPCOL),
iroffb \(=\bmod \left(i b-1, m b _b\right)\),
\(i C O f f b=\bmod \left(j b-1, n b _b\right)\),
ibrow \(=\) indxg2p(ib, mb_b, MYROW, rsrc_b, NPROW),
ibcol \(=\) indxg2p(jb, nb_b, MYCOL, csrc_b, NPCOL),
mpb0 \(=\) numroc (m+iroffb, mb_b, MYROW, icrow, NPROW),
nqb0 \(=\) numroc (n+icoffb, nb_b, MYCOL, ibcol, NPCOL),

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW, and NPCOL can be determined by calling the subroutine blacs_gridinfo.

If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
On exit, If \(m \geq n, \operatorname{sub}(A)\) is overwritten by the details of its \(Q R\) factorization as returned by p?geqrf; if \(m<n, \operatorname{sub}(A)\) is overwritten by details of its \(L Q\) factorization as returned by p?gelqf.

On exit, \(\operatorname{sub}(B)\) is overwritten by the solution vectors, stored columnwise: if trans \(=\) ' \(N\) ' and \(m \geq n\), rows 1 to \(n\) of \(\operatorname{sub}(B)\) contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements \(n+1\) to \(m\) in that column;
If trans \(=\) ' \(N\) ' and \(m<n\), rows 1 to \(n\) of \(\operatorname{sub}(B)\) contain the minimum norm solution vectors;

If trans \(=\) ' \(T\) ' and \(m \geq n\), rows 1 to \(m\) of \(\operatorname{sub}(B)\) contain the minimum norm solution vectors; if trans \(=\) ' \(T\) ' and \(m<n\), rows 1 to \(m\) of \(\operatorname{sub}(B)\) contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements \(m+1\) to \(n\) in that column.

On exit, work (1) contains the minimum value of Iwork required for optimum performance.
(global) INTEGER.
\(=0\) : the execution is successful.
< 0 : if the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?syev
Computes selected eigenvalues and eigenvectors of a
symmetric matrix.

```

\section*{Syntax}
```

call pssyev(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork, info)
call pdsyev(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork, info)

```

\section*{Include Files}

\section*{Description}

The p? syevroutine computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) by calling the recommended sequence of ScaLAPACK routines.

In its present form, the routine assumes a homogeneous system and makes no checks for consistency of the eigenvalues or eigenvectors across the different processes. Because of this, it is possible that a heterogeneous system may return incorrect results without any error messages.

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
\begin{tabular}{|c|c|}
\hline jobz & (global) CHARACTER. Must be 'N' or 'V'. Specifies if it is necessary to compute the eigenvectors: \\
\hline & If \(j o b z=' \mathrm{~N}\) ', then only eigenvalues are computed. \\
\hline & If jobz = 'V', then eigenvalues and eigenvectors are computed. \\
\hline uplo & (global) CHARACTER. Must be 'U' or 'L'. Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored: \\
\hline & If uplo = 'U', a stores the upper triangular part of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular part of \(A\). \\
\hline \(n\) & (global) INTEGER. The number of rows and columns of the matrix \(A(n \geq 0)\) \\
\hline a & (local) \\
\hline & REAL for pssyev. \\
\hline & DOUBLE PRECISION for pdsyev. \\
\hline & Block cyclic array of global size \((n, n)\) and local size (lld_a, LOCc (ja \(+n-1)\)). On entry, the symmetric matrix \(A\). \\
\hline & If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the symmetric matrix. \\
\hline & If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the symmetric matrix. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively. \\
\hline desca & (global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\). \\
\hline \(i z, j z\) & (global) INTEGER. The row and column indices in the global matrix \(Z\) indicating the first row and the first column of the submatrix \(Z\), respectively. \\
\hline descz & (global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(Z\). \\
\hline work & (local) \\
\hline & REAL for pssyev. \\
\hline & DOUBLE PRECISION for pdsyev. \\
\hline
\end{tabular}

Array of size /work.
lwork
(local) INTEGER. See below for definitions of variables used to define Iwork.
If no eigenvectors are requested (jobz = 'N'), then lwork \(\geq 5{ }^{*} n+\) sizesytrd + 1,
where sizesytrdis the workspace for p?sytrd and is max (NB* \(n p+1\)), \(3 *\) NB).

If eigenvectors are requested (\(j 0 b z=\) ' \(V\) ') then the amount of workspace required to guarantee that all eigenvectors are computed is:
```

qrmem = 2*n-2
lwmin = 5*n + n*ldc + max(sizemqrleft, qrmem) + 1

```

Variable definitions:
```

nb = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_);
nn = max (n, nb, 2);
desca(rsrc_) = desca(rsrc_) = descz(rsrc_) = descz(csrc_) =
0
np = numroc(nn, nb, 0, 0, NPROW)
nq= numroc (max ( n, nb, 2), nb, 0, 0, NPCOL)
nrc = numroc(n, nb, myprowc, 0, NPROCS)
ldc = max(1, nrc)

```
sizemqrleft is the workspace for p?ormtr when its side argument is 'L'. myprowc is defined when a new context is created as follows:
```

call blacs_get(desca(ctxt_), 0, contextc)
call blacs_gridinit(contextc, 'R', NPROCS, 1)
call blacs_gridinfo(contextc, nprowc, npcolc, myprowc,
mypcolc)

```

If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{Output Parameters}
a
w
z

On exit, the lower triangle (if uplo='L') or the upper triangle (if uplo='U') of \(A\), including the diagonal, is destroyed.
(global). REAL for pssyev
DOUBLE PRECISION for pdsyev
Array of size \(n\).
On normal exit, the first \(m\) entries contain the selected eigenvalues in ascending order.
(local). REAL for pssyev
DOUBLE PRECISION for pdsyev
Array, global size \((n, n)\), local size (Ild_z, LOCC \((j z+n-1))\). If jobz \(=\) ' V ', then on normal exit the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues.

If \(j o b z=\) ' \(N\) ', then \(z\) is not referenced.
work(1)
info
On output, work (1) returns the workspace needed to guarantee completion. If the input parameters are incorrect, work (1) may also be incorrect.
If jobz = 'N'work(1) = minimal (optimal) amount of workspace
If jobz = 'V'work(1) = minimal workspace required to generate all the eigenvectors.
(global) INTEGER.
If info \(=0\), the execution is successful.
If info < 0: If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
If info > 0 :
If info= 1 through \(n\), the \(i\)-th eigenvalue did not converge in ?steqr2 after a total of \(30 n\) iterations.

If info \(=n+1\), then \(p\) ?syev has detected heterogeneity by finding that eigenvalues were not identical across the process grid. In this case, the accuracy of the results from p?syev cannot be guaranteed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?syevd}

Computes all eigenvalues and eigenvectors of a real symmetric matrix by using a divide and conquer algorithm.

\section*{Syntax}
```

call pssyevd(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork, iwork,
liwork, info)
call pdsyevd(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork, iwork,
liwork, info)

```

\section*{Include Files}

\section*{Description}

The p?syevd routine computes all eigenvalues and eigenvectors of a real symmetric matrix \(A\) by using a divide and conquer algorithm.

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
jobz (global) CHARACTER*1. Must be 'N' or 'V'.
Specifies if it is necessary to compute the eigenvectors:

If \(j o b z=\) ' \(N\) ', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
(global) CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the Hermitian matrix \(A\) is stored:

If uplo = 'U', a stores the upper triangular part of \(A\).
If uplo = 'L', a stores the lower triangular part of \(A\).
(global) INTEGER. The number of rows and columns of the matrix \(A(n \geq 0)\). (local).
REAL for pssyevd
DOUBLE PRECISION for pdsyevd.
Block cyclic array of global size \((n, n)\) and local size (Ild_a, LOCC (ja \(+n-1)\)). On entry, the symmetric matrix \(A\).

If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the symmetric matrix.
If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the symmetric matrix.
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\). If desca (ctxt_) is incorrect, p?syevd cannot guarantee correct error reporting.
(global) INTEGER. The row and column indices in the global matrix \(Z\) indicating the first row and the first column of the submatrix \(Z\), respectively. (global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(Z\). descz (ctxt_) must equal desca(ctxt_). (local).
REAL for pssyevd
DOUBLE PRECISION for pdsyevd.
Array of size Iwork.
(local) INTEGER. The size of the array work.
If eigenvalues are requested:
```

lwork\geq max( 1+6*n + 2*np*nq, trilwmin) + 2*n
with trilwmin = 3*n + max( nb*(np + 1), 3*nb )
np = numroc( n, nb, myrow, iarow, NPROW)
nq = numroc( n, nb, mycol, iacol, NPCOL)

```
iwork
liwork

\section*{Output Parameters}
a
w
z
work(1)
iwork(1)
info

If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. The required workspace is returned as the first element of the corresponding work arrays, and no error message is issued by pxerbla.
(local) INTEGER. Workspace array of size liwork.
(local) INTEGER, size of iwork.
liwork \(=7 * n+8 * n p c o l+2\).

On exit, the lower triangle (if uplo = 'L'), or the upper triangle (if uplo = ' \(U\) ') of \(A\), including the diagonal, is overwritten.
(global).
REAL for pssyevd
DOUBLE PRECISION for pdsyevd.
Array of size \(n\). If info \(=0, w\) contains the eigenvalues in the ascending order.
(local).
REAL for pssyevd
DOUBLE PRECISION for pdsyevd.
Array, global size \((n, n)\), local size (lld_z, \(\operatorname{LOCC}(j z+n-1))\).
The \(z\) parameter contains the orthonormal eigenvectors of the matrix \(A\).
On exit, returns adequate workspace to allow optimal performance.
(local).
On exit, if liwork \(>\) 0, iwork (1) returns the optimal liwork.
(global) INTEGER.
If info \(=0\), the execution is successful.
If info < 0 :
If the \(i\)-th argument is an array and the \(j\)-entry had an illegal value, then info \(=-(i * 100+j)\). If the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
If info> 0 :
The algorithm failed to compute the infol (\(n+1\)) -th eigenvalue while working on the submatrix lying in global rows and columns mod (info, \(n\) +1).

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?syevr
Computes selected eigenvalues and, optionally,
eigenvectors of a real symmetric matrix using
Relatively Robust Representation.
Syntax
call pssyevr( jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, m, nz, w, z, iz,
jz, descz, work, lwork, iwork, liwork, info )
call pdsyevr( jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, m, nz, w, z, iz,
jz, descz, work, lwork, iwork, liwork, info )

```

\section*{Include Files}

\section*{Description}
p?syevr computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) distributed in 2D blockcyclic format by calling the recommended sequence of ScaLAPACK routines.

First, the matrix \(A\) is reduced to real symmetric tridiagonal form. Then, the eigenproblem is solved using the parallel MRRR algorithm. Last, if eigenvectors have been computed, a backtransformation is done.
Upon successful completion, each processor stores a copy of all computed eigenvalues in w . The eigenvector matrix \(z\) is stored in 2D block-cyclic format distributed over all processors.

Note that subsets of eigenvalues/vectors can be selected by specifying a range of values or a range of indices for the desired eigenvalues.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
jobz
range
uplo
(global) CHARACTER*1
Specifies whether or not to compute the eigenvectors:
\(=\) ' N ': Compute eigenvalues only.
\(=\) ' V ': Compute eigenvalues and eigenvectors.
(global) CHARACTER*1
\(=\) ' \(A\) ': all eigenvalues will be found.
\(=\) ' \(V\) ': all eigenvalues in the interval \([v 1, v u]\) will be found.
\(=\) 'I': the il-th through iu-th eigenvalues will be found.
(global) CHARACTER*1
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored:
= 'U': Upper triangular
= 'L': Lower triangular
(global) INTEGER
The number of rows and columns of the matrix a. \(n \geq 0\)
a

REAL for pssyevr
DOUBLE PRECISION for pdsyevr
Block cyclic array of global size \((n, n)\), local size (IId_a, LOC \(C_{c}(j a+n-1)\)).
This array contains the local pieces of the symmetric distributed matrix \(A\). If uplo = 'U', only the upper triangular part of \(a\) is used to define the elements of the symmetric matrix. If uplo = 'L', only the lower triangular part of \(a\) is used to define the elements of the symmetric matrix.
On exit, the lower triangle (if uplo='L') or the upper triangle (if uplo='U') of \(a\), including the diagonal, is destroyed.
(global) INTEGER
Global row index in the global matrix \(A\) that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global) INTEGER
Global column index in the global matrix \(A\) that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global and local) INTEGER array of size dlen_=9.
The array descriptor for the distributed matrix \(a\).
REAL for pssyevr
DOUBLE PRECISION for pdsyevr
(global)
If range \(=\) ' \(V\) ', the lower bound of the interval to be searched for eigenvalues. Not referenced if range \(=\) ' A ' or 'I'.

REAL for pssyevr
DOUBLE PRECISION for pdsyevr
(global)
If range \(=\) ' \(V\) ', the upper bound of the interval to be searched for eigenvalues. Not referenced if range = 'A' or 'I'.
(global) INTEGER
If range='I', the index (from smallest to largest) of the smallest eigenvalue to be returned. \(i l \geq 1\).

Not referenced if range \(=\) ' A '.
(global) INTEGER
If range \(=\) ' I ', the index (from smallest to largest) of the largest eigenvalue to be returned. \(\min (i l, n) \leq i u \leq n\).

Not referenced if range \(=\) ' A '.
(global) INTEGER
Global row index in the global matrix \(Z\) that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global) INTEGER
Global column index in the global matrix \(Z\) that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.

INTEGER array of size dlen_.
The array descriptor for the distributed matrix \(z\).
The context \(\operatorname{descz}\left(c t x t_{-}\right)\)must equal desca(ctxt_). Also note the array alignment requirements specified below.

REAL for pssyevr
DOUBLE PRECISION for pdsyevr
(local workspace) array of size lwork
(local) INTEGER
Size of work, must be at least 3 .
See below for definitions of variables used to define lwork.
If no eigenvectors are requested (\(j \circ b z=\) ' \(N\) ') then
lwork \(\geq 2+5 *_{n}+\max (12 * n n\), neig \(*(n p 0+1))\)
If eigenvectors are requested (\(j \circ b z=\) ' \(V\) ') then the amount of workspace required is:
work \(\geq 2+5 *_{n}+\max (18 * n n, n p 0 * m q 0+2 *\) neig \(*\) neig \()+(2+\)
iceil \((\) neig, nprow*npcol) \() * n n\) iceil(neig, nprow*npcol))*nn
Variable definitions:
neig \(=\) number of eigenvectors requested
\(n b=\operatorname{desca}\left(m b_{-}\right)=\operatorname{desca}\left(n b_{-}\right)=\operatorname{descz}\left(m b_{-}\right)=\operatorname{descz}\left(n b_{-}\right)\)
\(n n=\max (n, n e i g, 2)\)
\(\operatorname{desca}\left(r s r c_{-}\right)=\operatorname{desca}\left(\operatorname{csrc} n b_{-}\right)=\operatorname{descz}\left(r s r c_{-}\right)=\operatorname{descz}(\operatorname{csrc})=0\)
np0 \(=\) numroc (nn, neig, 0, 0, nprow)
\(m q 0=\) numroc (max(neig, neig, 2), neig, 0, 0, npcol \()\)
iceil \((x, y)\) is a ScaLAPACK function returning ceiling \((x / y)\), and nprow and \(n p c o l\) can be determined by calling the subroutine blacs_gridinfo.
If 1 work \(=-1\), then 1 work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local) INTEGER
size of iwork
Let \(n n p=\max \left(n, n p r o w^{*} n p c o l+1,4\right)\). Then:
liwork \(\geq 12 *_{n n p}+2 *_{n}\) when the eigenvectors are desired
liwork \(\geq 10 * n n p+2 *_{n}\) when only the eigenvalues have to be computed
If liwork \(=-1\), then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

\section*{OUTPUT Parameters}
m
\(n z\)
w
z
work
iwork
info
(global) INTEGER
Total number of eigenvalues found. \(0 \leq m \leq n\).
(global) INTEGER
Total number of eigenvectors computed. \(0 \leq n z \leq m\).
The number of columns of \(z\) that are filled.
If \(j o b z \neq\) ' \(V\) ', \(n z\) is not referenced.
If \(j o b z=' V ', n z=m\)
REAL for pssyevr
DOUBLE PRECISION for pdsyevr
(global) array of size \(n\)
Upon successful exit, the first \(m\) entries contain the selected eigenvalues in ascending order.

REAL for pssyevr
DOUBLE PRECISION for pdsyevr
Block-cyclic array, global size(\(n, n\)), local size (IId_z,LOC \((j z+n-1)\)).
On exit, contains local pieces of distributed matrix \(Z\).
On return, work (1) contains the optimal amount of workspace required for efficient execution. If jobz='N' work (1) = optimal amount of workspace required to compute the eigenvalues. If jobz='V' work (1) = optimal amount of workspace required to compute eigenvalues and eigenvectors.
(local workspace) INTEGER array
On return, iwork (1) contains the amount of integer workspace required.
(global) INTEGER
= 0: successful exit
< 0 : If the \(i\)-th argument is an array and the \(j\) th-entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{Application Notes}

The distributed submatrices \(a\left(i a: *, j a:^{*}\right)\) and \(z(i z: i z+m-1, j z: j z+n-1)\) must satisfy the following alignment properties:
1. Identical (quadratic) dimension: \(\operatorname{desca}\left(m_{-}\right)=\operatorname{descz}\left(m_{-}\right)=\operatorname{desca}\left(n_{-}\right)=\operatorname{descz}\left(n_{-}\right)\)
2. Quadratic conformal blocking: \(\operatorname{desca}\left(m b_{-}\right)=\operatorname{desca}\left(n b_{-}\right)=\operatorname{descz}\left(m b_{-}\right)=\operatorname{descz}\left(n b_{-}\right)\), desca(rsrc_) = descz(rsrc_)
3. \(\bmod \left(i a-1, m b _a\right)=\bmod \left(i z-1, m b _z\right)=0\)

\section*{NOTE}
\(\bmod (x, y)\) is the integer remainder of \(x / y\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?syevx}

Computes selected eigenvalues and, optionally, eigenvectors of a symmetric matrix.

\section*{Syntax}
```

call pssyevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, abstol, m, nz, w,
orfac, z, iz, jz, descz, work, lwork, iwork, liwork, ifail, iclustr, gap, info)
call pdsyevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, abstol, m, nz, w,
orfac, z, iz, jz, descz, work, lwork, iwork, liwork, ifail, iclustr, gap, info)

```

\section*{Include Files}

\section*{Description}

The p?syevxroutine computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix \(A\) by calling the recommended sequence of ScaLAPACK routines. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
\(n p=\) the number of rows local to a given process.
\(n q=\) the number of columns local to a given process.
\begin{tabular}{ll}
jobz & (global) CHARACTER*1. Must be ' \(N\) ' or 'V'. Specifies if it is necessary to \\
compute the eigenvectors: \\
& If \(j o b z=' N^{\prime}\), then only eigenvalues are computed. \\
If jobz \(=\) 'V', then eigenvalues and eigenvectors are computed. \\
range & (global) CHARACTER*1. Must be 'A', 'V', or 'I'.
\end{tabular}

If range \(=\) ' A ', all eigenvalues will be found.
If range \(=\) ' \(V\) ', all eigenvalues in the half-open interval [\(v 1, v u\)] will be found.

If range \(=\) 'I', the eigenvalues with indices il through iu will be found.
(global) CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the symmetric matrix \(A\) is stored:

If uplo = 'U', a stores the upper triangular part of \(A\).
If uplo = 'L', a stores the lower triangular part of \(A\).
(global) INTEGER. The number of rows and columns of the matrix \(A(n \geq 0)\).
(local). REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
Block cyclic array of global size \((n, n)\) and local size (lld_a, LOCC (ja \(+n-1)\)). On entry, the symmetric matrix \(A\).

If uplo = 'U', only the upper triangular part of \(A\) is used to define the elements of the symmetric matrix.

If uplo = 'L', only the lower triangular part of \(A\) is used to define the elements of the symmetric matrix.
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(global)
REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
If range \(=\) ' \(V\) ', the lower and upper bounds of the interval to be searched for eigenvalues; vl \(\leq v u\). Not referenced if range \(=\) 'A' or 'I'.
(global) INTEGER.
If range \(=\) 'I', the indices of the smallest and largest eigenvalues to be returned.

Constraints: il \(\geq 1\)
\(\min (i l, n) \leq i u \leq n\)
Not referenced if range \(=\) ' \(A\) ' or 'V'.
(global).REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
If jobz='V', setting abstol to p?lamch (context, 'U') yields the most orthogonal eigenvectors.

The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval \([a, b]\) of width less than or equal to
```

abstol + eps * max(|a|,|b|),

```
where eps is the machine precision. If abstol is less than or equal to zero, then eps*norm(\(T\)) will be used in its place, where norm(\(T\)) is the 1-norm of the tridiagonal matrix obtained by reducing \(A\) to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold \(2 *\) p?lamch ('S') not zero. If this routine returns with \((\bmod (i n f o, 2) \neq 0)\) or \((\bmod (i n f o / 8,2) \neq 0)\)), indicating that some eigenvalues or eigenvectors did not converge, try setting abstol to 2*p?lamch('S').
(global).REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within tol=orfac*norm (\(A\)) of each other are to be reorthogonalized. However, if the workspace is insufficient (see Iwork), tol may be decreased until all eigenvectors to be reorthogonalized can be stored in one process. No reorthogonalization will be done if orfac equals zero. A default value of \(1.0 \mathrm{e}-3\) is used if orfac is negative. orfac should be identical on all processes.
(global) INTEGER. The row and column indices in the global matrix \(Z\) indicating the first row and the first column of the submatrix \(Z\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(z\). descz (ctxt_) must equal desca(ctxt_).
(local)
REAL for pssyevx.
DOUBLE PRECISION for pdsyevx.
Array of size Iwork.
(local) INTEGER. The size of the array work.
See below for definitions of variables used to define Iwork.
If no eigenvectors are requested (jobz \(=\) 'N'), then 1 work \(\geq 5 *_{n}+\) \(\max \left(5 * n n, N B^{*}(n p 0+1)\right)\).

If eigenvectors are requested (\(\mathrm{jobz}=\) ' V ') , then the amount of workspace required to guarantee that all eigenvectors are computed is:
```

lwork \geq 5* n + max(5*nn, np0*mq0 + 2*NB*NB) + iceil(neig,
NPROW*NPCOL) * nn

```

The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality (at the cost of potentially poor performance) you should add the following to Iwork:

\footnotetext{
(clustersize-1)*n,
}
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:
```

{w(k),..., w(k+clustersize-1)|w(j+1) \leqw(j)) +
orfac*2*norm(A)},
where

```
```

neig = number of eigenvectors requested

```
neig = number of eigenvectors requested
nb = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_);
nn = max(n, nb, 2);
desca(rsrc_) = desca(nb_) = descz(rsrc_) = descz(csrc_) = 0;
np0 = numroc (nn, nb, 0, 0, NPROW);
mq0 = numroc(max(neig, nb, 2), nb, 0, 0, NPCOL)
```

iceil $(x, y)$ is a ScaLAPACK function returning ceiling $(x / y)$
If Iwork is too small to guarantee orthogonality, p?syevx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.

If Iwork is too small to compute all the eigenvectors requested, no computation is performed and info $=-23$ is returned.
Note that when range= 'V', number of requested eigenvectors are not known until the eigenvalues are computed. In this case and if Iwork is large enough to compute the eigenvalues, p?sygvx computes the eigenvalues and as many eigenvectors as possible.
Relationship between workspace, orthogonality \& performance:
Greater performance can be achieved if adequate workspace is provided. In some situations, performance can decrease as the provided workspace increases above the workspace amount shown below:
lwork $\geq \max \left(l_{\text {work, }} 5^{*} n+\right.$ nsytrd_lwopt),
where Iwork, as defined previously, depends upon the number of eigenvectors requested, and

```
nsytrd_lwopt = n + 2*(anb+1)*(4*nps+2) + (nps + 3)*nps;
anb = pjlaenv(desca(ctxt_), 3, 'p?syttrd', 'L', 0, 0, 0, 0);
sqnpc = int(sqrt(dble(NPROW * NPCOL)));
nps=max(numroc (n, 1, 0, 0, sqnpc), 2*anb);
```

numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

For large $n$, no extra workspace is needed, however the biggest boost in performance comes for small n, so it is wise to provide the extra workspace (typically less than a megabyte per process).

If clustersize > $n / \operatorname{sqrt}(N P R O W * N P C O L)$, then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. At the limit (that is, clustersize $=n-1$ ) p?stein will perform no better than ?stein on single processor.

For clustersize $=n / \operatorname{sqrt}(N P R O W * N P C O L)$ reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more.

For clustersize>n/sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local) INTEGER. Workspace array.
(local) INTEGER, size of iwork. liwork $\geq 6^{*} n n p$
Where: $n n p=\max (n$, NPROW*NPCOL $+1,4)$
If liwork $=-1$, then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

On exit, the lower triangle (if uplo = 'L') or the upper triangle (if uplo = ' U ') of $A$, including the diagonal, is overwritten.
(global) INTEGER. The total number of eigenvalues found; $0 \leq m \leq n$.
(global) INTEGER. Total number of eigenvectors computed. $0 \leq n z \leq m$. The number of columns of $z$ that are filled.
If jobz $\neq$ ' V ', $n z$ is not referenced.
If $j o b z=' \mathrm{~V}$ ', $n z=m$ unless the user supplies insufficient space and p?syevx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in $z$ ( $m \leq \operatorname{descz}\left(n_{-}\right)$) and sufficient workspace to compute them. (See /work). p?syevx is always able to detect insufficient space without computation unless range $=$ ' V '.
(global).REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
Array of size $n$. The first $m$ elements contain the selected eigenvalues in ascending order.
(local).REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
work(1)
iwork(1)
ifail
iclustr
gap
info

Array, global size $(n, n)$, local size (Ild_z, LOCC(jz+n-1)).
If jobz $=$ ' $V$ ', then on normal exit the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of $z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If $j o b z=$ ' $N$ ', then $z$ is not referenced.
On exit, returns workspace adequate workspace to allow optimal performance.

On return, iwork (1) contains the amount of integer workspace required.
(global)INTEGER.
Array of size $n$.
If jobz = 'V', then on normal exit, the first $m$ elements of ifail are zero. If (mod (info, 2$) \neq 0$ ) on exit, then ifail contains the indices of the eigenvectors that failed to converge.
If jobz $=$ ' $N$ ', then ifail is not referenced.
(global) INTEGER. Array of size ( $2 *$ NPROW*NPCOL)
This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see Iwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr(2*i-1) to iclustr(2*i), could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr() is a zero terminated array. iclustr $(2 * k) \neq 0$ and iclustr $(2 * k+1)=0$ if and only if $k$ is the number of clusters.
iclustr is not referenced if jobz = 'N'.
(global)
REAL for pssyevx
DOUBLE PRECISION for pdsyevx.
Array of size NPROW*NPCOL
This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the ith cluster may be as high as ( $C^{\star} n$ ) / gap(i) where $C$ is a small constant.
(global) INTEGER.
If info $=0$, the execution is successful.
If info < 0 :
If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-(i * 100+j)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

If info> 0: if (mod (info, 2$) \neq 0$ ), then one or more eigenvectors failed to converge. Their indices are stored in ifail. Ensure abstol=2.0*p?lamch('U').

If (mod (info/ 2,2$) \neq 0$ ), then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr.

If (mod (infol 4,2$) \neq 0)$, then space limit prevented p?syevxf rom computing all of the eigenvectors between $v /$ and $v u$. The number of eigenvectors computed is returned in $n z$.

If $(\bmod (i n f o / 8,2) \neq 0)$, then $p$ ?stebz failed to compute eigenvalues. Ensure abstol=2.0*p?lamch('U').

## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?heev
Computes all eigenvalues and, optionally,
eigenvectors of a complex Hermitian matrix.

## Syntax

```
call pcheev(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork, rwork,
lrwork, info)
call pzheev(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork, rwork,
lrwork, info)
```


## Include Files

## Description

The p?heev routine computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix $A$ by calling the recommended sequence of ScaLAPACK routines. The routine assumes a homogeneous system and makes spot checks of the consistency of the eigenvalues across the different processes. A heterogeneous system may return incorrect results without any error messages.

## Input Parameters

$n p=$ the number of rows local to a given process.
$n q=$ the number of columns local to a given process.

jobz	(global) CHARACTER*1. Must be ' $N$ ' or ' $V$ '.
	Specifies if it is necessary to compute the eigenvectors:
	If $j o b z='^{\prime} N^{\prime}$, then only eigenvalues are computed.
	If jobz $='^{\prime} V^{\prime}$, then eigenvalues and eigenvectors are computed.
uplo	(global) CHARACTER*1. Must be 'U' or 'L'.

Specifies whether the upper or lower triangular part of the Hermitian matrix $A$ is stored:

If uplo = 'U', a stores the upper triangular part of $A$.
If uplo = 'L', a stores the lower triangular part of $A$.
(global) INTEGER. The number of rows and columns of the matrix $A(n \geq 0)$. (local).
COMPLEX for pcheev
DOUBLE COMPLEX for pzheev.
Block cyclic array of global size $(n, n)$ and local size (Ild_a, LOCc (ja $+n-1)$ ). On entry, the Hermitian matrix $A$.

If uplo = 'U', only the upper triangular part of $A$ is used to define the elements of the Hermitian matrix.

If uplo = 'L', only the lower triangular part of $A$ is used to define the elements of the Hermitian matrix.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$. If desca (ctxt_) is incorrect, p?heev cannot guarantee correct error reporting.
(global) INTEGER. The row and column indices in the global matrix $Z$ indicating the first row and the first column of the submatrix $Z$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $Z$. descz (ctxt_) must equal desca (ctxt_). (local).
COMPLEX for pcheev
DOUBLE COMPLEX for pzheev.
Array of size Iwork.
(local) INTEGER. The size of the array work.
If only eigenvalues are requested (jobz = 'N'):
lwork $\geq \max \left(n b^{*}(n p 0+1), 3\right)+3 * n$
If eigenvectors are requested ( $j \circ b z=$ ' $V$ '), then the amount of workspace required:

```
lwork\geq (np0+nq0+nb)*nb + 3*n + n'
with nb = desca(mb_) = desca(nb_) = nb = descz(mb_) =
descz(nb_)
np0 = numroc(nn, nb, 0, 0, NPROW).
nq0 = numroc(max(n, nb, 2), nb, 0, 0, NPCOL).
```

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. The required workspace is returned as the first element of the corresponding work arrays, and no error message is issued by pxerbla.
(local).
REAL for pcheev
DOUBLE PRECISION for pzheev.
Workspace array of size Irwork.
(local) INTEGER. The size of the array rwork.
See below for definitions of variables used to define lrwork.
If no eigenvectors are requested ( $\mathrm{jobz}=$ ' $N$ '), then $\operatorname{lrwork} \geq 2{ }^{*} n$.
If eigenvectors are requested (jobz = 'V'), then lrwork $\geq 2 * n+2 * n-2$.
If lrwork $=-1$, then lrwork is global input and a workspace query is assumed; the routine only calculates the minimum size required for the rwork array. The required workspace is returned as the first element of rwork, and no error message is issued by pxerbla.

## Output Parameters

$a$

W

Z
work(1)

On exit, the lower triangle (if uplo = 'L'), or the upper triangle (if uplo = ' U ') of $A$, including the diagonal, is overwritten.
(global).
REAL for pcheev
DOUBLE PRECISION for pzheev.
Array of size $n$. The first $m$ elements contain the selected eigenvalues in ascending order.
(local).
COMPLEX for pcheev
DOUBLE COMPLEX for pzheev.
Array, global size $(n, n)$, local size (lld_z, LOCC (jz+n-1)).
If jobz ='V', then on normal exit the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of $z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

If jobz $=$ ' $N$ ', then $z$ is not referenced.
On exit, returns adequate workspace to allow optimal performance.
If jobz ='N', then work(1) = minimal workspace only for eigenvalues.
If $j o b z=' \mathrm{~V}$ ', then work (1) = minimal workspace required to generate all the eigenvectors.
rwork(1)
(local)
COMPLEX for pcheev
DOUBLE COMPLEX for pzheev.
On output, rwork (1) returns workspace required to guarantee completion.
(global) INTEGER.
If info $=0$, the execution is successful.
If info < 0 :
If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-(i * 100+j)$. If the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

If info> 0:
If info $=1$ through $n$, the $i$-th eigenvalue did not converge in ?steqr2 after a total of $30 * n$ iterations.

If info $=n+1$, then $p$ ?heev detected heterogeneity, and the accuracy of the results cannot be guaranteed.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?heevd
Computes all eigenvalues and eigenvectors of a
complex Hermitian matrix by using a divide and conquer algorithm.

## Syntax

```
call pcheevd(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork, rwork,
lrwork, iwork, liwork, info)
call pzheevd(jobz, uplo, n, a, ia, ja, desca, w, z, iz, jz, descz, work, lwork, rwork,
lrwork, iwork, liwork, info)
```

Include Files

## Description

The p?heevd routine computes all eigenvalues and eigenvectors of a complex Hermitian matrix $A$ by using a divide and conquer algorithm.

## Input Parameters

$n p=$ the number of rows local to a given process.
$n q=$ the number of columns local to a given process.
jobz (global) CHARACTER*1. Must be 'N' or 'V'.
Specifies if it is necessary to compute the eigenvectors:
If jobz = ' N ', then only eigenvalues are computed.
If jobz = ' $V$ ', then eigenvalues and eigenvectors are computed.
uplo
$n$
$a$
(global) CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the Hermitian matrix $A$ is stored:

If uplo = 'U', a stores the upper triangular part of $A$.
If uplo = 'L', a stores the lower triangular part of $A$.
(global) INTEGER. The number of rows and columns of the matrix $A(n \geq 0)$.
(local).
COMPLEX for pcheevd
DOUBLE COMPLEX for pzheevd.
Block cyclic array of global size $(n, n)$ and local size (Ild_a, LOCc (ja $+n-1)$ ). On entry, the Hermitian matrix $A$.

If uplo = 'U', only the upper triangular part of $A$ is used to define the elements of the Hermitian matrix.

If uplo = 'L', only the lower triangular part of $A$ is used to define the elements of the Hermitian matrix.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$. If desca (ctxt_) is incorrect, p?heevd cannot guarantee correct error reporting.
(global) INTEGER. The row and column indices in the global matrix $Z$ indicating the first row and the first column of the submatrix $Z$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $Z$. descz (ctxt_) must equal desca(ctxt_).
(local).
COMPLEX for pcheevd
DOUBLE COMPLEX for pzheevd.
Array of size /work.
(local) INTEGER. The size of the array work.
If eigenvalues are requested:
IWOrk $=n+(n b 0+m q 0+n b) * n b$
with $n p 0=$ numroc ( $\max (n, n b, 2), n b, 0,0, N P R O W)$
mq0 $=$ numroc ( $\max (n, n b, 2), n b, 0,0, N P C O L)$
If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. The required workspace is returned as the first element of the corresponding work arrays, and no error message is issued by pxerbla.
(local).

REAL for pcheevd
DOUBLE PRECISION for pzheevd.
Workspace array of size Irwork.
(local) INTEGER. The size of the array rwork.
lrwork $\geq 1+9 *_{n}+3{ }^{*} n{ }^{\star}{ }^{\star} n q$,
with $n p=$ numroc ( $n, n b$, myrow, iarow, NPROW)
$n q=$ numroc ( $n, n b$, mycol, iacol, NPCOL)
(local) INTEGER. Workspace array of size liwork.
(local) INTEGER, size of iwork.
liwork $=7 * n+8 * n p c o l+2$.

## Output Parameters

a
w

Z
work(1)
rwork(1)
iwork(1)
info

On exit, the lower triangle (if uplo = 'L'), or the upper triangle (if uplo = ' $U$ ') of $A$, including the diagonal, is overwritten.
(global).
REAL for pcheevd
DOUBLE PRECISION for pzheevd.
Array of size $n$. If info $=0, w$ contains the eigenvalues in the ascending order.
(local).
COMPLEX for pcheevd
DOUBLE COMPLEX for pzheevd.
Array, global size ( $n, n$ ), local size (Ild_z, LOCC(jz+n-1)).
The $z$ parameter contains the orthonormal eigenvectors of the matrix $A$.
On exit, returns adequate workspace to allow optimal performance. (local)
COMPLEX for pcheevd
DOUBLE COMPLEX for pzheevd.
On output, rwork (1) returns workspace required to guarantee completion. (local).

On return, iwork (1) contains the amount of integer workspace required.
(global) INTEGER.
If info $=0$, the execution is successful.
If info < 0 :

If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-(i * 100+j)$. If the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

If info> 0 :
If info $=1$ through $n$, the $i$-th eigenvalue did not converge.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?heevr
Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix using Relatively Robust Representation.

## Syntax

```
call pcheevr(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, m, nz, w, z, iz,
jz, descz, work, lwork, rwork, lrwork, iwork, liwork, info)
call pzheevr(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, m, nz, w, z, iz,
jz, descz, work, lwork, rwork, lrwork, iwork, liwork, info)
```


## Include Files

## Description

p?heevr computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix $A$ distributed in 2D blockcyclic format by calling the recommended sequence of ScaLAPACK routines.
First, the matrix $A$ is reduced to complex Hermitian tridiagonal form. Then, the eigenproblem is solved using the parallel MRRR algorithm. Last, if eigenvectors have been computed, a backtransformation is done.

Upon successful completion, each processor stores a copy of all computed eigenvalues in $w$. The eigenvector matrix $Z$ is stored in 2D block-cyclic format distributed over all processors.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Input Parameters

jobz	(global) CHARACTER*1
	Specifies whether or not to compute the eigenvectors:
	$=$ ' N ': Compute eigenvalues only.
	$=$ ' V ': Compute eigenvalues and eigenvectors.
range	(global) CHARACTER*1
	$=$ 'A': all eigenvalues will be found.
	$=$ ' V ': all eigenvalues in the interval [ $\mathrm{vl}, \mathrm{vu}]$ will be found.
	$=$ 'I': the il-th through iu-th eigenvalues will be found.

uplo
n
a
ia
(global) CHARACTER*1
Specifies whether the upper or lower triangular part of the Hermitian matrix $A$ is stored:
= 'U': Upper triangular
= 'L': Lower triangular
(global) INTEGER
The number of rows and columns of the matrix $A . n \geq 0$
COMPLEX for pcheevr
COMPLEX*16 for pzheevr
Block-cyclic array, global size $(n, n)$, local size (IId_a, LOC $(j a+n-1)$ )
Contains the local pieces of the Hermitian distributed matrix $A$. If uplo $=$ ' U ', only the upper triangular part of $a$ is used to define the elements of the Hermitian matrix. If uplo = 'L', only the lower triangular part of $a$ is used to define the elements of the Hermitian matrix.
(global) INTEGER
Global row index in the global matrix $A$ that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global) INTEGER
Global column index in the global matrix $A$ that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global and local) INTEGER array of size dlen_. (The ScaLAPACK descriptor length is dlen_ = 9.)
The array descriptor for the distributed matrix $a$. The descriptor stores details about the 2D block-cyclic storage, see the notes below. If desca is incorrect, p?heevr cannot work correctly.

Also note the array alignment requirements specified below
REAL for pcheevr
DOUBLE PRECISION for pzheevr
(global)
If range=' V ', the lower bound of the interval to be searched for eigenvalues. Not referenced if range $=$ ' A ' or 'I'.

REAL for pcheevr
DOUBLE PRECISION for pzheevr
(global)
If range $=$ ' $V$ ', the upper bound of the interval to be searched for eigenvalues. Not referenced if range = 'A' or 'I'.
(global) INTEGER

If range='I', the index (from smallest to largest) of the smallest eigenvalue to be returned. $i l \geq 1$.

Not referenced if range $=$ ' A '.
(global) INTEGER
If range='I', the index (from smallest to largest) of the largest eigenvalue to be returned. $\min (i l, n) \leq i u \leq n$.
Not referenced if range $=$ ' A '.
(global) INTEGER
Global row index in the global matrix $Z$ that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global) INTEGER
Global column index in the global matrix $Z$ that points to the beginning of the submatrix which is to be operated on. It should be set to 1 when operating on a full matrix.
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix z. descz( ctxt_ ) must equal desca( ctxt_ )

COMPLEX for pcheevr
COMPLEX*16 for pzheevr
(local workspace) array of size lwork
(local ) INTEGER
Size of work array, must be at least 3.
If only eigenvalues are requested:

```
lwork\geqn + max(nb * (np00 + 1),nb*3)
```

If eigenvectors are requested:
1 work $\geqq n+(n p 00+m q 00+n b) * n b$
For definitions of npOO and mq00, see lrwork.
For optimal performance, greater workspace is needed, i.e.
Iwork $\geq \max ($ Iwork, nhetrd_Iwork )
Where lwork is as defined above, and

```
nhetrd_lwork =n + 2*(anb+1)*(4*nps+2) + (nps + 1)*nps
ictxt = desca(ctxt_)
anb = pjlaenv(ictxt, 3, 'PCHETTRD', 'L', 0, 0, 0, 0)
sqnpc = sqrt(real(nprow * npcol))
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)
```

If lwork $=-1$, then lwork is global input and a workspace query is assumed; the routine only calculates the optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

Irwork
iwork

Iiwork

REAL for pcheevr
DOUBLE PRECISION for pzheevr
(local workspace) array of size lrwork
(local ) INTEGER
Size of rwork, must be at least 3.
See below for definitions of variables used to define lrwork.
If no eigenvectors are requested (jobz $=$ ' N ') then

```
lrwork\geq2 + 5*n + max(12 *n,nb*(np00 + 1))
```

If eigenvectors are requested ( $j \circ b z=' V$ ') then the amount of workspace required is:

```
lrwork\geq2 + 5 * n + max(18*n,np00 * mq00 + 2 * nb * nb) +
(2 + iceil(neig, nprow*npcol))*n
```


## NOTE

iceil $(x, y)$ is the ceiling of $x / y$.

Variable definitions:
neig $=$ number of eigenvectors requested
$n b=\operatorname{desca}\left(m b_{-}\right)=\operatorname{desca}\left(n b_{-}\right)=\operatorname{descz}\left(m b_{-}\right)=\operatorname{descz}\left(n b_{-}\right)$
$n n=\max (n, n b, 2)$
$\operatorname{desca}\left(r s r c_{-}\right)=\operatorname{desca}\left(\operatorname{csr} c_{-}\right)=\operatorname{descz}\left(r s r c_{-}\right)=\operatorname{descz}\left(\operatorname{csrc} c_{-}\right)=0$
np00 $=$ numroc $(n n, n b, 0,0$, nprow $)$
$m q 00=$ numroc $(\max (n e i g, n b, 2), n b, 0,0, n p c o l)$
iceil $(x, y)$ is a ScaLAPACK function returning ceiling $(x / y)$, and nprow and $n p c o l$ can be determined by calling the subroutine blacs_gridinfo.

If lrwork $=-1$, then $\operatorname{lrwork}$ is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla
(local workspace) INTEGER array of size liwork
(local ) INTEGER
size of iwork
Let $n n p=\max \left(n, n p r o w^{*} n p c o l+1,4\right)$. Then:
liwork $\geq 12 * n n p+2 *_{n}$ when the eigenvectors are desired
liwork $\geq 10 * n n p+2 *_{n}$ when only the eigenvalues have to be computed
If liwork $=-1$, then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla

## OUTPUT Parameters

a
m
z
work
rwork
iwork
info

The lower triangle (if uplo='L') or the upper triangle (if uplo='U') of $a$, including the diagonal, is destroyed.
(global) INTEGER
Total number of eigenvalues found. $0 \leq m \leq n$.
(global) INTEGER
Total number of eigenvectors computed. $0 \leq n z \leq m$.
The number of columns of $z$ that are filled.
If jobz $\neq$ ' $V$ ', $n z$ is not referenced.
If jobz = 'V', $n z=m$
REAL for pcheevr
DOUBLE PRECISION for pzheevr
(global) array of size $n$
On normal exit, the first $m$ entries contain the selected eigenvalues in ascending order.

COMPLEX for pcheevr
COMPLEX*16 for pzheevr
(local ) array, global size $(n, n)$, local size ( $/ I d \_z, L O C_{C}(j z+n-1)$ )
If jobz = ' $V$ ', then on normal exit the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues.
If jobz $=$ ' $N$ ', then $z$ is not referenced.
work(1) returns workspace adequate workspace to allow optimal performance.

On return, rwork (1) contains the optimal amount of workspace required for efficient execution. if jobz='N'rwork (1) = optimal amount of workspace required to compute the eigenvalues. if jobz='V'rwork(1) = optimal amount of workspace required to compute eigenvalues and eigenvectors.

On return, iwork(1) contains the amount of integer workspace required.
(global) INTEGER
$=0$ : successful exit
< 0: If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The distributed submatrices $a(i a: *, j a: *)$ and $z(i z: i z+m-1, j z: j z+n-1)$ must satisfy the following alignment properties:

1. Identical (quadratic) dimension: $\operatorname{desca}\left(m_{-}\right)=\operatorname{descz}\left(m_{-}\right)=\operatorname{desca}\left(n_{-}\right)=\operatorname{descz}\left(n_{-}\right)$
2. Quadratic conformal blocking: $\operatorname{desca}\left(m b_{-}\right)=\operatorname{desca}\left(n b_{-}\right)=\operatorname{descz}\left(m b_{-}\right)=\operatorname{descz}\left(n b_{-}\right)$, desca(rsrc_) = $\operatorname{descz}\left(r s c_{-}\right)$
3. $\bmod \left(i a-1, m b \_a\right)=\bmod \left(i z-1, m b \_z\right)=0$

## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?heevx

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix.

## Syntax

```
call pcheevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, abstol, m, nz, w,
orfac, z, iz, jz, descz, work, lwork, rwork, lrwork, iwork, liwork, ifail, iclustr, gap,
info)
call pzheevx(jobz, range, uplo, n, a, ia, ja, desca, vl, vu, il, iu, abstol, m, nz, w,
orfac, z, iz, jz, descz, work, lwork, rwork, lrwork, iwork, liwork, ifail, iclustr, gap,
info)
```


## Include Files

## Description

The $p$ ?heevx routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix $A$ by calling the recommended sequence of ScaLAPACK routines. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Input Parameters

$n p=$ the number of rows local to a given process.
$n q=$ the number of columns local to a given process.
jobz
(global) CHARACTER*1. Must be 'N' or 'V'.

Specifies if it is necessary to compute the eigenvectors:
If jobz = ' N ', then only eigenvalues are computed.
If jobz = 'V', then eigenvalues and eigenvectors are computed.
(global) CHARACTER*1. Must be 'A', 'V', or 'I'.
If range $=$ ' A ', all eigenvalues will be found.
If range $=$ ' $V$ ', all eigenvalues in the half-open interval [ $v 1, v u$ ] will be found.

If range $=$ 'I', the eigenvalues with indices il through iu will be found.
(global) CHARACTER*1. Must be 'U' or 'L'.
Specifies whether the upper or lower triangular part of the Hermitian matrix $A$ is stored:

If uplo = 'U', a stores the upper triangular part of $A$.
If uplo = 'L', a stores the lower triangular part of $A$.
(global) INTEGER. The number of rows and columns of the matrix $A(n \geq 0)$. (local).
COMPLEX for pcheevx
DOUBLE COMPLEX for pzheevx.
Block cyclic array of global size $(n, n)$ and local size (lld_a, LOCc (ja $+n-1)$ ). On entry, the Hermitian matrix $A$.

If uplo = 'U', only the upper triangular part of $A$ is used to define the elements of the Hermitian matrix.

If uplo = 'L', only the lower triangular part of $A$ is used to define the elements of the Hermitian matrix.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$. If desca (ctxt_) is incorrect, p?heevx cannot guarantee correct error reporting.
(global)
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
If range $=$ ' $V$ ', the lower and upper bounds of the interval to be searched for eigenvalues; not referenced if range $=$ 'A' or 'I'.
(global)
INTEGER. If range ='I', the indices of the smallest and largest eigenvalues to be returned.
Constraints:
il $\geq 1 ; \min (i l, n) \leq i u \leq n$.

Not referenced if range $=$ ' $A$ ' or 'V'.
(global).
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
If jobz='V', setting abstol to p?lamch(context, 'U') yields the most orthogonal eigenvectors.

The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a, b] of width less than or equal to abstol+eps*max (|a|,|b|), where eps is the machine precision. If abstol is less than or equal to zero, then $e p s^{\star}$ norm ( $T$ ) will be used in its place, where norm ( $T$ ) is the 1-norm of the tridiagonal matrix obtained by reducing $A$ to tridiagonal form.

Eigenvalues are computed most accurately when abstol is set to twice the underflow threshold $2 *$ p?lamch ('S'), not zero. If this routine returns with $((\bmod (\operatorname{info}, 2) \neq 0)$.or. $(\bmod (\operatorname{info} / 8,2) \neq 0))$, indicating that some eigenvalues or eigenvectors did not converge, try setting abstol to 2*p?lamch('S').

## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
orfac
iz, jz
descz
work
lwork
(global). REAL for pcheevx
DOUBLE PRECISION for pzheevx.
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within tol=orfac*norm $(A)$ of each other are to be reorthogonalized. However, if the workspace is insufficient (see Iwork), tol may be decreased until all eigenvectors to be reorthogonalized can be stored in one process. No reorthogonalization will be done if orfac equals zero. A default value of $1.0 \mathrm{e}-3$ is used if orfac is negative.
orfac should be identical on all processes.
(global) INTEGER. The row and column indices in the global matrix $Z$ indicating the first row and the first column of the submatrix $Z$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $Z$. descz ( ctxt_ ) must equal desca( ctxt_ ).
(local).
COMPLEX for pcheevx
DOUBLE COMPLEX for pzheevx.
Array of size Iwork.
(local) INTEGER. The size of the array work.
If only eigenvalues are requested:

```
lwork\geqn + max(nb*(np0 + 1), 3)
```

If eigenvectors are requested:

```
lwork\geqn + (np0+mq0+nb)*nb
with nq0 = numroc(nn, nb, 0, 0, NPCOL).
lwork\geq 5*n + max(5*nn, np0*mq0+2*nb*nb) + iceil(neig,
NPROW*NPCOL)*nn
```

For optimal performance, greater workspace is needed, that is

```
lwork\geqmax(lwork, nhetrd_lwork)
```

where Iwork is as defined above, and nhetrd_lwork $=n+2 *$ (anb

```
+1)*(4*nps+2) + (nps+1)*nps
ictxt = desca(ctxt_)
anb = pjlaenv(ictxt, 3, 'pchettrd', 'L', 0, 0, 0, 0)
sqnpc = sqrt(dble(NPROW * NPCOL))
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)
```

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local)
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
Workspace array of size Irwork.
(local) INTEGER. The size of the array work.
See below for definitions of variables used to define Iwork.
If no eigenvectors are requested ( $j \circ b z=1 N$ '), then $\operatorname{lrwork} \geq 5{ }^{*} n n+4{ }^{*} n$.
If eigenvectors are requested ( $j \circ b z=$ 'V'), then the amount of workspace required to guarantee that all eigenvectors are computed is:

```
lrwork\geq 4*n + max(5*nn, np0*mq0+2*nb*n.b) + iceil(neig,
NPROW*NPCOL)*nn
```

The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality (at the cost of potentially poor performance) you should add the following values to Irwork:

```
(clustersize-1)*n,
```

where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:

```
{w(k),..., w(k+clustersize-1)|w(j+1) \leqw(j)
+orfac^2*norm(A)}.
```

Variable definitions:
neig $=$ number of eigenvectors requested;

```
nb = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_);
nn = max(n, NB, 2);
desca(rsrc_) = desca(nb_) = descz(rsrc_) = descz(csrc_) = 0;
np0 = numroc(nn, nb, 0, 0, NPROW);
mq0 = numroc(max(neig, nb, 2), nb, 0, 0, NPCOL);
iceil(x,y) is a ScaLAPACK function returning ceiling(x/y)
```

When Irwork is too small:
If /work is too small to guarantee orthogonality, p?heevx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues. If /work is too small to compute all the eigenvectors requested, no computation is performed and info $=-23$ is returned. Note that when range='V', p?heevx does not know how many eigenvectors are requested until the eigenvalues are computed. Therefore, when range= ' V ' and as long as /work is large enough to allow p?heevx to compute the eigenvalues, p?heevx will compute the eigenvalues and as many eigenvectors as it can.
Relationship between workspace, orthogonality and performance:
If clustersize $\geq n / \operatorname{sqrt}\left(\mathrm{NPROW}^{*}\right.$ NPCOL), then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. In the limit (that is, clustersize $=n-1$ ) p?stein will perform no better than ?stein on 1 processor.

For clustersize $=n /$ sqrt(NPROW*NPCOL) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more.

For clustersize>n/sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.
If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local) InTEGER. Workspace array.
(local) INTEGER, size of iwork.
liwork $\geq 6 * n n p$
Where: $n n p=\max (n$, NPROW*NPCOL+1, 4)
If liwork $=-1$, then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

On exit, the lower triangle (if uplo = 'L'), or the upper triangle (if uplo = ' $U$ ') of $A$, including the diagonal, is overwritten.
m
(global) INTEGER. The total number of eigenvalues found; $0 \leq m \leq n$.
(global) INTEGER. Total number of eigenvectors computed. $0 \leq n z \leq m$. The number of columns of $z$ that are filled.
If $j o b z \neq$ 'V', $n z$ is not referenced.
If $j o b z=' V ', n z=m$ unless the user supplies insufficient space and p?heevx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in $z\left(m \leq \operatorname{desc} z\left(n_{-}\right)\right)$and sufficient workspace to compute them. (See Iwork). p?heevx is always able to detect insufficient space without computation unless range='V'.
(global).
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
Array of size $n$. The first $m$ elements contain the selected eigenvalues in ascending order.
(local).
COMPLEX for pcheevx
DOUBLE COMPLEX for pzheevx.
Array, global size $(n, n)$, local size (lld_z, $\operatorname{LOCC}(j z+n-1))$.
If jobz $=$ ' $V$ ', then on normal exit the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of $z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If jobz $=$ ' $N$ ', then $z$ is not referenced.
On exit, returns adequate workspace to allow optimal performance.
(local).
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
Array of size Irwork. On return, rwork (1) contains the optimal amount of workspace required for efficient execution.
If jobz='N'rwork (1) = optimal amount of workspace required to compute eigenvalues efficiently.
If jobz='V'rwork(1) = optimal amount of workspace required to compute eigenvalues and eigenvectors efficiently with no guarantee on orthogonality.
If range='V', it is assumed that all eigenvectors may be required.
(local)
On return, iwork(1) contains the amount of integer workspace required.
(global) INTEGER.

Array of size $n$.
If $j o b z=' v '$, then on normal exit, the first $m$ elements of ifail are zero. If $(\bmod (i n f 0,2) \neq 0)$ on exit, then ifail contains the indices of the eigenvectors that failed to converge.

If jobz = 'N', then ifail is not referenced.
(global) INTEGER.
Array of size $2 *_{\text {NPROW }}{ }^{*}$ NPCOL.
This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see Iwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr(2*i-1) to iclustr(2*i), could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr() is a zero terminated array. (iclustr $(2 * k) \neq 0$ and $\operatorname{iclustr}(2 * k+1)=0$ ) if and only if $k$ is the number of clusters. iclustr is not referenced if jobz $=$ ' $N$ '.
(global)
REAL for pcheevx
DOUBLE PRECISION for pzheevx.
Array of size (NPROW*NPCOL)
This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the $i$-th cluster may be as high as ( $C^{\star} n$ )/ gap(i) where $C$ is a small constant.
(global) INTEGER.
If info $=0$, the execution is successful.
If info < 0:
If the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-(i * 100+j)$. If the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

If info> 0 :
If (mod (info, 2$) \neq 0)$, then one or more eigenvectors failed to converge. Their indices are stored in ifail. Ensure abstol=2.0*p?lamch ('U')

If (mod (info/2,2) $\neq 0$ ), then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr.

If (mod (info/4,2) $\neq 0$ ), then space limit prevented p?syevx from computing all of the eigenvectors between $v /$ and $v u$. The number of eigenvectors computed is returned in $n z$.
If $(\bmod (i n f o / 8,2) \neq 0)$, then $p$ ? stebz failed to compute eigenvalues.
Ensure abstol=2.0*p?lamch('U').

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?gesvd <br> Computes the singular value decomposition of a general matrix, optionally computing the left and/or right singular vectors.

## Syntax

```
call psgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu, vt, ivt, jvt,
descvt, work, lwork, info)
call pdgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu, vt, ivt, jvt,
descvt, work, lwork, info)
call pcgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu, vt, ivt, jvt,
descvt, work, lwork, rwork, info)
call pzgesvd(jobu, jobvt, m, n, a, ia, ja, desca, s, u, iu, ju, descu, vt, ivt, jvt,
descvt, work, lwork, rwork, info)
```


## Include Files

## Description

The p?gesvd routine computes the singular value decomposition (SVD) of an $m$-by-n matrix $A$, optionally computing the left and/or right singular vectors. The SVD is written

```
A = U* \Sigma \Sigma * V
```

where $\Sigma$ is an $m$-by- $n$ matrix that is zero except for its $\min (m, n)$ diagonal elements, $U$ is an $m$-by- $m$ orthogonal matrix, and $V$ is an $n$-by- $n$ orthogonal matrix. The diagonal elements of $\Sigma$ are the singular values of $A$ and the columns of $U$ and $V$ are the corresponding right and left singular vectors, respectively. The singular values are returned in array $s$ in decreasing order and only the first $\min (m, n)$ columns of $U$ and rows of $v t=V^{\top}$ are computed.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## NOTE

The distributed submatrix $\operatorname{sub}(A)$ must verify certain alignment properties. These expressions must be true:

- mb_a = nb_a = nb
- iroffa = icoffa
where:
- iroffa $=\bmod (i a-1, n b)$
- icoffa $=\bmod (j a-1, n b)$

```
Input Parameters
mp = number of local rows in A and U
nq= number of local columns in A and VT
size = min}(m,n
sizeq = number of local columns in U
sizep = number of local rows in VT
jobu
jobvt (global) CHARACTER*1.
 Specifies options for computing all or part of the matrix V}\mp@subsup{V}{}{T}\mathrm{ .
 If jobvt = 'V', the first size rows of V' (the right singular vectors) are
 returned in the array vt;
 If jobvt = 'N', no rows of V}\mp@subsup{V}{}{T}\mathrm{ (no right singular vectors) are computed.
 (global) INTEGER. The number of rows of the matrix A(m\geq0).
 (global) INTEGER. The number of columns in A(n\geq0).
 (local). REAL for psgesvd
 DOUBLE PRECISION for pdgesvd
 COMPLEX for pcgesvd
 COMPLEX*16 for pzgesvd
 Block cyclic array, global size (}m,n\mathrm{), local size (mp,nq).
 (global) INTEGER. The row and column indices in the global matrix A
 indicating the first row and the first column of the submatrix }A\mathrm{ , respectively.
 (global and local) INTEGER array of size dlen_. The array descriptor for the
 distributed matrix A.
 (global) INTEGER. The row and column indices in the global matrix }
 indicating the first row and the first column of the submatrix }U\mathrm{ ,
 respectively.
 (global and local) INTEGER array of size dlen_. The array descriptor for the
 distributed matrix U.
 (global) INTEGER. The row and column indices in the global matrix VT
 indicating the first row and the first column of the submatrix VT,
 respectively.
 (global and local)INTEGER array of size dlen_. The array descriptor for the
 distributed matrix VT.
 (local).REAL for psgesvd
```

DOUBLE PRECISION for pdgesvd
COMPLEX for pcgesvd
COMPLEX*16 for pzgesvd
Workspace array of size Iwork
(local) INTEGER. The size of the array work;
lwork $>2$ + 6*sizeb + max(watobd, wbdtosvd),
where sizeb $=\max (m, n)$, and watobd and wbdtosvd refer, respectively, to the workspace required to bidiagonalize the matrix $A$ and to go from the bidiagonal matrix to the singular value decomposition USVT.

For watobd, the following holds:

```
watobd = max(max(wp?lange,wp?gebrd), max(wp?lared2d, wp?
laredld)),
```

where wp?lange, wp?lared1d, wp?lared2d, wp?gebrd are the workspaces required respectively for the subprograms p?lange, p?lared1d, p?lared2d, p?gebrd. Using the standard notation

```
mp = numroc(m, mb, MYROW, desca(ctxt_), NPROW),
nq = numroc(n, nb, MYCOL, desca(lld_), NPCOL),
```

the workspaces required for the above subprograms are

```
wp?lange = mp,
wp?laredld = nq0,
wp?lared2d = mp0,
wp?gebrd = nb*(mp + nq + 1) + nq,
```

where $n q 0$ and $m p 0$ refer, respectively, to the values obtained at MYCOL $=$ 0 and MYROW $=0$. In general, the upper limit for the workspace is given by a workspace required on processor $(0,0)$ :

```
watobd \leq nb* (mp0 + nq0 + 1) + nq0.
```

In case of a homogeneous process grid this upper limit can be used as an estimate of the minimum workspace for every processor.
For wbdtosvd, the following holds:

```
wbdtosvd = size*(wantu*nru + wantvt*ncvt) + max(w?bdsqr,
max(wantu*wp?ormbrqln, wantvt*wp?ormbrprt)),
```

where
wantu(wantvt) $=1$, if left/right singular vectors are wanted, and wantu(wantvt) $=0$, otherwise. w?bdsqr, wp?ormbrqln, and wp?ormbrprt refer respectively to the workspace required for the subprograms ?bdsqr, p?ormbr(qln), and p?ormbr(prt), where qln and prt are the values of the arguments vect, side, and trans in the call to p?ormbr. nru is equal to the local number of rows of the matrix $U$ when distributed 1-dimensional "column" of processes. Analogously, ncvt is equal to the local number of columns of the matrix $V T$ when distributed across 1-dimensional "row" of processes. Calling the LAPACK procedure ?bdsqr requires

```
w?bdsqr = max(1, 2*size + (2*size - 4)* max(wantu, wantvt))
```

on every processor. Finally,

```
wp?ormbrqln = max((nb* (nb-1)) /2, (sizeq+mp)*nb) +nb*nb,
wp?ormbrprt = max ((mb* (mb-1))/2, (sizep+nq)*mb) +mb*mb,
```

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum size for the work array. The required workspace is returned as the first element of work and no error message is issued by pxerbla.

REAL for pcgesvd
DOUBLE PRECISION for pzgesvd
Workspace array of size $1+4^{*}$ sizeb. Not used for psgesvd and pdgesvd.

## Output Parameters

$a$

S
u
vt
work
rwork
info

On exit, the contents of a are destroyed.
(global). REAL for psgesvd and pcgesvd
DOUBLE PRECISION for pdgesvd and pzgesvd
Array of size size.
Contains the singular values of $A$ sorted so that $s(i) \geq s(i+1)$.
(local). REAL for psgesvd
DOUBLE PRECISION for pdgesvd
COMPLEX for pcgesvd
COMPLEX*16 for pzgesvd
local size ( $m p$, sizeq), global size ( $m$, size)
If jobu $=$ ' $V$ ', $u$ contains the first $\min (m, n)$ columns of $U$.
If jobu $=$ ' $N$ ' or ' $O$ ', $u$ is not referenced.
(local). REAL for psgesvd
DOUBLE PRECISION for pdgesvd
COMPLEX for pcgesvd
COMPLEX*16 for pzgesvd
local size (sizep, nq), global size (size, $n$ )
If jobvt $=$ ' $V$ ', vt contains the first size rows of $V^{\top}$ if jobu $=' N$ ', vt is not referenced.

On exit, if info $=0$, then work (1) returns the required minimal size of Iwork.

On exit, if info $=0$, then rwork (1) returns the required size of rwork.
(global) INTEGER.
If info $=0$, the execution is successful.

If info $<0$, If info $=-i$, the $i$ th parameter had an illegal value.
If info > 0 i, then if ?bdsqr did not converge,
If info $=\min (m, n)+1$, then $p$ ?gesvd has detected heterogeneity by finding that eigenvalues were not identical across the process grid. In this case, the accuracy of the results from p?gesvd cannot be guaranteed.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?sygvx
Computes selected eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem.
```


## Syntax

```
call pssygvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb, descb, vl, vu,
il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork, ifail,
iclustr, gap, info)
call pdsygvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb, descb, vl, vu,
il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, iwork, liwork, ifail,
iclustr, gap, info)
```


## Include Files

## Description

The p?sygvxroutine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form


Here $x$ denotes eigen vectors, $\lambda$ (lambda) denotes eigenvalues, sub ( $A$ ) denoting A (ia:ia+n-1, ja: ja $+n-1$ ) is assumed to symmetric, and $\operatorname{sub}(B)$ denoting $B(i b: i b+n-1, j b: j b+n-1)$ is also positive definite.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Input Parameters

ibtype	(global) INTEGER. Must be 1 or 2 or 3.
	Specifies the problem type to be solved:
	If ibtype $=1$, the problem type is sub $(A) *_{x}=\operatorname{lambda}{ }^{\text {sub }}(B){ }^{*} \times$;
	If ibtype $=2$, the problem type is sub $(A) * \operatorname{sub}(B) *_{X}=\operatorname{lambda}{ }^{\prime}$;
	If ibtype $=3$, the problem type is sub $(B) *$ sub $(A) *^{\prime}=$ lambda*x.
jobz	(global) CHARACTER*1. Must be 'N' or 'V'.
	If $j 0 b z=' \mathrm{~N}$ ', then compute eigenvalues only.

If $j o b z=' \mathrm{~V}$ ', then compute eigenvalues and eigenvectors.
(global) CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range $=$ ' A ', the routine computes all eigenvalues.
If range $=$ ' $V$ ', the routine computes eigenvalues in the interval: [ $v$ ], vu]
If range $=$ 'I', the routine computes eigenvalues with indices il through $i u$.
(global) CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays $a$ and $b$ store the upper triangles of $\operatorname{sub}(A)$ and sub (B);

If uplo = 'L', arrays $a$ and $b$ store the lower triangles of $\operatorname{sub}(A)$ and sub (B).
(global) INTEGER. The order of the matrices $\operatorname{sub}(A)$ and $\operatorname{sub}(B), n \geq 0$. (local)

REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Pointer into the local memory to an array of size (lld_a, LOCC(ja+n-1)). On entry, this array contains the local pieces of the $n$-by- $n$ symmetric distributed matrix $\operatorname{sub}(A)$.
If uplo = 'U', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix.
If uplo = 'L', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$. If desca (ctxt_) is incorrect, p?sygvx cannot guarantee correct error reporting.
(local). REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Pointer into the local memory to an array of size (lld_b, LOCC (jb+n-1)). On entry, this array contains the local pieces of the $n$-by- $n$ symmetric distributed matrix sub( $B$ ).
If uplo = 'U', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(B)$ contains the upper triangular part of the matrix.
If uplo = 'L', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix.
(global) INTEGER. The row and column indices in the global matrix $B$ indicating the first row and the first column of the submatrix $B$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix B. descb(ctxt_) must be equal to desca(ctxt_).
(global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
If range $=$ ' $V$ ', the lower and upper bounds of the interval to be searched for eigenvalues.

If range $=$ 'A' or 'I', v/ and $v u$ are not referenced.
(global)
INTEGER.
If range $=$ 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. Constraint: il $\geq 1$, $\min (i l, n) \leq i u \leq n$

If range $=$ ' A ' or ' V ', il and $i u$ are not referenced.
(global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
If jobz='V', setting abstol to p?lamch(context, 'U') yields the most orthogonal eigenvectors.

The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $[a, b]$ of width less than or equal to
abstol + eps*max (|a|,|b|),
where eps is the machine precision. If abstol is less than or equal to zero, then eps^norm ( $T$ ) will be used in its place, where norm ( $T$ ) is the 1-norm of the tridiagonal matrix obtained by reducing $A$ to tridiagonal form.
Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold $2 \star$ p?lamch ('S') not zero. If this routine returns with $((\bmod ($ info, 2$) \neq 0)$ or $(\bmod (\operatorname{infO} / 8,2) \neq 0))$, indicating that some eigenvalues or eigenvectors did not converge, try setting abstol to 2*p?lamch('S').

## NOTE

$\bmod (x, y)$ is the integer remainder of $x / y$.
(global).
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within tol=orfac^norm ( $A$ ) of each other are to be reorthogonalized. However, if the workspace is insufficient (see Iwork), tol may be decreased until all eigenvectors to be
iz, jz
descz
work
lwork
reorthogonalized can be stored in one process. No reorthogonalization will be done if orfac equals zero. A default value of $1.0 \mathrm{e}-3$ is used if orfac is negative. orfac should be identical on all processes.
(global) INTEGER. The row and column indices in the global matrix $Z$ indicating the first row and the first column of the submatrix $Z$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $z$. descz (ctxt_) must equal desca(ctxt_).
(local)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Workspace array of size Iwork
(local) INTEGER.
Size of the array work. See below for definitions of variables used to define Iwork.
If no eigenvectors are requested (jobz = 'N'), then lwork $\geq 5 \star_{n}+$ max (5*nn, NB* (np0 + 1)).
If eigenvectors are requested $(j \circ b z=' V$ '), then the amount of workspace required to guarantee that all eigenvectors are computed is:

```
IWork \geq 5*n + max(5*nn, np0*mq0 + 2*nb*nb) + iceil(neig, NPROW*NPCOL) *nn.
```

The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality at the cost of potentially poor performance you should add the following to Iwork:
(clustersize-1)* $n$,
where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:

```
{w(k),\ldots,w(k+clustersize-1)|w(j+1) \leqw(j) +
orfac*2*norm(A) }
```

Variable definitions:
neig $=$ number of eigenvectors requested,

```
nb = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_),
```

$n n=\max (n, n b, 2)$,
$\operatorname{desca}\left(\operatorname{rsr} C_{-}\right)=\operatorname{desca}\left(n b_{-}\right)=\operatorname{descz}\left(\operatorname{rsr} C_{-}\right)=\operatorname{descz}\left(\operatorname{csr} C_{-}\right)=0$,
$n p 0=$ numroc $(n n, n b, 0,0$, NPROW $)$,
$m q 0=$ numroc $(\max ($ neig $, n b, 2), n b, 0,0$, NPCOL $)$
iceil $(x, y)$ is a ScaLAPACK function returning ceiling $(x / y)$
If /work is too small to guarantee orthogonality, p?syevx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.

If Iwork is too small to compute all the eigenvectors requested, no computation is performed and info $=-23$ is returned.

Note that when range='V', number of requested eigenvectors are not known until the eigenvalues are computed. In this case and if Iwork is large enough to compute the eigenvalues, p?sygvx computes the eigenvalues and as many eigenvectors as possible.

Greater performance can be achieved if adequate workspace is provided. In some situations, performance can decrease as the provided workspace increases above the workspace amount shown below:
lwork $\geq \max \left(l w o r k, 5 * n+n s y t r d \_l w o p t, ~ n s y g s t \_l w o p t\right), ~ w h e r e ~$
lwork, as defined previously, depends upon the number of eigenvectors requested, and

```
nsytrd_lwopt = n + 2*(anb+1)*(4*nps+2) + (nps+3)*nps
nsygst_lwopt = 2*np0*nb + nq0*nb + nb*nb
anb = pjlaenv(desca(ctxt_), 3, p?syttrd ', 'L', 0, 0, 0, 0)
sqnpc = int(sqrt(dble(NPROW * NPCOL)))
nps=max(numroc (n, 1, 0, 0, sqnpc), 2*anb)
NB = desca(mb_)
np0 = numroc(n, nb, 0, 0, NPROW)
nq0 = numroc(n, nb, 0, 0, NPCOL)
```

numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function
MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.

For large $n$, no extra workspace is needed, however the biggest boost in performance comes for small $n$, so it is wise to provide the extra workspace (typically less than a Megabyte per process).

If clustersize $\geq n / \operatorname{sqrt}(N P R O W * N P C O L)$, then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. At the limit (that is, clustersize $=n-1$ ) p?stein will perform no better than ?stein on a single processor.

For clustersize $=n /$ sqrt(NPROW*NPCOL) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more.

For clustersize>n/sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.

If 1 work $=-1$, then /work is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
iwork
liwork
(local) INTEGER. Workspace array.
(local) INTEGER, size of iwork.

```
liwork \geq 6*nnp
```

Where:

```
nnp = max (n, NPROW*NPCOL + 1, 4)
```

If liwork $=-1$, then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

z

On exit,
If jobz $=$ ' $V$ ', and if info $=0, \operatorname{sub}(A)$ contains the distributed matrix $Z$ of eigenvectors. The eigenvectors are normalized as follows:
for ibtype $=1$ or $2, Z^{T *}$ sub $(B) * Z=i$;
for ibtype $=3, Z^{T}$ *inv $(\operatorname{sub}(B)) * Z=i$.
If jobz = 'N', then on exit the upper triangle (if uplo='U') or the lower triangle (if uplo='L') of $\operatorname{sub}(A)$, including the diagonal, is destroyed.

On exit, if info $\leq n$, the part of $\operatorname{sub}(B)$ containing the matrix is overwritten by the triangular factor $U$ or $L$ from the Cholesky factorization sub $(B)=$ $U^{T} \star U$ or $\operatorname{sub}(B)=L^{\star} L^{T}$.
(global) INTEGER. The total number of eigenvalues found, $0 \leq m \leq n$.
(global) INTEGER.
Total number of eigenvectors computed. $0 \leq n z \leq m$. The number of columns of $z$ that are filled.

If $j o b z \neq$ ' $V$ ', $n z$ is not referenced.
If jobz = 'V', $n z=m$ unless the user supplies insufficient space and p?sygvx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in $z\left(m \leq \operatorname{descz}\left(n_{-}\right)\right)$and sufficient workspace to compute them. (See /work below.) p? sygvx is always able to detect insufficient space without computation unless range=' $\mathrm{V}^{\prime}$.
(global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Array of size $n$. On normal exit, the first $m$ entries contain the selected eigenvalues in ascending order.
(local).
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
global size $(n, n)$, local size (lld_z, $\operatorname{LOCC}(j z+n-1))$.
If jobz $=$ ' $V$ ', then on normal exit the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of $z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If $j o b z=$ ' $N$ ', then $z$ is not referenced.
If jobz='N'work(1) = optimal amount of workspace required to compute eigenvalues efficiently

If jobz = 'V'work(1) = optimal amount of workspace required to compute eigenvalues and eigenvectors efficiently with no guarantee on orthogonality.
If range=' V ', it is assumed that all eigenvectors may be required.
(global) INTEGER.
Array of size $n$.
ifail provides additional information when info $\neq 0$
If (mod(info/16,2) $\neq 0$ ) then ifail(1) indicates the order of the smallest minor which is not positive definite. If $(\bmod (i n f 0,2) \neq 0)$ on exit, then ifail contains the indices of the eigenvectors that failed to converge.
If neither of the above error conditions hold and jobz = 'V', then the first $m$ elements of ifail are set to zero.
(global) INTEGER.
Array of size ( $2 *$ NPROW*NPCOL) . This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see Iwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr(2*i-1) to iclustr $(2 * i)$, could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal. iclustr() is a zero terminated array.
(iclustr $(2 * k) \neq 0$. and. iclustr $(2 * k+1)=0$ ) if and only if $k$ is the number of clusters iclustr is not referenced if jobz = 'N'.
(global)
REAL for pssygvx
DOUBLE PRECISION for pdsygvx.
Array of size NPROW*NPCOL. This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the $i$-th cluster may be as high as $\left(C^{\star} n\right) / g a p(i)$, where $C$ is a small constant.
(global) INTEGER.
If info $=0$, the execution is successful.

If info <0: the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-(i * 100+j)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

If info> 0 :
If $(\bmod (i n f o, 2) \neq 0)$, then one or more eigenvectors failed to converge. Their indices are stored in ifail.

If (mod (info, 2,2$) \neq 0)$, then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr.

If (mod (info/4,2) $\neq 0$ ), then space limit prevented p?sygvx from computing all of the eigenvectors between $v /$ and $v u$. The number of eigenvectors computed is returned in $n z$.

If (mod (infol 8,2$) \neq 0)$, then $p$ ?stebz failed to compute eigenvalues.
If (mod (info/ 16,2$) \neq 0)$, then $B$ was not positive definite. ifail(1) indicates the order of the smallest minor which is not positive definite.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?hegvx

Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian positive-definite eigenproblem.

## Syntax

```
call pchegvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb, descb, vl, vu,
il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork, iwork,
liwork, ifail, iclustr, gap, info)
call pzhegvx(ibtype, jobz, range, uplo, n, a, ia, ja, desca, b, ib, jb, descb, vl, vu,
il, iu, abstol, m, nz, w, orfac, z, iz, jz, descz, work, lwork, rwork, lrwork, iwork,
liwork, ifail, iclustr, gap, info)
```


## Include Files

## Description

The p?hegvx routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite eigenproblem, of the form

Here sub ( $A$ ) denoting $A$ (ia:ia+n-1, ja:ja+n-1) and $\operatorname{sub}(B)$ are assumed to be Hermitian and $\operatorname{sub}(B)$ denoting $B$ (ib: ib+n-1, jb: jb+n-1) is also positive definite.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Input Parameters

ibtype
jobz
range
uplo
n
a
(global) INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
If ibtype $=1$, the problem type is
sub $(A){ }^{*} x_{x}=\operatorname{lambda}{ }^{\text {sub }}(B){ }^{*} x$;
If ibtype $=2$, the problem type is
sub ( $A$ ) *sub ( $B)^{*} x_{x}=$ lambda* $x$;
If ibtype $=3$, the problem type is
sub $(B) * \operatorname{sub}(A){ }^{*} x=l a m b d a{ }^{*} x$.
(global) CHARACTER*1. Must be 'N' or 'V'.
If jobz ='N', then compute eigenvalues only.
If $j o b z=' V '$, then compute eigenvalues and eigenvectors.
(global) CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range $=$ ' $A$ ', the routine computes all eigenvalues.
If range $=$ ' V ', the routine computes eigenvalues in the interval: [ v$]$, vu]

If range $=$ 'I', the routine computes eigenvalues with indices il through $i u$.
(global) CHARACTER*1. Must be 'U' or 'L'.
If uplo = ' U ', arrays $a$ and $b$ store the upper triangles of $\operatorname{sub}(A)$ and sub (B);

If uplo $=$ 'L', arrays $a$ and $b$ store the lower triangles of $\operatorname{sub}(A)$ and sub (B).
(global) INTEGER.
The order of the matrices $\operatorname{sub}(A)$ and $\operatorname{sub}(B)(n \geq 0)$.
(local)
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
Pointer into the local memory to an array of size (lld_a, LOCC(ja+n-1)). On entry, this array contains the local pieces of the $n$-by- $n$ Hermitian distributed matrix $\operatorname{sub}(A)$. If uplo = 'U', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix. If uplo = 'L', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix.
(global) INTEGER.
The row and column indices in the global matrix $A$ indicating the first row and the first column of the submatrix $A$, respectively.
(global and local) INTEGER array of size dlen_.
b

The array descriptor for the distributed matrix $A$. If desca(ctxt_) is incorrect, p?hegvx cannot guarantee correct error reporting.
(local).
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
Pointer into the local memory to an array of size (lld_b, LOCC(jb+n-1)). On entry, this array contains the local pieces of the $n$-by- $n$ Hermitian distributed matrix $\operatorname{sub}(B)$.

If uplo = 'U', the leading $n$-by- $n$ upper triangular part of sub $(B)$ contains the upper triangular part of the matrix.

If uplo = 'L', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(B)$ contains the lower triangular part of the matrix.

```
(global) INTEGER.
```

The row and column indices in the global matrix $B$ indicating the first row and the first column of the submatrix $B$, respectively.
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix B. descb (ctxt_) must be equal to desca(ctxt_).
(global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
If range $=$ ' V ', the lower and upper bounds of the interval to be searched for eigenvalues.
If range $=$ 'A' or 'I', vl and $v u$ are not referenced.
(global)
INTEGER.
If range = 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned. Constraint: il $\geq 1$, $\min (i l, n) \leq i u \leq n$

If range $=$ ' A ' or ' V ', il and $i u$ are not referenced.
(global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
If jobz='V', setting abstol to p?lamch (context, 'U') yields the most orthogonal eigenvectors.

The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $[a, b]$ of width less than or equal to

```
abstol + eps*max(|a|,|b|),
```

where eps is the machine precision. If abstol is less than or equal to zero, then eps*norm( $T$ ) will be used in its place, where norm( $T$ ) is the 1-norm of the tridiagonal matrix obtained by reducing $A$ to tridiagonal form.

Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold $2 *$ p?lamch ('S') not zero. If this routine returns with $((\bmod (\operatorname{info}, 2) \neq 0)$.or. * $(\bmod (\operatorname{info} / 8,2) \neq 0))$, indicating that some eigenvalues or eigenvectors did not converge, try setting abstol to 2*p?lamch('S').

## NOTE

$\underline{\bmod (x, y)}$ is the integer remainder of $x / y$.
orfac
$i z, j z$
descz
work
lwork
(global).
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Specifies which eigenvectors should be reorthogonalized. Eigenvectors that correspond to eigenvalues which are within tol=orfac*norm (A) of each other are to be reorthogonalized. However, if the workspace is insufficient (see Iwork), tol may be decreased until all eigenvectors to be reorthogonalized can be stored in one process. No reorthogonalization will be done if orfac equals zero. A default value of $1.0 \mathrm{E}-3$ is used if orfac is negative. orfac should be identical on all processes.
(global) INTEGER. The row and column indices in the global matrix $Z$ indicating the first row and the first column of the submatrix $Z$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $Z$. descz ( ctxt_ ) must equal desca( ctxt_ ). (local)

COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
Workspace array of size /work
(local).
INTEGER. The size of the array work.
If only eigenvalues are requested:
lwork $\geq n+\max (N B *(n p 0+1), 3)$
If eigenvectors are requested:

```
lwork \geqn + (np0+mq0 + NB)*NB
with nq0 = numroc(nn, NB, 0, 0, NPCOL).
```

For optimal performance, greater workspace is needed, that is
lwork $\geq \max \left(l w o r k, n, n h e t r d \_l w o p t, ~ n h e g s t \_l w o p t\right) ~$
where Iwork is as defined above, and

```
nhetrd_lwork = 2*(anb+1)*(4*nps+2) + (nps + 1)*nps;
```

rwork
lrwork

```
nhegst_lwopt = 2*np0*nb + nq0*nb + nb*nb
nb = desca(mb_)
np0 = numroc(n, nb, 0, 0, NPROW)
nq0 = numroc(n, nb, 0, 0, NPCOL)
ictxt = desca(ctxt_)
anb = pjlaenv(ictxt, 3, 'p?hettrd', 'L', 0, 0, 0, 0)
sqnpc = sqrt(dble(NPROW * NPCOL))
nps = max(numroc(n, 1, 0, 0, sqnpc), 2*anb)
```

numroc is a ScaLAPACK tool functions;
pjlaenv is a ScaLAPACK environmental inquiry function MYROW, MYCOL,
NPROW and NPCOL can be determined by calling the subroutine
blacs_gridinfo.

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Workspace array of size Irwork.
(local) INTEGER. The size of the array rwork.
See below for definitions of variables used to define Irwork.
If no eigenvectors are requested ( $\mathrm{jobz}=$ ' $N$ '), then $\operatorname{lrwork} \geq 5{ }^{2} n n+4{ }^{*} n$
If eigenvectors are requested ( $j \circ b z=' \mathrm{~V}$ '), then the amount of workspace required to guarantee that all eigenvectors are computed is:

```
lrwork \geq 4*n + max(5*nn, np0*mq0)+iceil(neig,
NPROW*NPCOL)*nn
```

The computed eigenvectors may not be orthogonal if the minimal workspace is supplied and orfac is too small. If you want to guarantee orthogonality (at the cost of potentially poor performance) you should add the following value to Irwork:

```
(clustersize-1)*n,
```

where clustersize is the number of eigenvalues in the largest cluster, where a cluster is defined as a set of close eigenvalues:

```
{w(k),..., w(k+clustersize-1)|w(j+1) \leqw(j)+orfac*2*norm(A)}
```

Variable definitions:
neig $=$ number of eigenvectors requested;

```
nb = desca(mb_) = desca(nb_) = descz(mb_) = descz(nb_);
nn = max(n, nb, 2);
```

$\operatorname{desca}\left(r s r c_{-}\right)=\operatorname{desca}\left(n b b_{-}\right)=\operatorname{descz}\left(r s r c_{-}\right)=\operatorname{descz}\left(\operatorname{csr} c_{-}\right)=0$;
np0 $=$ numroc ( $n n, n b, 0,0$, NPROW);
mq0 $=$ numroc (max(neig, nb, 2), nb, 0, 0, NPCOL);
iceil $(x, y)$ is a ScaLAPACK function returning ceiling $(x / y)$.
When Irwork is too small:
If /work is too small to guarantee orthogonality, p?hegvx attempts to maintain orthogonality in the clusters with the smallest spacing between the eigenvalues.
If Iwork is too small to compute all the eigenvectors requested, no computation is performed and info $=-25$ is returned. Note that when range='V', p?hegvx does not know how many eigenvectors are requested until the eigenvalues are computed. Therefore, when range= ' V ' and as long as lwork is large enough to allow p?hegvx to compute the eigenvalues, p?hegvx will compute the eigenvalues and as many eigenvectors as it can.

Relationship between workspace, orthogonality \& performance:
If clustersize > n/sqrt(NPROW*NPCOL), then providing enough space to compute all the eigenvectors orthogonally will cause serious degradation in performance. In the limit (that is, clustersize $=n-1$ ) p?stein will perform no better than ?stein on 1 processor.

For clustersize $=n /$ sqrt(NPROW*NPCOL) reorthogonalizing all eigenvectors will increase the total execution time by a factor of 2 or more.
For clustersize>n/sqrt(NPROW*NPCOL) execution time will grow as the square of the cluster size, all other factors remaining equal and assuming enough workspace. Less workspace means less reorthogonalization but faster execution.

If 1 work $=-1$, then Irwork is global input and a workspace query is assumed; the routine only calculates the size required for optimal performance for all work arrays. Each of these values is returned in the first entry of the corresponding work arrays, and no error message is issued by pxerbla.
(local) INTEGER. Workspace array.
(local) INTEGER, size of iwork.
liwork $\geq$ 6*nnp
Where: $n n p=\max (n$, NPROW*NPCOL $+1,4)$
If liwork $=-1$, then liwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
On exit, if jobz $=$ ' $V$ ', then if info $=0, \operatorname{sub}(A)$ contains the distributed matrix $Z$ of eigenvectors.
The eigenvectors are normalized as follows:

If ibtype $=1$ or 2 , then $Z^{H \star} \operatorname{sub}(B) * Z=i$;
If ibtype $=3$, then $Z^{H \star}$ inv $(\operatorname{sub}(B)) * Z=i$.
If jobz = 'N', then on exit the upper triangle (if uplo='U') or the lower triangle (if uplo='L') of $\operatorname{sub}(A)$, including the diagonal, is destroyed.

On exit, if info $\leq n$, the part of $\operatorname{sub}(B)$ containing the matrix is overwritten by the triangular factor $U$ or $L$ from the Cholesky factorization $\operatorname{sub}(B)=$ $U^{H *} U$, or $\operatorname{sub}(B)=L^{*} L^{H}$.
(global) INTEGER. The total number of eigenvalues found, $0 \leq m \leq n$.
(global) INTEGER. Total number of eigenvectors computed. $0<n z<m$. The number of columns of $z$ that are filled.
If jobz $\neq ' \mathrm{~V}$ ', $n z$ is not referenced.
If jobz = 'V', $n z=m$ unless the user supplies insufficient space and p?hegvx is not able to detect this before beginning computation. To get all the eigenvectors requested, the user must supply both sufficient space to hold the eigenvectors in $z$ ( $m \leq \operatorname{descz}\left(n_{-}\right)$) and sufficient workspace to compute them. (See Iwork below.) The routine p?hegvx is always able to detect insufficient space without computation unless range $=$ ' V '.
(global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Array of size $n$. On normal exit, the first $m$ entries contain the selected eigenvalues in ascending order.
(local).
COMPLEX for pchegvx
DOUBLE COMPLEX for pzhegvx.
global size $(n, n)$, local size (lld_z, LOCC $(j z+n-1))$.
If jobz = ' V ', then on normal exit the first $m$ columns of $z$ contain the orthonormal eigenvectors of the matrix corresponding to the selected eigenvalues. If an eigenvector fails to converge, then that column of $z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.
If $j o b z=$ ' $N$ ', then $z$ is not referenced.
On exit, work (1) returns the optimal amount of workspace.
On exit, rwork (1) contains the amount of workspace required for optimal efficiency
If jobz='N'rwork(1) = optimal amount of workspace required to compute eigenvalues efficiently
If jobz='V'rwork(1) = optimal amount of workspace required to compute eigenvalues and eigenvectors efficiently with no guarantee on orthogonality.
If range=' $V$ ', it is assumed that all eigenvectors may be required when computing optimal workspace.
ifail
iclustr
(global) INTEGER.
Array of size $n$.
ifail provides additional information when info $\neq 0$
If $(\bmod (i n f o / 16,2) \neq 0)$, then ifail(1) indicates the order of the smallest minor which is not positive definite.

If (mod (info, 2$) \neq 0$ ) on exit, then ifail(1) contains the indices of the eigenvectors that failed to converge.

If neither of the above error conditions are held, and $j o b z=' V '$, then the first $m$ elements of ifail are set to zero.
(global) INTEGER.
Array of size ( $2 *$ NPROW*NPCOL) . This array contains indices of eigenvectors corresponding to a cluster of eigenvalues that could not be reorthogonalized due to insufficient workspace (see Iwork, orfac and info). Eigenvectors corresponding to clusters of eigenvalues indexed iclustr(2*i-1) to iclustr ( $\left.2^{*} i\right)$, could not be reorthogonalized due to lack of workspace. Hence the eigenvectors corresponding to these clusters may not be orthogonal.
iclustr() is a zero terminated array. (iclustr( $2 * k$ )
$\neq 0$. and. clustr $(2 * k+1)=0$ ) if and only if $k$ is the number of clusters.
iclustr is not referenced if jobz $=$ ' $N$ '.
(global)
REAL for pchegvx
DOUBLE PRECISION for pzhegvx.
Array of size NPROW*NPCOL.
This array contains the gap between eigenvalues whose eigenvectors could not be reorthogonalized. The output values in this array correspond to the clusters indicated by the array iclustr. As a result, the dot product between eigenvectors corresponding to the $i$-th cluster may be as high as $\left(C^{\star} n\right) /$ gap(i), where $C$ is a small constant.
(global) INTEGER.
If info $=0$, the execution is successful.
If info <0: the $i$-th argument is an array and the $j$-entry had an illegal value, then info $=-(i * 100+j)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
If info> 0 :
If (mod (info, 2$) \neq 0$ ), then one or more eigenvectors failed to converge. Their indices are stored in ifail.

If (mod (info, 2,2$) \neq 0$ ), then eigenvectors corresponding to one or more clusters of eigenvalues could not be reorthogonalized because of insufficient workspace. The indices of the clusters are stored in the array iclustr.

If (mod (info/4,2) $\neq 0$ ), then space limit prevented p?sygvx from computing all of the eigenvectors between $v /$ and $v u$. The number of eigenvectors computed is returned in $n z$.

If (mod (info/ 8,2$) \neq 0)$, then $p$ ? stebz failed to compute eigenvalues.
If (mod (info/ 16,2$) \neq 0)$, then $B$ was not positive definite. ifail(1) indicates the order of the smallest minor which is not positive definite.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## ScaLAPACK Auxiliary Routines

ScaLAPACK Auxiliary Routines

Routine Name	Data Types	Description
b?laapp	$s, d$	Multiplies a matrix with an orthogonal matrix.
b?laexc	s,d	Swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonical form, by an orthogonal similarity transformation.
b?trexc	s,d	Reorders the Schur factorization of a general matrix.
p?lacgv	c, z	Conjugates a complex vector.
p?max1	C, z	Finds the index of the element whose real part has maximum absolute value (similar to the Level 1 PBLAS p?amax, but using the absolute value to the real part).
pmpcol	$s, d$	Finds the collaborators of a process.
pmpim2	s,d	Computes the eigenpair range assignments for all processes.
? combamax1	C, z	Finds the element with maximum real part absolute value and its corresponding global index.
p?sum1	$\mathrm{sc}, \mathrm{dz}$	Forms the 1-norm of a complex vector similar to Level 1 PBLAS p?asum, but using the true absolute value.
p?dbtrsv	$s, d, c, z$	Computes an $L U$ factorization of a general tridiagonal matrix with no pivoting. The routine is called by p?dbtrs.
p?dttrsv	$s, d, c, z$	Computes an $L U$ factorization of a general band matrix, using partial pivoting with row interchanges. The routine is called by p?dttrs.
p?gebal	s,d	Balances a general real/complex matrix.
p?gebd2	$s, d, c, z$	Reduces a general rectangular matrix to real bidiagonal form by an orthogonal/unitary transformation (unblocked algorithm).
p?gehd2	$s, d, c, z$	Reduces a general matrix to upper Hessenberg form by an orthogonal/unitary similarity transformation (unblocked algorithm).
p?gelq2	$s, d, c, z$	Computes an $L Q$ factorization of a general rectangular matrix (unblocked algorithm).


Routine Name	Data   Types	Description
p?geq12	$s, d, c, z$	Computes a QL factorization of a general rectangular matrix (unblocked algorithm).
p?geqr2	$s, d, c, z$	Computes a $Q R$ factorization of a general rectangular matrix (unblocked algorithm).
p?gerq2	$s, d, c, z$	Computes an $R Q$ factorization of a general rectangular matrix (unblocked algorithm).
p?getf2	$s, d, c, z$	Computes an $L U$ factorization of a general matrix, using partial pivoting with row interchanges (local blocked algorithm).
p?labrd	$s, d, c, z$	Reduces the first $n b$ rows and columns of a general rectangular matrix A to real bidiagonal form by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of A.
p?lacon	$s, d, c, z$	Estimates the 1-norm of a square matrix, using the reverse communication for evaluating matrix-vector products.
p?laconsb	s,d	Looks for two consecutive small subdiagonal elements.
p?lacp2	$s, d, c, z$	Copies all or part of a distributed matrix to another distributed matrix.
p?lacp3	s, d	Copies from a global parallel array into a local replicated array or vice versa.
p?lacpy	$s, d, c, z$	Copies all or part of one two-dimensional array to another.
p?laevswp	$s, d, c, z$	Moves the eigenvectors from where they are computed to ScaLAPACK standard block cyclic array.
p?lahrd	$s, d, c, z$	Reduces the first $n b$ columns of a general rectangular matrix A so that elements below the $k^{\text {th }}$ subdiagonal are zero, by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of $A$.
p?laiect	$s, d, c, z$	Exploits IEEE arithmetic to accelerate the computations of eigenvalues. (C interface function).
p?lamve	s, d	Copies all or part of one two-dimensional distributed array to another.
p?lange	$s, d, c, z$	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a general rectangular matrix.
p?lanhs	$s, d, c, z$	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of an upper Hessenberg matrix.
p?lansy, p?lanhe	$\begin{aligned} & s, d, c, z / c \\ & , z \end{aligned}$	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a real symmetric or complex Hermitian matrix.
p?lantr	$s, d, c, z$	Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a triangular matrix.


Routine Name	Data   Types	Description
p?lapiv	$s, d, c, z$	Applies a permutation matrix to a general distributed matrix, resulting in row or column pivoting.
p?laqge	$s, d, c, z$	Scales a general rectangular matrix, using row and column scaling factors computed by p?geequ.
p?laqr0	s,d	Computes the eigenvalues of a Hessenberg matrix and optionally returns the matrices from the Schur decomposition.
p?laqr1	s,d	Sets a scalar multiple of the first column of the product of a 2-by-2 or 3-by-3 matrix and specified shifts.
p?laqr2	s,d	Performs the orthogonal/unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
p?laqr3	s, d	Performs the orthogonal/unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
p?laqr 4	s, d	Computes the eigenvalues of a Hessenberg matrix, and optionally computes the matrices from the Schur decomposition.
p?laqr5	s, d	Performs a single small-bulge multi-shift QR sweep.
p?laqsy	$s, d, c, z$	Scales a symmetric/Hermitian matrix, using scaling factors computed by p?poequ.
$p$ ?laredid	s,d	Redistributes an array assuming that the input array bycol is distributed across rows and that all process columns contain the same copy of bycol.
p ? lared2d	$s, d$	Redistributes an array assuming that the input array byrow is distributed across columns and that all process rows contain the same copy of byrow .
p?larf	$s, d, c, z$	Applies an elementary reflector to a general rectangular matrix.
p?larfb	$s, d, c, z$	Applies a block reflector or its transpose/conjugate-transpose to a general rectangular matrix.
p?larfc	C, z	Applies the conjugate transpose of an elementary reflector to a general matrix.
p?larfg	$s, d, c, z$	Generates an elementary reflector (Householder matrix).
p?larft	$s, d, c, z$	Forms the triangular vector $T$ of a block reflector $H=I-V T V^{H}$
p?larz	$s, d, c, z$	Applies an elementary reflector as returned by p?tzrzf to a general matrix.
p?larzb	$s, d, c, z$	Applies a block reflector or its transpose/conjugate-transpose as returned by p?tzrzf to a general matrix.
p?larzc	c, z	Applies (multiplies by) the conjugate transpose of an elementary reflector as returned by p?tzrzf to a general matrix.


Routine Name	Data   Types	Description
p?larzt	$s, d, c, z$	Forms the triangular factor $T$ of a block reflector $H=I-V T V^{H}$ as returned by p?tzrzf.
p?lascl	$s, d, c, z$	Multiplies a general rectangular matrix by a real scalar defined as $C_{\text {to }} / C_{\text {from }}$.
p?laset	$s, d, c, z$	Initializes the off-diagonal elements of a matrix to $\alpha$ and the diagonal elements to $\beta$.
p?lasmsub	s,d	Looks for a small subdiagonal element from the bottom of the matrix that it can safely set to zero.
p?lassq	$s, d, c, z$	Updates a sum of squares represented in scaled form.
p?laswp	$s, d, c, z$	Performs a series of row interchanges on a general rectangular matrix.
p?latra	$s, d, c, z$	Computes the trace of a general square distributed matrix.
p?latrd	$s, d, c, z$	Reduces the first $n b$ rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal/unitary similarity transformation.
p?latrz	$s, d, c, z$	Reduces an upper trapezoidal matrix to upper triangular form by means of orthogonal/unitary transformations.
p?lauu2	$s, d, c, z$	Computes the product $U U^{H}$ or $L^{H} L$, where $U$ and $L$ are upper or lower triangular matrices (local unblocked algorithm).
p?laum	$s, d, c, z$	Computes the product $U U^{H}$ or $L^{H} L$, where $U$ and $L$ are upper or lower triangular matrices.
p?lawil	s,d	Forms the Wilkinson transform.
p?org2l/p?ung2l	$s, d, c, z$	Generates all or part of the orthogonal/unitary matrix $Q$ from a $Q L$ factorization determined by p?geqle (unblocked algorithm).
$p$ ?org2r/p?ung2r	$s, d, c, z$	Generates all or part of the orthogonal/unitary matrix $Q$ from a $Q R$ factorization determined by p?geqrf (unblocked algorithm).
p?orgl2/p?ungl2	$s, d, c, z$	Generates all or part of the orthogonal/unitary matrix $Q$ from an $L Q$ factorization determined by p?gelqf (unblocked algorithm).
p?orgr2/p?ungr2	$s, d, c, z$	Generates all or part of the orthogonal/unitary matrix $Q$ from an $R Q$ factorization determined by p?gerqf (unblocked algorithm).
p?orm2l/p?unm2l	$s, d, c, z$	Multiplies a general matrix by the orthogonal/unitary matrix from a QL factorization determined by p?geqlf (unblocked algorithm).
$p$ ?orm2r/p?unm2r	$s, d, c, z$	Multiplies a general matrix by the orthogonal/unitary matrix from a $Q R$ factorization determined by p?geqrf (unblocked algorithm).
p?orml2/p?unml2	$s, d, c, z$	Multiplies a general matrix by the orthogonal/unitary matrix from an $L Q$ factorization determined by $p$ ?gelqf (unblocked algorithm).
p?ormr2/p?unmr2	$s, d, c, z$	Multiplies a general matrix by the orthogonal/unitary matrix from an $R Q$ factorization determined by $p$ ?gerqf (unblocked algorithm).


Routine Name	Data   Types	Description
p?pbtrsv	$s, d, c, z$	Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a banded matrix computed by p?pbtrf.
p?pttrsv	$s, d, c, z$	Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a tridiagonal matrix computed by p?pttrf.
p?potf2	$s, d, c, z$	Computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (local unblocked algorithm).
p?rot	s,d	Applies a planar rotation to two distributed vectors.
p?rscl	s,d,cs,zd	Multiplies a vector by the reciprocal of a real scalar.
p?sygs2/p?hegs2	$s, d, c, z$	Reduces a symmetric/Hermitian positive-definite generalized eigenproblem to standard form, using the factorization results obtained from p?potrf (local unblocked algorithm).
p?sytd2/p?hetd2	$s, d, c, z$	Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary similarity transformation (local unblocked algorithm).
p?trord	s,d	Reorders the Schur factorization of a general matrix.
p?trsen	s,d	Reorders the Schur factorization of a matrix and (optionally) computes the reciprocal condition numbers and invariant subspace for the selected cluster of eigenvalues.
p?trti2	$s, d, c, z$	Computes the inverse of a triangular matrix (local unblocked algorithm).
?lamsh	s,d	Sends multiple shifts through a small (single node) matrix to maximize the number of bulges that can be sent through.
?laqr 6	s,d	Performs a single small-bulge multi-shift QR sweep collecting the transformations.
?lar1va	s, d	Computes scaled eigenvector corresponding to given eigenvalue.
?laref	s,d	Applies Householder reflectors to matrices on either their rows or columns.
? larrb2	s,d	Provides limited bisection to locate eigenvalues for more accuracy.
?larrd2	s,d	Computes the eigenvalues of a symmetric tridiagonal matrix to suitable accuracy.
?larre2	s,d	Given a tridiagonal matrix, sets small off-diagonal elements to zero and for each unreduced block, finds base representations and eigenvalues.
?larre2a	s,d	Given a tridiagonal matrix, sets small off-diagonal elements to zero and for each unreduced block, finds base representations and eigenvalues.
? larrf2	s,d	Finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated.
?larrv2	s,d	Computes the eigenvectors of the tridiagonal matrix $T=L^{*} D^{*} L^{\top}$ given $L, D$ and the eigenvalues of $L^{*} D^{*} L^{\top}$.


Routine Name	Data Types	Description
?lasorte	s,d	Sorts eigenpairs by real and complex data types.
?lasrt2	s,d	Sorts numbers in increasing or decreasing order.
?stegr2	s,d	Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.
?stegr2a	s,d	Computes selected eigenvalues and initial representations needed for eigenvector computations.
?stegr2b	s,d	From eigenvalues and initial representations computes the selected eigenvalues and eigenvectors of the real symmetric tridiagonal matrix in parallel on multiple processors.
?stein2	s,d	Computes the eigenvectors corresponding to specified eigenvalues of a real symmetric tridiagonal matrix, using inverse iteration.
? dbtf 2	$s, d, c, z$	Computes an $L U$ factorization of a general band matrix with no pivoting (local unblocked algorithm).
? dbtrf	$s, d, c, z$	Computes an $L U$ factorization of a general band matrix with no pivoting (local blocked algorithm).
?dttrf	$s, d, c, z$	Computes an $L U$ factorization of a general tridiagonal matrix with no pivoting (local blocked algorithm).
?dttrsv	$s, d, c, z$	Solves a general tridiagonal system of linear equations using the $L U$ factorization computed by ?dttrf.
?pttrsv	$s, d, c, z$	Solves a symmetric (Hermitian) positive-definite tridiagonal system of linear equations, using the $L D L^{H}$ factorization computed by ?pttrf.
?steqr2	s,d	Computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method.
?trmvt	$s, d, c, z$	Performs matrix-vector operations.
pilaenv	NA	Returns the positive integer value of the logical blocking size.
pilaenvx	NA	Called from the ScaLAPACK routines to choose problem-dependent parameters for the local environment.
pjlaenv	NA	Called from the ScaLAPACK symmetric and Hermitian tailored eigen-routines to choose problem-dependent parameters for the local environment.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

```
b?laapp
Multiplies a matrix with an orthogonal matrix.
Syntax
call bslaapp(iside, m, n, nb, a, lda, nitraf, itraf, dtraf, work)
```

```
call bdlaapp(iside, m, n, nb, a, lda, nitraf, itraf, dtraf, work)
```


## Description

b?laapp computes
$B=Q^{\top} A$ or $B=A Q$
where $A$ is an m-by-n matrix and $Q$ is an orthogonal matrix represented by the parameters in the arrays itraf and dtraf as described in b?trexc.

This is an auxiliary routine called by p?trord.

## Input Parameters

iside	INTEGER
	Specifies whether $Q$ multiplies $A$ from the left or right as follows: $\begin{aligned} & =0: \text { compute } B=Q^{\top} A ; \\ & =1: \text { compute } B=A Q . \end{aligned}$
m	INTEGER
	The number of rows of $A$.
$n$	INTEGER
	The number of columns of $A$.
nb	INTEGER
	If iside $=0$, the $Q$ is applied block column-wise to the rows of $A$ and $n b$ specifies the maximal width of the block columns.
	If iside $=1$, this variable is not referenced.
a	REAL for bslaapp
	DOUBLE PRECISION for bdlaapp
	Array of size ( 1 da, $n$ ).
	On entry, the matrix $A$.
Ida	INTEGER
	The leading dimension of the array $a .1 d a \geq \max (1, n)$.
nitraf	INTEGER
	Length of the array itraf. nitraf 0 .
itraf	INTEGER array, length nitraf
	List of parameters for representing the transformation matrix $Q$, see b?trexc.
work	(workspace) REAL array of size $n$.

## OUTPUT Parameters

```
a
dtraf
```

```
a is overwritten by B.
REAL for bslaapp
```

DOUBLE PRECISION for bdlaapp
Array, length $k$.
If iside $=0, k=3^{*}(n / n b)$.
If iside $=1, k=3^{*}$ nitraf.
List of parameters for representing the transformation matrix $Q$, see b?trexc

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## b?laexc

Swaps adjacent diagonal blocks of a real upper quasitriangular matrix in Schur canonical form, by an orthogonal similarity transformation.

## Syntax

```
call bslaexc(n, t, ldt, j1, n1, n2, itraf, dtraf, work, info)
call bdlaexc(n, t, ldt, j1, n1, n2, itraf, dtraf, work, info)
```


## Description

b ? laexc swaps adjacent diagonal blocks $T 11$ and $T 22$ of order 1 or 2 in an upper quasi-triangular matrix $T$ by an orthogonal similarity transformation.

In contrast to the LAPACK routine ?laexc, the orthogonal transformation matrix $Q$ is not explicitly constructed but represented by parameters contained in the arrays itraf and dtraf. See the description of b?trexc for more details.
$T$ must be in Schur canonical form, that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements of opposite sign.

## Input Parameters

$n$	INTEGER
	The order of the matrix $T . n \geq 0$.
t	REAL for bslaexc
	DOUBLE PRECISION for bdlaexc
	Array of size ( $1 d t, n$ ).
	The upper quasi-triangular matrix $T$, in Schur canonical form.
$1 d t$	INTEGER
	The leading dimension of the array $t .1 d t \geq \max (1, n)$.
j1	INTEGER
	The index of the first row of the first block T11.
n1	INTEGER

The order of the first block T11. $n 1=0,1$ or 2 .

The order of the second block T22. $n 2=0,1$ or 2 .
REAL for bslaexc
DOUBLE PRECISION for bdlaexc
(Workspace) array of size $n$.

## OUTPUT Parameters

t
itraf
dtraf
info

The updated matrix $T$, in Schur canonical form.
INTEGER array, length $k$, where
$k=1$, if $n 1+n 2=2$;
$k=2$, if $n 1+n 2=3$;
$k=4$, if $n 1+n 2=4$.
List of parameters for representing the transformation matrix $Q$, see b?trexc.

REAL for bslaexc
DOUBLE PRECISION for bdlaexc
Array, length $k$, where
$k=2$, if $n 1+n 2=2$;
$k=5$, if $n 1+n 2=3$;
$k=10$, if $n 1+n 2=4$.
List of parameters for representing the transformation matrix $Q$, see b?trexc.

INTEGER
$=0$ : successful exit
= 1: the transformed matrix $T$ would be too far from Schur form; the blocks are not swapped and $T$ and $Q$ are unchanged.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
b?trexc
Reorders the Schur factorization of a general matrix.

## Syntax

```
call bstrexc(n, t, ldt, ifst, ilst, nitraf, itraf, ndtraf, dtraf, work, info)
call bdtrexc(n, t, ldt, ifst, ilst, nitraf, itraf, ndtraf, dtraf, work, info)
```


## Description

b?trexc reorders the real Schur factorization of a real matrix $A=Q * T * Q^{\top}$, so that the diagonal block of $T$ with row index ifst is moved to row ilst.

The real Schur form $T$ is reordered by an orthogonal similarity transformation $Z^{\top} * T^{*} Z$. In contrast to the LAPACK routine ?trexc, the orthogonal matrix $Z$ is not explicitly constructed but represented by parameters contained in the arrays itraf and dtraf. See Application Notes for further details.
$T$ must be in Schur canonical form (as returned by ?hseqr), that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements of opposite sign.

## Input Parameters



REAL for bstrexc	
	DOUBLE PRECISION for bdtrexc

Array of size (ldt, $n$ ).
The upper quasi-triangular matrix $T$, in Schur canonical form.
INTEGER
The leading dimension of the array $t . l d t \geq \max (1, n)$.

## INTEGER

Specify the reordering of the diagonal blocks of $T$. The block with row index ifst is moved to row ilst, by a sequence of transpositions between adjacent blocks.

INTEGER
Length of the array itraf.
As a minimum requirement, nitraf $\geq \max (1,|i l s t-i f s t|)$.
If there are 2-by-2 blocks in $t$ then nitraf must be larger; a safe choice is nitraf $\geq \max (1,2 *|i l s t-i f s t|)$.

INTEGER
Length of the array dtraf.
As a minimum requirement, ndtraf $\max \left(1,2^{*}|i l s t-i f s t|\right)$.
If there are 2-by-2 blocks in $t$ then ndtraf must be larger; a safe choice is ndtraf $\geq \max \left(1,5^{*}|i l s t-i f s t|\right)$.

REAL for bstrexc
DOUBLE PRECISION for bdtrexc
(Workspace) array of size $n$.

## OUTPUT Parameters

t
ifst, ilst
On exit, the reordered upper quasi-triangular matrix, in Schur canonical form.

If ifst pointed on entry to the second row of a 2-by-2 block, it is changed to point to the first row; ilst always points to the first row of the block in its final position (which may differ from its input value by +1 or -1 ).
$1 \leq i f s t \leq n ; 1 \leq i l s t \leq n$.

nitraf	Actual length of the array itraf.
itraf	INTEGER array, length nitraf
	List of parameters for representing the transformation matrix $Z$. See Application Notes for further details.
ndtraf	Actual length of the array dtraf.
dtraf	REAL for bstrexc
	DOUBLE PRECISION for bdtrexc
	Array, length ndtraf
	List of parameters for representing the transformation matrix $Z$. See Application Notes for further details.
info	INTEGER
	$=0$ : successful exit
	< 0 : if info $=-i$, the $i$-th argument had an illegal value   = 1: two adjacent blocks were too close to swap (the problem is very illconditioned); t may have been partially reordered, and ilst points to the first row of the current position of the block being moved.
	$=2$ : the 2 by 2 block to be reordered split into two 1 by 1 blocks and the second block failed to swap with an adjacent block. ilst points to the first row of the current position of the whole block being moved.

## Application Notes

The orthogonal transformation matrix $Z$ is a product of nitraf elementary orthogonal transformations. The parameters defining these transformations are stored in the arrays itraf and dtraf as follows:

Consider the $i$-th transformation acting on rows/columns pos, pos $+1, \ldots$ If this transformation is

- a Givens rotation with cosine $c$ and sine $s$ then
itraf $(i)=$ pos, $\operatorname{dtraf}(i)=c$, dtraf $(i+1)=s$;
- a Householder reflector $H=I-t^{*} v * v^{\prime}$ with $v=[1 ; v 2 ; v 3]$ then
itraf $(i)=n+\operatorname{pos}, \operatorname{dtraf}(i)=t, d \operatorname{traf}(i+1)=v 2, d t r a f(i+2)=v 3 ;$
- a Householder reflector $\mathrm{H}=\mathrm{I}-t^{*} v^{*} v^{\prime}$ with $v=[v 1 ; v 2 ; 1]$ then
$i \operatorname{traf}(i)=2 *_{n}+\operatorname{pos}, \operatorname{dtraf}(i)=v 1, d \operatorname{traf}(i+1)=v 2, d \operatorname{traf}(i+2)=t$;
Note that the parameters in dtraf are stored consecutively.


## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lacgv
Conjugates a complex vector.

## Syntax

```
call pclacgv(n, x, ix, jx, descx, incx)
call pzlacgv(n, x, ix, jx, descx, incx)
```


## Description

The p? lacgvroutine conjugates a complex vector sub $(X)$ of length $n$, where sub $(X)$ denotes $X$ (ix, jx: jx $+n-1)$ if $i n c x=m_{-} x$, and $X(i x: i x+n-1, j x)$ if $i n c x=1$.

Input Parameters

$n$	(global) INTEGER. The length of the distributed vector $\operatorname{sub}(X)$.
$x$	(local).
	COMPLEX for pclacgv
	COMPLEX*16 for pzlacgv.
	Pointer into the local memory to an array of size ( $/ 1 / d_{-} x, *$ ). On entry the vector to be conjugated $x(i)=x\left(i x+(j x-1) * m_{-} x+(i-1) * i n c x\right), 1 \leq i$ $\leq n$.
ix	(global) INTEGER. The row index in the global matrix $X$ indicating the first row of $\operatorname{sub}(X)$.
jx	(global) Integer. The column index in the global matrix $X$ indicating the first column of $\operatorname{sub}(X)$.
descx	(global and local) INTEGER. Array of size dlen_=9. The array descriptor for the distributed matrix $X$.
incx	(global) INTEGER. The global increment for the elements of $X$. Only two values of incx are supported in this version, namely 1 and $m_{-} x$. incx must not be zero.

## Output Parameters

X
(local).
On exit, the local pieces of conjugated distributed vector $\operatorname{sub}(X)$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?max1

Finds the index of the element whose real part has
maximum absolute value (similar to the Level 1 PBLAS
p?amax, but using the absolute value to the real part).

## Syntax

```
call pcmaxl(n, amax, indx, x, ix, jx, descx, incx)
call pzmaxl(n, amax, indx, x, ix, jx, descx, incx)
```


## Description

The $p$ ? maxiroutine computes the global index of the maximum element in absolute value of a distributed vector $\operatorname{sub}(X)$. The global index is returned in indx and the value is returned in amax, where sub $(X)$ denotes $X(i x: i x+n-1, j x)$ if $i n c x=1, X(i x, j x: j x+n-1)$ if $i n c x=m_{x} x$.

## Input Parameters

$n$
$X$
ix
jX
descx
incx
(global) pointer to INTEGER. The number of components of the distributed vector $\operatorname{sub}(X) . n \geq 0$.
(local)
COMPLEX for pcmax1.
COMPLEX*16 for pzmax1
Pointer into the local memory to an array of size (I/d_x,LOCc(jx+n-1)). On entry this array contains the local pieces of the distributed vector $\operatorname{sub}(X)$.
(global) INTEGER. The row index in the global matrix $X$ indicating the first row of $\operatorname{sub}(X)$.
(global) INTEGER. The column index in the global matrix $X$ indicating the first column of $\operatorname{sub}(X)$.
(global and local) INTEGER. Array of size dlen_. The array descriptor for the distributed matrix $X$.
(global)INTEGER.The global increment for the elements of $X$. Only two values of incx are supported in this version, namely 1 and $m_{-} x$. incx must not be zero.
(global output) pointer to REAL. The absolute value of the largest entry of the distributed vector $\operatorname{sub}(X)$ only in the scope of $\operatorname{sub}(X)$.
(global output) pointer to INTEGER.The global index of the element of the distributed vector $\operatorname{sub}(X)$ whose real part has maximum absolute value.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
pilaver
Returns the ScaLAPACK version.

## Syntax

```
call pilaver (vers_major, vers_minor, vers_patch)
```


## Description

This subroutine returns the ScaLAPACK version.

## Output Parameters

```
vers_major
vers_minor
vers_patch
```

INTEGER.
Return the ScaLAPACK major version.

## INTEGER.

Return the ScaLAPACK minor version from the major version.
INTEGER.

Return the ScaLAPACK patch version from the minor version.
pmpcol
Finds the collaborators of a process.

## Syntax

```
call pmpcol(myproc, nprocs, iil, needil, neediu, pmyils, pmyius, colbrt, frstcl,
lastcl)
```


## Description

Using the output from pmpim2 and given the information on eigenvalue clusters, pmpcol finds the collaborators of myproc.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201
Input Parameters
myproc
nprocs
iil
needil
neediu
pmyils
pmyius

INTEGER
The processor number, $0 \leq m y p r o c<$ nprocs.
INTEGER
The total number of processors available.
INTEGER
The index of the leftmost eigenvalue in the eigenvalue cluster.
INTEGER
The leftmost position in the eigenvalue cluster needed by myproc.
INTEGER
The rightmost position in the eigenvalue cluster needed by myproc.
INTEGER array
For each processor $p, 0<p \leq n p r o c s$, pmyils $(p)$ is the index of the first eigenvalue in the eigenvalue cluster to be computed.
pmyils( $p$ ) equals zero if $p$ stays idle.
INTEGER array
For each processor $p, \operatorname{pmyius}(p)$ is the index of the last eigenvalue in the eigenvalue cluster to be computed.
pmyius( $p$ ) equals zero if $p$ stays idle.

## OUTPUT Parameters

colbrt

LOGICAL

```
 Equals .TRUE. if myproc collaborates.
frstcl, lastcl
INTEGER
First and last collaborator of myproc .
myproc collaborates with:
frstcl,..., myproc-1, myproc+1, .., lastcl
If myproc = frstcl, there are no collaborators on the left. If myproc =
lastcl, there are no collaborators on the right.
If frstcl = 0 and lastcl = nprocs-1, then myproc collaborates with
everybody
```


## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
pmpim2
Computes the eigenpair range assignments for all processes.

Syntax

```
call pmpim2(il, iu, nprocs, pmyils, pmyius)
```


## Description

pmpim2 is the scheduling subroutine. It computes for all processors the eigenpair range assignments.

Product and Performance Information
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Input Parameters

```
il, iu
```

nprocs

## Output Parameters

```
pmyils
```

pmyius

INTEGER
The range of eigenpairs to be computed.
INTEGER
The total number of processors available.

## INTEGER array

For each processor $p, \operatorname{pmyils}(p)$ is the index of the first eigenvalue in a cluster to be computed.
pmyils(p) equals zero if $p$ stays idle.
INTEGER array
For each processor $p$, pmyius $(p)$ is the index of the last eigenvalue in a cluster to be computed.
pmyius( $p$ ) equals zero if $p$ stays idle.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## ?combamax1

Finds the element with maximum real part absolute value and its corresponding global index.

## Syntax

```
call ccombamax1(v1, v2)
call zcombamax1(v1, v2)
```


## Description

The ?combamax1routine finds the element having maximum real part absolute value as well as its corresponding global index.

## Input Parameters

```
v1
(local)
```

v2
COMPLEX for ccombamax1
COMPLEX*16 for zcombamax1
Array of size 2. The first maximum absolute value element and its global index. v1 (1) =amax, v1 (2) =indx.
(local)
COMPLEX for ccombamax1
COMPLEX*16 for zcombamax1
Array of size 2 . The second maximum absolute value element and its global index. v2(1) =amax, v2(2) =indx.

## Output Parameters

v1
(local).
The first maximum absolute value element and its global index.
v1 (1) =amax, v1 (2) =indx.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?sum1

Forms the 1-norm of a complex vector similar to Level
1 PBLAS p?asum, but using the true absolute value.

## Syntax

```
call pscsum1(n, asum, x, ix, jx, descx, incx)
call pdzsum1(n, asum, x, ix, jx, descx, incx)
```


## Description

The p?sum1routine returns the sum of absolute values of a complex distributed vector $\operatorname{sub}(x)$ in asum, where $\operatorname{sub}(x)$ denotes $x(i x: i x+n-1, j x: j x)$, if incx $=1, x(i x: i x, j x: j x+n-1)$, if incx $=m_{-} x$.
Based on p?asum from the Level 1 PBLAS. The change is to use the 'genuine' absolute value.

## Input Parameters

$n$	(global) pointer to INTEGER. The number of components of the distributed vector $\operatorname{sub}(x) . n \geq 0$.
$x$	(local ) COMPLEX for pscsum1
	COMPLEX*16 for pdzsum1.
	Pointer into the local memory to an array of size (IId_x, LOCc $(j x+n-1)$ ). This array contains the local pieces of the distributed vector $\operatorname{sub}(X)$.
ix	(global) INTEGER.The row index in the global matrix $X$ indicating the first row of $\operatorname{sub}(X)$.
jx	(global) INTEGER. The column index in the global matrix $X$ indicating the first column of $\operatorname{sub}(X)$
descx	(local) INTEGER. Array of size dlen_=9. The array descriptor for the distributed matrix $X$.
incx	(global) INTEGER.The global increment for the elements of $X$. Only two values of incx are supported in this version, namely 1 and $m_{-} x$.

## Output Parameters

```
asum
```

(local)
Pointer to REAL. The sum of absolute values of the distributed vector sub $(X)$ only in its scope.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?dbtrsv

Computes an LU factorization of a general triangular matrix with no pivoting. The routine is called by p?dbtrs.

## Syntax

```
call psdbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pddbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pcdbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pzdbtrsv(uplo, trans, n, bwl, bwu, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
```


## Description

The p?dbtrsvroutine solves a banded triangular system of linear equations
$A(1: n, j a: j a+n-1) * X=B(i b: i b+n-1,1$ :nrhs $)$ or
$A(1: n, j a: j a+n-1)^{T *} X=B\left(i b: i b+n-1,1\right.$ :nrhs) (for real flavors); $A(1: n, j a: j a+n-1)^{H *} X=B(i b: i b+n-1$, 1 :nrhs) (for complex flavors),
where $A(1: n, j a: j a+n-1)$ is a banded triangular matrix factor produced by the Gaussian elimination code of p?dbtrf and is stored in $A(1: n, j a: j a+n-1)$ and $a f$. The matrix stored in $A(1: n, j a: j a+n-1)$ is either upper or lower triangular according to uplo, and the choice of solving $A(1: n, j a: j a+n-1)$ or $A(1: n$, ja: ja $+n-1)^{T}$ is dictated by the user by the parameter trans.

The routine $p$ ? dbtrf must be called first.

## Input Parameters

uplo	(global) CHARACTER.
	If uplo='U', the upper triangle of $A(1: n, j a: j a+n-1)$ is stored,
	if uplo = 'L', the lower triangle of $A(1: n, j a: j a+n-1)$ is stored.
trans	(global) CHARACTER.
	If trans $=$ ' ${ }^{\prime}$ ', solve with $A(1: n, j a: j a+n-1)$,
	if trans = 'C', solve with conjugate transpose $A(1: n, j a: j a+n-1)$.
$n$	(global) INTEGER. The order of the distributed submatrix $A ;(n \geq 0)$.
bwl	(global) INTEGER. Number of subdiagonals. $0 \leq b w l \leq n-1$.
bwu	(global) INTEGER. Number of subdiagonals. $0 \leq b w u \leq n-1$.
nrhs	(global) INTEGER. The number of right-hand sides; the number of columns of the distributed submatrix $B$ ( $n r h s \geq 0$ ).
a	(local).
	REAL for psdbtrsv
	DOUBLE PRECISION for pddbtrsv
	COMPLEX for pcdbtrsv
	COMPLEX*16 for pzdbtrsv.
	Pointer into the local memory to an array of size (IId_a, LOCc(ja+n-1)), where $/ / d \_a \geq(b w /+b w u+1)$. On entry, this array contains the local pieces of the $n$-by- $n$ unsymmetric banded distributed Cholesky factor $L$ or $L^{T}$, represented in global $A$ as $A(1: n, j a: j a+n-1)$. This local portion is stored in the packed banded format used in LAPACK. See the Application Notes below and the ScaLAPACK manual for more detail on the format of distributed matrices.
ja	(global) INTEGER. The index in the global matrix $A$ that points to the start of the matrix to be operated on (which may be either all of $A$ or a submatrix of $A$ ).
desca	(global and local) INTEGER array of size dlen_.
	if $1 d$ type (dtype_a $=501$ or 502), dlen $\geq 7$;

b
i.b
descb
if $2 d$ type (dtype_a $=1$ ), dlen $\geq 9$. The array descriptor for the distributed matrix $A$. Contains information of mapping of $A$ to memory.
(local)
REAL for psdbtrsv
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Pointer into the local memory to an array of local lead dimension I/d_b $\quad \geq n b$. On entry, this array contains the local pieces of the right-hand sides $B$ (ib:ib+n-1, 1:nrhs).
(global) INTEGER. The row index in the global matrix $B$ that points to the first row of the matrix to be operated on (which may be either all of $B$ or a submatrix of $B$ ).
(global and local) INTEGER array of size dlen_.
if $1 d$ type (dtype_b =502), dlen $\geq 7$;
if $2 d$ type ( $d t y p e \_b=1$ ), dlen $\geq 9$. The array descriptor for the distributed matrix $B$. Contains information of mapping $B$ to memory.
(local)
INTEGER. Size of user-input auxiliary fill-in space af.
$l a £ n b^{*}(b w l+b w u)+6 * \max (b w l, b w u) * \max (b w l, b w u)$. If laf is not large enough, an error code is returned and the minimum acceptable size will be returned in $a f(1)$.
(local).
REAL for psdbtrsv
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
Temporary workspace. This space may be overwritten in between calls to routines.
work must be the size given in lwork.
(local or global) INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal acceptable size will be returned in work(1) and an error code is returned.
lwork $\geq \max (b w l, b w u) * n r h s$.

## Output Parameters

## a

This local portion is stored in the packed banded format used in LAPACK. Please see the ScaLAPACK manual for more detail on the format of distributed matrices.
b
$a f$
work
info

On exit, this contains the local piece of the solutions distributed matrix $X$. (local).

REAL for psdbtrsv
DOUBLE PRECISION for pddbtrsv
COMPLEX for pcdbtrsv
COMPLEX*16 for pzdbtrsv.
auxiliary fill-in space. The fill-in space is created in a call to the factorization routine p?dbtrf and is stored in af. If a linear system is to be solved using $p$ ? dbtrf after the factorization routine, af must not be altered after the factorization.

On exit, work(1) contains the minimal lwork.
(local).
INTEGER. If info $=0$, the execution is successful.
< 0: If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-(i * 100+j)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?dttrsv

Computes an LU factorization of a general band matrix, using partial pivoting with row interchanges.
The routine is called by p?dttrs.

## Syntax

```
call psdttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pddttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pcdttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pzdttrsv(uplo, trans, n, nrhs, dl, d, du, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
```


## Description

The p?dttrsvroutine solves a tridiagonal triangular system of linear equations

```
A(1 :n, ja:ja+n-1)*X = B(ib:ib+n-1, 1 :nrhs) or
A(1 :n, ja:ja+n-1)T * X = B(ib:ib+n-1, 1 :nrhs) for real flavors; A(1 :n, ja:ja+n-1) H* X =
B(ib:ib+n-1, 1 :nrhs) for complex flavors,
```

where $A(1: n, j a: j a+n-1)$ is a tridiagonal matrix factor produced by the Gaussian elimination code of p?dttrf and is stored in $A(1: n, j a: j a+n-1)$ and $a f$.

The matrix stored in $A(1: n, j a: j a+n-1)$ is either upper or lower triangular according to uplo, and the choice of solving $A(1: n, j a: j a+n-1)$ or $A(1: n, j a: j a+n-1)^{T}$ is dictated by the user by the parameter trans.
The routine $p$ ?dttrf must be called first.

## Input Parameters

$n$
nrhs
$d 1$
d
$d u$
(global) CHARACTER.
If uplo='U', the upper triangle of $A(1: n, j a: j a+n-1)$ is stored,
if uplo = 'L', the lower triangle of $A(1: n, j a: j a+n-1)$ is stored.
(global) CHARACTER.
If trans $=$ 'N', solve with $A(1: n, j a: j a+n-1)$,
if trans $=$ 'C', solve with conjugate transpose $A(1: n, \quad j a: j a+n-1)$.
(global) INTEGER. The order of the distributed submatrix $A ;(n \geq 0)$.
(global) INTEGER. The number of right-hand sides; the number of columns
of the distributed submatrix $B(i b: i b+n-1,1: n r h s) .(n r h s \geq 0)$.
(local).
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer to local part of global vector storing the lower diagonal of the matrix.

Globally, $d l(1)$ is not referenced, and $d l$ must be aligned with $d$.
Must be of size $\geq n b \_a$.
(local).
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer to local part of global vector storing the main diagonal of the matrix.
(local).
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.

Pointer to local part of global vector storing the upper diagonal of the matrix.

Globally, $d u(n)$ is not referenced, and $d u$ must be aligned with $d$.
(global) INTEGER. The index in the global matrix $A$ that points to the start of the matrix to be operated on (which may be either all of $A$ or a submatrix of $A$ ).
(global and local) INTEGER array of size dlen_.
if $1 d$ type (dtype_a $=501$ or 502), dlen $\geq 7$;
if $2 d$ type (dtype_a $=1$ ), dlen $\geq 9$.
The array descriptor for the distributed matrix $A$. Contains information of mapping of $A$ to memory.
(local)
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Pointer into the local memory to an array of local lead dimension IId_ $b \geq n b$. On entry, this array contains the local pieces of the right-hand sides $B(i b: i b+n-1,1$ :nrhs).
(global) INTEGER. The row index in the global matrix $B$ that points to the first row of the matrix to be operated on (which may be either all of $B$ or a submatrix of $B$ ).
(global and local) INTEGER array of size dlen_.
if 1d type (dtype_b = 502), dlen $\geq 7$;
if $2 d$ type (dtype_b $=1$ ), dlen $\geq 9$.
The array descriptor for the distributed matrix $B$. Contains information of mapping $B$ to memory.
(local).
INTEGER.
Size of user-input auxiliary fill-in space af.
$\operatorname{la} \geq 2 *(n b+2)$. If laf is not large enough, an error code is returned and the minimum acceptable size will be returned in af(1).
(local).
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Temporary workspace. This space may be overwritten in between calls to routines.
work must be the size given in lwork.
(local or global) INTEGER.
Size of user-input workspace work. If lwork is too small, the minimal acceptable size will be returned in work(1) and an error code is returned.
lwork $\geq 10 * n p c o l+4 * n r h s$.

## Output Parameters

(local).
On exit, this array contains information containing the factors of the matrix.
On exit, this array contains information containing the factors of the matrix. Must be of size $\geq n b \_a$.

On exit, this contains the local piece of the solutions distributed matrix $X$.
(local).
REAL for psdttrsv
DOUBLE PRECISION for pddttrsv
COMPLEX for pcdttrsv
COMPLEX*16 for pzdttrsv.
Auxiliary fill-in space. The fill-in space is created in a call to the factorization routine p?dttrf and is stored in af. If a linear system is to be solved using $p$ ?dttrs after the factorization routine, af must not be altered after the factorization.

On exit, work (1) contains the minimal /work.
(local). INTEGER.
If info $=0$, the execution is successful.
if info< 0 : If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?gebal

Balances a general real/complex matrix.

## Syntax

```
call psgebal(job, n, a, desca, ilo, ihi, scale, info)
call pdgebal(job, n, a, desca, ilo, ihi, scale, info)
call pcgebal(job, n, a, desca, ilo, ihi, scale, info)call pzgebal(job, n, a, desca,
ilo, ihi, scale, info)
```


## Description

p?gebal balances a general real/complex matrix $A$. This involves, first, permuting $A$ by a similarity transformation to isolate eigenvalues in the first 1 to ilo-1 and last ihi+1 to $n$ elements on the diagonal; and second, applying a diagonal similarity transformation to rows and columns ilo to ihi to make the rows and columns as close in norm as possible. Both steps are optional.

Balancing may reduce the 1-norm of the matrix, and improve the accuracy of the computed eigenvalues and/or eigenvectors.

## Input Parameters

n
a
desca

## OUTPUT Parameters

a
ilo, ihi
scale
(global) CHARACTER*1
Specifies the operations to be performed on $a$ :
$=$ ' N ': none: simply set $i l o=1$, ihi $=n, \operatorname{scale}(i)=1.0$ for $i=1, \ldots, n$;
= 'P': permute only;
= 'S': scale only;
= 'B': both permute and scale.
(global) INTEGER
The order of the matrix $A(n \geq 0)$.
REAL for psgebal
DOUBLE PRECISION for pdgebal
COMPLEX for pcgebal
COMPLEX DOUBLE for pzgebal
(local) Pointer into the local memory to an array of size (l/d_a, LOC $C_{c}(n)$ )
This array contains the local pieces of global input matrix $A$.
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix $A$.

On exit, a is overwritten by the balanced matrix.
If job $=$ ' N ', a is not referenced.
See Notes for further details.
(global) INTEGER
ilo and ihi are set to integers such that on exit matrix elements $A(i, j)$ are zero if $i>j$ and $j=1, \ldots, i l o-1$ or $i=i h i+1, \ldots, n$.
If job $=$ 'N' or 'S', ilo $=1$ and ihi $=n$.
REAL for psgebal and pcgebal
DOUBLE PRECISION for pdgebal and pzgebal
(global) array of size $n$.

$$
\begin{aligned}
& \text { Details of the permutations and scaling factors applied to } a \text {. If } p j \text { is the } \\
& \text { index of the row and column interchanged with row and column } j \text { and } d j \text { is } \\
& \text { the scaling factor applied to row and column } j \text {, then } \\
& s c a l e(j)=p j \text { for } j=1, \ldots, i l o-1, i h i+1, \ldots, \mathrm{n} \\
& s c a l e(j)=d j \text { for } j=i l o, \ldots, i h i \\
& \text { The order in which the interchanges are made is } n \text { to } i h i+1 \text {, then } 1 \text { to } \\
& \text { ilo-1. } \\
& \text { (global ) InTEGER } \\
& \\
& =0: \text { successful exit. } \\
&
\end{aligned} \text { < } 0 \text { : if } \text { info }=-i \text {, the } i \text {-th argument had an illegal value. } \quad .
$$

## Application Notes

The permutations consist of row and column interchanges which put the matrix in the form

where $T 1$ and $T 2$ are upper triangular matrices whose eigenvalues lie along the diagonal. The column indices ilo and ihi mark the starting and ending columns of the submatrix B. Balancing consists of applying a diagonal similarity transformation $D^{-1} B D$ to make the 1 -norms of each row of $B$ and its corresponding column nearly equal. The output matrix is


Information about the permutations $P$ and the diagonal matrix $D$ is returned in the vector scale.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?gebd2

Reduces a general rectangular matrix to real
bidiagonal form by an orthogonal/unitary
transformation (unblocked algorithm).
Syntax

```
call psgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pdgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pcgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
call pzgebd2(m, n, a, ia, ja, desca, d, e, tauq, taup, work, lwork, info)
```


## Description

The $p$ ? gebd2routine reduces a real/complex general $m$-by- $n$ distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1$, $j a: j a+n-1)$ to upper or lower bidiagonal form $B$ by an orthogonal/unitary transformation:

$$
Q^{\prime} * \operatorname{sub}(A) * P=B .
$$

If $m \geq n, B$ is the upper bidiagonal; if $m<n, B$ is the lower bidiagonal.

## Input Parameters

m
n
a
(global) INTEGER.
The number of rows of the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
(global) INTEGER.
The number of columns in the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$.
(local).
ia, ja
desca
work
l work

REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Pointer into the local memory to an array of size (lld_a, $\left.\operatorname{LOC}_{C}(j a+n-1)\right)$.
On entry, this array contains the local pieces of the general distributed matrix $\operatorname{sub}(A)$.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local).
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
This is a workspace array of size Iwork.
(local or global) INTEGER.
The size of the array work.
Iwork is local input and must be at least 1 work $\geq \max (m p a 0, ~ n q a 0)$,
where $n b=m b \_a=n b \_a$, iroffa $=\bmod (i a-1, n b)$,
iarow = indxg2p(ia, nb, myrow, rsrc_a, nprow),
iacol $=$ indxg2p(ja, nb, mycol, csrc_a, npcol),
mpa0 $=$ numroc (m+iroffa, nb, myrow, iarow, nprow),
nqa0 $=$ numroc (n+icoffa, nb, mycol, iacol, npcol).
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a

## (local).

On exit, if $m \geq n$, the diagonal and the first superdiagonal of $\operatorname{sub}(A)$ are overwritten with the upper bidiagonal matrix $B$; the elements below the diagonal, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors, and the elements above the first superdiagonal, with the array taup, represent the orthogonal matrix $P$ as a
product of elementary reflectors. If $m<n$, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix $B$; the elements below the first subdiagonal, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors, and the elements above the diagonal, with the array taup, represent the orthogonal matrix $P$ as a product of elementary reflectors. See Applications Notes below.
(local)
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Array of size $\operatorname{LOCC}(j a+\min (m, n)-1)$ if $m \geq n ; \operatorname{LOCr}(\operatorname{ia+min}(m, n)-1)$ otherwise. The distributed diagonal elements of the bidiagonal matrix $B$ : $d(i)=a(i, i) \cdot d$ is tied to the distributed matrix $A$.
(local)
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Array of size $\operatorname{LOCC}(j a+\min (m, n)-1)$ if $m \geq n ; \operatorname{LOCr}(\operatorname{ia+min}(m, n)-2)$ otherwise. The distributed diagonal elements of the bidiagonal matrix $B$ :
if $m \geq n, e(i)=a(i, i+1)$ for $i=1,2, \ldots, n-1$;
if $m<n, e(i)=a(i+1, i)$ for $i=1,2, \ldots, m-1$. $e$ is tied to the distributed matrix $A$.
(local).
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
Array of size $\operatorname{LOCC}(j \operatorname{atmin}(m, n)-1)$. The scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix $Q$. tauq is tied to the distributed matrix $A$.
(local).

```
REAL for psgebd2
DOUBLE PRECISION for pdgebd2
COMPLEX for pcgebd2
COMPLEX*16 for pzgebd2.
```

Array of size $\operatorname{LOCr}(i a+\min (m, n)-1)$. The scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix $P$. taup is tied to the distributed matrix $A$.

On exit, work (1) returns the minimal and optimal /work.
(local)
INTEGER.
If info $=0$, the execution is successful.
if info < 0 : If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrices $Q$ and $P$ are represented as products of elementary reflectors:
If $m \geq n$,
$Q=H(1) * H(2) * \ldots * H(n)$, and $P=G(1) * G(2) * \ldots * G(n-1)$
Each $H(i)$ and $G(i)$ has the form:
$H(i)=I-t^{2} u q^{\star} v^{\star} V^{\prime}$, and $G(i)=I-\operatorname{tap}{ }^{\star} u^{\star} u^{\prime}$,
where tauq and taup are real/complex scalars, and $v$ and $u$ are real/complex vectors. $v(1$ : $i-1)=0, v(i)$ $=1$, and $v(i+i: m)$ is stored on exit in

A(ia+i-ia+m-1, ja+i-1);
$u(1: i)=0, u(i+1)=1$, and $u(i+2: n)$ is stored on exit in A(ia+i-1,ja+i+1:ja+n-1);
tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1).
If $m<n$,
$v(1: i)=0, v(i+1)=1$, and $v(i+2: m)$ is stored on exit in $A(i a+i+1: i a+m-1, j a+i-1)$;
$u(1: i-1)=0, u(i)=1$, and $u(i+1: n)$ is stored on exit in $A(i a+i-1, j a+i: j a+n-1)$;
tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1).
The contents of $\operatorname{sub}(A)$ on exit are illustrated by the following examples:

where $d$ and e denote diagonal and off-diagonal elements of $B$, vi denotes an element of the vector defining $H(i)$, and $u i$ an element of the vector defining $G(i)$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?gehd2

Reduces a general matrix to upper Hessenberg form by an orthogonal/unitary similarity transformation (unblocked algorithm).

## Syntax

```
call psgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pdgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pcgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
call pzgehd2(n, ilo, ihi, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The p? gehd2routine reduces a real/complex general distributed matrix sub $(A)$ to upper Hessenberg form $H$ by an orthogonal/unitary similarity transformation: $Q^{\prime *} \operatorname{sub}(A) * Q=H$, where sub $(A)=A(i a+n-1$ :ia $+n-1, j a+n-1$ :ja+n-1).

## Input Parameters

```
n
ilo, ihi
a
ia, ja
desca
work
(global) INTEGER. The order of the distributed submatrix \(A .(n \geq 0)\).
(global) INTEGER. It is assumed that the matrix \(\operatorname{sub}(A)\) is already upper triangular in rows ia:ia+ilo-2 and ia+ihi:ia+n-1 and columns ja:ja \(+j 10-2\) and ja+jhi:ja+n-1. See Application Notes for further information.
If \(n \geq 0,1 \leq i l o \leq i h i \leq n ;\) otherwise set ilo \(=1\), ihi \(=n\).
(local).
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX* 16 for pzgehd2.
Pointer into the local memory to an array of size (IId_a, LOC \((j a+n-1))\).
On entry, this array contains the local pieces of the \(n\)-by-n general distributed matrix \(\operatorname{sub}(A)\) to be reduced.
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local).
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
```

```
lwork (local or global) INTEGER.
The size of the array work.
Iwork is local input and must be at least lwork\geqnb + max(npa0, nb),
where nb = mb_a = nb_a, iroffa = mod(ia-1, nb), iarow =
indxg2p (ia, nb, myrow, rsrc_a, nprow), npa0 = numroc(ihi
+iroffa, nb, myrow, iarow, nprow).
indxg2p and numroc are ScaLAPACK tool functions;myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.
If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
```


## Output Parameters

a
(local). On exit, the upper triangle and the first subdiagonal of sub $(A)$ are overwritten with the upper Hessenberg matrix $H$, and the elements below the first subdiagonal, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors. (see Application Notes below).
(local).
REAL for psgehd2
DOUBLE PRECISION for pdgehd2
COMPLEX for pcgehd2
COMPLEX*16 for pzgehd2.
Array of size LOCC (ja+n-2) The scalar factors of the elementary reflectors (see Application Notes below). Elements ja: ja+ilo-2 and ja+ihi: ja+n-2 of the global vector tau are set to zero. tau is tied to the distributed matrix A.

On exit, work (1) returns the minimal and optimal /work.
(local) INTEGER.
If info $=0$, the execution is successful.
if info < 0 : If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-(i * 100+j)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of (ihi-ilo) elementary reflectors

$$
Q=H(i l o) * H(i l o+1) * \ldots * H(i h i-1) .
$$

Each $H(i)$ has the form

```
H(i) = I - tau\starV\starV',
```

where tau is a real/complex scalar, and $v$ is a real/complex vector with $v(1: i)=0, v(i+1)=1$ and $v(i h i$ $+1: n)=0 ; v(i+2: i h i)$ is stored on exit in $A(i a+i l o+i: i a+i h i-1, i a+i l o+i-2)$, and tau in tau(ja+ilo $+i-2)$.

The contents of $A(i a: i a+n-1, j a: j a+n-1)$ are illustrated by the following example, with $n=7$, $i l 0=2$ and ihi $=6$ :

## on entry

$\left[\begin{array}{lllllll}a & a & a & a & a & a & a \\ & a & a & a & a & a & a \\ a & a & a & a & a & a \\ a & a & a & a & a & a \\ a & a & a & a & a & a \\ a & a & a & a & a & a \\ & & & & & & a\end{array}\right]$
on exit
$\left[\begin{array}{ccccccc}a & a & h & h & h & h & a \\ & a & h & h & h & h & a \\ & h & h & h & h & h & h \\ & v 2 & h & h & h & h & h \\ & v 2 & v 3 & h & h & h & h \\ & v 2 & v 3 & v 4 & h & h & h \\ & & & & & & a\end{array}\right]$
where a denotes an element of the original matrix $\operatorname{sub}(A), h$ denotes a modified element of the upper Hessenberg matrix $H$, and vi denotes an element of the vector defining $H(j a+i l o+i-2)$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?gelq2

Computes an LQ factorization of a general rectangular
matrix (unblocked algorithm).

## Syntax

```
call psgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgelq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The p?gelq2 routine computes an $L Q$ factorization of a real/complex distributed $m$-by- $n$ matrix $s u b(A)=$ $A(i a: i a+m-1, j a: j a+n-1)=L^{\star} Q$.

## Input Parameters

m
n
$a$
(global) INTEGER.
The number of rows of the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$. (global) INTEGER.

The number of columns of the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$. (local).
ia, ja
desca
work
lwork

REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
Pointer into the local memory to an array of size (lld_a, LOCC(ja+n-1)).
On entry, this array contains the local pieces of the $m$-by- $n$ distributed matrix $\operatorname{sub}(A)$ which is to be factored.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local).
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
This is a workspace array of size lwork.
(local or global) INTEGER.
The size of the array work.
lwork is local input and must be at least 1 work $\geq n q 0+\max (1, m p 0)$, where iroff $=\bmod \left(i a-1, m b \_a\right), i C o f f=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol $=$ indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 $=$ numroc (m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc (n+icoff, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then 1 work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
(local).
On exit, the elements on and below the diagonal of $\operatorname{sub}(A)$ contain the $m$ by $\min (m, n)$ lower trapezoidal matrix $L(L$ is lower triangular if $m \leq n)$; the elements above the diagonal, with the array tau, represent the orthogonal/ unitary matrix $Q$ as a product of elementary reflectors (see Application Notes below).

```
tau
work
info
(local).
REAL for psgelq2
DOUBLE PRECISION for pdgelq2
COMPLEX for pcgelq2
COMPLEX*16 for pzgelq2.
Array of size LOCr (ia+min \((m, n)-1)\). This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix \(A\).
On exit, work (1) returns the minimal and optimal /work.
(local) INTEGER. If info \(=0\), the execution is successful. if info < 0 : If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 100+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).
```


## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(i a+k-1) * H(i a+k-2) * . . . *^{*} H(i a)$ for real flavors, $Q=(H(i a+k-1))^{H \star}(H(i a$ $+k-2))^{H} \ldots{ }^{*}(H(i a))^{H}$ for complex flavors,
where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(i)=I-t a u^{*} V^{\star} V^{\prime}$
where tau is a real/complex scalar, and $v$ is a real/complex vector with $v(1$ : $i-1)=0$ and $v(i)=1 ; v(i$ $+1: n)$ (for real flavors) or conjg(v(i+1: n)) (for complex flavors) is stored on exit in $A(i a+i-1, j a+i: j a$ $+n-1)$, and tau in tau(ia+i-1).

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?geql2

Computes a QL factorization of a general rectangular matrix (unblocked algorithm).

## Syntax

```
call psgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The p?geql2 routine computes a $Q L$ factorization of a real/complex distributed $m$-by- $n$ matrix sub $(A)=$ $A(i a: i a+m-1, j a: j a+n-1)=Q * L$.

## Input Parameters

n
a
ia, ja
desca
work

I work

The number of rows in the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
(global) INTEGER.
The number of columns in the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$.
(local).
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
Pointer into the local memory to an array of size (lld_a, $\left.L O C_{C}(j a+n-1)\right)$.
On entry, this array contains the local pieces of the $m$-by- $n$ distributed matrix $\operatorname{sub}(A)$ which is to be factored.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local).
REAL for psgeql2
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
This is a workspace array of size lwork.
(local or global) INTEGER.
The size of the array work.
lwork is local input and must be at least lwork $\geq \operatorname{mp} 0+\max (1, n q 0)$,
where iroff $=\bmod (i a-1, \operatorname{mb} a), i c o f f=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol $=$ indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 $=$ numroc (m+iroff, mb_a, myrow, iarow, nprow),
nq0 $=$ numroc (n+icoff, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and $n p c o l$ can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then $l$ work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
(local).

```
On exit,
if \(m \geq n\), the lower triangle of the distributed submatrix \(A(i a+m-n: i a+m-1\), \(j a: j a+n-1\)) contains the \(n\)-by- \(n\) lower triangular matrix \(L\);
if \(m \leq n\), the elements on and below the (\(n-m\))-th superdiagonal contain the \(m\)-by- \(n\) lower trapezoidal matrix \(L\); the remaining elements, with the array tau, represent the orthogonal/ unitary matrix \(Q\) as a product of elementary reflectors (see Application Notes below).
(local).
REAL for psgeq12
DOUBLE PRECISION for pdgeql2
COMPLEX for pcgeql2
COMPLEX*16 for pzgeql2.
```

Array of size $\operatorname{LOCc}(j a+n-1)$. This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix $A$.

On exit, work (1) returns the minimal and optimal /work.
(local). INTEGER.
If info $=0$, the execution is successful. if info < 0 : If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-$ ( $i * 100+j$ ), if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(j a+k-1) \star \ldots \star H(j a+1) \star H(j a)$, where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(i)=I-\operatorname{tau}{ }^{\star} V^{\star} V^{\prime}$
where tau is a real/complex scalar, and $v$ is a real/complex vector with $v(m-k+i+1: m)=0$ and $v(m-k+i)=$ $1 ; v(1: m-k+i-1)$ is stored on exit in $A(i a: i a+m-k+i-2, j a+n-k+i-1)$, and tau in $\operatorname{tau}(j a+n-k+i-1)$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?geqr2

Computes a QR factorization of a general rectangular matrix (unblocked algorithm).

## Syntax

```
call psgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pdgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgeqr2(m, n, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The p?geqr2routine computes a $Q R$ factorization of a real/complex distributed $m$-by- $n$ matrix sub $(A)=$ $A(i a: i a+m-1, j a: j a+n-1)=Q^{\star} R$.

Input Parameters
$m$ (global) INTEGER.
The number of rows in the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
(global) INTEGER. The number of columns in the distributed matrix $\operatorname{sub}(A)$. ( $n \geq 0$ ).
(local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
Pointer into the local memory to an array of size (lld_a, $\left.L O C_{C}(j a+n-1)\right)$.
On entry, this array contains the local pieces of the $m$-by- $n$ distributed matrix $\operatorname{sub}(A)$ which is to be factored.
ia, ja
desca
work
lwork
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
This is a workspace array of size lwork.
(local or global) INTEGER.
The size of the array work.
Iwork is local input and must be at least 1 work $\geq \operatorname{mp} 0+\max (1, n q 0)$,
where iroff $=\bmod (i a-1, \operatorname{mb} a), i C o f f=\bmod \left(j a-1, n b \_a\right)$,
iarow $=$ indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol $=$ indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 $=$ numroc (m+iroff, mb_a, myrow, iarow, nprow),
nq0 $=$ numroc (n+icoff, nb_a, mycol, iacol, npcol).
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and $n p c o l$ can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

$a$
(local).
On exit, the elements on and above the diagonal of $\operatorname{sub}(A)$ contain the $\min (m, n)$ by $n$ upper trapezoidal matrix $R$ ( $R$ is upper triangular if $m \geq n$ ); the elements below the diagonal, with the array tau, represent the orthogonal/ unitary matrix $Q$ as a product of elementary reflectors (see Application Notes below).
(local).
REAL for psgeqr2
DOUBLE PRECISION for pdgeqr2
COMPLEX for pcgeqr2
COMPLEX*16 for pzgeqr2.
Array of size $\operatorname{LOCc}(j a+\min (m, n)-1)$. This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix $A$.
work On exit, work (1) returns the minimal and optimal lwork.
info
(local) INTEGER.
If info $=0$, the execution is successful. if info $<0$ :
If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-(i * 100+j)$,
if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(j a){ }^{*} H(j a+1) * . ~ . ~ . * H(j a+k-1)$, where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(j)=I-t a u^{\star} V^{\star} V^{\prime}$,
where tau is a real/complex scalar, and $v$ is a real/complex vector with $v(1: i-1)=0$ and $v(i)=1 ; v(i+1: m)$ is stored on exit in $A(i a+i: i a+m-1, j a+i-1)$, and tau in $\operatorname{tau}(j a+i-1)$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?gerq2

Computes an $R Q$ factorization of a general rectangular matrix (unblocked algorithm).

## Syntax

```
call psgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
```

```
call pdgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pcgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
call pzgerq2(m, n, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The p?gerq2routine computes an $R Q$ factorization of a real/complex distributed $m$-by- $n$ matrix sub $(A)=$ $A(i a: i a+m-1, j a: j a+n-1)=R^{*} Q$.

## Input Parameters

m
n
a

I work
(global) INTEGER. The number of rows in the distributed matrix sub $(A)$. ( $m \geq 0$ ) .
(global) INTEGER. The number of columns in the distributed matrix $\operatorname{sub}(A)$. ( $n \geq 0$ ) .
(local).
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
Pointer into the local memory to an array of size (lld_a, $\left.L O C_{C}(j a+n-1)\right)$.
On entry, this array contains the local pieces of the $m$-by- $n$ distributed matrix $\operatorname{sub}(A)$ which is to be factored.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of sub $(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local).
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
This is a workspace array of size lwork.
(local or global) INTEGER.
The size of the array work.
lwork is local input and must be at least 1 work $\geq n q 0+\max (1, m p 0)$, where

```
iroff = mod(ia-1, mb_a), icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol), mp0 =
numroc(m+iroff, mb_a, myrow, iarow, nprow),
```

```
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),
```

indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
(local).
On exit,
if $m \leq n$, the upper triangle of $A(i a+m-n: i a+m-1, j a: j a+n-1)$ contains the $m$-by- $m$ upper triangular matrix $R$;
if $m \geq n$, the elements on and above the ( $m-n$ )-th subdiagonal contain the $m$-by- $n$ upper trapezoidal matrix $R$; the remaining elements, with the array tau, represent the orthogonal/ unitary matrix $Q$ as a product of elementary reflectors (see Application Notes below).
(local).
REAL for psgerq2
DOUBLE PRECISION for pdgerq2
COMPLEX for pcgerq2
COMPLEX*16 for pzgerq2.
Array of size $\operatorname{LOCr}(i a+m-1)$. This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix $A$.

On exit, work (1) returns the minimal and optimal lwork.
(local) INTEGER.
If info $=0$, the execution is successful.
if info < 0: If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

The matrix $Q$ is represented as a product of elementary reflectors
$Q=H(i a) * H(i a+1) * \ldots * H(i a+k-1)$ for real flavors,
$Q=(H(i a))^{H *}(H(i a+1))^{H} \ldots{ }^{*}(H(i a+k-1))^{H}$ for complex flavors,
where $k=\min (m, n)$.
Each $H(i)$ has the form
$H(i)=I-t a u^{*} v^{*} v^{\prime}$,
where tau is a real/complex scalar, and $v$ is a real/complex vector with $v(n-k+i+1: n)=0$ and $v(n-k+i)=$ 1 ; $v(1: n-k+i-1)$ for real flavors or conjg(v(1:n-k+i-1)) for complex flavors is stored on exit in $A(i a+m-$ $k+i-1, j a: j a+n-k+i-2)$, and tau in tau(ia+m-k+i-1).

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?getf2
Computes an LU factorization of a general matrix,
using partial pivoting with row interchanges (local
blocked algorithm).
```


## Syntax

```
call psgetf2(m, n, a, ia, ja, desca, ipiv, info)
```

call psgetf2(m, n, a, ia, ja, desca, ipiv, info)
call pdgetf2(m, n, a, ia, ja, desca, ipiv, info)
call pdgetf2(m, n, a, ia, ja, desca, ipiv, info)
call pcgetf2(m, n, a, ia, ja, desca, ipiv, info)
call pcgetf2(m, n, a, ia, ja, desca, ipiv, info)
call pzgetf2(m, n, a, ia, ja, desca, ipiv, info)

```
call pzgetf2(m, n, a, ia, ja, desca, ipiv, info)
```


## Description

The $p$ ?getf2routine computes an $L U$ factorization of a general $m$-by-n distributed matrix $\operatorname{sub}(A)=A$ (ia:ia $+m-1, j a: j a+n-1)$ using partial pivoting with row interchanges.

The factorization has the form sub $(A)=P \star L^{\star} U$, where $P$ is a permutation matrix, $L$ is lower triangular with unit diagonal elements (lower trapezoidal if $m>n$ ), and $U$ is upper triangular (upper trapezoidal if $m<n$ ). This is the right-looking Parallel Level 2 BLAS version of the algorithm.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Input Parameters

m
(global) INTEGER.
The number of rows in the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
(global) INTEGER. The number of columns in the distributed matrix $\operatorname{sub}(A)$.
(nb_a $\left.-\bmod \left(j a-1, n b \_a\right) \geq n \geq 0\right)$.
(local).
REAL for psgetf2
DOUBLE PRECISION for pdgetf2
COMPLEX for pcgetf2
COMPLEX*16 for pzgetf2.
Pointer into the local memory to an array of size (lld_a, $L O C_{C}(j a+n-1)$ ).
On entry, this array contains the local pieces of the $m$-by- $n$ distributed matrix $\operatorname{sub}(A)$.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
desca

## Output Parameters

ipiv
info
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local) INTEGER.
Array of size $\left(\operatorname{LOCr}\left(m_{-} a\right)+m b \_a\right)$. This array contains the pivoting information. ipiv(i) -> The global row that local row $i$ was swapped with. This array is tied to the distributed matrix $A$.
(local). INTEGER.
If info $=0$ : successful exit.
If info < 0:

- if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-(i * 100+j)$,
- if the $i$-th argument is a scalar and had an illegal value, then info $=$ $i$.

If info > 0: If info $=k$, the matrix element $U(i a+k-1, j a+k-1)$ is exactly zero. The factorization has been completed, but the factor $U$ is exactly singular, and division by zero will occur if it is used to solve a system of equations.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?labrd

Reduces the first nb rows and columns of a general rectangular matrix $A$ to real bidiagonal form by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to apply the transformation to the unreduced part of $A$.

## Syntax

```
call pslabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y, iy, jy,
descy, work)
call pdlabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y, iy, jy,
descy, work)
call pclabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y, iy, jy,
descy, work)
call pzlabrd(m, n, nb, a, ia, ja, desca, d, e, tauq, taup, x, ix, jx, descx, y, iy, jy,
descy, work)
```


## Description

The p?labrdroutine reduces the first $n b$ rows and columns of a real/complex general $m$-by- $n$ distributed matrix $\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)$ to upper or lower bidiagonal form by an orthogonal/unitary transformation $Q^{\prime *} A * P$, and returns the matrices $X$ and $Y$ necessary to apply the transformation to the unreduced part of $\operatorname{sub}(A)$.

If $m \geq n$, sub ( $A$ ) is reduced to upper bidiagonal form; if $m<n$, sub ( $A$ ) is reduced to lower bidiagonal form. This is an auxiliary routine called by p?gebrd.

## Input Parameters

m
n
a
ia, ja
desca
ix, jx
descx
iy, jy
descy
work
(global) INTEGER. The number of rows in the distributed matrix sub (A). ( $m \geq 0$ ).
(global) INTEGER. The number of columns in the distributed matrix sub( $A$ ). $(n \geq 0)$.
(global) INTEGER.
The number of leading rows and columns of $\operatorname{sub}(A)$ to be reduced.
(local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX* 16 for pzlabrd.
Pointer into the local memory to an array of size (Ild_a, LOCC(ja+n-1)).
On entry, this array contains the local pieces of the general distributed matrix sub $(A)$.
(global) Integer. The row and column indices in the global matrix $A$ indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(global) Integer. The row and column indices in the global matrix $X$ indicating the first row and the first column of the matrix $\operatorname{sub}(X)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $X$.
(global) Integer. The row and column indices in the global matrix $Y$ indicating the first row and the first column of the matrix sub $(Y)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $Y$.
(local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Workspace array of sizelwork.
lwork $\geq$ nb_a + nq,
with $n q=$ numroc (n+mod(ia-1, nb_y), nb_y, mycol, iacol, npcol)

```
iacol = indxg2p (ja, nb a, mycol, csrc a, npcol)
```

indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and $n p c o l$ can be determined by calling the subroutine blacs_gridinfo.

## Output Parameters

a
(local)
On exit, the first $n b$ rows and columns of the matrix are overwritten; the rest of the distributed matrix sub $(A)$ is unchanged.
If $m \geq n$, elements on and below the diagonal in the first $n b$ columns, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors; and elements above the diagonal in the first $n b$ rows, with the array taup, represent the orthogonal/unitary matrix $P$ as a product of elementary reflectors.
If $m<n$, elements below the diagonal in the first $n b$ columns, with the array tauq, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors, and elements on and above the diagonal in the first $n b$ rows, with the array taup, represent the orthogonal/unitary matrix $P$ as a product of elementary reflectors. See Application Notes below.
(local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Array of size LOCr $(\operatorname{ia}+\min (m, n)-1)$ if $m \geq n ; \operatorname{LOCC}(j \operatorname{a+min}(m, n)-1)$ otherwise. The distributed diagonal elements of the bidiagonal distributed matrix $B$ :
$d(i)=A(i a+i-1, j a+i-1)$.
$d$ is tied to the distributed matrix $A$.
(local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Array of size LOCr $(\operatorname{ia+min}(m, n)-1)$ if $m \geq n ; \operatorname{LOCC}(j a+m i n(m, n)-2)$ otherwise. The distributed off-diagonal elements of the bidiagonal distributed matrix $B$ :
if $m \geq n, E(i)=A(i a+i-1, j a+i)$ for $i=1,2, \ldots, n-1$;
if $m<n, E(i)=A(i a+i, j a+i-1)$ for $i=1,2, \ldots, m-1$.
$e$ is tied to the distributed matrix $A$.
(local).
REAL for pslabrd

```
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
```

Array size LOCc $(j a+\min (m, n)-1)$ for tauq, size $\operatorname{LOCr}(i a+\min (m, n)-1)$ for taup. The scalar factors of the elementary reflectors which represent the orthogonal/unitary matrix $Q$ for tauq, $P$ for taup. tauq and taup are tied to the distributed matrix $A$. See Application Notes below.
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd

Pointer into the local memory to an array of size $I I d \_x b y n b$. On exit, the local pieces of the distributed $m$-by-nb matrix $X(i x: i x+m-1, j x: j x+n b-1)$ required to update the unreduced part of $\operatorname{sub}(A)$.
(local).
REAL for pslabrd
DOUBLE PRECISION for pdlabrd
COMPLEX for pclabrd
COMPLEX*16 for pzlabrd
Pointer into the local memory to an array of size $l l d \_y b y n b$. On exit, the local pieces of the distributed $n$-by-nb matrix $Y(i y: i y+n-1, j y: j y+n b-1)$ required to update the unreduced part of $\operatorname{sub}(A)$.

## Application Notes

The matrices $Q$ and $P$ are represented as products of elementary reflectors:

```
Q =H(1)*H(2)* . .* * (nb), and P = G(1)*G(2)* . . * G(nb)
```

Each $H(i)$ and $G(i)$ has the form:
$H(i)=I-\tan q^{\star} V^{\star} V^{\prime}$, and $G(i)=I-\operatorname{taup}^{\star} u^{\star} u^{\prime}$,
where tauq and taup are real/complex scalars, and $v$ and $u$ are real/complex vectors.
If $m \geq n, v(1: i-1)=0, v(i)=1$, and $v(i: m)$ is stored on exit in
$A(i a+i-1: i a+m-1, j a+i-1) ; u(1: i)=0, u(i+1)=1$, and $u(i+1: n)$ is stored on exit in $A(i a+i-1$, $j a+i: j a+n-1) ;$ tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1).

If $m<n, v(1: i)=0, v(i+1)=1$, and $v(i+1: m)$ is stored on exit in
$A(i a+i+1: i a+m-1, j a+i-1) ; u(1: i-1)=0, u(i)=1$, and $u(i: n)$ is stored on exit in $A(i a+i-1, j a$ $+i: j a+n-1)$; tauq is stored in tauq(ja+i-1) and taup in taup(ia+i-1). The elements of the vectors $v$ and $u$ together form the $m$-by- $n b$ matrix $V$ and the $n b$-by- $n$ matrix $U^{\prime}$ which are necessary, with $X$ and $Y$, to apply the transformation to the unreduced part of the matrix, using a block update of the form: sub (A) := sub (A) - $V^{*} Y^{\prime}-X^{*} U^{\prime}$. The contents of sub (A) on exit are illustrated by the following examples with $n b=2$ :

$$
m=6 \text { and } n=5(m>n):
$$

$$
m=5 \text { and } n=6(m<n):
$$

$$
\left[\begin{array}{ccccc}
1 & 1 & u 1 & u 1 & u 1 \\
v 1 & 1 & 1 & u 2 & u 2 \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a \\
v 1 & v 2 & a & a & a
\end{array}\right]
$$

$$
\left[\begin{array}{cccccc}
1 & u 1 & u 1 & u 1 & u 1 & u 1 \\
1 & 1 & u 2 & u 2 & u 2 & u 2 \\
v 1 & 1 & a & a & a & a \\
v 1 & v 2 & a & a & a & a \\
v 1 & v 2 & a & a & a & a
\end{array}\right]
$$

where $a$ denotes an element of the original matrix which is unchanged, vi denotes an element of the vector defining $H(i)$, and $u i$ an element of the vector defining $G(i)$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?lacon

Estimates the 1-norm of a square matrix, using the reverse communication for evaluating matrix-vector products.

## Syntax

```
call pslacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)
call pdlacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)
call pclacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)
call pzlacon(n, v, iv, jv, descv, x, ix, jx, descx, isgn, est, kase)
```


## Description

The p?laconroutine estimates the 1-norm of a square, real/unitary distributed matrix $A$. Reverse communication is used for evaluating matrix-vector products. $x$ and $v$ are aligned with the distributed matrix $A$, this information is implicitly contained within iv, ix, descv, and descx.

## Input Parameters

$n$

V
(global) INTEGER. The length of the distributed vectors $v$ and $x . n \geq 0$. (local).
REAL for pslacon
DOUBLE PRECISION for pdlacon
COMPLEX for pclacon
COMPLEX*16 for pzlacon.
Pointer into the local memory to an array of size $\operatorname{LOCr}\left(n+\bmod \left(i v-1, m b \_v\right)\right)$. On the final return, $v=a^{\star} w$, where est $=\operatorname{norm}(v) /$ norm $(w)$ ( $w$ is not returned).

```
iv, jv (global) INTEGER. The row and column indices in the global matrix V
 indicating the first row and the first column of the submatrix }V\mathrm{ , respectively.
 (global and local) INTEGER array of size dlen_. The array descriptor for the
 distributed matrix V.
 (local).
 REAL for pslacon
 DOUBLE PRECISION for pdlacon
 COMPLEX for pclacon
 COMPLEX*16 for pzlacon.
 Pointer into the local memory to an array of size LOCr(n+mod(ix-1,mb_x)).
 (global) INTEGER. The row and column indices in the global matrix }
 indicating the first row and the first column of the submatrix }X\mathrm{ , respectively.
 (global and local) INTEGER array of size dlen_. The array descriptor for the
 distributed matrix X.
 (local). INTEGER.
 Array of size LOCr(n+mod(ix-1,mb_x)). isgn is aligned with }x\mathrm{ and }v
 (local). INTEGER.
 On the initial call to p?lacon, kase should be 0.
```


## Output Parameters

X
(local).
On an intermediate return, $X$ should be overwritten by $A^{*} X$, if kase $=1, A^{\prime}$ * $X$, if $k a s e=2$,
p?lacon must be re-called with all the other parameters unchanged.
(global). REAL for single precision flavors
DOUBLE PRECISION for double precision flavors
(local)
INTEGER. On an intermediate return, kase is 1 or 2, indicating whether $X$ should be overwritten by $A^{*} X$, or $A^{\prime *} X$. On the final return from p?lacon, kase is again 0.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?laconsb
Looks for two consecutive small subdiagonal elements.

## Syntax

```
call pslaconsb(a, desca, i, l, m, h44, h33, h43h34, buf, lwork)
call pdlaconsb(a, desca, i, l, m, h44, h33, h43h34, buf, lwork)
call pclaconsb(a, desca, i, l, m, h44, h33, h43h34, buf, lwork)
```

```
call pzlaconsb(a, desca, i, l, m, h44, h33, h43h34, buf, lwork)
```


## Description

The p?laconsbroutine looks for two consecutive small subdiagonal elements by analyzing the effect of starting a double shift $Q R$ iteration given by $h 44, h 33$, and $h 43 h 34$ to see if this process makes a subdiagonal negligible.

## Input Parameters

a
$i$

1
(local) REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
COMPLEX for pclaconsb
DOUBLE COMPLEX for pzlaconsb
Array of size (lld_a, $\operatorname{LOCc}\left(n_{-} a\right)$ ). On entry, the Hessenberg matrix whose tridiagonal part is being scanned. Unchanged on exit.
(global and local) INTEGER.
Array of size dlen_. The array descriptor for the distributed matrix $A$.
(global) INTEGER.
The global location of the bottom of the unreduced submatrix of $A$. Unchanged on exit.
(global) INTEGER.
The global location of the top of the unreduced submatrix of $A$. Unchanged on exit.
(global). REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
COMPLEX for pclaconsb
DOUBLE COMPLEX for pzlaconsb
These three values are for the double shift $Q R$ iteration.
(local) INTEGER.
This must be at least $7 *$ ceil (ceil ( (i-l)/mb_a )/lcm(nprow, npcol)). Here 1 cm is the least common multiple and nprow* npcol is the logical grid size.

## Output Parameters

m
buf
(global). On exit, this yields the starting location of the $Q R$ double shift. This will satisfy:
$l \leq m \leq i-2$.
(local).
REAL for pslaconsb
DOUBLE PRECISION for pdlaconsb
COMPLEX for pclaconsb

DOUBLE COMPLEX for pzlaconsb
Array of size /work.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?lacp2

Copies all or part of a distributed matrix to another distributed matrix.

## Syntax

```
call pslacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pdlacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pclacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pzlacp2(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
```


## Description

The p?lacp2routine copies all or part of a distributed matrix $A$ to another distributed matrix $B$. No communication is performed, p?lacp2 performs a local copy $\operatorname{sub}(A):=\operatorname{sub}(B)$, where $\operatorname{sub}(A)$ denotes $A(i a: i a+m-1, a: j a+n-1)$ and $\operatorname{sub}(B)$ denotes $B(i b: i b+m-1, j b: j b+n-1)$.
p?lacp2 requires that only dimension of the matrix operands is distributed.

## Input Parameters

uplo
m
n
a
(global) CHARACTER. Specifies the part of the distributed matrix $\operatorname{sub}(A)$ to be copied:
$=$ 'U': Upper triangular part is copied; the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced;
$=$ 'L': Lower triangular part is copied; the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
Otherwise: all of the matrix $\operatorname{sub}(A)$ is copied.
(global) INTEGER.
The number of rows in the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
(global) INTEGER.
The number of columns in the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$.
(local).
REAL for pslacp2
DOUBLE PRECISION for pdlacp2
COMPLEX for pclacp2
COMPLEX*16 for pzlacp2.
Pointer into the local memory to an array of size (lld_a, LOCC(ja+n-1)).
On entry, this array contains the local pieces of the $m$-by- $n$ distributed matrix $\operatorname{sub}(A)$.
ia, ja
desca
i.b, jb
descb
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(global) INTEGER. The row and column indices in the global matrix $B$ indicating the first row and the first column of $\operatorname{sub}(B)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $B$.

## Output Parameters

b
(local).
REAL for pslacp2
DOUBLE PRECISION for pdlacp2
COMPLEX for pclacp2
COMPLEX*16 for pzlacp2.
Pointer into the local memory to an array of size (Ild_b, LOCC(jb+n-1)). This array contains on exit the local pieces of the distributed matrix $\operatorname{sub}(B)$ set as follows:
if uplo = 'U', $B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), 1 \leq i \leq j, 1 \leq j \leq n$;
if uplo $=$ 'L', $B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), j \leq i \leq m, 1 \leq j \leq n$;
otherwise, $B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), 1 \leq i \leq m, 1 \leq j \leq n$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?lacp3

Copies from a global parallel array into a local replicated array or vice versa.

## Syntax

```
call pslacp3(m, i, a, desca, b, ldb, ii, jj, rev)
call pdlacp3(m, i, a, desca, b, ldb, ii, jj, rev)
call pclacp3(m, i, a, desca, b, ldb, ii, jj, rev)
call pzlacp3(m, i, a, desca, b, ldb, ii, jj, rev)
```


## Description

This is an auxiliary routine that copies from a global parallel array into a local replicated array or vise versa. Note that the entire submatrix that is copied gets placed on one node or more. The receiving node can be specified precisely, or all nodes can receive, or just one row or column of nodes.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

## Product and Performance Information

Notice revision \#20201201

## Input Parameters

m
i
a
desca
b

1 db
ii, jj
rev
(global) INTEGER.
$m$ is the order of the square submatrix that is copied.
$m \geq 0$. Unchanged on exit.
(global) INTEGER. $A(i, i)$ is the global location that the copying starts from. Unchanged on exit.
(local) REAL for pslacp3
DOUBLE PRECISION for pdlacp3
COMPLEX for pclacp3
DOUBLE COMPLEX for pzlacp3
Array of size (IId_a, LOCC(n_a)). On entry, the parallel matrix to be copied into or from.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for pslacp3
DOUBLE PRECISION for pdlacp3
COMPLEX for pclacp3
DOUBLE COMPLEX for pzlacp3
Array of size $\left(I I d \_b, \operatorname{LOCC}(m)\right)$. If rev $=0$, this is the global portion of the matrix $A(i: i+m-1, i: i+m-1)$. If rev $=1$, this is unchanged on exit.
(local)
INTEGER.
The leading dimension of $B$.
(global) INTEGER. By using rev 0 and 1, data can be sent out and returned again. If rev $=0$, then $i i$ is destination row index and $j j$ is destination column index for the node(s) receiving the replicated $B$. If $i i \geq 0, j j \geq 0$, then node ( $i i, j j$ ) receives the data. If $i i=-1, j j \geq 0$, then all rows in column $j j$ receive the data. If $i i \geq 0, j j=-1$, then all cols in row $i i$ receive the data. If $i i$ $=-1, j j=-1$, then all nodes receive the data. If rev $!=0$, then $i i$ is the source row index for the node(s) sending the replicated $B$.
(global) INTEGER. Use rev $=0$ to send global $A$ into locally replicated $B$ (on node (ii, $j j$ )). Use rev $!=0$ to send locally replicated $B$ from node (ii, $j j$ ) to its owner (which changes depending on its location in $A$ ) into the global A.

## Output Parameters

$a$
On exit, if rev $=1$, the copied data. Unchanged on exit if rev $=0$.
If rev $=1$, this is unchanged on exit.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?lacpy

Copies all or part of one two-dimensional array to another.

## Syntax

```
call pslacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pdlacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pclacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
call pzlacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
```


## Description

The p?lacpyroutine copies all or part of a distributed matrix $A$ to another distributed matrix $B$. No communication is performed, p ? lacpy performs a local copy $\operatorname{sub}(B):=\operatorname{sub}(A)$, where $\operatorname{sub}(A)$ denotes $A(i a: i a+m-1, j a: j a+n-1)$ and $\operatorname{sub}(B)$ denotes $B(i b: i b+m-1, j b: j b+n-1)$.

Input Parameters
uplo
m
n
a
(global) CHARACTER. Specifies the part of the distributed matrix $\operatorname{sub}(A)$ to be copied:
$=$ 'U': Upper triangular part; the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced;
$=$ ' L': Lower triangular part; the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.

Otherwise: all of the matrix $\operatorname{sub}(A)$ is copied.
(global) INTEGER.
The number of rows in the distributed matrix $\operatorname{sub}(A) .(m \geq 0)$.
(global) INTEGER.
The number of columns in the distributed matrix $\operatorname{sub}(A) .(n \geq 0)$.
(local).
REAL for pslacpy
DOUBLE PRECISION for pdlacpy
COMPLEX for pclacpy
COMPLEX*16 for pzlacpy.
Pointer into the local memory to an array of size (lld_a, LOCC(ja+n-1)).
ia, ja
desca
i.b, jb
descb

On entry, this array contains the local pieces of the distributed matrix $\operatorname{sub}(A)$.
(global) INTEGER. The row and column indices in the global matrix $A$ indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(global) INTEGER. The row and column indices in the global matrix $B$ indicating the first row and the first column of sub( $B$ ) respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.

## Output Parameters

b
(local).
REAL for pslacpy
DOUBLE PRECISION for pdlacpy
COMPLEX for pclacpy
COMPLEX*16 for pzlacpy.
Pointer into the local memory to an array of size (Ild_b, LOCC(jb+n-1)). This array contains on exit the local pieces of the distributed matrix sub(B) set as follows:
if uplo $=' U ', B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), 1 \leq i \leq j, 1 \leq j \leq n ;$
if uplo $=$ 'L', $B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), j \leq i \leq m, 1 \leq j \leq n ;$
otherwise, $B(i b+i-1, j b+j-1)=A(i a+i-1, j a+j-1), 1 \leq i \leq m, 1 \leq j \leq n$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?laevswp

Moves the eigenvectors from where they are computed to ScaLAPACK standard block cyclic array.

## Syntax

```
call pslaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)
call pdlaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)
call pclaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)
call pzlaevswp(n, zin, ldzi, z, iz, jz, descz, nvs, key, rwork, lrwork)
```


## Description

The p? laevswproutine moves the eigenvectors (potentially unsorted) from where they are computed, to a ScaLAPACK standard block cyclic array, sorted so that the corresponding eigenvalues are sorted.

## Input Parameters

$n p=$ the number of rows local to a given process.
$n q=$ the number of columns local to a given process.

n	(global) Integer.
	The order of the matrix $A$. $n \geq 0$.
$z i n$	(local).
	REAL for pslaevswp
	DOUBLE PRECISION for pdlaevswp
	Complex for pclaevswp
	COMPLEX*16 for pzlaevswp.
	Array of size (Idzi, nvs(iam+2)). The eigenvectors on input. iam is a process rank from [ 0, nprocs) interval. Each eigenvector resides entirely in one process. Each process holds a contiguous set of nvs(iam+2) eigenvectors. The global number of the first eigenvector that the process holds is: ((sum for $i=[1, i a m+1]$ of $n v s(i))+1)$.
$1 d z i$	(local)
	Integer. The leading dimension of the zin array.
iz, jz	(global) Integer. The row and column indices in the global matrix $Z$ indicating the first row and the first column of the submatrix $Z$, respectively.
descz	(global and local) Integer
	Array of size dlen_. The array descriptor for the distributed matrix Z .
nvs	(global) INTEGER.
	Array of size nprocs+1
	$n v s(i)=$ number of eigenvectors held by processes [0, $i-1$ )
	$n v s(1)=$ number of eigenvectors held by processes $[0,1-1)=0$
	nvs(nprocs +1$)=$ number of eigenvectors held by processes [0, nprocs $)=$ total number of eigenvectors.
key	(global) INTEGER.
	Array of size $n$. Indicates the actual index (after sorting) for each of the eigenvectors.
rwork	(local).
	REAL for pslaevswp
	DOUBLE PRECISION for pdlaevswp
	COMPLEX for pclaevswp
	COMPLEX*16 for pzlaevswp.
	Array of size Irwork.
lrwork	(local)
	Integer. Size of work.

## Output Parameters

## Z

(local).
REAL for pslaevswp
DOUBLE PRECISION for pdlaevswp
COMPLEX for pclaevswp
COMPLEX*16 for pzlaevswp.
Array of global size $n b y n$ and of local size ( $/ l d \_z, n q$ ). The eigenvectors on output. The eigenvectors are distributed in a block cyclic manner in both dimensions, with a block size of $n b$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?lahrd

Reduces the first nb columns of a general rectangular matrix $A$ so that elements below the $k$-th subdiagonal are zero, by an orthogonal/unitary transformation, and returns auxiliary matrices that are needed to
apply the transformation to the unreduced part of $A$.

## Syntax

```
call pslahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)
call pdlahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)
call pclahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)
call pzlahrd(n, k, nb, a, ia, ja, desca, tau, t, y, iy, jy, descy, work)
```


## Description

The p? lahrdroutine reduces the first $n b$ columns of a real general $n$-by- $(n-k+1)$ distributed matrix $A$ (ia: ia $+n-1$, ja:ja+n-k) so that elements below the $k$-th subdiagonal are zero. The reduction is performed by an orthogonal/unitary similarity transformation $Q^{\prime *} A^{*} Q$. The routine returns the matrices $V$ and $T$ which determine $Q$ as a block reflector $I-V^{\star} T^{\star} V^{\prime}$, and also the matrix $Y=A \star V^{\star} T$.

This is an auxiliary routine called by p?gehrd. In the following comments sub(A) denotes $A(i a: i a+n-1$, ja:ja+n-1).

## Input Parameters

```
n
k
n.b
a
(global) INTEGER.
The order of the distributed matrix \(\operatorname{sub}(A) . n \geq 0\).
(global) INTEGER.
The offset for the reduction. Elements below the \(k\)-th subdiagonal in the first \(n b\) columns are reduced to zero.
(global) INTEGER.
The number of columns to be reduced.

REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX* 16 for pzlahrd.
Pointer into the local memory to an array of size (IId_a, LOCc(\(j a+n-k)\)). On entry, this array contains the local pieces of the \(n\)-by- \((n-k+1)\) general distributed matrix \(A(i a: i a+n-1, j a: j a+n-k)\).
ia, ja
desca
iy, jy
descy
work
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(global) INTEGER. The row and column indices in the global matrix \(Y\) indicating the first row and the first column of the matrix \(\operatorname{sub}(Y)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(Y\).
(local).
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array of size \(n b\).

\section*{Output Parameters}
\(a\)
t
(local).
On exit, the elements on and above the \(k\)-th subdiagonal in the first \(n b\) columns are overwritten with the corresponding elements of the reduced distributed matrix; the elements below the \(k\)-th subdiagonal, with the array tau, represent the matrix \(Q\) as a product of elementary reflectors. The other columns of \(A(i a: i a+n-1, j a: j a+n-k)\) are unchanged. (See Application Notes below.)
(local)
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array of size LOCc(ja+n-2). The scalar factors of the elementary reflectors (see Application Notes below). tau is tied to the distributed matrix \(A\).
(local) REAL for pslahrd
```

DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.
Array of size nb_aby nb_a. The upper triangular matrix T.
(local).

```
REAL for pslahrd
DOUBLE PRECISION for pdlahrd
COMPLEX for pclahrd
COMPLEX*16 for pzlahrd.

Pointer into the local memory to an array of size Ild_yby nb_a. On exit, this array contains the local pieces of the \(n\)-by-nb distributed matrix \(Y\). \(I / d _y \geq\) \(\operatorname{LOCr}(i a+n-1)\).

\section*{Application Notes}

The matrix \(Q\) is represented as a product of \(n b\) elementary reflectors
\(Q=H(1) * H(2) * \ldots * H(n b)\).
Each \(H(i)\) has the form
```

H(i) = i-tau*v*v',

```
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i+k-1)=0, v(i+k)=1 ; v(i+k\) \(+1: n)\) is stored on exit in \(A(i a+i+k: i a+n-1, j a+i-1)\), and tau in tau(ja+i-1).

The elements of the vectors \(v\) together form the \((n-k+1)\)-by- \(n b\) matrix \(V\) which is needed, with \(T\) and \(Y\), to apply the transformation to the unreduced part of the matrix, using an update of the form: A(ia:ia+n-1, \(j a: j a+n-k):=\left(I-V^{*} T^{*} V^{\prime}\right) *\left(A(i a: i a+n-1, j a: j a+n-k)-Y^{*} V^{\prime}\right)\). The contents of \(A(i a: i a+n-1, j a: j a+n-k)\) on exit are illustrated by the following example with \(n=7, k=3\), and \(n b=2\) :
\(\left[\begin{array}{lllll}a & h & a & a & a \\ a & h & a & a & a \\ a & h & a & a & a \\ h & h & a & a & a \\ v 1 & h & a & a & a \\ v 1 & v 2 & a & a & a \\ v 1 & v 2 & a & a & a\end{array}\right]\)
where \(a\) denotes an element of the original matrix \(A(i a: i a+n-1, j a: j a+n-k)\), \(h\) denotes a modified element of the upper Hessenberg matrix \(H\), and vi denotes an element of the vector defining \(H(i)\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?laiect
Exploits IEEE arithmetic to accelerate the
computations of eigenvalues. (C interface function).
Syntax

```
```

void pslaiect(float *sigma, int *n, float *d, int *count);

```
void pslaiect(float *sigma, int *n, float *d, int *count);
void pdlaiectb(float *sigma, int *n, float *d, int *count);
void pdlaiectb(float *sigma, int *n, float *d, int *count);
void pdlaiectl(float *sigma, int *n, float *d, int *count);
```

void pdlaiectl(float *sigma, int *n, float *d, int *count);

```

\section*{Description}

The p?laiectroutine computes the number of negative eigenvalues of (\(A-\sigma I\)). This implementation of the Sturm Sequence loop exploits IEEE arithmetic and has no conditionals in the innermost loop. The signbit for real routine pslaiect is assumed to be bit 32. Double-precision routines pdlaiectb and pdlaiectl differ in the order of the double precision word storage and, consequently, in the signbit location. For pdlaiect.b, the double precision word is stored in the big-endian word order and the signbit is assumed to be bit 32 . For pdlaiectl, the double precision word is stored in the little-endian word order and the signbit is assumed to be bit 64.

Note that all arguments are call-by-reference so that this routine can be directly called from Fortran code.
This is a ScaLAPACK internal subroutine and arguments are not checked for unreasonable values.

\section*{Input Parameters}
sigma REALfor pslaiect
DOUBLE PRECISIONfor pdlaiect.b/pdlaiectl.
The shift. p?laiect finds the number of eigenvalues less than equal to sigma.

INTEGER. The order of the tridiagonal matrix \(T . n \geq 1\).
REALfor pslaiect
DOUBLE PRECISION for pdlaiectb/pdlaiectl.
Array of size \(2 n-1\).
On entry, this array contains the diagonals and the squares of the offdiagonal elements of the tridiagonal matrix \(T\). These elements are assumed to be interleaved in memory for better cache performance. The diagonal entries of \(T\) are in the entries \(d(1), d(3), \ldots, d(2 n-1)\), while the squares of the off-diagonal entries are \(d(2), d(4), \ldots, d(2 n-2)\). To avoid overflow, the matrix must be scaled so that its largest entry is no greater than overflow \({ }^{(1 / 2)}\) * underflow \({ }^{(1 / 4)}\) in absolute value, and for greatest accuracy, it should not be much smaller than that.

\section*{Output Parameters}

INTEGER. The count of the number of eigenvalues of \(T\) less than or equal to sigma.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?lamve}

Copies all or part of one two-dimensional distributed array to another.

\section*{Syntax}
```

call pslamve( uplo, m, n, a, ia, ja, desca, b, ib, jb, descb, dwork )
call pdlamve( uplo, m, n, a, ia, ja, desca, b, ib, jb, descb, dwork )

```

\section*{Description}
p? lamve copies all or part of a distributed matrix \(A\) to another distributed matrix \(B\). There is no alignment assumptions at all except that \(A\) and \(B\) are of the same size.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
uplo
m
n
a
ia
ja
(global) CHARACTER*1
Specifies the part of the distributed matrix \(\operatorname{sub}(A)\) to be copied:
= 'U': Upper triangular part is copied; the strictly lower triangular part of \(\operatorname{sub}(A)\) is not referenced;
\(=\) 'L': Lower triangular part is copied; the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced;
Otherwise: All of the matrix \(\operatorname{sub}(A)\) is copied.
(global) INTEGER
The number of rows to be operated on, which is the number of rows of the distributed matrix \(\operatorname{sub}(A) . m \geq 0\).
(global) INTEGER
The number of columns to be operated on, which is the number of columns of the distributed matrix \(\operatorname{sub}(A) . n \geq 0\).

REAL for pslamve
DOUBLE PRECISION for pdlamve
(local) pointer into the local memory to an array of size (IId_a, \(L O C_{c}\) (\(j a\) \(+n-1)\)). This array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be copied from.
(global) INTEGER
The row index in the global matrix \(A\) indicating the first row of \(\operatorname{sub}(A)\).
(global) INTEGER
The column index in the global matrix \(A\) indicating the first column of \(\operatorname{sub}(A)\).
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{desca} & (global and local) INTEGER array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(A\). \\
\hline \multirow[t]{2}{*}{ib} & (global) INTEGER \\
\hline & The row index in the global matrix \(B\) indicating the first row of sub(\(B\)). \\
\hline \multirow[t]{2}{*}{jb} & (global) INTEGER \\
\hline & The column index in the global matrix \(B\) indicating the first column of \(\operatorname{sub}(B)\). \\
\hline \multirow[t]{2}{*}{descb} & (global and local) INTEGER array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(B\). \\
\hline \multirow[t]{5}{*}{dwork} & REAL for pslamve \\
\hline & DOUBLE PRECISION for pdlamve \\
\hline & (local workspace) array \\
\hline & If uplo = 'U' or uplo = 'L' and number of processors \(>1\), the length of dwork is at least as large as the length of \(b\). \\
\hline & Otherwise, dwork is not referenced. \\
\hline
\end{tabular}

\section*{OUTPUT Parameters}
b
REAL for pslamve
DOUBLE PRECISION for pdlamve
(local) pointer into the local memory to an array of size (IId_b, \(L O C_{c}(j b\) \(+n-1)\)). This array contains on exit the local pieces of the distributed matrix \(\operatorname{sub}(B)\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lange
Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a general rectangular matrix.

\section*{Syntax}
```

val = pslange(norm, m, n, a, ia, ja, desca, work)
val = pdlange(norm, m, n, a, ia, ja, desca, work)
val = pclange(norm, m, n, a, ia, ja, desca, work)
val = pzlange(norm, m, n, a, ia, ja, desca, work)

```

\section*{Description}

The p?langeroutine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a distributed matrix sub \((A)=A(i a: i a+m-1, j a: j a+n-1)\).

\section*{Input Parameters}
norm
m
\(n\)
a
ia, ja
desca
work
(global) CHARACTER. Specifies what value is returned by the routine: \(={ }^{\prime} \mathrm{M}^{\prime}\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix \(A\), it s not a matrix norm.
\(=\) '1' or 'O' or 'o': val \(=\) norm1 (A), 1-norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F', 'f', 'E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).
(global) INTEGER.
The number of rows in the distributed matrix \(\operatorname{sub}(A)\). When \(m=0\), \(p\) ? lange is set to zero. \(m \geq 0\).
(global) INTEGER.
The number of columns in the distributed matrix \(\operatorname{sub}(A)\). When \(n=0\), p? lange is set to zero. \(n \geq 0\).
(local).
REAL for pslange
DOUBLE PRECISION for pdlange
COMPLEX for pclange
COMPLEX*16 for pzlange.
Pointer into the local memory to an array of size (IId_a, LOCc \((j a+n-1)\)) containing the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local).
REAL for pslange
DOUBLE PRECISION for pdlange
COMPLEX for pclange
COMPLEX*16 for pzlange.
Array size Iwork.
```

lwork \geq 0 if norm = 'M' or 'm' (not referenced),
nq0 if norm = '1','O' or 'o',
mp0 if norm = 'I' or 'i',
O if norm = 'F','f','E' or 'e'(not referenced),

```
where
```

iroffa = mod(ia-1, mb_a), icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol),

```
indxg2p and numroc are ScaLAPACK tool routines; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

\section*{Output Parameters}
val
REAL for pslange/pclange
DOUBLE PRECISION for pdlange/pzlange
The value returned by the routine.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?lanhs}

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of an upper Hessenberg matrix.

\section*{Syntax}
```

val = pslanhs(norm, n, a, ia, ja, desca, work)
val = pdlanhs(norm, n, a, ia, ja, desca, work)
val = pclanhs(norm, n, a, ia, ja, desca, work)
val = pzlanhs(norm, n, a, ia, ja, desca, work)

```

\section*{Description}

The p?lanhsroutine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of an upper Hessenberg distributed matrix sub \((A)=A(i a: i a+m-1\), ja:ja+n-1).

\section*{Input Parameters}

CHARACTER*1. Specifies the value to be returned by the routine:
\(={ }^{\prime} M^{\prime}\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix A.
\(=\) '1' or 'O' or 'O': val = norm1 (A), 1-norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val \(=\) normI \((A)\), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F', 'f','E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).
\(n\)
\(a\)
ia, ja
desca
work
(global) INTEGER.
The number of columns in the distributed matrix \(\operatorname{sub}(A)\). When \(n=\) \(0, p\) ? lanhs is set to zero. \(n \geq 0\).
(local).
REAL for pslanhs
DOUBLE PRECISION for pdlanhs
COMPLEX for pclanhs
COMPLEX*16 for pzlanhs.
Pointer into the local memory to an array of size (lld_a, LOCC(ja+n-1)) containing the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
(global) INTEGER.
The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local).
REAL for pslanhs
DOUBLE PRECISION for pdlanhs
COMPLEX for pclanhs
COMPLEX*16 for pzlanh.
Array of size /work.
Iwork \(\geq 0\) if norm = 'M' or 'm' (not referenced),
nq0 if norm = '1', '○' or '○',
mp0 if norm = 'I' or 'i',
0 if norm = 'F', 'f', 'E' or 'e' (not referenced),
where
iroffa \(=\bmod \left(i a-1, m b _a\right)\), icoffa \(=\bmod \left(j a-1, n b _a\right)\),
iarow \(=\) indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol \(=\) indxg2p(ja, nb_a, mycol, csrc_a, npcol \()\),
\(m p 0=\) numroc (\(m+\) iroffa, mb_a, myrow, iarow, nprow \()\),
\(n q 0=\) numroc (\(n+i c o f f a, n b _a\), mycol, iacol, npcol \()\),
indxg2p and numroc are ScaLAPACK tool routines; myrow, imycol, nprow, and \(n p c o l\) can be determined by calling the subroutine blacs_gridinfo.

\section*{Output Parameters}
val
The value returned by the function.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?lansy, p?lanhe
Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a real symmetric or a complex Hermitian matrix.

```

\section*{Syntax}
```

val = pslansy(norm, uplo, n, a, ia, ja, desca, work)
val = pdlansy(norm, uplo, n, a, ia, ja, desca, work)
val = pclansy(norm, uplo, n, a, ia, ja, desca, work)
val = pzlansy(norm, uplo, n, a, ia, ja, desca, work)
val = pclanhe(norm, uplo, n, a, ia, ja, desca, work)
val = pzlanhe(norm, uplo, n, a, ia, ja, desca, work)

```

\section*{Description}

The p?lansy and p?lanheroutines return the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a distributed matrix sub \((A)=A(i a: i a+m-1, j a: j a\) \(+n-1)\).

\section*{Input Parameters}
norm
uplo
n
a
(global) CHARACTER. Specifies what value is returned by the routine: \(=' M^{\prime}\) or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix \(A\), it s not a matrix norm.
\(=\) '1' or 'O' or 'O': val \(=\) norm1 (A), 1 -norm of the matrix \(A\) (maximum column sum),
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F','f','E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).
(global) CHARACTER. Specifies whether the upper or lower triangular part of the symmetric matrix \(\operatorname{sub}(A)\) is to be referenced.
\(=\) 'U': Upper triangular part of \(\operatorname{sub}(A)\) is referenced,
\(=\) ' L ': Lower triangular part of \(\operatorname{sub}(A)\) is referenced.
(global) INTEGER.
The number of columns in the distributed matrix \(\operatorname{sub}(A)\). When \(n=0\), p?lansy is set to zero. \(n \geq 0\).
(local).
REAL for pslansy
DOUBLE PRECISION for pdlansy
COMPLEX for pclansy, pclanhe
COMPLEX*16 for pzlansy, pzlanhe.
ia, ja
desca
work

Pointer into the local memory to an array of size (IId_a, LOCc \((j a+n-1)\)) containing the local pieces of the distributed matrix \(\operatorname{sub}(A)\).

If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular matrix whose norm is to be computed, and the strictly lower triangular part of this matrix is not referenced. If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular matrix whose norm is to be computed, and the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced.
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local).
REAL for pslansy, pclansy, pclanhe
DOUBLE PRECISION for pdlansy, pzlansy, pzlanhe
Array of size Iwork.
Iwork \(\geq 0\) if norm = 'M' or 'm' (not referenced),
\(2 \star n q 0+m p 0+1 d w\) if norm = '1', 'O' or 'o', 'I' or 'i',
where \(I d w\) is given by:
```

if( nprow\not=npcol ) then
ldw = mb_a*iceil(iceil(np0,mb_a),(lcm/nprow))
else
ldw = 0
end if
O if norm = 'F','f','E' or 'e'(not referenced),

```
where \(/ \mathrm{cm}\) is the least common multiple of nprow and npcol, \(1 \mathrm{~cm}=\) ilcm (nprow, npcol) and iceil \((x, y)\) is a ScaLAPACK function that returns ceiling (\(x / y\)).
iroffa \(=\bmod \left(i a-1, m b _a\right), i c o f f a=\bmod \left(j a-1, n b _a\right)\),
iarow \(=\) indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol \(=\) indxg2p(ja, nb_a, mycol, csrc_a, npcol),
\(m p 0=\) numroc(\(m+i r o f f a, m b _a\), myrow, iarow, nprow),
\(n q 0=\) numroc (n+icoffa, nb_a, mycol, iacol, npcol),
ilcm, iceil, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

\section*{Output Parameters}

The value returned by the routine.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?lantr}

Returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element, of a triangular matrix.

\section*{Syntax}
```

val = pslantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)
val = pdlantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)
val = pclantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)
val = pzlantr(norm, uplo, diag, m, n, a, ia, ja, desca, work)

```

\section*{Description}

The p?lantrroutine returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular distributed matrix sub (A) = A(ia:ia+m-1, ja:ja+n-1).

\section*{Input Parameters}
```

norm

```
uplo
diag
m
(global) CHARACTER. Specifies what value is returned by the routine:
\(=' \mathrm{M}\) ' or 'm': val \(=\max \left(\operatorname{abs}\left(A_{i j}\right)\right)\), largest absolute value of the matrix \(A\), it \(s\) not a matrix norm.
\(=\) '1' or 'O' or 'o': val = norm1 (A), 1-norm of the matrix \(A\)
(maximum column sum),
\(=\) 'I' or 'i': val = normI (A), infinity norm of the matrix \(A\) (maximum row sum),
\(=\) 'F', 'f', 'E' or 'e': val = normF (A), Frobenius norm of the matrix \(A\) (square root of sum of squares).
(global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric matrix \(\operatorname{sub}(A)\) is to be referenced.
= 'U': Upper trapezoidal,
\(=\) 'L': Lower trapezoidal.
Note that \(\operatorname{sub}(A)\) is triangular instead of trapezoidal if \(m=n\).
(global) CHARACTER.
Specifies whether the distributed matrix \(\operatorname{sub}(A)\) has unit diagonal.
\(=\) 'N': Non-unit diagonal.
= 'U': Unit diagonal.
(global) INTEGER.
The number of rows in the distributed matrix \(\operatorname{sub}(A)\). When \(m=0\), \(p\) ? lantr is set to zero. \(m \geq 0\).
\(n\)
\(a\)
(global) INTEGER.
The number of columns in the distributed matrix \(\operatorname{sub}(A)\). When \(n=0\), p? lantr is set to zero. \(n \geq 0\).
(local).
REAL for pslantr
DOUBLE PRECISION for pdlantr
COMPLEX for pclantr
COMPLEX*16 for pzlantr.
Pointer into the local memory to an array of size (lld_a, LOCC (ja+n-1)) containing the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
(global) INTEGER.
The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local).
REAL for pslantr
DOUBLE PRECISION for pdlantr
COMPLEX for pclantr
COMPLEX*16 for pzlantr.
Array size Iwork.
lwork \(\geq 0\) if norm = 'M' or 'm' (not referenced),
nq0 if norm = '1', ' 0 ' or '○',
mp0 if norm = 'I' or 'i',
0 if norm = 'F', 'f', 'E' or 'e' (not referenced),
iroffa \(=\bmod \left(i a-1, m b _a\right), i c o f f a=\bmod \left(j a-1, n b _a\right)\),
iarow \(=\) indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol \(=\) indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 \(=\) numroc (m+iroffa, mb_a, myrow, iarow, nprow),
nq0 \(=\) numroc (n+icoffa, nb_a, mycol, iacol, npcol),
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

\section*{Output Parameters}
val
The value returned by the routine.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?lapiv
Applies a permutation matrix to a general distributed
matrix, resulting in row or column pivoting.
Syntax

```
```

call pslapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp, descip, iwork)

```
call pslapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp, descip, iwork)
call pdlapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp, descip, iwork)
call pdlapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp, descip, iwork)
call pclapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp, descip, iwork)
call pclapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp, descip, iwork)
call pzlapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp, descip, iwork)
```

call pzlapiv(direc, rowcol, pivroc, m, n, a, ia, ja, desca, ipiv, ip, jp, descip, iwork)

```

\section*{Description}

The p?lapivroutine applies either \(P\) (permutation matrix indicated by ipiv) or inv \((P)\) to a general \(m\)-by- \(n\) distributed matrix sub \((A)=A(i a: i a+m-1, j a: j a+n-1)\), resulting in row or column pivoting. The pivot vector may be distributed across a process row or a column. The pivot vector should be aligned with the distributed matrix \(A\). This routine will transpose the pivot vector, if necessary.

For example, if the row pivots should be applied to the columns of \(\operatorname{sub}(A)\), pass rowcol=' \(C^{\prime}\) and pivroc='C'.

\section*{Input Parameters}
(global) CHARACTER*1.
Specifies in which order the permutation is applied:
\(=' F^{\prime}\) (Forward): Applies pivots forward from top of matrix. Computes \(P^{\star}\) sub (A).
\(=\) ' \(\mathrm{B}^{\prime}\) (Backward): Applies pivots backward from bottom of matrix. Computes inv (\(P\)) *sub (\(A\)).
(global) CHARACTER*1.
Specifies if the rows or columns are to be permuted:
= 'R': Rows will be permuted,
\(=\) ' C ': Columns will be permuted.
(global) CHARACTER*1.
Specifies whether ipiv is distributed over a process row or column:
= 'R': ipiv is distributed over a process row,
\(=\) 'C': ipiv is distributed over a process column.
(global) INTEGER.
The number of rows in the distributed matrix \(\operatorname{sub}(A)\). When \(m=0\), p?lapiv is set to zero. \(m \geq 0\).
(global) INTEGER.
The number of columns in the distributed matrix \(\operatorname{sub}(A)\). When \(n=0\), p?lapiv is set to zero. \(n \geq 0\).
(local).
```

ia,ja
desca
ipiv
(global) INTEGER.
The row and column indices in the global matrix $A$ indicating the first row and the first column of the matrix $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix A.
(local) INTEGER.
Array of size lipiv ;
when rowcol='R' or 'r':
lipiv $\geq$ LOCr (ia+m-1) + mb_a if pivroc='C' or 'c',
lipiv $\geq$ LOCC $\left(m+\bmod \left(j p-1, n b \_p\right)\right)$ if pivroc='R' or 'r', and,
when rowcol='C' or 'c':

```
```

lipiv\geqLOCr(n + mod(ip-1, mb_p)) if pivroc='C' or 'c',

```
lipiv\geqLOCr(n + mod(ip-1, mb_p)) if pivroc='C' or 'c',
lipiv\geqLOCC(ja+n-1) + nb_a if pivroc='R' or 'r'.
```

lipiv\geqLOCC(ja+n-1) + nb_a if pivroc='R' or 'r'.

```
ip, jp
descip
iwork

REAL for pslapiv
DOUBLE PRECISION for pdlapiv
COMPLEX for pclapiv
COMPLEX*16 for pzlapiv.
Pointer into the local memory to an array of size (lld_a, LOCC (ja+n-1)) containing the local pieces of the distributed matrix \(\operatorname{sub}(A)\).

This array contains the pivoting information. ipiv(i) is the global row (column), local row (column) \(i\) was swapped with. When rowcol='R' or 'r' and pivroc='C' or 'c', or rowcol='C' or 'c' and pivroc='R' or ' \(r\) ', the last piece of this array of size \(m b _a\) (resp. \(n b _a\)) is used as workspace. In those cases, this array is tied to the distributed matrix \(A\).
(global) INTEGER. The row and column indices in the global matrix \(P\) indicating the first row and the first column of the matrix sub \((P)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed vector ipiv.
(local). INTEGER.
Array of size \(I d w\), where \(I d w\) is equal to the workspace necessary for transposition, and the storage of the transposed ipiv:
Let \(/ \mathrm{cm}\) be the least common multiple of nprow and npcol.
```

if( rowcol.eq.'r' .and. pivroc. eq.'r') then
if( nprow.eq. npcol) then
ldw = LOCr( n_p + mod(jp-1, nb_p) ) + nb_p
else
ldw = LOCr( n_p + mod(jp-1, nb_p) ) +
nb_p * ceil( ceil(LOCc(n_p)/nb_p) / (lcm/npcol) )
end if
else if( rowcol.eq.'c' .and. pivroc.eq.'c') then

```
```

    if( nprow.eq. npcol ) then
    ldw = LOCc( m_p + mod(ip-1, mb_p) ) + mb_p
else
ldw = LOCc( m_p + mod(ip-1, mb_p) ) +
mb_p *ceil(ceil(LOCr(m_p)/mb_p) / (lcm/nprow) )
end if
else
iwork is not referenced.
end if

```

\section*{Output Parameters}
a
(local).
On exit, the local pieces of the permuted distributed submatrix.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lapv2
Applies a permutation to an m-by-n distributed matrix.

\section*{Syntax}
```

call pslapv2 (direc, rowcol, m, n, a, ia, ja, desca, ipiv, ip, jp, descip )
call pdlapv2 (direc, rowcol, m, n, a, ia, ja, desca, ipiv, ip, jp, descip )
call pclapv2 (direc, rowcol, m, n, a, ia, ja, desca, ipiv, ip, jp, descip )
call pzlapv2 (direc, rowcol, m, n, a, ia, ja, desca, ipiv, ip, jp, descip )

```

\section*{Description}
p? lapv2 applies either \(P\) (permutation matrix indicated by ipiv) or inv(\(P\)) to an m-by-n distributed matrix \(\operatorname{sub}(A)\) denoting \(A(i a: i a+m-1, j a: j a+n-1)\), resulting in row or column pivoting. The pivot vector should be aligned with the distributed matrix \(A\). For pivoting the rows of sub (\(A\)), ipiv should be distributed along a process column and replicated over all process rows. Similarly, ipiv should be distributed along a process row and replicated over all process columns for column pivoting.

\section*{Input Parameters}
```

direc

```
rowcol
(global)
CHARACTER.
Specifies in which order the permutation is applied:
\(=\) ' F ' (Forward) Applies pivots Forward from top of matrix. Computes \(P\) * \(\operatorname{sub}(A)\);
\(=\) 'B' (Backward) Applies pivots Backward from bottom of matrix. Computes \(\operatorname{inv}(P) * \operatorname{sub}(A)\).
(global)
CHARACTER.
Specifies if the rows or columns are to be permuted:
\(=\) 'R' Rows will be permuted,
\(=\) 'C' Columns will be permuted.
(global)
INTEGER.
The number of rows to be operated on, i.e. the number of rows of the distributed submatrix \(\operatorname{sub}(A) . m>=0\).
(global)
INTEGER.
The number of columns to be operated on, i.e. the number of columns of the distributed submatrix \(\operatorname{sub}(A) . n>=0\).

Pointer into local memory to an array of size (lld_a, LOCC (ja+n-1)).
On entry, this local array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to which the row or columns interchanges will be applied.
(global)
INTEGER.
The row index in the global array a indicating the first row of \(\operatorname{sub}(A)\).
(global)
INTEGER.
The column index in the global array a indicating the first column of \(\operatorname{sub}(A)\).
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix \(A\).
INTEGER.
Array, size \(>=\operatorname{LOCr}\left(m_{-} a\right)+m b _a\) if rowcol \(=\) 'R', LOCc \(\left(n _a\right)+n b _a\) otherwise.

It contains the pivoting information. ipiv(i) is the global row (column), local row (column) \(i\) was swapped with. The last piece of the array of size \(m b _a\) or \(n b _a\) is used as workspace. ipiv is tied to the distributed matrix A.
(global)
INTEGER.
The global row index of ipiv, which points to the beginning of the submatrix on which to operate.
(global)
INTEGER.
The global column index of ipiv, which points to the beginning of the submatrix on which to operate.
(global and local)

\section*{INTEGER.}

Array of size 8.
The array descriptor for the distributed matrix ipiv.

\section*{Output Parameters}
\(a\)
On exit, this array contains the local pieces of the permuted distributed matrix.

\section*{p?laqge}

Scales a general rectangular matrix, using row and column scaling factors computed by p?geequ .

\section*{Syntax}
```

call pslaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)
call pdlaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)
call pclaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)
call pzlaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)

```

\section*{Description}

The p? laqgeroutine equilibrates a general \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)\) using the row and scaling factors in the vectors \(r\) and \(c\) computed by p?geequ.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline m & (global) INTEGER. \\
\hline & The number of rows in the distributed matrix \(\operatorname{sub}(A) .(m \geq 0)\). \\
\hline \(n\) & (global) INTEGER. \\
\hline a & The number of columns in the distributed matrix \(\operatorname{sub}(A) .(n \geq 0)\). (local). \\
\hline & REAL for pslaqge \\
\hline & DOUBLE PRECISION for pdlaqge \\
\hline & COMPLEX for pclaqge \\
\hline & COMPLEX*16 for pzlaqge. \\
\hline & Pointer into the local memory to an array of size (lld_a, LOCC (ja+n-1)). \\
\hline & On entry, this array contains the distributed matrix \(\operatorname{sub}(A)\). \\
\hline ia, ja & (global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively. \\
\hline desca & (global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\). \\
\hline \(r\) & (local). \\
\hline
\end{tabular}
```

REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.

```

Array of size LOCr (m_a). The row scale factors for \(\operatorname{sub}(A) . r\) is aligned with the distributed matrix \(A\), and replicated across every process column. \(r\) is tied to the distributed matrix \(A\).
c
(local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Array of size \(\operatorname{LOCC}\left(n_{-} a\right)\). The row scale factors for \(\operatorname{sub}(A) . c\) is aligned with the distributed matrix \(A\), and replicated across every process column. \(c\) is tied to the distributed matrix \(A\).
(local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
The global ratio of the smallest \(r(i)\) to the largest \(r(i)\), ia \(\leq i \leq i a+m-1\).
(local).
REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
The global ratio of the smallest \(c(i)\) to the largest \(c(i)\), ia \(\leq i \leq i a+n-1\).
(global). REAL for pslaqge
DOUBLE PRECISION for pdlaqge
COMPLEX for pclaqge
COMPLEX*16 for pzlaqge.
Absolute value of largest distributed submatrix entry.

\section*{Output Parameters}
a
(local).
On exit, the equilibrated distributed matrix. See equed for the form of the equilibrated distributed submatrix.
```

equed (global) CHARACTER.
Specifies the form of equilibration that was done.
= 'N': No equilibration
= 'R': Row equilibration, that is, sub}(A)\mathrm{ has been pre-multiplied by
diag(r(ia:ia+m-1)),
= 'C': column equilibration, that is, sub (A) has been post-multiplied by
diag(c(ja:ja+n-1)),
= 'B': Both row and column equilibration, that is, }\operatorname{sub}(A)\mathrm{ has been
replaced by diag(r(ia:ia+m-1))* sub(A) * diag(c(ja:ja+n-1)).

```

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?laqr0}

Computes the eigenvalues of a Hessenberg matrix and optionally returns the matrices from the Schur decomposition.

\section*{Syntax}
```

call pslaqr0( wantt, wantz, n, ilo, ihi, h, desch, wr, wi, iloz, ihiz, z, descz, work,
lwork, iwork, liwork, info, reclevel )
call pdlaqr0( wantt, wantz, n, ilo, ihi, h, desch, wr, wi, iloz, ihiz, z, descz, work,
lwork, iwork, liwork, info, reclevel )

```

\section*{Description}
p? laqr0 computes the eigenvalues of a Hessenberg matrix \(H\) and, optionally, the matrices \(T\) and \(Z\) from the Schur decomposition \(H=Z^{*} T^{*} Z^{\top}\), where \(T\) is an upper quasi-triangular matrix (the Schur form), and \(Z\) is the orthogonal matrix of Schur vectors.
Optionally \(Z\) may be postmultiplied into an input orthogonal matrix \(Q\) so that this routine can give the Schur factorization of a matrix \(A\) which has been reduced to the Hessenberg form \(H\) by the orthogonal matrix \(Q\) : \(A\) \(=Q * H^{*} Q^{\top}=(Q Z) * T^{*}(Q Z)^{\top}\).

\section*{Input Parameters}
```

wantt
wantz
n
ilo, ihi

```
(global) LOGICAL
\(=\).TRUE . : the full Schur form \(T\) is required;
\(=\).FALSE. : only eigenvalues are required.
(global) LOGICAL
\(=\). TRUE.\(:\) the matrix of Schur vectors \(Z\) is required;
\(=\). FALSE . : Schur vectors are not required .
(global) INTEGER
The order of the Hessenberg matrix \(H\) (and \(Z\) if wantz). \(n \geq 0\).
(global) INTEGER
h

It is assumed that the matrix \(H\) is already upper triangular in rows and columns 1:ilo-1 and ihi+1:n. ilo and ihi are normally set by a previous call to p?gebal, and then passed to p?gehrd when the matrix output by ihi is reduced to Hessenberg form. Otherwise ilo and ihi should be set to 1 and \(n\), respectively. If \(n>0\), then \(1 \leq i l o \leq i h i \leq n\).

If \(n=0\), then \(i l o=1\) and \(i h i=0\).
REAL for pslaqr0
DOUBLE PRECISION for pdlaqr0
(global) array of size (lld_h, LOC \((n)\))
The upper Hessenberg matrix \(H\).
(global and local) INTEGER
Array of size dlen_.
The array descriptor for the distributed matrix \(H\).
```

INTEGER

```

Specify the rows of the matrix \(Z\) to which transformations must be applied if wantz is.TRUE., \(1 \leq i l o z \leq i l o ; ~ i h i \leq i h i z \leq n . ~\)

REAL for pslaqr0
DOUBLE PRECISION for pdlaqr0
Array of size (lld_z, \(\operatorname{LOC}_{c}(n)\)).
If wantz is . TRUE., contains the matrix \(Z\).
If wantzis.FALSE., \(z\) is not referenced.
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix \(Z\).
REAL for pslaqr0
DOUBLE PRECISION for pdlaqr0
(local workspace) array of size lwork
(local) INTEGER
The length of the workspace array work.
(local workspace) INTEGER array of size liwork
(local) INTEGER
The length of the workspace array iwork.
(local) INTEGER
Level of recursion. reclevel \(=0\) must hold on entry.

\section*{OUTPUT Parameters}
h
wr, wi

Z
work(1)
iwork(1)
info

On exit, if wantt is .TRUE., the matrix \(H\) is upper quasi-triangular in rows and columns ilo:ihi, with 1-by-1 and 2-by-2 blocks on the main diagonal. The 2-by-2 diagonal blocks (corresponding to complex conjugate pairs of eigenvalues) are returned in standard form, with \(H(i, i)=H(i+1, i+1)\) and \(H(i\) \(+1, i) * H(i, i+1)<0\). If info \(=0\) and wanttis. FALSE., the contents of \(h\) are unspecified on exit.

REAL for pslaqr0
DOUBLE PRECISION for pdlaqr0
The real and imaginary parts, respectively, of the computed eigenvalues ilo to ihi are stored in the corresponding elements of wr and wi. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of \(w r\) and \(w i\), say the \(i\)-th and \((i+1)\) th, with \(w i(i)>0\) and \(w i(i+1)<0\). If wantt is.TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in \(h\).

Updated matrix with transformations applied only to the submatrix Z(ilo:ihi,ilo:ihi).

If COMPZ = 'I', on exit, if info \(=0, z\) contains the orthogonal matrix \(Z\) of the Schur vectors of \(H\).
If wantz is .TRUE., then \(Z\) (ilo:ihi,iloz:ihiz) is replaced by \(Z(i l o: i h i, i l o z: i h i z) * U\), when \(U\) is the orthogonal/unitary Schur factor of H(ilo:ihi,ilo:ihi).

If wantzis.FALSE., then \(z\) is not defined.
On exit, if info \(=0\), work(1) returns the optimal lwork.
On exit, if info \(=0\), iwork(1) returns the optimal liwork.

\section*{INTEGER}
\(>0\) : if info \(=i\), then the routine failed to compute all the eigenvalues. Elements 1:ilo-1 and \(i+1\) : \(n\) of wr and wi contain those eigenvalues which have been successfully computed.
\(>0\) : if wanttis. FALSE., then the remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix rows and columns ilo through ihi of the final output value of \(h\).
\(>0\) : if wantt is .TRUE., then (initial value of \(H\)) \(U=U^{*}\) (final value of \(H\)), where \(U\) is an orthogonal/unitary matrix. The final value of \(H\) is upper Hessenberg and quasi-triangular/triangular in rows and columns info+1 through ihi.
> 0: if wantz is .TRUE., then (final value of
\(Z(i l o: i h i, i l o z: i h i z))=(\) initial value of \(Z(i l o: i h i, i l o z: i h i z)) * U\), where \(U\) is the orthogonal/unitary matrix in the previous expression (regardless of the value of wantt).
\(>0\) : if wantzis .FALSE., then \(z\) is not accessed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?laqr1
Sets a scalar multiple of the first column of the
product of a 2-by-2 or 3-by-3 matrix and specified
shifts.
Syntax

```
```

call pslaqr1( wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z, descz, work,

```
call pslaqr1(wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z, descz, work,
lwork, iwork, ilwork, info)
lwork, iwork, ilwork, info)
call pdlaqrl(wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z, descz, work,
call pdlaqrl(wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z, descz, work,
lwork, iwork, ilwork, info)
```

lwork, iwork, ilwork, info )

```

\section*{Description}
p? laqr1 is an auxiliary routine used to find the Schur decomposition and/or eigenvalues of a matrix already in Hessenberg form from columns ilo to ihi.

This is a modified version of p? lahqr from ScaLAPACK version 1.7.3. The following modifications were made:
- Workspace query functionality was added.
- Aggressive early deflation is implemented.
- Aggressive deflation (looking for two consecutive small subdiagonal elements by PSLACONSB) is abandoned.
- The returned Schur form is now in canonical form, i.e., the returned 2-by-2 blocks really correspond to complex conjugate pairs of eigenvalues.
- For some reason, the original version of p?lahqr sometimes did not read out the converged eigenvalues correctly. This is now fixed.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
wantt
wantz
n
ilo, ihi
(global) LOGICAL
\(=\).TRUE.\(:\) the full Schur form \(T\) is required;
\(=\).FALSE. : only eigenvalues are required.
(global) LOGICAL
\(=\). TRUE . : the matrix of Schur vectors \(Z\) is required;
\(=\).FALSE.\(:\) Schur vectors are not required.
(global) LOGICAL
The order of the Hessenberg matrix \(A\) (and \(Z\) if wantz). \(n \geq 0\).
(global) INTEGER
a

It is assumed that the matrix \(A\) is already upper quasi-triangular in rows and columns ihi+1:n, and that \(A(i l o, i l o-1)=0\) (unless ilo = 1). p?laqr1 works primarily with the Hessenberg submatrix in rows and columns ilo to ihi, but applies transformations to all of \(H\) if wantt is .TRUE..
\(1 \leq i l o \leq \max (1, i h i) ; i h i \leq n\).
REAL for pslaqr1
DOUBLE PRECISION for pdlaqr1
(global) array of size (Ild_a, LOC \((n)\))
On entry, the upper Hessenberg matrix \(A\).
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix \(A\).
(global) INTEGER
Specify the rows of the matrix \(Z\) to which transformations must be applied if wantz is .TRUE..
\(1 \leq i l o z \leq i l o ; ~ i h i \leq i h i z \leq n\).
REAL for pslaqr1
DOUBLE PRECISION for pdlaqr1
(global) array of size (lld_z,LOC \((n)\)).
If wantz is .TRUE., on entry \(z\) must contain the current matrix \(Z\) of transformations accumulated by p?hseqr
If want \(z\) is .FALSE., \(z\) is not referenced.
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix \(Z\).
REAL for pslaqr1
DOUBLE PRECISION for pdlaqr1
(local output) array of size lwork
(local) INTEGER
The size of the work array (lwork>=1).
If 1 work \(=-1\), then a workspace query is assumed.
(global and local) INTEGER array of size ilwork
This holds the some of the IBLK integer arrays.
(local) INTEGER
The size of the iwork array (ilwork \(\geq 3\)).

\section*{OUTPUT Parameters}
\(a\)
wr, wi

Z
info

If wantt is . TRUE., the matrix \(A\) is upper quasi-triangular in rows and columns ilo:ihi, with any 2-by-2 or larger diagonal blocks not yet in standard form. If want is .FALSE., the contents of a are unspecified on exit.

REAL for pslaqr1
DOUBLE PRECISION for pdlaqr1
(global replicated) array of size \(n\)
The real and imaginary parts, respectively, of the computed eigenvalues ilo to ihi are stored in the corresponding elements of wr and wi. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of \(w r\) and \(w i\), say the \(i\)-th and \((i+1)\) th, with \(w i(i)>0\) and wi \((i+1)<0\). If wantt is.TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in a. a may be returned with larger diagonal blocks until the next release.

On exit \(z\) is updated; transformations are applied only to the submatrix Z(iloz:ihiz,ilo:ihi).

If wantzis.FALSE., \(z\) is not referenced.
On exit, if info \(=0\), work(1) returns the optimal lwork.
(global) INTEGER
< 0: parameter number -info incorrect or inconsistent
\(=0\) : successful exit
> 0: p?laqr1 failed to compute all the eigenvalues ilo to ihi in a total of \(30^{*}(i h i-i l o+1)\) iterations; if info \(=i\), elements \(i+1\) : ihi of wr and wi contain those eigenvalues which have been successfully computed.

\section*{Application Notes}

This algorithm is very similar to p?ahqr. Unlike p?lahqr, instead of sending one double shift through the largest unreduced submatrix, this algorithm sends multiple double shifts and spaces them apart so that there can be parallelism across several processor row/columns. Another critical difference is that this algorithm aggregrates multiple transforms together in order to apply them in a block fashion.

\section*{Current Notes and/or Restrictions:}
- This code requires the distributed block size to be square and at least six (6); unlike simpler codes like LU, this algorithm is extremely sensitive to block size. Unwise choices of too small a block size can lead to bad performance.
- This code requires \(a\) and \(z\) to be distributed identically and have identical contxts.
- This release currently does not have a routine for resolving the Schur blocks into regular \(2 \times 2\) form after this code is completed. Because of this, a significant performance impact is required while the deflation is done by sometimes a single column of processors.
- This code does not currently block the initial transforms so that none of the rows or columns for any bulge are completed until all are started. To offset pipeline start-up it is recommended that at least 2*LCM(NPROW,NPCOL) bulges are used (if possible)
- The maximum number of bulges currently supported is fixed at 32. In future versions this will be limited only by the incoming work array.
- The matrix \(A\) must be in upper Hessenberg form. If elements below the subdiagonal are nonzero, the resulting transforms may be nonsimilar. This is also true with the LAPACK routine.
- For this release, it is assumed rsrc_=csrc_=0
- Currently, all the eigenvalues are distributed to all the nodes. Future releases will probably distribute the eigenvalues by the column partitioning.
- The internals of this routine are subject to change.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?laqr2}

Performs the orthogonal/unitary similarity
transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).

\section*{Syntax}
```

call pslaqr2( wantt, wantz, n, ktop, kbot, nw, a, desca, iloz, ihiz, z, descz, ns, nd,
sr, si, t, ldt, v, ldv, wr, wi, work, lwork )
call pdlaqr2( wantt, wantz, n, ktop, kbot, nw, a, desca, iloz, ihiz, z, descz, ns, nd,
sr, si, t, ldt, v, ldv, wr, wi, work, lwork )

```

\section*{Description}
p?laqr2 accepts as input an upper Hessenberg matrix \(A\) and performs an orthogonal similarity transformation designed to detect and deflate fully converged eigenvalues from a trailing principal submatrix. On output Ais overwritten by a new Hessenberg matrix that is a perturbation of an orthogonal similarity transformation of \(A\). It is to be hoped that the final version of \(A\) has many zero subdiagonal entries.
This routine handles small deflation windows which is affordable by one processor. Normally, it is called by p?laqr1. All the inputs are assumed to be valid without checking.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
```

wantt

```
wantz
n
(global) LOGICAL
If . TRUE., then the Hessenberg matrix \(A\) is fully updated so that the quasitriangular Schur factor may be computed (in cooperation with the calling subroutine).

If .FALSE., then only enough of \(A\) is updated to preserve the eigenvalues.
(global) LOGICAL
If .TRUE., then the orthogonal matrix \(Z\) is updated so that the orthogonal Schur factor may be computed (in cooperation with the calling subroutine).
If . FALSE., then \(z\) is not referenced.
(global) INTEGER

The order of the matrix \(A\) and (if wantz is .TRUE.) the order of the orthogonal matrix \(Z\).
(global) INTEGER
It is assumed without a check that either \(k b \circ t=n\) or \(A(k b \circ t+1, k b \circ t)=0\). \(k b o t\) and \(k\) top together determine an isolated block along the diagonal of the Hessenberg matrix. However, \(A(k t o p, k t o p-1)=0\) is not essentially necessary if wantt is . TRUE. .
(global) INTEGER
Deflation window size. \(1 \leq n w \leq(k b o t-k t o p+1)\). Normally \(n w \geq 3\) if p?laqr2 is called by p?laqr1.

REAL for pslaqr2
DOUBLE PRECISION for pdlaqr2
(local) array of size (Ild_a,LOC \((n)\))
The initial \(n\)-by- \(n\) section of a stores the Hessenberg matrix undergoing aggressive early deflation.
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix \(A\).
(global) INTEGER
Specify the rows of \(z\) to which transformations must be applied if wantz
is .TRUE.. \(1 \leq i l o z \leq i h i z \leq n\).
REAL for pslaqr2
DOUBLE PRECISION for pdlaqr2
Array of size (Ild_z,LOC \((n)\))
If wantz is .TRUE., then on output, the orthogonal similarity transformation mentioned above has been accumulated into z(iloz:ihiz, kbot:ktop) from the right.
If want \(z\) is .FALSE., then \(z\) is unreferenced.
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix \(Z\).
REAL for pslaqr2
DOUBLE PRECISION for pdlaqr2
(local workspace) array of size \(I d t^{*} n w\).
(local) INTEGER
The leading dimension of the array \(t\). \(1 d t \geq n w\).
REAL for pslaqr2
DOUBLE PRECISION for pdlaqr2
(local workspace) array of size \(I d v^{*} n w\).

\section*{OUTPUT Parameters}
a
z
\(n s\)
nd
sr, si
```

ldv
wr, wi
work
lwork
(local ) INTEGER
The leading dimension of the array $v . I d v \geq n w$.
REAL for pslaqr2
DOUBLE PRECISION for pdlaqr2
(local workspace) array of size kbot.
REAL for pslaqr2
DOUBLE PRECISION for pdlaqr2
(local workspace) array of size 1 work.
(local ) INTEGER
work(lwork) is a local array and lwork is assumed big enough so that lwork $\geq n w^{*} n w$.

```

On output a has been transformed by an orthogonal similarity transformation, perturbed, and returned to Hessenberg form that (it is to be hoped) has some zero subdiagonal entries.
(global) INTEGER
The number of unconverged (that is, approximate) eigenvalues returned in sr and si that may be used as shifts by the calling subroutine.
(global) INTEGER
The number of converged eigenvalues uncovered by this subroutine.
REAL for pslaqr2
DOUBLE PRECISION for pdlaqr2
(global) array of size kbot
On output, the real and imaginary parts of approximate eigenvalues that may be used for shifts are stored in \(s r(k b o t-n d-n s+1)\) through \(s r(k b \circ t-\) \(n d)\) and \(s i(k b \circ t-n d-n s+1)\) through \(s i(k b \circ t-n d)\), respectively.

On processor \#0, the real and imaginary parts of converged eigenvalues are stored in \(s r(k b \circ t-n d+1)\) through \(s r(k b \circ t)\) and \(s i(k b \circ t-n d+1)\) through si(kbot), respectively. On other processors, these entries are set to zero.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?laqr3
Performs the orthogonal/unitary similarity
transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).

\section*{Syntax}
```

call pslaqr3( wantt, wantz, n, ktop, kbot, nw, h, desch, iloz, ihiz, z, descz, ns, nd,
sr, si, v, descv, nh, t, desct, nv, wv, descw, work, lwork, iwork, liwork, reclevel )
call pdlaqr3( wantt, wantz, n, ktop, kbot, nw, h, desch, iloz, ihiz, z, descz, ns, nd,
sr, si, v, descv, nh, t, desct, nv, wv, descw, work, lwork, iwork, liwork, reclevel )

```

\section*{Description}

This subroutine accepts as input an upper Hessenberg matrix \(H\) and performs an orthogonal similarity transformation designed to detect and deflate fully converged eigenvalues from a trailing principal submatrix. On output \(H\) is overwritten by a new Hessenberg matrix that is a perturbation of an orthogonal similarity transformation of \(H\). It is to be hoped that the final version of \(H\) has many zero subdiagonal entries.

\section*{Input Parameters}
wantt
wantz
n
h
desch
(global) LOGICAL
If . TRUE., then the Hessenberg matrix \(H\) is fully updated so that the quasitriangular Schur factor may be computed (in cooperation with the calling subroutine).
If . FALSE., then only enough of \(H\) is updated to preserve the eigenvalues.
(global) LOGICAL
If .TRUE., then the orthogonal matrix \(Z\) is updated so that the orthogonal Schur factor may be computed (in cooperation with the calling subroutine).
If .FALSE., then \(z\) is not referenced.
(global) INTEGER
The order of the matrix \(H\) and (if wantz is .TRUE.), the order of the orthogonal matrix \(Z\).
(global) INTEGER
It is assumed that either \(k\) top \(=1\) or \(H(k t o p, k t o p-1)=0\). kbot and \(k t o p\) together determine an isolated block along the diagonal of the Hessenberg matrix.
(global) INTEGER
It is assumed without a check that either \(k b \circ t=n\) or \(H(k b \circ t+1, k b \circ t)=0\). \(k b o t\) and \(k\) top together determine an isolated block along the diagonal of the Hessenberg matrix.
(global) INTEGER
Deflation window size. \(1 \leq n w \leq(k b \circ t-k t \circ p+1)\).
REAL for pslaqr3
DOUBLE PRECISION for pdlaqr3
(local) array of size (IId_h,LOC \((n)\))
The initial \(n\)-by- \(n\) section of \(H\) stores the Hessenberg matrix undergoing aggressive early deflation.
(global and local) INTEGER array of size dlen_.

The array descriptor for the distributed matrix \(H\).
iloz, ihiz

Z
descz

V
descv
nh
t
desct
\(n V\)

WV
descw
work
lwork
(global) INTEGER
Specify the rows of the matrix \(Z\) to which transformations must be applied if wantz is.TRUE.. \(1 \leq i l o z \leq i h i z \leq n\).

REAL for pslaqr3
DOUBLE PRECISION for pdlaqr3
Array of size (\(/ / d_{-} z, L O C_{c}(n)\))
If wantz is .TRUE., then on output, the orthogonal similarity transformation mentioned above has been accumulated into the matrix Z(iloz:ihiz,kbot:ktop) from the right.

If wantz is . FALSE., then \(z\) is unreferenced.
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix \(Z\).
REAL for pslaqr3
DOUBLE PRECISION for pdlaqr3
(global workspace) array of size (Ild_v,LOC \(C_{c}(n w)\))
An nw-by-nw distributed work array.
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix \(V\).
INTEGER scalar
The number of columns of \(t\). \(n h \geq n w\).
REAL for pslaqr3
DOUBLE PRECISION for pdlaqr3
(global workspace) array of size (IId_t,LOC \(C_{c}(n h)\))
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix \(T\).
(global) INTEGER
The number of rows of work array wv available for workspace. \(n v \geq n w\).
(global workspace) REAL array of size (Ild_w, LOC \(C_{c}(n w)\))
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix wv.
(local workspace) REAL array of size lwork.
(local) INTEGER
The size of the work array work (\(l_{\text {work }} \geq 1\)). \(l_{\text {work }}=2^{*}\) nw suffices, but greater efficiency may result from larger values of 1 work.

If 1 work \(=-1\), then a workspace query is assumed; p? laqr3 only estimates the optimal workspace size for the given values of \(n, n w, k t o p\) and \(k b o t\). The estimate is returned in work(1). No error message related to \(l\) work is issued by xerbla. Neither \(h\) nor \(z\) are accessed.
(local workspace) INTEGER array of size liwork
(local) INTEGER
The length of the workspace array iwork (liwork \(\geq 1\)).
If liwork=-1, then a workspace query is assumed.

\section*{OUTPUT Parameters}
h
z
work(1)
iwork(1)

On output \(h\) has been transformed by an orthogonal similarity transformation, perturbed, and the returned to Hessenberg form that (it is to be hoped) has some zero subdiagonal entries.

IF wantz is .TRUE., then on output, the orthogonal similarity transformation mentioned above has been accumulated into the matrix \(Z\) (iloz:ihiz,kbot:ktop) from the right.

If wantz is .FALSE., then \(z\) is unreferenced.
(global) INTEGER
The number of unconverged (that is, approximate) eigenvalues returned in \(s r\) and \(s i\) that may be used as shifts by the calling subroutine.
(global) INTEGER
The number of converged eigenvalues uncovered by this subroutine.
REAL for pslaqr3
DOUBLE PRECISION for pdlaqr3
(global) array of size kbot. The real and imaginary parts of approximate eigenvalues that may be used for shifts are stored in \(s r(k b o t-n d-n s+1)\) through \(s r(k b \circ t-n d)\) and \(s i(k b \circ t-n d-n s+1)\) through \(s i(k b \circ t-n d)\), respectively. The real and imaginary parts of converged eigenvalues are stored in \(s r(k b \circ t-n d+1)\) through \(s r(k b \circ t)\) and \(s i(k b \circ t-n d+1)\) through si(kbot), respectively.

On exit, if info \(=0\), work(1) returns the optimal lwork
On exit, if info \(=0\), iwork(1) returns the optimal liwork

See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.
p?laqr4
Computes the eigenvalues of a Hessenberg matrix, and optionally computes the matrices from the Schur decomposition.

\section*{Syntax}
```

call pslaqr4( wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z, descz, t, ldt,
v, ldv, work, lwork, info )
call pdlaqr4( wantt, wantz, n, ilo, ihi, a, desca, wr, wi, iloz, ihiz, z, descz, t, ldt,
v, ldv, work, lwork, info )

```

\section*{Description}
p?laqr4 is an auxiliary routine used to find the Schur decomposition and or eigenvalues of a matrix already in Hessenberg form from cols ilo to ihi. This routine requires that the active block is small enough, i.e. ihi-ilo \(1 \leq l d t\), so that it can be solved by LAPACK. Normally, it is called by p?laqr1. All the inputs are assumed to be valid without checking.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{wantt} & (global) LOGICAL \\
\hline & \(=\).TRUE. : the full Schur form \(T\) is required; \\
\hline & \(=\).FALSE. : only eigenvalues are required. \\
\hline \multirow[t]{3}{*}{wantz} & (global) LOGICAL \\
\hline & \(=\).TRUE . : the matrix of Schur vectors \(Z\) is required; \\
\hline & \(=\).FALSE.\(:\) Schur vectors are not required. \\
\hline \multirow[t]{2}{*}{n} & (global) INTEGER \\
\hline & The order of the Hessenberg matrix \(A\) (and \(Z\) if wantz). \(n \geq 0\). \\
\hline \multirow[t]{2}{*}{ilo, ihi} & (global) INTEGER \\
\hline & It is assumed that \(a\) is already upper quasi-triangular in rows and columns ihi+1:n, and that \(A(i l o, i l o-1)=0\) (unless \(i l o=1\)). p?laqr 4 works primarily with the Hessenberg submatrix in rows and columns ilo to ihi, but applies transformations to all of \(A\) if wantt is .TRUE.. \(1 \leq i l o \leq\) \(\max (1, i h i)\); ihín. \\
\hline \multirow[t]{4}{*}{a} & REAL for pslaqr4 \\
\hline & DOUBLE PRECISION for pdlaqr4 \\
\hline & (global) array of size (/ld_a,LOC \({ }_{c}(n)\)) \\
\hline & The upper Hessenberg matrix \(A\). \\
\hline \multirow[t]{2}{*}{desca} & (global and local) INTEGER array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(a\). \\
\hline \multirow[t]{2}{*}{iloz, ihiz} & (global) INTEGER \\
\hline & Specify the rows of the matrix \(Z\) to which transformations must be applied if wantz is.TRUE.. \(1 \leq i l o z \leq i l o ; ~ i h i \leq i h i z \leq n . ~\) \\
\hline \multirow[t]{3}{*}{z} & REAL for pslaqr4 \\
\hline & DOUBLE PRECISION for pdlaqr4 \\
\hline & (global) array. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & If wantz is . TRUE., on entry \(z\) must contain the current matrix \(Z\) of transformations accumulated by p?hseqr. \\
\hline & If wantz is .FALSE., \(z\) is not referenced. \\
\hline descz & (global and local) INTEGER array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(Z\). \\
\hline \(t\) & REAL for pslaqr4 \\
\hline & DOUBLE PRECISION for pdlaqr4 \\
\hline & (local workspace) array of size \(1 d t^{*}(i h i-i l o+1)\). \\
\hline \(l d t\) & (local) INTEGER \\
\hline & The leading dimension of the array \(t\). \(1 d t \geq i h i-i l o+1\). \\
\hline v & REAL for pslaqr4 \\
\hline & DOUBLE PRECISION for pdlaqr 4 \\
\hline & (local workspace) array of size \(1 d v^{*}(i h i-i l o+1)\). \\
\hline Idv & (local) INTEGER \\
\hline & The leading dimension of the array v. ldv ihi-ilo 1 . \\
\hline work & REAL for pslaqr4 \\
\hline & DOUBLE PRECISION for pdlaqr 4 \\
\hline & (local workspace) array of size lwork. \\
\hline lwork & (local) INTEGER \\
\hline & The size of the work array work. \\
\hline & lwork \({ }^{\text {a }}\) ihi-ilo+1. \\
\hline
\end{tabular}

\section*{OUTPUT Parameters}
a
wr, wi
On exit, if wantt is .TRUE., the matrix \(A\) is upper quasi-triangular in rows and columns ilo:ihi, with any 2-by-2 or larger diagonal blocks not yet in standard form. If wanttis. FALSE., the contents of a are unspecified on exit.

REAL for pslaqr4
DOUBLE PRECISION for pdlaqr4
(global replicated) array of size \(n\)
The real and imaginary parts, respectively, of the computed eigenvalues ilo to ihi are stored in the corresponding elements of wr and wi. If two eigenvalues are computed as a complex conjugate pair, they are stored in consecutive elements of \(w r\) and \(w i\), say the \(i\)-th and \((i+1)\) th, with \(w i(i)>0\) and wi \((i+1)<0\). If wantt is.TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in a. The matrix \(A\) may be returned with larger diagonal blocks until the next release.
```

z If wantz is .TRUE., z is updated with transformations applied only to the
submatrix Z(iloz:ihiz,ilo:ihi).
(global ) INTEGER
< 0: parameter number -info incorrect or inconsistent;
= 0: successful exit;
> 0: p?laqr4 failed to compute all the eigenvalues ilo to ihi in a total of
30*(ihi-ilo+1) iterations; if info = i, elements i+1:ihi of wr and wi
contain those eigenvalues which have been successfully computed.

```

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?laqr5
Performs a single small-bulge multi-shift QR sweep.

\section*{Syntax}
```

call pslaqr5( wantt, wantz, kacc22, n, ktop, kbot, nshfts, sr, si, h, desch, iloz, ihiz,
z, descz, work, lwork, iwork, liwork )
call pdlaqr5( wantt, wantz, kacc22, n, ktop, kbot, nshfts, sr, si, h, desch, iloz, ihiz,
z, descz, work, lwork, iwork, liwork )

```

\section*{Description}

This auxiliary subroutine called by p? laqı0 performs a single small-bulge multi-shift QR sweep by chasing separated groups of bulges along the main block diagonal of a Hessenberg matrix H .

\section*{Input Parameters}
wantt
wantz kacc22
n
(global) LOGICAL scalar
wantt= .TRUE. if the quasi-triangular Schur factor is being computed. wantt is set to .FALSE. otherwise.
(global) LOGICAL scalar
wantz=. TRUE. if the orthogonal Schur factor is being computed. wantz is set to . FALSE. otherwise.
(global) INTEGER
Value 0,1 , or 2 . Specifies the computation mode of far-from-diagonal orthogonal updates.
= 0: p?laqr5 does not accumulate reflections and does not use matrix-matrix multiply to update far-from-diagonal matrix entries.
= 1: p?laqr5 accumulates reflections and uses matrix-matrix multiply to update the far-from-diagonal matrix entries.
= 2: p?laqr5 accumulates reflections, uses matrix-matrix multiply to update the far-from-diagonal matrix entries, and takes advantage of 2-by-2 block structure during matrix multiplies.
(global) INTEGER scalar
```

ktop, kbot
nshfts
sr, si
h
desch
iloz, ihiz
z
descz
work
lwork
(global) INTEGER scalar
These are the first and last rows and columns of an isolated diagonal block upon which the QR sweep is to be applied. It is assumed without a check that either $k$ top $=1$ or $H(k t o p, k t o p-1)=0$ and either $k b o t$ $=n$ or $H(k b \circ t+1, k b \circ t)=0$.
(global) INTEGER scalar
nshfts gives the number of simultaneous shifts. nshfts must be positive and even.
REAL for pslaqr5
DOUBLE PRECISION for pdlaqr5
(global) Array of size nshfts
sr contains the real parts and si contains the imaginary parts of the nshfts shifts of origin that define the multi-shift QR sweep.
REAL for pslaqr5
DOUBLE PRECISION for pdlaqr5
(local) Array of size (lld_h,LOC $(n)$ )
On input $h$ contains a Hessenberg matrix $H$.
(global and local) INTEGER
array of size dlen_.
The array descriptor for the distributed matrix $H$.
(global) INTEGER
Specify the rows of the matrix $Z$ to which transformations must be applied if wantzis.TRUE. . $1 \leq i l o z \leq i h i z \leq n$
REAL for pslaqr5
DOUBLE PRECISION for pdlaqr5
(local) array of size (lld_z,LOC $(n)$ )
If wantz= .TRUE., then the QR Sweep orthogonal similarity transformation is accumulated into the matrix
$Z$ (iloz:ihiz,kbot:ktop) from the right. If wantz= .FALSE., then $z$ is unreferenced.
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix $Z$.
REAL for pslaqr5
DOUBLE PRECISION for pdlaqr5
(local workspace) array of size lwork
lwork
(local) INTEGER

```

The order of the Hessenberg matrix \(H\) and, if wantzis. TRUE., the order of the orthogonal matrix \(Z\).

The size of the work array (lwork \(\geq 1\)).
If 1 work \(=-1\), then a workspace query is assumed.
iwork
liwork
(local workspace) INTEGER array of size liwork
(local) INTEGER
The size of the iwork array (liwork \(\geq 1\)).
If liwork=-1, then a workspace query is assumed.

\section*{Output Parameters}
h
z
work(1)
iwork(1)

A multi-shift QR sweep with shifts \(s r(j)+i^{*} s i(j)\) is applied to the isolated diagonal block in rows and columns ktop through kbot of the matrix \(H\).

If wantzis.TRUE., \(z\) is updated with transformations applied only to the submatrix \(Z\) (iloz:ihiz,kbot:ktop).

On exit, if info \(=0\), work(1) returns the optimal lwork.
On exit, if info \(=0\), iwork(1) returns the optimal liwork.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?laqsy
Scales a symmetric/Hermitian matrix, using scaling
factors computed by p?poequ .

\section*{Syntax}
```

call pslaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)
call pdlaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)
call pclaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)
call pzlaqsy(uplo, n, a, ia, ja, desca, sr, sc, scond, amax, equed)

```

\section*{Description}

The p? laqsyroutine equilibrates a symmetric distributed matrix \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\) using the scaling factors in the vectors \(s r\) and \(s c\). The scaling factors are computed by p?poequ.

\section*{Input Parameters}
uplo
n
a
(global) CHARACTER. Specifies the upper or lower triangular part of the symmetric distributed matrix sub \((A)\) is to be referenced:
= 'U': Upper triangular part;
= 'L': Lower triangular part.
(global) INTEGER.
The order of the distributed matrix \(\operatorname{sub}(A) . n \geq 0\).
(local).
```

REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.

```

Pointer into the local memory to an array of size (Ild_a, LOCc(ja+n-1)).
On entry, this array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\). On entry, the local pieces of the distributed symmetric matrix \(\operatorname{sub}(A)\).
If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and the strictly lower triangular part of \(\operatorname{sub}(A)\) is not referenced.

If uplo = 'L', the leading \(n\)-by-n lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced.
(global) INTEGER.
The row and column indices in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local)
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Array of size \(\operatorname{LOCr}\left(m_{2} a\right)\). The scale factors for \(A(i a: i a+m-1, j a: j a+n-1)\). sr is aligned with the distributed matrix \(A\), and replicated across every process column. sr is tied to the distributed matrix \(A\).
(local)
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Array of size LOCc(m_a). The scale factors for \(A\) (ia:ia+m-1, ja:ja+n-1). sc is aligned with the distributed matrix \(A\), and replicated across every process column. Sc is tied to the distributed matrix \(A\).
(global). REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.

Ratio of the smallest \(s r(i)\) (respectively \(s c(j)\)) to the largest \(s r(i)\) (respectively \(s c(j)\)), with ia \(\leq i \leq i a+n-1\) and ja \(\leq j \leq j a+n-1\).
(global).
REAL for pslaqsy
DOUBLE PRECISION for pdlaqsy
COMPLEX for pclaqsy
COMPLEX*16 for pzlaqsy.
Absolute value of largest distributed submatrix entry.

\section*{Output Parameters}
a
On exit,
if equed \(=\) ' \(Y\) ', the equilibrated matrix:
```

diag(sr(ia:ia+n-1)) * sub(A) * diag(sc(ja:ja+n-1)).

```
equed
(global)CHARACTER*1.
Specifies whether or not equilibration was done.
\(=\) 'N': No equilibration.
\(=\) 'Y': Equilibration was done, that is, \(\operatorname{sub}(A)\) has been replaced by:
diag(sr(ia:ia+n-1)) * sub(A) * diag(sc(ja:ja+n-1)).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?lared1d}

Redistributes an array assuming that the input array, bycol, is distributed across rows and that all process columns contain the same copy of bycol.

Syntax
```

call pslaredld(n, ia, ja, desc, bycol, byall, work, lwork)
call pdlaredld(n, ia, ja, desc, bycol, byall, work, lwork)

```

\section*{Description}

The p?lared1droutine redistributes a 1D array. It assumes that the input array bycol is distributed across rows and that all process column contain the same copy of bycol. The output array byall is identical on all processes and contains the entire array.

\section*{Input Parameters}
\(n p=\) Number of local rows in bycol()
\begin{tabular}{ll}
\(n\) & (global) INTEGER. \\
& The number of elements to be redistributed. \(n \geq 0\). \\
ia, ja & (global) INTEGER. ia, ja must be equal to 1.
\end{tabular}
```

desc (local) INTEGER array of size 9. A 2D array descriptor, which describes
bycol.
(local).
REAL for pslared1d
DOUBLE PRECISION for pdlared1d
COMPLEX for pclaredld
COMPLEX*16 for pzlaredld.
Distributed block cyclic array of global size $n$ and of local size np. bycol is distributed across the process rows. All process columns are assumed to contain the same value.
(local).
REAL for pslared1d
DOUBLE PRECISION for pdlared1d
COMPLEX for pclaredid
COMPLEX*16 for pzlared1d.
size lwork. Used to hold the buffers sent from one process to another.
(local)
INTEGER. The size of the work array. lwork $\geq \operatorname{numroc}\left(n, \operatorname{desc}\left(n b \_\right)\right.$, 0,0, npcol).

```

\section*{Output Parameters}
byall
(global). REAL for pslared1d
DOUBLE PRECISION for pdlared1d
COMPLEX for pclaredid
COMPLEX*16 for pzlared1d.
Global size \(n\), local size \(n\). byall is exactly duplicated on all processes. It contains the same values as bycol, but it is replicated across all processes rather than being distributed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?lared2d}

Redistributes an array assuming that the input array
byrow is distributed across columns and that all process rows contain the same copy of byrow.

\section*{Syntax}
```

call pslared2d(n, ia, ja, desc, byrow, byall, work, lwork)
call pdlared2d(n, ia, ja, desc, byrow, byall, work, lwork)

```

\section*{Description}

The p?lared2droutine redistributes a 1D array. It assumes that the input array byrow is distributed across columns and that all process rows contain the same copy of byrow. The output array byall will be identical on all processes and will contain the entire array.

\section*{Input Parameters}
\(n p=\) Number of local rows in byrow()
\begin{tabular}{ll}
\(n\) & (global) INTEGER. \\
The number of elements to be redistributed. \(n \geq 0\). \\
desc \(\quad\) (global) INTEGER. ia, ja must be equal to 1. \\
byrow & \begin{tabular}{l}
(local) INTEGER array of size dlen_. A 2D array descriptor, which describes \\
byrow.
\end{tabular} \\
& (local). \\
& REAL for pslared2d \\
& DOUBLE PRECISION for pdlared2d \\
& COMPLEX for pclared2d \\
& COMPLEX*16 for pzlared2d.
\end{tabular}

Distributed block cyclic array of global size \(n\) and of local size \(n p\). byrow is distributed across the process columns. All process rows are assumed to contain the same value.
(local).
REAL for pslared2d
DOUBLE PRECISION for pdlared2d
COMPLEX for pclared2d
COMPLEX*16 for pzlared2d.
size lwork. Used to hold the buffers sent from one process to another.
I work (local) INTEGER. The size of the work array. Iwork \(\geq\) numroc (\(n\), desc(nb_), 0, 0, npcol).

\section*{Output Parameters}
byall
(global). REAL for pslared2d
DOUBLE PRECISION for pdlared2d
COMPLEX for pclared2d
COMPLEX*16 for pzlared2d.
Global size \(n\), local size \(n\). byall is exactly duplicated on all processes. It contains the same values as byrow, but it is replicated across all processes rather than being distributed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?larf
Applies an elementary reflector to a general
rectangular matrix.

```

\section*{Syntax}
```

call pslarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

```
call pslarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pdlarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pdlarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pclarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pclarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pzlarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
```

call pzlarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

```

\section*{Description}

The p?larfroutine applies a real/complex elementary reflector \(Q\) (or \(Q^{T}\)) to a real/complex m-by-n distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\), from either the left or the right. \(Q\) is represented in the form
\[
Q=I-\operatorname{ta}^{\star} v^{\star} v^{\prime},
\]
where tau is a real/complex scalar and \(v\) is a real/complex vector.
If \(\operatorname{tau}=0\), then \(Q\) is taken to be the unit matrix.

\section*{Input Parameters}
side
m
n

V
(global). CHARACTER.
\(=\) 'L': form \(Q^{\star}\) sub (\(C\)),
\(=\) 'R': form sub \((C) * Q, Q=Q^{T}\).
(global) INTEGER.
The number of rows in the distributed submatrix \(\operatorname{sub}(A) .(m \geq 0)\).
(global) INTEGER.
The number of columns in the distributed submatrix \(\operatorname{sub}(A) .(n \geq 0)\).
(local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Pointer into the local memory to an array of size (I/d_ \(v_{1} *\)), containing the local pieces of the global distributed matrix \(V\) representing the Householder transformation \(Q\),
\(V(i v: i v+m-1, j v)\) if side \(=\) 'L' and incv \(=1\),
\(V(i v, j v: j v+m-1)\) if side \(=\) 'L' and incv \(=m_{-} v\),
\(V(i v: i v+n-1, j v)\) if side \(=' R '\) and incv \(=1\),
\(V(i v, j v: j v+n-1)\) if side \(=\) 'R' and incv \(=m_{-} v\).
The array \(v\) is the representation of \(Q . v\) is not used if \(\operatorname{tau}=0\).
```

iv,jv
descv
incv
tau
c
ic, jc
descc
work

```
```

(global) INTEGER. The row and column indices in the global matrix $V$ indicating the first row and the first column of the matrix $\operatorname{sub}(V)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix V.
(global) INTEGER.
The global increment for the elements of $V$. Only two values of incv are supported in this version, namely 1 and $m_{-} v$.
incv must not be zero.
(local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Array of size $\operatorname{LOCc}(j v)$ if incv $=1$, and $\operatorname{LOCr}(i v)$ otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix $V$.
(local).
REAL for pslarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
Pointer into the local memory to an array of size (lld_c, LOCC (jc $+n-1)$ ), containing the local pieces of sub(C).
(global) INTEGER.
The row and column indices in the global matrix $C$ indicating the first row and the first column of the matrix sub( $C$ ), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $C$.
(local).

```
```

REAL for pslarf

```
REAL for pslarf
DOUBLE PRECISION for pdlarf
DOUBLE PRECISION for pdlarf
COMPLEX for pclarf
COMPLEX for pclarf
COMPLEX*16 for pzlarf.
COMPLEX*16 for pzlarf.
Array of size /work.
If \(i n c v=1\),
if side \(=\) 'L',
if \(\mathrm{ivcol}=i c c o l\),
```

```
 Iwork\geqnqc0
 else
 Iwork\geqmpc0 + max(1, nqc0)
 end if
else if side = 'R' ,
 Iwork\geqnqc0 + max(max(1,mpc0), numroc(numroc(n+
 icoffc,nb_v,0,0,npcol),nb_v,0,0,lcmq))
 end if
else if incv = m_v,
if side = 'L',
 Iwork\geqmpc0 + max(max(1, nqc0), numroc(
 numroc(m+iroffc,mb_v,0,0,nprow),mb_v,0,0,Icmp))
else if side = 'R',
 if ivrow = icrow,
 Iwork\geqmpc0
 else
 Iwork\geqnqc0 + max(1,mpc0)
 end if
end if
end if,
where Icm is the least common multiple of nprow and npcol and Icm =
ilcm(nprow, npcol), Icmp = Icm/nprow, Icmq = Icm/npcol,
iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol,
nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.
```


## Output Parameters

c
(local).
On exit, $\operatorname{sub}(C)$ is overwritten by the $Q^{\star} \operatorname{sub}(C)$ if side = 'L', or $\operatorname{sub}(C) * Q$ if side $=$ ' $\mathrm{R}^{\prime}$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?larfb
Applies a block reflector or its transpose/conjugate-
transpose to a general rectangular matrix.
Syntax
```

```
call pslarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc,
```

call pslarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc,
work)
work)
call pdlarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc,
call pdlarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc,
work)
work)
call pclarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc,
call pclarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc,
work)
work)
call pzlarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc,
call pzlarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc,
work)

```
work)
```


## Description

The p? larfbroutine applies a real/complex block reflector $Q$ or its transpose $Q^{T} /$ conjugate transpose $Q^{H}$ to a real/complex distributed $m$-by-n matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$ from the left or the right.

## Input Parameters

```
side
trans
direct
storev
m
n
(global) CHARACTER.
if side = 'L': apply Q or }\mp@subsup{Q}{}{T}\mathrm{ for real flavors (}\mp@subsup{Q}{}{H}\mathrm{ for complex flavors) from
the Left;
if side = 'R': apply Q or Q'for real flavors (}\mp@subsup{Q}{}{H}\mathrm{ for complex flavors) from
the Right.
(global) CHARACTER.
if trans = 'N': no transpose, apply Q;
for real flavors, if trans='T' : transpose, apply }\mp@subsup{Q}{}{T
for complex flavors, if trans = 'C': conjugate transpose, apply Q Q;
(global) CHARACTER. Indicates how Q is formed from a product of
elementary reflectors.
if direct = 'F':Q = H(1)*H(2)* ...*H(k) (Forward)
if direct = 'B':Q = H(k)*...*H(2)*H(1) (Backward)
(global) INTEGER.
The number of rows in the distributed matrix \(\operatorname{sub}(C) .(m \geq 0)\).
(global) INTEGER.
The number of columns in the distributed matrix \(\operatorname{sub}(C) .(n \geq 0)\).
```

k
(global) INTEGER.
The order of the matrix T .
(local).

```
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
```

Pointer into the local memory to an array of size

```
(lld_v, LOCC(jv+k-1)) if storev = 'C',
(lld_v, LOCC(jv+m-1)) if storev = 'R' and side = 'L',
(Ild_v, LOCC(jv+n-1)) if storev = 'R' and side = 'R'.
```

It contains the local pieces of the distributed vectors $V$ representing the Householder transformation.

```
if storev = 'C' and side = 'L', lld_v\geq max(1,LOCr(iv+m-1));
if storev = 'C' and side = 'R', lld_v\geq max(1,LOCr(iv+n-1));
if storev = 'R', lld_v\geqLOCr(jv+k-1).
```

(global) INTEGER.
The row and column indices in the global matrix $V$ indicating the first row and the first column of the matrix $\operatorname{sub}(V)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $V$.
(local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of size (IId_c, LOCC(jc
$+n-1)$ ), containing the local pieces of sub( $C$ ).
(global) INTEGER. The row and column indices in the global matrix $C$ indicating the first row and the first column of the matrix $\operatorname{sub}(C)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $C$.
(local).

```
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
```

COMPLEX*16 for pzlarfb.
Workspace array of size /work.
If storev = ' C',
if side $=$ 'L',
lwork $\geq(n q c 0+m p c 0) * k$
else if side = 'R',
Iwork $\geq(n q c 0+\max (n p v 0+$ numroc $(\operatorname{numroc}(n+$ icoffc, $\left.\left.n b \_v, 0,0, n p c o l\right), n b \_v, 0,0, I c m q\right)$, $m p c 0)$ ) * $k$
end if
else if storev = 'R',
if side = 'L' ,
$l$ work $\geq(m p c 0+\max (m q v 0+$ numroc $(\operatorname{numroc}(m+$
iroffc, mb_v, 0, 0, nprow ), mb_v, 0, 0, Icmp ),
$n q c 0))^{*} k$
else if side = 'R',
Iwork $\geq(m p c 0+n q c 0) * k$
end if
end if,
where

```
Icmq = Icm / npcol with /cm = iclm(nprow, npcol),
iroffv = mod(iv-1, mb_v),icoffv = mod(jv-1, nb_v),
ivrow = indxg2p(iv, mb_v, myrow, rsrc_v, nprow),
ivcol = indxg2p(jv,nb_v,mycol, csrc_v, npcol),
MqVO = numroc(m+icoffv, nb_v, mycol, ivcol, npcol),
NpVO = numroc(n+iroffv, mb_v, myrow, ivrow, nprow),
iroffc = mod(ic-1, mb_c), icoffc = mod}(jc-1,nb_c)
icrow = indxg2p(ic,mb_c,myrow,rsrc_c, nprow),
iccol = indxg2p(jc,nb_c,mycol, csrc_c, npcol),
MpCO = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
NpCO = numroc(n+icoffc, mb_c, myrow, icrow, nprow),
NqCO = numroc(n+icoffc, nb_c,mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol,
nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.
```


## Output Parameters

$t$
(local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Array of size ( mb_v, mb_v) if storev = 'R', and ( nb_v, nb_v) if storev $=$ 'C'. The triangular matrix $t$ is the representation of the block reflector.
(local).
On exit, $\operatorname{sub}(C)$ is overwritten by the $Q^{\star} \operatorname{sub}(C)$, or $Q^{\prime *} \operatorname{sub}(C)$, or sub $(C) * Q$, or sub $(C){ }^{*} Q^{\prime} . Q^{\prime}$ is transpose (conjugate transpose) of $Q$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?larfc
Applies the conjugate transpose of an elementary reflector to a general matrix.

Syntax

```
call pclarfc(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pzlarfc(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
```


## Description

The p?larfcroutine applies a complex elementary reflector $Q^{H}$ to a complex $m$-by- $n$ distributed matrix $\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)$, from either the left or the right. $Q$ is represented in the form $Q=i-\tan u^{\star} V^{\star} V^{\prime}$,
where tau is a complex scalar and $v$ is a complex vector.
If $\operatorname{tau}=0$, then $Q$ is taken to be the unit matrix.

## Input Parameters

side (global) CHARACTER.
if side $=$ 'L': form $Q^{H *}$ sub (C) ;
if side $=$ ' R': form sub $(C) * Q^{H}$.
(global) INTEGER.
The number of rows in the distributed matrix $\operatorname{sub}(C) .(m \geq 0)$.
(global) INTEGER.
The number of columns in the distributed matrix $\operatorname{sub}(C) .(n \geq 0)$.
(local).
COMPLEX for pclarfc

COMPLEX*16 for pzlarfc.
Pointer into the local memory to an array of size ( $/ / d_{-} v_{1} *$ ), containing the local pieces of the global distributed matrix $V$ representing the Householder transformation $Q$,
$V(i v: i v+m-1, j v)$ if side $=$ 'L' and incv $=1$,
$V(i v, j v: j v+m-1)$ if side $=$ 'L' and incv $=m_{-} v$,
$V(i v: i v+n-1, j v)$ if side $=$ ' $R$ ' and incv $=1$,
$V(i v, j v: j v+n-1)$ if side $=$ 'R' and incv $=m_{-} v$.
The array $v$ is the representation of $Q . v$ is not used if tau $=0$.
(global) INTEGER.
The row and column indices in the global matrix $V$ indicating the first row and the first column of the matrix $\operatorname{sub}(V)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $V$.
(global) INTEGER.
The global increment for the elements of $v$. Only two values of incv are supported in this version, namely 1 and $m_{-} v$.
incv must not be zero.
(local)
COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Array of size $\operatorname{LOCc}(j v)$ if incv $=1$, and $\operatorname{LOCr}(i v)$ otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix $V$.
(local).
COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Pointer into the local memory to an array of size (Ild_c, LOCc(jc+n-1)), containing the local pieces of sub( $C$ ).
(global) INTEGER.
The row and column indices in the global matrix $C$ indicating the first row and the first column of the matrix sub $(C)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $C$.
(local).
COMPLEX for pclarfc
COMPLEX*16 for pzlarfc.
Workspace array of size Iwork.

```
If incv = 1,
 if side = 'L' ,
 if ivcol = iccol,
 lwork \geq nqc0
 else
 Iwork }\geqmpc0+\operatorname{max}(1,nqc0
 end if
else if side = 'R',
 Iwork \geq nqc0 + max(max(1,mpc0), numroc(numroc(
 n+icoffc,nb_v,0,0,npcol),nb_v,0,0,Icmq))
 end if
else if incv = m_v,
 if side = 'L',
 Iwork \geqmpc0 + max(max(1, nqc0), numroc(numroc(
 m+iroffc,mb_v,0,0,nprow),mb_v,0,0,/cmp))
 else if side = 'R' ,
 if ivrow = icrow,
 lwork \geqmpc0
 else
 Iwork \geqnqc0 + max(1,mpc0)
 end if
end if
end if,
where Icm is the least common multiple of nprow and npcol and Icm =
ilcm(nprow, npcol),
lcmp = lcm/nprow, lcmq = lcm/npcol,
iroffc = mod(ic-1, mb_c), icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;myrow, mycol,
nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.
```


## Output Parameters

c
(local).

On exit, $\operatorname{sub}(C)$ is overwritten by the $Q^{H *}$ sub ( $C$ ) if side $=$ 'L', or sub ( $C$ ) * $Q^{H}$ if side $=$ 'R'.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?larfg
Generates an elementary reflector (Householder
matrix).

## Syntax

```
call pslarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)
call pdlarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)
call pclarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)
call pzlarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)
```


## Description

The p?larfgroutine generates a real/complex elementary reflector $H$ of order $n$, such that

$$
H^{*} \operatorname{sub}(X)=H^{*}\binom{x(i a x, j a x)}{x}=\binom{a l p h a}{0}, H^{\prime *} H=I,
$$

where alpha is a scalar (a real scalar - for complex flavors), and $\operatorname{sub}(X)$ is an ( $n-1$ )-element real/complex distributed vector $X(i x: i x+n-2, j x)$ if $i n c x=1$ and $X(i x, j x: j x+n-2)$ if $i n c x=m_{-} x . H$ is represented in the form

where tau is a real/complex scalar and $v$ is a real/complex (n-1)-element vector. Note that $H$ is not Hermitian.
If the elements of $\operatorname{sub}(X)$ are all zero (and $X$ (iax, jax) is real for complex flavors), then $\operatorname{tau}=0$ and $H$ is taken to be the unit matrix.
Otherwise $1 \leq$ real $($ tau $) \leq 2$ and $\operatorname{abs}(\operatorname{tau}-1) \leq 1$.
Input Parameters
n
(global) INTEGER.
The global order of the elementary reflector. $n \geq 0$.
iax, jax (global) INTEGER.

X
ix, jx
descx
incx

The global row and column indices of $X$ (iax, $\operatorname{jax}$ ) in the global matrix $X$. (local).
REAL for pslarfg
DOUBLE PRECISION for pdlarfg
COMPLEX for pclarfg
COMPLEX*16 for pzlarfg.
Pointer into the local memory to an array of size (lld_ $x, *$ ). This array contains the local pieces of the distributed vector $\operatorname{sub}(X)$. Before entry, the incremented array $\operatorname{sub}(X)$ must contain vector $x$.
(global) INTEGER.
The row and column indices in the global matrix $X$ indicating the first row and the first column of $\operatorname{sub}(X)$, respectively.
(global and local) INTEGER.
Array of size dlen_. The array descriptor for the distributed matrix $X$.
(global) INTEGER.
The global increment for the elements of $x$. Only two values of incx are supported in this version, namely 1 and $m_{-} x$. incx must not be zero.

## Output Parameters

alpha

X
tau
(local)
REAL for pslafg
DOUBLE PRECISION for pdlafg
COMPLEX for pclafg
COMPLEX*16 for pzlafg.
On exit, alpha is computed in the process scope having the vector $\operatorname{sub}(X)$. (local).
On exit, it is overwritten with the vector $v$.
(local).
REAL for pslarfg
DOUBLE PRECISION for pdlarfg
COMPLEX for pclarfg
COMPLEX*16 for pzlarfg.
Array of size LOCc(jx) if incx $=1$, and LOCr(ix) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix $X$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?larft

Forms the triangular vector $T$ of a block reflector $\mathrm{H}=\mathrm{I}-$ $V^{\star} T^{*} V^{H}$.

## Syntax

```
call pslarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pdlarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pclarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pzlarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
```


## Description

The p?larftroutine forms the triangular factor $T$ of a real/complex block reflector $H$ of order $n$, which is defined as a product of $k$ elementary reflectors.

If direct $=$ ' $\mathrm{F}^{\prime}, \quad H=H(1) \star H(2) \ldots \star H(k)$, and $T$ is upper triangular;
If direct $=$ ' $\mathrm{B}^{\prime}, H=H(k) * \ldots{ }^{*} H(2) \star H(1)$, and $T$ is lower triangular.
If storev $=$ 'C', the vector which defines the elementary reflector $H(i)$ is stored in the $i$-th column of the distributed matrix $V$, and
$H=I-V^{\star} T^{\star} V^{\prime}$
If storev = 'R', the vector which defines the elementary reflector $H(i)$ is stored in the $i$-th row of the distributed matrix $V$, and
$H=I-V^{\prime \star} T^{*} V$.

## Input Parameters

```
direct
storev
n
k
V
(global) CHARACTER*1.
Specifies the order in which the elementary reflectors are multiplied to form the block reflector:
```

```
if direct = 'F': H = H(1)*H(2)* ...*H(k) (forward)
```

if direct = 'F': H = H(1)*H(2)* ...*H(k) (forward)
if direct = 'B': H = H(k)*...*H(2)*H(1) (backward).
if direct = 'B': H = H(k)*...*H(2)*H(1) (backward).
(global) CHARACTER*1.
Specifies how the vectors that define the elementary reflectors are stored (See Application Notes below):
if storev = 'C': columnwise;
if storev = 'R': rowwise.
(global) INTEGER.
The order of the block reflector $H . n \geq 0$.
(global) INTEGER.
The order of the triangular factor $T$, is equal to the number of elementary reflectors.
$1 \leq k \leq m b_{-} v\left(=n b \_v\right)$.
REAL for pslarft

```
```

DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.

```

Pointer into the local memory to an array of local size
```

(LOCr(iv+n-1), LOCC(jv+k-1)) if storev = 'C', and
(LOCr(iv+k-1), LOCC(jv+n-1)) if storev = 'R'.

```

The distributed matrix \(V\) contains the Householder vectors. (See Application Notes below).
(global) INTEGER.
The row and column indices in the global matrix \(V\) indicating the first row and the first column of the matrix \(\operatorname{sub}(V)\), respectively.
(local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(V\).
(local)
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Array of size LOCr (iv+k-1) if incv = \(m_{-} v\), and LOCC (jv+k-1) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix \(V\).
(local).
REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Workspace array of size \(k^{*}(k-1) / 2\).

\section*{Output Parameters}

V
t

REAL for pslarft
DOUBLE PRECISION for pdlarft
COMPLEX for pclarft
COMPLEX*16 for pzlarft.
(local)
REAL for pslarft
DOUBLE PRECISION for pdlarft
```

COMPLEX for pclarft
COMPLEX*16 for pzlarft.
Array of size ( nb_v, nb_v) if storev = 'C', and ( mb_v, mb_v)
otherwise. It contains the k-by-k triangular factor of the block reflector
associated with v. If direct = ' F', t is upper triangular;
if direct = 'B',t is lower triangular.

```

\section*{Application Notes}

The shape of the matrix \(V\) and the storage of the vectors that define the \(H\) (i) is best illustrated by the following example with \(n=5\) and \(k=3\). The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.
\[
\begin{aligned}
& \text { direct }={ }^{\prime} \mathrm{F}^{\prime} \text { and storev }={ }^{\circ} \mathrm{C}{ }^{\prime}: \quad \text { diredt }={ }^{\prime} \mathrm{F}^{\prime} \text { and storev }={ }^{\prime} \mathrm{R}{ }^{\prime} \\
& V\left(i v: i v+n-1, \quad\left[\begin{array}{ccc}
1 & & \\
v 1 & 1 & \\
j v & \left.: j v+k-1)=\left[\begin{array}{ccc}
v 1 & v 2 & 1 \\
v 1 & v 2 & v 3 \\
v 1 & v 2 & v 3
\end{array}\right], ~\right]
\end{array}\right.\right. \\
& \left.\left.\begin{array}{r}
V(i v \\
j v
\end{array}\right) j v+k-1, \quad j v+n-1\right)=\left[\begin{array}{ccc}
1 & v 1 & v 1 \\
& 1 & v 2 \\
& & 1
\end{array}\right. \\
& \text { direct }={ }^{\prime} B^{\prime} \text { and storev }={ }^{\prime} C \text { ' } \\
& \text { direct }={ }^{\prime} B^{\prime} \text { and storev }={ }^{\prime} R^{\prime} \\
& v\left(i v: i v+n-1, \quad\left[\begin{array}{ccc}
v 1 & v 2 v & v 3 \\
v 1 & v 2 & v 3 \\
1 & v 2 & v 3 \\
& 1 & v 3 \\
& & 1
\end{array}\right]\right. \\
& v\left(i v: i v+k-1, \quad\left[\begin{array}{ccccc}
v 1 & v 1 & 1 & & \\
v 2 & v 2 & v 2 & 1 & \\
v 3 & v 3 & v 3 & v 3 & 1
\end{array}\right]\right.
\end{aligned}
\]

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?larz
Applies an elementary reflector as returned by p?tzrzf to a general matrix.

\section*{Syntax}
```

call pslarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pdlarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pclarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pzlarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

```

\section*{Description}

The p?larzroutine applies a real/complex elementary reflector \(Q\) (or \(Q^{T}\)) to a real/complex \(m\)-by- \(n\) distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\), from either the left or the right. \(Q\) is represented in the form
\[
Q=I-\tan u^{\star} v^{\star} v^{\prime},
\]
where tau is a real/complex scalar and \(v\) is a real/complex vector.
If \(\operatorname{tau}=0\), then \(Q\) is taken to be the unit matrix.
\(Q\) is a product of \(k\) elementary reflectors as returned by p?tzrzf.

\section*{Input Parameters}
side
m
n

1

V
\(i v, j v\)
descv
incV
(global) CHARACTER.
if side \(=\) 'L': form \(Q^{\star} \operatorname{sub}(C)\),
if side \(=\) 'R': form \(\operatorname{sub}(C) \star Q, Q=Q^{T}\) (for real flavors).
(global) INTEGER.
The number of rows in the distributed matrix \(\operatorname{sub}(C) .(m \geq 0)\).
(global) INTEGER.
The number of columns in the distributed matrix \(\operatorname{sub}(C) .(n \geq 0)\).
(global) INTEGER.
The columns of the distributed matrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors. If side \(=\) 'L', \(m \geq 1 \geq 0\),
if side \(=\) 'R', \(n \geq 1 \geq 0\).
(local).
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Pointer into the local memory to an array of size (\(/ / d_{-} v, *\)) containing the local pieces of the global distributed matrix \(V\) representing the Householder transformation \(Q\),
\(V(i v: i v+l-1, j v)\) if side \(=\) 'L' and incv \(=1\),
\(V(i v, j v: j v+l-1)\) if side \(=\) 'L' and incv \(=m_{_} v\),
\(V(i v: i v+l-1, j v)\) if side \(=' R '\) and \(i n c v=1\),
\(V(i v, j v: j v+l-1)\) if side \(=\) 'R' and incv \(=m_{-} v\).
The vector \(v\) in the representation of \(Q . v\) is not used if \(\operatorname{tau}=0\).
(global) INTEGER. The row and column indices in the global distributed matrix \(V\) indicating the first row and the first column of the matrix \(\operatorname{sub}(V)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(V\).
(global) INTEGER.
The global increment for the elements of \(V\). Only two values of incv are supported in this version, namely 1 and \(m_{-} v\).
incv must not be zero.
(local)
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Array of size \(\operatorname{LOCc}(j v)\) if \(i n c v=1\), and \(\operatorname{LOCr}(i v)\) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix \(V\).
(local).
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Pointer into the local memory to an array of size (Ild_c, LOCc \((j c+n-1)\)), containing the local pieces of sub(\(C\)).
(global) INTEGER.
The row and column indices in the global matrix \(C\) indicating the first row and the first column of the matrix sub(\(C\)), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local).
REAL for pslarz
DOUBLE PRECISION for pdlarz
COMPLEX for pclarz
COMPLEX*16 for pzlarz.
Array of size /work
```

If $i n c v=1$,
if side = 'L' ,
if $\mathrm{ivcol}=i c c o l$,
Iwork $\geq \mathrm{NqCO}$
else
Iwork $\geq M p C 0+\max (1, N q C 0)$
end if
else if side = 'R',
lwork $\geq N q C 0+\max (\max (1, M p C 0)$, numroc(numroc $(n$
+icoffc,nb_v,0,0,npcol),nb_v,0,0,lcmq))

```
```

end if
else if incv $=m_{-} v$,
if side = 'L' ,
Iwork $\geq M p C 0+\max (\max (1, N q C 0)$, numroc(numroc $(m$
+iroffc,mb_v,0,0,nprow),mb_v,0,0,/cmp))
else if side = 'R',
if ivrow $=i c r o w$,
Iwork $\geq$ MpC0
else
$I$ work $\geq N q C 0+\max (1, M p C 0)$
end if
end if
end if.
Here Icm is the least common multiple of nprow and npcol and
Icm = ilcm( nprow, npcol ), Icmp = /cm / nprow,
Icmq = Icm / npcol,
iroffc $=\bmod \left(i c-1, m b \_c\right), i c o f f c=\bmod \left(j c-1, n b \_c\right)$,
icrow $=$ indxg2p(ic, mb_c, myrow, rsrc_c, nprow ),
iccol $=$ indxg2p(jc, nb_c, mycol, csrc_c, npcol $)$,
$m p c 0=$ numroc $\left(m+i r o f f c, m b \_c\right.$, myrow, icrow, nprow $)$,
nqc0 $=$ numroc ( $n+i c o f f c, n b \_c$, mycol, iccol, npcol $)$,
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol,
nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.

```

\section*{Output Parameters}
c

\section*{(local).}

On exit, \(\operatorname{sub}(C)\) is overwritten by the \(Q^{\star} \operatorname{sub}(C)\) if side \(=\) 'L', or \(\operatorname{sub}(C) * Q\) if side \(=\) ' R .

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?larzb
Applies a block reflector or its transpose/conjugate-
transpose as returned by p?tzrzf to a general matrix.

\section*{Syntax}
```

call pslarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc,
descc, work)

```
```

call pdlarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc,
descc, work)
call pclarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc,
descc, work)
call pzlarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc,
descc, work)

```

\section*{Description}

The p? larzbroutine applies a real/complex block reflector \(Q\) or its transpose \(Q^{T}\) (conjugate transpose \(Q^{H}\) for complex flavors) to a real/complex distributed \(m\)-by- \(n\) matrix \(\operatorname{sub}(C)=C(i c: i c+m-1, j c: j c+n-1)\) from the left or the right.
\(Q\) is a product of \(k\) elementary reflectors as returned by p?tzrzf.
Currently, only storev \(=\) 'R' and direct \(=\) ' B' are supported.

\section*{Input Parameters}
m
side
trans
direct
storev
```

side
trans
direct
storev
(global) CHARACTER.
if side $=$ 'L': apply $Q$ or $Q^{T}$ ( $Q^{H}$ for complex flavors) from the Left;
if side $=$ ' $\mathrm{R}^{\prime}$ : apply $Q$ or $Q^{T}\left(Q^{H}\right.$ for complex flavors) from the Right.
(global) CHARACTER.
if trans = 'N': No transpose, apply Q;
If trans='T': Transpose, apply $Q^{T}$ (real flavors);
If trans= ' C': Conjugate transpose, apply $Q^{H}$ (complex flavors).
(global) CHARACTER.
Indicates how $H$ is formed from a product of elementary reflectors.
if direct $=$ ' $\mathrm{F}^{\prime}: H=H(1) * H(2) * \ldots * H(k)$ - forward (not supported) ;
if direct $=$ 'B': $H=H(k) * \ldots * H(2) * H(1)$ - backward.
(global) CHARACTER.
Indicates how the vectors that define the elementary reflectors are stored:
if storev $=$ 'C': columnwise (not supported ).
if storev = 'R': rowwise.

```
(global) INTEGER.
The number of rows in the distributed submatrix \(\operatorname{sub}(C) .(m \geq 0)\).
(global) INTEGER.
The number of columns in the distributed submatrix \(\operatorname{sub}(C) .(n \geq 0)\).
(global) INTEGER.
The order of the matrix \(T\). (= the number of elementary reflectors whose product defines the block reflector).
(global) INTEGER.

V
iv, jv
descv
\(t\)

C
ic, jc

The columns of the distributed submatrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors.

If side \(=\) 'L', \(m \geq l \geq 0\),
if side \(=\) 'R', \(n \geq 1 \geq 0\).
(local).
REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Pointer into the local memory to an array of size (lld_v, LOCC(jv+m-1)) if side = 'L', (lld_v, LOCC(jv+m-1)) if side = 'R'.
It contains the local pieces of the distributed vectors \(V\) representing the Householder transformation as returned by p?tzrzf.
\(\| l d v \geq \operatorname{LOCr}(i v+k-1)\).
(global) INTEGER.
The row and column indices in the global matrix \(V\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(V)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(V\).
(local)
REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Array of size \(m b _v\) by \(m b _v\).
The lower triangular matrix \(T\) in the representation of the block reflector.
(local).
REAL for pslarfb
DOUBLE PRECISION for pdlarfb
COMPLEX for pclarfb
COMPLEX*16 for pzlarfb.
Pointer into the local memory to an array of size (lld_c, LOCC(jc+n-1)).
On entry, the \(m\)-by- \(n\) distributed matrix sub(C).
(global) INTEGER.
The row and column indices in the global matrix \(C\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(C)\), respectively.
descc
work
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(C\).
(local).
REAL for pslarzb
DOUBLE PRECISION for pdlarzb
COMPLEX for pclarzb
COMPLEX*16 for pzlarzb.
Array of size /work.
```

If storev = 'C' ,
if side = 'L' ,
lwork\geq(nqc0 +mpc0)* k
else if side = 'R' ,
lwork \geq(nqc0 + max(npv0 + numroc(numroc(n+icoffc, nb_v, 0, 0,
npcol),
nb_v, 0, 0, lcmq), mpc0))* k
end if
else if storev = 'R' ,
if side = 'L' ,
lwork\geq(mpc0 + max(mqv0 + numroc(numroc(m+iroffc, mb_v, 0, 0,
nprow),
mb_v, 0, 0, lcmp), nqc0))* k
else if side = 'R' ,
lwork\geq (mpc0 + nqc0) * k
end if
end if.

```
Here \(\operatorname{lcmq}=1 \mathrm{~cm} / n p c o l\) with \(l \mathrm{~cm}=\operatorname{iclm}(n p r o w, n p c o l)\),
iroffv \(=\bmod \left(i v-1, m b _v\right), i C o f f v=\bmod \left(j v-1, n b _v\right)\),
ivrow \(=\) indxg2p(iv, mb_v, myrow, rsrc_v, nprow),
ivcol \(=\) indxg2p(jv, nb_v, mycol, csrc_v, npcol),
mqv0 \(=\) numroc \(\left(m+i c o f f v, ~ n b _v, ~ m y c o l, ~ i v c o l, ~ n p c o l\right), ~\)
npv0 \(=\) numroc (n+iroffv, mb_v, myrow, ivrow, nprow),
iroffc \(=\bmod (i c-1, \operatorname{mb} c), i C O f f C=\bmod \left(j c-1, n b _c\right)\),
icrow \(=\) indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol= indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpco \(=\) numroc \(\left(m+i r o f f c, ~ m b _c, ~ m y r o w, ~ i c r o w, ~ n p r o w\right), ~\)
npco \(=\) numroc \(\left(n+i c o f f c, ~ m b _c, ~ m y r o w, ~ i c r o w, ~ n p r o w\right)\),
```

nqcO = numroc(n+icoffc, nb_c, mycol, iccol, npcol),

```
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

\section*{Output Parameters}
c
(local).
On exit, \(\operatorname{sub}(C)\) is overwritten by the \(Q^{\star}\) sub (\(C\)), or \(Q^{\prime *} \operatorname{sub}(C)\), or \(\operatorname{sub}(C) * Q\), or \(\operatorname{sub}(C){ }^{*} Q^{\prime}\), where \(Q^{\prime}\) is the transpose (conjugate transpose) of \(Q\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?larzc
Applies (multiplies by) the conjugate transpose of an
elementary reflector as returned by p?tzrzf to a general matrix.

\section*{Syntax}
```

call pclarzc(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
call pzlarzc(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)

```

\section*{Description}

The p?larzcroutine applies a complex elementary reflector \(Q^{H}\) to a complex \(m\)-by- \(n\) distributed matrix sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\), from either the left or the right. \(Q\) is represented in the form \(Q=i-t a u^{*} V^{\star} v^{\prime}\),
where tau is a complex scalar and \(v\) is a complex vector.
If \(\operatorname{tau}=0\), then \(Q\) is taken to be the unit matrix.
\(Q\) is a product of \(k\) elementary reflectors as returned by p?tzrzf.

\section*{Input Parameters}
side
m
n

1
(global) CHARACTER.
if side \(=\) 'L': form \(Q^{H *}\) sub (\(C\));
if side \(=\) 'R': form sub \((C) * Q^{H}\).
(global) INTEGER.
The number of rows in the distributed matrix \(\operatorname{sub}(C) .(m \geq 0)\).
(global) INTEGER.
The number of columns in the distributed matrix \(\operatorname{sub}(C) .(n \geq 0)\).
(global) INTEGER.
The columns of the distributed matrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors.

If side \(=\) 'L', \(m \geq 1 \geq 0\),
if side \(=\) 'R', \(n \geq 1 \geq 0\).
(local).
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Pointer into the local memory to an array of size (IId_ \(v,{ }^{*}\)) containing the local pieces of the global distributed matrix \(V\) representing the Householder transformation \(Q\),
\(V(i v: i v+l-1, j v)\) if side \(=\) 'L' and incv \(=1\),
\(V(i v, j v: j v+l-1)\) if side \(=\) 'L' and incv \(=m_{-} v\),
\(V(i v: i v+1-1, j v)\) if side \(=' R '\) and incv \(=1\),
\(V(i v, j v: j v+l-1)\) if side \(=\) 'R' and incv \(=m_{-} v\).
The vector \(v\) in the representation of \(Q . v\) is not used if \(\operatorname{tau}=0\).
(global) INTEGER.
The row and column indices in the global matrix \(V\) indicating the first row and the first column of the matrix \(\operatorname{sub}(V)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(V\).
(global) INTEGER.
The global increment for the elements of \(V\). Only two values of incv are supported in this version, namely 1 and \(m_{-} v\).
incv must not be zero.
(local)
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Array of size \(\operatorname{LOCc}(j v)\) if incv \(=1\), and \(\operatorname{LOCr}(i v)\) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix \(V\).
(local).
COMPLEX for pclarzc
COMPLEX*16 for pzlarzc.
Pointer into the local memory to an array of size (Ild_c, LOCc(jc+n-1)), containing the local pieces of sub(C).
(global) INTEGER.
The row and column indices in the global matrix \(C\) indicating the first row and the first column of the matrix sub \((C)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(C\).
work
(local).
```

If incv = 1,
if side = 'L' ,
if ivcol = iccol,
lwork}\geqnqc
else
lwork \geqmpc0 + max (1, nqc0)
end if
else if side = 'R' ,
lwork \geqnqc0 + max(max(1, mpc0), numroc(numroc(n+icoffc, nb_v,
0, 0, npcol),
nb_v, 0, 0, lcmq)) end if
else if incv = m v,
if side = 'L' ,
lwork\geqmpc0 + max(max(1, nqc0), numroc(numroc(m+iroffc, mb_v,
0, 0, nprow),
mb_v, 0, 0, lcmp))
else if sid\overline{e}= 'R',
if ivrow = icrow,
lwork\geqmpc0
else
lwork\geqnqc0 + max (1, mpc0)
end if
end if
end if

```

Here Icm is the least common multiple of nprow and npcol;
```

lcm = ilcm(nprow, npcol), lcmp = l cm/nprow, lcmq= Icm/npcol,
iroffc = mod(ic-1, mb_c), icoffc= mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the
subroutine blacs_gridinfo.

```

\section*{Output Parameters}
c
(local).
On exit, \(\operatorname{sub}(C)\) is overwritten by the \(Q^{H \star} \operatorname{sub}(C)\) if side \(=\) 'L', or sub \((C) * Q^{H}\) if side \(=\) 'R'.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?larzt
Forms the triangular factor \(T\) of a block reflector \(H=I-\)
\(V^{*} T^{*} V^{H}\) as returned by p?tzrzf.

\section*{Syntax}
```

call pslarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pdlarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pclarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
call pzlarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)

```

\section*{Description}

The p? larztroutine forms the triangular factor \(T\) of a real/complex block reflector \(H\) of order greater than \(n\), which is defined as a product of \(k\) elementary reflectors as returned by p?tzrzf.

If direct \(=' F^{\prime}, H=H(1){ }^{\star} H(2) * \ldots{ }^{*} H(k)\), and \(T\) is upper triangular;
If direct \(=\) ' \(\mathrm{B}^{\prime}, H=H(k) * \ldots{ }^{*} H(2) \star H(1)\), and \(T\) is lower triangular.
If storev = 'C', the vector which defines the elementary reflector \(H(i)\), is stored in the \(i\)-th column of the array \(v\), and
\(H=i-V^{\star} t^{\star} V^{\prime}\).
If storev = 'R', the vector, which defines the elementary reflector \(H(i)\), is stored in the \(i\)-th row of the array \(v\), and
\(H=i-V^{\prime} * t^{*} V\)
Currently, only storev = 'R' and direct = ' B ' are supported.

\section*{Input Parameters}
direct
storev
n
\(k\)

V
(global) CHARACTER.
Specifies the order in which the elementary reflectors are multiplied to form the block reflector:
if direct \(=' F^{\prime}: H=H(1) * H(2) * \ldots \star H(k)\) (Forward, not supported)
if direct \(=\) ' \(\mathrm{B}^{\prime}: H=H(k) * \ldots * H(2) * H(1)\) (Backward).
(global) CHARACTER.
Specifies how the vectors which defines the elementary reflectors are stored:
if storev = 'C': columnwise (not supported);
if storev = 'R': rowwise.
(global) INTEGER.
The order of the block reflector \(H . n \geq 0\).
(global) INTEGER.
The order of the triangular factor \(T\) (\(=\) the number of elementary reflectors).
\(1 \leq k \leq m b _v\left(=n b _v\right)\).
REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
\(i v, j v\)
descv
tau
work

COMPLEX*16 for pzlarzt.
Pointer into the local memory to an array of local size (LOCr (\(i v+k-1\)), LOCC (jv+n-1)).

The distributed matrix \(V\) contains the Householder vectors. See Application Notes below.
(global) INTEGER. The row and column indices in the global matrix \(V\) indicating the first row and the first column of the matrix \(\operatorname{sub}(V)\), respectively.
(local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(V\).
(local)
REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Array of size LOCr (iv+k-1) if inCv \(=m_{-} v\), and \(\operatorname{LOCc}(j v+k-1)\) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix \(V\).
(local).
REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
Workspace array of size \(\left(k^{*}(k-1) / 2\right)\).
Output Parameters

V
\(t\)
```

REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.
(local)
REAL for pslarzt
DOUBLE PRECISION for pdlarzt
COMPLEX for pclarzt
COMPLEX*16 for pzlarzt.

```

Array of size \(m b _v\) by \(m b _v\). It contains the \(k-\) by \(-k\) triangular factor of the block reflector associated with \(v . t\) is lower triangular.

\section*{Application Notes}

The shape of the matrix \(V\) and the storage of the vectors which define the \(H(i)\) is best illustrated by the following example with \(n=5\) and \(k=3\). The elements equal to 1 are not stored; the corresponding array elements are modified but restored on exit. The rest of the array is not used.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lascl
Multiplies a general rectangular matrix by a real scalar \(\underline{\text { defined as } C_{t o} / C_{\text {from }}}\).

\section*{Syntax}
```

call pslascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)
call pdlascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)
call pclascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)
call pzlascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)

```

\section*{Description}

The p?lasclroutine multiplies the \(m\)-by- \(n\) real/complex distributed matrix sub(\(A\)) denoting \(A\) (ia: iatm-1, \(j a: j a+n-1)\) by the real/complex scalar cto/cfrom. This is done without over/underflow as long as the final result \(c t o^{*} A(i, j) /\) cfrom does not over/underflow. type specifies that sub \((A)\) may be full, upper triangular, lower triangular or upper Hessenberg.

\section*{Input Parameters}
type
cfrom, cto
m
n
a

\section*{Output Parameters}
a
info
(global) CHARACTER.
type indicates the storage type of the input distributed matrix.
if type \(=\) ' \(G\) ': \(\operatorname{sub}(A)\) is a full matrix,
if type \(=\) 'L': \(\operatorname{sub}(A)\) is a lower triangular matrix,
if type \(=\) ' U ': \(\operatorname{sub}(A)\) is an upper triangular matrix,
if type \(=\) 'H': \(\operatorname{sub}(A)\) is an upper Hessenberg matrix.
(global)
REAL for pslascl/pclascl
DOUBLE PRECISION for pdlascl/pzlascl.
The distributed matrix \(\operatorname{sub}(A)\) is multiplied by cto/cfrom. \(A(i, j)\) is computed without over/underflow if the final result cto* \(A(i, j) /\) cfrom can be represented without over/underflow. cfrom must be nonzero.
(global) INTEGER.
The number of rows in the distributed matrix \(\operatorname{sub}(A) .(m \geq 0)\).
(global) INTEGER.
The number of columns in the distributed matrix \(\operatorname{sub}(A) .(n \geq 0)\).
(local input/local output)
REAL for pslascl
DOUBLE PRECISION for pdlascl
COMPLEX for pclascl
COMPLEX*16 for pzlascl.
Pointer into the local memory to an array of size (IId_a, LOCC(ja+n-1)).
This array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\).
(global) INTEGER.
The column and row indices in the global matrix \(A\) indicating the first row and column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER.
Array of size dlen_. The array descriptor for the distributed matrix \(A\).
(local).
On exit, this array contains the local pieces of the distributed matrix multiplied by cto/cfrom.
(local)
INTEGER.
if info \(=0\) : the execution is successful.
if info < 0 : If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\),
if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lase2
Initializes an m-by-n distributed matrix.

\section*{Syntax}
```

call pslase2 (uplo, m, n, alpha, beta, a, ia, ja, desca )
call pdlase2 (uplo, m, n, alpha, beta, a, ia, ja, desca )
call pclase2 (uplo, m, n, alpha, beta, a, ia, ja, desca )
call pzlase2 (uplo, m, n, alpha, beta, a, ia, ja, desca )

```

\section*{Description}
p?lase2 initializes an m-by-n distributed matrix sub(\(A\)) denoting \(A(\) ia:ia+m-1,ja:ja+n-1) to beta on the diagonal and alpha on the off-diagonals. p?lase 2 requires that only the dimension of the matrix operand is distributed.

\section*{Input Parameters}
```

uplo

```
m
\(n\)
alpha
(global)
CHARACTER.
Specifies the part of the distributed matrix \(\operatorname{sub}(A)\) to be set:
\(=\) 'U': Upper triangular part is set; the strictly lower triangular part of \(\operatorname{sub}(A)\) is not changed;
\(=\) 'L': Lower triangular part is set; the strictly upper triangular part of \(\operatorname{sub}(A)\) is not changed;
Otherwise: All of the matrix \(\operatorname{sub}(A)\) is set.
(global)
INTEGER.
The number of rows to be operated on i.e the number of rows of the distributed submatrix \(\operatorname{sub}(A) . m>=0\).
(global)
INTEGER.
The number of columns to be operated on i.e the number of columns of the distributed submatrix \(\operatorname{sub}(A) . n>=0\).
(global)
REAL for pslase2
DOUBLE PRECISION for pdlase2
COMPLEX for pclase2
```

DOUBLE COMPLEX for pzlase2

```

The constant to which the off-diagonal elements are to be set.
(global)
REAL for pslase2
DOUBLE PRECISION for pdlase2
COMPLEX for pclase2
DOUBLE COMPLEX for pzlase2
The constant to which the diagonal elements are to be set.
(global)
INTEGER.
The row index in the global array a indicating the first row of \(\operatorname{sub}(A)\).
(global)
INTEGER.
The column index in the global array a indicating the first column of \(\operatorname{sub}(A)\).
(global and local)
INTEGER.
Array of size dlen_.
The array descriptor for the distributed matrix \(A\).

\section*{Output Parameters}
a
(local)
REAL for pslase2
DOUBLE PRECISION for pdlase2
COMPLEX for pclase2
DOUBLE COMPLEX for pzlase2
Pointer into the local memory to an array of size (lld_a, LOCC (ja \(+n-1)\)).
This array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be set.
On exit, the leading \(m\)-by-n submatrix \(\operatorname{sub}(A)\) is set as follows:
```

if uplo = 'U', A(ia+i-1,ja+j-1) = alpha, 1<=i<=j-1, 1<=j<=n,
if uplo = 'L', A(ia+i-1,ja+j-1) = alpha, j+1<=i<=m, 1<=j<=n,
otherwise, }A(ia+i-1,ja+j-1)= alpha, 1<= i<=m, 1<=j<=n, ia+i!
ja+j,
and, for all uplo, }A(ia+i-1,ja+i-1)=\operatorname{beta,}1<=\textrm{i}<==\operatorname{min}(m,n)

```
```

p?laset
Initializes the offdiagonal elements of a matrix to alpha
and the diagonal elements to beta.
Syntax

```
```

call pslaset(uplo, m, n, alpha, beta, a, ia, ja, desca)

```
call pslaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
call pdlaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
call pdlaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
call pclaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
call pclaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
call pzlaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
```

call pzlaset(uplo, m, n, alpha, beta, a, ia, ja, desca)

```

\section*{Description}

The p?lasetroutine initializes an m-by-n distributed matrix sub \((A)\) denoting \(A(i a: i a+m-1, j a: j a+n-1)\) to beta on the diagonal and alpha on the offdiagonals.

\section*{Input Parameters}
uplo
m
n
alpha
beta
(global) CHARACTER.
Specifies the part of the distributed matrix \(\operatorname{sub}(A)\) to be set:
if uplo = 'U': upper triangular part; the strictly lower triangular part of \(\operatorname{sub}(A)\) is not changed;
if uplo = 'L': lower triangular part; the strictly upper triangular part of \(\operatorname{sub}(A)\) is not changed.
Otherwise: all of the matrix \(\operatorname{sub}(A)\) is set.
(global) INTEGER.
The number of rows in the distributed matrix \(\operatorname{sub}(A) .(m \geq 0)\).
(global) INTEGER.
The number of columns in the distributed matrix \(\operatorname{sub}(A) .(n \geq 0)\).
(global).
REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.
The constant to which the offdiagonal elements are to be set.
(global).
REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.
The constant to which the diagonal elements are to be set.

\section*{Output Parameters}
a
(local).
REAL for pslaset
DOUBLE PRECISION for pdlaset
COMPLEX for pclaset
COMPLEX*16 for pzlaset.
Pointer into the local memory to an array of size (lld_a, LOCC (ja+n-1)).
This array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be set. On exit, the leading \(m\)-by- \(n\) matrix \(\operatorname{sub}(A)\) is set as follows:
if uplo \(=\) 'U', \(A(i a+i-1, j a+j-1)=\) alpha, \(1 \leq i \leq j-1,1 \leq j \leq n\),
if uplo \(=\) 'L', \(A(i a+i-1, j a+j-1)=a l p h a, j+1 \leq i \leq m, 1 \leq j \leq n\),
otherwise, \(A(i a+i-1, j a+j-1)=a l p h a, 1 \leq i \leq m, 1 \leq j \leq n, i a+i \neq j a+j\), and, for all uplo, \(A(i a+i-1, j a+i-1)=\operatorname{beta}, 1 \leq i \leq \min (m, n)\).
ia, ja
desca
(global) INTEGER.
The column and row indices in the distributed matrix \(A\) indicating the first row and column of the matrix sub(\(A\)), respectively.
(global and local)INTEGER.
Array of size dlen_. The array descriptor for the distributed matrix \(A\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?lasmsub}

Looks for a small subdiagonal element from the
bottom of the matrix that it can safely set to zero.

\section*{Syntax}
```

call pslasmsub(a, desca, i, l, k, smlnum, buf, lwork)
call pdlasmsub(a, desca, i, l, k, smlnum, buf, lwork)
call pclasmsub(a, desca, i, l, k, smlnum, buf, lwork)
call pzlasmsub(a, desca, i, l, k, smlnum, buf, lwork)

```

\section*{Description}

The p?lasmsubroutine looks for a small subdiagonal element from the bottom of the matrix that it can safely set to zero. This routine performs a global maximum and must be called by all processes.

\section*{Input Parameters}
a
\begin{tabular}{|c|c|}
\hline & DOUBLE COMPLEX for pzlasmsub \\
\hline & Array of size (IId_a, LOCC (n_a)). \\
\hline & On entry, the Hessenberg matrix whose tridiagonal part is being scanned. Unchanged on exit. \\
\hline desca & (global and local) INTEGER. \\
\hline & Array of size dlen_. The array descriptor for the distributed matrix \(A\). \\
\hline i & (global) INTEGER. \\
\hline & The global location of the bottom of the unreduced submatrix of \(A\). Unchanged on exit. \\
\hline 1 & (global) INTEGER. \\
\hline & The global location of the top of the unreduced submatrix of \(A\). \\
\hline & Unchanged on exit. \\
\hline sml num & (global) \\
\hline & REAL for pslasmsub \\
\hline & DOUBLE PRECISION for pdlasmsub \\
\hline & REAL for pclasmsub \\
\hline & DOUBLE PRECISION for pzlasmsub \\
\hline
\end{tabular}

On entry, a "small number" for the given matrix. Unchanged on exit. The machine-dependent constants for the stopping criterion.
lwork (local) INTEGER.
This must be at least 2*ceil(ceil((i-l)/mb_a)/ lcm(nprow, npcol)). Here 1 cm is least common multiple and nprowxnpcol is the logical grid size.

\section*{Output Parameters}
k
(global) INTEGER.
On exit, this yields the bottom portion of the unreduced submatrix. This will satisfy: \(1 \leq k \leq i-1\).
(local).
REAL for pslasmsub
DOUBLE PRECISION for pdlasmsub
COMPLEX for pclasmsub
DOUBLE COMPLEX for pzlasmsub
Array of size Iwork.

\section*{Application Notes}

This routine parallelizes the code from ?lahqr that looks for a single small subdiagonal element.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?lasrt}

Sorts the numbers in an array and the corresponding vectors in increasing order.

\section*{Syntax}
```

call pslasrt (id, n, d, q, iq, jq, descq, work, lwork, iwork, liwork, info )
call pdlasrt (id, n, d, q, iq, jq, descq, work, lwork, iwork, liwork, info )

```

\section*{Description}
p?lasrt sorts the numbers in \(d\) and the corresponding vectors in \(q\) in increasing order.

\section*{Input Parameters}
id
n
d
q
iq
(global)
CHARACTER*1.
= 'I': sort \(d\) in increasing order;
= ' D ': sort \(d\) in decreasing order. (NOT IMPLEMENTED YET)
(global)
INTEGER.
The number of columns to be operated on i.e the number of columns of the distributed submatrix \(\operatorname{sub}(Q) . n>=0\).
(global)
ReAL for pslasrt
DOUBLE PRECISION for pdlasrt
Array, size (\(n\))
(local)
REAL for pslasrt
DOUBLE PRECISION for pdlasrt
Pointer into the local memory to an array of size (lld_q, LOCC(\(j q+n-1)\)).
This array contains the local pieces of the distributed matrix \(\operatorname{sub}(A)\) to be copied from.
(global)
INTEGER.
The row index in the global array A indicating the first row of sub(\(Q\)).
(global)
INTEGER.
The column index in the global array A indicating the first column of \(\operatorname{sub}(Q)\).
(global and local)
INTEGER.
\begin{tabular}{|c|c|}
\hline & Array of size dlen_. \\
\hline & The array descriptor for the distributed matrix \(A\). \\
\hline work & (local) \\
\hline & REAL for pslasrt \\
\hline & DOUBLE PRECISION for pdlasrt \\
\hline & Array, size (1 work) \\
\hline 1 work & (local) \\
\hline & INTEGER. \\
\hline & The size of the array work. \\
\hline & \[
\begin{aligned}
& \text { l work }=\operatorname{MAX}(n, N P *(N B+N Q)), \text { where NP = numroc(} n, N B, M Y R O W, \\
& \text { IAROW, NPROW }), N Q=\operatorname{numroc}(n, N B, M Y C O L, D E S C Q(c s r c-), N P C O L) .
\end{aligned}
\] \\
\hline & numroc is a ScaLAPACK tool function. \\
\hline iwork & (local) \\
\hline & INTEGER. \\
\hline & Array, size (liwork) \\
\hline liwork & (local) \\
\hline & INTEGER. \\
\hline & The size of the array iwork. \\
\hline & liwork \(=n+2 * N B+2 * N P C O L\) \\
\hline
\end{tabular}

\section*{Output Parameters}
```

d
info
(global)
INTEGER.
= 0: successful exit had an illegal value, then info $=-i$.
p?lassq
Updates a sum of squares represented in scaled form.
Syntax

```
```

call pslassq(n, x, ix, jx, descx, incx, scale, sumsq)

```
call pslassq(n, x, ix, jx, descx, incx, scale, sumsq)
call pdlassq(n, x, ix, jx, descx, incx, scale, sumsq)
call pdlassq(n, x, ix, jx, descx, incx, scale, sumsq)
call pclassq(n, x, ix, jx, descx, incx, scale, sumsq)
call pclassq(n, x, ix, jx, descx, incx, scale, sumsq)
call pzlassq(n, x, ix, jx, descx, incx, scale, sumsq)
```

call pzlassq(n, x, ix, jx, descx, incx, scale, sumsq)

```

On exit, the numbers in \(d\) are sorted in increasing order.
< 0: If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\), if the \(i\)-th argument is a scalar and

\section*{Description}

The p?lassqroutine returns the values \(s c l\) and \(s m s q\) such that
\(s c^{2}{ }^{2}\) smsq \(=x_{1}^{2}+\ldots+x_{n}^{2}+\) scale \({ }^{2 *}\) sumsq,
where
\(\mathrm{x}_{i}=\operatorname{sub}(X)=X\left(i x+(j x-1) * m_{-} x+(i-1){ }_{i n c x}\right)\) for pslassq/pdlassq,
\(x_{i}=\operatorname{sub}(X)=\operatorname{abs}\left(X\left(i x+(j x-1) * m_{-} x+(i-1){ }_{i n c x}\right)\right.\) for pclassq/pzlassq.
For real routines pslassq/pdlassq the value of sumsq is assumed to be non-negative and scl returns the value
\(s c l=\max \left(s c a l e, \operatorname{abs}\left(x_{i}\right)\right)\).
For complex routines pclassq/pzlassq the value of sumsq is assumed to be at least unity and the value of ssq will then satisfy
\(1.0 \leq s s q \leq s u m s q+2 n\)
Value scale is assumed to be non-negative and scl returns the value
\[
s c l=\max _{i}\left(\text { scale }, \operatorname{abs}\left(\operatorname{real}\left(x_{i}\right)\right), \operatorname{abs}\left(\operatorname{aimag}\left(x_{i}\right)\right)\right)
\]

For all routines \(p\) ?lassq values scale and sumsq must be supplied in scale and sumsq respectively, and scale and sumsq are overwritten by scl and ssq respectively.

All routines p?lassq make only one pass through the vector \(\operatorname{sub}(X)\).

\section*{Input Parameters}
```

n
X
(global) INTEGER.
The length of the distributed vector $\operatorname{sub}(x)$.
REAL for pslassq
DOUBLE PRECISION for pdlassq
COMPLEX for pclassq
COMPLEX* 16 for pzlassq.

```
ix
incx

X
ix
incx

The vector for which a scaled sum of squares is computed:
\(x\left(i x+(j x-1) \star m_{-} x+(i-1) * i n c x\right), 1 \leq i \leq n\).
(global) INTEGER.
The row index in the global matrix \(X\) indicating the first row of \(\operatorname{sub}(X)\).
(global) INTEGER.
The column index in the global matrix \(X\) indicating the first column of \(\operatorname{sub}(X)\).
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix \(X\).
(global) INTEGER.
```

The global increment for the elements of $X$. Only two values of incx are supported in this version, namely 1 and $m_{\mathbf{\prime}} x$. The argument incx must not equal zero.
(local).
REAL for pslassq/pclassq
DOUBLE PRECISION for pdlassq/pzlassq.
On entry, the value scale in the equation above.
(local)
REAL for pslassq/pclassq
DOUBLE PRECISION for pdlassq/pzlassq.

```

On entry, the value sumsq in the equation above.

\section*{Output Parameters}
sumsq
(local).
On exit, scale is overwritten with \(s c l\), the scaling factor for the sum of squares.
(local).
On exit, sumsq is overwritten with the value \(s m s q\), the basic sum of squares from which scl has been factored out.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?laswp
Performs a series of row interchanges on a general rectangular matrix.

\section*{Syntax}
```

call pslaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)
call pdlaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)
call pclaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)
call pzlaswp(direc, rowcol, n, a, ia, ja, desca, k1, k2, ipiv)

```

\section*{Description}

The p?laswproutine performs a series of row or column interchanges on the distributed matrix sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\). One interchange is initiated for each of rows or columns \(k 1\) through \(k 2\) of \(\operatorname{sub}(A)\). This routine assumes that the pivoting information has already been broadcast along the process row or column. Also note that this routine will only work for \(k 1-k 2\) being in the same \(m b\) (or \(n b\)) block. If you want to pivot a full matrix, use p?lapiv.

\section*{Input Parameters}
```

direc

```
(global) CHARACTER.
Specifies in which order the permutation is applied:
```

= 'F' - forward,
= 'B' - backward.
(global) CHARACTER.
Specifies if the rows or columns are permuted:
= 'R' - rows,
= 'C' - columns.
(global) INTEGER.
If rowcol='R', the length of the rows of the distributed matrix $A$ (*, ja:ja+n-1) to be permuted;
If rowcol='C', the length of the columns of the distributed matrix $A$ (ia:ia $+n-1$, *) to be permuted;
(local)
REAL for pslaswp
DOUBLE PRECISION for pdlaswp
COMPLEX for pclaswp
COMPLEX*16 for pzlaswp.
Pointer into the local memory to an array of size (IId_a, *). On entry, this array contains the local pieces of the distributed matrix to which the row/ columns interchanges will be applied.
(global) INTEGER.
The row index in the global matrix $A$ indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global matrix $A$ indicating the first column of $\operatorname{sub}(A)$.
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix $A$.
(global) INTEGER.
The first element of ipiv for which a row or column interchange will be done.
(global) INTEGER.
The last element of ipiv for which a row or column interchange will be done.
(local)
INTEGER. Array of size LOCr (m_a)+mb_a for row pivoting and LOCr (n_a) $+n b \_a$ for column pivoting. This array is tied to the matrix $A$, ipiv $(k)=1$ implies rows (or columns) $k$ and $/$ are to be interchanged.

```

\section*{Output Parameters}

A
```

DOUBLE PRECISION for pdlaswp
COMPLEX for pclaswp
COMPLEX*16 for pzlaswp.

```

On exit, the permuted distributed matrix.
```

See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.
p?latra
Computes the trace of a general square distributed
matrix.
Syntax

```
```

val = pslatra(n, a, ia, ja, desca)

```
val = pslatra(n, a, ia, ja, desca)
val = pdlatra(n, a, ia, ja, desca)
val = pdlatra(n, a, ia, ja, desca)
val = pclatra(n, a, ia, ja, desca)
val = pclatra(n, a, ia, ja, desca)
val = pzlatra(n, a, ia, ja, desca)
```

val = pzlatra(n, a, ia, ja, desca)

```

\section*{Description}

This function computes the trace of an \(n\)-by-n distributed matrix \(\operatorname{sub}(A)\) denoting \(A(i a: i a+n-1, j a: j a\) \(+n-1)\). The result is left on every process of the grid.

\section*{Input Parameters}
\(n\)
(global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the distributed matrix \(\operatorname{sub}(A) . n \geq 0\).
(local).
REAL for pslatra
DOUBLE PRECISION for pdlatra
COMPLEX for pclatra
COMPLEX*16 for pzlatra.
Pointer into the local memory to an array of size (IId_a, LOCc (ja+n-1)) containing the local pieces of the distributed matrix, the trace of which is to be computed.
ia, ja
desca
(global) INTEGER. The row and column indices respectively in the global matrix \(A\) indicating the first row and the first column of the matrix \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).

\section*{Output Parameters}
val
The value returned by the function.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p? latrd
Reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an orthogonal/unitary similarity transformation.

\section*{Syntax}
```

call pslatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)
call pdlatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)
call pclatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)
call pzlatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)

```

\section*{Description}

The p?latrdroutine reduces \(n b\) rows and columns of a real symmetric or complex Hermitian matrix \(\operatorname{sub}(A)=\) A(ia: \(i a+n-1, j a: j a+n-1)\) to symmetric/complex tridiagonal form by an orthogonal/unitary similarity transformation \(Q^{\prime *} \operatorname{sub}(A) * Q\), and returns the matrices \(V\) and \(W\), which are needed to apply the transformation to the unreduced part of \(\operatorname{sub}(A)\).
If uplo \(=U, p\) ? latrd reduces the last \(n b\) rows and columns of a matrix, of which the upper triangle is supplied;
if uplo = L, p?latrd reduces the first \(n b\) rows and columns of a matrix, of which the lower triangle is supplied.
This is an auxiliary routine called by p?sytrd/p?hetrd.

\section*{Input Parameters}
n
nb
\(a\)
(global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix \(\operatorname{sub}(A)\) is stored:
= 'U': Upper triangular
\(=\mathrm{L}\) : Lower triangular.
(global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the distributed matrix \(\operatorname{sub}(A) . n \geq 0\).
(global) INTEGER.
The number of rows and columns to be reduced.
REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Pointer into the local memory to an array of size (Ild_a, LOCC(ja+n-1)).
On entry, this array contains the local pieces of the symmetric/Hermitian distributed matrix sub \((A)\).

If uplo \(=U\), the leading \(n\)-by- \(n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and its strictly lower triangular part is not referenced.

If uplo \(=\mathrm{L}\), the leading \(n\)-by- \(n\) lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and its strictly upper triangular part is not referenced.
(global) INTEGER.
The row index in the global matrix \(A\) indicating the first row of \(\operatorname{sub}(A)\).
(global) INTEGER.
The column index in the global matrix \(A\) indicating the first column of \(\operatorname{sub}(A)\).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).
(global) INTEGER.
The row index in the global matrix \(W\) indicating the first row of sub \((W)\).
(global) INTEGER.
The column index in the global matrix \(W\) indicating the first column of \(\operatorname{sub}(W)\).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(W\).
(local)
REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Workspace array of size nb_a.

\section*{Output Parameters}
a
d
(local)
On exit, if uplo = 'U', the last \(n b\) columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of \(\operatorname{sub}(A)\); the elements above the diagonal with the array tau represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors;
if uplo = ' L', the first \(n b\) columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of \(\operatorname{sub}(A)\); the elements below the diagonal with the array tau represent the orthogonal/unitary matrix \(Q\) as a product of elementary reflectors.
(local)
REAL for pslatrd/pclatrd
DOUBLE PRECISION for pdlatrd/pzlatrd.

Array of size LOCC(ja+n-1).
The diagonal elements of the tridiagonal matrix \(T\) : \(d(i)=a(i, i) \cdot d\) is tied to the distributed matrix \(A\).
e
w
(local)
REAL for pslatrd/pclatrd
DOUBLE PRECISION for pdlatrd/pzlatrd.
Array of size LOCC (ja+n-1) if uplo = 'U', LOCC (ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix \(T\) :
```

e(i) = a(i, i + 1) if uplo = 'U',
e(i) = a(i + 1, i) if uplo = 'L'.

```
\(e\) is tied to the distributed matrix \(A\).
(local)
REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Array of size \(\operatorname{LOCC}(j a+n-1)\). This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix \(A\).
(local)
REAL for pslatrd
DOUBLE PRECISION for pdlatrd
COMPLEX for pclatrd
COMPLEX*16 for pzlatrd.
Pointer into the local memory to an array of size Ild_wby nb_w. This array contains the local pieces of the \(n\)-by-nb_w matrix \(w\) required to update the unreduced part of \(\operatorname{sub}(A)\).

\section*{Application Notes}

If uplo = 'U', the matrix \(Q\) is represented as a product of elementary reflectors
\[
Q=H(n) * H(n-1) * \ldots * H(n-n b+1)
\]

Each \(H(i)\) has the form
\[
H(i)=I-\operatorname{ta} u^{\star} v^{\star} v^{\prime},
\]
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(i: n)=0\) and \(v(i-1)=1\); \(v(1: i-1)\) is stored on exit in \(A(i a: i a+i-1, j a+i)\), and tau in tau(ja+i-1).

If uplo = L, the matrix \(Q\) is represented as a product of elementary reflectors
\[
Q=H(1) * H(2)^{\star} \ldots{ }^{\star} H(n b)
\]

Each \(H(i)\) has the form
```

H(i) = I - tau* v* v' ,

```
where tau is a real/complex scalar, and \(v\) is a real/complex vector with \(v(1: i)=0\) and \(v(i+1)=1\); \(v(i\) \(+2: n\)) is stored on exit in \(A(i a+i+1: i a+n-1, j a+i-1)\), and tau in tau(ja+i-1).

The elements of the vectors \(v\) together form the \(n\)-by- \(n b\) matrix \(V\) which is needed, with \(W\), to apply the transformation to the unreduced part of the matrix, using a symmetric/Hermitian rank- \(2 k\) update of the form:
\(\operatorname{sub}(A) \quad:=\operatorname{sub}(A)-V w^{\prime}-w v^{\prime}\).
The contents of \(a\) on exit are illustrated by the following examples with
\(n=5\) and \(n b=2\) :
\[
\begin{array}{cc}
\text { if uplo='U': } & \text { if uplo }=\mathrm{L}^{\prime}: \\
{\left[\begin{array}{ccccc}
a & a & a & v_{4} & v_{5} \\
& a & a & v_{4} & v_{5} \\
& a & 1 & v_{5} \\
& & & d & 1 \\
& & & d
\end{array}\right] \quad\left[\begin{array}{ccccc}
d & & & \\
1 & d & & \\
v_{1} & 1 & a & \\
v_{1} & v_{2} & a & a & \\
v_{1} & v_{2} & a & a & a
\end{array}\right]}
\end{array}
\]
where \(d\) denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and \(v_{i}\) denotes an element of the vector defining \(H(i)\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?latrs
Solves a triangular system of equations with the scale
factor set to prevent overflow.

\section*{Syntax}
```

call pslatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx, scale,
cnorm, work)
call pdlatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx, scale,
cnorm, work)
call pclatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx, scale,
cnorm, work)
call pzlatrs(uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx, scale,
cnorm, work)

```

\section*{Description}

The p? latrsroutine solves a triangular system of equations \(A x=\mathrm{s} b, A^{T} x^{\prime}=\mathrm{s} b\) or \(A^{H} X=\mathrm{s} b\), where s is a scale factor set to prevent overflow. The description of the routine will be extended in the future releases.

\section*{Input Parameters}
uplo

Specifies whether the matrix \(A\) is upper or lower triangular.
= 'U': Upper triangular
= 'L': Lower triangular
CHARACTER*1.
Specifies the operation applied to \(A x\).
\(=' N^{\prime}\) : Solve \(A x=s^{*} b\) (no transpose)
\(=' T ':\) Solve \(A^{T} X=s^{*} b\) (transpose)
\(=\) 'C': Solve \(A^{H} X=s^{*} b\) (conjugate transpose),
where \(s\) - is a scale factor
```

CHARACTER*1.

```

Specifies whether or not the matrix \(A\) is unit triangular.
= 'N': Non-unit triangular
\(=\) ' U': Unit triangular
CHARACTER*1.
Specifies whether cnorm has been set or not.
\(=\) 'Y': cnorm contains the column norms on entry;
\(=\) ' N ': cnorm is not set on entry. On exit, the norms will be computed and stored in cnorm.

INTEGER.
The order of the matrix \(A . n \geq 0\)
REAL for pslatrs/pclatrs
DOUBLE PRECISION for pdlatrs/pzlatrs
Array of size Idaby \(n\). Contains the triangular matrix \(A\).
If uplo \(=\mathrm{U}\), the leading \(n\)-by- \(n\) upper triangular part of the array a contains the upper triangular matrix, and the strictly lower triangular part of \(a\) is not referenced.

If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of the array a contains the lower triangular matrix, and the strictly upper triangular part of \(a\) is not referenced.

If diag = 'U', the diagonal elements of a are also not referenced and are assumed to be 1 .
(global) INTEGER. The row and column indices in the global matrix \(A\) indicating the first row and the first column of the submatrix \(A\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).

REAL for pslatrs/pclatrs
DOUBLE PRECISION for pdlatrs/pzlatrs
```

ix (global)INTEGER.The row index in the global matrix }X\mathrm{ indicating the first
row of sub(x).
(global) INTEGER.
The column index in the global matrix X indicating the first column of
sub( }X\mathrm{ ).
(global and local) INTEGER.
Array of size dlen_. The array descriptor for the distributed matrix X.
REAL for pslatrs/pclatrs
DOUBLE PRECISION for pdlatrs/pzlatrs.
Array of size n. If normin = 'Y', cnorm is an input argument and cnorm(j)
contains the norm of the off-diagonal part of the j-th column of A. If trans =
'N', cnorm(j) must be greater than or equal to the infinity-norm, and if
trans = 'T' or 'C', cnorm(j) must be greater than or equal to the 1-norm.
(local).
REAL for pslatrs
DOUBLE PRECISION for pdlatrs
COMPLEX for pclatrs
COMPLEX*16 for pzlatrs.
Temporary workspace.

```

\section*{Output Parameters}
x
cnorm

On exit, \(x\) is overwritten by the solution vector \(x\).
REAL for pslatrs/pclatrs
DOUBLE PRECISION for pdlatrs/pzlatrs.
Array of size Idaby \(n\). The scaling factor \(s\) for the triangular system as described above.

If scale \(=0\), the matrix \(A\) is singular or badly scaled, and the vector \(x\) is an exact or approximate solution to \(A x=0\).

If normin \(=\) ' N ', cnorm is an output argument and cnorm \((j)\) returns the 1 norm of the off-diagonal part of the \(j\)-th column of \(A\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?latrz}

Reduces an upper trapezoidal matrix to upper
triangular form by means of orthogonal/unitary
transformations.

\section*{Syntax}
```

call pslatrz(m, n, l, a, ia, ja, desca, tau, work)

```
```

call pdlatrz(m, n, l, a, ia, ja, desca, tau, work)
call pclatrz(m, n, l, a, ia, ja, desca, tau, work)
call pzlatrz(m, n, l, a, ia, ja, desca, tau, work)

```

\section*{Description}

The p?latrzroutine reduces the \(m\)-by- \(n(m \leq n)\) real/complex upper trapezoidal matrix sub \((A)=\) [A(ia:ia+m-1, ja:ja+m-1) A(ia:ia+m-1, ja+n-1:ja+n-1)] to upper triangular form by means of orthogonal/unitary transformations.

The upper trapezoidal matrix \(\operatorname{sub}(A)\) is factored as
```

sub (A) = ( R 0 ) *Z,

```
where \(Z\) is an \(n\)-by- \(n\) orthogonal/unitary matrix and \(R\) is an \(m\)-by- \(m\) upper triangular matrix.

\section*{Input Parameters}
\(m\) (global) INTEGER.
n

1
a
ia
ja
desca
work

The number of rows in the distributed matrix \(\operatorname{sub}(A) . m \geq 0\).
(global) INTEGER.
The number of columns in the distributed matrix \(\operatorname{sub}(A) . n \geq 0\).
(global) INTEGER.
The number of columns of the distributed matrix \(\operatorname{sub}(A)\) containing the meaningful part of the Householder reflectors. \(I>0\).
(local)
REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX* 16 for pzlatrz.
Pointer into the local memory to an array of size (lld_a, LOCC(ja+n-1)). On entry, the local pieces of the \(m\)-by- \(n\) distributed matrix \(\operatorname{sub}(A)\), which is to be factored.
(global) INTEGER.
The row index in the global matrix \(A\) indicating the first row of \(\operatorname{sub}(A)\).
(global) INTEGER.
The column index in the global matrix \(A\) indicating the first column of \(\operatorname{sub}(A)\).
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix \(A\).
(local)
REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz

\section*{COMPLEX*16 for pzlatrz.}

Workspace array of size Iwork.
```

lwork\geqnq0 + max(1, mp0),where
iroff = mod(ia-1, mb_a),
icoff = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mp0 = numroc(m+iroff, mb_a, myrow, iarow, nprow),
nq0 = numroc(n+icoff, nb_a, mycol, iacol, npcol),

```
numroc, indxg2p, and numroc are ScaLAPACK tool functions; myrow,
mycol, nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.

\section*{Output Parameters}
a
tau
On exit, the leading \(m\)-by- \(m\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular matrix \(R\), and elements \(n-1+1\) to \(n\) of the first \(m\) rows of \(\operatorname{sub}(A)\), with the array tau, represent the orthogonal/unitary matrix \(Z\) as a product of \(m\) elementary reflectors.
(local)
REAL for pslatrz
DOUBLE PRECISION for pdlatrz
COMPLEX for pclatrz
COMPLEX*16 for pzlatrz.
Array of sizeLOCr (ja+m-1). This array contains the scalar factors of the elementary reflectors. tau is tied to the distributed matrix \(A\).

\section*{Application Notes}

The factorization is obtained by Householder's method. The \(k\)-th transformation matrix, \(z(k)\), which is used (or, in case of complex routines, whose conjugate transpose is used) to introduce zeros into the (\(m-k+\) 1) -th row of \(\operatorname{sub}(A)\), is given in the form
\[
Z(k)=\left[\begin{array}{cc}
I & 0 \\
0 & T(k)
\end{array}\right],
\]
where
\[
T(k)=I-\operatorname{tau} * u(k) * u(k)^{\prime}, \quad u(k)=\left[\begin{array}{c}
1 \\
0 \\
z(k)
\end{array}\right]
\]
tau is a scalar and \(z(k)\) is an (\(n-m\))-element vector. tau and \(z(k)\) are chosen to annihilate the elements of the \(k\)-th row of \(\operatorname{sub}(A)\). The scalar tau is returned in the \(k\)-th element of tau and the vector \(u(k)\) in the \(k\)-th row of \(\operatorname{sub}(A)\), such that the elements of \(z(k)\) are in \(A(k, m+1), \ldots, A(k, n)\). The elements of \(R\) are returned in the upper triangular part of \(\operatorname{sub}(A)\).
\(Z\) is given by
```

Z=Z(1)Z(2)...Z(m).

```

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{p?lauu2}

Computes the product \(U^{*} U^{\prime}\) or \(L^{\prime}{ }^{*} L\), where \(U\) and \(L\) are upper or lower triangular matrices (local unblocked algorithm).

\section*{Syntax}
```

call pslauu2(uplo, n, a, ia, ja, desca)
call pdlauu2(uplo, n, a, ia, ja, desca)
call pclauu2(uplo, n, a, ia, ja, desca)
call pzlauu2(uplo, n, a, ia, ja, desca)

```

\section*{Description}

The p? lauu2routine computes the product \(U^{*} U^{\prime}\) or \(L^{\prime *} L\), where the triangular factor \(U\) or \(L\) is stored in the upper or lower triangular part of the distributed matrix
```

sub(A)= A(ia:ia+n-1, ja:ja+n-1).

```

If uplo = 'U' or 'u', then the upper triangle of the result is stored, overwriting the factor \(U\) in \(\operatorname{sub}(A)\).
If uplo \(=\) 'L' or 'l', then the lower triangle of the result is stored, overwriting the factor \(L\) in \(\operatorname{sub}(A)\).
This is the unblocked form of the algorithm, calling BLAS Level 2 Routines. No communication is performed by this routine, the matrix to operate on should be strictly local to one process.

\section*{Input Parameters}
```

uplo (global) CHARACTER*1.
Specifies whether the triangular factor stored in the matrix $\operatorname{sub}(A)$ is upper or lower triangular:
$=\mathrm{U}$ : upper triangular
$=\mathrm{L}$ : lower triangular.
(global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the triangular factor $U$ or $L . n \geq 0$.
(local)
REAL for pslauu2
DOUBLE PRECISION for pdlauu2
COMPLEX for pclauu2

```
```

    COMPLEX*16 for pzlauu2.
    Pointer into the local memory to an array of size (Ild_a, LOCC(ja+n-1)).
    On entry, the local pieces of the triangular factor U or L.
    (global) INTEGER.
    The row index in the global matrix A indicating the first row of sub(A).
    (global) INTEGER.
    The column index in the global matrix }A\mathrm{ indicating the first column of
    sub(A).
    (global and local) INTEGER array of size dlen_. The array descriptor for the
    distributed matrix A.
    ```

\section*{Output Parameters}
a
(local)
On exit, if uplo = 'U', the upper triangle of the distributed matrix \(\operatorname{sub}(A)\) is overwritten with the upper triangle of the product \(U^{*} U^{\prime}\) '; if uplo = 'L', the lower triangle of \(\operatorname{sub}(A)\) is overwritten with the lower triangle of the product \(L^{\prime *} L\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lauum
Computes the product \(U^{*} U^{\prime}\) or \(L^{\prime}{ }^{*} L\), where \(U\) and \(L\)
are upper or lower triangular matrices.
Syntax
```

call pslauum(uplo, n, a, ia, ja, desca)
call pdlauum(uplo, n, a, ia, ja, desca)
call pclauum(uplo, n, a, ia, ja, desca)
call pzlauum(uplo, n, a, ia, ja, desca)

```

\section*{Description}

The p? lauumroutine computes the product \(U^{*} U^{\prime}\) or \(L^{\prime *} L^{\prime}\), where the triangular factor \(U\) or \(L\) is stored in the upper or lower triangular part of the matrix \(\operatorname{sub}(A)=A(i a: i a+n-1, j a: j a+n-1)\).
If uplo \(=\) ' \(U\) ' or ' \(u\) ', then the upper triangle of the result is stored, overwriting the factor \(U\) in \(\operatorname{sub}(A)\). If uplo \(=\) 'L' or ' 1 ', then the lower triangle of the result is stored, overwriting the factor \(L\) in \(\operatorname{sub}(A)\).
This is the blocked form of the algorithm, calling Level 3 PBLAS.
Input Parameters
```

uplo
(global) CHARACTER*1.
Specifies whether the triangular factor stored in the matrix $\operatorname{sub}(A)$ is upper or lower triangular:
= 'U': upper triangular

```
\(=\) 'L': lower triangular.
\(n\)
a
(global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the triangular factor \(U\) or \(L . n \geq 0\).
(local)
REAL for pslaum
DOUBLE PRECISION for pdlauum
COMPLEX for pclauum
COMPLEX*16 for pzlaum.
Pointer into the local memory to an array of size (Ild_a, LOCC(ja+n-1)). On entry, the local pieces of the triangular factor \(U\) or \(\bar{L}\).
(global) INTEGER.
The row index in the global matrix \(A\) indicating the first row of \(\operatorname{sub}(A)\).
(global) INTEGER.
The column index in the global matrix \(A\) indicating the first column of \(\operatorname{sub}(A)\).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).

\section*{Output Parameters}
a
(local)
On exit, if uplo = 'U', the upper triangle of the distributed matrix \(\operatorname{sub}(A)\) is overwritten with the upper triangle of the product \(U^{*} U^{\prime}\); if uplo = 'L', the lower triangle of \(\operatorname{sub}(A)\) is overwritten with the lower triangle of the product \(L^{\prime *} L\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lawil
Forms the Wilkinson transform.

\section*{Syntax}
```

call pslawil(ii, jj, m, a, desca, h44, h33, h43h34, v)
call pdlawil(ii, jj, m, a, desca, h44, h33, h43h34, v)
call pclawil(ii, jj, m, a, desca, h44, h33, h43h34, v)
call pzlawil(ii, jj, m, a, desca, h44, h33, h43h34, v)

```

\section*{Description}

The p?lawilroutine gets the transform given by \(h 44, h 33\), and \(h 43 h 34\) into \(v\) starting at row \(m\).

\section*{Input Parameters}
m
a
h43h34
(global) INTEGER.
Number of the process row which owns the matrix element \(A(m+2, m+2)\).
(global) INTEGER.
Number of the process column which owns the matrix element \(A(m+2, m\) +2).
(global) INTEGER.
On entry, the location from where the transform starts (row m). Unchanged on exit.
(local)
REAL for pslawil
DOUBLE PRECISION for pdlawil
COMPLEX for pclawil
DOUBLE COMPLEX for pzlawil
Array of size (Ild_a, LOCC(n_a)).
On entry, the Hessenberg matrix. Unchanged on exit.
(global and local) INTEGER
Array of size dlen_. The array descriptor for the distributed matrix \(A\). Unchanged on exit.
(global)
REAL for pslawil
DOUBLE PRECISION for pdlawil
COMPLEX for pclawil
DOUBLE COMPLEX for pzlawil
These three values are for the double shift \(Q R\) iteration. Unchanged on exit.

\section*{Output Parameters}
v
(global)
REAL for pslawil
DOUBLE PRECISION for pdlawil
COMPLEX for pclawil
DOUBLE COMPLEX for pzlawil
Array of size 3 that contains the transform on output.

See Also
Overview for details of ScaLAPACK array descriptor structures and related notations.
```

p?org2l/p?ung2l
Generates all or part of the orthogonal/unitary matrix
Q from a QL factorization determined by p?geqlf
(unblocked algorithm).

```

\section*{Syntax}
```

call psorg2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```
call psorg2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorg2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorg2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pcung2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pcung2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzung2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```

call pzung2l(m, n, k, a, ia, ja, desca, tau, work, lwork, info)

```

\section*{Description}

The p?org2l/p?ung2lroutine generates an \(m\)-by-n real/complex distributed matrix \(Q\) denoting \(A\) (ia: ia \(+m-1\), ja: ja+n-1) with orthonormal columns, which is defined as the last \(n\) columns of a product of \(k\) elementary reflectors of order \(m\) :
\(Q=H(k)^{*} \ldots * H(2) * H(1)\) as returned by p?geqle.

\section*{Input Parameters}
m
n
k
a
(global) INTEGER.
The number of rows in the distributed submatrix \(Q . m \geq 0\).
(global) INTEGER.
The number of columns in the distributed submatrix \(Q . m \geq n \geq 0\).
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix \(Q\). \(n \geq k \geq 0\).

REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX for pcung2l
COMPLEX*16 for pzung2l.
Pointer into the local memory to an array of size (IId_a, LOCc (ja+n-1)).
On entry, the \(j\)-th column must contain the vector that defines the elementary reflector \(H(j)\), \(j a+n-k \leq j \leq j a+n-k\), as returned by p?geqlf in the \(k\) columns of its distributed matrix argument \(A(i a: *, j a+n-k: j a\) \(+n-1)\).
(global) INTEGER.
The row index in the global matrix \(A\) indicating the first row of \(\operatorname{sub}(A)\).
(global) INTEGER.
The column index in the global matrix \(A\) indicating the first column of \(\operatorname{sub}(A)\).
```

desca
work
lwork

```
desca
tau
```

(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psorg2l
DOUBLE PRECISION for pdorg2l
COMPLEX for pcung21
COMPLEX*16 for pzung2l.
Array of size LOCC (ja+n-1).
$\operatorname{tau}(j)$ contains the scalar factor of the elementary reflector $H(j)$, as
returned by p?geqlf.
(local)
REAL for psorg2l
DOUBLE PRECISION for pdorg21
COMPLEX for pcung2l
COMPLEX*16 for pzung2l.
Workspace array of size Iwork.
(local or global) INTEGER.
The size of the array work.
Iwork is local input and must be at least 1 work $\geq \operatorname{mpa} 0+\max (1, n q a 0)$, where

```
```

iroffa = mod(ia-1, mb_a),

```
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and \(n p c o l\) can be determined by calling the subroutine blacs_gridinfo.
If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
```


## Output Parameters

a
On exit, this array contains the local pieces of the $m$-by- $n$ distributed matrix $Q$.
work
info
On exit, work (1) returns the minimal and optimal /work.
(local)INTEGER.

## $=0$ : successful exit

$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$,
if the $i$-th argument is a scalar and had an illegal value,
then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?org2r/p?ung2r

Generates all or part of the orthogonal/unitary matrix $Q$ from a QR factorization determined by p?geqrf (unblocked algorithm).

## Syntax

```
call psorg2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorg2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pcung2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzung2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The p?org2r/p?ung2rroutine generates an m-by-n real/complex matrix $Q$ denoting $A$ (ia:ia+m-1, ja:ja $+n-1$ ) with orthonormal columns, which is defined as the first $n$ columns of a product of $k$ elementary reflectors of order $m$ :
$Q=H(1) * H(2) * \ldots * H(k)$
as returned by p?geqre.

## Input Parameters

m
n
k
a
(global) INTEGER.
The number of rows in the distributed submatrix $Q . m \geq 0$.
(global) INTEGER.
The number of columns in the distributed submatrix $Q . m \geq n \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix $Q$. $n$ $\geq k \geq 0$.

REAL for psorg2r
DOUBLE PRECISION for pdorg2r
COMPLEX for pcung2r
COMPLEX*16 for pzung2r.
Pointer into the local memory to an array of size (IId_a, LOCC(ja+n-1))

On entry, the $j$-th column must contain the vector that defines the elementary reflector $H(j)$, $j a \leq j \leq j a+k-1$, as returned by p?geqre in the $k$ columns of its distributed matrix argument $A(i a: *, j a: j a+k-1)$.
(global) INTEGER.
The row index in the global matrix $A$ indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global matrix $A$ indicating the first column of $\operatorname{sub}(A)$.
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix $A$.
(local)
REAL for psorg2r
DOUBLE PRECISION for pdorg2r
COMPLEX for pcung2r
COMPLEX*16 for pzung2r.
Array of size $\operatorname{LOCc}(j a+k-1)$.
$\operatorname{tau}(j)$ contains the scalar factor of the elementary reflector $H(j)$, as returned by p?geqrf. This array is tied to the distributed matrix $A$.
(local)
REAL for psorg2r
DOUBLE PRECISION for pdorg2r
COMPLEX for pcung2r
COMPLEX*16 for pzung2r.
Workspace array of size Iwork.
(local or global) INTEGER.
The size of the array work.
Iwork is local input and must be at least 1 work $\geq \operatorname{mpa0}+\max (1$, nqa0 $)$, where

```
iroffa = mod(ia-1, mb_a , icoffa = mod(ja-1, nb_a),
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and \(n p c o l\) can be determined by calling the subroutine blacs_gridinfo.
```

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

$a$
On exit, this array contains the local pieces of the m-by-n distributed matrix $Q$.

```
work
```

info
On exit, work (1) returns the minimal and optimal /work.
(local)INTEGER.
$=0$ : successful exit
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the $i$-th argument is a scalar and had an illegal value,
then info $=-i$

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?orgl2/p?ungl2

Generates all or part of the orthogonal/unitary matrix
$Q$ from an $L Q$ factorization determined by p?gelqf (unblocked algorithm).

## Syntax

```
call psorgl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorgl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pcungl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzungl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The p?orgl2/p?ungl2routine generates a m-by-n real/complex matrix $Q$ denoting $A$ (ia:ia+m-1, ja: ja $+n-1$ ) with orthonormal rows, which is defined as the first $m$ rows of a product of $k$ elementary reflectors of order $n$
$Q=H(k) * \ldots * H(2) * H(1)$ (for real flavors),
$Q=(H(k))^{H *} \ldots *(H(2))^{H *}(H(1))^{H}$ (for complex flavors) as returned by p?gelqf.

## Input Parameters

m
(global) INTEGER.
The number of rows in the distributed submatrix $Q . m \geq 0$.
(global) INTEGER.
The number of columns in the distributed submatrix $Q . n \geq m \geq 0$.
k
$a$
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix $Q$. m $\geq k \geq 0$.

REAL for psorgl2
DOUBLE PRECISION for pdorgl2
COMPLEX for pcungl2
COMPLEX*16 for pzungl2.
Pointer into the local memory to an array of size (IId_a, LOCC(ja+n-1)).
On entry, the $i$-th row must contain the vector that defines the elementary reflector $H(i)$, ia $\leq i \leq i a+k-1$, as returned by p?gelqf in the $k$ rows of its distributed matrix argument $A(i a: i a+k-1, ~ j a: *)$.
(global) INTEGER.
The row index in the global matrix $A$ indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global matrix $A$ indicating the first column of $\operatorname{sub}(A)$.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psorgl2
DOUBLE PRECISION for pdorgl2
COMPLEX for pcungl2
COMPLEX*16 for pzungl2.
Array of size $\operatorname{LOCr}(j a+k-1) . \operatorname{tau}(j)$ contains the scalar factor of the elementary reflectors $H(j)$, as returned by p?gelqf. This array is tied to the distributed matrix $A$.
(local)
REAL for psorgl2
DOUBLE PRECISION for pdorgl2
COMPLEX for pcungl2
COMPLEX*16 for pzungl2.
Workspace array of size /work.
(local or global) INTEGER.
The size of the array work.
Iwork is local input and must be at least 1 work $\geq n q a 0+\max (1, m p a 0)$, where

```
iroffa = mod(ia-1, mb_a),
icoffa = mod(ja-1, nb_a),
```

```
iarow = indxg2p(ia, mb_a, myrow, rsrc_a, nprow),
iacol = indxg2p(ja, nb_a, mycol, csrc_a, npcol),
mpa0 = numroc(m+iroffa, mb_a, myrow, iarow, nprow),
nqa0 = numroc(n+icoffa, nb_a, mycol, iacol, npcol).
```

indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and $n p c o l$ can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

$a$
work
info

On exit, this array contains the local pieces of the m-by-n distributed matrix $Q$.

On exit, work (1) returns the minimal and optimal /work.
(local)INTEGER.
$=0$ : successful exit
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$,
if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?orgr2/p?ungr2

Generates all or part of the orthogonal/unitary matrix
$Q$ from an $R Q$ factorization determined by p?gerqf
(unblocked algorithm).

## Syntax

```
call psorgr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pdorgr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pcungr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
call pzungr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
```


## Description

The p?orgr2/p?ungr2routine generates an $m$-by-n real/complex matrix $Q$ denoting $A$ (ia:ia+m-1, ja:ja $+n-1$ ) with orthonormal rows, which is defined as the last $m$ rows of a product of $k$ elementary reflectors of order $n$
$Q=H(1)^{*} H(2)^{*} \ldots * H(k)$ (for real flavors);
$Q=(H(1))^{H *}(H(2))^{H} \ldots{ }^{*}(H(k))^{H}$ (for complex flavors) as returned by p?gerqf.

## Input Parameters

m
n
k
a
ia
ja
work
(global) INTEGER.
The number of rows in the distributed submatrix $Q . m \geq 0$.
(global) INTEGER.
The number of columns in the distributed submatrix $Q . n \geq m \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix $Q$. m $\geq k \geq 0$.

REAL for psorgr2
DOUBLE PRECISION for pdorgr2
COMPLEX for pcungr2
COMPLEX*16 for pzungr2.
Pointer into the local memory to an array of size (lld_a, LOCC(ja+n-1)).
On entry, the $i$-th row must contain the vector that defines the elementary reflector $H(i)$, $i a+m-k \leq i \leq i a+m-1$, as returned by p?gerqf in the $k$ rows of its distributed matrix argument $A(i a+m-k: i a+m-1, j a: *)$.
(global) INTEGER.
The row index in the global matrix $A$ indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global matrix $A$ indicating the first column of $\operatorname{sub}(A)$.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psorgr2
DOUBLE PRECISION for pdorgr2
COMPLEX for pcungr2
COMPLEX*16 for pzungr2.
Array of size LOCr (ja+m-1). tau(j) contains the scalar factor of the elementary reflectors $H(j)$, as returned by p?gerqf. This array is tied to the distributed matrix $A$.
(local)
REAL for psorgr2
DOUBLE PRECISION for pdorgr2
COMPLEX for pcungr2
COMPLEX*16 for pzungr2.
Workspace array of size /work.
lwork (local or global) INTEGER.
The size of the array work.
Iwork is local input and must be at least 1 work $\geq n q a 0+\max (1, m p a 0)$, where iroffa $=\bmod \left(i a-1, \quad m b \_a\right), i c o f f a=\bmod \left(j a-1, ~ n b \_a\right)$,
iarow $=$ indxg2p( ia, mb_a, myrow, rsrc_a, nprow ),
iacol $=$ indxg2p( ja, nb_a, mycol, csrc_a, npcol ),
mpa0 $=$ numroc( m+iroffa, mb_a, myrow, iarow, nprow ), nqa0 $=$ numroc ( n+icoffa, nb_a, mycol, iacol, npcol ).
indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and $n p c o l$ can be determined by calling the subroutine blacs_gridinfo.
If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

a
On exit, this array contains the local pieces of the m-by-n distributed matrix $Q$.

On exit, work (1) returns the minimal and optimal /work.
(local)INTEGER.
$=0$ : successful exit
< 0 : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$,
if the $i$-th argument is a scalar and had an illegal value,
then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?orm2l/p?unm2l

Multiplies a general matrix by the orthogonal/unitary
matrix from a QL factorization determined by p?geqlf
(unblocked algorithm).

## Syntax

```
call psorm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pdorm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pcunm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pzunm2l(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
```


## Description

The p?orm2l/p?unm2lroutine overwrites the general real/complex m-by-n distributed matrix sub $(C)=C(i c: i c+m-1, j c: j c+n-1)$ with
$Q^{*} \operatorname{sub}(C)$ if side $=$ 'L' and trans = 'N', or
$Q^{T *} \operatorname{sub}(C) / Q^{H *} \operatorname{sub}(C)$ if side $=$ 'L' and trans $=$ ' $T$ ' (for real flavors) or trans $=$ 'C' (for complex flavors), or
$\operatorname{sub}(C)^{*} Q$ if side $=' R$ ' and trans $=' N$ ', or
$\operatorname{sub}(C) * Q^{T} / \operatorname{sub}(C) * Q^{H}$ if side $=$ 'R' and trans $=' T$ ' (for real flavors) or trans $={ }^{\prime} C^{\prime}$ (for complex flavors).
where $Q$ is a real orthogonal or complex unitary distributed matrix defined as the product of $k$ elementary reflectors
$Q=H(k)^{*} \ldots * H(2)^{*} H(1)$ as returned by p?geqle. $Q$ is of order $m$ if side = 'L' and of order $n$ if side $=$ 'R'.

## Input Parameters

side (global) CHARACTER.
$=$ 'L': apply $Q$ or $Q^{T}$ for real flavors ( $Q^{H}$ for complex flavors) from the left, $=$ 'R': apply $Q$ or $Q^{T}$ for real flavors ( $Q^{H}$ for complex flavors) from the right.
(global) CHARACTER.
$=$ 'N': apply $Q$ (no transpose)
$=$ 'T': apply $Q^{T}$ (transpose, for real flavors)
$=$ ' C': apply $Q^{H}$ (conjugate transpose, for complex flavors)
(global) INTEGER.
The number of rows in the distributed matrix $\operatorname{sub}(C) . m \geq 0$.
(global) INTEGER.
The number of columns in the distributed matrix $\operatorname{sub}(C) . n \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix $Q$.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ ' $\mathrm{R}^{\prime}, n \geq k \geq 0$.
(local)
REAL for psorm2l
DOUBLE PRECISION for pdorm2l
COMPLEX for pcunm2l
COMPLEX*16 for pzunm2l.
Pointer into the local memory to an array of size (lld_a, LOCC(ja+k-1)).

On entry, the $j$-th row must contain the vector that defines the elementary reflector $H(j), \quad j a \leq j \leq j a+k-1$, as returned by p?geqle in the $k$ columns of its distributed matrix argument $A(i a: \star, j a: j a+k-1)$. The argument A(ia:*, $j a: j a+k-1)$ is modified by the routine but restored on exit.
If side $=$ 'L', lld_a $\geq \max (1, \operatorname{LOCr}(i a+m-1))$,
if side $=$ 'R', lld_a $\geq \max (1$, LOCr(ia+n-1)).
(global) INTEGER.
The row index in the global matrix $A$ indicating the first row of $\operatorname{sub}(A)$.
(global) Integer.
The column index in the global matrix $A$ indicating the first column of $\operatorname{sub}(A)$.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psorm21
DOUBLE PRECISION for pdorm21
COMPLEX for pcunm21
COMPLEX*16 for pzunm21.
Array of size LOCC (ja+n-1) . tau(j) contains the scalar factor of the elementary reflector $H(j)$, as returned by p?geqle. This array is tied to the distributed matrix $A$.
(local)
REAL for psorm21
DOUBLE PRECISION for pdorm21
COMPLEX for pcunm21
COMPLEX*16 for pzunm21.
Pointer into the local memory to an array of size (Ild_c, LOCC(jc $+n-1)$ ). On entry, the local pieces of the distributed matrix sub (C).
(global) INTEGER.
The row index in the global matrix $C$ indicating the first row of sub(C).
(global) INTEGER.
The column index in the global matrix $C$ indicating the first column of $\operatorname{sub}(C)$.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $C$.
(local)
REAL for psorm21
DOUBLE PRECISION for pdorm2l

COMPLEX for pcunm2l
COMPLEX*16 for pzunm2l.
Workspace array of size /work.
On exit, work (1) returns the minimal and optimal lwork.
(local or global) INTEGER.
The size of the array work.
Iwork is local input and must be at least

```
if side = 'L', lwork \geqmpc0 + max(1, nqc0),
if side = 'R', lwork\geqnqc0 + max(max(1, mpc0), numroc(numroc(n
+icoffc, nb_a, 0, 0, npcol), nb_a, 0, 0, lcmq)),
```

where

```
lcmq = lcm/npcol,
lcm = iclm(nprow, npcol),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MqcO = numroc(m+icoffc, n.b_c, mycol, icrow, nprow),
NpcO = numroc(n+iroffc, mb_c, myrow, iccol, npcol),
```

ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

c
work
info
On exit, $c$ is overwritten by $Q^{*} \operatorname{sub}(C)$, or $Q^{T *} \operatorname{sub}(C) / Q^{H *} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q, \operatorname{or} \operatorname{sub}(C)^{*} Q^{T} / \operatorname{sub}(C)^{*} Q^{H}$

On exit, work (1) returns the minimal and optimal /work.
(local) INTEGER.
$=0$ : successful exit
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## NOTE

The distributed submatrices $A\left(\right.$ ia:*, $^{(a z: *)}$ and $C(i c: i c+m-1, j c: j c+n-1)$ must verify some alignment properties, namely the following expressions should be true:

```
If side = 'L',(mb_a.eq.mb_c.AND. iroffa.eq.iroffc..AND. iarow.eq.icrow)
If side = 'R',(mb_a.eq.nb_c .AND. iroffa.eq.iroffc).
```


## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

```
p?orm2r/p?unm2r
Multiplies a general matrix by the orthogonal/unitary
matrix from a QR factorization determined by
p?geqrf (unblocked algorithm).
```


## Syntax

```
call psorm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pdorm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pcunm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pzunm2r(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
```


## Description

The $p$ ?orm $2 \mathrm{r} / \mathrm{p}$ ? unm 2 rroutine overwrites the general real/complex $m$-by- $n$ distributed matrix sub (C) $=C(i c: i c+m-1, j c: j c+n-1)$ with

Q*sub(C) if side = 'L' and trans = 'N', or
$Q^{T *} \operatorname{sub}(C) / Q^{H *}$ sub $(C)$ if side $=$ 'L' and trans $=$ ' $\mathrm{T}^{\prime}$ (for real flavors) or trans $=$ ' C ' (for complex flavors), or
$\operatorname{sub}(C) * Q$ if side $=' R$ ' and trans $=$ ' $N$ ', or
$\operatorname{sub}(C) * Q^{T} / \operatorname{sub}(C) * Q^{H}$ if side $=' R^{\prime}$ and trans $=' T$ ' (for real flavors) or trans $=$ ' $\mathrm{C}^{\prime}$ (for complex flavors).
where $Q$ is a real orthogonal or complex unitary matrix defined as the product of $k$ elementary reflectors $Q=H(k){ }^{\star} \ldots{ }^{*} H(2){ }^{\star} H(1)$ as returned by p?geqre. $Q$ is of order $m$ if side $=$ 'L' and of order $n$ if side $=$ 'R'.

## Input Parameters

```
side
trans (global) CHARACTER.
```

$=$ 'N': apply $Q$ (no transpose)
$=$ 'T': apply $Q^{T}$ (transpose, for real flavors)
$=$ ' C': apply $Q^{H}$ (conjugate transpose, for complex flavors)
(global) INTEGER.
The number of rows in the distributed matrix $\operatorname{sub}(C) . m \geq 0$.
(global) INTEGER.
The number of columns in the distributed matrix $\operatorname{sub}(C) . n \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix $Q$.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ 'R', $n \geq k \geq 0$.
(local)
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.
Pointer into the local memory to an array of size (lld_a, LOCC(ja+k-1)).
On entry, the $j$-th column must contain the vector that defines the elementary reflector $H(j)$, ja $\leq j \leq j a+k-1$, as returned by p?geqrf in the $k$ columns of its distributed matrix argument $A(i a: *, j a: j a+k-1)$. The argument $A(i a: *, j a: j a+k-1)$ is modified by the routine but restored on exit.
If side $=$ 'L', lld_a $\geq \max (1, \operatorname{LOCr}(i a+m-1))$,
if side $=$ 'R',lld_a $\geq \max (1, \operatorname{LOCr}(i a+n-1))$.
(global) INTEGER.
The row index in the global matrix $A$ indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global matrix $A$ indicating the first column of $\operatorname{sub}(A)$.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.

Array of size $\operatorname{LOCC}(j a+k-1)$. $\operatorname{tau}(j)$ contains the scalar factor of the elementary reflector $H(j)$, as returned by $p$ ?geqre. This array is tied to the distributed matrix $A$.

C
ic
(local)
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.
Pointer into the local memory to an array of size (lld_c, LOCC(jc+n-1)).
On entry, the local pieces of the distributed matrix sub (C).
(global) INTEGER.
The row index in the global matrix $C$ indicating the first row of sub( $C$ ).
(global) INTEGER.
The column index in the global matrix $C$ indicating the first column of sub (C).
(global and local) INTEGER array of size dlen_.
The array descriptor for the distributed matrix $C$.
(local)
REAL for psorm2r
DOUBLE PRECISION for pdorm2r
COMPLEX for pcunm2r
COMPLEX*16 for pzunm2r.
Workspace array of size /work.
(local or global) INTEGER.
The size of the array work.
Iwork is local input and must be at least

```
if side = 'L', lwork\geq mpc0 + max(1, nqc0),
if side = 'R', lwork \geqnqc0 + max(max(1, mpc0), numroc(numroc(n
+icoffc, nb_a, 0, 0, npcol), nb_a, 0, 0, lcmq)),
```

where

```
lcmq = lcm/npcol,
lcm = iclm(nprow, npcol),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MqcO = numroc(m+icoffc, nb_c, mycol, icrow, nprow),
```

NpcO = numroc (n+iroffc, mb_c, myrow, iccol, npcol),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

c
On exit, $c$ is overwritten by $Q^{*} \operatorname{sub}(C)$, or $Q^{T *} \operatorname{sub}(C) / Q^{H *} \operatorname{sub}(C)$, or $\operatorname{sub}(C)^{*} Q, \operatorname{or} \operatorname{sub}(C)^{*} Q^{T} / \operatorname{sub}(C)^{*} Q^{H}$

On exit, work (1) returns the minimal and optimal /work.
(local) INTEGER.
$=0$ : successful exit
< 0: if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$,
if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## NOTE

The distributed submatrices $A(i a: *, j a: *)$ and $C(i c: i c+m-1, j c: j c+n-1)$ must verify some alignment properties, namely the following expressions should be true:

```
If side = 'L',(mb_a.eq.mb_c.AND. iroffa.eq.iroffc.AND. iarow.eq.icrow).
If side = 'R',(mb_a.eq.nb_c..AND. iroffa.eq.iroffc).
```


## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?orml2/p?unml2

Multiplies a general matrix by the orthogonal/unitary matrix from an $L Q$ factorization determined by p?gelqf (unblocked algorithm).

## Syntax

```
call psorml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pdorml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pcunml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pzunml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
```


## Description

The p?orml2/p?unml2routine overwrites the general real/complex m-by-n distributed matrix sub $(C)=C(i c: i c+m-1, j c: j c+n-1)$ with
$Q^{*} \operatorname{sub}(C)$ if side $=$ 'L' and trans $=$ 'N', or
$Q^{T *} \operatorname{sub}(C) / Q^{H *} \operatorname{sub}(C)$ if side $=$ 'L' and trans $=' T$ ' (for real flavors) or trans $=$ 'C' (for complex flavors), or
$\operatorname{sub}(C)^{*} Q$ if side $=' R$ ' and trans $=' N$ ', or
$\operatorname{sub}(C) * Q^{T} / \operatorname{sub}(C) * Q^{H}$ if side $=' R$ ' and trans $=' T$ ' (for real flavors) or trans $=$ ' C' (for complex flavors).
where $Q$ is a real orthogonal or complex unitary distributed matrix defined as the product of $k$ elementary reflectors
$\mathrm{Q}=\mathrm{H}(k){ }^{\star} \ldots{ }^{\star} H(2){ }^{*} H(1)$ (for real flavors)
$Q=(H(k))^{H *} \ldots{ }^{*}(H(2))^{H *}(H(1))^{H}$ (for complex flavors)
as returned by p?gelqf. $Q$ is of order $m$ if side $=$ 'L' and of order $n$ if side $=$ 'R'.

## Input Parameters

side (global) CHARACTER.
$=$ ' L': apply $Q$ or $Q^{T}$ for real flavors ( $Q^{H}$ for complex flavors) from the left, $=$ 'R': apply $Q$ or $Q^{T}$ for real flavors ( $Q^{H}$ for complex flavors) from the right.
(global) CHARACTER.
$=$ 'N': apply $Q$ (no transpose)
$=$ ' T ': apply $Q^{T}$ (transpose, for real flavors)
$=$ ' C': apply $Q^{H}$ (conjugate transpose, for complex flavors)
(global) INTEGER.
The number of rows in the distributed matrix $\operatorname{sub}(C) . m \geq 0$.
(global) INTEGER.
The number of columns in the distributed matrix $\operatorname{sub}(C) . n \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix $Q$.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ 'R', $n \geq k \geq 0$.
a
(local)
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Pointer into the local memory to an array of size
(lld_a, LOCC(ja+m-1)) if side='L',
(lld_a, LOCC(ja+n-1)) if side='R',
where lld_ $a \geq \max (1, \operatorname{LOCr}(i a+k-1))$.

On entry, the $i$-th row must contain the vector that defines the elementary reflector $H$ (i), ia $\leq i \leq i a+k-1$, as returned by p?gelqf in the $k$ rows of its distributed matrix argument $A(i a: i a+k-1, j a: *)$. The argument $A$ (ia: ia+k-1, ja:*) is modified by the routine but restored on exit.
(global) INTEGER.
The row index in the global matrix $A$ indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global matrix $A$ indicating the first column of $\operatorname{sub}(A)$.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Array of size LOCC (ia+k-1). $\operatorname{tau}(i)$ contains the scalar factor of the elementary reflector $H(i)$, as returned by $p$ ?gelqf. This array is tied to the distributed matrix $A$.
(local)
REAL for psorml2
DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Pointer into the local memory to an array of size (IId_c, LOCC(jc+n-1)). On entry, the local pieces of the distributed matrix sub ( $C$ ).
(global) INTEGER.
The row index in the global matrix $C$ indicating the first row of sub( $C$ ).
(global) INTEGER.
The column index in the global matrix $C$ indicating the first column of sub (C).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $C$.
(local)
REAL for psorml2

DOUBLE PRECISION for pdorml2
COMPLEX for pcunml2
COMPLEX*16 for pzunml2.
Workspace array of size Iwork.
(local or global) INTEGER.
The size of the array work.
Iwork is local input and must be at least

```
if side = 'L', lwork\geqmqc0 + max(max (1, npc0), numroc(numroc(m
+icoffc, mb_a, 0, 0, nprow), mb_a, 0, 0, lcmp)),
if side = 'R', lwork\geq npc0 + max(1, mqC0),
```

where

```
Icmp = Icm / nprow,
lcm = iclm(nprow, npcol),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MpcO = numroc(m+icoffc, mb_c, mycol, icrow, nprow),
NqCO = numroc(n+iroffc, nb_c, myrow, iccol, npcol),
ilcm, indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol,
nprow, and npcol can be determined by calling the subroutine
blacs_gridinfo.
If 1 work \(=-1\), then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
```


## Output Parameters

On exit, $c$ is overwritten by $Q^{*} \operatorname{sub}(C)$, or $Q^{T *} \operatorname{sub}(C) / Q^{H *} \operatorname{sub}(C)$, or $\operatorname{sub}(C) * Q$, or $\operatorname{sub}(C) * Q^{T} / \operatorname{sub}(C) * Q^{H}$

On exit, work (1) returns the minimal and optimal /work.
(local) Integer.
= 0: successful exit
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-(i * 100+j)$,
if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## NOTE

The distributed submatrices $A\left(\right.$ ia:*, $^{(a z: \star)}$ and $C(i c: i c+m-1, j c: j c+n-1)$ must verify some alignment properties, namely the following expressions should be true:

```
If side = 'L',(nb_a.eq.mb_c..AND. icoffa.eq.iroffc)
If side = 'R',(nb_a.eq.nb_c.AND. icoffa.eq.icoffc.AND. iacol.eq.iccol).
```


## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?ormr2/p?unmr2
Multiplies a general matrix by the orthogonal/unitary matrix from an $R Q$ factorization determined by p?gerqf (unblocked algorithm).

## Syntax

```
call psormr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pdormr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pcunmr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
call pzunmr2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork,
info)
```


## Description

The p?ormr2/p?unmr2routine overwrites the general real/complex m-by-n distributed matrix sub (C) $=C(i c: i c+m-1, j c: j c+n-1)$ with
$Q^{*}$ sub $(C)$ if side $=$ 'L' and trans $=$ ' N ', or
$Q^{T *} \operatorname{sub}(C) / Q^{H *} \operatorname{sub}(C)$ if side $=$ 'L' and trans $=' T$ ' (for real flavors) or trans $=$ ' $\mathrm{C}^{\prime}$ (for complex flavors), or
$\operatorname{sub}(C) * Q$ if side $=' R$ ' and trans $=$ ' $N$ ', or
$\operatorname{sub}(C) * Q^{T} / \operatorname{sub}(C) * Q^{H}$ if side $=$ 'R' and trans $=$ ' $T$ ' (for real flavors) or trans $=$ 'C' (for complex flavors).
where $Q$ is a real orthogonal or complex unitary distributed matrix defined as the product of $k$ elementary reflectors
$Q=H(1)^{*} H(2)^{*} \ldots * H(k)$ (for real flavors)
$Q=(H(1))^{H *}(H(2))^{H *} \ldots *(H(k))^{H}$ (for complex flavors)
as returned by p?gerqf. $Q$ is of order $m$ if side $=$ ' L ' and of order $n$ if side = 'R'.

## Input Parameters

side (global) CHARACTER.
$=$ ' L ' : apply $Q$ or $Q^{T}$ for real flavors ( $Q^{H}$ for complex flavors) from the left,
$=$ 'R': apply $Q$ or $Q^{T}$ for real flavors ( $Q^{H}$ for complex flavors) from the right.
(global) CHARACTER.
$=$ ' $N$ ': apply $Q$ (no transpose)
$=$ ' $T$ ': apply $Q^{T}$ (transpose, for real flavors)
$=$ ' C': apply $Q^{H}$ (conjugate transpose, for complex flavors)
(global) INTEGER.
The number of rows in the distributed matrix $\operatorname{sub}(C) . m \geq 0$.
(global) INTEGER.
The number of columns in the distributed matrix $\operatorname{sub}(C) . n \geq 0$.
(global) INTEGER.
The number of elementary reflectors whose product defines the matrix $Q$.
If side $=$ 'L', $m \geq k \geq 0$;
if side $=$ 'R', $n \geq k \geq 0$.
(local)
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Pointer into the local memory to an array of size

```
(lld_a, LOCC(ja+m-1)) if side='L',
(lld_a, LOCC(ja+n-1)) if side='R',
```

where lld_a $\geq$ max ( $1, \operatorname{LOCr}(i a+k-1)$ ).
On entry, the $i$-th row must contain the vector that defines the elementary reflector $H$ (i), ia $\leq i \leq i a+k-1$, as returned by p?gerqf in the $k$ rows of its distributed matrix argument $A(i a: i a+k-1, j a: *)$.

The argument $A(i a: i a+k-1, j a: *)$ is modified by the routine but restored on exit.
(global) INTEGER.
The row index in the global matrix $A$ indicating the first row of $\operatorname{sub}(A)$.
(global) INTEGER.
The column index in the global matrix $A$ indicating the first column of $\operatorname{sub}(A)$.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for psormr2

DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Array of size LOCC (ia+k-1). $\operatorname{tau}(j)$ contains the scalar factor of the elementary reflector $H(j)$, as returned by p?gerqf. This array is tied to the distributed matrix $A$.
(local)
REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Pointer into the local memory to an array of size (lld_c, LOCC(jc+n-1)). On entry, the local pieces of the distributed matrix sub (C).
(global) INTEGER.
The row index in the global matrix $C$ indicating the first row of sub( $C$ ).
(global) INTEGER.
The column index in the global matrix $C$ indicating the first column of sub (C).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $C$.

```
(local)
```

REAL for psormr2
DOUBLE PRECISION for pdormr2
COMPLEX for pcunmr2
COMPLEX*16 for pzunmr2.
Workspace array of size /work.
(local or global) INTEGER.
The size of the array work.
Iwork is local input and must be at least

```
if side = 'L', lwork \geq mpc0 + max(max(1, nqc0), numroc(numroc(m
+iroffc, mb_a, 0, 0, nprow), mb_a, 0, 0, lcmp)),
if side = 'R', lwork \geq nqc0 + max(1, mpc0),
where lcmp = l cm/nprow,
lcm = iclm(nprow, npcol),
iroffc = mod(ic-1, mb_c),
icoffc = mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
```

```
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
MpcO = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
NqCO = numroc(n+icoffc, nb_c, mycol, iccol, npcol),
```

ilcm, indxg2p and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

If 1 work $=-1$, then /work is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.

## Output Parameters

C
On exit, $c$ is overwritten by $Q^{*} \operatorname{sub}(C)$, or $Q^{T *} \operatorname{sub}(C) / Q^{H *} \operatorname{sub}(C)$, or $\operatorname{sub}(C) * Q, \operatorname{or} \operatorname{sub}(C) * Q^{T} / \operatorname{sub}(C) * Q^{H}$

On exit, work (1) returns the minimal and optimal /work.
(local) INTEGER.
= 0 : successful exit
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the $i$-th argument is a scalar and had an illegal value,
then info $=-i$.

## NOTE

The distributed submatrices $A($ ia:*, ja:*) and $C(i c: i c+m-1, j c: j c+n-1)$ must verify some alignment properties, namely the following expressions should be true:

```
If side = 'L', (nb_a.eq.mb_c .AND. icoffa.eq.iroffc).
If side = 'R',(nb_a.eq.nb_c .AND. icoffa.eq.icoffc.AND. iacol.eq.iccol).
```


## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?pbtrsv

Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of
a banded matrix computed by p?pbtrf.

## Syntax

```
call pspbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work,
lwork, info)
call pdpbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
call pcpbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
```

```
call pzpbtrsv(uplo, trans, n, bw, nrhs, a, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
```


## Description

The p?pbtrsvroutine solves a banded triangular system of linear equations
$A(1: n, j a: j a+n-1) * X=B(j b: j b+n-1,1: n r h s)$
or
$A(1: n, j a: j a+n-1)^{T *} X=B(j b: j b+n-1,1: n r h s)$ for real flavors,
$A(1: n, j a: j a+n-1)^{H \star} X=B(j b: j b+n-1,1: n r h s)$ for complex flavors,
where $A(1: n, j a: j a+n-1)$ is a banded triangular matrix factor produced by the Cholesky factorization code p?pbtrf and is stored in $A(1: n, j a: j a+n-1)$ and $a f$. The matrix stored in $A(1: n, j a: j a+n-1)$ is either upper or lower triangular according to uplo.

The routine p?pbtrf must be called first.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Input Parameters

| uplo | (global) CHARACTER. Must be 'U' or 'L'. |
| :---: | :---: |
|  | If uplo = 'U', upper triangle of $A(1: n, j a: j a+n-1)$ is stored; |
|  | If uplo = 'L', lower triangle of $A(1: n, j a: j a+n-1)$ is stored. |
| trans | (global) CHARACTER. Must be 'N' or 'T' or 'C'. |
|  | If trans $=$ 'N', solve with $A(1: n, j a: j a+n-1)$; |
|  | If trans $=$ 'T' or 'C' for real flavors, solve with $A(1: n, j a: j a+n-1)^{T}$. |
|  | If trans $=$ ' C' for complex flavors, solve with conjugate transpose ( $A(1: n, j a: j a+n-1)^{H}$. |
| $n$ | (global) INTEGER. |
|  | The number of rows and columns to be operated on, that is, the order of the distributed submatrix $A(1: n, j a: j a+n-1) . n \geq 0$. |
| bw | (global) INTEGER. |
|  | The number of subdiagonals in 'L' or ' U ', $0 \leq b w \leq n-1$. |
| nrhs | (global) INTEGER. |
|  | The number of right hand sides; the number of columns of the distributed submatrix $B$ (jb:jb+n-1, 1:nrhs); nrhs $\geq 0$. |
| a | (local) |
|  | REAL for pspbtrsv |
|  | DOUBLE PRECISION for pdpbtrsv |

COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
Pointer into the local memory to an array with the first size $11 d \_a \geq$ ( $b w$ $+1)$, stored in desca.

On entry, this array contains the local pieces of the $n$-by- $n$ symmetric banded distributed Cholesky factor $L$ or $L^{T \star} A(1: n, j a: j a+n-1)$.

This local portion is stored in the packed banded format used in LAPACK. See the Application Notes below and the ScaLAPACK manual for more detail on the format of distributed matrices.
(global) INTEGER. The index in the global in the global matrix $A$ that points to the start of the matrix to be operated on (which may be either all of $A$ or a submatrix of $A$ ).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.

If 1D type (dtype_a = 501), then dlen $\geq$ 7;
If 2D type (dtype_a $=1$ ), then dlen $\geq 9$.
Contains information on mapping of $A$ to memory. (See ScaLAPACK manual for full description and options.)
(local)
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
Pointer into the local memory to an array of local lead size lld_b $\geq n b$.
On entry, this array contains the local pieces of the right hand sides B(jb:jb+n-1, 1:nrhs).
(global) INTEGER. The row index in the global matrix $B$ that points to the first row of the matrix to be operated on (which may be either all of $B$ or a submatrix of $B$ ).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $B$.

If 1D type (dtype_b = 502), then dlen $\geq$ 7;
If 2D type (dtype_b = 1), then dlen $\geq 9$.
Contains information on mapping of $B$ to memory. Please, see ScaLAPACK manual for full description and options.
(local)
INTEGER. The size of user-input auxiliary fill-in space af. Must be laf $\geq$ $(n b+2 * b w) * b w$. If $\operatorname{la} f$ is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
(local)

```
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
```

The array work is a temporary workspace array of size lwork. This space may be overwritten in between calls to routines.
(local or global) INTEGER. The size of the user-input workspace work, must be at least 1 work $\geq b w^{\star} n r h s$. If lwork is too small, the minimal acceptable size will be returned in work (1) and an error code is returned.

## Output Parameters

$a f$
(local)
REAL for pspbtrsv
DOUBLE PRECISION for pdpbtrsv
COMPLEX for pcpbtrsv
COMPLEX*16 for pzpbtrsv.
The array $a f$ is of size laf. It contains auxiliary fill-in space. The fill-in space is created in a call to the factorization routine p?pbtrf and is stored in af. If a linear system is to be solved using p?pbtrs after the factorization routine, af must not be altered after the factorization.

On exit, this array contains the local piece of the solutions distributed matrix $X$.

On exit, work (1) contains the minimum value of lwork.
(local) INTEGER.
$=0$ : successful exit
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## Application Notes

If the factorization routine and the solve routine are to be called separately to solve various sets of righthand sides using the same coefficient matrix, the auxiliary space af must not be altered between calls to the factorization routine and the solve routine.
The best algorithm for solving banded and tridiagonal linear systems depends on a variety of parameters, especially the bandwidth. Currently, only algorithms designed for the case N/P>>bw are implemented. These algorithms go by many names, including Divide and Conquer, Partitioning, domain decomposition-type, etc.

The Divide and Conquer algorithm assumes the matrix is narrowly banded compared with the number of equations. In this situation, it is best to distribute the input matrix $A$ one-dimensionally, with columns atomic and rows divided amongst the processes. The basic algorithm divides the banded matrix up into $P$ pieces with one stored on each processor, and then proceeds in 2 phases for the factorization or 3 for the solution of a linear system.

1. Local Phase: The individual pieces are factored independently and in parallel. These factors are applied to the matrix creating fill-in, which is stored in a non-inspectable way in auxiliary space af. Mathematically, this is equivalent to reordering the matrix $A$ as $P A P^{T}$ and then factoring the principal leading submatrix of size equal to the sum of the sizes of the matrices factored on each processor. The factors of these submatrices overwrite the corresponding parts of $A$ in memory.
2. Reduced System Phase: A small ( $\left.b w^{\star}(P-1)\right)$ system is formed representing interaction of the larger blocks and is stored (as are its factors) in the space af. A parallel Block Cyclic Reduction algorithm is used. For a linear system, a parallel front solve followed by an analogous backsolve, both using the structure of the factored matrix, are performed.
3. Back Subsitution Phase: For a linear system, a local backsubstitution is performed on each processor in parallel.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?pttrsv

Solves a single triangular linear system via frontsolve or backsolve where the triangular matrix is a factor of a tridiagonal matrix computed by p?pttrf .

## Syntax

```
call pspttrsv(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork, info)
call pdpttrsv(uplo, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork, info)
call pcpttrsv(uplo, trans, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
call pzpttrsv(uplo, trans, n, nrhs, d, e, ja, desca, b, ib, descb, af, laf, work, lwork,
info)
```


## Description

The p?pttrsvroutine solves a tridiagonal triangular system of linear equations
$A(1: n, j a: j a+n-1) * X=B(j b: j b+n-1,1: n r h s)$
or
$A(1: n, j a: j a+n-1)^{T} * X=B(j b: j b+n-1,1: n r h s)$ for real flavors,
$A(1: n, j a: j a+n-1)^{H *} X=B(j b: j b+n-1,1: n r h s)$ for complex flavors,
where $A(1: n, j a: j a+n-1)$ is a tridiagonal triangular matrix factor produced by the Cholesky factorization code p?pttrf and is stored in $A(1: n, j a: j a+n-1)$ and $a f$. The matrix stored in $A(1: n, j a: j a+n-1)$ is either upper or lower triangular according to uplo.

The routine p?pttrf must be called first.

## Input Parameters

uplo
(global) CHARACTER. Must be 'U' or 'L'.
If uplo = 'U', upper triangle of $A(1: n, j a: j a+n-1)$ is stored;
b

If uplo = 'L', lower triangle of $A(1: n, j a: j a+n-1)$ is stored.
(global) CHARACTER. Must be 'N' or 'C'.
If trans $=$ ' $N$ ', solve with $A(1: n, j a: j a+n-1)$;
If trans = 'C' (for complex flavors), solve with conjugate transpose $(A(1: n, j a: j a+n-1))^{H}$.
(global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the distributed submatrix $A(1: n, j a: j a+n-1) . n \geq 0$.
(global) INTEGER.
The number of right hand sides; the number of columns of the distributed submatrix $B(j b: j b+n-1,1: n r h s) ; n r h s \geq 0$.
(local)
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
Pointer to the local part of the global vector storing the main diagonal of the matrix; must be of size $\geq n b \_a$.
(local)
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
Pointer to the local part of the global vector du storing the upper diagonal of the matrix; must be of size $\geq n b \_a$. Globally, $d u(n)$ is not referenced, and $d u$ must be aligned with $d$.
(global) INTEGER. The index in the global matrix $A$ that points to the start of the matrix to be operated on (which may be either all of $A$ or a submatrix of $A$ ).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.

If 1D type (dtype_a = 501 or 502), then dlen $\geq 7$;
If 2D type (dtype_a $=1$ ), then dlen $\geq 9$.
Contains information on mapping of $A$ to memory. See ScaLAPACK manual for full description and options.
(local)
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv

COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
Pointer into the local memory to an array of local lead size lld_b $\geq \mathrm{nb}$.
On entry, this array contains the local pieces of the right hand sides $B(j b: j b+n-1,1: n r h s)$.
(global) INTEGER. The row index in the global matrix $B$ that points to the first row of the matrix to be operated on (which may be either all of $B$ or a submatrix of $B$ ).
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $B$.

If 1D type (dtype_b = 502), then dlen $\geq$ 7;
If 2D type (dtype_b = 1), then dlen $\geq 9$.
Contains information on mapping of $B$ to memory. See ScaLAPACK manual for full description and options.
(local)
INTEGER. The size of user-input auxiliary fill-in space af. Must be laf $\geq$ ( $n b+2 *$ bw) *bw.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in $a f(1)$.
(local)
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
The array work is a temporary workspace array of size lwork. This space may be overwritten in between calls to routines.
(local or global) INTEGER. The size of the user-input workspace work, must be at least 1 work $\geq(10+2 * \min (100, n r h s)) * n p c o l+4 * n r h s$. If $l w o r k$ is too small, the minimal acceptable size will be returned in work (1) and an error code is returned.

## Output Parameters

d, e
af

```
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
```

On exit, these arrays contain information on the factors of the matrix. (local)

```
REAL for pspttrsv
DOUBLE PRECISION for pdpttrsv
COMPLEX for pcpttrsv
COMPLEX*16 for pzpttrsv.
The array af is of size laf. It contains auxiliary fill-in space. The fill-in space is created in a call to the factorization routine p?pbtrf and is stored in af. If a linear system is to be solved using p?pttrs after the factorization routine, af must not be altered after the factorization.
b
work(1)
info
On exit, this array contains the local piece of the solutions distributed matrix \(X\).
On exit, work(1) contains the minimum value of lwork.
(local) INTEGER.
\(=0\) : successful exit
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value,
then info \(=-\left(i^{*} 100+j\right)\),
if the \(i\)-th argument is a scalar and had an illegal value,
then info \(=-i\).
```


## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?potf2
Computes the Cholesky factorization of a symmetric/
Hermitian positive definite matrix (local unblocked
algorithm).

## Syntax

```
call pspotf2(uplo, n, a, ia, ja, desca, info)
call pdpotf2(uplo, n, a, ia, ja, desca, info)
call pcpotf2(uplo, n, a, ia, ja, desca, info)
call pzpotf2(uplo, n, a, ia, ja, desca, info)
```


## Description

The p?potf2routine computes the Cholesky factorization of a real symmetric or complex Hermitian positive definite distributed matrix sub $(A)=A(i a: i a+n-1, j a: j a+n-1)$.

The factorization has the form
$\operatorname{sub}(A)=U^{\prime} * U$, if uplo $=$ ' U', or $\operatorname{sub}(A)=L^{*} L^{\prime}$, if uplo $=$ ' L',
where $U$ is an upper triangular matrix, $L$ is lower triangular. $X^{\prime}$ denotes transpose (conjugate transpose) of $X$.

## Input Parameters

uplo
(global) CHARACTER.

Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix $A$ is stored.
$=$ 'U': upper triangle of sub $(A)$ is stored;
$=$ ' L': lower triangle of sub $(A)$ is stored.
(global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the distributed matrix sub (A). $n \geq 0$.
(local)
REAL for pspotf2
DOUBLE PRECISION for pdpotf2
COMPLEX for pcpotf2
COMPLEX*16 for pzpotf2.
Pointer into the local memory to an array of size (lld_a, LOCC (ja+n-1)) containing the local pieces of the $n$-by-n symmetric distributed matrix $\operatorname{sub}(A)$ to be factored.
If uplo = 'U', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular matrix and the strictly lower triangular part of this matrix is not referenced.

If uplo = 'L', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular matrix and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
(global) INTEGER.
The row and column indices in the global matrix $A$ indicating the first row and the first column of the $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.

## Output Parameters

a
(local)
On exit,
if uplo = 'U', the upper triangular part of the distributed matrix contains the Cholesky factor U;
if uplo = 'L', the lower triangular part of the distributed matrix contains the Cholesky factor L .
(local) INTEGER.
$=0$ : successful exit
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value,
then info $=-\left(i^{*} 100+j\right)$,
if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
$>0$ : if info $=k$, the leading minor of order $k$ is not positive definite, and the factorization could not be completed.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?rot
Applies a planar rotation to two distributed vectors.

## Syntax

```
call psrot(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy, cs, sn, work, lwork,
info)
call pdrot(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy, cs, sn, work, lwork,
info)
```


## Description

p?rot applies a planar rotation defined by $c s$ and $s n$ to the two distributed vectors $\operatorname{sub}(x)$ and $\operatorname{sub}(y)$.

## Input Parameters

| $n$ | (global ) INTEGER |
| :---: | :---: |
|  | The number of elements to operate on when applying the planar rotation to $x$ and $y(n \geq 0)$. |
| $x$ | REAL for psrot |
|  | DOUBLE PRECISION for pdrot |
|  | (local) array of size ( $(j x-1) * m \_x+i x+(n-1) * a b s(i n c x)$ ) |
|  | This array contains the entries of the distributed vector $\operatorname{sub}(x)$. |
| ix | (global ) INTEGER |
|  | The global row index of the submatrix of the distributed matrix $x$ to operate on. If incx $=1$, then it is required that ix $=$ iy. $1 \leq i x \leq m \_x$. |
| jx | (global ) INTEGER |
|  | The global column index of the submatrix of the distributed matrix $x$ to operate on. If $\operatorname{incx}=m_{-} x$, then it is required that $j x=j y .1 \leq i x \leq n \_x$. |
| descx | (global and local) INTEGER array of size 9 |
|  | The array descriptor of the distributed matrix $x$. |
| incx | (global ) INTEGER |
|  | The global increment for the elements of $x$. Only two values of incx are supported in this version, namely 1 and $m_{\mathbf{\prime}} x$. Moreover, it must hold that incx $=m_{-} x$ if incy $=m_{-} y$ and that incx $=1$ if incy $=1$. |
| y | REAL for psrot |
|  | DOUBLE PRECISION for pdrot |
|  | (local) array of size ( $\left.(j y-1) * m_{-} y+i y+(n-1) * a b s(i n c y)\right)$ |

This array contains the entries of the distributed vector $\operatorname{sub}(y)$.

```
(global) INTEGER
```

The global row index of the submatrix of the distributed matrix $y$ to operate on. If incy $=1$, then it is required that $i y=i x .1 \leq i y \leq m \_y$.
(global) INTEGER
The global column index of the submatrix of the distributed matrix $y$ to operate on. If incy $=m_{-} x$, then it is required that $j y=j x .1 \leq j y \leq m_{-} y$.
(global and local) INTEGER array of size 9
The array descriptor of the distributed matrix $y$.
(global) INTEGER
The global increment for the elements of $y$. Only two values of incy are supported in this version, namely 1 and $m_{-} y$. Moreover, it must hold that incy $=m_{-} y$ if incx $=m_{-} x$ and that incy $=1$ if incx $=1$.
(global)
REAL for psrot
DOUBLE PRECISION for pdrot
The parameters defining the properties of the planar rotation. It must hold that $0 \leq c s, s n \leq 1$ and that $s n^{2}+c s^{2}=1$. The latter is hardly checked in finite precision arithmetics.

REAL for psrot
DOUBLE PRECISION for pdrot
(local workspace) array of size lwork
(local ) INTEGER
The length of the workspace array work.
If incx $=1$ and incy $=1$, then 1 work $=2 * m_{\_} x$
If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the IWORK array, and no error message related to LIWORK is issued by pxerbla.

## OUTPUT Parameters

```
x
y
work(1)
info
```

On exit, if info $=0$, work(1) returns the optimal lwork
(global) INTEGER
$=0$ : successful exit
< 0 : if info $=-i$, the $i$-th argument had an illegal value.

If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?rscl

Multiplies a vector by the reciprocal of a real scalar.

## Syntax

```
call psrscl(n, sa, sx, ix, jx, descx, incx)
call pdrscl(n, sa, sx, ix, jx, descx, incx)
call pcsrscl(n, sa, sx, ix, jx, descx, incx)
call pzdrscl(n, sa, sx, ix, jx, descx, incx)
```


## Description

The p?rsclroutine multiplies an n-element real/complex vector $\operatorname{sub}(X)$ by the real scalar $1 / a$. This is done without overflow or underflow as long as the final result $\operatorname{sub}(X) /$ a does not overflow or underflow.

```
sub(X) denotes X(ix:ix+n-1, jx:jx), if incx = 1,
and X(ix:ix, jx:jx+n-1), if incx = m_x.
```

Input Parameters
$n \quad$ (global) INTEGER.
sa
SX
ix
jx
descx
(global) INTEGER.
The number of components of the distributed vector $\operatorname{sub}(X) . n \geq 0$.
REAL for psrscl/pcsrscl
DOUBLE PRECISION for pdrscl/pzdrscl.
The scalar $a$ that is used to divide each component of the vector $\operatorname{sub}(X)$. This parameter must be $\geq 0$.

REAL forpsrscl
DOUBLE PRECISION for pdrscl
COMPLEX for pcsrscl
COMPLEX*16 for pzdrscl.
Array containing the local pieces of a distributed matrix of size of at least $\left((j x-1){ }^{m_{-}} x+i x+(n-1) * a b s(i n c x)\right)$. This array contains the entries of the distributed vector $\operatorname{sub}(X)$.
(global) INTEGER. The row index of the submatrix of the distributed matrix $X$ to operate on.
(global) INTEGER.
The column index of the submatrix of the distributed matrix $X$ to operate on.
(global and local) INTEGER.

Array of size 9. The array descriptor for the distributed matrix $X$.
incx (global) INTEGER.
The increment for the elements of $X$. This version supports only two values of incx, namely 1 and $m \_x$.

## Output Parameters

SX
On exit, the result $x / a$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?sygs2/p?hegs2

Reduces a symmetric/Hermitian positive-definite
generalized eigenproblem to standard form, using the
factorization results obtained from p?potrf (local
unblocked algorithm).

## Syntax

```
call pssygs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)
call pdsygs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)
call pchegs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)
call pzhegs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)
```


## Description

The p?sygs2/p?hegs2routine reduces a real symmetric-definite or a complex Hermitian positive-definite generalized eigenproblem to standard form.
Here sub (A) denotes $A(i a: i a+n-1, j a: j a+n-1)$, and sub ( $B$ ) denotes $B(i b: i b+n-1, j b: j b+n-1)$.
If ibtype $=1$, the problem is

$$
\operatorname{sub}(A){ }^{*} x_{x}=\lambda^{*} \operatorname{sub}(B) *_{X}
$$

and sub ( $A$ ) is overwritten by
$\operatorname{inv}\left(U^{T}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$ or inv $(L) * \operatorname{sub}(A) * i n v\left(L^{T}\right)$ - for real flavors, and
$\operatorname{inv}\left(U^{H}\right) * \operatorname{sub}(A) * \operatorname{inv}(U)$ or inv $(L) * \operatorname{sub}(A) * i n v\left(L^{H}\right)$ - for complex flavors.
If ibtype $=2$ or 3 , the problem is

$$
\operatorname{sub}(A) * \operatorname{sub}(B) x=\lambda * x \text { or } \operatorname{sub}(B) * \operatorname{sub}(A) x=\lambda * x
$$

and sub ( $A$ ) is overwritten by
$U^{\star}$ sub $(A) * U^{T}$ or $L^{\star *} T^{\star} \operatorname{sub}(A) * L^{-}$for real flavors and
$U^{\star} \operatorname{sub}(A) * U^{H}$ or $L^{\star *} H^{\star}$ sub ( $A$ ) ${ }^{\star} L^{-}$- for complex flavors.
The matrix sub (B) must have been previously factorized as $U^{T} * U$ or $L^{*} L^{T}$ (for real flavors), or as $U^{H *} U$ or $L^{*} L^{H}$ (for complex flavors) by p?potrf.

Input Parameters
ibtype
(global) INTEGER.

```
= 1:
compute inv((U')*sub (A)*inv(U), or inv(L)*sub (A)*inv(}\mp@subsup{L}{}{T}\mathrm{) for real
subroutines,
and inv(U'H)*sub (A)*inv(U), or inv(L)*\operatorname{sub}(A)*inv (L'H) for complex
subroutines;
= 2 or 3:
compute U* sub (A)* UT
and U*}\mp@subsup{U}{}{\star}\operatorname{sub}(A)*\mp@subsup{U}{}{H}\mathrm{ or }\mp@subsup{L}{}{H*}\operatorname{sub}(A)*L\mathrm{ for complex subroutines.
(global) CHARACTER
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix \(\operatorname{sub}(A)\) is stored, and how \(\operatorname{sub}(B)\) is factorized.
\(=\) ' \(U\) ': Upper triangular of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factorized as \(U^{T *} U\) (for real subroutines) or as \(U^{H *} U\) (for complex subroutines).
\(=' L '\) : Lower triangular of \(\operatorname{sub}(A)\) is stored and \(\operatorname{sub}(B)\) is factorized as \(L^{*} L^{T}\) (for real subroutines) or as \(L * L^{H}\) (for complex subroutines)
(global) INTEGER.
The order of the matrices \(\operatorname{sub}(A)\) and \(\operatorname{sub}(B) . n \geq 0\).
(local)
REAL for pssygs2
DOUBLE PRECISION for pdsygs2
COMPLEX for pchegs2
COMPLEX*16 for pzhegs2.
Pointer into the local memory to an array of size (lld_a, LOCC(ja+n-1)).
On entry, this array contains the local pieces of the \(n\)-by- \(n\) symmetric/ Hermitian distributed matrix \(\operatorname{sub}(A)\).
If uplo = 'U', the leading \(n-b y-n\) upper triangular part of \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and the strictly lower triangular part of \(\operatorname{sub}(A)\) is not referenced.
If uplo = 'L', the leading n-by-n lower triangular part of \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced.
```

ia, ja
desca

B
(global) INTEGER.
The row and column indices in the global matrix $A$ indicating the first row and the first column of the $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for pssygs2
DOUBLE PRECISION for pdsygs2

COMPLEX for pchegs2
COMPLEX* 16 for pzhegs2.
Pointer into the local memory to an array of size (lld_b, $\operatorname{LOCc}(j b+n-1)$ ).
On entry, this array contains the local pieces of the triangular factor from the Cholesky factorization of $\operatorname{sub}(B)$ as returned by p?potrf.
(global) INTEGER.
The row and column indices in the global matrix $B$ indicating the first row and the first column of the $\operatorname{sub}(B)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $B$.

## Output Parameters

a
(local)
On exit, if info $=0$, the transformed matrix is stored in the same format as $\operatorname{sub}(A)$.
info
INTEGER.
$=0$ : successful exit.
$<0$ : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$,
if the $i$-th argument is a scalar and had an illegal value,
then info $=-i$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?sytd2/p?hetd2

Reduces a symmetric/Hermitian matrix to real symmetric tridiagonal form by an orthogonal/unitary
similarity transformation (local unblocked algorithm).

## Syntax

```
call pssytd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pdsytd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pchetd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pzhetd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
```


## Description

The p?sytd2/p?hetd2routine reduces a real symmetric/complex Hermitian matrix sub(A) to symmetric/ Hermitian tridiagonal form $T$ by an orthogonal/unitary similarity transformation:

```
Q'*sub (A)*Q = T, where sub (A) = A(ia:ia+n-1, ja:ja+n-1).
```


## Input Parameters

uplo
$n$
a
ia, ja
desca
work
(global) CHARACTER.
Specifies whether the upper or lower triangular part of the symmetric/ Hermitian matrix $\operatorname{sub}(A)$ is stored:
= 'U': upper triangular
= 'L': lower triangular
(global) INTEGER.
The number of rows and columns to be operated on, that is, the order of the distributed matrix $\operatorname{sub}(A) . n \geq 0$.
(local)
REAL for pssytd2
DOUBLE PRECISION for pdsytd2
COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.
Pointer into the local memory to an array of size (lld_a, $\left.L O C_{C}(j a+n-1)\right)$.
On entry, this array contains the local pieces of the $n$-by- $n$ symmetric/ Hermitian distributed matrix $\operatorname{sub}(A)$.
If uplo = 'U', the leading $n$-by- $n$ upper triangular part of $\operatorname{sub}(A)$ contains the upper triangular part of the matrix, and the strictly lower triangular part of $\operatorname{sub}(A)$ is not referenced.
If uplo = 'L', the leading $n$-by- $n$ lower triangular part of $\operatorname{sub}(A)$ contains the lower triangular part of the matrix, and the strictly upper triangular part of $\operatorname{sub}(A)$ is not referenced.
(global) INTEGER.
The row and column indices in the global matrix $A$ indicating the first row and the first column of the $\operatorname{sub}(A)$, respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.
(local)
REAL for pssytd2
DOUBLE PRECISION for pdsytd2
COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.
The array work is a temporary workspace array of size Iwork.

## Output Parameters

a
On exit, if uplo = ' U', the diagonal and first superdiagonal of sub $(A)$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements above the first superdiagonal, with the array tau, represent the orthogonal/unitary matrix $Q$ as a product of elementary reflectors;
if uplo = 'L', the diagonal and first subdiagonal of $A$ are overwritten by the corresponding elements of the tridiagonal matrix $T$, and the elements below the first subdiagonal, with the array tau, represent the orthogonal/ unitary matrix $Q$ as a product of elementary reflectors. See the Application Notes below.
d
e
work(1)
lwork
info
(local)
REAL for pssytd2/pchetd2
DOUBLE PRECISION for pdsytd2/pzhetd2.
Array of sizeLOCC $(j a+n-1)$. The diagonal elements of the tridiagonal matrix $T$ :
$d(i)=a(i, i) ; d$ is tied to the distributed matrix $A$.
(local)
REAL for pssytd2 / pchetd2
DOUBLE PRECISION for pdsytd2/pzhetd2.
Array of size LOCC (ja+n-1),
if uplo = 'U', LOCC (ja+n-2) otherwise.
The off-diagonal elements of the tridiagonal matrix $T$ :
$e(i)=a(i, i+1)$ if uplo = 'U',
$e(i)=a(i+1, i)$ if uplo $=$ 'L'.
$e$ is tied to the distributed matrix $A$.
(local)
REAL for pssytd2
DOUBLE PRECISION for pdsytd2
COMPLEX for pchetd2
COMPLEX*16 for pzhetd2.
Array of size LOCC (ja+n-1).
The scalar factors of the elementary reflectors. tau is tied to the distributed matrix $A$.

On exit, work (1) returns the minimal and optimal value of Iwork.
(local or global) INTEGER.
The size of the workspace array work.
Iwork is local input and must be at least lwork $\geq 3 n$.
If 1 work $=-1$, then Iwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
(local) INTEGER.
$=0$ : successful exit
< 0 : if the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-\left(i^{*} 100+j\right)$,
if the $i$-th argument is a scalar and had an illegal value,
then info $=-i$

## Application Notes

If uplo = 'U', the matrix $Q$ is represented as a product of elementary reflectors
$Q=H(n-1) * \ldots * H(2) * H(1)$
Each $H(i)$ has the form
$H(i)=I-t a u^{*} v^{\star} V^{\prime}$,
where tau is a real/complex scalar, and $v$ is a real/complex vector with $v(i+1: n)=0$ and $v(i)=1$; $v(1: i-1)$ is stored on exit in $A(i a: i a+i-2, j a+i)$, and tau in tau(ja+i-1).
If uplo = 'L', the matrix $Q$ is represented as a product of elementary reflectors
$Q=H(1) * H(2) * \ldots * H(n-1)$.
Each $H(i)$ has the form
$H(i)=I-\operatorname{tau}^{\star} V^{\star} V^{\prime}$,
where tau is a real/complex scalar, and $v$ is a real/complex vector with $v(1: i)=0$ and $v(i+1)=1 ; v(i$ $+2: n$ ) is stored on exit in $A(i a+i+1: i a+n-1, j a+i-1)$, and tau in tau(ja+i-1).

The contents of sub $(A)$ on exit are illustrated by the following examples with $n=5$ :

$$
\begin{aligned}
& \text { if } u p 10=\mathrm{U}^{\prime} \text { : if } u p 10=\mathrm{L}^{\prime} \text { : } \\
& {\left[\begin{array}{lllll}
d & e & v_{2} & v_{3} & v_{4} \\
& d & e & v_{3} & v_{4} \\
& & d & e & v_{4} \\
& & & d & e \\
& & & & d
\end{array}\right]} \\
& {\left[\begin{array}{lllll}
d & & & & \\
e & d & & & \\
v 1 & e & d & & \\
v 1 & v_{2} & e & d & \\
v 1 & v_{2} & v_{3} & e & d
\end{array}\right]}
\end{aligned}
$$

where $d$ and $e$ denotes diagonal and off-diagonal elements of $T$, and $v_{i}$ denotes an element of the vector defining $H(i)$.

## NOTE

The distributed matrix sub $(A)$ must verify some alignment properties, namely the following expression should be true:

```
(mb_a.eq.nb_a .AND. iroffa.eq.icoffa) with iroffa = mod(ia - 1, mb_a) and icoffa=
mod(ja -1, nb_a).
```


## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?trord
Reorders the Schur factorization of a general matrix.

## Syntax

```
call pstrord(compq, select, para, n, t, it, jt, desct, q, iq, jq, descq, wr, wi, m,
work, lwork, iwork, liwork, info)
call pdtrord(compq, select, para, n, t, it, jt, desct, q, iq, jq, descq, wr, wi, m,
work, lwork, iwork, liwork, info)
```


## Description

p?trord reorders the real Schur factorization of a real matrix $A=Q^{*} T^{*} Q^{\top}$, so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix $T$, and the leading columns of $Q$ form an orthonormal basis of the corresponding right invariant subspace.
$T$ must be in Schur form (as returned by p?lahqr), that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks.

This subroutine uses a delay and accumulate procedure for performing the off-diagonal updates.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Input Parameters


para(5)
para(6)
width of block column slabs for row-wise application of pipelined orthogonal transformations in their factorized form; $0<$ para(5) $\leq m b \_t$ must hold.
the maximum number of eigenvalues moved together over a process border; in practice, this will be approximately half of the cross border window size; $0<\operatorname{para}(6) \leq \operatorname{para}(2)$ must hold.
$n$
$t$
(global) INTEGER
The order of the globally distributed matrix $t . n \geq 0$.
REAL for pstrord
DOUBLE PRECISION for pdtrord
(local) array of size (IId_t,LOC $(n)$ ).
The local pieces of the global distributed upper quasi-triangular matrix $T$, in Schur form.
(global) INTEGER
The row and column index in the global matrix $T$ indicating the first column of $T$. it $=j t=1$ must hold (see Application Notes).
(global and local) INTEGER array of size dlen_.
The array descriptor for the global distributed matrix $T$.
REAL for pstrord
DOUBLE PRECISION for pdtrord
(local) array of size ( $/ 1 d \_q, L O C_{c}(n)$ ).
On entry, if compq $=$ ' V ', the local pieces of the global distributed matrix $Q$ of Schur vectors.
If compq $=$ ' $N$ ', $q$ is not referenced.
(global) INTEGER
The column index in the global matrix $Q$ indicating the first column of $Q$. iq $=j q=1$ must hold (see Application Notes).
(global and local) INTEGER array of size dlen_.
The array descriptor for the global distributed matrix $Q$.
REAL for pstrord
DOUBLE PRECISION for pdtrord
(local workspace) array of size lwork
(local) INTEGER
The size of the array work.
iwork
liwork

## OUTPUT Parameters

select
t
$q$
wr, wi
m
work(1)
iwork(1)
info

If 1 work $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by pxerbla.
(local workspace) INTEGER array of size liwork
(local) INTEGER
The size of the array iwork.
If liwork $=-1$, then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued by pxerbla
(global) INTEGER array of size $n$
The (partial) reordering is displayed.
On exit, $t$ is overwritten by the local pieces of the reordered matrix $T$, again in Schur form, with the selected eigenvalues in the globally leading diagonal blocks.

On exit, if compq $=$ ' $V$ ', $q$ has been postmultiplied by the global orthogonal transformation matrix which reorders $t$; the leading $m$ columns of $q$ form an orthonormal basis for the specified invariant subspace.

If compq $=$ ' N ', $q$ is not referenced.
REAL for pstrord
DOUBLE PRECISION for pdtrord
(global) array of size $n$
The real and imaginary parts, respectively, of the reordered eigenvalues of the matrix $T$. The eigenvalues are in principle stored in the same order as on the diagonal of $T$, with $w r(i)=t(i, i)$ and, if $t(i: i+1, i: i+1)$ is a 2 -by-2 diagonal block, $w i(i)>0$ and $w i(i+1)=-w i(i)$.

Note also that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly from its value before reordering.
(global) INTEGER
The size of the specified invariant subspace.
$0 \leq m \leq n$.
On exit, if info $=0$, work(1) returns the optimal lwork.
On exit, if info $=0$, iwork(1) returns the optimal liwork.
(global) INTEGER
$=0$ : successful exit
< 0 : if info $=-i$, the $i$-th argument had an illegal value. If the $i$-th argument is an array and the $j$-th entry had an illegal value, then info $=-$ $(i * 1000+j)$, if the $i$-th argument is a scalar and had an illegal value, then info $=-i$.
> 0: here we have several possibilities

- Reordering of $t$ failed because some eigenvalues are too close to separate (the problem is very ill-conditioned);
$t$ may have been partially reordered, and wr and wi contain the eigenvalues in the same order as in $t$.

On exit, info $=\{$ the index of $t$ where the swap failed $\}$.

- A 2-by-2 block to be reordered split into two 1-by-1 blocks and the second block failed to swap with an adjacent block.
On exit, info $=$ \{the index of $t$ where the swap failed $\}$.
- If info $=n+1$, there is no valid BLACS context (see the BLACS documentation for details).


## Application Notes

The following alignment requirements must hold:

- $m b \_t=n b \_t=m b \_q=n b \_q$
- rsrc_t $=r s r c \_q$
- csrc_t $=$ csrc_q

All matrices must be blocked by a block factor larger than or equal to two (3). This is to simplify reordering across processor borders in the presence of 2-by-2 blocks.
This algorithm cannot work on submatrices of $t$ and q, i.e., it $=j t=i q=j q=1$ must hold. This is however no limitation since p? lahqr does not compute Schur forms of submatrices anyway.
Parallel execution recommendations:

- Use a square grid, if possible, for maximum performance. The block parameters in para should be kept well below the data distribution block size.
- In general, the parallel algorithm strives to perform as much work as possible without crossing the block borders on the main block diagonal.


## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?trsen

Reorders the Schur factorization of a matrix and (optionally) computes the reciprocal condition numbers and invariant subspace for the selected cluster of eigenvalues.

## Syntax

```
call pstrsen(job, compq, select, para, n, t, it, jt, desct, q, iq, jq, descq, wr, wi, m,
s, sep, work, lwork, iwork, liwork, info)
call pdtrsen(job, compq, select, para, n, t, it, jt, desct, q, iq, jq, descq, wr, wi, m,
s, sep, work, lwork, iwork, liwork, info)
```


## Description

p?trsen reorders the real Schur factorization of a real matrix $A=Q^{*} T^{*} Q^{\top}$, so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper quasi-triangular matrix $T$, and the leading columns of $Q$ form an orthonormal basis of the corresponding right invariant subspace. The reordering is performed by p?trord.

Optionally the routine computes the reciprocal condition numbers of the cluster of eigenvalues and/or the invariant subspace.
$T$ must be in Schur form (as returned by p? lahqr), that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Input Parameters

job
compq
select
para
(global) CHARACTER*1
Specifies whether condition numbers are required for the cluster of eigenvalues (s) or the invariant subspace (sep):
$=$ ' N ': no condition numbers are required;
$=$ ' $E$ ': only the condition number for the cluster of eigenvalues is computed
(s);
$=$ ' V ': only the condition number for the invariant subspace is computed (sep);
$=$ ' B ': condition numbers for both the cluster and the invariant subspace are computed ( $s$ and $s e p$ ).
(global) CHARACTER*1
$=$ 'V': update the matrix $q$ of Schur vectors;
$=$ ' $N$ ': do not update $q$.
(global) LOGICAL array of size $n$
select specifies the eigenvalues in the selected cluster. To select a real eigenvalue $w(j)$, select $(j)$ must be set to .TRUE. . To select a complex conjugate pair of eigenvalues $w(j)$ and $w(j+1)$, corresponding to a 2-by-2 diagonal block, either select $(j)$ or $\operatorname{select}(j+1)$ or both must be set to .TRUE.; a complex conjugate pair of eigenvalues must be either both included in the cluster or both excluded.
(global) INTEGER*6
Block parameters:
para(1) maximum number of concurrent computational windows allowed in the algorithm; $0<\operatorname{para}(1) \leq$ min(NPROW,NPCOL) must hold;


```
work

REAL for pstrsen
DOUBLE PRECISION for pdtrsen
(local workspace) array of size lwork
(local) INTEGER
The size of the array work.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued by pxerbla.
(local workspace) INTEGER array of size liwork
(local) INTEGER
The size of the array iwork.
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued by pxerbla.

\section*{OUTPUT Parameters}
\(t\) is overwritten by the local pieces of the reordered matrix \(T\), again in Schur form, with the selected eigenvalues in the globally leading diagonal blocks.

On exit, if compq = ' \(V\) ', q has been postmultiplied by the global orthogonal transformation matrix which reorders \(t\); the leading \(m\) columns of \(q\) form an orthonormal basis for the specified invariant subspace.
If compq \(=\) ' N ', \(q\) is not referenced.
REAL for pstrsen
DOUBLE PRECISION for pdtrsen
(global) array of size \(n\)
The real and imaginary parts, respectively, of the reordered eigenvalues of the matrix \(T\). The eigenvalues are in principle stored in the same order as on the diagonal of \(T\), with \(w r(i)=t(i, i)\) and, if \(t(i: i+1, i: i+1)\) is a 2-by-2 diagonal block, wi(i) > 0 and \(w i(i+1)=-w i(i)\).

Note also that if a complex eigenvalue is sufficiently ill-conditioned, then its value may differ significantly from its value before reordering.
(global) INTEGER
The size of the specified invariant subspace. \(0 \leq m \leq n\).
REAL for pstrsen
DOUBLE PRECISION for pdtrsen
(global)
\begin{tabular}{|c|c|}
\hline \multirow{8}{*}{sep} & If \(j o b=\) ' E ' or ' B ', \(s\) is a lower bound on the reciprocal condition number for the selected cluster of eigenvalues. \(s\) cannot underestimate the true reciprocal condition number by more than a factor of \(\operatorname{sqrt}(n)\). If \(m=0\) or \(n\), \(s=1\). \\
\hline & If job = ' N ' or ' V ', \(s\) is not referenced. \\
\hline & REAL for pstrsen \\
\hline & DOUBLE PRECISION for pdtrsen \\
\hline & (global) \\
\hline & If job = 'V' or ' B ', sep is the estimated reciprocal condition number of the specified invariant subspace. If \\
\hline & \(m=0\) or \(n\), sep \(=\operatorname{norm}(t)\). \\
\hline & If job = ' N ' or ' E ', sep is not referenced. \\
\hline work(1) & On exit, if info \(=0\), work(1) returns the optimal lwork. \\
\hline iwork(1) & On exit, if info \(=0, \operatorname{iwork}(1)\) returns the optimal liwork. \\
\hline \multirow[t]{8}{*}{info} & (global) INTEGER \\
\hline & = 0 : successful exit \\
\hline & < 0 : if info \(=-i\), the \(i\)-th argument had an illegal value. \\
\hline & If the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-(i * 1000+j)\), if the \(i\)-th argument is a scalar and had an illegal value, then info \(=-i\). \\
\hline & > 0 : here we have several possibilities \\
\hline & - Reordering of \(t\) failed because some eigenvalues are too close to separate (the problem is very ill-conditioned); \(t\) may have been partially reordered, and wr and wi contain the eigenvalues in the same order as in \(t\). \\
\hline & \begin{tabular}{l}
On exit, info \(=\{\) the index of \(t\) where the swap failed \(\}\). \\
- A 2-by-2 block to be reordered split into two 1-by-1 blocks and the second block failed to swap with an adjacent block.
\end{tabular} \\
\hline & \begin{tabular}{l}
On exit, info \(=\{\) the index of \(t\) where the swap failed \(\}\). \\
- If info \(=n+1\), there is no valid BLACS context (see the BLACS documentation for details).
\end{tabular} \\
\hline
\end{tabular}

\section*{Application Notes}

The following alignment requirements must hold:
- \(m b _t=n b _t=m b _q=n b _q\)
- rsrc_t \(=r s r c _q\)
- csrc_t = csrc_q

All matrices must be blocked by a block factor larger than or equal to two (3). This to simplify reordering across processor borders in the presence of 2-by-2 blocks.
This algorithm cannot work on submatrices of \(t\) and \(q\), i.e., it \(=j t=i q=j q=1\) must hold. This is however no limitation since p? lahqr does not compute Schur forms of submatrices anyway.

For parallel execution, use a square grid, if possible, for maximum performance. The block parameters in para should be kept well below the data distribution block size.
In general, the parallel algorithm strives to perform as much work as possible without crossing the block borders on the main block diagonal.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?trti2
Computes the inverse of a triangular matrix (local unblocked algorithm).

\section*{Syntax}
```

call pstrti2(uplo, diag, n, a, ia, ja, desca, info)
call pdtrti2(uplo, diag, n, a, ia, ja, desca, info)
call pctrti2(uplo, diag, n, a, ia, ja, desca, info)
call pztrti2(uplo, diag, n, a, ia, ja, desca, info)

```

\section*{Description}

The p?trti2routine computes the inverse of a real/complex upper or lower triangular block matrix sub (A) = A(ia:ia+n-1, ja:ja+n-1).

This matrix should be contained in one and only one process memory space (local operation).

\section*{Input Parameters}
```

uplo
diag

```
n
a
(global) CHARACTER*1.
Specifies whether the matrix sub \((A)\) is upper or lower triangular.
\(=\) ' U': sub \((A)\) is upper triangular
\(=\) 'L': sub \((A)\) is lower triangular.
(global) CHARACTER*1.
Specifies whether or not the matrix \(A\) is unit triangular.
\(={ }^{\prime} N^{\prime}\) : sub \((A)\) is non-unit triangular
\(=\) 'U': sub \((A)\) is unit triangular.
(global) INTEGER.
The number of rows and columns to be operated on, i.e., the order of the distributed submatrix sub (A). \(n \geq 0\).
(local)
REAL for pstrti2
DOUBLE PRECISION for pdtrti2
COMPLEX for pctrti2
COMPLEX*16 for pztrti2.
Pointer into the local memory to an array, size (Ild_a, LOCC(ja+n-1)).
ia, ja
desca

On entry, this array contains the local pieces of the triangular matrix \(\operatorname{sub}(A)\).

If uplo = 'U', the leading \(n\)-by- \(n\) upper triangular part of the matrix \(\operatorname{sub}(A)\) contains the upper triangular part of the matrix, and the strictly lower triangular part of \(\operatorname{sub}(A)\) is not referenced.
If uplo = 'L', the leading \(n\)-by- \(n\) lower triangular part of the matrix \(\operatorname{sub}(A)\) contains the lower triangular part of the matrix, and the strictly upper triangular part of \(\operatorname{sub}(A)\) is not referenced. If diag \(=\) ' \(U\) ', the diagonal elements of \(\operatorname{sub}(A)\) are not referenced either and are assumed to be 1 .
(global) INTEGER.
The row and column indices in the global matrix \(A\) indicating the first row and the first column of the \(\operatorname{sub}(A)\), respectively.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix \(A\).

\section*{Output Parameters}
a
On exit, the (triangular) inverse of the original matrix, in the same storage format.

INTEGER.
\(=0\) : successful exit
\(<0\) : if the \(i\)-th argument is an array and the \(j\)-th entry had an illegal value, then info \(=-\left(i^{*} 100+j\right)\),
if the \(i\)-th argument is a scalar and had an illegal value,
then info \(=-i\).

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?lahqr2}

Updates the eigenvalues and Schur decomposition.

\section*{Syntax}
```

call clahqr2 (wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info )
call zlahqr2 (wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info )

```

\section*{Description}
? lahgr2 is an auxiliary routine called by ?hseqr to update the eigenvalues and Schur decomposition already computed by ?hseqr, by dealing with the Hessenberg submatrix in rows and columns ilo to ihi. This version of ? lahqr (not the standard LAPACK version) uses a double-shift algorithm (like LAPACK's ?lahgr). Unlike the standard LAPACK convention, this does not assume the subdiagonal is real, nor does it work to preserve this quality if given.

\section*{Input Parameters}
wantt
wantz
n
ilo, ihi
h
\(I d h\)
iloz, ihiz
z
\(I d z\)

LOGICAL.
\(=\).TRUE.: the full Schur form \(T\) is required;
\(=\).FALSE.: only eigenvalues are required.
LOGICAL.
\(=\).TRUE.: the matrix of Schur vectors \(Z\) is required;
\(=\).FALSE.: Schur vectors are not required.

\section*{INTEGER.}

The order of the matrix \(H . n>=0\).
INTEGER.
It is assumed that the matrix \(H\) is upper triangular in rows and columns ihi \(+1: n\), and that matrix element \(H(i l o, i l o-1)=0\) (unless ilo \(=\) 1). ?lahqr works primarily with the Hessenberg submatrix in rows and columns ilo to ihi, but applies transformations to all of \(h\) if wantt is . TRUE..
\(1<=\) ilo \(<=\max (1, i h i)\); ihi \(<=n\).
COMPLEX for clahqr2
DOUBLE COMPLEX for zlahqr2
Array, size (\(1 \mathrm{dh}, \mathrm{n}\)).
On entry, the upper Hessenberg matrix \(H\).
INTEGER.
The leading dimension of the array \(h . l d h>=\max (1, n)\).
INTEGER.
Specify the rows of \(Z\) to which transformations must be applied if wantz is .TRUE..
\(1<=\) iloz <= ilo; ihi <= ihiz<= n.
COMPLEX for clahqr2
DOUBLE COMPLEX for zlahqr2
Array, size (\(1 d z, n\))).
If want \(z\) is .TRUE., on entry \(z\) must contain the current matrix \(Z\) of transformations. If want \(z\) is .FALSE., \(z\) is not referenced.

INTEGER.
The leading dimension of the array \(z . I d z>=\max (1, n)\).

\section*{Output Parameters}
\(h\)

W
z
info

On exit, if wantt is .TRUE., \(h\) is upper triangular in rows and columns ilo:ihi. If wantt is .FALSE., the contents of \(h\) are unspecified on exit.

COMPLEX for clahqr2
DOUBLE COMPLEX for zlahqr2
Array, size (\(n\))
The computed eigenvalues ilo to ihi are stored in the corresponding elements of \(w\). If wantt is .TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in \(h\), with \(w(i)=h(i, i)\).

If wantz is .TRUE., on exit \(z\) has been updated; transformations are applied only to the submatrix \(Z\) (iloz:ihiz,ilo:ihi). If wantz is .FALSE., \(z\) is not referenced.

\section*{INTEGER.}
= 0: successful exit
>0: if info \(=i\), ? lahqr failed to compute all the eigenvalues ilo to ihi in a total of \(30 *\) (ihi-ilo 1) iterations; elements \(i+1\) :ihi of \(w\) contain those eigenvalues which have been successfully computed.

\section*{?lamsh}

Sends multiple shifts through a small (single node) matrix to maximize the number of bulges that can be sent through.

\section*{Syntax}
```

call slamsh(s, lds, nbulge, jblk, h, ldh, n, ulp)
call dlamsh(s, lds, nbulge, jblk, h, ldh, n, ulp)
call clamsh(s, lds, nbulge, jblk, h, ldh, n, ulp)
call zlamsh(s, lds, nbulge, jblk, h, ldh, n, ulp)

```

\section*{Description}

The ?lamshroutine sends multiple shifts through a small (single node) matrix to see how small consecutive subdiagonal elements are modified by subsequent shifts in an effort to maximize the number of bulges that can be sent through. The subroutine should only be called when there are multiple shifts/bulges (nbulge > 1) and the first shift is starting in the middle of an unreduced Hessenberg matrix because of two or more small consecutive subdiagonal elements.

\section*{Input Parameters}
s
(local)
REAL for slamsh
DOUBLE PRECISION for dlamsh
COMPLEX for clamsh

DOUBLE COMPLEX for zlamsh
Array of size (\(1 d s, 2^{*} j b l k\)).
On entry, the matrix of shifts. Only the \(2 \times 2\) diagonal of \(s\) is referenced. It is assumed that \(s\) has \(j b l k\) double shifts (size 2).
(local) Integer.
On entry, the leading dimension of \(S\); unchanged on exit. \(1<\) nbulge \(\leq j b l k\) \(\leq 1 d s / 2\).
(local) integer.
On entry, the number of bulges to send through \(h(>1)\). nbulge should be less than the maximum determined (\(j b 1 k\)). \(1<n b u l g e \leq j b l k \leq l d s / 2\).
(local) Integer.
On entry, the number of double shifts determined for \(S\); unchanged on exit.
(local)
REAL for slamsh
DOUBLE PRECISION for dlamsh
COMPLEX for clamsh
DOUBLE COMPLEX for zlamsh
Array of size (\(1 \mathrm{dh}, \mathrm{n}\)).
On entry, the local matrix to apply the shifts on.
\(h\) should be aligned so that the starting row is 2 .
(local)
INTEGER.
On entry, the leading dimension of \(H\); unchanged on exit.
(local) Integer.
On entry, the size of \(H\). If all the bulges are expected to go through, \(n\) should be at least 4 nbulge +2 . Otherwise, nbulge may be reduced by this routine.
(local)
REAL for slamsh
DOUBLE PRECISION for dlamsh
REAL for clamsh
DOUBLE PRECISION for zlamsh
On entry, machine precision. Unchanged on exit.

\section*{Output Parameters}

\section*{\(s\)}
nbulge
On exit, the data is rearranged in the best order for applying.
On exit, the maximum number of bulges that can be sent through.
\(h\)
On exit, the data is destroyed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?lapst}

Sorts the numbers in increasing or decreasing order.

\section*{Syntax}
```

call slapst (id, n, d, indx, info )
call dlapst (id, n, d, indx, info )

```

\section*{Description}
?lapst is a modified version of the LAPACK routine ?lasrt.
Define a permutation indx that sorts the numbers in \(d\) in increasing order (if id= 'I') or in decreasing order (if \(i d=\) 'D').

Use Quick Sort, reverting to Insertion sort on arrays of size \(<=20\). Dimension of STACK limits \(n\) to about \(2^{32}\).

\section*{Input Parameters}
id
n
d

\section*{Output Parameters}
indx
info

CHARACTER*1.
\(=\) 'I': sort \(d\) in increasing order;
\(=\) ' \(D\) ': sort \(d\) in decreasing order.

\section*{INTEGER.}

The length of the array \(d\).
REAL for slapst
DOUBLE PRECISION for dlapst
Array, size (\(n\))
The array to be sorted.

INTEGER.
Array, size (\(n\)).
The permutation which sorts the array \(d\).
INTEGER.
= 0: successful exit
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value

\section*{?laqr6}

Performs a single small-bulge multi-shift \(Q R\) sweep collecting the transformations.

\section*{Syntax}
```

call slaqr6( job, wantt, wantz, kacc22, n, ktop, kbot, nshfts, sr, si, h, ldh, iloz,
ihiz, z, ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh )
call dlaqr6( job, wantt, wantz, kacc22, n, ktop, kbot, nshfts, sr, si, h, ldh, iloz,
ihiz, z, ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh )

```

\section*{Description}

This auxiliary subroutine called by p?laqr5 performs a single small-bulge multi-shift QR sweep, moving the chain of bulges from top to bottom in the submatrix \(H(k t o p: k b \circ t, k t o p: k b o t)\), collecting the transformations in the matrix \(V\) or accumulating the transformations in the matrix \(Z\) (see below).
This is a modified version of ?laqr5 from LAPACK 3.1.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline job & CHARACTER scalar \\
\hline & Set the kind of job to do in ?laqr6, as follows: \\
\hline & job = 'I': Introduce and chase bulges in submatrix \\
\hline & job \(=\) ' C ': Chase bulges from top to bottom of submatrix \\
\hline & job = 'O': Chase bulges off submatrix \\
\hline wantt & LOGICAL scalar \\
\hline & wantt=. TRUE. if the quasi-triangular Schur factor is being computed. wantt is set to . FALSE. otherwise. \\
\hline wantz & LOGICAL scalar \\
\hline & want \(z=\).TRUE. if the orthogonal Schur factor is being computed. wantz is set to .FALSE. otherwise. \\
\hline kacc22 & INTEGER with value 0,1 , or 2. \\
\hline & Specifies the computation mode of far-from-diagonal orthogonal updates. = 0: ?laqr6 does not accumulate reflections and does not use matrixmatrix multiply to update far-from-diagonal matrix entries. \\
\hline & = 1: ? laqr 6 accumulates reflections and uses matrix-matrix multiply to update the far-from-diagonal matrix entries. \\
\hline & = 2: ?laqr6 accumulates reflections, uses matrix-matrix multiply to update the far-from-diagonal matrix entries, and takes advantage of 2-by-2 block structure during matrix multiplies. \\
\hline \(n\) & INTEGER scalar \\
\hline & \(n\) is the order of the Hessenberg matrix \(H\) upon which this subroutine operates. \\
\hline ktop, kbot & INTEGER scalar \\
\hline & These are the first and last rows and columns of an isolated diagonal block upon which the QR sweep is to be applied. It is assumed without a check that either \(k\) top \(=1\) or \(H(k t o p, k t o p-1)=0\) and either \(k b o t=n\) or \(H(k b o t\) \(+1, k b \circ t)=0\). \\
\hline
\end{tabular}
```

nshfts
sr, si
h
ldh
iloz, ihiz
z
ldz
v
ldv
REAL for slaqr6
DOUBLE PRECISION for dlaqr6
(workspace) array of size (Idu, 3*nshfts-3)

```

INTEGER scalar
\(I d u\) is the leading dimension of \(u\) just as declared in the calling subroutine. \(I d u \geq 3^{*}\) nshfts-3.

INTEGER scalar
\(n h\) is the number of columns in array wh available for workspace. \(n h \geq 1\) is required for usage of this workspace, otherwise the updates of the far-from-diagonal elements will be updated without level 3 BLAS.

REAL for slaqr6
DOUBLE PRECISION for dlaqr6
(workspace) array of size (ldwh,nh)
INTEGER scalar
Leading dimension of wh just as declared in the calling procedure.
ldwh \(\geq 3{ }^{*} n s h f t s-3\).
INTEGER scalar
\(n v\) is the number of rows in \(w v\) available for workspace. \(n v \geq 1\) is required for usage of this workspace, otherwise the updates of the far-from-diagonal elements will be updated without level 3 BLAS.

REAL for slaqr 6
DOUBLE PRECISION for dlaqr6
(workspace) array of size (\(1 d w v, 3^{*} n s h f t s-3\))
INTEGER scalar
ldwv is the leading dimension of \(w v\) as declared in the in the calling subroutine. \(l d w v \geq n v\).

\section*{OUTPUT Parameters}
h
z
A multi-shift QR sweep with shifts \(s r(j)+i^{*} s i(j)\) is applied to the isolated diagonal block in rows and columns ktop through kbot.

If wantzis . TRUE., then the QR sweep orthogonal/unitary similarity transformation is accumulated into the matrix Z(iloz:ihiz,kbot:ktop) from the right.
If wantzis.FALSE., then \(z\) is unreferenced.

\section*{Application Notes}

Notes
Based on contributions by Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA Robert Granat, Department of Computing Science and HPC2N, Umea University, Sweden

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?lar1va}

Computes scaled eigenvector corresponding to given eigenvalue.

\section*{Syntax}
```

call slarlva(n, bl, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz,
mingma, r, isuppz, nrminv, resid, rqcorr, work )
call dlarlva(n, bl, bn, lambda, d, l, ld, lld, pivmin, gaptol, z, wantnc, negcnt, ztz,
mingma, r, isuppz, nrminv, resid, rqcorr, work )

```

\section*{Description}
?slar1va computes the (scaled) r-th column of the inverse of the submatrix in rows bl through bn of the tridiagonal matrix \(L D L^{\top}-\lambda I\). When \(\lambda\) is close to an eigenvalue, the computed vector is an accurate eigenvector. Usually, \(r\) corresponds to the index where the eigenvector is largest in magnitude. The following steps accomplish this computation :
1. Stationary qd transform, \(L D L^{\top}-\lambda I=L_{+} D_{+} L_{+}{ }^{\top}\),
2. Progressive qd transform, \(L D L^{\top}-\lambda I=U_{-} D_{-} U_{-}^{\top}\),
3. Computation of the diagonal elements of the inverse of \(L D L^{\top}-\lambda I\) by combining the above transforms, and choosing \(r\) as the index where the diagonal of the inverse is (one of the) largest in magnitude.
4. Computation of the (scaled) r-th column of the inverse using the twisted factorization obtained by combining the top part of the stationary and the bottom part of the progressive transform.

\section*{Input Parameters}
n
b1
\(b n\)
d

INTEGER
The order of the matrix \(L D L^{\top}\).

INTEGER
First index of the submatrix of \(L D L^{\top}\).

INTEGER
Last index of the submatrix of \(L D L^{\top}\).
REAL for slar1va
DOUBLE PRECISION for dlarlva
The shift \(\lambda\). In order to compute an accurate eigenvector, lambda should be a good approximation to an eigenvalue of \(L D L^{\top}\).

REAL for slar1va
DOUBLE PRECISION for dlarlva
Array of size \(n-1\)
The (\(n-1\)) subdiagonal elements of the unit bidiagonal matrix \(L\), in elements 1 to \(n-1\).

REAL for slar1va
DOUBLE PRECISION for dlar1va
Array of size \(n\)

The \(n\) diagonal elements of the diagonal matrix \(D\).
REAL for slarlva
DOUBLE PRECISION for dlarlva
Array of size \(n-1\)
The \(n-1\) elements \(l(i)^{*} d(i)\).
REAL for slar1va
DOUBLE PRECISION for dlar1va
Array of size \(n-1\)
The \(n-1\) elements \(I(i)^{*} I(i) * d(i)\).
REAL for slarlva
DOUBLE PRECISION for dlarlva
The minimum pivot in the Sturm sequence.
REAL for slar1va
DOUBLE PRECISION for dlar1va
Tolerance that indicates when eigenvector entries are negligible with respect to their contribution to the residual.

REAL for slar1va
DOUBLE PRECISION for dlar1va
Array of size \(n\)
On input, all entries of \(z\) must be set to 0 .
LOGICAL
Specifies whether negent has to be computed.
INTEGER
The twist index for the twisted factorization used to compute \(z\).
On input, \(0 \leq r \leq n\). If \(r\) is input as \(0, r\) is set to the index where \(\left(L D L^{\top}-\sigma I\right)^{-1}\) is largest in magnitude. If \(1 \leq r \leq n, r\) is unchanged.

Ideally, \(r\) designates the position of the maximum entry in the eigenvector.
REAL for slarlva
DOUBLE PRECISION for dlar1va
(Workspace) array of size \(4 *_{n}\)

\section*{OUTPUT Parameters}
z
negcnt

On output, \(z\) contains the (scaled) \(r\)-th column of the inverse. The scaling is such that \(z(r)\) equals 1 .

INTEGER
\begin{tabular}{|c|c|}
\hline & If wantncis . TRUE. then negcnt \(=\) the number of pivots \(<\) pivmin in the matrix factorization \(L D L^{\top}\), and negcnt \(=-1\) otherwise. \\
\hline \(z t z\) & REAL for slar1va \\
\hline & DOUBLE PRECISION for dlarlva \\
\hline & The square of the 2-norm of \(z\). \\
\hline mingma & REAL for slar1va \\
\hline & DOUBLE PRECISION for dlar1va \\
\hline & The reciprocal of the largest (in magnitude) diagonal element of the inverse of \(L D L^{\top}-\sigma I\). \\
\hline \(r\) & On output, \(r\) contains the twist index used to compute \(z\). \\
\hline isuppz & INTEGER array of size 2 \\
\hline & The support of the vector in \(z\), i.e., the vector \(z\) is non-zero only in elements isuppz(1) through isuppz(2). \\
\hline nrminv & REAL for slar1va \\
\hline & DOUBLE PRECISION for dlarlva \\
\hline & nrminv \(=1 / \mathrm{SQRT}(z t z)\) \\
\hline resid & REAL for slar1va \\
\hline & DOUBLE PRECISION for dlarlva \\
\hline & The residual of the FP vector. \\
\hline & resid \(=\operatorname{ABS}(\) mingma \() / \mathrm{SQRT}(z t z)\) \\
\hline rqcorr & REAL for slar1va \\
\hline & DOUBLE PRECISION for dlarlva \\
\hline & The Rayleigh Quotient correction to lambda. \\
\hline
\end{tabular}

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?laref}

Applies Householder reflectors to matrices on their rows or columns.

\section*{Syntax}
```

call slaref (type, a, lda, wantz, z, ldz, block, irowl, icoll, istart, istop, itmpl,
itmp2, liloz, lihiz, vecs, v2, v3, t1, t2, t3 )
call dlaref (type, a, lda, wantz, z, ldz, block, irowl, icoll, istart, istop, itmpl,
itmp2, liloz, lihiz, vecs, v2, v3, t1, t2, t3)
call claref (type, a, lda, wantz, z, ldz, block, irowl, icoll, istart, istop, itmpl,
itmp2, liloz, lihiz, vecs, v2, v3, t1, t2, t3)
call zlaref (type, a, lda, wantz, z, ldz, block, irowl, icoll, istart, istop, itmpl,
itmp2, liloz, lihiz, vecs, v2, v3, t1, t2, t3 )

```

\section*{Description}
? laref applies one or several Householder reflectors of size 3 to one or two matrices (if column is specified) on either their rows or columns.

\section*{Input Parameters}
type
a
(local)
CHARACTER*1.
If 'R': Apply reflectors to the rows of the matrix (apply from left)
Otherwise: Apply reflectors to the columns of the matrix
Unchanged on exit.
(local)
REAL for slaref
DOUBLE PRECISION for dlaref
COMPLEX for claref
DOUBLE COMPLEX for zlaref
Array, (lld_a,LOCC(ja+n-1))
On entry, the matrix to receive the reflections.
(local)
INTEGER.
On entry, the leading dimension of \(a\).
Unchanged on exit.
(local)
LOGICAL.
If .TRUE., then apply any column reflections to \(z\) as well.
If .FALSE., then do no additional work on \(z\).
(local)
REAL for slaref
DOUBLE PRECISION for dlaref
COMPLEX for claref
DOUBLE COMPLEX for zlaref
Array, (\(1 d z, n c o l s)\), where the value ncols depends on other arguments. If wantz==.TRUE. and type \(=\) 'R' then ncols \(=\) icoll \(+3 *\) (lihiz-liloz + 1). Otherwise, ncols is unused.

On entry, the second matrix to receive column reflections.
This is changed only if wantz is set.
(local)
INTEGER.
\begin{tabular}{|c|c|}
\hline & On entry, the leading dimension of \(z\). \\
\hline & Unchanged on exit. \\
\hline block & (local) \\
\hline & LOGICAL. \\
\hline & If .TRUE., then apply several reflectors at once and read their data from the vecs array. \\
\hline & If .FALSE., apply the single reflector given by \(\mathrm{v} 2, \mathrm{v} 3, \mathrm{t} 1, \mathrm{t} 2\), and t 3 . \\
\hline irow1 & (local) \\
\hline & INTEGER. \\
\hline & On entry, the local row element of a. \\
\hline icoll & (local) \\
\hline & INTEGER. \\
\hline & On entry, the local column element of \(a\). \\
\hline istart & (local) \\
\hline & INTEGER. \\
\hline & Specifies the "number" of the first reflector. This is used as an index into vecs if block is set. istart is ignored if block is .FALSE.. \\
\hline istop & (local) \\
\hline & INTEGER. \\
\hline & Specifies the "number" of the last reflector. This is used as an index into vecs if block is set. istop is ignored if block is .FALSE.. \\
\hline itmp1 & (local) \\
\hline & INTEGER. \\
\hline & Starting range into \(a\). For rows, this is the local first column. For columns, this is the local first row. \\
\hline itmp2 & (local) \\
\hline & INTEGER. \\
\hline & Ending range into \(a\). For rows, this is the local last column. For columns, this is the local last row. \\
\hline liloz, lihiz & (local) \\
\hline & INTEGER. \\
\hline & These serve the same purpose as itmp1, itmp2 but for \(z\) when wantz is set. \\
\hline vecs & (local) \\
\hline & REAL for slaref \\
\hline & DOUBLE PRECISION for dlaref \\
\hline & COMPLEX for claref \\
\hline
\end{tabular}

DOUBLE COMPLEX for zlaref
Array of size \(3^{*} N\) (matrix size)
This holds the size 3 reflectors one after another and this is only accessed when block is .TRUE.
\(v 2, v 3, t 1, t 2, t 3\)
(local)
REAL for slaref
DOUBLE PRECISION for dlaref
COMPLEX for claref
DOUBLE COMPLEX for zlaref
This holds information on a single size 3 Householder reflector and is read when block is .FALSE., and overwritten when block is .TRUE.

\section*{Output Parameters}
\(a\)

Z
irowl
icoll
\(v 2, v 3, t 1, t 2, t 3\)

The updated matrix on exit.
This is changed only if wantz is set.
Undefined on output.
Undefined on output.
Overwritten when block is .TRUE.

\section*{?larrb2}

Provides limited bisection to locate eigenvalues for more accuracy.

\section*{Syntax}
```

call slarrb2( n, d, lld, ifirst, ilast, rtoll, rtol2, offset, w, wgap, werr, work,
iwork, pivmin, lgpvmn, lgspdm, twist, info )
call dlarrb2( n, d, lld, ifirst, ilast, rtoll, rtol2, offset, w, wgap, werr, work,
iwork, pivmin, lgpvmn, lgspdm, twist, info )

```

\section*{Description}

Given the relatively robust representation (RRR) \(L D L^{\top}\), ? larrb2 does "limited" bisection to refine the eigenvalues of \(L D L^{\top}\), w (ifirst - offset) through w(ilast - offset), to more accuracy. Initial guesses for these eigenvalues are input in w, the corresponding estimate of the error in these guesses and their gaps are input in werr and wgap, respectively. During bisection, intervals [left, right] are maintained by storing their mid-points and semi-widths in the arrays \(w\) and werr respectively.

\section*{NOTE}

There are very few minor differences between larrb from LAPACK and this current subroutine ?larrb2. The most important reason for creating this nearly identical copy is profiling: in the ScaLAPACK MRRR algorithm, eigenvalue computation using ?larrb2 is used for refinement in the construction of the representation tree, as opposed to the initial computation of the eigenvalues for the root RRR which uses ?larrb. When profiling, this allows an easy quantification of refinement work vs. computing eigenvalues of the root.

\section*{Input Parameters}
```

n

```

\section*{INTEGER}

The order of the matrix.
d
lld
ifirst
ilast
rtoll, rtol2
offset
w
wgap

DOUBLE PRECISION for dlarrb2
Array of size \(n\).
The \(n\) diagonal elements of the diagonal matrix \(D\).
REAL for slarrb2
DOUBLE PRECISION for dlarrb2
Array of size \(n-1\).
The (\(n-1\)) elements \(I_{i} l_{i}{ }^{*} d(i)\).
INTEGER
The index of the first eigenvalue to be computed.

\section*{INTEGER}

The index of the last eigenvalue to be computed.
REAL for slarrb2
DOUBLE PRECISION for dlarrb2
Tolerance for the convergence of the bisection intervals.
An interval [left, right] has converged if right - left < max (rtoll * gap, rtol2 \(* \max (\mid /\) eft \(|\),\(| right \mid)\)) where gap is the (estimated) distance to the nearest eigenvalue.

INTEGER
Offset for the arrays w, wgap and werr, i.e., the ifirst - offset through ilast - offset elements of these arrays are to be used.

REAL for slarrb2
DOUBLE PRECISION for dlarrb2
Array of size \(n\)
On input, w(ifirst - offset) through w(ilast-offset) are estimates of the eigenvalues of \(L D L^{\top}\) indexed ifirst through ilast.

REAL for slarrb2

DOUBLE PRECISION for dlarrb2
Array of size \(n-1\).
On input, the (estimated) gaps between consecutive eigenvalues of \(\angle D L^{\top}\), i.e., \(\operatorname{wgap}(I-o f f s e t)\) is the gap between eigenvalues \(I\) and \(I+1\). Note that if ifirst \(=\) ilast then wgap(ifirst - offset) must be set to zero.

REAL for slarrb2
DOUBLE PRECISION for dlarrb2
Array of size \(n\).
On input, werr (ifirst - offset) through werr (ilast - offset) are the errors in the estimates of the corresponding elements in \(w\).

REAL for slarrb2
DOUBLE PRECISION for dlarrb2
(workspace) array of size \(4^{*} n\).
Workspace.
(workspace) INTEGER array of size \(2 *_{n}\).
Workspace.
REAL for slarrb2
DOUBLE PRECISION for dlarrb2
The minimum pivot in the Sturm sequence.
REAL for slarrb2
DOUBLE PRECISION for dlarrb2
Logarithm of pivmin, precomputed.
REAL for slarrb2
DOUBLE PRECISION for dlarrb2
Logarithm of the spectral diameter, precomputed.
INTEGER
The twist index for the twisted factorization that is used for the negcount.
twist \(=n\) : Compute negcount from \(L D L^{\top}-\lambda I=L_{+} D_{+} L_{+}{ }^{\top}\)
twist \(=1\) : Compute negcount from \(L D L^{\top}-\lambda I=U_{-} D_{-} U_{-}^{\top}\)
twist \(=r, 1<r<n\) : Compute negcount from \(L D L^{\top}-\lambda I=N_{r} \Delta_{r} N_{r}^{\top}\)

\section*{OUTPUT Parameters}
w
wgap
werr
info
On output, the eigenvalue estimates in \(w\) are refined.
On output, the eigenvalue gaps in wgap are refined.
On output, the errors in werr are refined.
INTEGER

Error flag.

\section*{See Also}

\section*{Overview for details of ScaLAPACK array descriptor structures and related notations.}

\section*{?larrd2}

Computes the eigenvalues of a symmetric tridiagonal matrix to suitable accuracy.

\section*{Syntax}
```

call slarrd2( range, order, n, vl, vu, il, iu, gers, reltol, d, e, e2, pivmin, nsplit,
isplit, m, w, werr, wl, wu, iblock, indexw, work, iwork, dol, dou, info )
call dlarrd2( range, order, n, vl, vu, il, iu, gers, reltol, d, e, e2, pivmin, nsplit,
isplit, m, w, werr, wl, wu, iblock, indexw, work, iwork, dol, dou, info )

```

\section*{Description}
?larrd2 computes the eigenvalues of a symmetric tridiagonal matrix \(T\) to limited initial accuracy. This is an auxiliary code to be called from larre2a.
?larrd2 has been created using the LAPACK code larrd which itself stems from stebz. The motivation for creating ?larrd2 is efficiency: When computing eigenvalues in parallel and the input tridiagonal matrix splits into blocks, ? larrd2 can skip over blocks which contain none of the eigenvalues from DOL to DOU for which the processor responsible. In extreme cases (such as large matrices consisting of many blocks of small size like \(2 \times 2\)), the gain can be substantial.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
range
order
n
vl, vu

CHARACTER
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval (\(v 1, v u\)] will be found.
= 'I': ("Index") the il-th through iu-th eigenvalues (of the entire matrix) will be found.

CHARACTER
= 'B': ("By Block") the eigenvalues will be grouped by split-off block (see iblock, isplit) and ordered from smallest to largest within the block.
= 'E': ("Entire matrix") the eigenvalues for the entire matrix will be ordered from smallest to largest.

INTEGER
The order of the tridiagonal matrix \(T . n>=0\).
REAL for slarrd2

DOUBLE PRECISION for dlarrd2
If range='V', the lower and upper bounds of the interval to be searched for eigenvalues. Eigenvalues less than or equal to \(v l\), or greater than \(v u\), will not be returned. vl < vu.

Not referenced if range \(=\) ' A ' or ' I '.
INTEGER
If range \(=\) ' I ', the indices (in ascending order) of the smallest and largest eigenvalues to be returned.
\(1 \leq i l \leq i u \leq=n\), if \(n>0\); il \(=1\) and \(i u=0\) if \(n=0\).
Not referenced if range \(=\) ' A ' or ' V '.
REAL for slarrd2
DOUBLE PRECISION for dlarrd2
Array of size \(2 *_{n}\)
The \(n\) Gerschgorin intervals (the \(i\)-th Gerschgorin interval is (gers(2*i-1), \(\left.\operatorname{gers}\left(2{ }^{*} i\right)\right)\)).

REAL for slarrd2
DOUBLE PRECISION for dlarrd2
The minimum relative width of an interval. When an interval is narrower than reltol times the larger (in magnitude) endpoint, then it is considered to be sufficiently small, i.e., converged. Note: this should always be at least radix*machine epsilon.

REAL for slarrd2
DOUBLE PRECISION for dlarrd2
Array of size \(n\)
The \(n\) diagonal elements of the tridiagonal matrix \(T\).
REAL for slarrd2
DOUBLE PRECISION for dlarrd2
Array of size \(n-1\)
The \((n-1)\) off-diagonal elements of the tridiagonal matrix \(T\).
REAL for slarrd2
DOUBLE PRECISION for dlarrd2
Array of size \(n-1\)
The \((n-1)\) squared off-diagonal elements of the tridiagonal matrix \(T\).
REAL for slarrd2
DOUBLE PRECISION for dlarrd2
The minimum pivot allowed in the sturm sequence for \(T\).
INTEGER
isplit
work
iwork
dol, dou

The number of diagonal blocks in the matrix \(T\).
\(1 \leq n s p l i t \leq n\).
INTEGERArray of size \(n\)
The splitting points, at which \(T\) breaks up into submatrices.
The first submatrix consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), etc., and the nsplit-th submatrix consists of rows/columns isplit(nsplit-1)+1 through isplit(nsplit)=n.
(Only the first nsplit elements will actually be used, but since the user cannot know a priori what value nsplit will have, \(n\) words must be reserved for isplit.)

REAL for slarrd2
DOUBLE PRECISION for dlarrd2
(workspace) Array of size \(4 *_{n}\)
(workspace) INTEGER Array of size \(3 *_{n}\)
INTEGER
Specifying an index range dol:dou allows the user to work on only a selected part of the representation tree.

Otherwise, the setting dol=1, dou=n should be applied.
Note that dol and dou refer to the order in which the eigenvalues are stored in W.

\section*{OUTPUT Parameters}
m

\section*{INTEGER}

The actual number of eigenvalues found. \(0 \leq m \leq n\).
(See also the description of info \(=2,3\).)
REAL for slarrd2
DOUBLE PRECISION for dlarrd2
Array of size \(n\)
On exit, the first \(m\) elements of \(w\) will contain the eigenvalue approximations. ? larrd2 computes an interval \(I_{j}=\left(a_{j}, b_{j}\right]\) that includes eigenvalue \(j\). The eigenvalue approximation is given as the interval midpoint \(w(j)=\left(a_{j}+b_{j}\right) / 2\). The corresponding error is bounded by werr \((j)=\operatorname{abs}\left(a_{j}-\right.\) \(\left.b_{j}\right) / 2\).

REAL for slarrd2
DOUBLE PRECISION for dlarrd2
Array of size \(n\)
The error bound on the corresponding eigenvalue approximation in w .
REAL for slarrd2

DOUBLE PRECISION for dlarrd2
The interval (wl, wu] contains all the wanted eigenvalues.
If range \(=\) ' \(V\) ', then \(w l=v l\) and \(w u=v u\).
If range='A', then wl and wu are the global Gerschgorin bounds on the spectrum.

If range='I', then wl and wu are computed by SLAEBZ from the index range specified.

INTEGERArray of size \(n\)
At each row/column \(j\) where \(e(j)\) is zero or small, the matrix \(T\) is considered to split into a block diagonal matrix. On exit, if info \(=0\), iblock \((i)\) specifies to which block (from 1 to the number of blocks) the eigenvalue \(w(i)\) belongs. (?larrd2 may use the remaining \(n-m\) elements as workspace.)

INTEGERArray of size \(n\)
The indices of the eigenvalues within each block (submatrix); for example, indexw \((i)=j\) and iblock \((i)=k\) imply that the \(i\)-th eigenvalue \(w(i)\) is the \(j\)-th eigenvalue in block \(k\).

INTEGER
\(=0\) : successful exit
\(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value
\(>0\) : some or all of the eigenvalues failed to converge or were not computed:
- =1 or 3: Bisection failed to converge for some eigenvalues; these eigenvalues are flagged by a negative block number. The effect is that the eigenvalues may not be as accurate as the absolute and relative tolerances.
- \(=2\) or 3 : range='I' only: Not all of the eigenvalues il:iu were found.
- = 4: range='I', and the Gershgorin interval initially used was too small. No eigenvalues were computed.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?larre2}

Given a tridiagonal matrix, sets small off-diagonal elements to zero and for each unreduced block, finds base representations and eigenvalues.

\section*{Syntax}
```

call slarre2( range, n, vl, vu, il, iu, d, e, e2, rtoll, rtol2, spltol, nsplit, isplit,
m, dol, dou, w, werr, wgap, iblock, indexw, gers, pivmin, work, iwork, info )
call dlarre2( range, n, vl, vu, il, iu, d, e, e2, rtoll, rtol2, spltol, nsplit, isplit,
m, dol, dou, w, werr, wgap, iblock, indexw, gers, pivmin, work, iwork, info )

```

\section*{Description}

To find the desired eigenvalues of a given real symmetric tridiagonal matrix \(T\), ? larre 2 sets, via ?larra, "small" off-diagonal elements to zero. For each block \(T_{i}\), it finds
- a suitable shift at one end of the block's spectrum,
- the root RRR, \(\mathrm{T}_{i}-\sigma_{i} I=L_{i} D_{i} L_{i}{ }^{\top}\), and
- eigenvalues of each \(L_{i} D_{i} L_{i}{ }^{\top}\).

The representations and eigenvalues found are then returned to ?stegr2 to compute the eigenvectors \(T\).
?larre2 is more suitable for parallel computation than the original LAPACK code for computing the root RRR and its eigenvalues. When computing eigenvalues in parallel and the input tridiagonal matrix splits into blocks, ? larre 2 can skip over blocks which contain none of the eigenvalues from dol to dou for which the processor is responsible. In extreme cases (such as large matrices consisting of many blocks of small size, e.g. \(2 \times 2\)), the gain can be substantial.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
range
\(n\)
\(d\)

\section*{CHARACTER}
= 'A': ("All") all eigenvalues will be found.
= 'V': ("Value") all eigenvalues in the half-open interval (vl, vu] will be found.
= 'I': ("Index") the il-th through iu-th eigenvalues (of the entire matrix) will be found.

INTEGER
The order of the matrix. \(n>0\).
REAL for slarre2
DOUBLE PRECISION for dlarre2
If range \(=\) ' \(V\) ', the lower and upper bounds for the eigenvalues.
Eigenvalues less than or equal to \(v l\), or greater than \(v u\), will not be returned. vl < vu.

INTEGER
If range='I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned.
\(1 \leq i l \leq i u \leq n\).
REAL for slarre2
DOUBLE PRECISION for dlarre2
Array of size \(n\)
The \(n\) diagonal elements of the tridiagonal matrix \(T\).
e

\section*{OUTPUT Parameters}

REAL for slarre2
DOUBLE PRECISION for dlarre2
Array of size \(n\)
The first (\(n-1\)) entries contain the subdiagonal elements of the tridiagonal matrix \(T\); e(n) need not be set.

REAL for slarre2
DOUBLE PRECISION for dlarre2
Array of size \(n\)
The first (\(n-1\)) entries contain the squares of the subdiagonal elements of the tridiagonal matrix \(T\); e2(n) need not be set.

REAL for slarre2
DOUBLE PRECISION for dlarre2
Parameters for bisection.
An interval [left, right] has converged if right-left<max(rtolı*gap, rtol2*max(|left|,|right|))

REAL for slarre2
DOUBLE PRECISION for dlarre2
The threshold for splitting.

\section*{INTEGER}

Specifying an index range dol:dou allows the user to work on only a selected part of the representation tree. Otherwise, the setting dol=1, dou \(=n\) should be applied.

Note that dol and dou refer to the order in which the eigenvalues are stored in w.

REAL for slarre2
DOUBLE PRECISION for dlarre2
Workspace array of size 6*n
INTEGER
Workspace array of size \(5{ }^{*} n\)

If range='I' or ='A', ?larre2 contains bounds on the desired part of the spectrum.

The \(n\) diagonal elements of the diagonal matrices \(D_{i}\).
e contains the subdiagonal elements of the unit bidiagonal matrices \(L_{i}\). The entries \(e(i s p l i t(i)), 1 \leq i \leq n s p l i t\), contain the base points \(\sigma_{i}\) on output.

The entries e2(isplit(i)), \(1 \leq i \leq n s p l i t\), are set to zero.
nsplit
isplit
m
w

INTEGER
The number of blocks \(T\) splits into. \(1 \leq n s p l i t \leq n\).
INTEGERArray of size \(n\)
The splitting points, at which \(T\) breaks up into blocks.
The first block consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), etc., and the nsplit-th block consists of rows/columns isplit(nsplit-1)+1 through
isplit(nsplit)=n.
INTEGER
The total number of eigenvalues (of all \(L_{i} D_{i} L_{i}{ }^{\top}\)) found.
REAL for slarre2
DOUBLE PRECISION for dlarre2
Array of size \(n\)
The first \(m\) elements contain the eigenvalues. The eigenvalues of each of the blocks, \(L_{i} D_{i} L_{i}{ }^{\top}\), are sorted in ascending order (?larre2 may use the remaining \(n\)-m elements as workspace).
Note that immediately after exiting this routine, only the eigenvalues from position dol:dou in w might rely on this processor when the eigenvalue computation is done in parallel.

REAL for slarre2
DOUBLE PRECISION for dlarre2
Array of size \(n\)
The error bound on the corresponding eigenvalue in \(w\).
Note that immediately after exiting this routine, only the uncertainties from position dol:dou in werr might rely on this processor when the eigenvalue computation is done in parallel.

REAL for slarre2
DOUBLE PRECISION for dlarre2
Array of size \(n\)
The separation from the right neighbor eigenvalue in w .
The gap is only with respect to the eigenvalues of the same block as each block has its own representation tree.
Exception: at the right end of a block we store the left gap
Note that immediately after exiting this routine, only the gaps from position dol:dou in wgap might rely on this processor when the eigenvalue computation is done in parallel.

INTEGERArray of size \(n\)

The indices of the blocks (submatrices) associated with the corresponding eigenvalues in w; iblock \((i)=1\) if eigenvalue \(w(i)\) belongs to the first block from the top, iblock \((i)=2\) if \(w(i)\) belongs to the second block, and so on.

INTEGERArray of size \(n\)
The indices of the eigenvalues within each block (submatrix); for example, indexw \((i)=10\) and iblock \((i)=2\) imply that the \(i\)-th eigenvalue \(w(i)\) is the 10th eigenvalue in block 2.
```

REAL for slarre2

```

DOUBLE PRECISION for dlarre2
Array of size \(2 *_{n}\)
The \(n\) Gerschgorin intervals (the \(i\)-th Gerschgorin interval is (gers \((2 * i-1)\), \(\operatorname{gers}(2 * i))\)).

REAL for slarre2
DOUBLE PRECISION for dlarre2
The minimum pivot in the sturm sequence for \(T\).

\section*{INTEGER}
\(=0\) : successful exit
> 0: A problem occurred in ?larre2.
\(<0\) : One of the called subroutines signaled an internal problem.
Needs inspection of the corresponding parameter info for further information.
=-1: Problem in ?larrd.
\(=-2\) : Not enough internal iterations to find the base representation.
\(=-3\) : Problem in ?larrb when computing the refined root representation for ?lasq2.
\(=-4\) : Problem in ?larrb when preforming bisection on the desired part of the spectrum.
\[
\begin{aligned}
& =-5: \text { Problem in ?lasq2 } \\
& =-6: \text { Problem in ?lasq2 }
\end{aligned}
\]

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?larre2a}

Given a tridiagonal matrix, sets small off-diagonal
elements to zero and for each unreduced block, finds base representations and eigenvalues.

\section*{Syntax}
```

call slarre2a( range, n, vl, vu, il, iu, d, e, e2, rtoll, rtol2, spltol, nsplit, isplit,
m, dol, dou, needil, neediu, w, werr, wgap, iblock, indexw, gers, sdiam, pivmin, work,
iwork, minrgp, info )

```
```

call dlarre2a( range, n, vl, vu, il, iu, d, e, e2, rtoll, rtol2, spltol, nsplit, isplit,
m, dol, dou, needil, neediu, w, werr, wgap, iblock, indexw, gers, sdiam, pivmin, work,
iwork, minrgp, info )

```

\section*{Description}

To find the desired eigenvalues of a given real symmetric tridiagonal matrix \(T\), ? larre2a sets any "small" offdiagonal elements to zero, and for each unreduced block \(T_{i}\), it finds
- a suitable shift at one end of the block's spectrum,
- the base representation, \(T_{i}-\sigma_{i} I=L_{i} D_{i} L_{i}{ }^{\top}\), and
- eigenvalues of each \(L_{i} D_{i} L_{i}{ }^{\top}\).

\section*{NOTE}

The algorithm obtains a crude picture of all the wanted eigenvalues (as selected by range). However, to reduce work and improve scalability, only the eigenvalues dol to dou are refined. Furthermore, if the matrix splits into blocks, RRRs for blocks that do not contain eigenvalues from dol to dou are skipped. The DQDS algorithm (subroutine ?1asq2) is not used, unlike in the sequential case. Instead, eigenvalues are computed in parallel to some figures using bisection.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{range} & CHARACTER \\
\hline & = 'A': ("All") all eigenvalues will be found. \\
\hline & = 'V': ("Value") all eigenvalues in the half-open interval (\(v 1, v u\)] will be found. \\
\hline & = 'I': ("Index") the il-th through iu-th eigenvalues (of the entire matrix) will be found. \\
\hline \multirow[t]{2}{*}{\(n\)} & INTEGER \\
\hline & The order of the matrix. \(n>0\). \\
\hline \multirow[t]{4}{*}{\(v l, v u\)} & REAL for slarre2a \\
\hline & DOUBLE PRECISION for dlarre2a \\
\hline & If range='V', the lower and upper bounds for the eigenvalues. Eigenvalues less than or equal to \(v l\), or greater than \(v u\), will not be returned. vl < vu. \\
\hline & If range='I' or ='A', ?larre2a computes bounds on the desired part of the spectrum. \\
\hline \multirow[t]{2}{*}{il, iu} & INTEGER \\
\hline & If range='I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned. \\
\hline
\end{tabular}
\(1 \leq i l \leq i u \leq n\).
d
e
e2
rtoll, rtol2
spltol
dol, dou
work
iwork
minrgp

REAL for slarre2a
DOUBLE PRECISION for dlarre2a
Array of size \(n\)
On entry, the \(n\) diagonal elements of the tridiagonal matrix \(T\).
REAL for slarre2a
DOUBLE PRECISION for dlarre2a
Array of size \(n\)
The first (\(n-1\)) entries contain the subdiagonal elements of the tridiagonal matrix \(T\); \(e(n)\) need not be set.

REAL for slarre2a
DOUBLE PRECISION for dlarre2a
Array of size \(n\)
The first (\(n-1\)) entries contain the squares of the subdiagonal elements of the tridiagonal matrix \(T\); e2(n) need not be set.

REAL for slarre2a
DOUBLE PRECISION for dlarre2a
Parameters for bisection.
An interval [left,right] has converged if right - left < max (rtolı*gap, rtol2*max(|left|,|right|))

REAL for slarre2a
DOUBLE PRECISION for dlarre2a
The threshold for splitting.
INTEGER
If the user wants to work on only a selected part of the representation tree, he can specify an index range dol:dou.
Otherwise, the setting \(d o l=1\), dou \(=n\) should be applied.
Note that dol and dou refer to the order in which the eigenvalues are stored in w.

REAL for slarre2a
DOUBLE PRECISION for dlarre2a
Workspace array of size 6*n
INTEGER
Workspace array of size \(5 *_{n}\)
REAL for slarre2a
DOUBLE PRECISION for dlarre2a

The minimum relative gap threshold to decide whether an eigenvalue or a cluster boundary is reached.

\section*{OUTPUT Parameters}
```

vl, vu
d
e
m

REAL for slarre2a
DOUBLE PRECISION for dlarre2a
If range $=$ ' $V$ ', the lower and upper bounds for the eigenvalues. Eigenvalues less than or equal to $v l$, or greater than $v u$, are not returned. $v l$ < vu.

If range='I' or range='A', ?larre2a computes bounds on the desired part of the spectrum.

The $n$ diagonal elements of the diagonal matrices $D_{i}$.
e contains the subdiagonal elements of the unit bidiagonal matrices $L_{i}$. The entries $e($ isplit( $i)$ ), $1 \leq i \leq n s p l i t$, contain the base points $\sigma_{i}$ on output.

The entries e2( isplit( $i$ ) ), $1 \leq i \leq n s p l i t ~ h a v e ~ b e e n ~ s e t ~ t o ~ z e r o . ~$
INTEGER
The number of blocks $T$ splits into. $1 \leq n s p l i t \leq n$.
INTEGER
Array of size $n$
The splitting points, at which $T$ breaks up into blocks.
The first block consists of rows/columns 1 to isplit(1), the second of rows/columns isplit(1)+1 through isplit(2), etc., and the nsplit-th block consists of rows/columns isplit(nsplit-1)+1 through isplit(nsplit)=n.

INTEGER
The total number of eigenvalues (of all $L_{i} D_{i} L_{i}{ }^{\top}$ ) found.
INTEGER
The indices of the leftmost and rightmost eigenvalues of the root node RRR which are needed to accurately compute the relevant part of the representation tree.

REAL for slarre2a
DOUBLE PRECISION for dlarre2a
Array of size $n$
The first $m$ elements contain the eigenvalues. The eigenvalues of each of the blocks, $L_{i} D_{i} L_{i}{ }^{\top}$, are sorted in ascending order ( ? larre2a may use the remaining $n-m$ elements as workspace).

Note that immediately after exiting this routine, only the eigenvalues from position dol:dou in w rely on this processor because the eigenvalue computation is done in parallel.

REAL for slarre2a
DOUBLE PRECISION for dlarre2a

## Array of size $n$

The error bound on the corresponding eigenvalue in w .
Note that immediately after exiting this routine, only the uncertainties from position dol:dou in werr are reliable on this processor because the eigenvalue computation is done in parallel.

REAL for slarre2a
DOUBLE PRECISION for dlarre2a
Array of size $n$
The separation from the right neighbor eigenvalue in $w$. The gap is only with respect to the eigenvalues of the same block as each block has its own representation tree.
Exception: at the right end of a block we store the left gap
Note that immediately after exiting this routine, only the gaps from position dol: dou in wgap are reliable on this processor because the eigenvalue computation is done in parallel.

INTEGERArray of size $n$
The indices of the blocks (submatrices) associated with the corresponding eigenvalues in $w$; iblock $(i)=1$ if eigenvalue $w(i)$ belongs to the first block from the top, iblock $(i)=2$ if $w(i)$ belongs to the second block, and so on.

INTEGERArray of size $n$
The indices of the eigenvalues within each block (submatrix); for example, indexw $(i)=10$ and iblock $(i)=2$ imply that the $i$-th eigenvalue $w(i)$ is the 10th eigenvalue in block 2.

```
REAL for slarre2a
```

DOUBLE PRECISION for dlarre2a
Array of size $2 *_{n}$
The $n$ Gerschgorin intervals (the $i$-th Gerschgorin interval is (gers(2*i-1), $\left.\operatorname{gers}\left(2_{i}\right)\right)$ ).

REAL for slarre2a
DOUBLE PRECISION for dlarre2a
The minimum pivot in the sturm sequence for $T$.
INTEGER
$=0$ : successful exit
> 0: A problem occurred in ?larre2a.
$<0$ : One of the called subroutines signaled an internal problem. Needs inspection of the corresponding parameter info for further information.
=-1: Problem in ?larrd2.
$=-2$ : Not enough internal iterations to find base representation.
=-3: Problem in ?larrb2 when computing the refined root representation.
$=-4$ : Problem in ?larrb2 when preforming bisection on the desired part of the spectrum.
$=-9$ Problem: $m<$ dou-dol+1, that is the code found fewer eigenvalues than it was supposed to.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## ?larrf2

Finds a new relatively robust representation such that at least one of the eigenvalues is relatively isolated.

## Syntax

```
call slarrf2(n, d, l, ld, clstrt, clend, clmidl, clmid2, w, wgap, werr, trymid, spdiam,
clgapl, clgapr, pivmin, sigma, dplus, lplus, work, info)
call dlarrf2(n, d, l, ld, clstrt, clend, clmidl, clmid2, w, wgap, werr, trymid, spdiam,
clgapl, clgapr, pivmin, sigma, dplus, lplus, work, info)
```


## Description

Given the initial representation $L D L^{\top}$ and its cluster of close eigenvalues (in a relative measure), w( clstrt ), $w\left(\right.$ clstrt +1 ), $\ldots w($ clend $)$, ?larrf2 finds a new relatively robust representation $L D L^{\top}-\sigma I=L_{+} D_{+} L_{+}{ }^{\top}$ such that at least one of the eigenvalues of $L_{+} D_{+} L_{+}{ }^{\top}$ is relatively isolated.
This is an enhanced version of ?larrf that also tries shifts in the middle of the cluster, should there be a large gap, in order to break large clusters into at least two pieces.

## Input Parameters

| $n$ | INTEGER |
| :---: | :---: |
|  | The order of the matrix (subblock, if the matrix was split). |
| d | REAL for slarrf2 |
|  | DOUBLE PRECISION for dlarrf2 |
|  | Array of size $n$ |
|  | The $n$ diagonal elements of the diagonal matrix $D$. |
| 1 | REAL for slarrf2 |
|  | DOUBLE PRECISION for dlarrf2 |
|  | Array of size $n-1$ |
|  | The ( $n-1$ ) subdiagonal elements of the unit bidiagonal matrix $L$. |
| $1 d$ | REAL for slarrf2 |
|  | DOUBLE PRECISION for dlarrf2 |
|  | Array of size $n-1$ |
|  | The ( $n-1$ ) elements $l(i) * d(i)$. |
| clstrt | INTEGER |
|  | The index of the first eigenvalue in the cluster. |

```
clend INTEGER
 The index of the last eigenvalue in the cluster.
 INTEGER
 The index of a middle eigenvalue pair with large gap.
 REAL for slarrf2
 DOUBLE PRECISION for dlarrf2
 Array of size }\geq\mathrm{ (clend-clstrt+1)
 The eigenvalue approximations of LD L' in ascending order. w(clstrt)
 through w(clend) form the cluster of relatively close eigenalues.
 REAL for slarrf2
 DOUBLE PRECISION for dlarrf2
 Array of size \geq(clend-clstrt+1)
 The separation from the right neighbor eigenvalue in w.
 REAL for slarrf2
 DOUBLE PRECISION for dlarrf2
 Array of size \geq(clend-clstrt+1)
 werr contains the semiwidth of the uncertainty interval of the
 corresponding eigenvalue approximation in w.
 REAL for slarrf2
 DOUBLE PRECISION for dlarrf2
 Estimate of the spectral diameter obtained from the Gerschgorin intervals
 REAL for slarrf2
 DOUBLE PRECISION for dlarrf2
 Absolute gap on each end of the cluster.
 Set by the calling routine to protect against shifts too close to eigenvalues
 outside the cluster.
 REAL for slarrf2
 DOUBLE PRECISION for dlarrf2
 The minimum pivot allowed in the Sturm sequence.
 REAL for slarrf2
 DOUBLE PRECISION for dlarrf2
Workspace array of size 2*n
```


## OUTPUT Parameters

wgap
Contains refined values of its input approximations. Very small gaps are unchanged.

```
sigma REAL for slarrf2
 DOUBLE PRECISION for dlarrf2
 The shift (\sigma) used to form }\mp@subsup{L}{+}{}\mp@subsup{D}{+}{}\mp@subsup{L}{+}{\top
 REAL for slarrf2
 DOUBLE PRECISION for dlarrf2
 Array of size n
 The n diagonal elements of the diagonal matrix D+.
 REAL for slarrf2
 DOUBLE PRECISION for dlarrf2
 Array of size n-1
 The first (n-1) elements of lplus contain the subdiagonal elements of the
 unit bidiagonal matrix L+
```


## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## ?larrv2

Computes the eigenvectors of the tridiagonal matrix $T$
$=L^{*} D^{*} L^{T}$ given $L, D$ and the eigenvalues of $L^{*} D^{*} L^{T}$.

## Syntax

```
call slarrv2(n, vl, vu, d, l, pivmin, isplit, m, dol, dou, needil, neediu, minrgp,
rtoll, rtol2, w, werr, wgap, iblock, indexw, gers, sdiam, z, ldz, isuppz, work, iwork,
vstart, finish, maxcls, ndepth, parity, zoffset, info)
call dlarrv2(n, vl, vu, d, l, pivmin, isplit, m, dol, dou, needil, neediu, minrgp,
rtoll, rtol2, w, werr, wgap, iblock, indexw, gers, sdiam, z, ldz, isuppz, work, iwork,
vstart, finish, maxcls, ndepth, parity, zoffset, info)
```


## Description

? larrv2 computes the eigenvectors of the tridiagonal matrix $T=L D L^{\top}$ given $L, D$ and approximations to the eigenvalues of $L D L^{\top}$. The input eigenvalues should have been computed by larre2a or by previous calls to ?larrv2.
The major difference between the parallel and the sequential construction of the representation tree is that in the parallel case, not all eigenvalues of a given cluster might be computed locally. Other processors might "own" and refine part of an eigenvalue cluster. This is crucial for scalability. Thus there might be communication necessary before the current level of the representation tree can be parsed.

Please note:

- The calling sequence has two additional integer parameters, dol and dou, that should satisfy $m \geq d o u \geq d o l \geq 1$. These parameters are only relevant when both eigenvalues and eigenvectors are computed (stegr2b parameter jobz = 'V'). ? larrv2 only computes the eigenvectors corresponding to eigenvalues dol through dou in $w$. (That is, instead of computing the eigenvectors belonging to w(1) through w(m), only the eigenvectors belonging to eigenvalues $w(d o l)$ through w(dou) are computed. In this case, only the eigenvalues dol:dou are guaranteed to be accurately refined to all figures by Rayleigh-Quotient iteration.
- The additional arguments vstart, finish, ndepth, parity, zoffset are included as a thread-safe implementation equivalent to save variables. These variables store details about the local representation tree which is computed layerwise. For scalability reasons, eigenvalues belonging to the locally relevant representation tree might be computed on other processors. These need to be communicated before the inspection of the RRRs can proceed on any given layer. Note that only when the variable finish is true, the computation has ended. All eigenpairs between $d o l$ and dou have been computed. $m$ is set to dou dol +1 .
- ?larrv2 needs more workspace in $z$ than the sequential slarrv. It is used to store the conformal embedding of the local representation tree.

```
Product and Performance Information
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision #20201201
```


## Input Parameters

```
n
v1, vu
```

d
1
pivmin
isplit

INTEGER
The order of the matrix. $n \geq 0$.
REAL for slarrv2
DOUBLE PRECISION for dlarrv2
Lower and upper bounds of the interval that contains the desired eigenvalues. $v l$ < $v u$. Needed to compute gaps on the left or right end of the extremal eigenvalues in the desired range. vu is currently not used but kept as parameter in case needed.

REAL for slarrv2
DOUBLE PRECISION for dlarrv2
Array of size $n$
The $n$ diagonal elements of the diagonal matrix $d$. On exit, $d$ is overwritten.
REAL for slarrv2
DOUBLE PRECISION for dlarrv2
Array of size $n$
The ( $n-1$ ) subdiagonal elements of the unit bidiagonal matrix $L$ are in elements 1 to $n-1$ of $l$ (if the matrix is not split.) At the end of each block is stored the corresponding shift as given by ?larre. On exit, 1 is overwritten.

## DOUBLE PRECISION

The minimum pivot allowed in the sturm sequence.
INTEGER
Array of size $n$
The splitting points, at which $T$ breaks up into blocks. The first block consists of rows/columns 1 to isplit (1), the second of rows/columns isplit( 1 ) +1 through isplit( 2 ), etc.
$m$
dol, dou
needil, neediu
minrgp
rtoll, rtol2
w
werr

INTEGER
The total number of input eigenvalues. $0 \leq m \leq n$.
INTEGER
If you want to compute only selected eigenvectors from all the eigenvalues supplied, you can specify an index range dol:dou. Or else the setting dol=1, dou=m should be applied. Note that dol and dou refer to the order in which the eigenvalues are stored in w. If you want to compute only selected eigenpairs, the columns dol-1 to dou +1 of the eigenvector space $z$ contain the computed eigenvectors. All other columns of $z$ are set to zero.
If dol > 1, then $z(:, d o l-1-z o f f s e t)$ is used.
If dou $<m$, then $z(:, d o u+1-z o f f s e t)$ is used.
INTEGER
Describe which are the left and right outermost eigenvalues that still need to be included in the computation. These indices indicate whether eigenvalues from other processors are needed to correctly compute the conformally embedded representation tree.
When dol $\leq n e e d i l \leq n e e d i u \leq d o u$, all required eigenvalues are local to the processor and no communication is required to compute its part of the representation tree.

REAL for slarrv2
DOUBLE PRECISION for dlarrv2
The minimum relative gap threshold to decide whether an eigenvalue or a cluster boundary is reached.

```
REAL for slarrv2
```

DOUBLE PRECISION for dlarrv2
Parameters for bisection. An interval [left,right] has converged if right-left < $\max \left(r t o l 1^{*} g a p, r t o l 2^{*} \max (|l e f t|,|r i g h t|)\right)$

REAL for slarrv2
DOUBLE PRECISION for dlarrv2
Array of size $n$
The first $m$ elements of $w$ contain the approximate eigenvalues for which eigenvectors are to be computed. The eigenvalues should be grouped by split-off block and ordered from smallest to largest within the block. (The output array $w$ from ?stegr2a is expected here.) Furthermore, they are with respect to the shift of the corresponding root representation for their block.

REAL for slarrv2
DOUBLE PRECISION for dlarrv2
Array of size $n$
The first $m$ elements contain the semiwidth of the uncertainty interval of the corresponding eigenvalue in w .

```
wgap

DOUBLE PRECISION for dlarrv2
Array of size \(n\)
The separation from the right neighbor eigenvalue in w .
INTEGERArray of size \(n\)
The indices of the blocks (submatrices) associated with the corresponding eigenvalues in \(w\); iblock \((i)=1\) if eigenvalue \(w(i)\) belongs to the first block from the top, iblock \((i)=2\) if \(w(i)\) belongs to the second block, and so on.

INTEGERArray of size \(n\)
The indices of the eigenvalues within each block (submatrix). For example: indexw \((i)=10\) and iblock \((i)=2\) imply that the \(i\)-th eigenvalue \(w(i)\) is the 10th eigenvalue in block 2.

REAL for slarrv2
DOUBLE PRECISION for dlarrv2
Array of size \(2 *_{n}\)
The \(n\) Gerschgorin intervals (the \(i\)-th Gerschgorin interval is (gers(2*i-1), \(\operatorname{gers}(2 * i))\)). The Gerschgorin intervals should be computed from the original unshifted matrix.
Not used but kept as parameter for possible future use.
REAL for slarrv2
DOUBLE PRECISION for dlarrv2
Array of size \(n\)
The spectral diameters for all unreduced blocks.
INTEGER
The leading dimension of the array \(z . l d z \geq 1\), and if stegr2b parameter jobz \(=\) 'V', \(1 d z \geq \max (1, n)\).

REAL for slarrv2
DOUBLE PRECISION for dlarrv2
(workspace) array of size \(12 *_{n}\)
(workspace) INTEGERArray of size \(7 *_{n}\)
LOGICAL
.TRUE . on initialization, set to .FALSE. afterwards.
LOGICAL
A flag that indicates whether all eigenpairs have been computed.
INTEGER
The largest cluster worked on by this processor in the representation tree.
INTEGER
```

parity

```
zoffset

\section*{OUTPUT Parameters}
```

needil, neediu

```
w
werr
wgap
z
isuppz
vstart
finish
maxcls
ndepth
parity
info

The current depth of the representation tree. Set to zero on initial pass, changed when the deeper levels of the representation tree are generated.
```

INTEGER

```

An internal parameter needed for the storage of the clusters on the current level of the representation tree.
```

INTEGER

```

Offset for storing the eigenpairs when \(z\) is distributed in 1D-cyclic fashion.

Unshifted eigenvalues for which eigenvectors have already been computed.
Contains refined values of its input approximations.
Contains refined values of its input approximations. Very small gaps are changed.

REAL for slarrv2
DOUBLE PRECISION for dlarrv2
Array, dimension \((I d z, \max (1, m))\)
If info \(=0\), the first \(m\) columns of \(z\) contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the input eigenvalues, with the \(i\)-th column of \(z\) holding the eigenvector associated with \(w(i)\).
In the distributed version, only a subset of columns is accessed, see dol, dou, and zoffset.

INTEGER
Array of size \(2^{*} \max (1, m)\)
The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The \(i\)-th eigenvector is non-zero only in elements isuppz(\(2 * i-1\)) through isuppz(\(2 * i\)).
.TRUE. on initialization, set to .FALSE. afterwards.
A flag that indicates whether all eigenpairs have been computed.
The largest cluster worked on by this processor in the representation tree.
The current depth of the representation tree. Set to zero on initial pass, changed when the deeper levels of the representation tree are generated.

An internal parameter needed for the storage of the clusters on the current level of the representation tree.

INTEGER
\(=0\) : successful exit
> 0: A problem occured in ?larrv2.
\(<0\) : One of the called subroutines signaled an internal problem.

Needs inspection of the corresponding parameter info for further information.
\(=-1\) : Problem in ?larrb2 when refining a child's eigenvalues.
\(=-2\) : Problem in ?larrf2 when computing the RRR of a child. When a child is inside a tight cluster, it can be difficult to find an RRR. A partial remedy from the user's point of view is to make the parameter minrgp smaller and recompile. However, as the orthogonality of the computed vectors is proportional to \(1 /\) minrgp, be aware that decreasing minrgp might be reduce precision.
=-3: Problem in ?larrb2 when refining a single eigenvalue after the Rayleigh correction was rejected.
= 5: The Rayleigh Quotient Iteration failed to converge to full accuracy.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?lasorte}

Sorts eigenpairs by real and complex data types.

\section*{Syntax}
```

call slasorte(s, lds, j, out, info)
call dlasorte(s, lds, j, out, info)

```

\section*{Description}

The ?lasorteroutine sorts eigenpairs so that real eigenpairs are together and complex eigenpairs are together. This helps to employ \(2 \times 2\) shifts easily since every second subdiagonal is guaranteed to be zero. This routine does no parallel work and makes no calls.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}

S

Ids
j
(local)
REAL for slasorte
DOUBLE PRECISION for dlasorte
Array of size Ids.
On entry, a matrix already in Schur form.
(local) INTEGER.
On entry, the leading dimension of the array s; unchanged on exit.
(local) INTEGER.
On entry, the order of the matrix \(S\); unchanged on exit.
```

out
info
(local)
REAL for slasorte
DOUBLE PRECISION for dlasorte
Array of size $2 * j$. The work buffer required by the routine.
(local) INTEGER.
Set, if the input matrix had an odd number of real eigenvalues and things could not be paired or if the input matrix $S$ was not originally in Schur form. 0 indicates successful completion.

```

\section*{Output Parameters}

S
On exit, the diagonal blocks of \(S\) have been rewritten to pair the eigenvalues. The resulting matrix is no longer similar to the input.

Work buffer.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?lasrt2}

Sorts numbers in increasing or decreasing order.

\section*{Syntax}
```

call slasrt2(id, n, d, key, info)
call dlasrt2(id, n, d, key, info)

```

\section*{Description}

The ? lasrt2routine is modified LAPACK routine ? lasrt, which sorts the numbers in \(d\) in increasing order (if \(i d=\) 'I') or in decreasing order (if \(i d=\) ' \(D\) '). It uses Quick Sort, reverting to Insertion Sort on arrays of size \(\leq 20\). The size of STACK limits \(n\) to about \(2^{32}\).

\section*{Input Parameters}
id
n
d
key
```

CHARACTER*1.
= 'I': sort d in increasing order;
= 'D': sort d in decreasing order.
INTEGER. The length of the array d.
REAL for slasrt2
DOUBLE PRECISION for dlasrt2.

```

Array of size \(n\).
On entry, the array to be sorted.
INTEGER.
Array of size \(n\).
On entry, key contains a key to each of the entries in \(d()\).

Typically, \(\operatorname{key}(i)=i\) for all \(i\).

\section*{Output Parameters}
d
On exit, \(d\) has been sorted into increasing order
\((d(1) \leq \ldots \leq d(n))\)
or into decreasing order
\((d(1) \geq \ldots \geq d(n))\),
depending on \(i d\).
INTEGER.
\(=0\) : successful exit
\(<0\) : if info \(=-i\), the \(i\)-th argument had an illegal value.
key
On exit, key is permuted in exactly the same manner as \(d\) was permuted from input to output. Therefore, if \(k e y(i)=i\) for all \(i\) on input, \(d(i)\) on output equals \(d(k e y(i))\) on input.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?stegr2}

Computes selected eigenvalues and eigenvectors of a real symmetric tridiagonal matrix.

\section*{Syntax}
```

call sstegr2( jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, work,
lwork, iwork, liwork, dol, dou, zoffset, info )
call dstegr2( jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, work,
lwork, iwork, liwork, dol, dou, zoffset, info)

```

\section*{Description}
?stegr2 computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix \(T\). It is invoked in the ScaLAPACK MRRR driver p?syevr and the corresponding Hermitian version either when only eigenvalues are to be computed, or when only a single processor is used (the sequential-like case).
?stegr2 has been adapted from LAPACK's ?stegr. Please note the following crucial changes.
1. The calling sequence has two additional integer parameters, dol and dou, that should satisfy \(m \geq d o u \geq d o l \geq 1\). ?stegr2only computes the eigenpairs corresponding to eigenvalues dol through dou in \(w\). (That is, instead of computing the eigenpairs belonging to \(w(1)\) through \(w(m)\), only the eigenvectors belonging to eigenvalues \(w(d o l)\) through \(w(d o u)\) are computed. In this case, only the eigenvalues dol:dou are guaranteed to be fully accurate.
2. \(m\) is not the number of eigenvalues specified by range, but is \(m=d o u-d o l+1\). This concerns the case where only eigenvalues are computed, but on more than one processor. Thus, in this case \(m\) refers to the number of eigenvalues computed on this processor.
3. The arrays \(w\) and \(z\) might not contain all the wanted eigenpairs locally, instead this information is distributed over other processors.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
jobz
range
n
d
e
vI
vu
il, iu

CHARACTER*1
\(=\) ' N ': Compute eigenvalues only;
\(=\) ' V ': Compute eigenvalues and eigenvectors.
CHARACTER*1
= ' A ': all eigenvalues will be found.
\(=\) ' \(V\) ': all eigenvalues in the half-open interval (\(v 1, v u\)] will be found.
\(=\) 'I': the il-th through iu-th eigenvalues (of the entire matrix) will be found.

INTEGER
The order of the matrix. \(n \geq 0\).
REAL for sstegr2
DOUBLE PRECISION for dstegr2
Array of size \(n\)
On entry, the \(n\) diagonal elements of the tridiagonal matrix \(T\). Overwritten on exit.

REAL for sstegr2
DOUBLE PRECISION for dstegr2
Array of size \(n\)
On entry, the (\(n-1\)) subdiagonal elements of the tridiagonal matrix \(T\) in elements 1 to \(n-1\) of e. \(e(n)\) need not be set on input, but is used internally as workspace. Overwritten on exit.

REAL for sstegr2
DOUBLE PRECISION for dstegr2
REAL for sstegr2
DOUBLE PRECISION for dstegr2
If range='V', the lower and upper bounds of the interval to be searched for eigenvalues. vl < vu.

Not referenced if range \(=\) 'A' or 'I'.

\section*{INTEGER}

If range='I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned.
\(1 \leq i l \leq i u \leq n\), if \(n>0\).
Not referenced if range \(=\) ' A ' or ' V '.
INTEGER
The leading dimension of the array \(z . ~ I d z \geq 1\), and if \(j o b z=' \mathrm{~V}\) ', then \(l d z \geq\) \(\max (1, n)\).

INTEGER
The number of eigenvectors to be held in the array \(z\), storing the matrix \(Z\).
If range \(=\) ' \(A\) ', then \(n z c \geq \max (1, n)\).
If range \(=\) ' \(V\) ', then \(n z c \geq\) the number of eigenvalues in (\(v 1, v u\)].
If range \(=\) 'I', then \(n z c \geq i u-i l+1\).
If \(n z c=-1\), then a workspace query is assumed; the routine calculates the number of columns of the matrix \(Z\) that are needed to hold the eigenvectors. This value is returned as the first entry of the \(z\) array, and no error message related to \(n z c\) is issued.

\section*{INTEGER}

The size of the array work. lwork \(\geq \max \left(1,18 *_{n}\right)\)
if jobz = 'V', and lwork \(\geq \max \left(1,12_{n}\right)\) if \(j o b z=\) ' N '. If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued.

INTEGER
The size of the array iwork. liwork \(\geq \max \left(1,10 *_{n}\right)\) if the eigenvectors are desired, and liwork \(\geq \max \left(1,8 *_{n}\right)\) if only the eigenvalues are to be computed.

If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued.

INTEGER
From the eigenvalues \(w(1: m)\), only eigenvectors \(Z(:, d o l)\) to \(Z(:\), dou \()\) are computed.

If dol > 1 , then \(Z(:\), dol-1-zoffset \()\) is used and overwritten.
If dou \(<m\), then \(Z(:, d o u+1-z o f f s e t)\) is used and overwritten.
INTEGER
Offset for storing the eigenpairs when \(z\) is distributed in 1D-cyclic fashion

\section*{OUTPUT Parameters}
m
INTEGER
w
z
info

Globally summed over all processors, \(m\) equals the total number of eigenvalues found. \(0 \leq m \leq n\). If range \(=\) ' A ', \(m=n\), and if range \(=\) ' \(I\) ', \(m=i u\) \(i l+1\). The local output equals \(m=d o u-d o l+1\).

REAL array of size \(n\) for sstegr2
DOUBLE PRECISION array of size \(n\) for dstegr2
Array of size \(n\)
The first \(m\) elements contain the selected eigenvalues in ascending order. Note that immediately after exiting this routine, only the eigenvalues from position dol: dou are reliable on this processor because the eigenvalue computation is done in parallel. Other processors will hold reliable information on other parts of the w array. This information is communicated in the ScaLAPACK driver.

REAL for sstegr2
DOUBLE PRECISION for dstegr2
Array of size \((1 d z, \max (1, m))\).
If jobz \(=\) ' \(V\) ', and if info \(=0\), then the first \(m\) columns of the matrix \(Z\) stored in \(z\) contain some of the orthonormal eigenvectors of the matrix T corresponding to the selected eigenvalues, with the \(i\)-th column of \(Z\) holding the eigenvector associated with \(w(i)\).
If jobz \(=\) ' N ', then \(z\) is not referenced.
Note: the user must ensure that at least \(\max (1, m)\) columns are supplied in the array \(z\); if range \(=\) ' \(V\) ', the exact value of \(m\) is not known in advance and can be computed with a workspace query by setting \(n z c=-1\), see below.

INTEGER array of size \(2 * \max (1, m)\)
The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The \(i\)-th computed eigenvector is nonzero only in elements isuppz (\(2 * i-1\)) through isuppz (\(2 * i\)). This is relevant in the case when the matrix is split. isuppz is only set if \(n>2\).

On exit, if info \(=0\), work(1) returns the optimal (and minimal) lwork.
On exit, if info \(=0, i w o r k(1)\) returns the optimal liwork.
INTEGER
On exit, info
\(=0\) : successful exit
other:if info \(=-i\), the \(i\)-th argument had an illegal value
if info \(=10 \mathrm{X}\), internal error in ?larre2,
if info \(=20 X\), internal error in ?larrv.
Here, the digit \(X=\operatorname{ABS}\) (info) \(<10\), where iinfo is the nonzero error code returned by ?larre2 or ?larrv, respectively.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?stegr2a}

Computes selected eigenvalues and initial representations needed for eigenvector computations.

\section*{Syntax}
```

call sstegr2a( jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, work, lwork,
iwork, liwork, dol, dou, needil, neediu, inderr, nsplit, pivmin, scale, wl, wu, info )
call dstegr2a( jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, work, lwork,
iwork, liwork, dol, dou, needil, neediu, inderr, nsplit, pivmin, scale, wl, wu, info )

```

\section*{Description}
?stegr2a computes selected eigenvalues and initial representations needed for eigenvector computations in ?stegr2b. It is invoked in the ScaLAPACK MRRR driver p?syevr and the corresponding Hermitian version when both eigenvalues and eigenvectors are computed in parallel on multiple processors. For this case, ?stegr2a implements the first part of the MRRR algorithm, parallel eigenvalue computation and finding the root RRR. At the end of ?stegr2a, other processors might have a part of the spectrum that is needed to continue the computation locally. Once this eigenvalue information has been received by the processor, the computation can then proceed by calling the second part of the parallel MRRR algorithm, ?stegr2b.
Please note:
- The calling sequence has two additional integer parameters, (compared to LAPACK's stegr), these are \(d o l\) and \(d o u\) and should satisfy \(m \geq d o u \geq d o l \geq 1\). These parameters are only relevant for the case \(j o b z=\) ' \(V\) '.

Globally invoked over all processors, ?stegr2a computes all the eigenvalues specified by range.
?stegr2a locally only computes the eigenvalues corresponding to eigenvalues dol through dou in w. (That is, instead of computing the eigenvectors belonging to \(w(1)\) through \(w(m)\), only the eigenvectors belonging to eigenvalues \(w(d o l)\) through \(w(d o u)\) are computed. In this case, only the eigenvalues dol:dou are guaranteed to be fully accurate.
- \(m\) is not the number of eigenvalues specified by range, but it is \(m=d o u-d o l+1\). Instead, \(m\) refers to the number of eigenvalues computed on this processor.
- While no eigenvectors are computed in ?stegr2a itself (this is done later in ?stegr2b), the interface

If jobz = 'V' then, depending on range and dol, dou, ?stegr2a might need more workspace in \(z\) then the original ?stegr. In particular, the arrays \(w\) and \(z\) might not contain all the wanted eigenpairs locally, instead this information is distributed over other processors.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Input Parameters}
```

jobz
range
CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
CHARACTER*1

```
\(n\)

\section*{\(n z c\)}
\(=\) ' A ': all eigenvalues will be found.
\(=\) ' \(V\) ': all eigenvalues in the half-open interval (\(v 1, v u\)] will be found.
\(=\) 'I': the il-th through iu-th eigenvalues (of the entire matrix) will be found.

INTEGER
The order of the matrix. \(n \geq 0\).
REAL for sstegr2a
DOUBLE PRECISION for dstegr2a
Array of size \(n\)
The \(n\) diagonal elements of the tridiagonal matrix \(T\). Overwritten on exit.
REAL for sstegr2a
DOUBLE PRECISION for dstegr2a
Array of size \(n\)
On entry, the (\(n-1\)) subdiagonal elements of the tridiagonal matrix \(T\) in elements 1 to \(n-1\) of \(e\). e(n) need not be set on input, but is used internally as workspace. Overwritten on exit.

REAL for sstegr2a
DOUBLE PRECISION for dstegr2a
If range='V', the lower and upper bounds of the interval to be searched for eigenvalues. \(v l\) < vu.
Not referenced if range \(=\) 'A' or 'I'.

\section*{INTEGER}

If range='I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned. \(1 \leq i l \leq i u \leq n\), if \(n>0\).
Not referenced if range \(=\) 'A' or 'V'.
INTEGER
The leading dimension of the array \(z . ~ I d z \geq 1\), and if \(j o b z=\) ' V ', then \(l d z \geq\) \(\max (1, n)\).

INTEGER
The number of eigenvectors to be held in the array \(z\).
If range \(=\) ' \(A\) ', then \(n z c \geq \max (1, n)\).
If range \(=\) ' \(V\) ', then \(n z c \geq\) the number of eigenvalues in (\(v 1, v u]\).
If range \(=\) 'I', then \(n z c \geq i u-i l+1\).
If \(n z c=-1\), then a workspace query is assumed; the routine calculates the number of columns of the array \(z\) that are needed to hold the eigenvectors. This value is returned as the first entry of the \(z\) array, and no error message related to \(n z c\) is issued.

I work
liwork

INTEGER
The size of the array work. 1 work \(\geq \max \left(1,18^{*} n\right)\) if jobz \(=\) ' \(V\) ', and \(\operatorname{lwork} \geq\) \(\max \left(1,12 *_{n}\right)\) if jobz \(=\) ' N .

If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued.

\section*{INTEGER}

The size of the array iwork. liwork \(\geq \max \left(1,10 *_{n}\right)\) if the eigenvectors are desired, and liwork \(\geq \max \left(1,8 *_{n}\right)\) if only the eigenvalues are to be computed.
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued.

INTEGER
From all the eigenvalues \(w(1: m)\), only eigenvalues \(w(d o l: d o u)\) are computed.

INTEGER
Globally summed over all processors, \(m\) equals the total number of eigenvalues found. \(0 \leq m \leq n\).
If range \(=\) ' A ', \(m=n\), and if range \(=\) ' \(I\) ', \(m=i u-i l+1\).
The local output equals \(m=\) dou - dol +1 .
REAL for sstegr2a
DOUBLE PRECISION for dstegr2a
Array of size \(n\)
The first \(m\) elements contain approximations to the selected eigenvalues in ascending order. Note that immediately after exiting this routine, only the eigenvalues from position dol:dou are reliable on this processor because the eigenvalue computation is done in parallel. The other entries outside dol: douare very crude preliminary approximations. Other processors hold reliable information on these other parts of the \(w\) array.
This information is communicated in the ScaLAPACK driver.
REAL for sstegr2a
DOUBLE PRECISION for dstegr2a
Array of size \((l d z, \max (1, m))\).
?stegr2a does not compute eigenvectors, this is done in ?stegr2b. The argument \(z\) as well as all related other arguments only appear to keep the interface consistent and to signal to the user that this subroutine is meant to be used when eigenvectors are computed.

On exit, if info \(=0\), work(1) returns the optimal (and minimal) lwork.
\begin{tabular}{|c|c|}
\hline iwork & On exit, if info \(=0\), iwork(1) returns the optimal liwork. \\
\hline \multirow[t]{2}{*}{needil, neediu} & INTEGER \\
\hline & The indices of the leftmost and rightmost eigenvalues needed to accurately compute the relevant part of the representation tree. This information can be used to find out which processors have the relevant eigenvalue information needed so that it can be communicated. \\
\hline \multirow[t]{2}{*}{inderr} & INTEGER \\
\hline & inderr points to the place in the work space where the eigenvalue uncertainties (errors) are stored. \\
\hline \multirow[t]{2}{*}{nsplit} & INTEGER \\
\hline & The number of blocks into which \(T\) splits. \(1 \leq n s p l i t \leq n\). \\
\hline \multirow[t]{3}{*}{pivmin} & REAL for sstegr2a \\
\hline & DOUBLE PRECISION for dstegr2a \\
\hline & The minimum pivot in the sturm sequence for \(T\). \\
\hline \multirow[t]{3}{*}{scale} & REAL for sstegr2a \\
\hline & DOUBLE PRECISION for dstegr2a \\
\hline & The scaling factor for the tridiagonal \(T\). \\
\hline \multirow[t]{4}{*}{wl, wu} & REAL for sstegr2a \\
\hline & DOUBLE PRECISION for dstegr2a \\
\hline & The interval (\(w 1, w u\)] contains all the wanted eigenvalues. \\
\hline & It is either given by the user or computed in ?larre2a. \\
\hline \multirow[t]{5}{*}{info} & INTEGER \\
\hline & On exit, info \(=0\) : successful exit \\
\hline & other: if info \(=-i\), the \(i\)-th argument had an illegal value \\
\hline & if info \(=10 x\), internal error in ?larre2a, \\
\hline & Here, the digit \(x=\operatorname{abs}(\) iinfo \()<10\), where iinfo is the nonzero error code returned by ?larre2a. \\
\hline
\end{tabular}

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?stegr2b}

From eigenvalues and initial representations computes
the selected eigenvalues and eigenvectors of the real
symmetric tridiagonal matrix in parallel on multiple
processors.

\section*{Syntax}
```

call sstegr2b( jobz, n, d, e, m, w, z, ldz, nzc, isuppz, work, lwork, iwork, liwork, dol,
dou, needil, neediu, indwlc, pivmin, scale, wl, wu, vstart, finish, maxcls, ndepth,
parity, zoffset, info )

```
```

call dstegr2b( jobz, n, d, e, m, w, z, ldz, nzc, isuppz, work, lwork, iwork, liwork, dol,
dou, needil, neediu, indwlc, pivmin, scale, wl, wu, vstart, finish, maxcls, ndepth,
parity, zoffset, info )

```

\section*{Description}
?stegr 2 b should only be called after a call to ?stegr2a. From eigenvalues and initial representations computed by ?stegr2a, ?stegr2b computes the selected eigenvalues and eigenvectors of the real symmetric tridiagonal matrix in parallel on multiple processors. It is potentially invoked multiple times on a given processor because the locally relevant representation tree might depend on spectral information that is "owned" by other processors and might need to be communicated.

\section*{Please note:}
- The calling sequence has two additional integer parameters, dol and dou, that should satisfy \(m \geq d o u \geq d o l \geq 1\). These parameters are only relevant for the case jobz = 'V'. ?stegr2b only computes the eigenvectors corresponding to eigenvalues dol through dou in w. (That is, instead of computing the eigenvectors belonging to \(w(1)\) through \(w(m)\), only the eigenvectors belonging to eigenvalues \(w(d o l)\) through \(w(d o u)\) are computed. In this case, only the eigenvalues \(d o l\) : dou are guaranteed to be accurately refined to all figures by Rayleigh-Quotient iteration.
- The additional arguments vstart, finish, ndepth, parity, zoffset are included as a thread-safe implementation equivalent to save variables. These variables store details about the local representation tree which is computed layerwise. For scalability reasons, eigenvalues belonging to the locally relevant representation tree might be computed on other processors. These need to be communicated before the inspection of the RRRs can proceed on any given layer. Note that only when the variable finishequals. TRUE., the computation has ended. All eigenpairs between dol and dou have been computed. \(m\) is set to dou - dol +1 .
- ?stegr2b needs more workspace in \(z\) than the sequential ?stegr. It is used to store the conformal embedding of the local representation tree.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
jobz
CHARACTER*1
\(=\) ' N ': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
INTEGER

The order of the matrix. \(n \geq 0\).
d
REAL for sstegr2b
DOUBLE PRECISION for dstegr2b
Array of size \(n\)
The \(n\) diagonal elements of the tridiagonal matrix T. Overwritten on exit.
REAL for sstegr2b
DOUBLE PRECISION for dstegr2b
m
w
\(I d z\)
nZC

I work
liwork
dol, dou
needil, neediu

Array of size \(n\)
The (\(n-1\)) subdiagonal elements of the tridiagonal matrix \(T\) in elements 1 to \(n-1\) of \(e . e(n)\) need not be set on input, but is used internally as workspace. Overwritten on exit.
```

INTEGER

```

The total number of eigenvalues found in ?stegr2a. \(0 \leq m \leq n\).
REAL for sstegr2b
DOUBLE PRECISION for dstegr2b
Array of size \(n\)
The first \(m\) elements contain approximations to the selected eigenvalues in ascending order. Note that only the eigenvalues from the locally relevant part of the representation tree, that is all the clusters that include eigenvalues from dol:dou, are reliable on this processor. (It does not need to know about any others anyway.)

INTEGER
The leading dimension of the array \(z . ~ I d z \geq 1\), and if \(j o b z=' \mathrm{~V}\) ', then \(l d z \geq\) \(\max (1, n)\).

INTEGER
The number of eigenvectors to be held in the array \(z\), storing the matrix \(Z\).
INTEGER
The size of the array work. \(l_{\text {wor }} \geq \max \left(1,18 *_{n}\right)\)
if jobz \(=\) ' V ', and 1 work \(\geq \max \left(1,12^{*} n\right)\) if jobz \(=\) ' N '.
If 1 work \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the work array, returns this value as the first entry of the work array, and no error message related to lwork is issued.

\section*{INTEGER}

The size of the array iwork. liwork \(\geq \max \left(1,10 *_{n}\right)\) if the eigenvectors are desired, and \(l i w o r k \geq \max \left(1,8 *_{n}\right)\) if only the eigenvalues are to be computed.
If liwork \(=-1\), then a workspace query is assumed; the routine only calculates the optimal size of the iwork array, returns this value as the first entry of the iwork array, and no error message related to liwork is issued.

INTEGER
From the eigenvalues \(w(1: m)\), only eigenvectors \(Z(:, d o l)\) to \(Z(:\), dou \()\) are computed.
If dol \(>1\), then \(Z(:, d o l-1-z o f f s e t)\) is used and overwritten.
If dou \(<m\), then \(Z(:\),dou \(+1-\) zoffset \()\) is used and overwritten.
INTEGER
pivmin
scale
wl, wu
vstart
finish
maxcls
ndepth
parity
zoffset

\section*{OUTPUT Parameters}
z
isuppz

Describes which are the left and right outermost eigenvalues still to be computed. Initially computed by ?larre2a, modified in the course of the algorithm.

REAL for sstegr2b
DOUBLE PRECISION for dstegr2b
The minimum pivot in the sturm sequence for \(T\).
REAL for sstegr2b
DOUBLE PRECISION for dstegr2b
The scaling factor for \(T\). Used for unscaling the eigenvalues at the very end of the algorithm.

REAL for sstegr2b
DOUBLE PRECISION for dstegr2b
The interval (\(w 1, w u\)] contains all the wanted eigenvalues.
LOGICAL
.TRUE. on initialization, set to .FALSE. afterwards.
LOGICAL
Indicates whether all eigenpairs have been computed.
INTEGER
The largest cluster worked on by this processor in the representation tree.
INTEGER
The current depth of the representation tree. Set to zero on initial pass, changed when the deeper levels of the representation tree are generated.

INTEGER
An internal parameter needed for the storage of the clusters on the current level of the representation tree.

INTEGER
Offset for storing the eigenpairs when \(z\) is distributed in 1D-cyclic fashion.

REAL for sstegr2b
DOUBLE PRECISION for dstegr2b
Array of size \((I d z, \max (1, m))\)
If jobz \(=\) ' \(V\) ', and if info \(=0\), then a subset of the first \(m\) columns of the matrix \(Z\), stored in \(z\), contain the orthonormal eigenvectors of the matrix \(T\) corresponding to the selected eigenvalues, with the \(i\)-th column of \(Z\) holding the eigenvector associated with \(w(i)\).
See dol, dou for more information.
INTEGER array of size \(2 * \max (1, m)\).
work
iwork
needil, neediu
indwlc
vstart
finish
maxcls
ndepth
parity
info

The support of the eigenvectors in \(z\), i.e., the indices indicating the nonzero elements in \(z\). The \(i\)-th computed eigenvector is nonzero only in elements \(i \operatorname{suppz}(2 * i-1)\) through isuppz \(\left(2 *_{i}\right)\). This is relevant in the case when the matrix is split. isuppz is only set if \(n>2\).

On exit, if info \(=0\), work(1) returns the optimal (and minimal) lwork.
On exit, if info \(=0\), iwork(1) returns the optimal liwork.
Modified in the course of the algorithm.
REAL for sstegr2b
DOUBLE PRECISION for dstegr2b
Pointer into the workspace location where the local eigenvalue representations are stored. ("Local eigenvalues" are those relative to the individual shifts of the RRRs.)
.TRUE. on initialization, set to .FALSE. afterwards.
Indicates whether all eigenpairs have been computed
The largest cluster worked on by this processor in the representation tree.
The current depth of the representation tree. Set to zero on initial pass, changed when the deeper levels of the representation tree are generated.

An internal parameter needed for the storage of the clusters on the current level of the representation tree.

INTEGER
On exit, info
= 0: successful exit
other:if info \(=-i\), the \(i\)-th argument had an illegal value
if info \(=20 x\), internal error in ?larrv2.
Here, the digit \(x=\operatorname{abs}(\) iinfo \()<10\), where info is the nonzero error code returned by ?larrv2

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?stein2}

Computes the eigenvectors corresponding to specified eigenvalues of a real symmetric tridiagonal matrix, using inverse iteration.

\section*{Syntax}
```

call sstein2(n, d, e, m, w, iblock, isplit, orfac, z, ldz, work, iwork, ifail, info)
call dstein2(n, d, e, m, w, iblock, isplit, orfac, z, ldz, work, iwork, ifail, info)

```

\section*{Description}

The ?stein2routine is a modified LAPACK routine ?stein. It computes the eigenvectors of a real symmetric tridiagonal matrix \(T\) corresponding to specified eigenvalues, using inverse iteration.

The maximum number of iterations allowed for each eigenvector is specified by an internal parameter maxits (currently set to 5).

\section*{Input Parameters}
```

n
m
d,e,w

```
iblock
isplit

INTEGER. The order of the matrix \(T(n \geq 0)\).
INTEGER. The number of eigenvectors to be found \((0 \leq m \leq n)\).
REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
Arrays:
\(d(*)\), of size \(n\). The \(n\) diagonal elements of the tridiagonal matrix \(T\).
\(e(*)\), of size \(n\).
The (\(n-1\)) subdiagonal elements of the tridiagonal matrix \(T\), in elements 1 to \(n-1\). e(\(n\)) need not be set.
\(w(*)\), of size \(n\).
The first \(m\) elements of \(w\) contain the eigenvalues for which eigenvectors are to be computed. The eigenvalues should be grouped by split-off block and ordered from smallest to largest within the block. (The output array w from ?stebz with ORDER = 'B' is expected here).

The size of \(w\) must be at least max \((1, n)\).

INTEGER.
Array of size \(n\).
The submatrix indices associated with the corresponding eigenvalues in w; iblock \((i)=1\), if eigenvalue \(w(i)\) belongs to the first submatrix from the top,
iblock \((i)=2\), if eigenvalue \(w(i)\) belongs to the second submatrix, etc. (The output array iblock from ?stebz is expected here).

INTEGER.
Array of size \(n\).
The splitting points, at which \(T\) breaks up into submatrices. The first submatrix consists of rows/columns 1 to isplit(1), the second submatrix consists of rows/columns isplit(1)+1 through isplit(2), etc. (The output array isplit from ?stebz is expected here).

REAL for single-precision flavors
DOUBLE PRECISION for double-precision flavors.
orfac specifies which eigenvectors should be orthogonalized. Eigenvectors that correspond to eigenvalues which are within orfac*||T|| of each other are to be orthogonalized.

INTEGER. The leading dimension of the output array \(z ; l d z \geq \max (1, n)\). REAL for single-precision flavors
```

    DOUBLE PRECISION for double-precision flavors.
    Workspace array of size 5n
    iwork INTEGER. Workspace array of size n.

```

\section*{Output Parameters}
```

z

```

REAL for sstein2
DOUBLE PRECISION for dstein2
Array of size \(/ d z\) by \(m\).
The computed eigenvectors. The eigenvector associated with the eigenvalue \(w(i)\) is stored in the \(i\)-th column of \(z\). Any vector that fails to converge is set to its current iterate after maxits iterations.

INTEGER.
Array of size \(m\).
On normal exit, all elements of ifail are zero. If one or more eigenvectors fail to converge after maxits iterations, then their indices are stored in the array ifail.

INTEGER.
info \(=0\), the exit is successful.
info \(<0\) : if info \(=-i\), the \(i\)-th had an illegal value.
info \(>0\) : if info \(=i\), then \(i\) eigenvectors failed to converge in maxits iterations. Their indices are stored in the array ifail.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?dbtf2}

Computes an LU factorization of a general band matrix with no pivoting (local unblocked algorithm).

\section*{Syntax}
```

call sdbtf2(m, n, kl, ku, ab, ldab, info)
call ddbtf2(m, n, kl, ku, ab, ldab, info)
call cdbtf2(m, n, kl, ku, ab, ldab, info)
call zdbtf2(m, n, kl, ku, ab, ldab, info)

```

\section*{Description}

The ? dbtf2routine computes an \(L U\) factorization of a general real/complex \(m\)-by- \(n\) band matrix \(A\) without using partial pivoting with row interchanges.
This is the unblocked version of the algorithm, calling BLAS Routines and Functions.

\section*{Input Parameters}
```

n
kI
ku
ab
ldab
INTEGER. The number of columns in $A(n \geq 0)$.
INTEGER. The number of sub-diagonals within the band of $A(k l \geq 0)$.
INTEGER. The number of super-diagonals within the band of $A(k u \geq 0)$.
REAL for sdbtf2
DOUBLE PRECISION for ddbtf2
COMPLEX for cdbtf2
COMPLEX*16 for zdbtf2.
Array of size Idab by $n$.
The matrix $A$ in band storage, in rows $k l+1$ to $2 k l+k u+1$; rows 1 to $k l$ of the array need not be set. The $j$-th column of $A$ is stored in the $j$ th column of the array $a b$ as follows: $a b(k l+k u+1+i-j, j)=A(i, j)$ for $\max (1, j-k u) \leq i \leq \min (m, j+k l)$.
INTEGER. The leading dimension of the array $a b$.
(ldab $\geq 2 k I+k u+1)$

```

\section*{Output Parameters}
\(a b\)
On exit, details of the factorization: \(U\) is stored as an upper triangular band matrix with \(k l+k u\) superdiagonals in rows 1 to \(k l+k u+1\), and the multipliers used during the factorization are stored in rows \(k l+k u+2\) to \(2 * k l+k u+1\). See the Application Notes below for further details.

INTEGER.
\(=0\) : successful exit
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value,
\(>0\) : if info \(=+i, U(i, i)\) is 0 . The factorization has been completed, but the factor \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{Application Notes}

The band storage scheme is illustrated by the following example, when \(m=n=6, k l=2, k u=1\) :

\section*{on entry} on exit

The routine does not use array elements marked *; elements marked + need not be set on entry, but the routine requires them to store elements of \(U\), because of fill-in resulting from the row interchanges.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?dbtrf}

Computes an LU factorization of a general band matrix with no pivoting (local blocked algorithm).

\section*{Syntax}
```

call sdbtrf(m, n, kl, ku, ab, ldab, info)
call ddbtrf(m, n, kl, ku, ab, ldab, info)
call cdbtrf(m, n, kl, ku, ab, ldab, info)
call zdbtrf(m, n, kl, ku, ab, ldab, info)

```

\section*{Description}

This routine computes an LU factorization of a real \(m\)-by-n band matrix \(A\) without using partial pivoting or row interchanges.
This is the blocked version of the algorithm, calling BLAS Routines and Functions.

\section*{Input Parameters}
\begin{tabular}{ll}
\(m\) & INTEGER. The number of rows of the matrix \(A(m \geq 0)\). \\
\(n\) & INTEGER. The number of columns in \(A(n \geq 0)\). \\
\(k u\) & INTEGER. The number of sub-diagonals within the band of \(A(k I \geq 0)\). \\
& INTEGER. The number of super-diagonals within the band of \(A(k u \geq 0)\). \\
& REAL for sdbtrf \\
& DOUBLE PRECISION for ddbtrf \\
& COMPLEX for cdbtrf \\
& COMPLEX* 16 for zdbtrf.
\end{tabular}

Array of size \(/ d a b\) by \(n\).
The matrix \(A\) in band storage, in rows \(k l+1\) to \(2 k l+k u+1\); rows 1 to klof the array need not be set. The \(j\)-th column of \(A\) is stored in the \(j\)-th column of the array \(a b\) as follows: \(a b(k l+k u+1+i-j, j)=A(i, j)\) for \(\max (1, j-k u)\) \(\leq i \leq \min (m, j+k l)\).

INTEGER. The leading dimension of the array \(a b\).
```

(ldab \geq 2kl + ku +1)

```

\section*{Output Parameters}
\(a b\)
info
On exit, details of the factorization: \(U\) is stored as an upper triangular band matrix with \(k l+k u\) superdiagonals in rows 1 to \(k l+k u+1\), and the multipliers used during the factorization are stored in rows \(k l+k u+2\) to \(2 * k l+k u+1\). See the Application Notes below for further details.

INTEGER.
\(=0\) : successful exit
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value,
> 0 : if info \(=+i, U(i, i)\) is 0 . The factorization has been completed, but the factor \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{Application Notes}

The band storage scheme is illustrated by the following example, when \(m=n=6, k I=2, k u=1\) :
on entry on exit

The routine does not use array elements marked *.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?dttrf}

Computes an LU factorization of a general tridiagonal
matrix with no pivoting (local blocked algorithm).

\section*{Syntax}
```

call sdttrf(n, dl, d, du, info)
call ddttrf(n, dl, d, du, info)
call cdttrf(n, dl, d, du, info)
call zdttrf(n, dl, d, du, info)

```

\section*{Description}

The ?dttrfroutine computes an \(L U\) factorization of a real or complex tridiagonal matrix \(A\) using elimination without partial pivoting.
The factorization has the form \(A=L * U\), where \(L\) is a product of unit lower bidiagonal matrices and \(U\) is upper triangular with nonzeros only in the main diagonal and first superdiagonal.

\section*{Input Parameters}
```

n INTEGER. The order of the matrix A(n\geq0).
dl, d, du
INTEGER. The order of the matrix $A(n \geq 0)$.
REAL for sdttrf
DOUBLE PRECISION for ddttrf
COMPLEX for cdttrf
COMPLEX*16 for zdttrf.

```

Arrays containing elements of \(A\).
The array \(d l\) of size (\(n-1\)) contains the sub-diagonal elements of \(A\).
The array \(d\) of size \(n\) contains the diagonal elements of \(A\).

The array \(d u\) of size \((n-1)\) contains the super-diagonal elements of \(A\).

\section*{Output Parameters}
\(d 1\)
d
\(d u\)
info

Overwritten by the (\(n-1\)) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\).

Overwritten by the \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of \(A\).

Overwritten by the (\(n-1\)) elements of the first super-diagonal of \(U\).
INTEGER.
\(=0\) : successful exit
< 0: if info \(=-i\), the \(i\)-th argument had an illegal value,
\(>0\) : if info \(=i, U(i, i)\) is exactly 0 . The factorization has been completed, but the factor \(U\) is exactly singular. Division by 0 will occur if you use the factor \(U\) for solving a system of linear equations.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?dttrsv}

Solves a general tridiagonal system of linear equations using the LU factorization computed by ?dttrf.

Syntax
```

call sdttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)
call ddttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)
call cdttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)
call zdttrsv(uplo, trans, n, nrhs, dl, d, du, b, ldb, info)

```

\section*{Description}

The ?dttrsvroutine solves one of the following systems of linear equations:
```

L*X = B, L'T*X = B, or L'**X = B,
U*X = B, U'T}\mp@subsup{U}{}{T}*X=B\mathrm{ , or }\mp@subsup{U}{}{H}*X=

```
with factors of the tridiagonal matrix \(A\) from the \(L U\) factorization computed by ?dttrf.
Input Parameters
```

uplo

```
trans

\section*{CHARACTER*1.}

Specifies whether to solve with \(L\) or \(U\).
CHARACTER. Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans \(=\) ' \(N\) ', then \(A \star X=B\) is solved for \(X\) (no transpose).
If trans \(=\) ' \(T\) ', then \(A^{T *} X=B\) is solved for \(X\) (transpose).

If trans \(=\) ' \(C\) ', then \(A^{H \star} X=B\) is solved for \(X\) (conjugate transpose).
n
nrhs
\(d l, d, d u, b\)

1 db

INTEGER. The order of the matrix \(A(n \geq 0)\).
INTEGER. The number of right-hand sides, that is, the number of columns in the matrix \(B\) (nrhs \(\geq 0)\).

REAL for sdttrsv
DOUBLE PRECISION for ddttrsv
COMPLEX for cdttrsv
COMPLEX*16 for zdttrsv.
The array \(d l\) of size \((n-1)\) contains the \((n-1)\) multipliers that define the matrix \(L\) from the \(L U\) factorization of \(A\).

The array \(d\) of size \(n\) contains \(n\) diagonal elements of the upper triangular matrix \(U\) from the \(L U\) factorization of \(A\).

The array \(d u\) of size \((n-1)\) contains the \((n-1)\) elements of the first superdiagonal of \(U\).

On entry, the array \(b\) of size (\(/ d b, n r h s\)) contains the right-hand side of matrix \(B\).

INTEGER. The leading dimension of the array \(b ; 1 d b \geq \max (1, n)\).

\section*{Output Parameters}
b
info

Overwritten by the solution matrix \(X\).
INTEGER. If info \(=0\), the execution is successful.
If info \(=-i\), the \(i\)-th parameter had an illegal value.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?pttrsv}

Solves a symmetric (Hermitian) positive-definite tridiagonal system of linear equations, using the
L*D*LH factorization computed by ?pttrf.

\section*{Syntax}
```

call spttrsv(trans, n, nrhs, d, e, b, ldb, info)
call dpttrsv(trans, n, nrhs, d, e, b, ldb, info)
call cpttrsv(uplo, trans, n, nrhs, d, e, b, ldb, info)
call zpttrsv(uplo, trans, n, nrhs, d, e, b, ldb, info)

```

\section*{Description}

The ?pttrsvroutine solves one of the triangular systems:
\(L^{T} \star X=B\), or \(L^{\star} X=B\) for real flavors,
or
\(L \star X=B\), or \(L^{H \star} X=B\),
\(U^{*} X=B\), or \(U^{H} * X=B\) for complex flavors,
where \(L\) (or \(U\) for complex flavors) is the Cholesky factor of a Hermitian positive-definite tridiagonal matrix \(A\) such that
```

A = L* D* L' (computed by spttrf/dpttrf)

```
or

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{uplo} & CHARACTER*1. Must be 'U' or 'L'. \\
\hline & Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix \(A\) is stored and the form of the factorization: \\
\hline & If uplo = 'U', \(e\) is the superdiagonal of \(U\), and \(A=U^{H} *_{D} * U\) or \(A=\) \(L^{*} D^{*} L^{H}\); \\
\hline & if uplo = 'L', e is the subdiagonal of \(L\), and \(A=L^{*} D^{*} L^{H}\). \\
\hline & The two forms are equivalent, if \(A\) is real. \\
\hline \multirow[t]{8}{*}{trans} & CHARACTER. \\
\hline & Specifies the form of the system of equations: \\
\hline & for real flavors: \\
\hline & if trans \(=\) ' \(\mathrm{N}^{\prime}: L^{\star} X=B\) (no transpose) \\
\hline & if trans \(=\) 'T' \(\mathrm{T}^{T} \mathrm{~L}^{T} X=B\) (transpose) \\
\hline & for complex flavors: \\
\hline & if trans \(=\) ' N': \(U^{\star} X=B\) or \(L^{\star} X=B\) (no transpose) \\
\hline & if trans \(=\) 'C': \(U^{H *} X=B\) or \(L^{H *} X=B\) (conjugate transpose). \\
\hline \(n\) & INTEGER. The order of the tridiagonal matrix \(A\). \(n \geq 0\). \\
\hline nrhs & INTEGER. The number of right hand sides, that is, the number of columns of the matrix \(B\). nrhs \(\geq 0\). \\
\hline d & REAL array of size \(n\). The \(n\) diagonal elements of the diagonal matrix \(D\) from the factorization computed by ?pttrf. \\
\hline e & COMPLEX array of size \((n-1)\). The (\(n-1\)) off-diagonal elements of the unit bidiagonal factor \(U\) or \(L\) from the factorization computed by ?pttrf. See uplo. \\
\hline \multirow[t]{2}{*}{b} & COMPLEX array of size /dbby nrhs. \\
\hline & On entry, the right hand side matrix \(B\). \\
\hline \multirow[t]{3}{*}{1 db} & INTEGER. \\
\hline & The leading dimension of the array \(b\). \\
\hline & \(I d b \geq \max (1, n)\). \\
\hline
\end{tabular}

\section*{Output Parameters}
```

b On exit, the solution matrix X.
info

```

On exit, the solution matrix \(X\).
INTEGER.
\(=0\) : successful exit
< 0 : if info \(=-i\), the \(i\)-th argument had an illegal value.

\section*{See Also}

Overview for details of ScaLAPACK array descriptor structures and related notations.

\section*{?steqr2}

Computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method.

\section*{Syntax}
```

call ssteqr2(compz, n, d, e, z, ldz, nr, work, info)
call dsteqr2(compz, n, d, e, z, ldz, nr, work, info)

```

\section*{Description}

The ?steqr2routine is a modified version of LAPACK routine ?steqr. The ?steqr2routine computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method. ?steqr2 is modified from ?steqr to allow each ScaLAPACK process running ?steqr2 to perform updates on a distributed matrix Q. Proper usage of ?steqr2 can be gleaned from examination of ScaLAPACK routine p?syev.

\section*{Input Parameters}
```

compz
n
d, e, work

If compz = 'N', the routine computes eigenvalues only. If compz = 'I', the routine computes the eigenvalues and eigenvectors of the tridiagonal matrix $T$.
$z$ must be initialized to the identity matrix by p?laset or ?laset prior to entering this subroutine.

INTEGER. The order of the matrix $T(n \geq 0)$.
REAL for ssteqr2
DOUBLE PRECISION for dsteqr2

## Arrays:

$d$ contains the diagonal elements of $T$. The size of $d$ must be at least $\max (1, n)$.
e contains the ( $n-1$ ) subdiagonal elements of $T$. The size of $e$ must be at least max ( $1, n-1$ ).
work is a workspace array. The size of work is $\max \left(1,2 *_{n-2}\right)$. If compz $=$ ' N ', then work is not referenced.
(local)

REAL for ssteqr2
DOUBLE PRECISION for dsteqr2
Array of global size $n$ by $n$ and of local size Idzby nr.
If compz = 'V', then $z$ contains the orthogonal matrix used in the reduction to tridiagonal form.

INTEGER. The leading dimension of the array $z$. Constraints:
$l d z \geq 1$,
$l d z \geq \max (1, n)$, if eigenvectors are desired.
INTEGER. nr $=\max (1$, numroc( $n, n b$, myprow, 0, nprocs) $)$.
If compz $=$ ' $N$ ', then $n r$ is not referenced.

## Output Parameters

$d$
On exit, the eigenvalues in ascending order, if info $=0$.
See also info.
On exit, e has been destroyed.
On exit, if info $=0$, then,
if compz = ' V ', $z$ contains the orthonormal eigenvectors of the original symmetric matrix, and if compz = 'I', z contains the orthonormal eigenvectors of the symmetric tridiagonal matrix. If compz $=$ ' $N$ ', then $z$ is not referenced.
info
INTEGER.
info $=0$, the exit is successful.
info $<0$ : if info $=-i$, the $i$-th had an illegal value.
info> 0 : the algorithm has failed to find all the eigenvalues in a total of 30n iterations;
if info $=i$, then $i$ elements of e have not converged to zero; on exit, $d$ and e contain the elements of a symmetric tridiagonal matrix, which is orthogonally similar to the original matrix.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## ?trmvt

Performs matrix-vector operations.

## Syntax

```
call strmvt (uplo, n, t, ldt, x, incx, y, incy, w, incw, z, incz)
call dtrmvt (uplo, n, t, ldt, x, incx, y, incy, w, incw, z, incz)
call ctrmvt (uplo, n, t, ldt, x, incx, y, incy, w, incw, z, incz)
call ztrmvt (uplo, n, t, ldt, x, incx, y, incy, w, incw, z, incz)
```


## Description

?trmvt performs the matrix-vector operations as follows:
strmvt and dtrmvt: $\mathrm{x}:=T^{*} \mathrm{y}$, and $\mathrm{w}:=T^{*} \mathrm{z}$
ctrmvt and ztrmvt: $\mathrm{x}:=\operatorname{conjg}(T){ }^{*} \mathrm{y}$, and $\mathrm{w}:=T{ }^{*} \mathrm{z}$,
where $\mathbf{x}$ is an $n$ element vector and $T$ is an $n-b y-n$ upper or lower triangular matrix.

## Input Parameters

```
uplo
```

$n$
t
$I d t$

CHARACTER*1.
On entry, uplo specifies whether the matrix is an upper or lower triangular matrix as follows:
uplo = 'U' or 'u'
$A$ is an upper triangular matrix.
uplo = 'L' or 'I'
$A$ is a lower triangular matrix.
Unchanged on exit.

## INTEGER.

On entry, $n$ specifies the order of the matrix $A . n$ must be at least zero.
Unchanged on exit.
REAL for strmvt
DOUBLE PRECISION for dtrmvt
COMPLEX for ctrmvt
DOUBLE COMPLEX for ztrmvt
Array of size ( $I d t, n$ ).
Before entry with uplo = 'U' or 'u', the leading $n$-by- $n$ upper triangular part of the array $t$ must contain the upper triangular matrix and the strictly lower triangular part of $t$ is not referenced.

Before entry with uplo = 'L' or 'I', the leading $n$-by- $n$ lower triangular part of the array $t$ must contain the lower triangular matrix and the strictly upper triangular part of $t$ is not referenced.

## INTEGER.

On entry, lda specifies the first dimension of $A$ as declared in the calling (sub) program. Ida must be at least $\max (1, n)$.
Unchanged on exit.

## INTEGER.

On entry, incx specifies the increment for the elements of $x$. incx must not be zero.
Unchanged on exit.
REAL for strmvt

|  | DOUBLE PRECISION for dtrmvt |
| :---: | :---: |
|  | COMPLEX for ctrmvt |
|  | DOUBLE COMPLEX for ztrmvt |
|  | Array of size at least ( $1+(n-1)^{*} \mathrm{abs}($ incy $)$ ). |
|  | Before entry, the incremented array $y$ must contain the $n$ element vector $y$. |
|  | Unchanged on exit. |
| incy | INTEGER. |
|  | On entry, incy specifies the increment for the elements of $y$. incy must not be zero. |
|  | Unchanged on exit. |
| incw | INTEGER. |
|  | On entry, incw specifies the increment for the elements of w. incw must not be zero. |
|  | Unchanged on exit. |
| z | REAL for strmvt |
|  | DOUBLE PRECISION for dtrmvt |
|  | COMPLEX for ctrmvt |
|  | DOUBLE COMPLEX for ztrmvt |
|  | Array of size at least (1+(n-1)*abs(incz ) ). |
|  | Before entry, the incremented array $z$ must contain the $n$ element vector $z$. |
|  | Unchanged on exit. |
| incz | INTEGER. |
|  | On entry, incz specifies the increment for the elements of $z$. incz must not be zero. |
|  | Unchanged on exit. |

## Output Parameters

$t$

X

Before entry with uplo = 'U' or 'u', the leading $n$-by-n upper triangular part of the array $t$ must contain the upper triangular matrix and the strictly lower triangular part of $t$ is not referenced.

Before entry with uplo = 'L' or 'I', the leading n-by-n lower triangular part of the array $t$ must contain the lower triangular matrix and the strictly upper triangular part of $t$ is not referenced.

REAL for strmvt
DOUBLE PRECISION for dtrmvt
COMPLEX for ctrmvt
DOUBLE COMPLEX for ztrmvt
Array of size at least ( $1+(n-1) * a b s($ incx $))$.

On exit, $x=T^{*} y$.
REAL for strmvt
DOUBLE PRECISION for dtrmvt
COMPLEX for ctrmvt
DOUBLE COMPLEX for ztrmvt
Array of size at least ( $1+(n-1) * a b s($ incw $))$.
On exit, $w=T^{*} z$.
pilaenv
Returns the positive integer value of the logical
blocking size.

## Syntax

```
value = pilaenv (ictxt, prec)
```


## Include Files

- mkl_pblas.h


## Description

pilaenv returns the positive integer value of the logical blocking size. This value is machine and precision specific. This version provides a logical blocking size which should give good though not optimal performance on many of the currently available distributed-memory concurrent computers. You are encouraged to modify this subroutine to set this tuning parameter for your particular machine.

## Input Parameters

```
ictxt
INTEGER. On entry, ictxt specifies the BLACS context handle, indicating the global context of the operation. The context itself is global, but the value of ictxt is local.
CHARACTER*1. On input, prec specifies the precision for which the logical block size should be returned as follows:
```

```
prec = 'S' or 's' single precision real,
```

prec = 'S' or 's' single precision real,
prec = 'D' or 'd' double precision real,
prec = 'D' or 'd' double precision real,
prec = 'C' or 'c' single precision complex,
prec = 'C' or 'c' single precision complex,
prec = 'z' or 'z' double precision complex,
prec = 'z' or 'z' double precision complex,
prec = 'I' or 'i' integer.

```
prec = 'I' or 'i' integer.
```


## Application Notes

Before modifying this routine to tune the library performance on your system, be aware of the following:

1. The value this function returns must be strictly larger than zero,
2. If you are planning to link your program with different instances of the library (for example, on a heterogeneous machine), you must compile each instance of the library with exactly the same version of this routine for obvious interoperability reasons.
```
pilaenvx
Called from the ScaLAPACK routines to choose
problem-dependent parameters for the local
environment.
```


## Syntax

```
result = pilaenvx (ictxt, ispec, name, opts, n1, n2, n3, n4)
```

```
result = pilaenvx (ictxt, ispec, name, opts, n1, n2, n3, n4)
```


## Include Files

- mkl.fi


## Description

pilaenvx is called from the ScaLAPACK routines to choose problem-dependent parameters for the local environment. See ispec for a description of the parameters. This version provides a set of parameters which should give good, though not optimal, performance on many of the currently available computers. You are encouraged to modify this subroutine to set the tuning parameters for your particular machine using the option and problem size information in the arguments.

## Input Parameters

ictxt
ispec
(local input) INTEGER. On entry, ictxt specifies the BLACS context handle, indicating the global context of the operation. The context itself is global, but the value of ictxt is local.
(global input) INTEGER.
Specifies the parameter to be returned as the value of pilaenvx.
$=1$ : the optimal blocksize; if this value is 1 , an unblocked algorithm will give the best performance (unlikely).
= 2: the minimum block size for which the block routine should be used; if the usable block size is less than this value, an unblocked routine should be used.
$=3$ : the crossover point (in a block routine, for N less than this value, an unblocked routine should be used).
$=4$ : the number of shifts, used in the nonsymmetric eigenvalue routines (DEPRECATED).
= 5: the minimum column dimension for blocking to be used; rectangular blocks must have dimension at least $k$ by $m$, where $k$ is given by pilaenvx (2,...) and $m$ by pilaenvx (5, ...).
$=6$ : the crossover point for the SVD (when reducing an $m$ by matrix to bidiagonal form, if $\max (m, n) / \min (m, n)$ exceeds this value, a QR factorization is used first to reduce the matrix to a triangular form).
$=7$ : the number of processors.
= 8: the crossover point for the multishift QR method for nonsymmetric eigenvalue problems (DEPRECATED).
= 9: maximum size of the subproblems at the bottom of the computation tree in the divide-and-conquer algorithm (used by ?gelsd and ?gesdd).
$=10$ : IEEE NaN arithmetic can be trusted not to trap.
$=11$ : infinity arithmetic can be trusted not to trap.
$12<=$ ispec <= 16:
p?hseqr or one of its subroutines, see piparmq for detailed explanation.
$17<=$ ispec $<=22$ :
Parameters for pb?trord/p?hseqr (not all), as follows:
=17: maximum number of concurrent computational windows;
$=18$ : number of eigenvalues/bulges in each window;
=19: computational window size;
=20: minimal percentage of FLOPS required for performing matrix-matrix multiplications instead of pipelined orthogonal transformations;
$=21$ : width of block column slabs for row-wise application of pipelined orthogonal transformations in their factorized form;
$=22$ : the maximum number of eigenvalues moved together over a process border;
=23: the number of processors involved in Aggressive Early Deflation (AED);
=99: Maximum iteration chunksize in OpenMP parallelization.
(global input) CHARACTER*(*).
The name of the calling subroutine, in either upper case or lower case. (global input) CHARACTER*(*). The character options to the subroutine name, concatenated into a single character string. For example, uplo = 'U', trans = 'T', and diag = 'N' for a triangular routine would be specified as opts = 'UTN'.
(global input) INTEGER. Problem dimensions for the subroutine name; these may not all be required.

## Output Parameters

result
(global output) INTEGER.
$>=0$ : the value of the parameter specified by ispec.
$<0$ : if pilaenvx $=-k$, the $k$-th argument had an illegal value.

## Application Notes

The following conventions have been used when calling ilaenv from the LAPACK routines:

1. opts is a concatenation of all of the character options to subroutine name, in the same order that they appear in the argument list for name, even if they are not used in determining the value of the parameter specified by ispec.
2. The problem dimensions $n 1, n 2, n 3$, and $n 4$ are specified in the order that they appear in the argument list for name. $n 1$ is used first, $n 2$ second, and so on, and unused problem dimensions are passed a value of -1 .
3. The parameter value returned by ilaenv is checked for validity in the calling subroutine. For example, ilaenv is used to retrieve the optimal block size for strtri as follows:
```
NB = ilaenv(1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1)
 IF(NB.LE.1) NB = MAX(1, N)
```

The same conventions hold for this ScaLAPACK-style variant.

```
pjlaenv
Called from the ScaLAPACK symmetric and Hermitian
tailored eigen-routines to choose problem-dependent
parameters for the local environment.
Syntax
result = pjlaenv (ictxt, ispec, name, opts, n1, n2, n3, n4)
```


## Include Files

- mkl.fi


## Description

pjlaenv is called from the ScaLAPACK symmetric and Hermitian tailored eigen-routines to choose problemdependent parameters for the local environment. See ispec for a description of the parameters. This version provides a set of parameters which should give good, though not optimal, performance on many of the currently available computers. You are encouraged to modify this subroutine to set the tuning parameters for your particular machine using the option and problem size information in the arguments.

## Input Parameters

ispec
name
opts
n1, n2, n3, and n4
(global input) INTEGER. Specifies the parameter to be returned as the value of pjlaenv.
$=1$ : the data layout blocksize;
$=2$ : the panel blocking factor;
= 3: the algorithmic blocking factor;
= 4: execution path control;
$=5$ : maximum size for direct call to the LAPACK routine.
(global input) CHARACTER*(*). The name of the calling subroutine, in either upper case or lower case.
(global input) CHARACTER*(*). The character options to the subroutine name, concatenated into a single character string. For example, uplo = 'U', trans = 'T', and diag = 'N' for a triangular routine would be specified as opts $=$ 'UTN'.
(global input) INTEGER. Problem dimensions for the subroutine name; these may not all be required. At present, only $n 1$ is used, and it ( $n 1$ ) is used only for 'TTRD'.

## Output Parameters

result
(global or local output) INTEGER.
$>=0$ : the value of the parameter specified by ispec.
< 0: if pjlaenv $=-k$, the $k$-th argument had an illegal value. Most parameters set via a call to pjlaenv must be identical on all processors and hence pjlaenv will return the same value to all
procesors (i.e. global output). However some, in particular, the panel blocking factor can be different on each processor and hence pjlaenv can return different values on different processors (i.e. local output).

## Application Notes

The following conventions have been used when calling pjlaenv from the ScaLAPACK routines:

1. opts is a concatenation of all of the character options to subroutine name, in the same order that they appear in the argument list for name, even if they are not used in determining the value of the parameter specified by ispec.
2. The problem dimensions $n 1, n 2, n 3$, and $n 4$ are specified in the order that they appear in the argument list for name. $n 1$ is used first, n2 second, and so on, and unused problem dimensions are passed a value of -1 .
a. The parameter value returned by pjlaenv is checked for validity in the calling subroutine. For example, pjlaenv is used to retrieve the optimal blocksize for STRTRI as follows:
```
NB = pjlaenv(1, 'STRTRI', UPLO // DIAG, N, -1, -1, -1)
IF(NB.LE.1) NB = MAX(1, N)
```

pjlaenv is patterned after ilaenv and keeps the same interface in anticipation of future needs, even though pjlaenv is only sparsely used at present in ScaLAPACK. Most ScaLAPACK codes use the input data layout blocking factor as the algorithmic blocking factor - hence there is no need or opportunity to set the algorithmic or data decomposition blocking factor. pXYYtevx.f and pXYYtgvx.f and pXYYttrd.f are the only codes which call pjlaenv. pXYYtevx.f and pXYYtgvx.f redistribute the data to the best data layout for each transformation. pXYYttrd.f uses a data layout blocking factor of 1.

## Additional ScaLAPACK Routines

```
call pchettrd (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pzhettrd (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pslaed0 (n, d, e, q, iq, jq, descq, work, iwork, info)
call pdlaed0 (n, d, e, q, iq, jq, descq, work, iwork, info)
call pslaedl (n, nl, d, id, q, iq, jq, descq, rho, work, iwork, info)
call pdlaedl (n, nl, d, id, q, iq, jq, descq, rho, work, iwork, info)
call pslaed2 (ictxt, k, n, n1, nb, d, drow, dcol, q, ldq, rho, z, w, dlamda, q2, ldq2,
qbuf, ctot, psm, npcol, indx, indxc, indxp, indcol, coltyp, nn, nn1, nn2, ibl, ib2)
call pdlaed2 (ictxt, k, n, nl, nb, d, drow, dcol, q, ldq, rho, z, w, dlamda, q2, ldq2,
qbuf, ctot, psm, npcol, indx, indxc, indxp, indcol, coltyp, nn, nn1, nn2, ibl, ib2)
call pslaed3 (ictxt, k, n, nb, d, drow, dcol, rho, dlamda, w, z, u, ldu, buf, indx,
indcol, indrow, indxr, indxc, ctot, npcol, info)
call pdlaed3 (ictxt, k, n, nb, d, drow, dcol, rho, dlamda, w, z, u, ldu, buf, indx,
indcol, indrow, indxr, indxc, ctot, npcol, info)
call pslaedz (n, nl, id, q, iq, jq, ldq, descq, z, work)
call pdlaedz (n, nl, id, q, iq, jq, ldq, descq, z, work)
call pdlaiectb (sigma, n, d, count)
call pdlaiectl (sigma, n, d, count)
call slamov (uplo, m, n, a, lda, b, ldb)
call dlamov (uplo, m, n, a, lda, b, ldb)
```

```
call clamov (uplo, m, n, a, lda, b, ldb)
call zlamov (uplo, m, n, a, lda, b, ldb)
call pslamrld (n, a, ia, ja, desca, b, ib, jb, descb)
call pdlamrld (n, a, ia, ja, desca, b, ib, jb, descb)
call pclamrld (n, a, ia, ja, desca, b, ib, jb, descb)
call pzlamrld (n, a, ia, ja, desca, b, ib, jb, descb)
call clanv2 (a, b, c, d, rt1, rt2, cs, sn)
call zlanv2 (a, b, c, d, rt1, rt2, cs, sn)
call pclattrs (uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx, scale,
cnorm, info)
call pzlattrs (uplo, trans, diag, normin, n, a, ia, ja, desca, x, ix, jx, descx, scale,
cnorm, info)
call pssyttrd (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
call pdsyttrd (uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
integer function piparmq (ictxt, ispec, name, opts, n, ilo, ihi, lworknb)
```

For descriptions of these functions, please see http://www.netlib.org/scalapack/explore-html/files.html.

## ScaLAPACK Utility Functions and Routines

This section describes ScaLAPACK utility functions and routines. Summary information about these routines is given in the following table:

ScaLAPACK Utility Functions and Routines

| Routine Name | Data Types | Description |
| :--- | :--- | :--- |
| p?labad | $s, d$ | Returns the square root of the underflow and overflow thresholds if the <br> exponent-range is very large. |
| p?lachkieee | $s, d$ | Performs a simple check for the features of the IEEE standard. (C <br> interface function). |
| p?lasnbt | $s, d$ | Determines machine parameters for floating-point arithmetic. <br> descinit |
| numroc | N/A | Computes the position of the sign bit of a floating-point number. (C <br> intace function). |

## See Also

pxerbla Error handling routine called by ScaLAPACK routines.

## p?labad

Returns the square root of the underflow and overflow thresholds if the exponent-range is very large.

## Syntax

```
call pslabad(ictxt, small, large)
call pdlabad(ictxt, small, large)
```


## Description

The p?labadroutine takes as input the values computed by p?lamch for underflow and overflow, and returns the square root of each of these values if the log of large is sufficiently large. This subroutine is intended to identify machines with a large exponent range, such as the Crays, and redefine the underflow and overflow limits to be the square roots of the values computed by p?lamch. This subroutine is needed because p? lamch does not compensate for poor arithmetic in the upper half of the exponent range, as is found on a Cray.

In addition, this routine performs a global minimization and maximization on these values, to support heterogeneous computing networks.

## Input Parameters

| ictat | (global) INTEGER. |
| :--- | :--- |
| Small | (local). |
|  | REAL PRECISS context handle in which the computation takes place. |
|  | DOUBLE PRECISION for pdlabad. |
| On entry, the underflow threshold as computed by p?lamch. |  |
| large | (local). |
|  | REAL PRECISION for pslabad. |
|  | DOUBLE PRECISION for pdlabad. |
|  | On entry, the overflow threshold as computed by p?lamch. |

## Output Parameters

small
large
(local).
On exit, if log10(large) is sufficiently large, the square root of small, otherwise unchanged.
(local).
On exit, if log10(large) is sufficiently large, the square root of large, otherwise unchanged.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
p?lachkieee
Performs a simple check for the features of the IEEE
standard. (C interface function).

## Syntax

```
void pslachkieee(int *isieee, float *rmax, float *rmin);
void pdlachkieee(int *isieee, float *rmax, float *rmin);
```


## Description

The p?lachkieeeroutine performs a simple check to make sure that the features of the IEEE standard are implemented. In some implementations, p?lachkieee may not return.

Note that all arguments are call-by-reference so that this routine can be directly called from Fortran code. This is a ScaLAPACK internal subroutine and arguments are not checked for unreasonable values.

## Input Parameters

```
rmax (local).
 REAL for pslachkieee
 DOUBLE PRECISION for pdlachkieee
 The overflow threshold(= ?lamch ('O')).
 (local).
 REAL for pslachkieee
 DOUBLE PRECISION for pdlachkieee
 The underflow threshold(= ?lamch ('U')).
```


## Output Parameters

```
isieee
```

(local). INTEGER.
On exit, isieee $=1$ implies that all the features of the IEEE standard that we rely on are implemented. On exit, isieee $=0$ implies that some the features of the IEEE standard that we rely on are missing.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?lamch

Determines machine parameters for floating-point arithmetic.

## Syntax

```
val = pslamch(ictxt, cmach)
val = pdlamch(ictxt, cmach)
```


## Description

The p?lamchroutine determines single precision machine parameters.

## Input Parameters

```
ictxt
cmach
(global). INTEGER. The BLACS context handle in which the computation takes place.
(global) CHARACTER*1.
Specifies the value to be returned by p?lamch:
= 'E' or 'e', p?lamch :=eps
= 'S' or 's' , p?lamch := sfmin
= 'B' or 'b', p?lamch := base
= ' \(\mathrm{P}^{\prime}\) or 'p', p?lamch :=eps*base
```

```
= 'N' or 'n', p?lamch:= t
= 'R' or 'r',p?lamch := rnd
= 'M' or 'm', p?lamch := emin
= 'U' or 'u', p?lamch := rmin
= 'L' or 'l', p?lamch := emax
= 'O' or 'o', p?lamch := rmax,
```

where
eps = relative machine precision
sfmin $=$ safe minimum, such that $1 /$ sfmin does not overflow
base $=$ base of the machine
prec $=$ eps*base
$t=$ number of (base) digits in the mantissa
rnd $=1.0$ when rounding occurs in addition, 0.0 otherwise
emin $=$ minimum exponent before (gradual) underflow
rmin $=$ underflow threshold - base ${ }^{(e m i n-1)}$
emax $=$ largest exponent before overflow
rmax $=$ overflow threshold - (base $\left.{ }^{\mathrm{emax}}\right) *(1-\mathrm{eps})$

## Output Parameters

val
Value returned by the routine.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?lasnbt

Computes the position of the sign bit of a floatingpoint number. (C interface function).

## Syntax

```
void pslasnbt(int *ieflag);
void pdlasnbt(int *ieflag);
```


## Description

The p?lasnbtroutine finds the position of the signbit of a single/double precision floating point number. This routine assumes IEEE arithmetic, and hence, tests only the 32-nd bit (for single precision) or 32-nd and 64th bits (for double precision) as a possibility for the signbit. sizeof (int) is assumed equal to 4 bytes.
If a compile time flag (NO_IEEE) indicates that the machine does not have IEEE arithmetic, ieflag $=0$ is returned.

## Output Parameters

```
ieflag
```

INTEGER.

This flag indicates the position of the signbit of any single/double precision floating point number.
ieflag $=0$, if the compile time flag NO_IEEE indicates that the machine does not have IEEE arithmetic, or if sizeof (int) is different from 4 bytes.
ieflag $=1$ indicates that the signbit is the 32 -nd bit for a single precision routine.

In the case of a double precision routine:
ieflag $=1$ indicates that the signbit is the 32-nd bit (Big Endian).
ieflag $=2$ indicates that the signbit is the 64-th bit (Little Endian).

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
descinit
Initializes the array descriptor for distributed matrix.

## Syntax

```
call descinit(desc, m, n, mb, nb, irsrc, icsrc, ictxt, lld, info)
```


## Description

The descintroutine initializes the array descriptor for distributed matrix.

## Input Parameters

| desc | (global) INTEGER. array of dimension DLEN_. The array descriptor of a distributed matrix to be set. |
| :---: | :---: |
| m | (global input)INTEGER. The number of rows in the distributed matrix. M $>=0$. |
| $n$ | (global input) INTEGER. The number of columns in the distributed matrix. N $>=0$. |
| mb | (global input) INTEGER. The blocking factor used to distribute the rows of the matrix. $M B>=1$. |
| $n \mathrm{~b}$ | (global input) INTEGER.INTEGER. The blocking factor used to distribute the columns of the matrix. $N B>=1$. |
| lrsrc | (global input) INTEGER. The process row over which the first row of the matrix is distributed. $0<=$ IRSRC $<$ NPROW. |
| $\operatorname{lcsrc}$ | (global input) INTEGER. The process column over which the first column of the matrix is distributed. $0<=$ ICSRC $<$ NPCOL. |
| ictxt | (global input) INTEGER. The BLACS context handle, indicating the global context of the operation on the matrix. The context itself is global. |
| 11 d | (local input) INTEGER. The leading dimension of the local array storing the local blocks of the distributed matrix. LLD $>=\operatorname{MAX}(1, \operatorname{LOCr}(\mathrm{M})) . \operatorname{LOCr}()$ denotes the number of rows of a global dense matrix that the process in a grid receives after data distributing. |

## Output Parameters

```
info (output)INTEGER.
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
```


## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.
numroc
Computes the number of rows or columns of a distributed matrix owned by the process.

## Syntax

```
val = numroc(n, nb, iproc, srcproc, nprocs)
```


## Description

The numrocroutine computes the number of rows or columns of a distributed matrix owned by the process.

## Input Parameters

n
nb
iproc
srcproc
nprocs
(global input)INTEGER. The number of rows/columns in distributed matrix.
(global input)INTEGER. Block size, size of the blocks the distributed matrix is split into.
(local input)INTEGER. The coordinate of the process whose local array row or column is to be determined.
(global input)INTEGER. The coordinate of the process that possesses the first row or column of the distributed matrix.
(global input)INTEGER. The total number processes over which the matrix is distributed.
(output)INTEGER. Value returned by the function.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## ScaLAPACK Redistribution/Copy Routines

This section describes ScaLAPACK redistribution/copy routines. Summary information about these routines is given in the following table:

## ScaLAPACK Redistribution/Copy Routines

| Routine Name | Data Types | Description |
| :--- | :--- | :--- |
| p?gemr2d | $s, d, c, z, i$ | Copies a submatrix from one general rectangular matrix to another. |
| p?trmr2d | $s, d, c, z, i$ | Copies a submatrix from one trapezoidal matrix to another. |

## See Also

pxerbla Error handling routine called by ScaLAPACK routines.

```
p?gemr2d
Copies a submatrix from one general rectangular
matrix to another.
```


## Syntax

```
call psgemr2d(m, n, a, ia, ja, desca, b, ib, jb, descb, ictxt)
call pdgemr2d(m, n, a, ia, ja, desca, b, ib, jb, descb, ictxt)
call pcgemr2d(m, n, a, ia, ja, desca, b, ib, jb, descb, ictxt)
call pzgemr2d(m, n, a, ia, ja, desca, b, ib, jb, descb, ictxt)
call pigemr2d(m, n, a, ia, ja, desca, b, ib, jb, descb, ictxt)
```


## Description

The p? gemr2droutine copies the indicated matrix or submatrix of $A$ to the indicated matrix or submatrix of $B$. It provides a truly general copy from any block cyclicly-distributed matrix or submatrix to any other block cyclicly-distributed matrix or submatrix. With p?trmr2d, these routines are the only ones in the ScaLAPACK library which provide inter-context operations: they can take a matrix or submatrix $A$ in context $A$ (distributed over process grid $A$ ) and copy it to a matrix or submatrix $B$ in context $B$ (distributed over process grid $B$ ).

There does not need to be a relationship between the two operand matrices or submatrices other than their global size and the fact that they are both legal block cyclicly-distributed matrices or submatrices. This means that they can, for example, be distributed across different process grids, have varying block sizes and differing matrix starting points, or be contained in different sized distributed matrices.
Take care when context $A$ is disjoint from context $B$. The general rules for which parameters need to be set are:

- All calling processes must have the correct $m$ and $n$.
- Processes in context $A$ must correctly define all parameters describing $A$.
- Processes in context $B$ must correctly define all parameters describing $B$.
- Processes which are not members of context $A$ must pass ctxt_a $=-1$ and need not set other parameters describing $A$.
- Processes which are not members of context $B$ must pass ctxt_ $b=-1$ and need not set other parameters describing $B$.

Because of its generality, p ? gemr2d can be used for many operations not usually associated with copy routines. For instance, it can be used to a take a matrix on one process and distribute it across a process grid, or the reverse. If a supercomputer is grouped into a virtual parallel machine with a workstation, for instance, this routine can be used to move the matrix from the workstation to the supercomputer and back. In ScaLAPACK, it is called to copy matrices from a two-dimensional process grid to a one-dimensional process grid. It can be used to redistribute matrices so that distributions providing maximal performance can be used by various component libraries, as well.

Note that this routine requires an array descriptor with dtype_ $=1$.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Input Parameters

m
n
a
ia, ja
desca
ib, jb
descb
ictxt

## Output Parameters

## b

REAL for psgemr2d
DOUBLE for pdgemr2d
COMPLEX for pcgemr2d
DOUBLE COMPLEX for pzgemr2d
INTEGER for pigemr2d.

Pointer into the local memory to array of size lld_bbyLOCC $(j b+n-1)$. Overwritten by the submatrix from $A$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## p?trmr2d

Copies a submatrix from one trapezoidal matrix to another.

## Syntax

```
call pstrmr2d(uplo, diag, m, n, a, ia, ja, desca, b, ib, jb, descb, ictxt)
call pdtrmr2d(uplo, diag, m, n, a, ia, ja, desca, b, ib, jb, descb, ictxt)
call pctrmr2d(uplo, diag, m, n, a, ia, ja, desca, b, ib, jb, descb, ictxt)
call pztrmr2d(uplo, diag, m, n, a, ia, ja, desca, b, ib, jb, descb, ictxt)
call pitrmr2d(uplo, diag, m, n, a, ia, ja, desca, b, ib, jb, descb, ictxt)
```


## Description

The p?trmr2droutine copies the indicated matrix or submatrix of $A$ to the indicated matrix or submatrix of $B$. It provides a truly general copy from any block cyclicly-distributed matrix or submatrix to any other block cyclicly-distributed matrix or submatrix. With p?gemr2d, these routines are the only ones in the ScaLAPACK library which provide inter-context operations: they can take a matrix or submatrix $A$ in context $A$ (distributed over process grid $A$ ) and copy it to a matrix or submatrix $B$ in context $B$ (distributed over process grid $B$ ).

The p?trmr2droutine assumes the matrix or submatrix to be trapezoidal. Only the upper or lower part is copied, and the other part is unchanged.
There does not need to be a relationship between the two operand matrices or submatrices other than their global size and the fact that they are both legal block cyclicly-distributed matrices or submatrices. This means that they can, for example, be distributed across different process grids, have varying block sizes and differing matrix starting points, or be contained in different sized distributed matrices.

Take care when context $A$ is disjoint from context $B$. The general rules for which parameters need to be set are:

- All calling processes must have the correct $m$ and $n$.
- Processes in context $A$ must correctly define all parameters describing $A$.
- Processes in context $B$ must correctly define all parameters describing $B$.
- Processes which are not members of context $A$ must pass ctxt_a $=-1$ and need not set other parameters describing $A$.
- Processes which are not members of context $B$ must pass ctxt_ $b=-1$ and need not set other parameters describing $B$.
Because of its generality, p?trmr2d can be used for many operations not usually associated with copy routines. For instance, it can be used to a take a matrix on one process and distribute it across a process grid, or the reverse. If a supercomputer is grouped into a virtual parallel machine with a workstation, for instance, this routine can be used to move the matrix from the workstation to the supercomputer and back. In ScaLAPACK, it is called to copy matrices from a two-dimensional process grid to a one-dimensional process grid. It can be used to redistribute matrices so that distributions providing maximal performance can be used by various component libraries, as well.
Note that this routine requires an array descriptor with dtype_ $=1$.


## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Input Parameters

uplo
diag
m
n
a
ia, ja
desca
i.b, j.b
descb
(global) CHARACTER*1. Specifies whether to copy the upper or lower part of the matrix or submatrix.

$$
\begin{array}{ll}
\text { uplo }=\text { 'U' } & \text { Copy the upper triangular part. } \\
\text { uplo }=\text { 'L' } & \text { Copy the lower triangular part. }
\end{array}
$$

(global) CHARACTER*1. Specifies whether to copy the diagonal of the matrix or submatrix.

| diag $=$ 'U' | Do not copy the diagonal. |
| :--- | :--- |
| diag $=^{\prime} N^{\prime}$ | Copy the diagonal. |

(global) INTEGER. The number of rows of matrix $A$ to be copied ( $m \geq 0$ ). (global) INTEGER. The number of columns of matrix $A$ to be copied ( $n \geq 0$ ). (local)
REAL for pstrmr2d
DOUBLE for pdtrmr2d
COMPLEX for pctrmr2d
DOUBLE COMPLEX for pztrmr2d
INTEGER for pitrmr2d.
Pointer into the local memory to array of size lld_aby LOCC (ja+n-1) containing the source matrix $A$.
(global) INTEGER. The row and column indices in the array $A$ indicating the first row and the first column, respectively, of the submatrix of $A$ ) to copy. 1 siátotal_rows_in_a-m+1,1<ja<total_columns_in_a-n+1.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $A$.

Only dtype_a = 1 is supported, so dlen_ $=9$.
If the calling process is not part of the context of $A, c t x t$ a must be equal to -1.
(global) INTEGER. The row and column indices in the array $B$ indicating the first row and the first column, respectively, of the submatrix $B$ to which to copy the matrix. $1 \leq i b \leq t o t a l \_r o w s \_i n \_b-m+1,1 \leq j b \leq t o t a l \_c o l u m n s \_i n \_b-$ $n+1$.
(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix $B$.

Only dtype_b=1 is supported, so dlen_ $=9$.
If the calling process is not part of the context of $B, c t x t=b$ must be equal to -1.
(global)INTEGER.
The context encompassing at least the union of all processes in context $A$ and context $B$. All processes in the context ictxt must call this routine, even if they do not own a piece of either matrix.

## Output Parameters

b
REAL for pstrmr2d
DOUBLE for pdtrmr2d
COMPLEX for pctrmr2d
DOUBLE COMPLEX for pztrmr2d
INTEGER for pitrmr2d.
Pointer into the local memory to array of size $11 d \_b b y \operatorname{LOCC}(j b+n-1)$.
Overwritten by the submatrix from $A$.

## See Also

Overview for details of ScaLAPACK array descriptor structures and related notations.

## Sparse Solver Routines

Intel® oneAPI Math Kernel Library (oneMKL) sparse solver algorithms for solving real or complex, symmetric, structurally symmetric or nonsymmetric, positive definite, indefinite or Hermitian square sparse linear system of algebraic equations.
The terms and concepts required to understand the use of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) sparse solver routines are discussed in the Appendix "Linear Solvers Basics". If you are familiar with linear sparse solvers and sparse matrix storage schemes, you can skip these sections and go directly to the interface descriptions.
See the description of

- the direct sparse solver based on PARDISO*, which is referred to here as Intel MKL PARDISO;
- the alternative interface for the direct sparse solver, which is referred to here as the DSS interface;
- iterative sparse solvers (ISS) based on the reverse communication interface (RCI);
- preconditioners based on the incomplete LU factorization technique.
- a direct sparse solver based on QR decomposition.


## oneMKL PARDISO - Parallel Direct Sparse Solver Interface

This section describes the interface to the shared-memory multiprocessing parallel direct sparse solver known as the Intel® oneAPI Math Kernel Library (oneMKL) PARDISO solver.
The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO package is a high-performance, robust, memory efficient, and easy to use software package for solving large sparse linear systems of equations on shared memory multiprocessors. The solver uses a combination of left- and right-looking Level-3 BLAS supernode techniques [Schenk00-2]. To improve sequential and parallel sparse numerical factorization performance, the algorithms are based on a Level-3 BLAS update and pipelining parallelism is used with a combination of leftand right-looking supernode techniques [Schenk00, Schenk01, Schenk02, Schenk03]. The parallel pivoting
methods allow complete supernode pivoting to compromise numerical stability and scalability during the factorization process. For sufficiently large problem sizes, numerical experiments demonstrate that the scalability of the parallel algorithm is nearly independent of the shared-memory multiprocessing architecture.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201
The following table lists the names of the Intel® ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO routines and describes their general use.
oneMKL PARDISO Routines

| Routine | Description |
| :--- | :--- |
| pardisoinit | Initializes Intel® oneAPI Math Kernel Library (oneMKL) <br> PARDISO with default parameters depending on the <br> matrix type. |
| pardiso | Calculates the solution of a set of sparse linear equations <br> with single or multiple right-hand sides. |
| pardiso_64 | Calculates the solution of a set of sparse linear equations <br> with single or multiple right-hand sides, 64-bit integer <br> version. |
| mkl_pardiso_pivot | Replaces routine which handles Intel® oneAPI Math Kernel <br> Library (oneMKL) PARDISO pivots with user-defined <br> routine. |
| pardiso_getdiag | Returns diagonal elements of initial and factorized matrix. |
| pardiso_handle_store | Places pointers dedicated for sparse representation of <br> requested matrix into MKL PARDISO. |
| pardiso_handle_restore | Store internal structures from pardiso to a file. |
| pardiso_handle_delete | Restore pardiso internal structures from a file. |

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO solver supports a wide range of real and complex sparse matrix types (seethe figure below).

```
border
top
```


## Sparse Matrices That Can Be Solved with the oneMKL PARDISO Solver



The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO solver performs four tasks:

- analysis and symbolic factorization
- numerical factorization
- forward and backward substitution including iterative refinement
- termination to release all internal solver memory.

To find code examples that use Intel® oneAPI Math Kernel Library (oneMKL) PARDISO routines to solve systems of linear equations, unzip theappropriate Fortran archive file in the examplesfolder of the Intel® oneAPI Math Kernel Library (oneMKL) installation directory. Code examples will be in theexamples/ solverf/source folder.

## Supported Matrix Types

The analysis steps performed by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO depend on the structure of the input matrixA.

Symmetric Matrices
The solver first computes a symmetric fill-in reducing permutation $P$ based on either the minimum degree algorithm [Liu85] or the nested dissection algorithm from the METIS package [Karypis98] (both included with Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL)), followed by the parallel left-right looking numerical Cholesky factorization [Schenk00-2] of $P A P^{T}=L L^{T}$ for symmetric positivedefinite matrices, or $P A P^{T}=L D L^{T}$ for symmetric indefinite matrices. The solver uses diagonal pivoting, or $1 \times 1$ and $2 \times 2$ Bunch-Kaufman pivoting for symmetric indefinite matrices. An approximation of $X$ is found by forward and backward substitution and optional iterative refinement.
Whenever numerically acceptable $1 \times 1$ and $2 \times 2$ pivots cannot be found within the diagonal supernode block, the coefficient matrix is perturbed. One or two passes of iterative refinement may be required to correct the effect of the perturbations. This restricting notion of pivoting with iterative refinement is effective for highly indefinite symmetric systems. Furthermore, for a large set of matrices from different applications areas, this method is as accurate as a direct factorization method that uses complete sparse pivoting techniques [Schenk04].

Another method of improving the pivoting accuracy is to use symmetric weighted matching algorithms. These algorithms identify large entries in the coefficient matrix $A$ that, if permuted close to the diagonal, permit the factorization process to identify more acceptable pivots and proceed with fewer pivot perturbations. These algorithms are based on maximum weighted matchings and improve the quality of the factor in a complementary way to the alternative of using more complete pivoting techniques.
The inertia is also computed for real symmetric indefinite matrices.

Structurally Symmetric Matrices

Nonsymmetric Matrices

The solver first computes a symmetric fill-in reducing permutation $P$ followed by the parallel numerical factorization of $P A P^{T}=Q L U^{T}$. The solver uses partial pivoting in the supernodes and an approximation of $X$ is found by forward and backward substitution and optional iterative refinement.

The solver first computes a nonsymmetric permutation $P_{M P S}$ and scaling matrices $D_{r}$ and $D_{c}$ with the aim of placing large entries on the diagonal to enhance reliability of the numerical factorization process [Duff99]. In the next step the solver computes a fill-in reducing permutation $P$ based on the matrix $P_{\text {MPS }} A+$ $\left(P_{M P S} A\right)^{T}$ followed by the parallel numerical factorization
$Q L U R=P P_{M P S} D_{r} A D_{C} P$
with supernode pivoting matrices $Q$ and $R$. When the factorization algorithm reaches a point where it cannot factor the supernodes with this pivoting strategy, it uses a pivoting perturbation strategy similar to [Li99]. The magnitude of the potential pivot is tested against a constant threshold of
alpha = eps*||A2||inf,
where eps is the machine precision, $A 2=P^{\star} P_{M P S}{ }^{\star} D_{r}{ }^{\star} A \star D_{C}{ }^{\star} P_{\text {, }}$ and $||A 2||_{\mathrm{inf}}$ is the infinity norm of $A$. Any tiny pivots encountered during elimination are set to the sign $\left(I_{I I}\right) * e p s *||A 2||_{\text {inf }}$, which trades off some numerical stability for the ability to keep pivots from getting too small. Although many failures could render the factorization well-defined but essentially useless, in practice the diagonal elements are rarely modified for a large class of matrices. The result of this pivoting approach is that the factorization is, in general, not exact and iterative refinement may be needed.

## Sparse Data Storage

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO stores sparse data in several formats:

- CSR3: The 3-array variation of the compressed sparse row format described in Three Array Variation of CSR Format.
- BSR3: The three-array variation of the block compressed sparse row format described in Three Array Variation of BSR Format. Use iparm(37) to specify the block size.
- VBSR: Variable BSR format. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO analyzes the matrix provided in CSR3 format and converts it into an internal structure which can improve performance for matrices with a block structure. Useiparm (37) $=-t(0<t \leq 100)$ to specify use of internal VBSR format and to set the degree of similarity required to combine elements of the matrix. For example, if you set $\operatorname{iparm}(37)=-80$, two rows of the input matrix are combined when their non-zero patterns are $80 \%$ or more similar.


## NOTE

Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) supports only the VBSR format for real and symmetric positive definite or indefinite matrices (mtype $=2$ or mtype $=-2$ ).

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) supports these features for all matrix types as long asiparm(24)=1:

- iparm(31) > 0: Partial solution
- iparm(36) > 0:Schur complement
- iparm(60) > 0: OOC Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO

For all storage formats, the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO parameterja is used for the columns array, ia is used for rowIndex, and a is used for values. The algorithms in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO require column indicesja to be in increasing order per row and that the diagonal element in each row be present for any structurally symmetric matrix. For symmetric or nonsymmetric matrices the diagonal elements which are equal to zero are not necessary.

## Caution

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO column indicesja must be in increasing order per row. You can validate the sparse matrix structure with the matrix checker (iparm(27))

## NOTE

While the presence of zero diagonal elements for symmetric matrices is not required, you should explicitly set zero diagonal elements for symmetric matrices. Otherwise, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO creates internal copies of arraysia, ja, and a full of diagonal elements, which require additional memory and computational time. However, the memory and time required the diagonal elements in internal arrays is usually not significant compared to the memory and the time required to factor and solve the matrix.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Storage of Matrices

By default, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO stores data in RAM. This is referred to as In-Core (IC) mode. However, you can specify that Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO store matrices on disk by settingiparm (60). This mode is called the Out-of-Core (OOC) mode.
You can set the following parameters for the OOC mode.

| Parameter/Environment Variable <br> Name | Description |
| :--- | :--- |
| MKL_PARDISO_OOC_PATH | Directory for storing data created in the OOC mode. |
| MKL_PARDISO_OOC_FILE_NAME | Full file name (incl. path) which will be used for the OOC files |


| Parameter/Environment Variable <br> Name | Description |
| :--- | :--- |
| MKL_PARDISO_OOC_MAX_CORE_SIZE | Maximum size of RAM (in megabytes) available for Intel ${ }^{\circledR}$ <br> oneAPI Math Kernel Library (oneMKL) PARDISO |
| MKL_PARDISO_OOC_MAX_SWAP_SIZE | Maximum swap size (in megabytes) available for Intel ${ }^{\circledR}$ oneAPI <br> Math Kernel Library (oneMKL) PARDISO |
| MKL_PARDISO_OOC_KEEP_FILE | A flag which determines whether temporary data files will be <br> deleted or stored |

By default, the current working directory is used in the OOC mode as a directory path for storing data. All work arrays will be stored in files named ooc_temp with different extensions. When MKL_PARDISO_OOC_FILE_NAME is not set and MKL_PARDISO_OOC_PATH is set, the names for the created files will contain <path>/mkl_pardiso or <path> mk __pardiso depending on the OS. Setting MKL_PARDISO_OOC_FILE_NAME=<filename> will override the path which could have been set in MKL_PARDISO_OOC_PATH. In this case <filename> will be used for naming the OOC files.

By default, MKL_PARDISO_OOC_MAX_CORE_SIZE is 2000 (MB) and MKL_PARDISO_OOC_MAX_SWAP_SIZE is 0.

## NOTE

Do not set the sum of MKL_PARDISO_OOC_MAX_CORE_SIZE and MKL_PARDISO_OOC_MAX_SWAP_SIZE greater than the size of the RAM plus the size of the swap memory. Be sure to allow enough free memory for the operating system and any other processes which need to be running.

By default, all temporary data files will be deleted. For keeping them it is required to set MKL_PARDISO_OOC_KEEP_FILE to 0.

OOC parameters can be set in a configuration file. You can set the path to this file and its name using environmental variables MKL_PARDISO_OOC_CFG_PATH and MKL_PARDISO_OOC_CFG_FILE_NAME.

For setting parameters of OOC mode either environment variables or a configuration file can be used. When the last option is chosen, by default the name of the file is pardiso_ooc.cfg and it should be placed in the working directory. If needed, the user can set the path to the configuration file using environmental variables MKL_PARDISO_OOC_CFG_PATH and MKL_PARDISO_OOC_CFG_FILE_NAME. These variables specify the path and filename as follows:

- Linux* OS and OS X*: <MKL_PARDISO_OOC_CFG_PATH>/ <MKL_PARDISO_OOC_CFG_FILE_NAME>
- Windows* OS: <MKL_PARDISO_OOC_CFG_PATH>\<MKL_PARDISO_OOC_CFG_FILE_NAME>

An example of the configuration file:

```
MKL_PARDISO_OOC_PATH = <path>
MKL_PARDISO_OOC_MAX_CORE_SIZE = N
MKL_PARDISO_OOC_MAX_SWAP_SIZE = K
MKL_PARDISO_OOC_KEEP_FILE = 0 (or 1)
```


## Caution

The maximum length of the path lines in the configuration files is 1000 characters.

Alternatively, the OOC parameters can be set as environment variables via command line.

For Linux* OS and OS X*:

```
export MKL_PARDISO_OOC_PATH = <path>
export MKL_PARDISO_OOC_MAX_CORE_SIZE = N
export MKL_PARDISO_OOC_MAX_SWAP_SIZE = K
export MKL_PARDISO_OOC_KEE\overline{P}_FILE = O (or 1)
```

For Windows* OS:

```
set MKL_PARDISO_OOC_PATH = <path>
set MKL_PARDISO_OOC_MAX_CORE_SIZE = N
set MKL_PARDISO_OOC_MAX_SWAP_SIZE = K
set MKL_PARDISO_OOC_KEEP_FILE = 0 (or 1)
```

where <path> should follow the OS naming convention.

## Direct-Iterative Preconditioning for Nonsymmetric Linear Systems

The solver uses a combination of direct and iterative methods [Sonn89] to accelerate the linear solution process for transient simulation. Most applications of sparse solvers require solutions of systems with gradually changing values of the nonzero coefficient matrix, but with an identical sparsity pattern. In these applications, the analysis phase of the solvers has to be performed only once and the numerical factorizations are the important time-consuming steps during the simulation. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO uses a numerical factorization and applies the factors in a preconditioned Krylov Subspace iteration. If the iteration does not converge, the solver automatically switches back to the numerical factorization. This method can be applied to nonsymmetric matrices in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO. You can select the method using theiparm (4) input parameter. The $\operatorname{iparm}(20)$ parameter returns the error status after running Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO.

## Single and Double Precision Computations

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO solves tasks using single or double precision. Each precision has its benefits and drawbacks. Double precision variables have more digits to store value, so the solver uses more memory for keeping data. But this mode solves matrices with better accuracy, which is especially important for input matrices with large condition numbers.
Single precision variables have fewer digits to store values, so the solver uses less memory than in the double precision mode. Additionally this mode usually takes less time. But as computations are made less precisely, only some systems of equations can be solved accurately enough using single precision.

## Separate Forward and Backward Substitution

The solver execution step (see parameterphase $=33$ below) can be divided into two or three separate substitutions: forward, backward, and possible diagonal. This separation can be explained by the examples of solving systems with different matrix types.

A real symmetric positive definite matrix $A$ (mtype $=2$ ) is factored by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO as $A=L^{\star} L^{T}$. In this case the solution of the system $A^{\star} x=b$ can be found as sequence of substitutions: $L^{\star} y=b$ (forward substitution, phase $=331$ ) and $L^{T \star} X=y$ (backward substitution, phase $=333$ ).

A real nonsymmetric matrix $A$ ( $m t y p e=11$ ) is factored by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO as $A=L^{*} U$. In this case the solution of the system $A^{*} x=b$ can be found by the following sequence: $L^{\star} y=b$ (forward substitution, phase $=331$ ) and $U^{\star} x=y$ (backward substitution, phase $=333$ ).

Solving a system with a real symmetric indefinite matrix $A$ (mtype $=-2$ ) is slightly different from the cases above. Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO factors this matrix as $A=L D L^{T}$, and the solution of the system $A^{\star} x=b$ can be calculated as the following sequence of substitutions: $L^{\star} y=b$ (forward
substitution, phase =331), $D^{\star} v=y$ (diagonal substitution, phase $=332$ ), and finally $L^{T *}{ }_{x=v}$ (backward substitution, phase =333). Diagonal substitution makes sense only for symmetric indefinite matrices (mtype $=-2,-4,6)$. For matrices of other types a solution can be found as described in the first two examples.

## Caution

The number of refinement steps (iparm(8)) must be set to zero if a solution is calculated with separate substitutions (phase $=331,332,333$ ), otherwise Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO produces the wrong result.

## NOTE

Different pivoting (iparm(21)) produces different $L D L^{T}$ factorization. Therefore results of forward, diagonal and backward substitutions with diagonal pivoting can differ from results of the same steps with Bunch-Kaufman pivoting. Of course, the final results of sequential execution of forward, diagonal and backward substitution are equal to the results of the full solving step (phase=33) regardless of the pivoting used.

## Callback Function for Pivoting Control

In-core Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO allows you to control pivoting with a callback routine, mkl_pardiso_pivot. You can then use the pardiso_getdiag routine to access the diagonal elements. Set iparm (56) to 1 in order to use the callback functionality.

## Low Rank Update

Use low rank update to accelerate the factorization step in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO when you use multiple matrices with identical structure and similar values. After callingpardiso in the usual manner for factorization (phase $=12,13,22$, or 23 ) for some matrix $A 1$, low rank update can be applied to the factorization step (phase $=22$ or 23 ) of some matrix $A 2$ with identical structure.
To use the low rank update feature, set iparm(39) = 1 while also setting iparm(24) = 10. Additionally, supply an array that lists the values in A2 that are different from A1 using the perm parameter as outlined in the pardiso perm parameter description.

## Important

Low rank update can only be called for matrices with the exact same pattern of nonzero values. As such, the value of the mtype, ia, ja, and iparm(24) parameters should also be identical. In general, the low rank factorization should be called with the same parameters as the preceding factorization step for the same internal data structure handle (except for array a, iparm(39), and perm).

Low rank update does not currently support Intel TBB threading. In this case, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO defaults to full factorization instead.
Low rank update cannot be used in combination with a user-supplied permutation vector - in other words, you must use the default values of $\operatorname{iparm}(5)=0$, $\operatorname{iparm}(31)=0$, and $\operatorname{iparm}(36)=0)$. Additionally, iparm(4), iparm(6), iparm(12), iparm(28), iparm(37), iparm(56), and iparm(60) must all be set to the default value of 0 .

## pardiso

Calculates the solution of a set of sparse linear equations with single or multiple right-hand sides.

## Syntax

```
call pardiso (pt, maxfct, mnum, mtype, phase, n, a, ia, ja, perm, nrhs, iparm, msglvl,
b, x, error)
```


## Include Files

- mkl.fi,mkl_pardiso.f90


## Description

The pardiso routine calculates the solution of a set of sparse linear equations

```
A* X = B
```

with single or multiple right-hand sides, using a parallel $L U, L D L$, or $L L^{T}$ factorization, where $A$ is an $n$-by-n matrix, and $X$ and $B$ are $n$-by- $n r h s$ vectors or matrices.

## Notes

- This routine supports usage of the mkl_progress with OpenMP, TBB, and sequential threading. See mkl_progress for details. The case of iparm(24)=10 does not support this feature.
- If iparm(27) is set to 1 (Matrix checker), Intel ${ }^{\circledR}$ oneAPI Math Kernel Library PARDISO uses the auxiliary routine sparse_matrix_checker to check integer arrays ia and ja.
sparse_matrix_checker has its own set of error values (from 21 to 24 ) that are returned in the event of an unsuccessful matrix check. For more details, refer to the sparse_matrix_checker documentation.


## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Input Parameters

> NOTE
> The types given for parameters in this section are specified in FORTRAN 77 notation. See Intel MKL PARDISO Parameters in Tabular Formfor detailed description of types of Intel® oneAPI Math Kernel Library (oneMKL) PARDISO parameters in Fortran 90 notation.

INTEGER for 32-bit or 64-bit architectures
INTEGER*8 for 64-bit architectures
Array with size of 64.
Handle to internal data structure. The entries must be set to zero prior to the first call to pardiso. Unique for factorization.

## Caution

After the first call to pardiso do not directly modify $p t$, as that could cause a serious memory leak.
real and structurally symmetric
real and symmetric positive definite
real and symmetric indefinite
complex and structurally symmetric complex and Hermitian positive definite complex and Hermitian indefinite complex and symmetric real and nonsymmetric complex and nonsymmetric

Controls the execution of the solver. Usually it is a two- or three-digit integer. The first digit indicates the starting phase of execution and the second digit indicates the ending phase. Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO has the following phases of execution:

- Phase 1: Fill-reduction analysis and symbolic factorization
- Phase 2: Numerical factorization
- Phase 3: Forward and Backward solve including optional iterative refinement
This phase can be divided into two or three separate substitutions: forward, backward, and diagonal (see Separate Forward and Backward Substitution).
- Memory release phase (phase $=0$ or phase $=-1$ )

If a previous call to the routine has computed information from previous phases, execution may start at any phase. The phase parameter can have the following values:

## phase Solver Execution Steps

11 Analysis
12 Analysis, numerical factorization
13 Analysis, numerical factorization, solve, iterative refinement

Numerical factorization
Numerical factorization, solve, iterative refinement
Solve, iterative refinement
like phase=33, but only forward substitution
like phase $=33$, but only diagonal substitution (if available)
like phase=33, but only backward substitution
0
Release internal memory for $L$ and $U$ matrix number mnum

Release all internal memory for all matrices
-1 Release all internal memory for all matrices
If iparm(36) $=0$, phases 331, 332, and 333 perform this decomposition:
$A=\left[\begin{array}{cc}L_{11} & 0 \\ L_{12} & L_{22}\end{array}\right]\left[\begin{array}{cc}D_{11} & 0 \\ 0 & D_{22}\end{array}\right]\left[\begin{array}{cc}U_{11} & U_{21} \\ 0 & U_{22}\end{array}\right]$
If iparm(36) $=2$, phases 331, 332, and 333 perform a different decomposition:
$A=\left[\begin{array}{ll}L_{11} & 0 \\ L_{12} & I\end{array}\right]\left[\begin{array}{cc}I & 0 \\ 0 & S\end{array}\right]\left[\begin{array}{cc}U_{11} & U_{21} \\ 0 & I\end{array}\right]$
You can supply a custom implementation for phase 332 instead of calling pardiso. For example, it can be implemented with dense LAPACK functionality. Custom implementation also allows you to substitute the matrix $S$ with your own.

## NOTE <br> For very large Schur complement matrices use LAPACK functionality to compute the Schur complement vector instead of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO phase 332 implementation.

INTEGER
Number of equations in the sparse linear systems of equations $A \star X=B$. Constraint: $n>0$.

DOUBLE PRECISION - for real types of matrices (mtype=1, 2, -2 and 11) and for double precision Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm(28)=0)

REAL - for real types of matrices (mtype=1, 2, -2 and 11) and for single precision Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm(28)=1)

DOUBLE COMPLEX - for complex types of matrices (mtype $=3,6,13,14$ and -4) and for double precision Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm(28) =0)

COMPLEX - for complex types of matrices (mtype=3, 6, 13, 14 and -4) and for single precision Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm(28)=1)
Array. Contains the non-zero elements of the coefficient matrix $A$ corresponding to the indices in ja. The coefficient matrix can be either real or complex. The matrix must be stored in the three-array variant of the compressed sparse row (CSR3) or in the three-array variant of the block compressed sparse row (BSR3) format, and the matrix must be stored with increasing values of ja for each row.

For CSR3 format, the size of $a$ is the same as that of ja. Refer to the values array description in Three Array Variation of CSR Format for more details.

For BSR3 format the size of $a$ is the size of $j a$ multiplied by the square of the block size. Refer to the values array description in Three Array Variation of BSR Format for more details.

## NOTE

If you set iparm(37) to a negative value, Intel® oneAPI Math Kernel Library (oneMKL) PARDISO converts the data from CSR3 format to an internal variable BSR (VBSR) format. SeeSparse Data Storage.

Array, size ( $n+1$ ).

For CSR3 format, ia(i) ( $i \leq n$ ) points to the first column index of row $i$ in the array ja. That is, $i a(i)$ gives the index of the element in array $a$ that contains the first non-zero element from row $i$ of $A$. The last element ia ( $n$ +1 ) is taken to be equal to the number of non-zero elements in $A$, plus one. Refer to rowIndex array description in Three Array Variation of CSR Format for more details.
For BSR3 format, ia(i) ( $i \leq n$ ) points to the first column index of row $i$ in the array ja. That is, ia(i) gives the index of the element in array a that contains the first non-zero block from row $i$ of $A$. The last element ia(n+1) is taken to be equal to the number of non-zero blcoks in $A$, plus one. Refer to rowIndex array description in Three Array Variation of BSR Format for more details.

The array ia is accessed in all phases of the solution process.
Indexing of ia is one-based by default, but it can be changed to zero-based by setting the appropriate value to the parameter iparm(35).

## INTEGER

For CSR3 format, array ja contains column indices of the sparse matrix $A$. It is important that the indices are in increasing order per row. For structurally symmetric matrices it is assumed that all diagonal elements are stored (even if they are zeros) in the list of non-zero elements in a and ja. For symmetric matrices, the solver needs only the upper triangular part of the system as is shown for columns array in Three Array Variation of CSR Format.
For BSR3 format, array ja contains column indices of the sparse matrix $A$. It is important that the indices are in increasing order per row. For structurally symmetric matrices it is assumed that all diagonal blocks are stored (even if they are zeros) in the list of non-zero blocks in a and ja. For symmetric matrices, the solver needs only the upper triangular part of the system as is shown for columns array in Three Array Variation of BSR Format.

The array jais accessed in all phases of the solution process.
Indexing of $j a$ is one-based by default, but it can be changed to zero-based by setting the appropriate value to the parameter iparm(35).

INTEGER
Array, size (n). Depending on the value of iparm(5) and iparm(31), holds the permutation vector of size $n$, specifies elements used for computing a partial solution, or specifies differing values of the input matrices for low rank update.

- If iparm(5) $=1$, iparm(31) $=0$, and $\operatorname{iparm}(36)=0$, perm specifies the fill-in reducing ordering to the solver. Let $A$ be the original matrix and $C=P^{\star} A^{\star} P^{T}$ be the permuted matrix. Row (column) i of $C$ is the perm(i) row (column) of $A$. The array perm is also used to return the permutation vector calculated during fill-in reducing ordering stage.


## NOTE

Be aware that setting iparm(5) = 1 prevents use of a parallel algorithm for the solve step.

- If iparm(5) $=2$, iparm(31) $=0$, and $\operatorname{iparm}(36)=0$, the permutation vector computed in phase 11 is returned in the perm array.
- If iparm(5) $=0$, iparm(31) $>0$, and iparm(36) $=0$, perm specifies elements of the right-hand side to use or of the solution to compute for a partial solution.
- If iparm(5) $=0$, iparm(31) $=0$, and iparm(36) $>0$, perm specifies elements for a Schur complement.
- If iparm(39) $=1$, perm specifies values that differ in $A$ for low rank update (see Low Rank Update). The size of the array must be at least $2 *$ ndiff +1 , where ndiff is the number of values of $A$ that are different. The values of perm should be:

```
perm = {ndiff, row_index1, column_index1, row_index2,
column_index2,, row_index_ndiff, column_index_ndiff}
```

where row_index_m and column_index_m are the row and column indices of the $m$-th differing non-zero value in matrix $A$. The row and column index pairs can be in any order, but must use zero-based indexing regardless of the value of iparm(35).

See iparm(5), iparm(31), and iparm(39) for more details.
Indexing of perm is one-based by default, but unless $\operatorname{iparm}(39)=1$ it can be changed to zero-based by setting the appropriate value to the parameter iparm(35).
nrhs
b

INTEGER
Number of right-hand sides that need to be solved for.

```
INTEGER
```

Array, size (64). This array is used to pass various parameters to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO and to return some useful information after execution of the solver.

See pardiso iparm Parameter for more details about the iparm parameters.

```
INTEGER
```

Message level information. If $m s g l v l=0$ then pardiso generates no output, if $m s g l v l=1$ the solver prints statistical information to the screen.

DOUBLE PRECISION - for real types of matrices (mtype=1, 2, -2 and 11) and for double precision Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm(28)=0)

REAL - for real types of matrices (mtype=1, 2, -2 and 11) and for single precision Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO
(iparm(28)=1)
DOUBLE COMPLEX - for complex types of matrices (mtype=3, 6, 13, 14 and -4) and for double precision Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm(28)=0)

COMPLEX - for complex types of matrices (mtype=3, 6, 13, 14 and -4) and for single precision Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm(28)=1)

Array, size ( $n, n r h s$ ). On entry, contains the right-hand side vector/matrix $B$, which is placed in memory contiguously. The $b(i+(k-1) \times n r h s)$ element must hold the i-th component of $k$-th right-hand side vector. Note that $b$ is only accessed in the solution phase.

## Output Parameters

$p t$
perm
iparm
b

X
error
(See also Intel MKL PARDISO Parameters in Tabular Form.)
Handle to internal data structure.
See the Input Parameter description of the perm array.
On output, some iparm values report information such as the numbers of non-zero elements in the factors.
See pardiso iparm Parameter for more details about the iparm parameters.
On output, the array is replaced with the solution if $\operatorname{iparm}(6)=1$.
DOUBLE PRECISION - for real types of matrices (mtype=1, 2, -2 and 11) and for double precision Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm (28) =0)
REAL - for real types of matrices (mtype=1, 2, -2 and 11) and for single precision Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm(28)=1)

DOUBLE COMPLEX - for complex types of matrices (mtype=3,6,13,14 and $-4)$ and for double precision Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL)
PARDISO (iparm(28)=0)
COMPLEX - for complex types of matrices (mtype=3, 6, 13, 14 and -4 ) and for single precision Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm(28)=1)

Array, size ( $n, n r h s$ ). If iparm (6) $=0$ it contains solution vector/matrix $X$, which is placed contiguously in memory. The $x(i+(k-1) \times n)$ element must hold the $i$-th component of the $k$-th solution vector. Note that $x$ is only accessed in the solution phase.

```
INTEGER
```

The error indicator according to the below table:

| error | Information |
| :--- | :--- |
| 0 | no error |
| -1 | input inconsistent |
| -2 | not enough memory |
| -3 | reordering problem |


| error | Information |
| :---: | :---: |
| -4 | Zero pivot, numerical factorization or iterative refinement problem. If the error appears during the solution phase, try to change the pivoting perturbation (iparm(10)) and also increase the number of iterative refinement steps. If it does not help, consider changing the scaling, matching and pivoting options (iparm(11), iparm(13), iparm(21)) |
| -5 | unclassified (internal) error |
| -6 | reordering failed (matrix types 11 and 13 only) |
| -7 | diagonal matrix is singular |
| -8 | 32-bit integer overflow problem |
| -9 | not enough memory for OOC |
| -10 | error opening OOC files |
| -11 | read/write error with OOC files |
| -12 | (pardiso_64 only) pardiso_64 called from 32-bit library |
| -13 | interrupted by the (user-defined) mkl_progress function |
| -15 | internal error which can appear for iparm(24)=10 and iparm(13) $=1$. Try switch matching off (set iparm(13) $=0$ and rerun.) |

## pardisoinit

Initialize Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL)
PARDISO with default parameters in accordance with
the matrix type.

## Syntax

```
call pardisoinit (pt, mtype, iparm)
```


## Include Files

- mkl.fi, mkl_pardiso.f90


## Description

This function initializes the solver handle pt for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO with zero values (as needed for the very first call of pardiso) and sets default iparm values in accordance with the matrix type mtype.
The recommended way is to avoid using pardisoinit and to initialize pt and set the values of the iparm array manually as the default parameters might not be the best for a particular use case.
An alternative method to set default iparm values is to call pardiso in the analysis phase with iparm (1) =0. In this case, the solver handle pt must be initialized with zero values.

The pardisoinit routine initializes only the in-core version of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO. Switching to the out-of-core version of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO as well as changing default iparm values can be done after the call to pardisoinit but before the first call to pardiso.

The pardisoinit routine cannot be used together with the pardiso_64 routine.

## Input Parameters

mtype
INTEGER
Matrix type. Based on this value pardisoinit chooses default values for the iparm array. Refer to the section oneMKL PARDISO Parameters in Tabular Formfor more details about the default values of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO.

## Output Parameters

pt
INTEGER for 32-bit or 64-bit architectures
INTEGER*8 for 64-bit architectures
Array of size 64. Handle to internal data structure. The pardisoinit routine nullifies the array $p t$.

> NOTE
> It is very important that pt is initialized with zero before the first call of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO. After that first call you must never modify the array, because it could cause a serious memory leak or a crash.

INTEGER
Array of size 64. This array is used to set various options for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO and to return some useful information after execution of the solver. Thepardisoinit routine fills in the iparm array with the default values. Refer to the section oneMKL PARDISO Parameters in Tabular Form for more details about the default values of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO.

## pardiso_64

Calculates the solution of a set of sparse linear equations with single or multiple right-hand sides, 64bit integer version.

## Syntax

```
call pardiso_64 (pt, maxfct, mnum, mtype, phase, n, a, ia, ja, perm, nrhs, iparm,
msglvl, b, x, error)
```

Include Files

- mkl.fi, mkl_pardiso.f90


## Description

pardiso_64 is an alternative ILP64 (64-bit integer) version of the pardiso routine (see Description section for more details). The interface of pardiso_64 is the same as the interface of pardiso, but it accepts and returns all INTEGER data as INTEGER*8.

Use pardiso_64 when pardisofor solving large matrices (with the number of non-zero elements on the order of 500 million or more). You can use it together with the usual LP64 interfaces for the rest of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functionality. In other words, if you use 64-bit integer version (pardiso_64), you do not need to re-link your applications with ILP64 libraries. Take into account that pardiso_64 may perform slower than regular pardiso on the reordering and symbolic factorization phase.

## NOTE

pardiso_64 is supported only in the 64-bit libraries. If pardiso_64 is called from the 32-bit libraries, it returns error $=-12$.

## NOTE

This routine supports the Progress Routine feature. See Progress Function for details.

## Input Parameters

The input parameters of pardiso_64 are the same as the input parameters of pardiso, but pardiso_64 accepts all INTEGER data as INTEGER*8.

## Output Parameters

The output parameters of pardiso_64 are the same as the output parameters of pardiso, but pardiso_64 returns all INTEGER data as INTEGER*8.

## mkl_pardiso_pivot

Replaces routine which handles Intel® oneAPI Math
Kernel Library (oneMKL) PARDISO pivots with user-
defined routine.
Syntax
call mkl_pardiso_pivot (ai, bi, eps)

## Include Files

- mkl.fi,mkl_pardiso.f90


## Description

The mkl_pardiso_pivotroutine allows you to handle diagonal elements which arise during numerical factorization that are zero or near zero. By default, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO determines that a diagonal elementbi is a pivot if bi < eps, and if so, replaces it with eps. But you can provide your own routine to modify the resulting factorized matrix in case there are small elements on the diagonal during the factorization step.

## NOTE

To use this routine, you must set iparm(56) to 1 before the main pardisoloop.

## NOTE

This routine is only available for in-core Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO.

```
Input Parameters
ai DOUBLE PRECISION - for real types of matrices (mtype=2, -2, 4, and 6)
 and for double precision Intel }\mp@subsup{}{}{\circledR}\mathrm{ oneAPI Math Kernel Library (oneMKL)
 PARDISO (iparm(28)=0)
 Diagonal element of initial matrix corresponding to pivot element.
 DOUBLE PRECISION - for real types of matrices (mtype=2, -2, 4, and 6)
 and for double precision Intel}\mp@subsup{}{}{\circledR}\mathrm{ oneAPI Math Kernel Library (oneMKL)
 PARDISO (iparm(28)=0)
 Diagonal element of factorized matrix that could be chosen as a pivot
 element.
 DOUBLE PRECISION
 Scalar to compare with diagonal of factorized matrix. On input equal to
 parameter described by iparm(10).
```


## Output Parameters

bi
In case element is chosen as a pivot, value with which to replace the pivot.

## pardiso_getdiag

Returns diagonal elements of initial and factorized
matrix.
Syntax
call pardiso_getdiag (pt, df, da, mnum, error)

## Include Files

- mkl.fi,mkl_pardiso.f90


## Description

This routine returns the diagonal elements of the initial and factorized matrix for a real or Hermitian matrix.

## NOTE

In order to use this routine, you must set iparm(56) to 1 before the main pardiso loop.
If iparm (24) is set to 10 (an improved two-level factorization algorithm for nonsymmetric matrices), Intel ${ }^{\circledR}$ oneAPI Math Kernel Library PARDISO will automatically use the classic algorithm for factorization.

## Input Parameters

$p t$
INTEGER for 32-bit or 64-bit architectures
INTEGER*8 for 64-bit architectures

Array with a size of 64. Handle to internal data structure for the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO solver. The entries must be set to zero prior to the first call topardiso. Unique for factorization.

```
INTEGER
```

Indicates the actual matrix for the solution phase of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO solver. With this scalar you can define the diagonal elements of the factorized matrix that you want to obtain. The value must be: $1 \leq m n u m \leq \operatorname{maxf} c t$. In most applications this value is 1 .

## Output Parameters

DOUBLE PRECISION- for real types of matrices and for double precision Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm (28) =0)
REAL- for real types of matrices and for single precision Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm (28)=1)
DOUBLE COMPLEX- for complex types of matrices and for double precision Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm (28) =0)
COMPLEX- for complex types of matrices and for single precision Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO (iparm(28)=1)
Array with a dimension of $n$. Contains diagonal elements of the initial matrix.

## NOTE

Elements of da correspond to diagonal elements of matrix Lcomputed during phase 22. Because during phase 22 Intel ${ }^{(3)}$ oneAPI Math Kernel Library (oneMKL) PARDISO makes additional permutations to improve stability, it is possible that arrayda is not in line with the perm array computed during phase 11.
error
INTEGER
The error indicator.

| error | Information |
| :--- | :--- |
| 0 | no error |
| -1 | Diagonal information not turned on before pardiso |
|  | main loop $(\operatorname{iparm}(56)=0)$. |

pardiso_export
Places pointers dedicated for sparse representation of a requested matrix (values, rows, and columns) into MKL PARDISO

## Syntax

```
call pardiso_export(pt, values, rows, columns, step, iparm, error)
```


## Include Files

- mkl.fi
- mkl_pardiso.f90


## Description

This auxiliary routine places pointers dedicated for sparse representation of a requested matrix (values, rows, and columns) into MKL PARDISO. The matrix will be stored in the three-array variant of the compressed sparse row (CSR3 format) with 0-based indexing.

## NOTE

Currently, this routine can be used only for a sparse Schur complement matrix. All parameters related to the Schur complement matrix (perm, iparm) must be set before the reordering stage of MKL PARDISO (phase $=11$ ) is called.

## Input Parameters

pt (64)

INTEGER on 32-bit architectures; INTEGER*8 on 64-bit architectures
Array with a size of 64. Handle to internal data structure for the Intel ${ }^{\circledR}$ MKL PARDISO solver. The entries must be set to zero prior to the first call to pardiso. Unique for factorization.

INTEGER

This array is used to pass various parameters to Intel ${ }^{\ominus}$ MKL PARDISO and to return some useful information after execution of the solver.

INTEGER
Stage indicator. These are the currently supported values:

| Step <br> value | Notes |
| :--- | :--- |
| 1 | Used to place pointers related to a Schur complement <br> matrix in MKL PARDISO. The routine with step equal to <br> 1 must be called between the reordering and <br> factorization phases of MKL PARDISO. |
| -1 | Used to clean the internal handle. |

## Input/Output Parameters

values(*)
rows
columns
error

Parameter type: input/output parameter.

```
PARDISO_DATA_TYPE (see PARDISO_DATA_TYPE)
```

This array contains the non-zero elements of the requested matrix.
Parameter type: input/output parameter.

## INTEGER

For CSR3 format, rows[i] ( i < size ) points to the first column index of row $i$ in the array columns; that is, rows [i] gives the index of the element in the array values that contains the first non-zero element from row $i$ of the sparse matrix. The last element, rows [size], is equal to the number of non-zero elements in the sparse matrix.

Parameter type: input/output parameter.

## INTEGER

This array contains the column indices for the non-zero elements of the requested matrix.

Parameter type: output parameter.

## INTEGER

The error status:

- 0 indicates no error.
- 1 indicates inconsistent input data.


## Usage Example

The following C-style example demonstrates how to use the pardiso_export routine to get the sparse representation (that is, three-array CSR format) of a Schur complement matrix.

```
#include "mkl.h"
/*
* Call the reordering phase of MKL PARDISO with iparm[35] set to -1 in
```

```
* order to compute the Schur complement matrix only, or -2 to compute all
* factorization arrays. perm array indices related to the Schur complement
* matrix must be set to 1.
*/
phase = 11;
for (i = 0; i < schur_size; i++) { perm[i] = 1.; }
iparm[35] = -1;
pardiso(pt, &maxfct, &mnum, &mtype, &phase, &n, a, ia, ja, perm, &nrhs,
 iparm, &msglvl, b, x, &error);
/*
 * After the reordering phase, iparm[35] will contain the number of non-zero
 * elements for the Schur complement matrix. Arrays dedicated to the sparse
 * representation of the Schur complement matrix must be allocated before
 * the factorization stage of MKL PARDISO is called.
 */
schur_nnz = iparm[35];
schur_rows = (MKL_INT *) mkl_malloc(schur_size+1, ALIGNMENT);
schur_columns = (MKL_INT *) mkl_malloc(schur_nnz , ALIGNMENT);
schur_values = (DATA_TYPE *) mkl_malloc(schur_nnz , ALIGNMENT);
/*
* Call to the pardiso_export routine with step equal to 1 in order to put
* pointers related to the three-array CSR format into MKL PARDISO:
*/
pardiso_export(pt, schur_values, schur_ia, schur_ja, &step, iparm, &error);
/*
 * Call the factorization phase of PARDISO with iparm[35] equal to -1 or -2
 * to compute the Schur complement matrix:
 */
phase = 22;
iparm[35] = -1;
pardiso(pt, &maxfct, &mnum, &mtype, &phase, &n, a, ia, ja, perm, &nrhs,
 iparm, &msglvl, b, x, &error);
/*
 * After the factorization stage, schur_values, schur_rows, and
 * schur_columns will contain the Schur complement matrix in CSR3 format.
 */
```


## pardiso_handle_store

Store internal structures from pardiso to a file.

## Syntax

```
call pardiso_handle_store (pt, dirname, error)
```


## Include Files

- mkl.fi, mkl_pardiso.f90


## Description

This function stores Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO structures to a file, allowing you to store Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO internal structures between the stages of thepardiso routine. The pardiso_handle_restoreroutine can restore the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO internal structures from the file.

## Input Parameters

pt
INTEGER for 32-bit or 64-bit architectures
INTEGER*8 for 64-bit architectures
Array with a size of 64. Handle to internal data structure.
dirname
CHARACTER
String containing the name of the directory to which to write the files with the content of the internal structures. Use an empty string ("") to specify the current directory. The routine creates a file named handle.pds in the directory.

## Output Parameters

| pt | Handle to internal data structure. |  |
| :--- | :--- | :--- |
| error | INTEGER |  |
|  | The error indicator. |  |
|  | error | Information |
|  | 0 | No error. |
|  | -2 | Not enough memory. |
|  | -10 | Cannot open file for writing. |
|  | -11 | Error while writing to file. |
|  | -13 | Wrong file format. |

pardiso_handle_restore
Restore pardiso internal structures from a file.

## Syntax

```
call pardiso_handle_restore (pt, dirname, error)
```


## Include Files

- mkl.fi, mkl_pardiso.f90


## Description

This function restores Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO structures from a file. This allows you to restore Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO internal structures stored bypardiso_handle_store after a phase of the pardiso routine and continue execution of the next phase.

## Input Parameters

dirname

CHARACTER
String containing the name of the directory in which the file with the content of the internal structures are located. Use an empty string ("") to specify the current directory.

## Output Parameters

| $p t$ | INTEGER for 32-bit or 64-bit architectures |  |
| :---: | :---: | :---: |
|  | INTEGER*8 for 64-bit architectures |  |
|  | Array with a dimension of 64. Handle to internal |  |
| error | Intege |  |
|  | The error |  |
|  | error | Information |
|  | 0 | No error. |
|  | -2 | Not enough memory. |
|  | -10 | Cannot open file for reading. |
|  | -11 | Error while reading from file. |
|  | -13 | Wrong file format. |

## pardiso_handle_delete

Delete files with pardiso internal structure data.
Syntax

```
call pardiso_handle_delete (dirname, error)
```

Include Files

- mkl.fi, mkl_pardiso.f90


## Description

This function deletes files generated with pardiso_handle_storethat contain Intel® oneAPI Math Kernel Library (oneMKL) PARDISO internal structures.

## Input Parameters

dirname

## CHARACTER

String containing the name of the directory in which the file with the content of the internal structures are located. Use an empty string ("") to specify the current directory.

## Output Parameters

error

## INTEGER

The error indicator.

## error Information

0
-10 Cannot delete files.

```
pardiso_handle_store_64
Store internal structures from pardiso_64 to a file.
Syntax
call pardiso_handle_store_64 (pt, dirname, error)
```


## Include Files

- mkl.fi, mkl_pardiso.f90


## Description

This function stores Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO structures to a file, allowing you to store Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO internal structures between the stages of thepardiso_64 routine. The pardiso_handle_restore_64routine can restore the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PARDISO internal structures from the file.

## Input Parameters

```
pt INTEGER*8 for 64-bit architectures
Array with a dimension of 64 . Handle to internal data structure.
```


## CHARACTER

```
String containing the name of the directory to which to write the files with the content of the internal structures. Use an empty string ("") to specify the current directory. The routine creates a file named handle.pds in the directory.
```


## Output Parameters

```
pt Handle to internal data structure.
error
```

```
INTEGER
```

INTEGER
The error indicator.

| error | Information |
| :--- | :--- |
| 0 | No error. |
| -2 | Not enough memory. |
| -10 | Cannot open file for writing. |
| -11 | Error while writing to file. |
| -12 | Not supported in 32-bit library - routine is only |
| -13 | supported in 64-bit libraries. |
|  | Wrong file format. |

```
pardiso_handle_restore_64
Restore pardiso_64 internal structures from a file.
Syntax
call pardiso_handle_restore_64 (pt, dirname, error)

\section*{Include Files}
- mkl.fi, mkl_pardiso.f90

\section*{Description}

This function restores Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO structures from a file. This allows you to restore Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO internal structures stored bypardiso_handle_store_ 64 after a phase of the pardiso_ 64 routine and continue execution of the next phase.

\section*{Input Parameters}
```

dirname

```

\section*{CHARACTER}

String containing the name of the directory in which the file with the content of the internal structures are located. Use an empty string (") to specify the current directory.

\section*{Input Parameters}
pt INTEGER for 32-bit or 64-bit architectures
INTEGER*8 for 64-bit architectures
Array with a dimension of 64 . Handle to internal data structure.
INTEGER
The error indicator.
\begin{tabular}{ll}
error & Information \\
0 & No error. \\
-2 & Not enough memory. \\
-10 & Cannot open file for reading. \\
-11 & Error while reading from file. \\
-13 & Wrong file format.
\end{tabular}

\section*{pardiso_handle_delete_64}

Syntax
Delete files with pardiso_64 internal structure data.
call pardiso_handle_delete_64 (dirname, error)
Include Files
- mkl.fi,mkl_pardiso.f90

\section*{Description}

This function deletes files generated with pardiso_handle_store_64that contain Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO internal structures.

\section*{Input Parameters}

\author{
dirname
}

\section*{CHARACTER}

String containing the name of the directory in which the file with the content of the internal structures are located. Use an empty string (") to specify the current directory.

\section*{Output Parameters}
```

error

```

INTEGER
The error indicator.
```

error Information
0
-10 Cannot delete files.
-12 Not supported in 32-bit library - routine is only
supported in 64-bit libraries.

```

\section*{oneMKL PARDISO Parameters in Tabular Form}

The following table lists all parameters of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO and gives their brief descriptions.

\begin{tabular}{llll}
\hline Typarameter & Description & Values & Comments
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Type & Description & Values & Comments & In/ Out \\
\hline ia(n+1) & \begin{tabular}{l}
INTEGER \\
INTEGER, \\
INTENT (IN)
\end{tabular} & rowIndex array in CSR3 format & \(>=0\) & \begin{tabular}{l}
ia(i) gives the index of the element in array a that contains the first non-zero element from row \(i\) of \(A\). \\
The last element ia \((n+1)\) (for one-based indexing) or ia(n) (for zero-based indexing) is taken to be equal to the number of non-zero elements in \(A\), plus one. \\
Note: iparm(35) indicates whether row/column indexing starts from 1 or 0 .
\end{tabular} & in \\
\hline ja(*) & \begin{tabular}{l}
INTEGER \\
INTEGER, \\
INTENT (IN)
\end{tabular} & columns array in CSR3 format & \(>=0\) & \begin{tabular}{l}
The column indices for each row of \(A\) must be sorted in increasing order. For structurally symmetric matrices zero diagonal elements must be stored in a and ja. Zero diagonal elements should be stored for symmetric matrices, although they are not required. For symmetric matrices, the solver needs only the upper triangular part of the system. \\
Note: iparm(35) indicates whether row/column indexing starts from 1 or 0.
\end{tabular} & in \\
\hline \(\operatorname{perm}(n)\) & \begin{tabular}{l}
INTEGER \\
INTEGER, \\
INTENT (INOUT)
\end{tabular} & Holds the permutation vector of size \(n\), specifies elements used for computing a partial solution, or specifies differing values of the input matrices for low rank update & \(>=0\) & \begin{tabular}{l}
You can apply your own fill-in reducing ordering (iparm(5) = 1) or return the permutation from the solver (iparm(5) = 2). \\
Let \(C=P^{\star} A^{\star} P^{T}\) be the permuted matrix. Row (column) i of \(C\) is the perm(i) row (column) of \(A\). The numbering of the array must describe a permutation. \\
To specify elements for a partial solution, set
\[
\begin{aligned}
& \operatorname{iparm}(5)=0, \\
& \operatorname{iparm}(31)>0, \text { and } \\
& \operatorname{iparm}(36)=0 .
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& \text { in/o } \\
& \text { ut }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Type & Description & Values & Comments & \[
\begin{aligned}
& \hline \text { In/ }
\end{aligned}
\] \\
\hline & & & & To specify elements for a Schur complement, set \(\operatorname{iparm}(5)=0\), \(\operatorname{iparm}(31)=0\), and iparm(36)>0. & \\
\hline & & & & To specify values that differ in \(A\) for low rank update (see Low Rank Update), set iparm(39) = 1. The size of the array must be at least \(2 *\) ndiff + 1 , where ndiff is the number of values of \(A\) that are different. The values of perm should be: & \\
\hline & & & & ```
perm = {ndiff,
row index1,
column_indexl,
row_index2,
column_index2,,
row_index_ndiff,
column_index_ndiff}
``` & \\
\hline & & & & where row_index_m and column_index_m are the row and column indices of the \(m\)-th differing nonzero value in matrix \(A\). The row and column index pairs can be in any order, but must use zero-based indexing regardless of the value of iparm(35). & \\
\hline & & & & \begin{tabular}{l}
NOTE \\
Unless you have specified low rank update, iparm(35) indicates whether row/column indexing starts from 1 or 0.
\end{tabular} & \\
\hline nrhs & \begin{tabular}{l}
INTEGER \\
INTEGER, \\
INTENT (IN)
\end{tabular} & Number of righthand sides that need to be solved for & \(>=0\) & \begin{tabular}{l}
Generally used value is 1 \\
To obtain better Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO performance, during the numerical factorization phase you can provide the maximum number of right-hand sides, which can be used further during the solving phase.
\end{tabular} & in \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Type & Description & Values & Comments & \[
\begin{aligned}
& \text { In/ } \\
& \text { Out }
\end{aligned}
\] \\
\hline iparm(64) & \begin{tabular}{l}
INTEGER \\
INTEGER, \\
INTENT (INOUT)
\end{tabular} & This array is used to pass various parameters to Intel® \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO and to return some useful information after execution of the solver (see pardiso iparm Parameter for more details) & * & If iparm(1)=0, Intel oneAPI Math Kernel Library (oneMKL) PARDISO fillsiparm(2) through iparm(64) with default values and uses them. & \[
\begin{gathered}
\text { in/o } \\
\text { ut }
\end{gathered}
\] \\
\hline \(m s g l v l\) & \begin{tabular}{l}
INTEGER \\
INTEGER, \\
INTENT (IN)
\end{tabular} & Message level information & 0

1 & \begin{tabular}{l}
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO generates no output \\
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO prints statistical information
\end{tabular} & in \\
\hline \(b(n * n r h s)\) & \[
\begin{aligned}
& \text { PARDISO_DATA_TY } \\
& \text { PE }^{1)} \\
& \text { PARDISO_DATA_TY }^{\text {PE }}{ }^{1)} \text {, } \\
& \text { INTENT (INOUT) }
\end{aligned}
\] & Right-hand side vectors & * & \begin{tabular}{l}
On entry, contains the right-hand side vector/ matrix \(B\), which is placed contiguously in memory. The b(i+(k-1) \(\times n r h s)\) element must hold the \(i\) th component of \(k\)-th right-hand side vector. Note that \(b\) is only accessed in the solution phase. \\
On output, the array is replaced with the solution if iparm (6) \(=1\).
\end{tabular} & \[
\begin{gathered}
\text { in/o } \\
\text { ut }
\end{gathered}
\] \\
\hline \(x(n * n r h s)\) & \[
\begin{aligned}
& \text { PARDISO_DATA_TY } \\
& \text { PE }^{1)} \\
& \text { PARDISO_DATA_TY } \\
& \text { PE }^{1)} \text {, } \\
& \text { INTENT (OUT) }
\end{aligned}
\] & Solution vectors & * & On output, if iparm(6) \(=0\), contains solution vector/ matrix \(X\) which is placed contiguously in memory. The \(x(i+(k-1) \times n r h s)\) element must hold the \(i\) th component of \(k\)-th solution vector. Note that \(x\) is only accessed in the solution phase. & out \\
\hline error & INTEGER & Error indicato & 0 & No error & out \\
\hline & INTEGER, INTENT (OUT) & & -1
-2
-3 & \begin{tabular}{l}
Input inconsistent \\
Not enough memory \\
Reordering problem
\end{tabular} & \\
\hline
\end{tabular}
\(\left.\begin{array}{llll}\hline \text { Parameter } & \text { Type } & \text { Description } & \text { Comments }\end{array} \begin{array}{l}\text { In/ } \\ \text { Out }\end{array}\right]\)
1) See description of PARDISO_DATA_TYPE in PARDISO_DATA_TYPE.

\section*{pardiso iparm Parameter}

This table describes all individual components of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISOiparm parameter. Components which are not used must be initialized with 0 . Default values are denoted with an asterisk (*).
\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline iparm(1) & Use default values. \\
\hline \multirow[t]{2}{*}{input} & \(0 \quad\) iparm(2) - iparm(64) are filled with default values. \\
\hline & \(\neq 0 \quad\) You must supply all values in components iparm(2) - iparm(64). \\
\hline iparm(2) & Fill-in reducing ordering for the input matrix. \\
\hline input & \begin{tabular}{l}
Caution \\
You can control the parallel execution of the solver by explicitly setting the MKL_NUM_THREADS environment variable. If fewer OpenMP threads are available than specified, the execution may slow down instead of speeding up. If MKL_NUM_THREADS is not defined, then the solver uses all available processors.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline 0 & The minimum degree algorithm [Li99]. \\
\hline \(2^{*}\) & The nested dissection algorithm from the METIS package [Karypis98]. \\
\hline 3 & \begin{tabular}{l} 
The parallel (OpenMP) version of the nested dissection algorithm. It can decrease the \\
time of computations on multi-core computers, especially when Intel \({ }^{\circledR}\) oneAPI Math
\end{tabular} \\
& Kernel Library (oneMKL) PARDISO Phase 1 takes significant time.
\end{tabular}

\section*{NOTE}

Setting iparm(2) = 3 prevents the use of CNR mode (iparm(34) > 0) because Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO uses dynamic parallelism.
\begin{tabular}{|c|c|c|}
\hline Component & \multicolumn{2}{|l|}{Description} \\
\hline iparm(3) & \multicolumn{2}{|l|}{Reserved. Set to zero.} \\
\hline iparm(4) & \multicolumn{2}{|l|}{Preconditioned CGS/CG.} \\
\hline \multirow[t]{4}{*}{input} & \multicolumn{2}{|l|}{This parameter controls preconditioned CGS [Sonn89] for nonsymmetric or structurally symmetric matrices and Conjugate-Gradients for symmetric matrices. iparm(4) has the form \(\operatorname{iparm}(4)=10 * L+K\).} \\
\hline & \(K=0\) & The factorization is always computed as required by phase. \\
\hline & \(K=1\) & CGS iteration replaces the computation of \(L U\). The preconditioner is \(L U\) that was computed at a previous step (the first step or last step with a failure) in a sequence of solutions needed for identical sparsity patterns. \\
\hline & \(K=2\) & CGS iteration for symmetric positive definite matrices replaces the computation of \(L L^{\top}\). The preconditioner is \(L L^{\top}\) that was computed at a previous step (the first step or last step with a failure) in a sequence of solutions needed for identical sparsity patterns. \\
\hline
\end{tabular}

The value \(L\) controls the stopping criterion of the Krylov Subspace iteration:
\(\operatorname{eps}_{\mathrm{CGS}}=10^{-L}\) is used in the stopping criterion
\(\left|\left|d x_{i}\right|\right| /\left|\left|d x_{0}\right|\right|<e p S_{C G S}\)
where \(\left|\left|d x_{i}\right|\right|=\left|\left|\operatorname{inv}\left(L^{\star} U\right)^{*} r_{i}\right|\right|\) for \(K=1\) or \(\left|\left|d x_{i}\right|\right|=\left|\left|\operatorname{inv}\left(L^{\star} L^{\mathrm{T}}\right){ }^{\star} r_{i}\right|\right|\) for \(K=2\) and \(r_{i}\) is the residue at iteration \(i\) of the preconditioned Krylov Subspace iteration.

A maximum number of 150 iterations is fixed with the assumption that the iteration will converge before consuming half the factorization time. Intermediate convergence rates and residue excursions are checked and can terminate the iteration process. If phase \(=23\), then the factorization for a given \(A\) is automatically recomputed in cases where the Krylov Subspace iteration failed, and the corresponding direct solution is returned. Otherwise the solution from the preconditioned Krylov Subspace iteration is returned. Using phase \(=33\) results in an error message (error=-4) if the stopping criteria for the Krylov Subspace iteration can not be reached. More information on the failure can be obtained from iparm(20).
The default is iparm (4) =0, and other values are only recommended for an advanced user. iparm(4) must be greater than or equal to zero.

\section*{Examples:}
iparm(4)
31
\(61 \quad\) LU-preconditioned CGS iteration with a stopping criterion of \(1.0 \mathrm{E}-6\) for nonsymmetric matrices
\(L L^{\top}\)-preconditioned CGS iteration with a stopping criterion of \(1.0 \mathrm{E}-6\) for symmetric positive definite matrices
iparm(5)
input

User permutation.
This parameter controls whether user supplied fill-in reducing permutation is used instead of the integrated multiple-minimum degree or nested dissection algorithms. Another use of this parameter is to control obtaining the fill-in reducing permutation vector calculated during the reordering stage of Intel® oneAPI Math Kernel Library (oneMKL) PARDISO.
\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline & This option is useful for testing reordering algorithms, adapting the code to special applications problems (for instance, to move zero diagonal elements to the end of \(P^{\star} A^{\star} P^{T}\) ), or for using the permutation vector more than once for matrices with identical sparsity structures. For definition of the permutation, see the description of the perm parameter. \\
\hline & \begin{tabular}{l}
Caution \\
You can only set one of iparm(5), iparm(31), and iparm(36), so be sure that the iparm(31) (partial solution) and the iparm(36) (Schur complement) parameters are 0 if you set iparm(5).
\end{tabular} \\
\hline & 0* User permutation in the perm array is ignored. \\
\hline & 1 Intel® oneAPI Math Kernel Library (oneMKL) PARDISO uses the user supplied fill-in reducing permutation from theperm array. iparm(2) is ignored. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
NOTE \\
Setting iparm(5) = 1 prevents use of a parallel algorithm for the solve step.
\end{tabular} \\
\hline & 2 Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO returns the permutation vector computed at phase 1 in theperm array. \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
iparm(6) \\
input
\end{tabular}} & Write solution on \(x\). \\
\hline & \begin{tabular}{l}
NOTE \\
The array \(x\) is always used.
\end{tabular} \\
\hline & 0* The array x contains the solution; right-hand side vector \(b\) is kept unchanged. \\
\hline & \(1 \quad\) The solver stores the solution on the right-hand side \(b\). \\
\hline iparm(7) & Number of iterative refinement steps performed. \\
\hline output & Reports the number of iterative refinement steps that were actually performed during the solve step. \\
\hline iparm(8) & \multirow[t]{2}{*}{\begin{tabular}{l}
Iterative refinement step. \\
On entry to the solve and iterative refinement step, iparm (8) must be set to the maximum number of iterative refinement steps that the solver performs.
\end{tabular}} \\
\hline input & \\
\hline
\end{tabular}

NOTE Perturbed pivots result in iterative refinement (independent of the value of iparm(8)) and the number of executed iterations is reported in iparm(7).
\begin{tabular}{ll}
\hline 0* & \begin{tabular}{l} 
The solver automatically performs two steps of iterative refinement when \\
perturbed pivots are obtained during the numerical factorization.
\end{tabular} \\
\hline\(>0\) & \begin{tabular}{l} 
Maximum number of iterative refinement steps that the solver performs. The \\
solver performs not more than the absolute value of iparm (8) steps of \\
iterative refinement. The solver might stop the process before the maximum \\
number of steps if
\end{tabular} \\
\hline
\end{tabular}


NOTE Currently, this feature is only supported for sequential and OpenMP threading.
iparm(9) input Tolerance level for the relative residual in the iterative refinement process. If set to a non-zero value, an additional criterion is used for stopping the iterative refinement: \(\frac{\|r\|}{\|b\|}<10^{-\operatorname{iparm}(9)}\)
If set to zero, default checks are used to determine when to stop the iterations (see iparm(8) description).

NOTE Currently it is only used for iparm (24)=1 or 10 and OpenMP threading.

\section*{iparm(10)}
input

Pivoting perturbation.
This parameter instructs Intel® oneAPI Math Kernel Library (oneMKL) PARDISO how to handle small pivots or zero pivots for nonsymmetric matrices (mtype \(=11\) or mtype \(=13\) ) and symmetric matrices (mtype \(=-2\), mtype \(=-4\), or mtype \(=6\) ). For these matrices the solver uses a complete supernode pivoting approach. When the factorization algorithm reaches a point where it cannot factor the supernodes with this pivoting strategy, it uses a pivoting perturbation strategy similar to [Li99], [Schenk04].
Small pivots are perturbed with eps = 10-iparm(10).
The magnitude of the potential pivot is tested against a constant threshold of
alpha \(=\) eps*||A2||inf,
where eps \(=10^{(-\operatorname{iparm}(10))}, A 2=P^{\star} P_{\mathrm{MPS}}{ }^{\star} D_{\mathrm{r}} \star A \star D_{\mathrm{C}} \star P\), and \(||A 2||_{\text {inf }}\) is the infinity norm of the scaled and permuted matrix \(A\). Any tiny pivots encountered during elimination are set to the sign ( \(I_{I I}\) ) *eps*||A2||inf, which trades off some numerical stability for the ability to keep pivots from getting too small. Small pivots are therefore perturbed with eps \(=10(-i p a r m(10))\).
\begin{tabular}{ll}
\hline \(13^{*} \quad\)\begin{tabular}{l} 
The default value for nonsymmetric matrices \((m t y p e=11, m t y p e=13), \mathrm{eps}=\) \\
\(10^{-13}\).
\end{tabular} \\
\hline \(8^{*} \quad\)\begin{tabular}{l} 
The default value for symmetric indefinite matrices (mtype \(=-2, m t y p e=-4\), \\
\(m t y p e=6), ~ e p s ~\)
\end{tabular} \(10^{-8}\).
\end{tabular}
\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline & \begin{tabular}{l}
matrices (mtype \(=11\) or mtype \(=13\) ). The scaling can also be used for symmetric indefinite matrices (mtype \(=-2\), mtype \(=-4\), or mtype \(=6\) ) when the symmetric weighted matchings are applied (iparm(13) =1). \\
Use iparm(11) = 1 (scaling) and iparm(13) \(=1\) (matching) for highly indefinite symmetric matrices, for example, from interior point optimizations or saddle point problems. Note that in the analysis phase (phase=11) you must provide the numerical values of the matrix \(A\) in array \(a\) in case of scaling and symmetric weighted matching.
\end{tabular} \\
\hline & 0* Disable scaling. Default for symmetric indefinite matrices. \\
\hline & \begin{tabular}{l}
1* Enable scaling. Default for nonsymmetric matrices. \\
Scale the matrix so that the diagonal elements are equal to 1 and the absolute values of the off-diagonal entries are less or equal to 1 . This scaling method is applied to nonsymmetric matrices (mtype \(=11\), mtype \(=13\) ). The scaling can also be used for symmetric indefinite matrices (mtype \(=-2\), mtype \(=-4\), mtype \(=6\) ) when the symmetric weighted matchings are applied (iparm(13) \(=1\) ). \\
Note that in the analysis phase (phase=11) you must provide the numerical values of the matrix \(A\) in case of scaling.
\end{tabular} \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
iparm(12) \\
input
\end{tabular}} & Solve with transposed or conjugate transposed matrix \(A\). \\
\hline & 0* Solve a linear system \(A X=B\). \\
\hline & 1 Solve a conjugate transposed system \(A^{H} X=B\) based on the factorization of the matrix \(A\). \\
\hline & 2 Solve a transposed system \(A^{T} X=B\) based on the factorization of the matrix \(A\). \\
\hline iparm(13) input & \begin{tabular}{l}
Improved accuracy using (non-) symmetric weighted matching. \\
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO can use a maximum weighted matching algorithm to permute large elements close the diagonal. This strategy adds an additional level of reliability to the factorization methods and complements the alternative of using more complete pivoting techniques during the numerical factorization.
\end{tabular} \\
\hline & 0* Disable matching. Default for symmetric indefinite matrices. \\
\hline & \begin{tabular}{l}
1* Enable matching. Default for nonsymmetric matrices. \\
Maximum weighted matching algorithm to permute large elements close to the diagonal. \\
It is recommended to use iparm(11) \(=1\) (scaling) and \(\operatorname{iparm}(13)=1\) (matching) for highly indefinite symmetric matrices, for example from interior point optimizations or saddle point problems. \\
Note that in the analysis phase (phase=11) you must provide the numerical values of the matrix \(A\) in case of symmetric weighted matching.
\end{tabular} \\
\hline iparm(14) output & Number of perturbed pivots. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline & After factorization, contains the number of perturbed pivots for the matrix types: 1, 3, \(11,13,-2,-4\) and 6. \\
\hline iparm(15) & Peak memory on symbolic factorization. \\
\hline output & The total peak memory in kilobytes that the solver needs during the analysis and symbolic factorization phase. \\
\hline & This value is only computed in phase 1. \\
\hline iparm(16) & Permanent memory on symbolic factorization. \\
\hline output & Permanent memory from the analysis and symbolic factorization phase in kilobytes that the solver needs in the factorization and solve phases. \\
\hline & This value is only computed in phase 1. \\
\hline iparm(17) & Size of factors/Peak memory on numerical factorization and solution. \\
\hline output & This parameter provides the size in kilobytes of the total memory consumed by in-core Intel \({ }^{-}\)oneAPI Math Kernel Library (oneMKL) PARDISO for internal floating point arrays. This parameter is computed in phase 1. Seeiparm (63) for the OOC mode. \\
\hline & The total peak memory consumed by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO ismax(iparm(15), iparm(16)+iparm(17)) \\
\hline iparm(18) & Report the number of non-zero elements in the factors. \\
\hline input/output & \(<0 \quad\) Enable reporting if iparm(18) < 0 on entry. The default value is -1. \\
\hline & \(>=0\) Disable reporting. \\
\hline \multirow[t]{3}{*}{input/output} & Report number of floating point operations (in \(10^{6}\) floating point operations) that are necessary to factor the matrix \(A\). \\
\hline & <0 Enable report if iparm(19) < 0 on entry. This increases the reordering time. \\
\hline & \({ }_{*} \times=0\) Disable report. \\
\hline \multirow[t]{11}{*}{\begin{tabular}{l}
iparm(20) \\
output
\end{tabular}} & Report CG/CGS diagnostics. \\
\hline & >0 CGS succeeded, reports the number of completed iterations. \\
\hline & <0 CG/CGS failed (error=-4 after the solution phase). \\
\hline & If phase \(=23\), then the factors \(L\) and \(U\) are recomputed for the matrix \(A\) and the error flag error=0 in case of a successful factorization. If phase \(=33\), then error \(=-4\) signals failure. \\
\hline & iparm(20) = - it_cgs*10 - cgs_error. \\
\hline & Possible values of cgs_error: \\
\hline & 1 - fluctuations of the residuum are too large \\
\hline & \(2-\left|\left|\mathrm{dx}_{\text {max_it_cgs } / 2}\right|\right|\) is too large (slow convergence) \\
\hline & 3 - stopping criterion is not reached at max_it_cgs \\
\hline & 4 - perturbed pivots caused iterative refinement \\
\hline & 5 - factorization is too fast for this matrix. It is better to use the factorization method with \(\operatorname{iparm}(4)=0\) \\
\hline \[
\begin{aligned}
& \text { iparm(21) } \\
& \text { input }
\end{aligned}
\] & Pivoting for symmetric indefinite matrices. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline & \begin{tabular}{l}
NOTE \\
Use iparm(11) = 1 (scaling) and iparm(13) = 1 (matchings) for highly indefinite symmetric matrices, for example from interior point optimizations or saddle point problems.
\end{tabular} \\
\hline & \(0 \quad\) Apply \(1 \times 1\) diagonal pivoting during the factorization process. \\
\hline & Apply \(1 \times 1\) and \(2 \times 2\) Bunch-Kaufman pivoting during the factorization process. Bunch-Kaufman pivoting is available for matrices of mtype=-2, mtype=-4, or \(m t y p e=6\). \\
\hline & \(2 \quad\) Apply \(1 \times 1\) diagonal pivoting during the factorization process. Using this value is the same as using iparm(21) \(=0\) except that the solve step does not automatically make iterative refinements when perturbed pivots are obtained during numerical factorization. The number of iterations is limited to the number of iterative refinements specified by iparm(8) (0 by default). \\
\hline & Apply \(1 \times 1\) and \(2 \times 2\) Bunch-Kaufman pivoting during the factorization process. Bunch-Kaufman pivoting is available for matrices of mtype=-2, mtype=-4, or mtype=6. Using this value is the same as using iparm(21) = 1 except that the solve step does not automatically make iterative refinements when perturbed pivots are obtained during numerical factorization. The number of iterations is limited to the number of iterative refinements specified by iparm(8) (0 by default). \\
\hline \begin{tabular}{l}
iparm(22) \\
output
\end{tabular} & Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO reports the number of positive eigenvalues for symmetric indefinite matrices. \\
\hline \begin{tabular}{l}
iparm(23) \\
output
\end{tabular} & Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO reports the number of negative eigenvalues for symmetric indefinite matrices. \\
\hline iparm(24) & Parallel factorization control. \\
\hline \multirow[t]{2}{*}{input} & 0* Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO uses the classic algorithm for factorization. \\
\hline & 1 Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO uses a two-level factorization algorithm. This algorithm generally improves scalability in case of parallel factorization on many OpenMP threads (more than eight). \\
\hline
\end{tabular}

NOTE Disable iparm(11) (scaling) and iparm(13) = 1 (matching) when using the two-level factorization algorithm. Otherwise Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO uses the classic factorization algorithm.

10 Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO uses an improved twolevel factorization algorithm for nonsymmetric matrices.
iparm(25)
input

Parallel forward/backward solve control.
0* Intel® oneAPI Math Kernel Library (oneMKL) PARDISO uses the following strategy for parallelizing the solving step:

In the case of the one right-hand side, the parallelization will be performed by partitioning the matrix.
\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline \multirow[t]{5}{*}{} & Otherwise, the parallelization will be over the right-hand sides. \\
\hline & This feature is available only for in-core Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO (seeiparm(60)). \\
\hline & Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO uses the sequential forward and backward solve. \\
\hline & 2 Independent from the number of the right-hand sides, Inte® oneAPI Math Kernel Library (oneMKL) PARDISO uses the parallel algorithm based on the matrix partitioning. \\
\hline & This feature is available only for in-core Intel® oneAPI Math Kernel Library (oneMKL) PARDISO (seeiparm(60)). \\
\hline iparm(26) & Reserved. Set to zero. \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
iparm(27) \\
input
\end{tabular}} & Matrix checker. \\
\hline & 0* Intel® oneAPI Math Kernel Library (oneMKL) PARDISO does not check the sparse matrix representation for errors. \\
\hline & \(1 \quad\) Intel oneAPI Math Kernel Library (oneMKL) PARDISO checks integer arraysia and \(j\) a. In particular, Intel oneAPI Math Kernel Library (oneMKL) PARDISO checks whether column indices are sorted in increasing order within each row. \\
\hline iparm(28) & \multirow[t]{2}{*}{Single or double precision Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO. See iparm (8) for information on controlling the precision of the refinement steps.} \\
\hline input & \\
\hline
\end{tabular}

\section*{Important}

The iparm (28) value is stored in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO handle between Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO calls, so the precision mode can be changed only during phase 1.

0* Input arrays ( \(a, x\) and \(b\) ) and all internal arrays must be presented in double precision.
\(1 \quad\) Input arrays ( \(a, x\) and \(b\) ) must be presented in single precision.
In this case all internal computations are performed in single precision.
\begin{tabular}{ll}
\hline iparm(29) & Reserved. Set to zero. \\
\hline iparm(30) & \begin{tabular}{l} 
Number of zero or negative pivots. \\
output
\end{tabular} \\
\begin{tabular}{l} 
If Intel® oneAPI Math Kernel Library (oneMKL) PARDISO detects zero or negative pivot \\
formtype=2 or mtype=4 matrix types, the factorization is stopped. Intel® oneAPI Math \\
Kernel Library (oneMKL) PARDISO returns immediately with anerror \(=-4\), and \\
iparm(30) reports the number of the equation where the zero or negative pivot is \\
detected.
\end{tabular} \\
& \begin{tabular}{l} 
Note: The returned value can be different for the parallel and sequential version in \\
case of several zero/negative pivots.
\end{tabular} \\
\hline iparm(31) & \begin{tabular}{l} 
Partial solve and computing selected components of the solution vectors. \\
input
\end{tabular} \\
\begin{tabular}{l} 
This parameter controls the solve step of Intel® oneAPI Math Kernel Library (oneMKL) \\
PARDISO. It can be used if only a few components of the solution vectors are needed \\
or if you want to reduce the computation cost at the solve step by utilizing the sparsity \\
of the right-hand sides. To use this option the input permutation vector defineperm so
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline & that when perm(i) \(=1\) it means that either the \(i\)-th component in the right-hand sides is nonzero, or the \(i\)-th component in the solution vectors is computed, or both, depending on the value of iparm(31). \\
\hline & The permutation vector permmust be present in all phases of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO software. At the reordering step, the software overwrites the input vectorperm by a permutation vector used by the software at the factorization and solver step. If \(m\) is the number of components such that perm(i) \(=\) 1 , then the last \(m\) components of the output vector perm are a set of the indices \(i\) satisfying the condition perm(i) \(=1\) on input. \\
\hline
\end{tabular}

\section*{NOTE}

Turning on this option often increases the time used by Intel® oneAPI Math Kernel Library (oneMKL) PARDISO for factorization and reordering steps, but it can reduce the time required for the solver step.

\section*{Important}

You can use this feature for both in-core and out-of-core Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO as long as iparm[23]=1. Otherwise, you cannot use partial solve for out-of-core mode and you will need to setiparm(60)=0 for in-core mode. Set the parameters iparm(8) (iterative refinement steps), iparm(4) (preconditioned CGS), iparm(5) (user permutation), and iparm(36) (Schur complement) to 0 as well.
\begin{tabular}{|c|c|}
\hline 0* & Disables this option. \\
\hline 1 & it is assumed that the right-hand sides have only a few non-zero components* and the input permutation vector perm is defined so that perm(i) \(=1\) means that the (i)-th component in the right-hand sides is nonzero. In this case Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO only uses the non-zero components of the right-hand side vectors and computes only corresponding components in the solution vectors. That means thei-th component in the solution vectors is only computed if perm(i) \(=1\). \\
\hline 2 & It is assumed that the right-hand sides have only a few non-zero components* and the input permutation vector perm is defined so that perm(i) = 1 means that the \(i\)-th component in the right-hand sides is nonzero. \\
\hline & Unlike for iparm(31)=1, all components of the solution vector are computed for this setting and all components of the right-hand sides are used. Because all components are used, for iparm(31) \(=2\) you must set the \(i\)-th component of the right-hand sides to zero explicitly if perm(i) is not equal to 1 . \\
\hline 3 & Selected components of the solution vectors are computed. The perm array is not related to the right-hand sides and it only indicates which components of the solution vectors should be computed. In this case perm(i) \(=1\) means that the \(i\)-th component in the solution vectors is computed. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline \begin{tabular}{l} 
iparm(32) - \\
iparm(33)
\end{tabular} & Reserved. Set to zero. \\
\hline iparm(34) & \begin{tabular}{l} 
Optimal number of OpenMP threads for conditional numerical reproducibility (CNR) \\
input
\end{tabular} \\
& \begin{tabular}{l} 
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO reads the value of iparm (34) \\
during the analysis phase (phase 1), so you cannot change it later.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline & \begin{tabular}{l}
Because Intel® oneAPI Math Kernel Library (oneMKL) PARDISO uses \(C\) random number generator facilities during the analysis phase (phase 1) you must take these precautions to get numerically reproducible results: \\
- Do not alter the states of the random number generators. \\
- Do not run multiple instances of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO in parallel in the analysis phase (phase 1).
\end{tabular} \\
\hline & \begin{tabular}{l}
NOTE \\
CNR is only available for the in-core version of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO and the non-parallel version of the nested dissection algorithm. You must also: \\
- set iparm(60) to 0 in order to use the in-core version, \\
- not set iparm(2) to 3 in order to not use the parallel version of the nested dissection algorithm.
\end{tabular} \\
\hline & Otherwise Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO does not produce numerically repeatable results even if CNR is enabled for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) using the functionality described inSupport Functions for CNR. \\
\hline
\end{tabular}
iparm(35)
input

\section*{NOTE}

Schur complement may be inaccurate or incorrect if pivots are detected.
Please, check the output of iparm(29).

0* One-based indexing: columns and rows indexing in arrays ia, ja, and perm starts from 1 (Fortran-style indexing).
\(1 \quad\) Zero-based indexing: columns and rows indexing in arrays ia, ja, and perm starts from 0 (C-style indexing).
iparm(36) input/output

One- or zero-based indexing of columns and rows. only if it is enabled for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) using the functionality described inSupport Functions for CNRand the in-core version is used. Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO determines the optimal number of OpenMP threads automatically, and produces numerically reproducible results regardless of the number of threads.
\(>0 \quad\) CNR mode is enabled for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO if in-core version is used and the optimal number of OpenMP threads for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO to rely on is defined by the value of iparm(34). You can use iparm(34) to enable CNR mode independent from other Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) domains. To get the best performance, setiparm (34) to the actual number of hardware threads dedicated for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO. Setting iparm(34) to fewer OpenMP threads than the maximum number of them in use reduces the scalability of the problem being solved. Setting iparm(34) to more threads than are available can reduce the performance of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO.
\begin{tabular}{|c|c|c|}
\hline Component & \multicolumn{2}{|l|}{Description} \\
\hline & \multicolumn{2}{|r|}{\begin{tabular}{l}
Caution \\
You can only set one of iparm(5), iparm(31), and iparm(36), so be sure that the iparm(5) (user permutation) and the iparm(31) (partial solution) parameters are 0 if you set iparm(36).
\end{tabular}} \\
\hline & 0* & Do not compute Schur complement. \\
\hline & 1 & Compute Schur complement matrix as part of Intel® oneAPI Math Kernel Library (oneMKL) PARDISO factorization step and return it in the solution vector. \\
\hline & & \begin{tabular}{l}
NOTE \\
This option only computes the Schur complement matrix, and does not calculate factorization arrays.
\end{tabular} \\
\hline & 2 & Compute Schur complement matrix as part of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO factorization step and return it in the solution vector. Since this option calculates factorization arrays you can use it to launch partial or full solution of the entire problem after the factorization step. \\
\hline & -1 & Same as iparm(36) equals 1, but the Schur complement matrix is provided in 3-array CSR sparse format. Use in combination with pardiso_export. After reordering stage of MKL PARDISO, iparm (36) contains number of nonzero elements for Schur complement matrix. Set it once again before calling the factorization phase. \\
\hline
\end{tabular}

\section*{NOTE}

This option is available only when iparm(24) is not equal to 0 .
-2 Same as iparm(36) equals 2, but the Schur complement matrix is provided in 3-array CSR sparse format. Use in combination with pardiso_export. After reordering stage of MKL PARDISO, iparm (36) contains number of nonzero elements for Schur complement matrix. Set it once again before calling the factorization phase.

\section*{NOTE}

This option is available only when iparm(24) is not equal to 0 .
\begin{tabular}{ll}
\hline iparm(37) \\
\multirow{2}{*}{\begin{tabular}{l} 
input
\end{tabular}} & \multicolumn{2}{l}{ Format for matrix storage. } \\
\cline { 2 - 3 } & \(0^{*} \quad\) Use CSR format (see Three Array Variation of CSR Format) for matrix storage. \\
\cline { 2 - 3 } & \multicolumn{6}{l}{\begin{tabular}{l} 
Use BSR format (see Three Array Variation of BSR Format) for matrix storage \\
with blocks of size iparm(37).
\end{tabular}} \\
\hline
\end{tabular}

\section*{NOTE}

Intel \({ }^{\text {® }}\) oneAPI Math Kernel Library (oneMKL) does not support BSR format in these cases:
- iparm(11) > 0: Scaling vectors
- \(\operatorname{iparm}(13)>0\) : Weighted matching
- iparm(31) > 0: Partial solution
- iparm(36) > 0: Schur complement
- iparm(56) > 0: Pivoting control
- iparm (60) > 0: OOC Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO
\(<0 \quad\) Convert supplied matrix to variable BSR (VBSR) format (see Sparse Data Storage) for matrix storage. Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO analyzes the matrix provided in CSR3 format and converts it to an internal VBSR format. Setiparm(37) \(=-t, 0<t \leq 100\).

\section*{NOTE}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) supports only the VBSR format for real and symmetric positive definite or indefinite matrices ( \(m t y p e=2\) or \(m t y p e=-2\) ). Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) does not support VBSR format in these cases:
- iparm(11) > 0: Scaling vectors
- iparm(13) > 0: Weighted matching
- iparm(56) > 0: Pivoting control

NOTEIntel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) supports these features for all matrix types as long asiparm (24)=1:
- iparm(31) > 0: Partial solution
- iparm(36) > 0: Schur complement
- \(\operatorname{iparm}(60)>0\) : OOC Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO
\begin{tabular}{|c|c|}
\hline iparm(38) & Reserved. Set to zero. \\
\hline \multirow[t]{3}{*}{iparm(39)} & Enable low rank update (see Low Rank Update) to accelerate factorization for multiple matrices with identical structure and similar values. \\
\hline & 0* Do not use low rank update functionality. \\
\hline & \begin{tabular}{l}
1 Use low rank update functionality. You must also set iparm(24) = 10 and provide a list of changed values in the perm array. \\
This option requires the default settings of iparm(4), iparm(5), iparm(6), iparm(12), iparm(28), iparm(31), iparm(36), iparm(37), iparm(56), and iparm(60) as well.
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline \operatorname{iparm(40)-} \\
& \text { iparm(42) }
\end{aligned}
\] & Reserved. Set to zero. \\
\hline \multirow[t]{2}{*}{iparm(43)} & Control parameter for the computation of the diagonal of inverse matrix. \\
\hline & 0* Do not compute the diagonal of inverse matrix. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline & 1 Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO computes the diagonal of the inverse matrix during the factorization phase. This feature is only available with two-level factorization algorithm (iparm(24) =1) and real symmetric matrices (mtype \(=2\) or mtype \(=-2\) ). The diagonal is returned in the solution vector. \\
\hline \[
\begin{aligned}
& \text { iparm(44) - } \\
& \text { iparm(55) }
\end{aligned}
\] & Reserved. Set to zero. \\
\hline \multirow[t]{3}{*}{iparm(56)} & Diagonal and pivoting control. \\
\hline & 0* Internal function used to work with pivot and calculation of diagonal arrays turned off. \\
\hline & \(1 \quad\) You can use the mkl_pardiso_pivot callback routine to control pivot elements which appear during numerical factorization. Additionally, you can obtain the elements of initial matrix and factorized matrices after the pardiso factorization step diagonal using the pardiso_getdiagroutine. This parameter can be turned on only in the in-core version of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \hline \text { iparm(57) - } \\
& \text { iparm(59) } \\
& \hline
\end{aligned}
\] & Reserved. Set to zero. \\
\hline iparm(60) & Intel \({ }^{(1)}\) oneAPI Math Kernel Library (oneMKL) PARDISO mode. \\
\hline \multirow[t]{3}{*}{input} & iparm (60) switches between in-core (IC) and out-of-core (OOC) Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO. OOC can solve very large problems by holding the matrix factors in files on the disk, which requires a reduced amount of main memory compared to IC. \\
\hline & Unless you are operating in sequential mode, you can switch between IC and OOC modes after the reordering phase. However, you can get better Intel oneAPI Math Kernel Library (oneMKL) PARDISO performance by settingiparm(60) before the reordering phase. \\
\hline & The amount of memory used in OOC mode depends on the number of OpenMP threads. \\
\hline
\end{tabular}

\section*{Warning}

Do not increase the number of OpenMP threads used for cluster_sparse_solver between the first call and the factorization or solution phase. Because the minimum amount of memory required for out-of-core execution depends on the number of OpenMP threads, increasing it after the initial call can cause incorrect results.
\begin{tabular}{ll}
\hline \(0^{*}\) & IC mode. \\
\hline 1 & IC mode is used if the total amount of RAM (in megabytes) needed for storing \\
the matrix factors is less than sum of two values of the environment variables: \\
& MKL_PARDISO_OOC_MAX_CORE_SIZE (default value 2000 MB ) and \\
& MKL_PARDISO_OOC_MAX_SWAP_SIZE (default value 0 MB ); otherwise OOC \\
& mode is used. In this case amount of RAM used by OOC mode cannot exceed \\
the value of MKL_PARDISO_OOC_MAX_CORE_SIZE. \\
& If the total peak memory needed for storing the local arrays is more than \\
& MKL_PARDISO_OOC_MAX_CORE_SIZE, increase \\
& MKL_PARDISO_OOC_MAX_CORE_SIZE if possible.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline & \begin{tabular}{l}
NOTE \\
Conditional numerical reproducibility (CNR) is not supported for this mode.
\end{tabular} \\
\hline & \begin{tabular}{l}
OOC mode. \\
The OOC mode can solve very large problems by holding the matrix factors in files on the disk. Hence the amount of RAM required by OOC mode is significantly reduced compared to IC mode. \\
If the total peak memory needed for storing the local arrays is more than MKL_PARDISO_OOC_MAX_CORE_SIZE, increase MKL_PARDISO_OOC_MAX_CORE_SIZE if possible. \\
To obtain better Intel® oneAPI Math Kernel Library (oneMKL) PARDISO performance, during the numerical factorization phase you can provide the maximum number of right-hand sides, which can be used further during the solving phase. \\
Refer to How to use Intel® MKL OOC PARDISO and Storage of Matrices for more details about OOC.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { iparm(61) - } \\
& \text { iparm(62) }
\end{aligned}
\] & Reserved. Set to zero. \\
\hline \begin{tabular}{l}
iparm(63) \\
output
\end{tabular} & \begin{tabular}{l}
Size of the minimum OOC memory for numerical factorization and solution. \\
This parameter provides the size in kilobytes of the minimum memory required by OOC Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO for internal floating point arrays. This parameter is computed in phase 1. \\
Total peak memory consumption of OOC Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO can be estimated asmax(iparm(15), iparm(16) + iparm(63)).
\end{tabular} \\
\hline iparm(64) & \begin{tabular}{l}
Rese \\
rved \\
. Set \\
to \\
zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{NOTE}

Generally in sparse matrices, components which are equal to zero can be considered non-zero if necessary. For example, in order to make a matrix structurally symmetric, elements which are zero can be considered non-zero. See Sparse Matrix Storage Formats for an example.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{PARDISO_DATA_TYPE}

The following table lists the values of PARDISO_DATA_TYPE depending on the matrix types and values of the parameter iparm(28).
\begin{tabular}{|llll}
\hline Data type value & Matrix type mtype & iparm(28) & comments \\
\hline DOUBLE PRECISION & \(1,2,-2,11\) & 0 & Real matrices, do \\
REAL & \(3,6,13,4,-4\) & 1 & Real matrices, sin \\
DOUBLE COMPLEX & & 0 & \begin{tabular}{l} 
Complex matrices \\
precision
\end{tabular} \\
COMPLEX & 1 & \begin{tabular}{l} 
Complex matrices \\
precision
\end{tabular} \\
\hline
\end{tabular}

\section*{Parallel Direct Sparse Solver for Clusters Interface}

The Parallel Direct Sparse Solver for Clusters Interface solves large linear systems of equations with sparse matrices on clusters. It is
- high performing
- robust
- memory efficient
- easy to use

A hybrid implementation combines Message Passing Interface (MPI) technology for data exchange between parallel tasks (processes) running on different nodes, and OpenMP* technology for parallelism inside each node of the cluster. This approach effectively uses modern hardware resources such as clusters consisting of nodes with multi-core processors. The solver code is optimized for the latest Intel processors, but also performs well on clusters consisting of non-Intel processors.

Code examples are available in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) installationexamples directory.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Parallel Direct Sparse Solver for Clusters Interface Algorithm}

Parallel Direct Sparse Solver for Clusters Interface solves a set of sparse linear equations
\(A^{*} X=B\)
with multiple right-hand sides using a distributed \(L U, L L^{\top}, L D L^{\top}\) or \(L D L^{*}\) factorization, where \(A\) is an \(n\)-by-n matrix, and \(X\) and \(B\) are \(n\)-by-nrhs matrices.
The solution comprises four tasks:
- analysis and symbolic factorization;
- numerical factorization;
- forward and backward substitution including iterative refinement;
- termination to release all internal solver memory.

The solver first computes a symmetric fill-in reducing permutation \(P\) based on the nested dissection algorithm from the METIS package [Karypis98](included with Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL)), followed by the Cholesky or other type of factorization (depending on matrix type)[Schenk00-2] of PAP \({ }^{\top}\). The solver uses either diagonal pivoting, or \(1 \times 1\) and \(2 \times 2\) Bunch and Kaufman pivoting for symmetric indefinite or Hermitian matrices before finding an approximation of \(X\) by forward and backward substitution and iterative refinement.

The initial matrix \(A\) is perturbed whenever numerically acceptable \(1 \times 1\) and \(2 \times 2\) pivots cannot be found within the diagonal blocks. One or two passes of iterative refinement may be required to correct the effect of the perturbations. This restricted notion of pivoting with iterative refinement is effective for highly indefinite symmetric systems. For a large set of matrices from different application areas, the accuracy of this method is comparable to a direct factorization method that uses complete sparse pivoting techniques [Schenk04].

Parallel Direct Sparse Solver for Clusters additionally improves the pivoting accuracy by applying symmetric weighted matching algorithms. These methods identify large entries in the coefficient matrix \(A\) that, if permuted close to the diagonal, enable the factorization process to identify more acceptable pivots and proceed with fewer pivot perturbations. The methods are based on maximum weighted matching and improve the quality of the factor in a complementary way to the alternative idea of using more complete pivoting techniques.

\section*{Parallel Direct Sparse Solver for Clusters Interface Matrix Storage}

The sparse data storage in the Parallel Direct Sparse Solver for Clusters Interface follows the scheme described in the Sparse Matrix Storage Formats section using the variable ja for columns, ia for rowIndex, and \(a\) for values. Column indices ja must be in increasing order per row.

When an input data structure is not accessed in a call, a NULL pointer or any valid address can be passed as a placeholder for that argument.

\section*{Algorithm Parallelization and Data Distribution}

Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Parallel Direct Sparse Solver for Clusters enables parallel execution of the solution algorithm with efficient data distribution.

The master MPI process performs the symbolic factorization phase to represent matrix \(A\) as computational tree. Then matrix \(A\) is divided among all MPI processes in a one-dimensional manner. The same distribution is used for \(L\)-factor (the lower triangular matrix in Cholesky decomposition). Matrix \(A\) and all required internal data are broadcast to subordinate MPI processes. Each MPI process fills in its own parts of L-factor with initial values of the matrix \(A\).

Parallel Direct Sparse Solver for Clusters Interface computes all independent parts of L-factor completely in parallel. When a block of the factor must be updated by other blocks, these updates are independently passed to a temporary array on each updating MPI process. It further gathers the result into an updated block using the MPI_Reduce () routine. The computations within an MPI process are dynamically divided among OpenMP threads using pipelining parallelism with a combination of left- and right-looking techniques similar to those of the PARDISO* software. Level 3 BLAS operations from Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) ensure highly efficient performance of block-to-block update operations.

During forward/backward substitutions, respective Right Hand Side (RHS) parts are distributed among all MPI processes. All these processes participate in the computation of the solution. Finally, the solution is gathered on the master MPI process.

This approach demonstrates good scalability on clusters with Infiniband* technology. Another advantage of the approach is the effective distribution of \(L\)-factor among cluster nodes. This enables the solution of tasks with a much higher number of non-zero elements than it is possible with any Symmetric Multiprocessing (SMP) in-core direct solver.

The algorithm ensures that the memory required to keep internal data on each MPI process is decreased when the number of MPI processes in a run increases. However, the solver requires that matrix \(A\) and some other internal arrays completely fit into the memory of each MPI process.

To get the best performance, run one MPI process per physical node and set the number of OpenMP* threads per node equal to the number of physical cores on the node.

\section*{NOTE}

Instead of calling MPI_Init(), initialize MPI with MPI_Init_thread() and set the MPI threading level to MPI_THREAD_FUNNELED or higher. For details, see the code examples in <install_dir>/ examples.

\section*{cluster_sparse_solver \\ Calculates the solution of a set of sparse linear equations with single or multiple right-hand sides.}

\section*{Syntax}
```

call cluster_sparse_solver (pt, maxfct, mnum, mtype, phase, n, a, ia, ja, perm, nrhs,
iparm, msglvl, b, x, comm, error)

```

\section*{Include Files}
- Fortran: mkl_cluster_sparse_solver.f77
- Fortran 90: mkl_cluster_sparse_solver.f90

\section*{Description}

The routine cluster_sparse_solver calculates the solution of a set of sparse linear equations
```

A* X = B

```
with single or multiple right-hand sides, using a parallel \(L U, L D L\), or \(L L^{T}\) factorization, where \(A\) is an \(n\)-by- \(n\) matrix, and \(X\) and \(B\) are \(n\)-by-nrhs vectors or matrices.

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}

\section*{NOTE}

Most of the input parameters (except for the \(p t\), phase, and comm parameters and, for the distributed format, the \(a, i a\), and ja arrays) must be set on the master MPI process only, and ignored on other processes. Other MPI processes get all required data from the master MPI process using the MPI communicator, comm.

Array of size 64.
Handle to internal data structure. The entries must be set to zero before the first call to cluster_sparse_solver.

\section*{Caution}

After the first call to cluster_sparse_solver do not modify pt, as that could cause a serious memory leak.

Ignored; assumed equal to 1 .
INTEGER
Ignored; assumed equal to 1 .
INTEGER
Defines the matrix type, which influences the pivoting method. The Parallel Direct Sparse Solver for Clusters solver supports the following matrices:
\begin{tabular}{ll}
1 & real and structurally symmetric \\
2 & real and symmetric positive definite \\
-2 & real and symmetric indefinite \\
3 & complex and structurally symmetric \\
4 & complex and Hermitian positive definite \\
-4 & complex and Hermitian indefinite \\
6 & complex and symmetric \\
11 & complex and nonsymmetric \\
13 &
\end{tabular}

INTEGER
Controls the execution of the solver. Usually it is a two- or three-digit integer. The first digit indicates the starting phase of execution and the second digit indicates the ending phase. Parallel Direct Sparse Solver for Clusters has the following phases of execution:
- Phase 1: Fill-reduction analysis and symbolic factorization
- Phase 2: Numerical factorization
- Phase 3: Forward and Backward solve including optional iterative refinement
- Memory release (phase \(=-1\) )

If a previous call to the routine has computed information from previous phases, execution may start at any phase. The phase parameter can have the following values:
\begin{tabular}{ll} 
phase & Solver Execution Steps \\
11 & Analysis \\
12 & Analysis, numerical factorization \\
13 & \begin{tabular}{l} 
Analysis, numerical factorization, solve, iterative \\
refinement
\end{tabular} \\
22 & Numerical factorization \\
23 & Numerical factorization, solve, iterative refinement \\
33 & Solve, iterative refinement \\
-1 & Release all internal memory for all matrices
\end{tabular}

INTEGER
Number of equations in the sparse linear systems of equations \(A * X=B\). Constraint: \(n>0\).

DOUBLE PRECISION - for real types of matrices (mtype=1, 2, -2 and 11) and for double precision Parallel Direct Sparse Solver for Clusters Interface (iparm(28)=0)
REAL - for real types of matrices (mtype=1, 2, -2 and 11) and for single precision Parallel Direct Sparse Solver for Clusters Interface (iparm(28)=1)
DOUBLE COMPLEX - for complex types of matrices (mtype=3, 6, 13, 14 and -4) and for double precision Parallel Direct Sparse Solver for Clusters Interface (iparm(28)=0)
COMPLEX - for complex types of matrices (mtype=3, 6, 13, 14 and -4 ) and for single precision Parallel Direct Sparse Solver for Clusters Interface (iparm(28)=1)

Array. Contains the non-zero elements of the coefficient matrix \(A\) corresponding to the indices in ja. The coefficient matrix can be either real or complex. The matrix must be stored in the three-array variant of the compressed sparse row (CSR3) or in the three-array variant of the block compressed sparse row (BSR3) format, and the matrix must be stored with increasing values of \(j\) a for each row.

For CSR3 format, the size of \(a\) is the same as that of ja. Refer to the values array description in Three Array Variation of CSR Format for more details.

For BSR3 format the size of \(a\) is the size of ja multiplied by the square of the block size. Refer to the values array description in Three Array Variation of BSR Format for more details.

\section*{NOTE}

For centralized input (iparm (40) =0), provide the a array for the master MPI process only. For distributed assembled input (iparm (40)=1 or iparm(40)=2), provide it for all MPI processes.

\section*{Important}

The column indices of non-zero elements of each row of the matrix \(A\) must be stored in increasing order.

\section*{INTEGER}

For CSR3 format, ia(i) ( \(i \leq n\) ) points to the first column index of row \(i\) in the array ja. That is, ia(i) gives the index of the element in array a that contains the first non-zero element from row \(i\) of \(A\). The last element ia( \(n\) +1 ) is taken to be equal to the number of non-zero elements in \(A\), plus one. Refer to rowIndex array description in Three Array Variation of CSR Format for more details.

For BSR3 format, ia(i) \((i \leq n)\) points to the first column index of row \(i\) in the array ja. That is, \(i a(i)\) gives the index of the element in array \(a\) that contains the first non-zero block from row \(i\) of \(A\). The last element ia \((n+1)\) is taken to be equal to the number of non-zero blcoks in \(A\), plus one. Refer to rowIndex array description in Three Array Variation of BSR Format for more details.

The array ia is accessed in all phases of the solution process.
Indexing of ia is one-based by default, but it can be changed to zero-based by setting the appropriate value to the parameter iparm(35). For zerobased indexing, the last element \(i a(n+1)\) is assumed to be equal to the number of non-zero elements in matrix \(A\).
NOTE
For centralized input (iparm \((40)=0\) ), provide the ia array at the
master MPI process only. For distributed assembled input
\((\operatorname{iparm}(40)=1\) or \(\operatorname{iparm}(40)=2)\), provide it at all MPI processes.

INTEGER
For CSR3 format, array ja contains column indices of the sparse matrix \(A\). It is important that the indices are in increasing order per row. For symmetric matrices, the solver needs only the upper triangular part of the system as is shown for columns array in Three Array Variation of CSR Format.

For BSR3 format, array ja contains column indices of the sparse matrix \(A\). It is important that the indices are in increasing order per row. For symmetric matrices, the solver needs only the upper triangular part of the system as is shown for columns array in Three Array Variation of BSR Format.
The array \(j a\) is accessed in all phases of the solution process.
Indexing of ja is one-based by default, but it can be changed to zero-based by setting the appropriate value to the parameter iparm(35).

\section*{NOTE}

For centralized input (iparm(40)=0), provide the ja array at the master MPI process only. For distributed assembled input ( \(\operatorname{iparm}(40)=1\) or \(\operatorname{iparm}(40)=2\) ), provide it at all MPI processes.

INTEGER
Ignored.
INTEGER
Number of right-hand sides that need to be solved for.
INTEGER
Array, size 64. This array is used to pass various parameters to Parallel Direct Sparse Solver for Clusters Interface and to return some useful information after execution of the solver.

See cluster_sparse_solver iparm Parameter for more details about the iparm parameters.
```

INTEGER

```

Message level information. If msglvl = 0 then cluster_sparse_solver generates no output, if \(m s g l v l=1\) the solver prints statistical information to the screen.

Statistics include information such as the number of non-zero elements in \(L\)-factor and the timing for each phase.

Set msglvl = 1 if you report a problem with the solver, since the additional information provided can facilitate a solution.

DOUBLE PRECISION - for real types of matrices (mtype=1, 2, -2 and 11) and for double precision Parallel Direct Sparse Solver for Clusters (iparm(28) =0)

REAL - for real types of matrices (mtype=1, 2, -2 and 11) and for single precision Parallel Direct Sparse Solver for Clusters (iparm (28)=1)

DOUBLE COMPLEX - for complex types of matrices (mtype \(=3,6,13,14\) and -4) and for double precision Parallel Direct Sparse Solver for Clusters (iparm(28)=0)

COMPLEX - for complex types of matrices (mtype=3, 6, 13, 14 and -4) and for single precision Parallel Direct Sparse Solver for Clusters (iparm(28)=1)

Array, size ( \(n, n r h s\) ). On entry, contains the right-hand side vector/matrix \(B\), which is placed in memory contiguously. The \(b(i+(k-1) \times n r h s)\) must hold the i-th component of \(k\)-th right-hand side vector. Note that \(b\) is only accessed in the solution phase.

INTEGER
MPI communicator. The solver uses the Fortran MPI communicator internally.

\section*{Output Parameters}

Handle to internal data structure.
Ignored.
On output, some iparm values report information such as the numbers of non-zero elements in the factors.

See cluster_sparse_solver iparm Parameter for more details about the iparm parameters.

On output, the array is replaced with the solution if \(\operatorname{iparm}(6)=1\).
DOUBLE PRECISION - for real types of matrices (mtype=1, 2, -2 and 11) and for double precision Parallel Direct Sparse Solver for Clusters
(iparm(28)=0)
REAL - for real types of matrices (mtype=1, 2, -2 and 11) and for single precision Parallel Direct Sparse Solver for Clusters (iparm(28)=1)

DOUBLE COMPLEX - for complex types of matrices (mtype=3,6,13,14 and -4) and for double precision Parallel Direct Sparse Solver for Clusters (iparm(28) =0)

COMPLEX - for complex types of matrices (mtype=3,6,13, 14 and -4) and for single precision Parallel Direct Sparse Solver for Clusters (iparm(28)=1)

Array, size ( \(n, n r h s\) ). If iparm(6) \(=0\) it contains solution vector/matrix \(X\), which is placed contiguously in memory. The \(x(i+(k-1) \times n)\) element must hold the i-th component of the \(k\)-th solution vector. Note that \(x\) is only accessed in the solution phase.
error
INTEGER
The error indicator according to the below table:
\begin{tabular}{ll} 
error & Information \\
0 & no error \\
-1 & input inconsistent \\
-2 & not enough memory \\
-3 & \begin{tabular}{l} 
reordering problem \\
Zero pivot, numerical factorization or iterative \\
refinement problem. If the error appears during the \\
solution phase, try to change the pivoting perturbation \\
(iparm(10)) and also increase the number of iterative \\
refinement steps. If it does not help, consider changing \\
the scaling, matching and pivoting options (iparm(11), \\
iparm(13), iparm(21))
\end{tabular} \\
& \begin{tabular}{l} 
unclassified (internal) error
\end{tabular} \\
-4 & \begin{tabular}{l} 
reordering failed (matrix types 11 and 13 only) \\
diagonal matrix is singular
\end{tabular} \\
-6 & \begin{tabular}{l}
\(32-\) bit integer overflow problem \\
not enough memory for OOC
\end{tabular} \\
-8 & error opening OOC files \\
-9 & read/write error with OOC files \\
-10 & -11
\end{tabular}
cluster_sparse_solver_64
Calculates the solution of a set of sparse linear equations with single or multiple right-hand sides.

\section*{Syntax}
```

call cluster_sparse_solver_64 (pt, maxfct, mnum, mtype, phase, n, a, ia, ja, perm, nrhs,
iparm, msglvl, b, x, comm, error)

```

\section*{Include Files}
- Fortran: mkl_cluster_sparse_solver.f77
- Fortran 90: mkl_cluster_sparse_solver.f90

\section*{Description}

The routine cluster_sparse_solver_64 is an alternative ILP64 (64-bit integer) version of the cluster_sparse_solver routine (see the Description section for more details). The interface of cluster_sparse_solver_64 is the same as the interface of cluster_sparse_solver, but it accepts and returns all INTEGER data as INTEGER*8.

Use cluster_sparse_solver_64 when cluster_sparse_solverfor solving large matrices (with the number of non-zero elements on the order of 500 million or more). You can use it together with the usual LP64 interfaces for the rest of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functionality. In other words, if you use 64-bit integer version (cluster_sparse_solver_64), you do not need to re-link your applications with ILP64 libraries. Take into account that cluster_sparse_solver_64 may perform slower than regular cluster_sparse_solver on the reordering and symbolic factorization phase.

\section*{NOTE}
cluster_sparse_solver_64 is supported only in the 64-bit libraries. If
cluster_sparse_solver_64 is called from the 32-bit libraries, it returns error \(=-12\).

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}

The input parameters of cluster_sparse_solver_64 are the same as the input parameters of cluster_sparse_solver, but cluster_sparse_solver_64 accepts all INTEGER data as INTEGER*8.

\section*{Output Parameters}

The output parameters of cluster_sparse_solver_64 are the same as the output parameters of cluster_sparse_solver, but cluster_sparse_solver_ 64 returns all INTEGER data as INTEGER*8.
cluster_sparse_solver_get_csr_size
Computes the (local) number of rows and (local)
number of nonzero entries for (distributed) CSR data corresponding to the provided name.

\section*{Syntax}
```

call cluster_sparse_solver_get_csr_size (pt, name, local_nrows, local_nnz, comm, error)

```

\section*{Include Files}
- mkl_cluster_sparse_solver.f90

\section*{Description}

This routine uses the internal data created during the factorization phase of cluster_sparse_solver for matrix \(A\). The routine then:
- Computes the local number of rows and the local number of nonzeros for CSR data that correspond to the provided name
- Returns the computed values in local_nrows and local_nnz

It is assumed that the CSR data defined by the name will be distributed in the same way as the matrix \(A\) (as defined by iparm(40)) used in cluster_sparse_solver.

The returned values can be used for allocating CSR arrays for factors \(L\) and \(U\), and also for allocating arrays for permutations \(P\) and \(Q\), or scaling matrix \(D\) which can then be used with cluster_sparse_solver_set_csr_ptrs or cluster_sparse_solver_set_ptr for exporting corresponding data via cluster_sparse_solver_export.

\section*{NOTE}

Only call this routine after the factorization phase (phase=22) of the cluster_sparse_solver has been called. Neither pt, nor iparm should be changed after the preceding call to cluster_sparse_solver.

\section*{Input Parameters}
pt

\section*{INTEGER*8 for 64-bit architectures}

Array with size of 64.
Handle to internal data structure used in the prior calls to cluster_sparse_solver.

\section*{Caution}

Do not modify pt after the calls to cluster_sparse_solver.
name
comm

INTEGER
Specifies CSR data for which the output values are computed.
```

SPARSE_PTLUQT_L Factor L from P** A* Q=L*U.
SPARSE_PTLUQT_U Factor U from P**A` Q=L* U.
SPARSE_DPTLUQT_L Factor L from P* (D D A A * * = L* U U.
SPARSE_DPTLUQT_U Factor U from P* (}\mp@subsup{D}{}{-1}A)*Q=\mp@subsup{L}{}{\star}U
INTEGER*4

```

MPI communicator. The solver uses the Fortran MPI communicator internally.

\section*{Output Parameters}
local_nrows
local_nnz

\section*{INTEGER}

The local number of rows for the CSR data which correspond to the name.
INTEGER
The local number of nonzero entries for the CSR data which correspond to the name.
```

error
INTEGER
The error indicator:
error Information
0
-1 pt is a null pointer
-2 invalid pt
-3 invalid name
-4 unsupported name
-9 unsupported internal code path, consider switching off
non-default iparm parameters for
cluster_sparse_solver
unsupported case when the matrix A is distributed
among processes with overlap in the preceding calls to
cluster_sparse_solver
internal memory error

```
NOTE Refer to cl_solver_export_f90.f90 for an example using this functionality.
cluster_sparse_solver_set_csr_ptrs
Saves internally-provided pointers to the 3-array CSR
data corresponding to the specified name.

Syntax
```

call cluster_sparse_solver_set_csr_ptrs (pt, name, rowptr, colindx, vals, comm, error)

```

\section*{Include Files}
- mkl_cluster_sparse_solver.f90

\section*{Description}

This routine internally saves the input pointers, rowptr, colindx, and vals, of the 3-array CSR data, which correspond to the provided name. It is assumed that the exported data will be distributed in the same way as the matrix \(A\) (as defined by iparm(40)) used in cluster_sparse_solver.

The saved pointers can then be used for exporting corresponding data by means of cluster_sparse_solver_export.

\section*{NOTE}

Only call this routine after the factorization phase (phase=22) of the cluster_sparse_solver has been called. Neither pt, nor iparm should be changed after the preceding call to cluster_sparse_solver.

\section*{Input Parameters}
```

pt

```

INTEGER* 8 for 64-bit architectures
Array with size of 64.
Handle to internal data structure used in the prior calls to cluster_sparse_solver.

\section*{Caution}

Do not modify pt after the calls to cluster_sparse_solver.

INTEGER
Specifies for which CSR data the pointers are provided.
```

SPARSE_PTLUQT_L Factor L from P** }\mp@subsup{P}{}{*}Q=\mp@subsup{L}{}{*}U\mathrm{ U.
SPARSE_PTLUQT_U Factor U from P* PA\star Q=L* U.
SPARSE_DPTLUQT_L Factor L from P* (}\mp@subsup{P}{}{-1}A)*Q=\mp@subsup{L}{}{*}U\mathrm{ U.
SPARSE_DPTLUQT_U Factor U from P* (}\mp@subsup{D}{}{-1}A)*Q=\mp@subsup{L}{}{\star}U\mathrm{ U.

```

INTEGER
Array of length at least (local_nrows+1) where local_nrows is the local number of rows, which can be obtained by calling
cluster_sparse_solver_get_csr_size. This array contains row indices, such that rowptr[i] - indexing is the first index of row \(i\) in the array's vals and colindx. Here, the value of indexing is 0 for zero-based indexing and 1 for one-based indexing, and must be the same as it was for the matrix \(A\) used in the preceding calls to cluster_sparse_solver (also stored in iparm (35)).

Refer to pointerB array description in CSR Format for more details.
INTEGER
Array of length at least rowptr[local_nrows] - rowptr[0]. Indexing (zero- or one-based) must be the same as for rowptr. For one-based indexing, the array contains the column indices plus one for each non-zero element of the matrix which corresponds to the name. For zero-based indexing, the array contains the column indices for each non-zero element of the matrix.

Array containing non-zero elements of the matrix which corresponds to the name. Its length is equal to length of the colindx array. Refer to values array description in CSR Format for more details.
It is interpreted internally as one of the following depending on mtype (type of the matrix \(A\) ) and iparm (28) (precision) specified in the preceding call to cluster_sparse_solver.
double precision For real types of matrices (mtype \(=1,2,-2\), and 11) and for double precision (iparm (28) \(=0\) ).

REAL For real types of matrices (mtype=1, 2, -2 , and 11) and for single precision (iparm (28) = 1).

DOUBLE COMPLEX

COMPLEX
For complex types of matrices (mtype \(=3,6,13,14\), and -4 ) and for double precision (iparm (28) \(=0\) ).

For complex types of matrices (mtype \(=3,6,13,14\), and -4 ) and for single precision (iparm (28) \(=1\) ).

INTEGER*4
MPI communicator. The solver uses the Fortran MPI communicator internally.

\section*{Output Parameters}

\section*{INTEGER}

The error indicator:
\begin{tabular}{ll} 
error & Information \\
0 & no error \\
-1 & pt is a null pointer \\
-2 & invalid pt \\
-3 & invalid name \\
-4 & \begin{tabular}{l} 
unsupported name \\
unsupported internal code path, consider switching off \\
cluster_sparse_solver
\end{tabular} \\
-9 & internal memory error
\end{tabular}

NOTE Refer to cl_solver_export_f90.f90 for an example using this functionality.
cluster_sparse_solver_set_ptr
Internally saves a provided pointer to the data corresponding to the specified name.

\section*{Syntax}
```

call cluster_sparse_solver_set_ptr (pt, name, ptr, comm, error)

```

Include Files
- mkl_cluster_sparse_solver.f90

\section*{Description}

This routine internally saves the input pointer, ptr, of the data which correspond to the provided name. The saved pointer can then be used for exporting corresponding data by means of cluster_sparse_solver_export.

\section*{NOTE}

Only call this routine after the factorization phase (phase=22) of the cluster_sparse_solver has been called. Neither pt, nor iparm should be changed after the preceding call to cluster_sparse_solver.

\section*{Input Parameters}
pt
INTEGER*8 for 64-bit architectures
Array with size of 64.
Handle to internal data structure used in the prior calls to cluster_sparse_solver.

\section*{Caution}

Do not modify pt after the calls to cluster_sparse_solver.
name
vals

MPI communicator. The solver uses the Fortran MPI communicator internally.

\section*{Output Parameters}
```

error

```

\section*{INTEGER}

The error indicator:
error Information

0
\(-1 \quad p t\) is a null pointer
-2 invalid pt
-3 invalid name
-4 unsupported name
-9 unsupported internal code path, consider switching off non-default iparm parameters for
cluster_sparse_solver
-12 internal memory error

> NOTE Refer to cl_solver_export_f90.f90 for an example using this functionality.
```

cluster_sparse_solver_export
Computes data corresponding to the specified
decomposition (defined by export operation) and fills
the pointers provided by calls to
cluster_sparse_solver_set_ptr and/or
cluster_sparse_solver_set_csr_ptrs.

```

\section*{Syntax}
```

call cluster_sparse_solver_export (pt, operation, comm, error)

```

\section*{Include Files}
- mkl_cluster_sparse_solver.f90

\section*{Description}

This routine computes the data for the pointers of the (distributed) data to be exported (as defined the specified operation). It is assumed that the exported data will be distributed in the same way as the matrix \(A\) (as defined by iparm(40)) used in cluster_sparse_solver.

\section*{NOTE}

Only call this routine after the factorization phase (phase=22) of the cluster_sparse_solver has been called. Neither pt, nor iparm should be changed after the preceding call to cluster_sparse_solver.

\section*{NOTE}

Only call this routine after all pointers to the data required for the specified operation have been provided by means of calling cluster_sparse_solver_set_ptr and/or cluster_sparse_solver_set_csr_ptrs.

\section*{Input Parameters}
pt INTEGER*8 for 64-bit architectures
Array with size of 64.
Handle to internal data structure used in the prior calls to cluster_sparse_solver.

\section*{Caution}

Do not modify pt after the calls to cluster_sparse_solver.
operation
comm

\section*{Output Parameters}

\author{
error
}

INTEGER
The error indicator:
\begin{tabular}{ll} 
error & Information \\
0 & no error \\
-1 & \(p t\) is a null pointer \\
-2 & invalid \(p t\) \\
-5 & invalid operation
\end{tabular}

\section*{NOTE}

Currently, for operation=SPARSE_DPTLUQT a real (complex) unit vector is provided for the scaling matrix \(D\). Do not turn on scaling (iparm (11)>0) or matching (iparm (13)>0) in the iparm during the call to cluster_sparse_solver for this value of operation.
```

INTEGER*4

```

MPI communicator. The solver uses the Fortran MPI communicator internally.
\begin{tabular}{ll} 
error & Information \\
-6 & \begin{tabular}{l} 
pointers to some of the data required for the specified \\
operation were not provided prior to calling \\
cluster_sparse_solver_export
\end{tabular} \\
-9 & \begin{tabular}{l} 
unsupported internal code path, consider switching off \\
non-default iparm parameters for \\
cluster_sparse_solver
\end{tabular} \\
-10 & \begin{tabular}{l} 
unsupported case when the matrix \(A\) is distributed \\
among processes with overlap in the preceding calls to \\
cluster_sparse_solver
\end{tabular} \\
-12 & \begin{tabular}{l} 
internal memory error
\end{tabular}
\end{tabular}

NOTE Refer to cl_solver_export_f90.f90 for an example using this functionality.

\section*{cluster_sparse_solver iparm Parameter}

The following table describes all individual components of the Parallel Direct Sparse Solver for Clusters Interface iparm parameter. Components which are not used must be initialized with 0 . Default values are denoted with an asterisk (*).
\begin{tabular}{|c|c|c|}
\hline Component & \multicolumn{2}{|l|}{Description} \\
\hline iparm(1) & \multicolumn{2}{|l|}{Use default values.} \\
\hline \multirow[t]{2}{*}{input} & & iparm(2)-iparm(64) are filled with default values. \\
\hline & \(!=0\) & You must supply all values in components iparm(2)-iparm(64). \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
iparm(2) \\
input
\end{tabular}} & \multicolumn{2}{|l|}{Fill-in reducing ordering for the input matrix.} \\
\hline & 2* & The nested dissection algorithm from the METIS package [Karypis98]. \\
\hline & 3 & The parallel version of the nested dissection algorithm. It can decrease the time of computations on multi-core computers, especially when Phase 1 takes significant time. \\
\hline & 10 & The MPI version of the nested dissection and symbolic factorization algorithms for the matrix in distributed assembled matrix input format (iparm (40) >0). The input matrix for the reordering must be distributed among different MPI processes without any intersection and all MPI ranks must have at least one row of the input matrix. Use iparm (41) and iparm (42) to set the bounds of the domain. During all of Phase 1, the entire matrix is not gathered on any one process, which can decrease computation time (especially when Phase 1 takes significant time) and decrease memory usage for each MPI process on the cluster. \\
\hline
\end{tabular}
```

NOTE Distributed reordering does not work if any of matching(iparm(13)=1) /
scaling(iparm(11)=1)/BSR format(iparm(37)>1)/Schur complement
matrix computation control(iparm(36)>0)/Partial
solve(iparm(31) > 0) is turned on, or if the distributed input matrix has
overlapping distribution of rows across MPI processes.

```

\section*{NOTE}

If you set iparm(2) \(=10\), comm \(=-1\) (MPI communicator), and if there is one MPI process, optimization and full parallelization with the OpenMP version of the nested dissection and symbolic factorization algorithms proceeds. This can decrease computation time on multi-core computers. In this case, set iparm(41) = 1 and iparm (42) \(=n\) for one-based indexing, or to 0 and \(n-1\), respectively, for zerobased indexing.
\begin{tabular}{ll}
\hline iparm(3) & Reserved. Set to zero. \\
\hline iparm(4) & Reserved. Set to zero. \\
\hline iparm(5) & \begin{tabular}{l} 
User permutation. \\
input
\end{tabular} \\
\begin{tabular}{l} 
This parameter controls whether user supplied fill-in reducing permutation is used instead \\
of the integrated multiple-minimum degree or nested dissection algorithms. Another use \\
of this parameter is to control obtaining the fill-in reducing permutation vector calculated \\
during the reordering stage of Intel® oneAPI Math Kernel Library (oneMKL) PARDISO.
\end{tabular} \\
& \begin{tabular}{l} 
This option is useful for testing reordering algorithms, adapting the code to special \\
applications problems (for instance, to move zero diagonal elements to the end of \\
\(\left.P^{\star} A^{\star} P^{T}\right)\), or for using the permutation vector more than once for matrices with identical \\
sparsity structures. For definition of the permutation, see the description of the perm \\
parameter.
\end{tabular}
\end{tabular}

\section*{Caution}

You can only set one of iparm(5), iparm(31), and iparm(36), so be sure that the iparm(31) (partial solution) and the iparm(36) (Schur complement) parameters are 0 if you set iparm(5).

\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline & 0* The solver automatically performs two steps of iterative refinement when perturbed pivots are obtained during the numerical factorization. \\
\hline & \begin{tabular}{l}
Maximum number of iterative refinement steps that the solver performs. The solver performs not more than the absolute value of iparm(8) steps of iterative refinement. The solver might stop the process before the maximum number of steps if \\
- a satisfactory level of accuracy of the solution in terms of backward error is achieved, \\
- or if it determines that the required accuracy cannot be reached. In this case Parallel Direct Sparse Solver for Clusters Interface returns -4 in the error parameter. \\
The number of executed iterations is reported in iparm(7).
\end{tabular} \\
\hline & \begin{tabular}{l}
\(<0 \quad\) Same as above, but the accumulation of the residuum uses extended precision real and complex data types. \\
Perturbed pivots result in iterative refinement (independent of iparm(8)=0) and the number of executed iterations is reported in iparm (7).
\end{tabular} \\
\hline iparm(9) & Reserved. Set to zero. \\
\hline iparm(10)
input & \begin{tabular}{l}
Pivoting perturbation. \\
This parameter instructs Parallel Direct Sparse Solver for Clusters Interface how to handle small pivots or zero pivots for nonsymmetric matrices (mtype \(=11\) or mtype \(=13\) ) and symmetric matrices (mtype \(=-2\), mtype \(=-4\), or mtype \(=6\) ). For these matrices the solver uses a complete supernode pivoting approach. When the factorization algorithm reaches a point where it cannot factor the supernodes with this pivoting strategy, it uses a pivoting perturbation strategy similar to [Li99], [Schenk04]. \\
Small pivots are perturbed with eps =10-iparm(10). \\
The magnitude of the potential pivot is tested against a constant threshold of \\
alpha = eps*||A2||inf, \\
where eps \(\left.=10^{(-i p a r m}(10)\right), A 2=P^{\star} P_{\text {MPS }}{ }^{\star} D_{\mathrm{r}}{ }^{\star} A^{\star} D_{\mathrm{C}}{ }^{\star} P\), and \(||A 2||_{\text {inf }}\) is the infinity norm of the scaled and permuted matrix \(A\). Any tiny pivots encountered during elimination are set to the sign ( \(l_{I I}\) ) *eps*||A2|| inf, which trades off some numerical stability for the ability to keep pivots from getting too small. Small pivots are therefore perturbed with eps = 10(-iparm(10)).
\end{tabular} \\
\hline & 13* The default value for nonsymmetric matrices( \(m t y p e=11, m t y p e=13\) ), eps \(=\) \(10^{-13}\). \\
\hline & 8* The default value for symmetric indefinite matrices (mtype \(=-2\), mtype \(=-4\),
\(m t y p e=6)\), eps \(=10^{-8}\). \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
iparm(11) \\
input
\end{tabular}} & Scaling vectors. \\
\hline & \begin{tabular}{l}
Parallel Direct Sparse Solver for Clusters Interface uses a maximum weight matching algorithm to permute large elements on the diagonal and to scale. \\
Use \(\operatorname{iparm}(11)=1\) (scaling) and iparm(13) = 1 (matching) for highly indefinite symmetric matrices, for example, from interior point optimizations or saddle point problems. Note that in the analysis phase (phase=11) you must provide the numerical values of the matrix \(A\) in array a in case of scaling and symmetric weighted matching.
\end{tabular} \\
\hline & 0* Disable scaling. Default for symmetric indefinite matrices. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline & This value is only computed in phase 1. \\
\hline iparm(17) output & \begin{tabular}{l}
Size of factors/Peak memory on numerical factorization and solution. \\
This parameter provides the size in kilobytes of the total memory consumed by in-core Intel® \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO for internal floating point arrays. This parameter is computed in phase 1. Seeiparm(63) for the OOC mode. \\
The total peak memory consumed by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO ismax(iparm(15), iparm(16)+iparm(17))
\end{tabular} \\
\hline & Report the number of non-zero elements in the factors. \\
\hline input/output & \(<0 \quad\) Enable reporting if iparm(18) < 0 on entry. The default value is -1. \\
\hline & >=0 Disable reporting. \\
\hline \[
\begin{aligned}
& \text { iparm(19) - } \\
& \text { iparm(20) }
\end{aligned}
\] & Reserved. Set to zero. \\
\hline iparm(21) & Pivoting for symmetric indefinite matrices. \\
\hline input & \(0 \quad\) Apply \(1 \times 1\) diagonal pivoting during the factorization process. \\
\hline & \(1^{*} \quad\) Apply \(1 \times 1\) and \(2 \times 2\) Bunch-Kaufman pivoting during the factorization process. Bunch-Kaufman pivoting is available for matrices of \(m t y p e=-2\), mtype=-4, or mtype=6. \\
\hline \begin{tabular}{l}
iparm(22) \\
output
\end{tabular} & \begin{tabular}{l}
Inertia: number of positive eigenvalues. \\
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO reports the number of positive eigenvalues for symmetric indefinite matrices.
\end{tabular} \\
\hline \begin{tabular}{l}
iparm(23) \\
output
\end{tabular} & \begin{tabular}{l}
Inertia: number of negative eigenvalues. \\
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO reports the number of negative eigenvalues for symmetric indefinite matrices.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { iparm(24) - } \\
& \text { iparm(26) }
\end{aligned}
\] & Reserved. Set to zero. \\
\hline iparm(27) & Matrix checker. \\
\hline input & 0* Do not check the sparse matrix representation for errors. \\
\hline & Check integer arrays ia and ja. In particular, check whether the column indices are sorted in increasing order within each row. \\
\hline \begin{tabular}{l}
iparm(28) \\
input
\end{tabular} & \begin{tabular}{l}
Single or double precision Parallel Direct Sparse Solver for Clusters Interface. \\
See iparm (8) for information on controlling the precision of the refinement steps.
\end{tabular} \\
\hline & 0* \begin{tabular}{l} 
Input arrays ( \(a, x\) and \(b\) ) and all internal arrays must be presented in double \\
precision.
\end{tabular} precision. \\
\hline & \begin{tabular}{l}
\(1 \quad\) Input arrays ( \(a, x\) and \(b\) ) must be presented in single precision. \\
In this case all internal computations are performed in single precision.
\end{tabular} \\
\hline iparm(29) & Reserved. Set to zero. \\
\hline \begin{tabular}{l}
iparm(30) \\
output
\end{tabular} & Number of zero or negative pivots. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline & \begin{tabular}{l}
If Intel『 oneAPI Math Kernel Library (oneMKL) PARDISO detects zero or negative pivot formtype \(=2\) or \(m t y p e=4\) matrix types, the factorization is stopped. Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO returns immediately with anerror \(=-4\), and iparm (30) reports the number of the equation where the zero or negative pivot is detected. \\
Note: The returned value can be different for the parallel and sequential version in case of several zero/negative pivots.
\end{tabular} \\
\hline iparm(31) & Partial solve and computing selected components of the solution vectors. \\
\hline input & This parameter controls the solve step of Intel® oneAPI Math Kernel Library (oneMKL) PARDISO. It can be used if only a few components of the solution vectors are needed or if you want to reduce the computation cost at the solve step by utilizing the sparsity of the right-hand sides. To use this option the input permutation vector defineperm so that when \(\operatorname{perm}(i)=1\) it means that either the \(i\)-th component in the right-hand sides is nonzero, or the \(i\)-th component in the solution vectors is computed, or both, depending on the value of iparm(31). \\
\hline & The permutation vector permmust be present in all phases of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO software. At the reordering step, the software overwrites the input vectorperm by a permutation vector used by the software at the factorization and solver step. If \(m\) is the number of components such that perm(i) \(=1\), then the last \(m\) components of the output vector perm are a set of the indices \(i\) satisfying the condition perm(i) \(=1\) on input. \\
\hline
\end{tabular}

\section*{NOTE}

Turning on this option often increases the time used by Intel® oneAPI Math Kernel Library (oneMKL) PARDISO for factorization and reordering steps, but it can reduce the time required for the solver step.

\section*{Important}

Set the parameters iparm(8) (iterative refinement steps), iparm(4) (preconditioned CGS), iparm(5) (user permutation), and iparm(36) (Schur complement) to 0 as well.
\begin{tabular}{ll}
\hline \(0^{*}\) & Disables this option. \\
\hline 1 & \begin{tabular}{l} 
it is assumed that the right-hand sides have only a few non-zero components* \\
and the input permutation vector perm is defined so that \(p e r m(i)=1\) means \\
that the (i)-th component in the right-hand sides is nonzero. In this case Intele
\end{tabular} \\
oneAPI Math Kernel Library (oneMKL) PARDISO only uses the non-zero \\
components of the right-hand side vectors and computes only corresponding \\
components in the solution vectors. That means the \(i\)-th component in the \\
solution vectors is only computed if perm (i) \(=1\).
\end{tabular}
\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline & 3 Selected components of the solution vectors are computed. The perm array is not related to the right-hand sides and it only indicates which components of the solution vectors should be computed. In this case perm(i) \(=1\) means that the \(i\) th component in the solution vectors is computed. \\
\hline \[
\begin{aligned}
& \text { iparm(31) - } \\
& \text { iparm(33) }
\end{aligned}
\] & Reserved. Set to zero. \\
\hline iparm(35) & One- or zero-based indexing of columns and rows. \\
\hline input & 0* One-based indexing: columns and rows indexing in arrays \(i a, j a\), and perm starts from 1 (Fortran-style indexing). \\
\hline & \(1 \quad\) Zero-based indexing: columns and rows indexing in arrays ia, ja, and perm starts from 0 (C-style indexing). \\
\hline \begin{tabular}{l}
iparm(36) \\
input
\end{tabular} & Schur complement matrix computation control. To calculate this matrix, you must set the input permutation vector perm to a set of indexes such that when perm(i) \(=1\), the \(i\)-th element of the initial matrix is an element of the Schur matrix. \\
\hline
\end{tabular}

\section*{Caution}

You can only set one of iparm(5), iparm(31), and iparm(36), so be sure that the iparm (5) (user permutation) and the iparm(31) (partial solution) parameters are 0 if you set iparm(36).
\begin{tabular}{ll} 
& Do not compute Schur complement. \\
\hline 1 & \begin{tabular}{l} 
Compute Schur complement matrix as part of Intel® oneAPI Math Kernel Library \\
(oneMKL) PARDISO factorization step and return it in the solution vector.
\end{tabular}
\end{tabular}

\section*{NOTE}

This option only computes the Schur complement matrix, and does not calculate factorization arrays.
\begin{tabular}{lll}
\cline { 2 - 3 } & \multicolumn{1}{l}{\begin{tabular}{l} 
Compute Schur complement matrix as part of Intel® oneAPI Math Kernel Library \\
(oneMKL) PARDISO factorization step and return it in the solution vector. Since \\
this option calculates factorization arrays you can use it to launch partial or full \\
solution of the entire problem after the factorization step.
\end{tabular}} \\
\hline \begin{tabular}{ll} 
iparm(37) \\
input
\end{tabular} & \begin{tabular}{ll} 
Format for matrix storage.
\end{tabular} \\
\cline { 2 - 3 } & \(0^{*} \quad\) Use CSR format (see Three Array Variation of BSR Format) for matrix storage.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Component & Description \\
\hline & \begin{tabular}{l}
NOTE \\
Performance of the reordering step of the Parallel Direct Sparse Solver for Clusters Interface is slightly better for assembled format (CSR, iparm (40) = 0) than for distributed format (DCSR, iparm (40) >0) for the same matrices, so if the matrix is assembled on one node do not distribute it before calling cluster_sparse_solver.
\end{tabular} \\
\hline & \[
\begin{aligned}
& \text { Provide the matrix in usual centralized input format: the master MPI process } \\
& \text { stores all data from matrix } A \text {, with rank }=0 \text {. }
\end{aligned}
\] \\
\hline & 1 Provide the matrix in distributed assembled matrix input format. In this case, each MPI process stores only a part (or domain) of the matrix \(A\) data. Set the bounds of the domain using iparm(41) and iparm(42). The solution vector is placed on the master process. \\
\hline & \[
\begin{aligned}
& \text { Provide the matrix in distributed assembled matrix input format. In this case, } \\
& \text { each MPI process stores only a part (or domain) of the matrix } A \text { data. Set the } \\
& \text { bounds of the domain using iparm(41) and iparm(42). The solution vector, } A \text {, } \\
& \text { and RHS elements are distributed between processes in same manner. }
\end{aligned}
\] \\
\hline & 3 Provide the matrix in distributed assembled matrix input format. In this case, each MPI process stores only a part (or domain) of the matrix \(A\) data. Set the bounds of the domain using iparm(41) and iparm(42). The \(A\) and RHS elements are distributed between processes in same manner and the solution vector is the same on each process \\
\hline \begin{tabular}{l}
iparm(41) \\
input
\end{tabular} & \begin{tabular}{l}
Beginning of input domain. \\
The number of the matrix \(A\) row, RHS element, and, for iparm (40)=2, solution vector that begins the input domain belonging to this MPI process. \\
Only applicable to the distributed assembled matrix input format (iparm(40)>0). \\
See Sparse Matrix Storage Formats for more details.
\end{tabular} \\
\hline \begin{tabular}{l}
iparm(42) \\
input
\end{tabular} & \begin{tabular}{l}
End of input domain. \\
The number of the matrix \(A\) row, RHS element, and, for \(\operatorname{iparm}(40)=2\), solution vector that ends the input domain belonging to this MPI process. \\
Only applicable to the distributed assembled matrix input format (iparm(40)>0). \\
See Sparse Matrix Storage Formats for more details.
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
& \text { iparm(43) - } \\
& \operatorname{iparm(59)}
\end{aligned}
\] \\
input
\end{tabular} & Reserved. Set to zero. \\
\hline \begin{tabular}{l}
iparm(60) \\
input
\end{tabular} & \begin{tabular}{l}
cluster_sparse_solver mode. \\
iparm(60) switches between in-core (IC) and out-of-core (OOC) of cluster_sparse_solver. OOC can solve very large problems by holding the matrix factors in files on the disk, which requires a reduced amount of main memory compared to IC. \\
Unless you are operating in sequential mode, you can switch between IC and OOC modes after the reordering phase. However, you can get better cluster_sparse_solver performance by setting iparm(60) before the reordering phase. \\
The amount of memory used in OOC mode depends on the number of OpenMP threads.
\end{tabular} \\
\hline
\end{tabular}


\section*{NOTE}

Conditional numerical reproducibility (CNR) is not supported for this mode.

\section*{2 OOC mode.}

The OOC mode can solve very large problems by holding the matrix factors in files on the disk. Hence the amount of RAM required by OOC mode is significantly reduced compared to IC mode.

If the total peak memory needed for storing the local arrays is more than MKL_PARDISO_OOC_MAX_CORE_SIZE, increase MKL_PARDISO_OOC_MAX_CORE_SIZE if possible.
To obtain better cluster_sparse_solver performance, during the numerical factorization phase you can provide the maximum number of right-hand sides, which can be used further during the solving phase.

NOTE To use OOC mode, you must disable iparm(11) (scaling) and iparm(13) = 1 (matching).
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
\[
\begin{aligned}
& \operatorname{iparm}(61)- \\
& \text { iparm(62) }
\end{aligned}
\] \\
input
\end{tabular} & Reserved. Set to zero. \\
\hline \begin{tabular}{l}
iparm(63) \\
output
\end{tabular} & \begin{tabular}{l}
Size of the minimum OOC memory for numerical factorization and solution. \\
This parameter provides the size in kilobytes of the minimum memory required by OOC Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO for internal floating point arrays. This parameter is computed in phase 1. \\
Total peak memory consumption of OOC Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO can be estimated asmax(iparm(15), iparm(16) + iparm(63)).
\end{tabular} \\
\hline iparm(64) input & Reser ved. Set to zero. \\
\hline
\end{tabular}

\section*{NOTE}

Generally in sparse matrices, components which are equal to zero can be considered non-zero if necessary. For example, in order to make a matrix structurally symmetric, elements which are zero can be considered non-zero. See Sparse Matrix Storage Formats for an example.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Direct Sparse Solver (DSS) Interface Routines}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) supports the DSS interface, an alternative to the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO interface for the direct sparse solver. The DSS interface implements a group of user-callable routines that are used in the step-by-step solving process and utilizes the general scheme described inAppendix A Linear Solvers Basics for solving sparse systems of linear equations. This interface also includes one routine for gathering statistics related to the solving process and an auxiliary routine for passing character strings from Fortran routines to C routines.
The DSS interface also supports the out-of-core (OOC) mode.
Table "DSS Interface Routines" lists the names of the routines and describes their general use.
DSS Interface Routines
\begin{tabular}{ll}
\hline Routine & Description \\
\hline dss_create & \begin{tabular}{l} 
Initializes the solver and creates the basic data structures \\
necessary for the solver. This routine must be called \\
before any other DSS routine.
\end{tabular} \\
dss_define_structure & \begin{tabular}{l} 
Informs the solver of the locations of the non-zero \\
elements of the matrix.
\end{tabular} \\
dss_reorder & \begin{tabular}{l} 
Based on the non-zero structure of the matrix, computes \\
a permutation vector to reduce fill-in during the factoring \\
process.
\end{tabular} \\
dss_factor_real, dss_factor_complex & \begin{tabular}{l} 
Computes the \(L U, L D L^{T}\) or \(L L^{T}\) factorization of a real or \\
complex matrix.
\end{tabular} \\
dss_solve_real, dss_solve_complex & \begin{tabular}{l} 
Computes the solution vector for a system of equations \\
based on the factorization computed in the previous \\
phase.
\end{tabular} \\
dss_statistics & \begin{tabular}{l} 
Deletes all data structures created during the solving \\
process.
\end{tabular} \\
meturns statistics about various phases of the solving
\end{tabular}

To find a single solution vector for a single system of equations with a single right-hand side, invoke the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) DSS interface routines in this order:
1. dss_create
2. dss_define_structure
3. dss_reorder
4. dss_factor_real, dss_factor_complex
5. dss_solve_real, dss_solve_complex
6. dss_delete

However, in certain applications it is necessary to produce solution vectors for multiple right-hand sides for a given factorization and/or factor several matrices with the same non-zero structure. Consequently, it is sometimes necessary to invoke the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) sparse routines in an order other than that listed, which is possible using the DSS interface. The solving process is conceptually divided into six phases.Figure "Typical order for invoking DSS interface routines" indicates the typical order in which the DSS interface routines can be invoked.

\section*{__border__top}

Typical order for invoking DSS interface routines

\section*{Create}


\section*{Define array structure}


See the code examples that use the DSS interface routines to solve systems of linear equations in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) installation directory (dss_*.f ).
- examples/solverf/source

\section*{DSS Interface Description}

Each DSS routine reads from or writes to a data object called a handle. Refer to Memory Allocation and Handles to determine the correct method for declaring a handle argument for each language. For simplicity, the descriptions in DSS routines refer to the data type as MKL_DSS_HANDLE.

\section*{Routine Options}

The DSS routines have an integer argument (referred below to as opt) for passing various options to the routines. The permissible values for opt should be specified using only the symbol constants defined in the language-specific header files (see Implementation Details). The routines accept options for setting the message and termination levels as described in Table "Symbolic Names for the Message and Termination Levels Options". Additionally, each routine accepts the option MKL_DSS_DEFAULTS that sets the default values (as documented) for opt to the routine.

Symbolic Names for the Message and Termination Levels Options
\begin{tabular}{|c|c|}
\hline Message Level & Termination Level \\
\hline MKL_DSS_MSG_LVL_SUCCESS & MKL_DSS_TERM_LVL_SUCCESS \\
\hline MKL_DSS_MSG_LVL_INFO & MKL_DSS_TERM_LVL_INFO \\
\hline MKL_DSS_MSG_LVL_WARNING & MKL_DSS_TERM_LVL_WARNING \\
\hline MKL_DSS_MSG_LVL_ERROR & MKL_DSS_TERM_LVL_ERROR \\
\hline MKL_DSS_MSG_LVL_FATAL & MKL_DSS_TERM_LVL_FATAL \\
\hline
\end{tabular}

The settings for message and termination levels can be set on any call to a DSS routine. However, once set to a particular level, they remain at that level until they are changed in another call to a DSS routine.
You can specify both message and termination level for a DSS routine by adding the options together. For example, to set the message level to debug and the termination level to error for all the DSS routines, use the following call:

CALL dss_create ( handle, MKL_DSS_MSG_LVL_INFO + MKL_DSS_TERM_LVL_ERROR)

\section*{User Data Arrays}

Many of the DSS routines take arrays of user data as input. For example, user arrays are passed to the routine dss_define_structure to describe the location of the non-zero entries in the matrix.

\section*{Caution}

Do not modify the contents of these arrays after they are passed to one of the solver routines.

\section*{DSS Implementation Details}

To promote portability across platforms and ease of use across different languages, use the mkl_dss.f90 header file.

The header file defines symbolic constants for returned error values, function options, certain defined data types, and function prototypes.

\section*{NOTE}

Constants for options, returned error values, and message severities must be referred only by the symbolic names that are defined in these header files. Use of the Intel® oneAPI Math Kernel Library (oneMKL) DSS software without including one of the above header files is not supported.

\section*{Memory Allocation and Handles}

You do not need to allocate any temporary working storage in order to use the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) DSS routines, because the solver itself allocates any required storage. To enable multiple users to access the solver simultaneously, the solver keeps track of the storage allocated for a particular application by using ahandle data object.

Each of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) DSS routines creates, uses, or deletes a handle. Consequently, any program calling an Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) DSS routine must be able to allocate storage for a handle. The exact syntax for allocating storage for a handle varies from language to language. To standardize the handle declarations, the language-specific header files declare constants and defined data types that must be used when declaring a handle object in your code.
```

INCLUDE "mkl_dss.f90"
TYPE (MKL_DSS_HANDLE) handle

```

In addition to the definition for the correct declaration of a handle, the include file also defines the following:
- function prototypes for languages that support prototypes
- symbolic constants that are used for the returned error values
- user options for the solver routines
- constants indicating message severity.

\section*{DSS Routines}
```

dss_create
Initializes the solver.

```

\section*{Syntax}
```

call dss_create(handle, opt)

```

Include Files
- mkl.fi,mkl_dss.f90

\section*{Description}

The dss_create routine initializes the solver. After the call to dss_create, all subsequent invocations of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) DSS routines must use the value of the handle returned bydss_create.

\section*{WARNING}

Do not write the value of handle directly.

The default value of the parameter opt is
MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR.
By default, the DSS routines use double precision for solving systems of linear equations. The precision used by the DSS routines can be set to single mode by adding the following value to the opt parameter:
```

MKL_DSS_SINGLE_PRECISION.

```

Input data and internal arrays are required to have single precision.
By default, the DSS routines use Fortran style (one-based) indexing for input arrays of integer types (the first value is referenced as array element 1). To set indexing to \(C\) style (the first value is referenced as array element 0 ), add the following value to the opt parameter:

MKL_DSS_ZERO_BASED_INDEXING.
The opt parameter can also control number of refinement steps used on the solution stage by specifying the two following values:

MKL_DSS_REFINEMENT_OFF - maximum number of refinement steps is set to zero;
MKL_DSS_REFINEMENT_ON (default value) - maximum number of refinement steps is set to 2 .
By default, DSS uses in-core computations. To launch the out-of-core version of DSS (OOC DSS) you can add to this parameter one of two possible values: MKL_DSS_OOC_STRONG and MKL_DSS_OOC_VARIABLE.
MKL_DSS_OOC_STRONG - OOC DSS is used.
MKL_DSS_OOC_VARIABLE - if the memory needed for the matrix factors is less than the value of the environment variable MKL_PARDISO_OOC_MAX_CORE_SIZE, then the OOC DSS uses the in-core kernels of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO, otherwise it uses the OOC computations.

The variable MKL_PARDISO_OOC_MAX_CORE_SIZE defines the maximum size of RAM allowed for storing work arrays associated with the matrix factors. It is ignored if MKL_DSS_OOC_STRONG is set. The default value of MKL_PARDISO_OOC_MAX_CORE_SIZE is 2000 MB. This value and default path and file name for storing temporary data can be changed using the configuration file pardiso_ooc.cfg or command line (See more details in the description of the pardiso routine).

\section*{WARNING}

Other than message and termination level options, do not change the OOC DSS settings after they are specified in the routine dss_create.

\section*{Input Parameters}
opt
INTEGER, INTENT (IN)
Parameter to pass the DSS options. The default value is MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR.

\section*{Output Parameters}
handle
TYPE (MKL_DSS_HANDLE), INTENT (OUT)
Pointer to the data structure storing internal DSS results (MKL_DSS_HANDLE).

\section*{Return Values}
```

MKL_DSS_SUCCESS
MKL_DSS_INVALID_OPTION
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR

```
dss_define_structure
Communicates locations of non-zero elements in the
matrix to the solver.

\section*{Syntax}
```

call dss_define_structure(handle, opt, rowIndex, nRows, nCols, columns, nNonZeros);

```

\section*{Include Files}
- mkl.fi, mkl_dss.f90

\section*{Description}

The routine dss_define_structure communicates the locations of the nNonZeros number of non-zero elements in a matrix of nRows * nCols size to the solver.

\section*{NOTE}

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) DSS software operates only on square matrices, sonRows must be equal to nCols.

To communicate the locations of non-zero elements in the matrix, do the following:
1. Define the general non-zero structure of the matrix by specifying the value for the options argument opt. You can set the following values for real matrices:
- MKL_DSS_SYMMETRIC_STRUCTURE
- MKL_DSS_SYMMETRIC
- MKL_DSS_NON_SYMMETRIC
and for complex matrices:
- MKL_DSS_SYMMETRIC_STRUCTURE_COMPLEX
- MKL_DSS_SYMMETRIC_COMPLEX
- MKL_DSS_NON_SYMMETRIC_COMPLEX

The information about the matrix type must be defined in dss_define_structure.
2. Provide the actual locations of the non-zeros by means of the arrays rowIndex and columns (see Sparse Matrix Storage Format).

NOTE No diagonal element can be omitted from the values array. If there is a zero value on the diagonal, for example, that element nonetheless must be explicitly represented.

\section*{Input Parameters}
\begin{tabular}{ll} 
opt & INTEGER, INTENT (IN) \\
Parameter to pass the DSS options. The default value for the matrix \\
structure is MKL_DSS_SYMMETRIC.
\end{tabular}

INTEGER, INTENT (IN)
Array of size nNonZeros. Defines the column location of non-zero entries in the matrix.

INTEGER, INTENT (IN)
Number of non-zero elements in the matrix.

\section*{Output Parameters}
handle

TYPE (MKL_DSS_HANDLE), INTENT (INOUT)
Pointer to the data structure storing internal DSS results (MKL_DSS_HANDLE).

\section*{Return Values}

MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_STRUCTURE_ERR
MKL_DSS_ROW_ERR
MKL_DSS_COL_ERR
MKL_DSS_NOT_SQUARE
MKL_DSS_TOO_FEW_VALUES
MKL_DSS_TOO_MANY_VALUES
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
dss_reorder
Computes or sets a permutation vector that minimizes
the fill-in during the factorization phase.
Syntax
```

call dss_reorder(handle, opt, perm)

```

Include Files
- mkl.fi, mkl_dss.f90

\section*{Description}

If opt contains the option MKL_DSS_AUTO_ORDER, then the routine dss_reorder computes a permutation vector that minimizes the fill-in during the factorization phase. For this option, the routine ignores the contents of the perm array.

If opt contains the option MKL_DSS_METIS_OPENMP_ORDER, then the routine dss_reorder computes permutation vector using the parallel nested dissections algorithm to minimize the fill-in during the factorization phase. This option can be used to decrease the time of dss_reorder call on multi-core computers. For this option, the routine ignores the contents of the perm array.

If opt contains the option MKL_DSS_MY_ORDER, then you must supply a permutation vector in the array perm. In this case, the array perm is of length nRows, where nRows is the number of rows in the matrix as defined by the previous call to dss_define_structure.

If opt contains the option MKL_DSS_GET_ORDER, then the permutation vector computed during the dss_reorder call is copied to the array perm. In this case you must allocate the array perm beforehand. The permutation vector is computed in the same way as if the option MKL_DSS_AUTO_ORDER is set.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Input Parameters}
```

opt
perm

```

INTEGER, INTENT (IN)
Parameter to pass the DSS options. The default value for the permutation type is MKL_DSS_AUTO_ORDER.

INTEGER, INTENT (IN)
Array of length nRows. Contains a user-defined permutation vector (accessed only if opt contains MKL_DSS_MY_ORDER or MKL_DSS_GET_ORDER).

TYPE (MKL_DSS_HANDLE), INTENT (INOUT)
Pointer to the data structure storing internal DSS results (MKL_DSS_HANDLE).

\section*{Return Values}
```

MKL DSS SUCCESS
MKL_DSS_STATE_ERR
MKL DSS INVALID OPTION
MKL_DSS_REORDER_ERR
MKL_DSS_REORDER1_ERR
MKL_DSS_I32BIT_ERR
MKL_DSS_FAILURE
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR

```
dss_factor_real, dss_factor_complex
Compute factorization of the matrix with previously
specified location of non-zero elements.

\section*{Syntax}
```

call dss_factor_real(handle, opt, rValues)
call dss_factor_complex(handle, opt, cValues)
call dss_factor(handle, opt, Values)

```

\section*{Include Files}
- mkl.fi, mkl_dss.f90

\section*{Description}

These routines compute factorization of the matrix whose non-zero locations were previously specified by a call to dss_define_structure and whose non-zero values are given in the array rValues, cValues or Values. Data type These arrays must be of length nNonZeros as defined in a previous call to dss_define_structure.

\section*{NOTE}

The data type (single or double precision) of rValues, cValues, Values must be in correspondence with precision specified by the parameter opt in the routine dss_create.

The opt argument can contain one of the following options:
- MKL_DSS_POSITIVE_DEFINITE
- MKL_DSS_INDEFINITE
- MKL_DSS_HERMITIAN_POSITIVE_DEFINITE
- MKL_DSS_HERMITIAN_INDEFINITE
depending on your matrix's type.

\section*{NOTE}

This routine supports the Progress Routine feature. See Progress Function for details.

\section*{Input Parameters}
```

handle TYPE (MKL_DSS_HANDLE), INTENT (INOUT)
Pointer to the data structure storing internal DSS results
(MKL_DSS_HANDLE).
INTEGER, INTENT(IN)
Parameter to pass the DSS options. The default value is
MKL_DSS_POSITIVE_DEFINITE.
REAL* 8
REAL (KIND=4), INTENT(IN) or
REAL (KIND=8), INTENT(IN)
Array of elements of the matrix A. Real data, single or double
precision as it is specified by the parameter opt in the routine
dss_create.
COMPLEX*16

```
```

COMPLEX(KIND=4), INTENT(IN) or
COMPLEX(KIND=8), INTENT(IN)

```

Array of elements of the matrix \(A\). Complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

REAL (KIND = 4) , INTENT (OUT) , or REAL (KIND=8), INTENT (OUT) , or COMPLEX (KIND=4), INTENT (OUT), or COMPLEX (KIND=8), INTENT (OUT)

Array of elements of the matrix \(A\). Real or complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

\section*{Return Values}
```

MKL DSS SUCCESS
MKL_DSS_STATE_ERR
MKL DSS INVALID OPTION
MKL_DSS_OPTION_CONFLICT
MKL_DSS_VALUES_ERR
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_ZERO_PIVOT
MKL_DSS_FAILURE
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
MKL_DSS_OOC_MEM_ERR
MKL_DSS_OOC_OC_ERR
MKL_DSS_OOC_RW_ERR

```
dss_solve_real, dss_solve_complex
Compute the corresponding solution vector and place
it in the output array.

\section*{Syntax}
```

call dss_solve_real(handle, opt, rRhsValues, nRhs, rSolValues)
call dss_solve_complex(handle, opt, cRhsValues, nRhs, cSolValues)
call dss_solve(handle, opt, RhsValues, nRhs, SolValues)

```

\section*{Include Files}
- mkl.fi,mkl_dss.f90

\section*{Description}

For each right-hand side column vector defined in the arrays rRhsValues, cRhsValues, or RhsValues, these routines compute the corresponding solution vector and place it in the arrays rSolValues, cSolValues, or SolValues respectively.

\section*{NOTE}

The data type (single or double precision) of all arrays must be in correspondence with precision specified by the parameter opt in the routine dss_create.

The lengths of the right-hand side and solution vectors, nRows and nCols respectively, must be defined in a previous call to dss_define_structure.
By default, both routines perform the full solution step (it corresponds to phase \(=33\) in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO). The parameteropt enables you to calculate the final solution step-bystep, calling forward and backward substitutions.

If it is set to MKL_DSS_FORWARD_SOLVE, the forward substitution (corresponding to phase = 331in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO) is performed;
if it is set to MKL_DSS_DIAGONAL_SOLVE, the diagonal substitution (corresponding to phase \(=332\) in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO) is performed, if possible;
if it is set to MKL_DSS_BACKWARD_SOLVE, the backward substitution (corresponding to phase \(=333\) in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO) is performed.
For more details about using these substitutions for different types of matrices, see Separate Forward and Backward Substitutionin the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO solver description.
This parameter also can control the number of refinement steps that is used on the solution stage: if it is set to MKL_DSS_REFINEMENT_OFF, the maximum number of refinement steps equal to zero, and if it is set to MKL_DSS_REFINEMENT_ON (default value), the maximum number of refinement steps is equal to 2 .

MKL_DSS_CONJUGATE_SOLVE option added to the parameter opt enables solving a conjugate transposed system \(A^{\bar{H}} X=B\) base \(\bar{d}\) on the factorization of the matrix \(A\). This option is equivalent to the parameter iparm (12) \(=1\) in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO.

MKL_DSS_TRANSPOSE_SOLVE option added to the parameter opt enables solving a transposed system \(A^{T} X=\) \(B\) based on the factorization of the matrix \(A\). This option is equivalent to the parameter iparm (12) \(=2\) in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO.

Input Parameters
\begin{tabular}{ll} 
handle & TYPE (MKL_DSS_HANDLE), INTENT (INOUT) \\
opt & Pointer to the data structure storing internal DSS results \\
& (MKL_DSS_HANDLE). \\
& INTEGER, INTENT (IN) \\
nRhs & Parameter to pass the DSS options. \\
rRhsValues & INTEGER, INTENT (IN) \\
& Number of the right-hand sides in the system of linear equations. \\
& REAL*8 \\
& REAL (KIND=4), INTENT (IN) or \\
& REAL (KIND=8), INTENT (IN)
\end{tabular}
cRhsValues

RhsValues

\section*{Output Parameters}
rSolValues
cSolValues

SolValues

Array of size nRows * nRhs. Contains real right-hand side vectors. Real data, single or double precision as it is specified by the parameter opt in the routine dss_create.

COMPLEX*16
COMPLEX (KIND=4), INTENT (IN) or
COMPLEX (KIND=8), INTENT (IN)
Array of size nRows * nRhs. Contains complex right-hand side vectors. Complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

REAL (KIND \(=4\) ), INTENT (IN), or
REAL (KIND=8), INTENT (IN), or
COMPLEX (KIND=4), INTENT (IN), or
COMPLEX (KIND=8), INTENT (IN)
Array of size nRows * nRhs. Contains right-hand side vectors. Real or complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

REAL (KIND=4), INTENT (OUT) or
REAL (KIND=8), INTENT (OUT)
Array of size \(n C o l s\) * nRhs. Contains real solution vectors. Real data, single or double precision as it is specified by the parameter opt in the routine dss_create.

COMPLEX(KIND=4), INTENT (OUT) or COMPLEX (KIND=8), INTENT (OUT)

Array of size nCols * nRhs. Contains complex solution vectors. Complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

REAL (KIND=4), INTENT (OUT), or
REAL (KIND=8), INTENT (OUT), or
COMPLEX (KIND=4), INTENT (OUT), or
COMPLEX (KIND=8), INTENT (OUT)
Array of size nCols * nRhs. Contains solution vectors. Real or complex data, single or double precision as it is specified by the parameter opt in the routine dss_create.

\section*{Return Values}
```

MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION

```
```

MKL_DSS_OUT_OF_MEMORY
MKL_DSS_DIAG_ERR
MKL_DSS_FAILURE
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR
MKL_DSS_OOC_MEM_ERR
MKL_DSS_OOC_OC_ERR
MKL DSS OOC RW ERR

```
dss_delete
Deletes all of the data structures created during the
solutions process.

\section*{Syntax}
```

call dss_delete(handle, opt)

```

\section*{Include Files}
- mkl.fi,mkl_dss.f90

\section*{Description}

The routine dss_delete deletes all data structures created during the solving process.

\section*{Input Parameters}
```

opt

```

INTEGER, INTENT (IN)
Parameter to pass the DSS options. The default value is MKL_DSS_MSG_LVL_WARNING + MKL_DSS_TERM_LVL_ERROR.

\section*{Output Parameters}
handle
TYPE (MKL_DSS_HANDLE), INTENT (INOUT)
Pointer to the data structure storing internal DSS results (MKL_DSS_HANDLE).

\section*{Return Values}
```

MKL_DSS_SUCCESS
MKL_DSS_STATE_ERR
MKL_DSS_INVALID_OPTION
MKL_DSS_OUT_OF_MEMORY
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR

```
```

dss_statistics
Returns statistics about various phases of the solving
process.

```

\section*{Syntax}
```

call dss_statistics(handle, opt, statArr, retValues)

```
```

call dss_statistics(handle, opt, statArr, retValues)

```

\section*{Include Files}
- mkl.fi, mkl_dss.f90

\section*{Description}

The dss_statistics routine returns statistics about various phases of the solving process. This routine gathers the following statistics:
- time taken to do reordering,
- time taken to do factorization,
- duration of problem solving,
- determinant of the symmetric indefinite input matrix,
- inertia of the symmetric indefinite input matrix,
- number of floating point operations taken during factorization,
- total peak memory needed during the analysis and symbolic factorization,
- permanent memory needed from the analysis and symbolic factorization,
- memory consumption for the factorization and solve phases.

Statistics are returned in accordance with the input string specified by the parameter statArr. The value of the statistics is returned in double precision in a return array, which you must allocate beforehand.

For multiple statistics, multiple string constants separated by commas can be used as input. Return values are put into the return array in the same order as specified in the input string.
Statistics can only be requested at the appropriate stages of the solving process. For example, requesting FactorTime before a matrix is factored leads to an error.
The following table shows the point at which each individual statistics item can be requested:

\section*{Statistics Calling Sequences}
\begin{tabular}{ll}
\hline Type of Statistics & When to Call \\
\hline ReorderTime & Afterdss_reorder is completed successfully. \\
FactorTime & Afterdss_factor_real or dss_factor_complex is completed successfully. \\
SolveTime & Afterdss_solve_real or dss_solve_complex is completed successfully. \\
Determinant & Afterdss_factor_real or dss_factor_complex is completed successfully. \\
Inertia & \begin{tabular}{l} 
Afterdss_factor_real is completed successfully and the matrix is real, symmetric, and \\
indefinite.
\end{tabular} \\
Flops & Afterdss_factor_real or dss_factor_complex is completed successfully. \\
Peakmem & Afterdss_reorder is completed successfully. \\
Factormem & Afterdss_reorder is completed successfully. \\
Solvemem & Afterdss_factor_real ordss_factor_complex is completed successfully.
\end{tabular}

\section*{Input Parameters}
handle

TYPE (MKL_DSS_HANDLE), INTENT (IN)
Pointer to the data structure storing internal DSS results (MKL_DSS_HANDLE).
opt
statArr

INTEGER, INTENT (IN)
Parameter to pass the DSS options.
INTEGER, INTENT (IN)
Input string that defines the type of the returned statistics. The parameter can include one or more of the following string constants (case of the input string has no effect):

ReorderTime Amount of time taken to do the reordering.
FactorTime Amount of time taken to do the factorization.
SolveTime

Determinant

Inertia

Flops

Peakmem

Amount of time taken to solve the problem after factorization.

Determinant of the matrix \(A\).
For real matrices: the determinant is returned as det_pow, det_base in two consecutive return array locations, where \(1.0 \leq\) abs (det_base)
< 10.0 and determinant \(=\) det_base*10(det_pow).
For complex matrices: the determinant is returned as det_pow, det_re, det_im in three consecutive return array locations, where 1.0 sabs(det_re) + abs(det_im) < 10.0 and determinant \(=\) (det_re, det_im)*10(det_pow).

Inertia of a real symmetric matrix is defined as a triplet of nonnegative integers \((p, n, z)\), where \(p\) is the number of positive eigenvalues, \(n\) is the number of negative eigenvalues, and \(z\) is the number of zero eigenvalues.
Inertia is returned as three consecutive return array locations \(p, n, z\).

Computing inertia can lead to incorrect results for matrixes with a cluster of eigenvalues which are near 0 .

Inertia of a \(k\)-by- \(k\) real symmetric positive definite matrix is always \((k, 0,0)\). Therefore Inertia is returned only in cases of real symmetric indefinite matrices. For all other matrix types, an error message is returned.

Number of floating point operations performed during the factorization.

Total peak memory in kilobytes that the solver needs during the analysis and symbolic factorization phase.

Factormem

Solvemem

Permanent memory in kilobytes that the solver needs from the analysis and symbolic factorization phase in the factorization and solve phases.

Total double precision memory consumption (kilobytes) of the solver for the factorization and solve phases.

\section*{NOTE}

To avoid problems in passing strings from Fortran to C, Fortran users must call the mkl_cvt_to_null_terminated_str routine before calling dss_statistics. Refer to the description of mkl_cvt_to_null_terminated_str for details.

\section*{Output Parameters}
```

retValues

```
REAL (KIND=8), INTENT (OUT)

Value of the statistics returned.

\section*{Finding 'time used to reorder' and 'inertia' of a matrix}

The example below illustrates the use of the dss_statistics routine.
To find the above values, call dss_statistics(handle, opt, statArr, retValue), where staArr is "ReorderTime,Inertia"

In this example, retValue has the following values:
```

retValue[0] Time to reorder.
retValue[1] Positive Eigenvalues.
retValue[2] Negative Eigenvalues.
retValue[3] Zero Eigenvalues.

```

\section*{Return Values}
```

MKL_DSS_SUCCESS
MKL_DSS_INVALID_OPTION
MKL_DSS_STATISTICS_INVALID_MATRIX
MKL_DSS_STATISTICS_INVALID_STATE
MKL_DSS_STATISTICS_INVALID_STRING
MKL_DSS_MSG_LVL_ERR
MKL_DSS_TERM_LVL_ERR

```
mkl_cvt_to_null_terminated_str
Passes character strings from Fortran routines to \(C\)
routines.

\section*{Syntax}
mkl_cvt_to_null_terminated_str (destStr, destLen, srcStr)

\section*{Include Files}
- mkl.fi, mkl_dss.f90

\section*{Description}

The routine mkl_cvt_to_null_terminated_str passes character strings from Fortran routines to C routines. The strings are converted into integer arrays before being passed to \(C\). Using this routine avoids the problems that can occur on some platforms when passing strings from Fortran to \(C\). The use of this routine is highly recommended.

\section*{Input Parameters}
```

destLen INTEGER. Length of the output array destStr.
srcStr STRING. Input string.

```

\section*{Output Parameters}
destStr
INTEGER. One-dimensional array of integers.

\section*{Iterative Sparse Solvers based on Reverse Communication Interface (RCI ISS)}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) supports iterative sparse solvers (ISS) based on the reverse communication interface (RCI), referred to here as the RCI ISS interface. The RCI ISS interface implements a group of user-callable routines that are used in the step-by-step solving process of a symmetric positive definite system (RCI conjugate gradient solver, or RCI CG), and of a non-symmetric indefinite (nondegenerate) system (RCI flexible generalized minimal residual solver, or RCI FGMRES) of linear algebraic equations. This interface uses the general RCI scheme described in [Dong95].
See the Appendix A Linear Solvers Basics for discussion of terms and concepts related to the ISS routines.
The term \(R C I\) indicates that when the solver needs the results of certain operations (for example, matrixvector multiplications), the user performs them and passes the result to the solver. This makes the solver more universal as it is independent of the specific implementation of the operations like the matrix-vector multiplication. To perform such operations, the user can use the built-in sparse matrix-vector multiplications and triangular solvers routines described in Sparse BLAS Level 2 and Level 3 Routines.

\section*{NOTE}

The RCI CG solver is implemented in two versions: for system of equations with a single right-hand side, and for systems of equations with multiple right-hand sides.
The CG method may fail to compute the solution or compute the wrong solution if the matrix of the system is not symmetric and not positive definite.
The FGMRES method may fail if the matrix is degenerate.

Table "RCI CG Interface Routines" lists the names of the routines, and describes their general use.
\begin{tabular}{ll} 
RCI ISS Interface Routines & Description \\
\hline Routine & Initializes the solver. \\
\hline dcg_init, dcgmrhs_init, dfgmres_init & Checks the consistency and correctness of the user defined data. \\
dcg_check, dcgmrhs_check, dfgmres_check & Computes the approximate solution vector. \\
dcg, dcgmrhs, dfgmres & Retrieves the number of the current iteration. \\
dcg_get, dcgmrhs_get, dfgmres_get & \\
\hline
\end{tabular}

The Intel® oneAPI Math Kernel Library (oneMKL) RCI ISS interface routines are normally invoked in this order:
1. <system_type>_init
2. <system_type>_check
3. <system_type>
4. <system_type>_get

Advanced users can change that order if they need it. Others should follow the above order of calls.
The following diagram indicates the typical order in which the RCI ISS interface routines are invoked.

\section*{__border _top}

\section*{Typical Order for Invoking RCI ISS interface Routines}

Initialize


See the code examples that use the RCI ISS interface routines to solve systems of linear equations in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) installation directory.
- examples/solverf/source

\section*{CG Interface Description}

All types in this documentation refer to the common Fortran types, INTEGER, and DOUBLE PRECISION.
Each routine for the RCI CG solver is implemented in two versions: for a system of equations with a single right-hand side (SRHS), and for a system of equations with multiple right-hand sides (MRHS). The names of routines for a system with MRHS contain the suffix mrhs.

\section*{Routine Options}

All of the RCI CG routines have common parameters for passing various options to the routines (see CG Common Parameters). The values for these parameters can be changed during computations.

\section*{User Data Arrays}

Many of the RCI CG routines take arrays of user data as input. For example, user arrays are passed to the routine dcgto compute the solution of a system of linear algebraic equations. The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) RCI CG routines do not make copies of the user input arrays to minimize storage requirements and improve overall run-time efficiency.

\section*{CG Common Parameters}

\section*{NOTE}

The default and initial values listed below are assigned to the parameters by calling the dcg_init/ dcgmrhs_init routine.
n
\(X\)
nrhs
b

RCI_request

INTEGER, this parameter sets the size of the problem in the dcg_init/ dcgmrhs_init routine. All the other routines use the ipar(1) parameter instead. Note that the coefficient matrix \(A\) is a square matrix of size \(n^{*} n\).

DOUBLE PRECISION array of size \(n\) for SRHS, or matrix of size ( \(n * n r h s\) ) for MRHS. This parameter contains the current approximation to the solution. Before the first call to the dcg/dcgmrhs routine, it contains the initial approximation to the solution.

INTEGER, this parameter sets the number of right-hand sides for MRHS routines.

DOUBLE PRECISION array containing a single right-hand side vector, or matrix of size \(n^{\star} n r h s\) containing right-hand side vectors.

INTEGER, this parameter gives information about the result of work of the RCI CG routines. Negative values of the parameter indicate that the routine completed with errors or warnings. The 0 value indicates successful completion of the task. Positive values mean that you must perform specific actions:
\(R C I\) request \(=1 \quad\) multiply the matrix by \(\operatorname{tmp}(1: n, 1)\), put the result in \(\operatorname{tmp}(1: n, 2)\), and return the control to the dcg/dcgmrhs routine;
\(R C I\) request \(=2\) to perform the stopping tests. If they fail, return the control to the dcg/dcgmrhs routine. If the stopping tests succeed, it indicates that the solution is found and stored in the \(x\) array;

RCI_request \(=3\) for SRHS: apply the preconditioner to tmp ( \(1: n, 3\) ), put the result in \(\operatorname{tmp}(1: n, 4)\), and return the control to the dcg routine;
for MRHS: apply the preconditioner to tmp(:,3+ipar(3)), put the result in tmp (: 3 ), and return the control to the dcgmrhs routine.

Note that the dcg_get/dcgmrhs_get routine does not change the parameter \(R C I_{\text {_ }}\) request. This enables use of this routine inside the reverse communication computations.

INTEGER array, of size 128 for SRHS, and of size (128+2*nrhs) for MRHS. This parameter specifies the integer set of data for the RCI CG computations:
```

ipar(1)
ipar(2)
ipar(3)

```
ipar(4)
ipar(5)
ipar(6)
ipar(7)
ipar(8)
ipar(9)
ipar(10)
ipar(11)
ipar(12:128)
ipar(12:128+2*nrhs)
ipar(5). Otherwise, the method is stopped and the corresponding value is assigned to the \(R C I\) request. If the value is 0 , the routine does not perform this stopping test. The default value is 1 .
if the value is not equal to 0 , the dcg/dcgmrhs routine performs the residual stopping test:
\(\operatorname{dpar}(5) \leq \operatorname{dpar}(4)=\operatorname{dpar}(1) * \operatorname{dpar}(3)+\) dpar (2). Otherwise, the method is stopped and corresponding value is assigned to the \(R C I\) request. If the value is 0 , the routine does not perform this stopping test. The default value is 0 .
if the value is not equal to 0 , the dcg/dcgmrhs routine requests a user-defined stopping test by setting the output parameter \(R C I_{-}\)request \(=2\). If the value is 0 , the routine does not perform the user defined stopping test. The default value is 1 .

\section*{NOTE}

At least one of the parameters ipar(8)ipar(10) must be set to 1 .
if the value is equal to 0 , the dcg/dcgmrhs routine runs the non-preconditioned version of the corresponding CG method. Otherwise, the routine runs the preconditioned version of the CG method, and by setting the output parameter RCI_request=3, indicates that you must perform the preconditioning step. The default value is 0 .
are reserved and not used in the current RCI CG SRHS and MRHS routines.

\section*{NOTE}

For future compatibility, you must declare the array ipar with length 128 for a single righthand side.
are reserved for internal use in the current RCI CG SRHS and MRHS routines.

\section*{NOTE}

For future compatibility, you must declare the array ipar with length \(128+2^{*}\) nrhs for multiple right-hand sides.

DOUBLE PRECISION array, for SRHS of size 128, for MRHS of size \(\left(128+2^{*} n r h s\right)\); this parameter is used to specify the double precision set of data for the RCI CG computations, specifically:
```

dpar(1) specifies the relative tolerance. The default
value is 1.0\times10-6.
specifies the absolute tolerance. The default value is 0.0 .
specifies the square norm of the initial residual (if it is computed in the dcg/dcgmrhs routine). The initial value is 0.0 .
service variable equal to
dpar(1)*dpar(3)+dpar(2) (if it is computed in the dcg/dcgmrhs routine). The initial value is 0.0.
specifies the square norm of the current residual. The initial value is 0.0 .
specifies the square norm of residual from the previous iteration step (if available). The initial value is 0.0 .
contains the alpha parameter of the CG method. The initial value is 0.0 .
contains the beta parameter of the CG method, it is equal to dpar(5)/dpar(6) The initial value is 0.0 .
are reserved and not used in the current RCI CG SRHS and MRHS routines.

```

\section*{NOTE}

For future compatibility, you must declare the array dpar with length 128 for a single righthand side.
dpar(9:128+2*nrhs) (9:128 + 2*nrhs)
are reserved for internal use in the current RCI CG SRHS and MRHS routines.

\section*{NOTE}

For future compatibility, you must declare the array dpar with length \(128+2 *_{n}\) rhs for multiple right-hand sides.

DOUBLE PRECISION array of size ( \(n, 4\) ) for SRHS, and ( \(n,(3+n r h s)\) ) for MRHS. This parameter is used to supply the double precision temporary space for the RCI CG computations, specifically:
\begin{tabular}{ll}
\(t m p(:, 1)\) & \begin{tabular}{l} 
specifies the current search direction. The initial \\
value is 0.0.
\end{tabular} \\
\(t m p(:, 2)\) & \begin{tabular}{l} 
contains the matrix multiplied by the current \\
search direction. The initial value is 0.0.
\end{tabular} \\
\(t m p(:, 3)\) & \begin{tabular}{l} 
contains the current residual. The initial value is \\
\(t m p(:, 4)\) \\
\(t m p(:, 4: 3+n r h s)\)
\end{tabular} \\
\begin{tabular}{l} 
contains the inverse of the preconditioner \\
applied to the current residual for the SRHS \\
version of CG. There is no initial value for this \\
parameter.
\end{tabular} \\
\begin{tabular}{l} 
contains the inverse of the preconditioner \\
applied to the current residual for the MRHS \\
version of CG. There is no initial value for this \\
parameter.
\end{tabular}
\end{tabular}

\section*{NOTE}

You can define this array in the code using RCI CG SRHS as DOUBLE PRECISION \(t m p(n, 3)\) if you run only non-preconditioned CG iterations.

\section*{Schemes of Using the RCI CG Routines}

The following pseudocode shows the general schemes of using the RCI CG routines for the SRHS case. The MRHS is similar (see the example code for more details).
generate matrix \(A\)
generate preconditioner \(C\) (optional)
call dcg_init( \(n, x, b, R C I\) request, ipar, dpar, tmp)
change parameters in ipar, dpar if necessary
call dcg_check( \(\left.n, x, b, R C I \_r e q u e s t, i p a r, ~ d p a r, ~ t m p\right) ~\)

if (RCI_request.eq.1) then
multiply the matrix \(A\) by \(\operatorname{tmp}(1: n, 1)\) and put the result in \(\operatorname{tmp}(1: n, 2)\)
It is possible to use MKL Sparse BLAS Level 2 subroutines for this operation
```

c proceed with CG iterations
goto 1
endif
if (RCI_request.eq.2)then
do the stopping test
if (test not passed) then
c proceed with CG iterations

```
```

 go to 1
 else
 c stop CG iterations
goto 2
endif
endif
if (RCI_request.eq.3) then (optional)
apply the preconditioner C inverse to tmp (1:n,3) and put the result in tmp (1:n,4)
c proceed with CG iterations
goto 1
end
2 calldcg_get (n, x, b, RCI_request, ipar, dpar, tmp, itercount)
current iteration number is in itercount
the computed approximation is in the array x

```

\section*{FGMRES Interface Description}

All types in this documentation refer to the common Fortran types: INTEGER and DOUBLE PRECISION.

\section*{Routine Options}

All of the RCI FGMRES routines have common parameters for passing various options to the routines (see FGMRES Common Parameters). The values for these parameters can be changed during computations.

\section*{User Data Arrays}

Many of the RCI FGMRES routines take arrays of user data as input. For example, user arrays are passed to the routine dfgmresto compute the solution of a system of linear algebraic equations. To minimize storage requirements and improve overall run-time efficiency, the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) RCI FGMRES routines do not make copies of the user input arrays.

\section*{FGMRES Common Parameters}

\section*{NOTE}

The default and initial values listed below are assigned to the parameters by calling the dfgmres_init routine.

INTEGER, this parameter sets the size of the problem in the dfgmres_init routine. All the other routines use the ipar(1) parameter instead. Note that the coefficient matrix \(A\) is a square matrix of size \(n^{*} n\).

DOUBLE PRECISION array, this parameter contains the current approximation to the solution vector. Before the first call to the dfgmres routine, it contains the initial approximation to the solution vector.
b

RCI_request
ipar(128) [128]
DOUBLE PRECISION array, this parameter contains the right-hand side vector. Depending on user requests (see the parameter ipar(13)), it might contain the approximate solution after execution.

INTEGER, this parameter gives information about the result of work of the RCI FGMRES routines. Negative values of the parameter indicate that the routine completed with errors or warnings. The 0 value indicates successful completion of the task. Positive values mean that you must perform specific actions:
\begin{tabular}{|c|c|}
\hline RCI_request= 1 & multiply the matrix by tmp(ipar(22)), put the result in tmp(ipar(23)), and return the control to the dfgmres routine; \\
\hline RCI_request= 2 & perform the stopping tests. If they fail, return the control to the dfgres routine. Otherwise, the solution can be updated by a subsequent call to dfgmres_get routine; \\
\hline RCI_request= 3 & apply the preconditioner to tmp (ipar(22)), put the result in tmp (ipar (23)), and return the control to the dfgmres routine. \\
\hline RCI_request= 4 & check if the norm of the current orthogonal vector is zero, within the rounding or computational errors. Return the control to the dfgmres routine if it is not zero, otherwise complete the solution process by calling dfgmres_get routine. \\
\hline
\end{tabular}

INTEGER array, this parameter specifies the integer set of data for the RCI FGMRES computations:
ipar(1) specifies the size of the problem. The dfgmres_init routine assigns ipar(1)=n. All the other routines uses this parameter instead of \(n\). There is no default value for this parameter.
specifies the type of output for error and warning messages that are generated by the RCI FGMRES routines. The default value 6 means that all messages are displayed on the screen. Otherwise the error and warning messages are written to the newly created file MKL_RCI_FGMRES_Log.txt. Note that if ipar(6) and ipar(7) parameters are set to 0, error and warning messages are not generated at all.
contains the current stage of the RCI FGMRES computations. The initial value is 1 .

\section*{WARNING}

Avoid altering this variable during computations.
ipar(4)
ipar(5)
ipar(6)
ipar(7)
ipar(8)
ipar(9)
ipar(10)
ipar(11)
contains the current iteration number. The initial value is 0 .
specifies the maximum number of iterations. The default value is \(\min (150, n)\).
if the value is not 0 , the routines output error messages in accordance with the parameter ipar(2). If it is 0 , the routines do not output error messages at all, but return a negative value of the parameter \(R C I\) request. The default value is 1 .
if the value is not 0 , the routines output warning messages in accordance with the parameter ipar(2). Otherwise, the routines do not output warning messages at all, but they return a negative value of the parameter \(R C I_{-}\)request. The default value is 1 .
if the value is not equal to 0 , the dfgmres routine performs the stopping test for the maximum number of iterations: ipar(4) sipar(5). If the value is 0 , the dfgmres routine does not perform this stopping test. The default value is 1 .
if the value is not 0 , the dfgmres routine performs the residual stopping test: dpar (5) \(\leq d p a r(4)\). If the value is 0 , the dfgmres routine does not perform this stopping test. The default value is 0 .
if the value is not 0 , the dfgmres routine indicates that the user-defined stopping test should be performed by setting \(R C I_{-} r e q u e s t=2\). If the value is 0 , the dfgmres routine does not perform the user-defined stopping test. The default value is 1 .

\section*{NOTE}

At least one of the parameters ipar(8)ipar(10) must be set to 1 .
if the value is 0 , the dfgmres routine runs the non-preconditioned version of the FGMRES method. Otherwise, the routine runs the preconditioned version of the FGMRES method,
and requests that you perform the preconditioning step by setting the output parameter \(R C I\) _request \(=3\). The default value is 0.
ipar(12)
ipar(13)
ipar(14)
ipar(15)
if the value is not equal to 0 , the dfgmres routine performs the automatic test for zero norm of the currently generated vector: dpar(7) \(\leq \operatorname{dpar}(8)\), where \(d p a r(8)\) contains the tolerance value. Otherwise, the routine indicates that you must perform this check by setting the output parameter \(R C I\) request \(=4\). The default value is 0 .
if the value is equal to 0 , the dfgmres_get routine updates the solution to the vector \(x\) according to the computations done by the dfgmres routine. If the value is positive, the routine writes the solution to the right-hand side vector \(b\). If the value is negative, the routine returns only the number of the current iteration, and does not update the solution. The default value is 0 .

\section*{NOTE}

It is possible to call the dfgmres_get routine at any place in the code, but you must pay special attention to the parameter ipar(13). The RCI FGMRES iterations can be continued after the call to dfgmres_get routine only if the parameter ipar(13) is not equal to zero. If ipar(13) is positive, then the updated solution overwrites the right-hand side in the vector \(b\). If you want to run the restarted version of FGMRES with the same right-hand side, then it must be saved in a different memory location before the first call to the dfgmres_get routine with positive ipar(13).
contains the internal iteration counter that counts the number of iterations before the restart takes place. The initial value is 0 .

\section*{WARNING}

Do not alter this variable during computations.
specifies the number of the non-restarted FGMRES iterations. To run the restarted version of the FGMRES method, assign the number of
iterations to ipar (15) before the restart. The default value is \(\min (150, n)\), which means that by default the non-restarted version of FGMRES method is used.
service variable specifying the location of the rotated Hessenberg matrix from which the matrix stored in the packed format (see Matrix Arguments in the Appendix \(B\) for details) is started in the tmp array.
service variable specifying the location of the rotation cosines from which the vector of cosines is started in the tmp array.
service variable specifying the location of the rotation sines from which the vector of sines is started in the tmp array.
service variable specifying the location of the rotated residual vector from which the vector is started in the tmp array.
service variable, specifies the location of the least squares solution vector from which the vector is started in the tmp array.
service variable specifying the location of the set of preconditioned vectors from which the set is started in the tmp array. The memory locations in the tmp array starting from ipar(21) are used only for the preconditioned FGMRES method.
specifies the memory location from which the first vector (source) used in operations requested via \(R C I_{-}\)request is started in the tmp array.
specifies the memory location from which the second vector (output) used in operations requested via \(R C I_{-} r e q u e s t\) is started in the tmp array.
are reserved and not used in the current RCI FGMRES routines.

\section*{NOTE}

You must declare the array ipar with length 128. While defining the array in the code as INTEGERipar(23) works, there is no guarantee of future compatibility with Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

DOUBLE PRECISION array, this parameter specifies the double precision set of data for the RCI CG computations, specifically:
\(\left.\begin{array}{ll}\text { dpar(1) } & \begin{array}{l}\text { specifies the relative tolerance. The default } \\
\text { value is } 1.0 \mathrm{e}-6 .\end{array} \\
\text { dpar(2) } & \begin{array}{l}\text { specifies the absolute tolerance. The default } \\
\text { value is } 0.0 \mathrm{e}-0 .\end{array} \\
\text { dpar(3) } \\
\text { specifies the Euclidean norm of the initial } \\
\text { residual (if it is computed in the dfgmres } \\
\text { routine). The initial value is } 0.0 .\end{array}\right]\)\begin{tabular}{l} 
service variable equal to \\
dpar(1) *dpar (3) +dpar (2) (if it is computed \\
in the dfgmres routine). The initial value is 0.0.
\end{tabular}

\section*{NOTE}

In terms of [Saad03] this parameter is the coefficient \(h_{k+1, k}\) of the Hessenberg matrix.
contains the tolerance for the zero norm of the currently generated vector. The default value is \(1.0 \mathrm{e}-12\).
dpar(9:128)
are reserved and not used in the current RCI FGMRES routines.

\section*{NOTE}

You must declare the array dpar with length 128. While defining the array in the code as DOUBLE PRECISION dpar(8) works, there is no guarantee of future compatibility with Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

DOUBLE PRECISION array of size ( ( 2 *ipar (15) +1)*n + \(i \operatorname{par}(15) *(i \operatorname{par}(15)+9) / 2+1))\) used to supply the double precision temporary space for the RCI FGMRES computations, specifically:
tmp (1:ipar(16)-1) contains the sequence of vectors generated by the FGMRES method. The initial value is 0.0 .
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { tmp (ipar(16):ipar(17 } \\
& )-1)
\end{aligned}
\] & contains the rotated Hessenberg matrix generated by the FGMRES method; the matrix is stored in the packed format. There is no initial value for this part of tmp array. \\
\hline \[
\begin{aligned}
& \text { tmp (ipar(17) :ipar(18 } \\
& )-1)
\end{aligned}
\] & contains the rotation cosines vector generated by the FGMRES method. There is no initial value for this part of tmp array. \\
\hline \[
\begin{aligned}
& \text { tmp (ipar(18) :ipar(19 } \\
& \text { )-1) }
\end{aligned}
\] & contains the rotation sines vector generated by the FGMRES method. There is no initial value for this part of tmp array. \\
\hline \[
\begin{aligned}
& \text { tmp(ipar(19) :ipar(20 } \\
& \text { )-1) }
\end{aligned}
\] & contains the rotated residual vector generated by the FGMRES method. There is no initial value for this part of tmp array. \\
\hline \[
\begin{aligned}
& \text { tmp (ipar }(20): \operatorname{ipar}(21 \\
& )-1)
\end{aligned}
\] & contains the solution vector to the least squares problem generated by the FGMRES method. There is no initial value for this part of tmp array. \\
\hline tmp(ipar(21):) & contains the set of preconditioned vectors generated for the FGMRES method by the user. This part of tmp array is not used if the nonpreconditioned version of FGMRES method is called. There is no initial value for this part of tmp array. \\
\hline
\end{tabular}

\section*{NOTE}

You can define this array in the code as DOUBLE PRECISION
tmp ((2*ipar(15)+1)*n +
ipar(15)*(ipar(15)+9)/2 + 1)) if you
run only non-preconditioned FGMRES
iterations.

\section*{Scheme of Using the RCI FGMRES Routines}

The following pseudocode shows the general scheme of using the RCI FGMRES routines.
generate matrix \(A\)
generate preconditioner \(C\) (optional)
```

 call dfgmres_init(n, x, b, RCI_request, ipar, dpar, tmp)
    ```
    change parameters in ipar, dpar if necessary
    call dfgmres_check ( \(n, x, b, R C I \quad r e q u e s t, i p a r, ~ d p a r, ~ t m p) ~\)
1 call dfgmres ( \(n, x, b, R C I\) request, ipar, dpar, tmp)
if (RCI_request.eq.1) then
multiply the matrix \(A\) by \(\operatorname{tmp}(i p a r(22))\) and put the result in tmp(ipar(23))

It is possible to use MKL Sparse BLAS Level 2 subroutines for this operation
C
```

proceed with FGMRES iterations
goto 1
endif
if (RCI_request.eq.2) then
do the stopping test
if (test not passed) then
c proceed with FGMRES iterations
go to 1
else
c stop FGMRES iterations
goto 2
endif
endif
if (RCI_request.eq.3) then (optional)
apply the preconditioner C inverse to tmp(ipar(22)) and put the result in tmp(ipar(23))
c proceed with FGMRES iterations
goto 1
endif
if (RCI_request.eq.4) then
check the norm of the next orthogonal vector, it is contained in dpar(7)
if (the norm is not zero up to rounding/computational errors) then
c proceed with FGMRES iterations
goto 1
else
c stop FGMRES iterations
goto 2
endif
endif
2 call dfgmres_get(n, x, b, RCI_request, ipar, dpar, tmp, itercount)

```
current iteration number is in itercount
the computed approximation is in the array \(x\)

\section*{NOTE}

For the FGMRES method, the array \(x\) initially contains the current approximation to the solution. It can be updated only by calling the routine dfgmres_get, which updates the solution in accordance with the computations performed by the routine dfgmres.

The above pseudocode demonstrates two main differences in the use of RCI FGMRES interface comparing with the CG Interface Description. The first difference relates to \(R C I\) _request=3: it uses different locations in the tmp array, which is two-dimensional for CG and one-dimensional for FGMRES. The second difference relates to \(R C I\) request \(=4\) : the RCI CG interface never produces \(R C I\) request \(=4\).

\section*{RCI ISS Routines}
dcg_init
Initializes the solver.

\section*{Syntax}
```

dcg_init(n, x, b, RCI_request, ipar, dpar, tmp)

```

\section*{Include Files}
- Fortran: mkl_rci.fi, mkl_rci.f90

\section*{Description}

The routine dcg_initinitializes the solver. After initialization, all subsequent invocations of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) RCI CG routines use the values of all parameters returned by the routinedcg_init. Advanced users can skip this step and set the values in the ipar and dpar arrays directly.

\section*{Caution}

You can modify the contents of these arrays after they are passed to the solver routine only if you are sure that the values are correct and consistent. You can perform a basic check for correctness and consistency by calling the dcg_check routine, but it does not guarantee that the method will work correctly.

\section*{Input Parameters}
\(n\)

X
b

\section*{Output Parameters}
```

RCI_request
ipar
dpar
tmp

```

\section*{Return Values}

INTEGER. Sets the size of the problem.
DOUBLE PRECISION. Array of size \(n\). Contains the initial approximation to the solution vector. Normally it is equal to 0 or to \(b\).

DOUBLE PRECISION. Array of size \(n\). Contains the right-hand side vector.

INTEGER. Gives information about the result of the routine.
INTEGER. Array of size 128. Refer to the CG Common Parameters.
DOUBLE PRECISION. Array of size 128. Refer to the CG Common Parameters.

DOUBLE PRECISION. Array of size ( \(n, 4\) ). Refer to the CG Common Parameters.
```

RCI_request= -10000
Indicates failure to complete the task.

```
dcg_check
Checks consistency and correctness of the user defined data.

\section*{Syntax}
```

dcg_check(n, x, b, RCI_request, ipar, dpar, tmp)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The routine dcg_check checks consistency and correctness of the parameters to be passed to the solver routine dcg. However this operation does not guarantee that the solver returns the correct result. It only reduces the chance of making a mistake in the parameters of the method. Skip this operation only if you are sure that the correct data is specified in the solver parameters.

The lengths of all vectors must be defined in a previous call to the dcg_init routine.
If none of the stopping criteria (ipar(8)-ipar(10)) has been enabled, both ipar(8) and ipar(9) will be set to 1 .

\section*{Input Parameters}
\begin{tabular}{ll} 
ipar & Array of size 128. Refer to the FGMRES Common Parameters. \\
\(n\) & INTEGER. Sets the size of the problem. \\
\(x\) & DOUBLE PRECISION. Array of size \(n\). Contains the initial approximation to \\
the solution vector. Normally it is equal to 0 or to \(b\).
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
RCI_request & INTEGER. Gives information about result of the routine. \\
ipar & INTEGER. Array of size 128. Refer to the CG Common Parameters. Only \\
dpar & ipar \((8)\)-ipar \((9)\) might be changed \\
\(t m p\) & DOUBLE PRECISION. Array of size 128. Refer to the CG Common \\
& Parameters. \\
& DOUBLE PRECISION. Array of size \((n, 4)\). Refer to the CG Common \\
& Parameters.
\end{tabular}

\section*{Return Values}
```

RCI_request=0
RCI_request= -1100
RCI_request= -1001

```

Indicates that the task completed normally.
Indicates that the task is interrupted and the errors occur.
Indicates that there are some warning messages.
```

RCI_request=-1010 Indicates that the routine changed some parameters to
make them consistent or correct.
RCI request=-1011 Indicates that there are some warning messages and that
the routine changed some parameters.

```

\section*{dcg}

Computes the approximate solution vector.

\section*{Syntax}
```

dcg(n, x, b, RCI_request, ipar, dpar, tmp)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The dcg routine computes the approximate solution vector using the CG method [Young71]. The routine dcg uses the vector in the array \(x\) before the first call as an initial approximation to the solution. The parameter \(R C I\) request gives you information about the task completion and requests results of certain operations that are required by the solver.
Note that lengths of all vectors must be defined in a previous call to the dcg_init routine.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. Sets the size of the problem. \\
\(x\) & DOUBLE PRECISION. Array of size \(n\). Contains the initial approximation to \\
the solution vector. \\
\(t m p\) & DOUBLE PRECISION. Array of size \(n\). Contains the right-hand side vector. \\
& \begin{tabular}{l} 
DOUBLE PRECISION. Array of size \((n, 4)\). Refer to the CG Common \\
Parameters.
\end{tabular}
\end{tabular}

\section*{Output Parameters}
RCI_request
\(x\)
ipar
dpar
tmp

INTEGER. Gives information about result of work of the routine.
DOUBLE PRECISION. Array of size \(n\). Contains the updated approximation to the solution vector.

INTEGER. Array of size 128. Refer to the CG Common Parameters.
DOUBLE PRECISION. Array of size 128. Refer to the CG Common Parameters.

DOUBLE PRECISION. Array of size \((n, 4)\). Refer to the CG Common Parameters.

\section*{Return Values}
\begin{tabular}{|c|c|}
\hline \(R C I \_\)request \(=0\) & Indicates that the task completed normally and the solution is found and stored in the vector \(x\). This occurs only if the stopping tests are fully automatic. For the user defined stopping tests, see the description of the RCI_request= 2 . \\
\hline RCI_request=-1 & Indicates that the routine was interrupted because the maximum number of iterations was reached, but the relative stopping criterion was not met. This situation occurs only if you request both tests. \\
\hline RCI_request=-2 & Indicates that the routine was interrupted because of an attempt to divide by zero. This situation happens if the matrix is non-positive definite or almost non-positive definite. \\
\hline RCI_request=-10 & Indicates that the routine was interrupted because the residual norm is invalid. This usually happens because the value dpar (6) was altered outside of the routine, or the dcg_check routine was not called. \\
\hline RCI_request=-11 & Indicates that the routine was interrupted because it enters the infinite cycle. This usually happens because the values ipar(8), ipar(9), ipar(10) were altered outside of the routine, or the dcg_check routine was not called. \\
\hline RCI_request= 1 & Indicates that you must multiply the matrix by tmp ( \(1: n, 1\) ), put the result in the tmp \((1: n, 2)\), and return control back to the routine dcg. \\
\hline RCI_request= 2 & Indicates that you must perform the stopping tests. If they fail, return control back to the dcg routine. Otherwise, the solution is found and stored in the vector \(x\). \\
\hline RCI_request= 3 & Indicates that you must apply the preconditioner to tmp (: , 3), put the result in the tmp (:, 4), and return control back to the routine dcg. \\
\hline
\end{tabular}

\section*{dcg_get}

Retrieves the number of the current iteration.

\section*{Syntax}
```

dcg_get(n, x, b, RCI_request, ipar, dpar, tmp, itercount)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The routine dcg_get retrieves the current iteration number of the solutions process.

\section*{Input Parameters}
\[
n
\]

\footnotetext{
INTEGER. Sets the size of the problem.
}
\begin{tabular}{ll}
\(x\) & DOUBLE PRECISION. Array of size \(n\). Contains the approximation vector to \\
the Solution. \\
RCI_request & DOUBLE PRECISION. Array of size \(n\). Contains the right-hand side vector. \\
ipar & INTEGER. This parameter is not used. \\
dpar & INTEGER. Array of size 128. Refer to the CG Common Parameters. \\
\(t m p\) & DOUBLE PRECISION. Array of size 128. Refer to the CG Common \\
& Parameters. \\
& DOUBLE PRECISION. Array of size \((n, 4)\). Refer to the CG Common \\
& Parameters.
\end{tabular}

\section*{Output Parameters}
itercount

\section*{INTEGER. Returns the current iteration number.}

\section*{Return Values}

The routine dcg_get has no return values.
dcgmrhs_init
Initializes the RCI CG solver with MHRS.

\section*{Syntax}
```

dcgmrhs_init(n, x, nrhs, b, method, RCI_request, ipar, dpar, tmp)

```

Include Files
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The routine dcgmrhs_initinitializes the solver. After initialization all subsequent invocations of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) RCI CG with multiple right-hand sides (MRHS) routines use the values of all parameters that are returned bydcgmrhs_init. Advanced users may skip this step and set the values to these parameters directly in the appropriate routines.

\section*{WARNING}

You can modify the contents of these arrays after they are passed to the solver routine only if you are sure that the values are correct and consistent. You can perform a basic check for correctness and consistency by calling the dcgmrhs_check routine, but it does not guarantee that the method will work correctly.

\section*{Input Parameters}
\begin{tabular}{ll}
\(n\) & INTEGER. Sets the size of the problem. \\
\(x\) & DOUBLE PRECISION. Array of size \(n^{\star} n r h s\). Contains the initial \\
approximation to the solution vectors. Normally it is equal to 0 or to \(b\). \\
\(n r h s\) & INTEGER. Sets the number of right-hand sides.
\end{tabular}
b method

\section*{Output Parameters}
RCI_request
ipar
dpar
\(t m p\)

INTEGER. Gives information about the result of the routine.
INTEGER. Array of size ( \(\left.128+2 \star_{n r h s}\right)\). Refer to the CG Common Parameters.

DOUBLE PRECISION. Array of size \((128+2 * n r h s)\). Refer to the CG Common Parameters.

DOUBLE PRECISION. Array of size ( \(n\), ( \(3+n r h s\) ) ). Refer to the CG Common Parameters.

\section*{Return Values}
```

RCI_request= 0
RCI_request= -10000
dcgmrhs_check
Checks consistency and correctness of the user
defined data.

```

\section*{Syntax}
```

dcgmrhs_check(n, x, nrhs, b, RCI_request, ipar, dpar, tmp)

```
```

dcgmrhs_check(n, x, nrhs, b, RCI_request, ipar, dpar, tmp)

```

Indicates that the task completed normally.
Indicates failure to complete the task.

\section*{Include Files}
- Fortran: mkl_rci.fi, mkl_rci.f90

\section*{Description}

The routine dcgmrhs_check checks the consistency and correctness of the parameters to be passed to the solver routine dcgmrhs. While this operation reduces the chance of making a mistake in the parameters, it does not guarantee that the solver returns the correct result.
If you are sure that the correct data is specified in the solver parameters, you can skip this operation.
The lengths of all vectors must be defined in a previous call to the dcgmrhs_init routine.
If none of the stopping criteria (ipar(8)-ipar(10)) has been enabled, both ipar(8) and ipar(9) will be set to 1 .

\section*{Input Parameters}
```

n INTEGER. Sets the size of the problem.
x
nrhs

```

INTEGER. Sets the size of the problem.
DOUBLE PRECISION. Array of size \(n \star n r h s\). Contains the initial approximation to the solution vectors. Normally it is equal to 0 or to \(b\).

INTEGER. This parameter sets the number of right-hand sides.
b

\section*{Output Parameters}
RCI_request
ipar
dpar
tmp

\section*{Return Values \\ Return Values}
```

RCI_request= 0

```
RCI_request= 0
RCI_request= -1100
RCI_request= -1100
RCI_request = -1001
RCI_request = -1001
RCI_request= -1010
RCI_request= -1010
RCI_request= -1011
```

RCI_request= -1011

```

DOUBLE PRECISION. Array of size \(n^{\star} n r h s\). Contains the right-hand side vectors.

INTEGER. Returns information about the results of the routine.
INTEGER. Array of size ( \(128+2 \star_{n r h s)}\). Refer to the CG Common Parameters. Only ipar(8)-ipar(9) might be changed.

DOUBLE PRECISION. Array of size \((128+2 * n r h s)\). Refer to the CG Common Parameters.

DOUBLE PRECISION. Array of size ( \(n,(3+n r h s))\). Refer to the CG Common Parameters.

Indicates that the task completed normally.
Indicates that the task is interrupted and the errors occur.
Indicates that there are some warning messages.
Indicates that the routine changed some parameters to make them consistent or correct.

Indicates that there are some warning messages and that the routine changed some parameters.

\section*{dcgmrhs \\ Computes the approximate solution vectors.}

\section*{Syntax}
```

dcgmrhs(n, x, nrhs, b, RCI_request, ipar, dpar, tmp)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The routine dcgmrhs computes approximate solution vectors using the CG with multiple right-hand sides (MRHS) method [Young71]. The routine dcgmrhs uses the value that was in the \(x\) before the first call as an initial approximation to the solution. The parameter \(R C I_{-}\)request gives information about task completion status and requests results of certain operations that are required by the solver.
Note that lengths of all vectors are assumed to have been defined in a previous call to the dcgmrhs_init routine.

\section*{Input Parameters}
n
INTEGER. Sets the size of the problem, and the sizes of arrays \(x\) and \(b\).
DOUBLE PRECISION. Array of size \(n^{\star} n r h s\). Contains the initial approximation to the solution vectors.
```

nrhs

```
b
tmp

\section*{Output Parameters}
RCI_request
\(X\)
ipar
dpar
\(t m p\)

\section*{Return Values}

RCI_request=-11
\(R C I_{\text {_request }}=1\)

RCI_request= 2

INTEGER. Sets the number of right-hand sides.
DOUBLE PRECISION. Array of size \(n^{\star} n r h s\). Contains the right-hand side vectors.

DOUBLE PRECISION. Array of size ( \(n, 3+n r h s\) ). Refer to the CG Common Parameters.

INTEGER. Gives information about result of work of the routine.
DOUBLE PRECISION. Array of size ( \(n\) by nrhs). Contains the updated approximation to the solution vectors.

INTEGER. Array of size ( \(\left.128+2 \star_{n r h s}\right)\). Refer to the CG Common Parameters.

DOUBLE PRECISION. Array of size \((128+2 * n r h s)\). Refer to the CG Common Parameters.

DOUBLE PRECISION. Array of size ( \(n,(3+n r h s)\) ). Refer to the CG Common Parameters.
\(\left.\left.\begin{array}{ll}R C I_{-} \text {request }=0 & \begin{array}{l}\text { Indicates that the task completed normally and the solution } \\
\text { is found and stored in the vector } x . \text { This occurs only if the } \\
\text { stopping tests are fully automatic. For the user defined }\end{array} \\
\text { stopping tests, see the description of the } R C I_{-} \text {request }=2 .\end{array}\right] \begin{array}{l}\text { Indicates that the routine was interrupted because the } \\
\text { maximum number of iterations was reached, but the } \\
\text { relative stopping criterion was not met. This situation } \\
\text { occurs only if both tests are requested by the user. }\end{array}\right\}\)\begin{tabular}{l} 
The routine was interrupted because of an attempt to \\
divide by zero. This situation happens if the matrix is non- \\
positive definite or almost non-positive definite.
\end{tabular}
```

RCI_request= 3

```

Indicates that you must apply the preconditioner to tmp (: , \(3)\), put the result in the \(\operatorname{tmp}(:, 4)\), and return control back to the routine dcg.
dcgmrhs_get
Retrieves the number of the current iteration.

\section*{Syntax}


\section*{Include Files}
- Fortran: mkl_rci.fi, mkl_rci.f90

\section*{Description}

The routine dcgmrhs_get retrieves the current iteration number of the solving process.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. Sets the size of the problem. \\
\hline x & DOUBLE PRECISION. Array of size \(n * n r h s\). Contains the initial approximation to the solution vectors. \\
\hline nrhs & INTEGER. Sets the number of right-hand sides. \\
\hline b & DOUBLE PRECISION. Array of size \(n^{\star} n r h s\). Contains the right-hand side . \\
\hline RCI_request & INTEGER. This parameter is not used. \\
\hline ipar & INTEGER. Array of size \((128+2 * n r h s)\). Refer to the CG Common Parameters. \\
\hline dpar & DOUBLE PRECISION. Array of size ( \(128+2 * n r h s)\). Refer to the CG Common Parameters. \\
\hline tmp & DOUBLE PRECISION. Array of size ( \(n,(3+n r h s)\) ). Refer to the CG Common Parameters. \\
\hline
\end{tabular}

\section*{Output Parameters}
itercount INTEGER. Array of size nrhs. Returns the current iteration number for each right-hand side.

\section*{Return Values}

The routine dcgmrhs_get has no return values.
dfgmres_init
Initializes the solver.
Syntax
dfgmres_init( \(\left.n, x, b, R C I \_r e q u e s t, i p a r, ~ d p a r, ~ t m p\right)\)

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The routine dfgmres_initinitializes the solver. After initialization all subsequent invocations of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) RCI FGMRES routines use the values of all parameters that are returned bydfgmres_init. Advanced users can skip this step and set the values in the ipar and dpar arrays directly.

\section*{WARNING}

You can modify the contents of these arrays after they are passed to the solver routine only if you are sure that the values are correct and consistent. You can perform a basic check for correctness and consistency by calling the dfgmres_check routine, but it does not guarantee that the method will work correctly.

\section*{Input Parameters}
```

n
X
b

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline RCI_request & INTEGER. Gives information about the result of the routine. \\
\hline ipar & Integer. Array of size 128. Refer to the FGMRES Common Parameters. \\
\hline dpar & DOUBLE PRECISION. Array of size 128. Refer to the FGMRES Common Parameters. \\
\hline tmp & DOUBLE PRECISION. Array of size ( (2*ipar(15) + 1)*n + ipar(15)*(ipar(15) + 9)/2 + 1). Refer to the FGMRES Common Parameters. \\
\hline
\end{tabular}

\section*{Return Values}
```

RCI_request= 0 Indicates that the task completed normally.
RCI_request= -10000 Indicates failure to complete the task.

```

\section*{dfgmres_check}

Checks consistency and correctness of the user
defined data.

\section*{Syntax}
```

dfgmres_check(n, x, b, RCI_request, ipar, dpar, tmp)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The routine dfgmres_check checks consistency and correctness of the parameters to be passed to the solver routine dfgmres. However, this operation does not guarantee that the method gives the correct result. It only reduces the chance of making a mistake in the parameters of the routine. Skip this operation only if you are sure that the correct data is specified in the solver parameters.

The lengths of all vectors are assumed to have been defined in a previous call to the dfgmres_init routine.
In particular, the routine checks the consistency of ipar(16)-ipar(21) and ipar(1), ipar(15). If the values do not agree, the routine emits a warning and modifies ipar(16)-ipar(21) to comply with the values of ipar(1), ipar(15). A possible use case for this modification is a non-default value (not the one set by a possible call to dfgmres_init) of ipar(15).

Also, if none of the stopping criteria (ipar(8)-ipar(10)) has been enabled, both ipar(8) and ipar(9) will be set to 1.

NOTE: It is not strictly necessary to call the dfgmres_check routine unless the values of ipar(15) or ipar(1) are changed after the last call to dfgmres_init.

\section*{Input Parameters}
ipar
\(n\)

X
b

\section*{Output Parameters}
```

RCI_request
ipar
dpar
tmp

```

\section*{Return Values}
```

```
RCI_request=0
```

```
RCI_request=0
RCI_request= -1100
RCI_request= -1100
RCI_request= -1001
RCI_request= -1001
RCI_request = -1010
RCI_request = -1010
RCI_request= -1011
```

```
RCI_request= -1011
```

```

Array of size 128. Refer to the FGMRES Common Parameters. INTEGER. Sets the size of the problem.

DOUBLE PRECISION. Array of size n. Contains the initial approximation to the solution vector. Normally it is equal to 0 or to \(b\).

DOUBLE PRECISION. Array of size n. Contains the right-hand side vector.

INTEGER. Gives information about result of the routine.
INTEGER. Array of size 128. Refer to the FGMRES Common Parameters. Only ipar(8)-ipar(9) and ipar(16)-ipar(21) might be changed.

DOUBLE PRECISION. Array of size 128. Refer to the FGMRES Common Parameters.

DOUBLE PRECISION. Array of size ( \((2 * i \operatorname{par}(15)+1){ }^{n} n+\) ipar(15)*(ipar(15) + 9)/2 + 1). Refer to the FGMRES Common Parameters.

Indicates that the task completed normally.
Indicates that the task is interrupted and the errors occur.
Indicates that there are some warning messages.
Indicates that the routine changed some parameters to make them consistent or correct.

Indicates that there are some warning messages and that the routine changed some parameters.

\section*{dfgmres}

Makes the FGMRES iterations.

\section*{Syntax}
```

dfgmres(n, x, b, RCI_request, ipar, dpar, tmp)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The routine dfgmres performs the FGMRES iterations [Saad03], using the value that was in the array \(x\) before the first call as an initial approximation of the solution vector. To update the current approximation to the solution, the dfgmres_get routine must be called. The RCI FGMRES iterations can be continued after the call to the dfgmres_get routine only if the value of the parameter ipar(13) is not equal to 0 (default value). Note that the updated solution overwrites the right-hand side in the vector \(b\) if the parameter ipar(13) is positive, and the restarted version of the FGMRES method can not be run. If you want to keep the right-hand side, you must be save it in a different memory location before the first call to the dfgmres_get routine with a positive ipar(13).

The parameter RCI_request gives information about the task completion and requests results of certain operations that the solver requires.
The lengths of all the vectors must be defined in a previous call to the dfgmres_init routine.

\section*{Input Parameters}
n
x
b
tmp

\section*{Output Parameters}
```

RCI_request
ipar
dpar
tmp

```

INTEGER. Sets the size of the problem.
DOUBLE PRECISION. Array of size \(n\). Contains the initial approximation to the solution vector.

DOUBLE PRECISION. Array of size \(n\). Contains the right-hand side vector.
DOUBLE PRECISION. Array of size (13). Refer to the FGMRES Common Parameters.

INTEGER. Informs about result of work of the routine.
INTEGER. Array of size 128. Refer to the FGMRES Common Parameters.
DOUBLE PRECISION. Array of size 128. Refer to the FGMRES Common Parameters.

DOUBLE PRECISION. Array of size ( (2*ipar (15) +1)*n \(+i \operatorname{par}(15) * i \operatorname{par}(15)+9) / 2+1\). Refer to the FGMRES Common Parameters.

\section*{Return Values}
\begin{tabular}{|c|c|}
\hline \(R C I \_\)request \(=0\) & Indicates that the task completed normally and the solution is found and stored in the vector \(x\). This occurs only if the stopping tests are fully automatic. For the user defined stopping tests, see the description of the \(R C I_{-}\)request \(=2\) or 4. \\
\hline RCI_request=-1 & Indicates that the routine was interrupted because the maximum number of iterations was reached, but the relative stopping criterion was not met. This situation occurs only if you request both tests. \\
\hline RCI_request \(=-10\) & Indicates that the routine was interrupted because of an attempt to divide by zero. Usually this happens if the matrix is degenerate or almost degenerate. However, it may happen if the parameter dpar is altered, or if the method is not stopped when the solution is found. \\
\hline RCI_request \(=-11\) & Indicates that the routine was interrupted because it entered an infinite cycle. Usually this happens because the values ipar(8), ipar(9), ipar(10) were altered outside of the routine, or the dfgmres_check routine was not called. \\
\hline RCI_request \(=-12\) & Indicates that the routine was interrupted because errors were found in the method parameters. Usually this happens if the parameters ipar and dpar were altered by mistake outside the routine. \\
\hline RCI_request \(=1\) & Indicates that you must multiply the matrix by tmp (ipar(22)), put the result in the tmp (ipar(23)), and return control back to the routine dfgmres. \\
\hline RCI_request= 2 & Indicates that you must perform the stopping tests. If they fail, return control to the dfgmres routine. Otherwise, the FGMRES solution is found, and you can run the fgmres_get routine to update the computed solution in the vector \(x\). \\
\hline RCI_request= 3 & Indicates that you must apply the inverse preconditioner to ipar(22), put the result in the ipar(23), and return control back to the routine dfgmres. \\
\hline RCI_request= 4 & Indicates that you must check the norm of the currently generated vector. If it is not zero within the computational/ rounding errors, return control to the dfgmres routine. Otherwise, the FGMRES solution is found, and you can run the dfgmres_get routine to update the computed solution in the vector \(x\). \\
\hline
\end{tabular}
dfgmres_get
Retrieves the number of the current iteration and updates the solution.

\section*{Syntax}
```

dfgmres_get(n, x, b, RCI_request, ipar, dpar, tmp, itercount)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The routine dfgmres_get retrieves the current iteration number of the solution process and updates the solution according to the computations performed by the dfgmres routine. To retrieve the current iteration number only, set the parameter ipar (13) \(=-1\) beforehand. Normally, you should do this before proceeding further with the computations. If the intermediate solution is needed, the method parameters must be set properly. For details see FGMRES Common Parametersand the Iterative Sparse Solver code examples in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) installation directory:
- examples/solverf/source

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. Sets the size of the problem. \\
\hline ipar & INTEGER. Array of size 128. Refer to the FGMRES Common Parameters. \\
\hline dpar & DOUBLE PRECISION. Array of size 128. Refer to the FGMRES Common Parameters. \\
\hline tmp & DOUBLE PRECISION. Array of size ( ( 2 *ipar (15) +1)* \(n\) +ipar(15)*ipar(15)+9)/2 + 1). Refer to the FGMRES Common Parameters. \\
\hline
\end{tabular}

\section*{Output Parameters}

X
b

RCI_request
itercount

\section*{Return Values}
```

RCI_request=0
RCI_request= -12

```
\(R C I\) request \(=-10000\)

DOUBLE PRECISION. Array of size \(n\). If ipar (13) \(=0\), it contains the updated approximation to the solution according to the computations done in dfgmres routine. Otherwise, it is not changed.

DOUBLE PRECISION. Array of size n. If ipar(13) \(>0\), it contains the updated approximation to the solution according to the computations done in dfgmres routine. Otherwise, it is not changed.

INTEGER. Gives information about result of the routine.
INTEGER. Contains the value of the current iteration number.

Indicates that the task completed normally.
Indicates that the routine was interrupted because errors were found in the routine parameters. Usually this happens if the parameters ipar and dpar were altered by mistake outside of the routine.

Indicates that the routine failed to complete the task.

\section*{RCI ISS Implementation Details}

Several aspects of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) RCI ISS interface are platform-specific and language-specific. To promote portability across platforms and ease of use across different languages, include one of the Intel® \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) RCI ISS language-specific header files.

\section*{NOTE}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) does not support the RCI ISS interface unless you include the language-specific header file.

\section*{Preconditioners based on Incomplete LU Factorization Technique}

Preconditioners, or accelerators are used to accelerate an iterative solution process. In some cases, their use can reduce the number of iterations dramatically and thus lead to better solver performance. Although the terms preconditioner and accelerator are synonyms, hereafter only preconditioner is used.

Intel® oneAPI Math Kernel Library (oneMKL) provides two preconditioners, ILUO and ILUT, for sparse matrices presented in the format accepted in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) direct sparse solvers (three-array variation of the CSR storage format described inSparse Matrix Storage Format ). The algorithms used are described in [Saad03].

The ILU0 preconditioner is based on a well-known factorization of the original matrix into a product of two triangular matrices: lower and upper triangular matrices. Usually, such decomposition leads to some fill-in in the resulting matrix structure in comparison with the original matrix. The distinctive feature of the ILU0 preconditioner is that it preserves the structure of the original matrix in the result.
Unlike the ILUO preconditioner, the ILUT preconditioner preserves some resulting fill-in in the preconditioner matrix structure. The distinctive feature of the ILUT algorithm is that it calculates each element of the preconditioner and saves each one if it satisfies two conditions simultaneously: its value is greater than the product of the given tolerance and matrix row norm, and its value is in the given bandwidth of the resulting preconditioner matrix.
Both ILUO and ILUT preconditioners can apply to any non-degenerate matrix. They can be used alone or together with the Intel® oneAPI Math Kernel Library (oneMKL) RCI FGMRES solver (seeSparse Solver Routines). Avoid using these preconditioners with MKL RCI CG solver because in general, they produce a non-symmetric resulting matrix even if the original matrix is symmetric. Usually, an inverse of the preconditioner is required in this case. To do this the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) triangular solver routinemkl_dcsrtrsv must be applied twice: for the lower triangular part of the preconditioner, and then for its upper triangular part.

\section*{NOTE}

Although ILUO and ILUT preconditioners apply to any non-degenerate matrix, in some cases the algorithm may fail to ensure successful termination and the required result. Whether or not the preconditioner produces an acceptable result can only be determined in practice.

A preconditioner may increase the number of iterations for an arbitrary case of the system and the initial solution, and even ruin the convergence. It is your responsibility as a user to choose a suitable preconditioner.

\section*{General Scheme of Using ILUT and RCI FGMRES Routines}

The general scheme for use is the same for both preconditioners. Some differences exist in the calling parameters of the preconditioners and in the subsequent call of two triangular solvers. You can see all these differences in the preconditioner code examples (dcsrilu*.*) in the examplesfolder of the Intel® oneAPI Math Kernel Library (oneMKL) installation directory:
- examples/solverf/source

The following pseudocode shows the general scheme of using the ILUT preconditioner in the RCI FGMRES context.
...
generate matrix \(A\)
generate preconditioner \(C\) (optional)
```

 call dfgmres_init(n, x, b, RCI_request, ipar, dpar, tmp)
    ```
    change parameters in ipar, dpar if necessary
    call dcsrilut(n, a, ia, ja, bilut, ibilut, jbilut, tol, maxfil, ipar, dpar, ierr)
    call dfgmres_check ( \(\left.n, x, b, R C I \_r e q u e s t, ~ i p a r, ~ d p a r, ~ t m p\right) ~\)
1 call dfgmres \(\left(n, x, b, R C I \_r e q u e s t, i p a r, ~ d p a r, ~ t m p\right)\)
    if ( \(R C I\) _request.eq.1) then
        multiply the matrix A by tmp(ipar(22)) and put the result in tmp(ipar(23))
c proceed with FGMRES iterations
        goto 1
    endif
    if (RCI_request.eq.2) then
    do the stopping test
    if (test not passed) then
c proceed with FGMRES iterations
    go to 1
    else
c stop FGMRES iterations.
        goto 2
        endif
    endif
    if (RCI_request.eq.3) then

C Below, trvec is an intermediate vector of length at least \(n\)
c Here is the recommended use of the result produced by the ILUT routine.
c via standard Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Sparse Blas solver routinemkl_dcsrtrsv. call mkl_dcsrtrsv('L','N','U', n, bilut, ibilut, jbilut, tmp(ipar(22)),trvec) call mkl_dcsrtrsv('U','N','N', n, bilut, ibilut, jbilut, trvec, tmp(ipar(23)))
c proceed with FGMRES iterations
goto 1
endif
if (RCI_request.eq.4) then
check the norm of the next orthogonal vector, it is contained in dpar(7)
```

 if (the norm is not zero up to rounding/computational errors) then
 c proceed with FGMRES iterations
goto 1
else
c stop FGMRES iterations
goto 2
endif
endif
2 call dfgmres_get(n, x, b, RCI_request, ipar, dpar, tmp, itercount)
current iteration number is in itercount
the computed approximation is in the array x

```

\section*{ILUO and ILUT Preconditioners Interface Description}

The concepts required to understand the use of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) preconditioner routines are discussed in theAppendix A Linear Solvers Basics.
In this section FORTRAN style notations are used. All types refer to the standard Fortran types, INTEGER, and DOUBLE PRECISION.

\section*{User Data Arrays}

The preconditioner routines take arrays of user data as input. To minimize storage requirements and improve overall run-time efficiency, the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) preconditioner routines do not make copies of the user input arrays.

\section*{Common Parameters}

Some parameters of the preconditioners are common with the FGMRES Common Parameters. The routine dfgmres_init specifies their default and initial values. However, some parameters can be redefined with other values. These parameters are listed below.

\section*{For the ILU0 preconditioner:}
ipar (2) - specifies the destination of error messages generated by the ILU0 routine. The default value 6 means that all error messages are displayed on the screen. Otherwise routine creates a log file called MKL_PREC_log.txt and writes error messages to it. Note if the parameter ipar(6) is set to 0, then error messages are not generated at all.
ipar (6) - specifies whether error messages are generated. If its value is not equal to 0 , the ILU0 routine returns error messages as specified by the parameter ipar(2). Otherwise, the routine does not generate error messages at all, but returns a negative value for the parameter ierr. The default value is 1 .

\section*{For the ILUT preconditioner:}
ipar (2) - specifies the destination of error messages generated by the ILUT routine. The default value 6 means that all messages are displayed on the screen. Otherwise routine creates a log file called MKL_PREC_log.txt and writes error messages to it. Note if the parameter ipar(6) is set to 0, then error messages are not generated at all.
ipar(6) - specifies whether error messages are generated. If its value is not equal to 0 , the ILUT routine returns error messages as specified by the parameter ipar(2). Otherwise, the routine does not generate error messages at all, but returns a negative value for the parameter ierr. The default value is 1 .
ipar(7) - if its value is greater than 0, the ILUT routine generates warning messages as specified by the parameter ipar(2) and continues calculations. If its value is equal to 0 , the routine returns a positive value of the parameter ierr. If its value is less than 0 , the routine generates a warning message as specified by the parameter ipar(2) and returns a positive value of the parameter ierr. The default value is 1 .

\section*{dcsrilu0}

ILUO preconditioner based on incomplete LU
factorization of a sparse matrix.

\section*{Syntax}
```

call dcsriluO(n, a, ia, ja, biluO, ipar, dpar, ierr)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The routine dcsrilu0 computes a preconditioner \(B\) [Saad03] of a given sparse matrix \(A\) stored in the format accepted in the direct sparse solvers:
\(A \sim B=L^{\star} U\), where \(L\) is a lower triangular matrix with a unit diagonal, \(U\) is an upper triangular matrix with a non-unit diagonal, and the portrait of the original matrix \(A\) is used to store the incomplete factors \(L\) and \(U\).

\section*{Caution}

This routine supports only one-based indexing of the array parameters.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \(n\) & INTEGER. Size (number of rows or columns) of the original square \(n-b y-n\) matrix \(A\). \\
\hline a & DOUBLE PRECISION. Array containing the set of elements of the matrix \(A\). Its length is equal to the number of non-zero elements in the matrix \(A\). Refer to the values array description in the Sparse Matrix Storage Format for more details. \\
\hline ia & INTEGER. Array of size \((n+1)\) containing begin indices of rows of the matrix \(A\) such that \(i a(i)\) is the index in the array \(a\) of the first non-zero element from the row \(i\). The value of the last element ia( \(n+1\) ) is equal to the number of non-zero elements in the matrix \(A\), plus one. Refer to the rowIndex array description in the Sparse Matrix Storage Format for more details. \\
\hline ja & INTEGER. Array containing the column indices for each non-zero element of the matrix \(A\). It is important that the indices are in increasing order per row. The matrix size is equal to the size of the array a. Refer to the columns array description in the Sparse Matrix Storage Format for more details. \\
\hline
\end{tabular}

\section*{Caution}

If column indices are not stored in ascending order for each row of matrix, the result of the routine might not be correct.

\section*{NOTE}

You can declare the ipar array with a size of 32 . However, for future compatibility you must declare the array ipar with length 128.

DOUBLE PRECISION. Array of size 128. This parameter specifies the double precision set of data for both the ILU0 and RCI FGMRES computations. Refer to the dpar array description in the FGMRES Common Parameters for more details on FGMRES parameter entries. The entries specific to ILU0 are listed below.
dpar(31) specifies a small value, which is compared with the computed diagonal elements. When ipar(31) is not 0 , then diagonal elements less than \(\operatorname{dpar}(31)\) are set to dpar(32). The default value is \(1.0 \mathrm{e}-16\).

\section*{NOTE}

This parameter can be set to the negative value, because the calculation uses its absolute value.
If this parameter is set to 0 , the comparison with the diagonal element is not performed.
dpar(32)
specifies the value that is assigned to the diagonal element if its value is less than dpar(31) (see above). The default value is \(1.0 \mathrm{e}-10\).

\section*{NOTE}

You can declare the dpar array with a size of 32 . However, for future compatibility you must declare the array dpar with length 128.

\section*{Output Parameters}
biluo
ierr
DOUBLE PRECISION. Array B containing non-zero elements of the resulting preconditioning matrix \(B\), stored in the format accepted in direct sparse solvers. Its size is equal to the number of non-zero elements in the matrix A. Refer to the values array description in the Sparse Matrix Storage Format section for more details.

INTEGER. Error flag, gives information about the routine completion.

\section*{NOTE}

To present the resulting preconditioning matrix in the CSR3 format the arrays ia (row indices) and ja (column indices) of the input matrix must be used.

\section*{Return Values}
```

ierr=0 Indicates that the task completed normally.
ierr=-101 Indicates that the routine was interrupted and that error
occurred: at least one diagonal element is omitted from the
matrix in CSR3 format (see Sparse Matrix Storage Format).
Indicates that the routine was interrupted because the matrix contains a diagonal element with the value of zero.
Indicates that the routine was interrupted because the matrix contains a diagonal element which is so small that it could cause an overflow, or that it would cause a bad approximation to ILUO.
Indicates that the routine was interrupted because the memory is insufficient for the internal work array.
Indicates that the routine was interrupted because the input matrix size n is less than or equal to 0 .
Indicates that the routine was interrupted because the column indices ja are not in the ascending order.

```

\section*{Interfaces}

FORTRAN 77 and Fortran 95:
```

SUBROUTINE dcsrilu0 (n, a, ia, ja, bilu0, ipar, dpar, ierr)
INTEGER n, ierr, ipar(128)
INTEGER ia(*), ja(*)
DOUBLE PRECISION a(*), biluO(*), dpar(128)

```

\section*{dcsrilut}

ILUT preconditioner based on the incomplete LU factorization with a threshold of a sparse matrix.

\section*{Syntax}
```

call dcsrilut(n, a, ia, ja, bilut, ibilut, jbilut, tol, maxfil, ipar, dpar, ierr)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The routine dcsrilut computes a preconditioner \(B\) [Saad03] of a given sparse matrix \(A\) stored in the format accepted in the direct sparse solvers:
\(A \sim B=L^{\star} U\), where \(L\) is a lower triangular matrix with unit diagonal and \(U\) is an upper triangular matrix with non-unit diagonal.
The following threshold criteria are used to generate the incomplete factors \(L\) and \(U\) :
1) the resulting entry must be greater than the matrix current row norm multiplied by the parameter tol, and
2) the number of the non-zero elements in each row of the resulting \(L\) and \(U\) factors must not be greater than the value of the parameter maxfil.

\section*{Caution}

This routine supports only one-based indexing of the array parameters.

\section*{Input Parameters}
\(n\)
INTEGER. Size (number of rows or columns) of the original square \(n\)-by- \(n\) matrix \(A\).

DOUBLE PRECISION. Array containing all non-zero elements of the matrix \(A\). The length of the array is equal to their number. Refer to values array description in the Sparse Matrix Storage Format section for more details.

INTEGER. Array of size \((n+1)\) containing indices of non-zero elements in the array \(a\). ia(i) is the index of the first non-zero element from the row \(i\). The value of the last element \(i a(n+1)\) is equal to the number of non-zeros in the matrix \(A\), plus one. Refer to the rowIndex array description in the Sparse Matrix Storage Format for more details.

INTEGER. Array of size equal to the size of the array \(a\). This array contains the column numbers for each non-zero element of the matrix \(A\). It is important that the indices are in increasing order per row. Refer to the columns array description in the Sparse Matrix Storage Format for more details.

\section*{Caution}

If column indices are not stored in ascending order for each row of matrix, the result of the routine might not be correct.

DOUBLE PRECISION. Tolerance for threshold criterion for the resulting entries of the preconditioner.

INTEGER. Maximum fill-in, which is half of the preconditioner bandwidth. The number of non-zero elements in the rows of the preconditioner cannot exceed ( \(2 *\) maxfil+1).

INTEGER. Array of size 128. This parameter is used to specify the integer set of data for both the ILUT and RCI FGMRES computations. Refer to the ipar array description in the FGMRES Common Parameters for more details on FGMRES parameter entries. The entries specific to ILUT are listed below.
ipar(31) specifies how the routine operates if the value of the computed diagonal element is less than the current matrix row norm multiplied by the value of the parameter tol. If ipar(31) \(=0\), then the calculation is stopped and the routine returns nonzero error value. Otherwise, the value of the diagonal element is set to a value determined by dpar(31) (see its description below), and the calculations continue.

\section*{NOTE}

There is no default value for ipar(31) even if the preconditioner is used within the RCI ISS context. Always set the value of this entry.

\section*{NOTE}

You must declare the array ipar with length 128. While defining the array in the code as INTEGERipar(31) works, there is no guarantee of future compatibility with Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

DOUBLE PRECISION. Array of size 128. This parameter specifies the double precision set of data for both ILUT and RCI FGMRES computations. Refer to the dpar array description in the FGMRES Common Parameters for more details on FGMRES parameter entries. The entries that are specific to ILUT are listed below.
```

dpar(31)

```
used to adjust the value of small diagonal elements. Diagonal elements with a value less than the current matrix row norm multiplied by tol are replaced with the value of dpar(31) multiplied by the matrix row norm.

\section*{NOTE}

There is no default value for dpar (31) entry even if the preconditioner is used within RCI ISS context. Always set the value of this entry.

\section*{NOTE}

You must declare the array dpar with length 128 . While defining the array in the code as DOUBLE PRECISIONipar(31) works, there is no guarantee of future compatibility with Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

\section*{Output Parameters}

\author{
bilut
}
ibilut
jbilut
ierr

\section*{Return Values}
```

ierr=0
ierr=-101

```

DOUBLE PRECISION. Array containing non-zero elements of the resulting preconditioning matrix \(B\), stored in the format accepted in the direct sparse solvers. Refer to the values array description in the Sparse Matrix Storage Format for more details. The size of the array is equal to \(\left(2 \star_{\operatorname{maxfil}} \mathrm{m}+1\right)^{*} n-\) maxfil*(maxfil+1)+1.

\section*{NOTE}

Provide enough memory for this array before calling the routine. Otherwise, the routine may fail to complete successfully with a correct result.

INTEGER. Array of size \((n+1)\) containing indices of non-zero elements in the array bilut. ibilut(i) is the index of the first non-zero element from the row \(i\). The value of the last element ibilut \((n+1)\) is equal to the number of non-zeros in the matrix \(B\), plus one. Refer to the rowIndex array description in the Sparse Matrix Storage Format for more details.

INTEGER. Array, its size is equal to the size of the array bilut. This array contains the column numbers for each non-zero element of the matrix \(B\). Refer to the columns array description in the Sparse Matrix Storage Format for more details.

INTEGER. Error flag, gives information about the routine completion.

Indicates that the task completed normally.
Indicates that the routine was interrupted because of an error: the number of elements in some matrix row specified in the sparse format is equal to or less than 0.
ierr=-102
ierr=-103
ierr=-104
ierr=-105
ierr=-106
ierr=-107
ierr=101
ierr=102
ierr=103
ierr=104

Indicates that the routine was interrupted because the value of the computed diagonal element is less than the product of the given tolerance and the current matrix row norm, and it cannot be replaced as ipar (31) \(=0\).

Indicates that the routine was interrupted because the element \(i a(i+1)\) is less than or equal to the element ia(i) (see Sparse Matrix Storage Format).

Indicates that the routine was interrupted because the memory is insufficient for the internal work arrays.

Indicates that the routine was interrupted because the input value of maxfil is less than 0.

Indicates that the routine was interrupted because the size \(n\) of the input matrix is less than 0 .

Indicates that the routine was interrupted because an element of the array \(j a\) is less than 1 , or greater than \(n\) (see Sparse Matrix Storage Format).

The value of maxfil is greater than or equal to \(n\). The calculation is performed with the value of maxfil set to ( \(n-1\) ).

The value of tol is less than 0 . The calculation is performed with the value of the parameter set to (-tol)

The absolute value of tol is greater than value of dpar(31); it can result in instability of the calculation.

The value of dpar(31) is equal to 0 . It can cause calculations to fail.

Interfaces

FORTRAN 77 and Fortran 95:
```

SUBROUTINE dcsrilut (n, a, ia, ja, bilut, ibilut, jbilut, tol, maxfil, ipar, dpar, ierr)
INTEGER n, ierr, ipar(*), maxfil
INTEGER ia(*), ja(*), ibilut(*), jbilut(*)
DOUBLE PRECISION a(*), bilut(*), dpar(*), tol

```

\section*{Sparse Matrix Checker Routines}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides a sparse matrix checker so that you can find errors in the storage of sparse matrices before calling Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO, DSS, or Sparse BLAS routines.
sparse_matrix_checker
Checks the correctness of a sparse matrix.
Syntax
error \(=\) sparse_matrix_checker (handle)

\section*{Include Files}
- mkl_sparse_handle.fi, mkl_sparse_handle.f90

\section*{Description}

The sparse_matrix_checker routine checks a user-defined array used to store a sparse matrix in order to detect issues which could cause problems in routines that require sparse input matrices, such as Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO, DSS, or Sparse BLAS.

\section*{Input Parameters}
handle
```

TYPE (SPARSE_STRUCT), INTENT(INOUT)

```

Pointer to the data structure describing the sparse array to check.

\section*{Return Values}

The routine returns a value error. Additionally, the check_result parameter returns information about where the error occurred, which can be used when message_level is MKL_NO_PRINT.
Sparse Matrix Checker Error Values
\begin{tabular}{|c|c|c|}
\hline error value & Meaning & Location \\
\hline MKL_SPARSE_CHECKER_SUC CESS & The input array successfully passed all checks. & \\
\hline MKL_SPARSE_CHECKER_NON _MONOTONIC & The input array is not 0 or 1 based (ia(1), is not 0 or 1) or elements of ia are not in non-decreasing order as required. & \begin{tabular}{l}
Fortran: \\
ia(i + 1) and ia(i + 2) are incompatible.
\[
\begin{aligned}
& \text { check_result }(1)=i \\
& \text { check_result }(2)=i a(i+1) \\
& \text { check_result }(3)=i a(i+2)
\end{aligned}
\]
\end{tabular} \\
\hline MKL_SPARSE_CHECKER_OUT _OF_RANGE & The value of the ja array is lower than the number of the first column or greater than the number of the last column. & \begin{tabular}{l}
Fortran: \\
ia(i + 1) and ia(i + 2) are incompatible.
\[
\begin{aligned}
& \text { check_result }(1)=i \\
& \text { check_result }(2)=i a(i+1) \\
& \text { check_result }(3)=i a(i+2)
\end{aligned}
\]
\end{tabular} \\
\hline MKL_SPARSE_CHECKER_NON TRIANGULAR & The matrix_structure parameter is MKL_UPPER_TRIANGULAR and both ia and ja are not upper triangular, or the matrix_structure parameter is MKL_LOWER_TRIANGULAR and both ia and ja are not lower triangular & \begin{tabular}{l}
Fortran: \\
ia(i + 1) and ja(j + 1) are incompatible.
\[
\begin{aligned}
& \text { check_result }(1)=i \\
& \text { check_result }(2)=i a(i+1)=j \\
& \text { check_result }(3)=j a(j+1)
\end{aligned}
\]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline error value & Meaning & Location \\
\hline MKL_SPARSE_CHECKER_NON \\
ORDERED & \begin{tabular}{l} 
The elements of the \(j a\) \\
array are not in non- \\
decreasing order in each \\
row as required.
\end{tabular} & \begin{tabular}{l} 
Fortran: \\
incompatible. \\
\\
\end{tabular} \\
& & check_result \((1)=j\) \\
& check_result \((2)=j a(j+1)\) \\
& check_result \((3)=j a(j+2)\)
\end{tabular}

\section*{See Also}
sparse_matrix_checker_init Initializes handle for sparse matrix checker.
Intel® oneAPI Math Kernel Library (oneMKL) PARDISO - Parallel Direct Sparse Solver Interface Sparse BLAS Level 2 and Level 3 Routines
Sparse Matrix Storage Formats
sparse_matrix_checker_init
Initializes handle for sparse matrix checker.

\section*{Syntax}
```

call sparse_matrix_checker_init (handle)

```

\section*{Include Files}
- mkl_sparse_handle.fi, mkl_sparse_handle.f90

\section*{Description}

The sparse_matrix_checker_init routine initializes the handle for the sparse_matrix_checker routine. The handle variable contains this data:

Description of sparse_matrix_checkerhandle Data
\begin{tabular}{|c|c|c|c|}
\hline Field & Type & Possible Values & Meaning \\
\hline n & INTEGER & & Order of the matrix stored in sparse array. \\
\hline CSr_ia & \begin{tabular}{l}
INTEGER \\
(C_INTPTR_T)
\end{tabular} & Pointer to ia array for matrix_format = MKL_CSR & \\
\hline csr_ja & \begin{tabular}{l}
INTEGER \\
(C_INTPTR_T)
\end{tabular} & Pointer to ja array for matrix_format = MKL_CSR & \\
\hline check_result (3) & INTEGER (KIND=4) & See Sparse Matrix Checker Error Values for a description of the values returned in check_result. & Indicates location of problem in array when message_level = MKL_NO_PRINT. \\
\hline indexing & INTEGER (KIND=4) & \[
\begin{aligned}
& \text { MKL_ZERO_BASED } \\
& \text { MKL_ONE_BASED }
\end{aligned}
\] & Indexing style used in array. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Field & Type & & Possible Values & Meaning \\
\hline \multirow[t]{7}{*}{matrix_structure} & \multirow[t]{7}{*}{INTEGER} & \multirow[t]{7}{*}{(KIND=4)} & MKL_GENERAL_STRUCTU & \multirow[t]{7}{*}{Type of sparse matrix stored in array.} \\
\hline & & & MKL_UPPER_TRIANGULA & \\
\hline & & & R & \\
\hline & & & MKL_LOWER_TRIANGULA & \\
\hline & & & R & \\
\hline & & & MKL_STRUCTURAL_SYMM & \\
\hline & & & ETRIC & \\
\hline matrix_format & INTEGER & \((\mathrm{KIND}=4)\) & MKL_CSR & Format of array used for sparse matrix storage. \\
\hline message_level & INTEGER & \((\mathrm{KIND}=4)\) & MKL_NO_PRINT
MKL_PRINT & Determines whether or not feedback is provided on the screen. \\
\hline print_style & INTEGER & \((\mathrm{KIND}=4)\) & \begin{tabular}{l}
MKL_C_STYLE \\
MKL_FORTRAN_STYLE
\end{tabular} & Determines style of messages when message_level = MKL_PRINT. \\
\hline
\end{tabular}

\section*{Input Parameters}

TYPE (SPARSE_STRUCT), INTENT (INOUT)
Pointer to the data structure describing the sparse array to check.

\section*{Output Parameters}
handle
Pointer to the initialized data structure.

\section*{See Also}
sparse_matrix_checker Checks the correctness of a sparse matrix.
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO - Parallel Direct Sparse Solver Interface Sparse BLAS Level 2 and Level 3 Routines
Sparse Matrix Storage Formats

\section*{Extended Eigensolver Routines}

\section*{NOTE}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) only supports the shared memory programming (SMP) version of the eigenvalue solver.
- The FEAST Algorithm gives a brief description of the algorithm underlying the Extended Eigensolver.
- Extended Eigensolver Functionality describes the problems that can and cannot be solved with the Extended Eigensolver and how to get the best results from the routines.
- Extended Eigensolver Interfaces gives a reference for calling Extended Eigensolver routines.
-

\section*{The FEAST Algorithm}

The Extended Eigensolver functionality is a set of high-performance numerical routines for solving symmetric standard eigenvalue problems, \(A x=\lambda x\), or generalized symmetric-definite eigenvalue problems, \(A x=\lambda B x\). It yields all the eigenvalues \((\lambda)\) and eigenvectors \((x)\) within a given search interval [ \(\lambda_{\min }, \lambda_{\max }\) ]. It is based on the FEAST algorithm, an innovative fast and stable numerical algorithm presented in [Polizzi09], which fundamentally differs from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms [Bai00]) or other Davidson-Jacobi techniques [Sleijpen96]. The FEAST algorithm is inspired by the density-matrix representation and contour integration techniques in quantum mechanics.

The FEAST numerical algorithm obtains eigenpair solutions using a numerically efficient contour integration technique. The main computational tasks in the FEAST algorithm consist of solving a few independent linear systems along the contour and solving a reduced eigenvalue problem. Consider a circle centered in the middle of the search interval [ \(\lambda_{\text {min }}, \lambda_{\text {max }}\) ]. The numerical integration over the circle in the current version of FEAST is performed using \(N_{e}\)-point Gauss-Legendre quadrature with \(x_{e}\) the \(e\)-th Gauss node associated with the weight \(\omega_{e}\). For example, for the case \(N_{e}=8\) :
```

(}\mp@subsup{x}{1}{},\mp@subsup{\omega}{1}{})=(0.183434642495649,0.362683783378361),
(}\mp@subsup{x}{2}{},\mp@subsup{\omega}{2}{})=(-0.183434642495649,0.362683783378361)
(}\mp@subsup{x}{3}{},\mp@subsup{\omega}{3}{})=(0.525532409916328,0.313706645877887),
(}\mp@subsup{x}{4}{},\mp@subsup{\omega}{4}{})=(-0.525532409916328,0.313706645877887)
(}\mp@subsup{x}{5}{},\mp@subsup{\omega}{5}{})=(0.796666477413626,0.222381034453374),
(}\mp@subsup{x}{6}{},\mp@subsup{\omega}{6}{})=(-0.796666477413626,0.222381034453374)
(}\mp@subsup{x}{7}{},\mp@subsup{\omega}{7}{})=(0.960289856497536,0.101228536290376), and
(}\mp@subsup{x}{8}{},\mp@subsup{\omega}{8}{})=(-0.960289856497536,0.101228536290376)

```

The figure FEAST Pseudocode shows the basic pseudocode for the FEAST algorithm for the case of real symmetric (left pane) and complex Hermitian (right pane) generalized eigenvalue problems, using \(N\) for the size of the system and \(M\) for the number of eigenvalues in the search interval (see [Polizzi09]).

\section*{NOTE}

The pseudocode presents a simplified version of the actual algorithm. Refer to http://arxiv.org/abs/ 1302.0432 for an in-depth presentation and mathematical proof of convergence of FEAST.

FEAST Pseudocode

A: real symmetric
\(B\) : symmetric positive definite (SPD)
\(\mathfrak{R}\{x\}\) : real part of \(x\)

A: complex Hermitian
\(B\) : Hermitian positive definite (HPD)
1. Select \(M_{0}>M\) random vectors \(Y_{N \times M_{1}}\). Select \(M_{0}>M\) random vectors \(Y_{N \times M_{0}} \in \mathbb{C}^{N \times} \|_{0}\).
2. Set \(Q=0\) with \(Q \in \mathbb{R}^{N \times M_{0}} ; r=\left(\lambda_{\max }-2\right.\). Set \(Q=0\) with \(Q \in \mathbb{R}^{N \times M_{0}} ; r=\left(\lambda_{\max }-\lambda_{\min }\right) / R\);

For \(e=1, \ldots, N_{e}\)
compute \(\theta_{e}=-(\pi / 2)\left(x_{e}-1\right)\), For \(e=1, \ldots, N_{e}\) compute \(Z_{e}=\left(\lambda_{\text {max }}+\lambda_{\text {min }}\right) / 2+r \exp\) solve \(\left(Z_{e} B-A\right) Q_{e}=Y\) to obtain \(Q_{e} \in\) compute \(Q=Q-\left(\omega_{e} / 2\right) \Re\left\{r \exp \left(i \theta_{e}\right.\right.\). End
3. Form \(A_{Q_{4_{0} \times M_{0}}}=Q^{\top} A Q\) and \(B_{Q_{4_{0} \times M_{0}}}=Q^{\top}\) reduce value of \(M_{0}\) if \(B_{Q}\) is not sym positive definite.
4. Solve \(A_{Q} \Phi=\varepsilon B_{Q} \Phi\) to obtain the \(M_{0}\) \(\varepsilon_{m}\) and eigenvectors \(\Phi_{M_{0} \times M_{0}} \in \mathbb{R}^{M_{0} \times 1}\)
3. Form \(A_{Q_{40 \times M_{0}}}=Q^{H} A Q\) and \(B_{Q_{4_{0} \times M_{0}}}=Q^{H} B Q\) reduce value of \(M_{0}\) if \(B_{Q}\) is not Hermitian positive definite.
4. Solve \(A_{Q} \Phi=\varepsilon B_{Q} \Phi\) to obtain the \(M_{0}\) eigeny alue
5. Set \(\lambda_{m}=\varepsilon_{m}\) and compute \(X_{N \times M_{0}}=Q_{N}\) If \(\lambda_{n} \in\left[\lambda_{\min }, \lambda_{\max }\right], \lambda_{m}\) is an eigenvalu 5 . and its eigenvector is \(X_{m}\) (the \(m\)-th
6. Check convergence for the trace of eigenvalues \(\lambda_{m}\). If iterative refinem needed, compute \(Y=B X\) and go ba \({ }^{6}\) \(\varepsilon_{m}\), and eigenvectors \(\Phi_{M_{0} \times M_{0}} \in \mathbb{C}^{M_{0} \times M_{0}}\).
5. Set \(\lambda_{m}=\varepsilon_{m}\) and compute \(X_{N \times M_{0}}=Q_{N \times M_{0}} \Phi_{M_{0} \times N_{0}}\). If \(\lambda_{m} \in\left[\lambda_{m i n}, \lambda_{\max }\right], \lambda_{m}\) is an eigenvalue solution and its eigenvector is \(X_{m}\) (the \(m\)-th column of \(X\) ). 6. Check convergence for the trace of the eigenvalues \(\lambda_{\text {m }}\). If iterative refinement is needed, compute \(Y=B X\) and go back to step 2 .

\section*{Extended Eigensolver Functionality}

The eigenvalue problems covered are as follows:
- standard, \(A x=\lambda x\)
- \(A\) complex Hermitian
- A real symmetric
- generalized, \(A x=\lambda B x\)
- \(A\) complex Hermitian, \(B\) Hermitian positive definite (hpd)
- \(A\) real symmetric and \(B\) real symmetric positive definite (spd)

The Extended Eigensolver functionality offers:
- Real/Complex and Single/Double precisions: double precision is recommended to provide better accuracy of eigenpairs.
- Reverse communication interfaces (RCI) provide maximum flexibility for specific applications. RCI are independent of matrix format and inner system solvers, so you must provide your own linear system solvers (direct or iterative) and matrix-matrix multiply routines.
- Predefined driver interfaces for dense, LAPACK banded, and sparse (CSR) formats are less flexible but are optimized and easy to use:
- The Extended Eigensolver interfaces for dense matrices are likely to be slower than the comparable LAPACK routines because the FEAST algorithm has a higher computational cost.
- The Extended Eigensolver interfaces for banded matrices support banded LAPACK-type storage.
- The Extended Eigensolver sparse interfaces support compressed sparse row format and use the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO solver.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Parallelism in Extended Eigensolver Routines}

How you achieve parallelism in Extended Eigensolver routines depends on which interface you use. Parallelism (via shared memory programming) is not explicitly implemented in Extended Eigensolver routines within one node: the inner linear systems are currently solved one after another.
- Using the Extended Eigensolver RCI interfaces, you can achieve parallelism by providing a threaded inner system solver and a matrix-matrix multiplication routine. When using the RCI interfaces, you are responsible for activating the threaded capabilities of your BLAS and LAPACK libraries most likely using the shell variable OMP_NUM_THREADS.
- Using the predefined Extended Eigensolver interfaces, parallelism can be implicitly obtained within the shared memory version of BLAS, LAPACK or Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO. The shell variablemKL_NUM_THREADScan be used for automatically setting the number of OpenMP threads (cores) for BLAS, \(\overline{\text { LAPACK }}\), and Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Achieving Performance With Extended Eigensolver Routines}

In order to use the Extended Eigensolver Routines, you need to provide
- the search interval and the size of the subspace \(M_{0}\) (overestimation of the number of eigenvalues \(M\) within a given search interval);
- the system matrix in dense, banded, or sparse CSR format if the Extended Eigensolver predefined interfaces are used, or a high-performance complex direct or iterative system solver and matrix-vector multiplication routine if RCI interfaces are used.

In return, you can expect
- fast convergence with very high accuracy when seeking up to 1000 eigenpairs (in two to four iterations using \(M_{0}=1.5 \mathrm{M}\), and \(N_{e}=8\) or at most using \(N_{e}=16\) contour points);
- an extremely robust approach.

The performance of the basic FEAST algorithm depends on a trade-off between the choices of the number of Gauss quadrature points \(N_{e}\), the size of the subspace \(M_{0}\), and the number of outer refinement loops to reach the desired accuracy. In practice you should use \(M_{0}>1.5 M, N_{e}=8\), and at most two refinement loops.

For better performance:
- \(M_{0}\) should be much smaller than the size of the eigenvalue problem, so that the arithmetic complexity depends mainly on the inner system solver ( \(O(N M)\) for narrow-banded or sparse systems).
- Parallel scalability performance depends on the shared memory capabilities of the of the inner system solver.
- For very large sparse and challenging systems, application users should make use of the Extended Eigensolver RCI interfaces with customized highly-efficient iterative systems solvers and preconditioners.
- For the Extended Eigensolver interfaces for banded matrices, the parallel performance scalability is limited.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Extended Eigensolver Interfaces for Eigenvalues within Interval}

\section*{Extended Eigensolver Naming Conventions}

There are two different types of interfaces available in the Extended Eigensolver routines:
1. The reverse communication interfaces (RCI):
```

?feast_<matrix type>_rci

```

These interfaces are matrix free format (the interfaces are independent of the matrix data formats). You must provide matrix-vector multiply and direct/iterative linear system solvers for your own explicit or implicit data format.
2. The predefined interfaces:
```

?feast_<matrix type><type of eigenvalue problem>

```
are predefined drivers for ? feast reverse communication interface that act on commonly used matrix data storage (dense, banded and compressed sparse row representation), using internal matrix-vector routines and selected inner linear system solvers.
For these interfaces:
- ? indicates the data type of matrix \(A\) (and matrix \(B\) if any) defined as follows:
\begin{tabular}{ll} 
s & real, single precision \\
d & real, double precision \\
c & complex, single precision \\
z & complex, double precision
\end{tabular}
- <matrix type> defined as follows:
\begin{tabular}{llll}
\hline Value of <matrix type> & Matrix format & \begin{tabular}{l} 
Inner linear system solver used by \\
Extended Eigensolver
\end{tabular} \\
\hline sy & (symmetric real) & & \\
he & \begin{tabular}{l} 
(Hermitian \\
complex)
\end{tabular} & Dense & LAPACK dense solvers \\
sb & \begin{tabular}{l} 
(symmetric \\
banded real)
\end{tabular} & Banded-LAPACK & Internal banded solver
\end{tabular}
\begin{tabular}{llll}
\hline Value of <matrix type> & Matrix format & \begin{tabular}{l} 
Inner linear system solver used by \\
Extended Eigensolver
\end{tabular} \\
\hline hb & \begin{tabular}{l} 
(Hermitian \\
banded complex)
\end{tabular} & & \\
scsr & \begin{tabular}{ll} 
(symmetric real)
\end{tabular} & Compressed sparse row & PARDISO solver \\
hcsr & \begin{tabular}{l} 
(Hermitian \\
complex)
\end{tabular} & User defined \\
s & \begin{tabular}{l} 
(symmetric real) \\
(Hermitian \\
complex)
\end{tabular} & \begin{tabular}{l} 
Reverse \\
communications \\
interfaces
\end{tabular} & \\
\hline
\end{tabular}
- <type of eigenvalue problem> is:
```

gv generalized eigenvalue problem
ev standard eigenvalue problem

```

For example, sfeast_scsrev is a single-precision routine with a symmetric real matrix stored in sparse compressed-row format for a standard eigenvalue problem, and zfeast_hrci is a complex double-precision routine with a Hermitian matrix using the reverse communication interface.

Note that:
- ? can be s or d if a matrix is real symmetric: <matrix type> is sy, sb, or scsr.
- ? can be c or z if a matrix is complex Hermitian: <matrix type> is he, hb, or hcsr.
- ? can be c or \(z\) if the Extended Eigensolver RCI interface is used for solving a complex Hermitian problem.
- ? can be s or d if the Extended Eigensolver RCI interface is used for solving a real symmetric problem.

\section*{feastinit}

Initialize Extended Eigensolver input parameters with default values.

\section*{Syntax}
```

call feastinit (fpm)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

This routine sets all Extended Eigensolver parameters to their default values.

\section*{Output Parameters}

\author{
fpm
}

INTEGER
Array, size 128. This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values.

\section*{Extended Eigensolver Input Parameters}

The input parameters for Extended Eigensolver routines are contained in an integer array named fpm. To call the Extended Eigensolver interfaces, this array should be initialized using the routine feastinit.



\section*{NOTE}

This option can only be used by Extended Eigensolver Predefined Interfaces for Sparse Matrices.
\begin{tabular}{ll}
\(\operatorname{fpm}(64)=0\) & \begin{tabular}{l} 
Extended Eigensolver routines use the Intel® oneAPI Math \\
Kernel Library (oneMKL) PARDISO defaultiparm settings \\
defined by calling the pardisoinit subroutine.
\end{tabular} \\
\(\operatorname{fpm}(64)=1\) & \begin{tabular}{l} 
The values from \(\operatorname{fpm}(65)\) to \(\operatorname{fpm}(128)\) correspond to \\
iparm(1) to \(i p a r m(64)\) respectively according to the \\
formula \(\operatorname{fpm}(64+i)=\operatorname{iparm}(i)\) for \(i=1,2, \ldots, 64\).
\end{tabular}
\end{tabular}

\section*{Extended Eigensolver Output Details}

Errors and warnings encountered during a run of the Extended Eigensolver routines are stored in an integer variable, info. If the value of the output info parameter is not 0 , either an error or warning was encountered. The possible return values for the info parameter along with the error code descriptions are given in the following table.
Return Codes for info Parameter
\begin{tabular}{lll}
\hline info & Classification & Description \\
\hline 202 & Error & Problem with size of the system \(n(n \leq 0)\) \\
201 & Error & Problem with size of initial subspace \(m 0(m 0 \leq 0\) or \(m 0>n)\) \\
200 & Error & Problem with emin,emax \((\) emin \(\geq e m a x)\) \\
4 & Error & \begin{tabular}{l} 
Problem with \(i\)-th value of the input Extended Eigensolver \\
parameter \((f p m(i))\). Only the parameters in use are checked. \\
\end{tabular} \\
& Warning & \begin{tabular}{l} 
Successful return of only the computed subspace after call with \\
fpm \((14)=1\)
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline info & Classification & Description \\
\hline 3 & Warning & Size of the subspace m0 is too small ( \(\mathrm{mO} 0<\mathrm{m}\) ) \\
\hline 2 & Warning & No Convergence (number of iteration loops >fpm(4)) \\
\hline 1 & Warning & No eigenvalue found in the search interval. See remark below for further details. \\
\hline 0 & Successful exit & \\
\hline -1 & Error & Internal error for allocation memory. \\
\hline -2 & Error & Internal error of the inner system solver. Possible reasons: not enough memory for inner linear system solver or inconsistent input. \\
\hline -3 & Error & Internal error of the reduced eigenvalue solver \\
\hline & & Possible cause: matrix \(B\) may not be positive definite. It can be checked by setting \(\mathrm{fpm}(28)=1\) before calling an Extended Eigensolver routine, or by using LAPACK routines. \\
\hline -4 & Error & Matrix \(B\) is not positive definite. \\
\hline \(-(100+i)\) & Error & Problem with the \(i\)-th argument of the Extended Eigensolver interface. \\
\hline
\end{tabular}

In some extreme cases the return value info \(=1\) may indicate that the Extended Eigensolver routine has failed to find the eigenvalues in the search interval. This situation could arise if a very large search interval is used to locate a small and isolated cluster of eigenvalues (i.e. the dimension of the search interval is many orders of magnitude larger than the number of contour points. It is then either recommended to increase the number of contour points fpm (2) or simply rescale more appropriately the search interval. Rescaling means the initial problem of finding all eigenvalues the search interval \(\left[\lambda_{\text {min }}, \lambda_{\text {max }}\right.\) ] for the standard eigenvalue problem \(A x=\lambda x\) is replaced with the problem of finding all eigenvalues in the search interval \(\left[\lambda_{\text {min }} / t, \lambda_{\text {max }} / t\right.\) ] for the standard eigenvalue problem \((A / t) x=(\lambda / t) x\) where \(t\) is a scaling factor.

\section*{Extended Eigensolver RCI Routines}

If you do not require specific linear system solvers or matrix storage schemes, you can skip this section and go directly to Extended Eigensolver Predefined Interfaces.

\section*{Extended Eigensolver RCI Interface Description}

The Extended Eigensolver RCI interfaces can be used to solve standard or generalized eigenvalue problems, and are independent of the format of the matrices. As mentioned earlier, the Extended Eigensolver algorithm is based on the contour integration techniques of the matrix resolvent \(G(\sigma)=(\sigma B-A)^{-1}\) over a circle. For solving a generalized eigenvalue problem, Extended Eigensolver has to perform one or more of the following operations at each contour point denoted below by \(Z_{e}\) :
- Factorize the matrix \(\left(Z_{e} * B-A\right)\)
- Solve the linear system \(\left(Z_{e} *_{B}-A\right) X=Y\) or \(\left(Z_{e} * B-A\right)^{H} X=Y\) with multiple right hand sides, where \(H\) means transpose conjugate
- Matrix-matrix multiply \(B X=Y\) or \(A X=Y\)

For solving a standard eigenvalue problem, replace the matrix \(B\) with the identity matrix \(I\).
The primary aim of RCI interfaces is to isolate these operations: the linear system solver, factorization of the matrix resolvent at each contour point, and matrix-matrix multiplication. This gives universality to RCI interfaces as they are independent of data structures and the specific implementation of the operations like matrix-vector multiplication or inner system solvers. However, this approach requires some additional effort when calling the interface. In particular, operations listed above are performed by routines that you supply on data structures that you find most appropriate for the problem at hand.

To initialize an Extended Eigensolver RCI routine, set the job indicator (ijob) parameter to the value -1. When the routine requires the results of an operation, it generates a special value of ijob to indicate the operation that needs to be performed. The routine also returns \(z e\), the coordinate along the complex contour, the values of array work or workc, and the number of columns to be used. Your subroutine then must perform the operation at the given contour point \(z e\), store the results in prescribed array, and return control to the Extended Eigensolver RCI routine.

The following pseudocode shows the general scheme for using the Extended Eigensolver RCI functionality for a real symmetric problem:
```

 Ijob=-1 ! initialization
 do while (ijob/=0)
 call ?feast_srci(ijob, N, Ze, work1, work2, Aq, Bq,
 &fpm, epsout, loop, Emin, Emax, M0, E, lambda, q, res, info)
 select case(ijob)
 case(10) !! Factorize the complex matrix (ZeB-A)
 <<< user entry
case(11) !! Solve the complex linear system (ZeB-A) x=work2(1:N,1:M0) result in work2
case(30) !! Perform multiplication A*q(1:N,i:j) result in work1(1:N,i:j)
!! where i=fpm(24) and j=fpm(24)+fpm(25)-1
case(40) !! Perform multiplication B*q(1:N,i:j) result in work1(1:N,i:j)
!! where i=fpm(24) and j=fpm(24)+fpm(25)-1
. <<< user entry
end select
end do

```

\section*{NOTE}

The ? option in ?feast in the pseudocode given above should be replaced by either \(s\) or \(d\), depending on the matrix data type of the eigenvalue system.

The next pseudocode shows the general scheme for using the Extended Eigensolver RCI functionality for a complex Hermitian problem:
```

 Ijob=-1 ! initialization
 do while (ijob/=0)
 call ?feast_hrci(ijob, N, Ze, work1, work2, Aq, Bq,
 &fpm, epsout, loop, Emin, Emax, M0, E, lambda, q, res, info)
 select case(ijob)
 case(10) !! Factorize the complex matrix (ZeB-A)
 <<< user entry
case (11)!! Solve the linear system (ZeB-A)y=work2 (1:N, 1:M0) result in work2
. <<< user entry
case (20)!! Factorize (if needed by case (21)) the complex matrix (ZeB-A)^H
!!ATTENTION: This option requires additional memory storage
!! (i.e . the resulting matrix from case (10) cannot be overwritten)
case (21) !! Solve the linear system (ZeB-A)^Hy=work2(1:N, 1:M0) result in work2
!!REMARK: case (20) becomes obsolete if this solve can be performed
!! using the factorization in case (10)
. <<< user entry
case(30) !! Perform multiplication A*q(1:N,i:j) result in work1(1:N,i:j)

```
```

 !! where i=fpm(24) and j=fpm(25)+fpm(24)-1
 <<< user entry
 case(40) !! Perform multiplication B*q(1:N,i:j) result in work1(1:N,i:j)
 !! where i=fpm(24) and j=fpm(25)+fpm(24)-1
 end select
 end do

```

\section*{NOTE}

The ? option in ? feast in the pseudocode given above should be replaced by either c or z , depending on the matrix data type of the eigenvalue system.
If case (20) can be avoided, performance could be up to twice as fast, and Extended Eigensolver functionality would use half of the memory.

If an iterative solver is used along with a preconditioner, the factorization of the preconditioner could be performed with \(i j o b=10\) (and \(i j o b=20\) if applicable) for a given value of \(Z_{e}\), and the associated iterative solve would then be performed with \(i j o b=11\) (and \(i j o b=21\) if applicable).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{?feast_srci/?feast_hrci}

Extended Eigensolver RCI interface.

\section*{Syntax}
```

call sfeast_srci (ijob, n, ze, work, workc, aq, sq, fpm, epsout, loop, emin, emax, mo,
lambda, q, m, res, info)
call dfeast_srci (ijob, n, ze, work, workc, aq, sq, fpm, epsout, loop, emin, emax, mo,
lambda, q, m, res, info)
call cfeast_hrci (ijob, n, ze, work, workc, aq, sq, fpm, epsout, loop, emin, emax, m0,
lambda, q, m, res, info)
call zfeast_hrci (ijob, n, ze, work, workc, aq, sq, fpm, epsout, loop, emin, emax, m0,
lambda, q, m, res, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

Compute eigenvalues as described in Extended Eigensolver RCI Interface Description.

\section*{Input Parameters}

\author{
ijob
}

INTEGER
Job indicator variable. On entry, a call to ?feast_srci/?feast_hrci with
ijob=-1 initializes the eigensolver.
\(n\)
work

INTEGER
Sets the size of the problem. \(n>0\).
REAL for sfeast_srci
DOUBLE PRECISION for dfeast_srci
COMPLEX for cfeast_hrci
COMPLEX*16 for zfeast_hrci
Workspace array of size \(n\) by \(m 0\).
COMPLEX for sfeast_srci and cfeast_hrci
COMPLEX*16 for dfeast_srci and zfeast_hrci
Workspace array of size \(n\) by \(m 0\).
REAL for sfeast_srci
DOUBLE PRECISION for dfeast_srci
COMPLEX for cfeast_hrci
COMPLEX*16 for zfeast_hrci
Workspace arrays of size mo by mo.
INTEGER
Array, size of 128 . This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values.

REAL for sfeast_srci and cfeast_hrci
DOUBLE PRECISION for dfeast_srci and zfeast_hrci
The lower and upper bounds of the interval to be searched for eigenvalues; emin \(\leq\) emax.

NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use.

INTEGER
On entry, specifies the initial guess for subspace size to be used, \(0<m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info \(=3\).

REAL for sfeast_srci
DOUBLE PRECISION for dfeast_srci
COMPLEX for cfeast_hrci

COMPLEX*16 for zfeast_hrci
On entry, if \(f p m(5)=1\), the array \(q\) of size \(n\) by \(m\) contains a basis of guess subspace where \(n\) is the order of the input matrix.

\section*{Output Parameters}

On exit, the parameter carries the status flag that indicates the condition of the return. The status information is divided into three categories:
1. A zero value indicates successful completion of the task.
2. A positive value indicates that the solver requires a matrix-vector multiplication or solving a specific system with a complex coefficient.
3. A negative value indicates successful initiation.

A non-zero value of ijob specifically means the following:
- ijob \(=10\) - factorize the complex matrix \(Z_{e}{ }^{*} B-A\) at a given contour point \(Z_{e}\) and return the control to the ?feast_srci/?feast_hrci routine where \(Z_{e}\) is a complex number meaning contour point and its value is defined internally in ?feast_srci/?feast_hrci.
- \(i j o b=11\) - solve the complex linear system \(\left(Z_{e} * B-A\right)^{*} y=\operatorname{workc}(n\), \(m 0\) ), put the solution in workc \((n, m 0)\) and return the control to the ?feast_srci/?feast_hrci routine.
- ijob \(=20\) - factorize the complex matrix \(\left(Z_{e} * B-A\right)^{H}\) at a given contour point \(Z_{e}\) and return the control to the ?feast_srci/?feast_hrci routine where \(Z_{e}\) is a complex number meaning contour point and its value is defined internally in ?feast_srci/?feast_hrci.

The symbol \(X^{\mathrm{H}}\) means transpose conjugate of matrix \(X\).
- \(i j o b=21\) - solve the complex linear \(\operatorname{system}\left(Z_{e}{ }^{*} B-A\right)^{\mathrm{H} *} y=\operatorname{workc}(n\), \(m 0)\), put the solution in workc \((n, m 0)\) and return the control to the ?feast_srci/?feast_hrci routine. The case ijob=20 becomes obsolete if the solve can be performed using the factorization computed for \(i j o b=10\).

The symbol \(X^{\mathrm{H}}\) mean transpose conjugate of matrix \(X\).
- ijob \(=30\) - multiply matrix \(A\) by \(q(n, i: j)\), put the result in work( \(n\), \(i: j)\), and return the control to the ?feast_srci/?feast_hrci routine.
\(i\) is \(f p m(25)\), and \(j\) is \(f p m(24)+f p m(25)-1\).
- \(i j o b=40\) - multiply matrix \(B\) by \(q(n, i: j)\), put the result in work( \(n\), \(i: j\) ) and return the control to the ?feast_srci/?feast_hrci routine. If a standard eigenvalue problem is solved, just return work \(=\mathrm{q}\).
\(i\) is \(f p m(25)\), and \(j\) is \(f p m(24)+f p m(25)-1\).
- \(i j o b=-2\) - rerun the ?feast_srci/?feast_hrci task with the same parameters.

COMPLEX for sfeast_srci and cfeast_hrci
COMPLEX*16 for dfeast_srci and zfeast_hrci
Defines the coordinate along the complex contour. All values of \(z e\) are generated by ?feast_srci/?feast_hrci internally.

On output, contains coordinates of columns of work array needed for iterative refinement. (See Extended Eigensolver RCI Interface Description.)
epsout
loop
lambda
\(q\)
m
res
info

REAL for sfeast_srci and cfeast_hrci
DOUBLE PRECISION for dfeast_srci and zfeast_hrci
On output, contains the relative error on the trace: \(\mid\) trace \(_{i}-\) trace \(_{i-1} \mid / \max (\mid\) emin|, |emax|)

INTEGER
On output, contains the number of refinement loop executed. Ignored on input.

REAL for sfeast_srci and cfeast_hrci
DOUBLE PRECISION for dfeast_srci and zfeast_hrci
Array of length \(m 0\). On output, the first \(m\) entries of lambda are eigenvalues found in the interval.

On output, q contains all eigenvectors corresponding to lambda.
INTEGER
The total number of eigenvalues found in the interval [emin, emax]: \(0 \leq m\) \(\leq m 0\).

REAL for sfeast_srci and cfeast_hrci
DOUBLE PRECISION for dfeast_srci and zfeast_hrci
Array of length \(m 0\). On exit, the first \(m\) components contain the relative residual vector:
- generalized eigenvalue problem:
\[
\frac{\left\|A x_{i}-\lambda_{1} B x_{i}\right\|_{1}}{\max \left(\left|E_{\text {min }}\right|,\left|E_{\max }\right|\right)\left\|B x_{i}\right\|_{1}}
\]
- standard eigenvalue problem:
\[
\frac{\left\|A x_{i}-\lambda_{i} x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)\left\|x_{i}\right\|_{1}}
\]
for \(i=1,2, \ldots, m\), and where \(m\) is the total number of eigenvalues found in the search interval.

INTEGER
If info \(=0\), the execution is successful. If info \(\neq 0\), see Output Eigensolver info Details.

\section*{Extended Eigensolver Predefined Interfaces}

The predefined interfaces include routines for standard and generalized eigenvalue problems, and for dense, banded, and sparse matrices.
\begin{tabular}{lcc}
\hline Matrix Type & Standard Eigenvalue Problem & \begin{tabular}{l} 
Generalized Eigenvalue \\
Problem
\end{tabular} \\
\hline Dense & ?feast_syev & ?feast_sygv
\end{tabular}
\begin{tabular}{lll}
\hline Matrix Type & Standard Eigenvalue Problem & \begin{tabular}{l} 
Generalized Eigenvalue \\
Problem
\end{tabular} \\
\hline \multirow{3}{*}{ Banded } & ?feast_heev & ?feast_hegv \\
& ?feast_sbev & ?feast_sbgv \\
Sparse & ?feast_hbev & ?feast_hbgv \\
& ?feast_scsrev & ?feast_hcsrev
\end{tabular}

\section*{Matrix Storage}

The symmetric and Hermitian matrices used in Extended Eigensolvers predefined interfaces can be stored in full, band, and sparse formats.
- In the full storage format (described in Full Storage in additional detail) you store all elements, all of the elements in the upper triangle of the matrix, or all of the elements in the lower triangle of the matrix.
- In the band storage format (described in Band storage in additional detail), you store only the elements along a diagonal band of the matrix.
- In the sparse format (described in Storage Arrays for a Matrix in CSR Format (3-Array Variation)), you store only the non-zero elements of the matrix.

In generalized eigenvalue systems you must use the same family of storage format for both matrices \(A\) and \(B\). The bandwidth can be different for the banded format ( \(k l b\) can be different from \(k l a\) ), and the position of the non-zero elements can also be different for the sparse format (CSR coordinates ib and jb can be different from ia and ja).

\section*{?feast_syev/?feast_heev}

Extended Eigensolver interface for standard eigenvalue problem with dense matrices.

\section*{Syntax}
```

call sfeast_syev(uplo, n, a, lda, fpm, epsout, loop, emin, emax, m0, e, x, m, res, info)
call dfeast_syev(uplo, n, a, lda, fpm, epsout, loop, emin, emax, m0, e, x, m, res, info)
call cfeast_heev(uplo, n, a, lda, fpm, epsout, loop, emin, emax, m0, e, x, m, res, info)
call zfeast_heev(uplo, n, a, lda, fpm, epsout, loop, emin, emax, m0, e, x, m, res, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routines compute all the eigenvalues and eigenvectors for standard eigenvalue problems, \(A x=\lambda x\), within a given search interval.

\section*{Input Parameters}
uplo
CHARACTER* 1
Must be 'U' or 'L' or 'F'.
If uplo = 'U', a stores the upper triangular parts of \(A\).
If uplo = 'L', a stores the lower triangular parts of \(A\).

If uplo= ' F ', a stores the full matrix \(A\).
\(n\)
a

INTEGER
Sets the size of the problem. \(n>0\).
REAL for sfeast_syev
DOUBLE PRECISION for dfeast_syev
COMPLEX for cfeast_heev
COMPLEX*16 for zfeast_heev
Array of dimension lda by \(n\), contains either full matrix \(A\) or upper or lower triangular part of the matrix \(A\), as specified by uplo

INTEGER
The leading dimension of the array \(a\). Must be at least max \((1, n)\).
INTEGER
Array, dimension of 128 . This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values.
```

REAL for sfeast_syev and cfeast_heev
DOUBLE PRECISION for dfeast_syev and zfeast_heev

```

The lower and upper bounds of the interval to be searched for eigenvalues; emin \(\leq\) emax.

NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use.

INTEGER
On entry, specifies the initial guess for subspace dimension to be used, \(0<\) \(m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info \(=3\).

REAL for sfeast_syev
DOUBLE PRECISION for dfeast_syev
COMPLEX for cfeast_heev
COMPLEX*16 for zfeast_heev
On entry, if \(f p m(5)=1\), the array \(x(n, m)\) contains a basis of guess subspace where \(n\) is the order of the input matrix.

\section*{Output Parameters}
e
X
m
res
```

epsout
loop
REAL for sfeast_syev and cfeast_heev
DOUBLE PRECISION for dfeast_syev and zfeast_heev
On output, contains the relative error on the trace: \mid trace $_{i}$ - trace $_{i-1} \mid / \max (\mid$ emin|, |emax|)
INTEGER

```

On output, contains the number of refinement loop executed. Ignored on input.

REAL for sfeast_syev and cfeast_heev
DOUBLE PRECISION for dfeast_syev and zfeast_heev
Array of length \(m 0\). On output, the first \(m\) entries of \(e\) are eigenvalues found in the interval.

On output, the first \(m\) columns of \(x\) contain the orthonormal eigenvectors corresponding to the computed eigenvalues e, with the \(i\)-th column of \(x\) holding the eigenvector associated with \(e(i)\).

INTEGER
The total number of eigenvalues found in the interval [emin, emax]: \(0 \leq m\) \(\leq m 0\).

REAL for sfeast_syev and cfeast_heev
DOUBLE PRECISION for dfeast_syev and zfeast_heev
Array of length \(m 0\). On exit, the first \(m\) components contain the relative residual vector:
\[
\frac{\left\|A x_{i}-\lambda_{i} x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)\left\|x_{i}\right\|_{1}}
\]
for \(i=1,2, \ldots, m\), and where \(m\) is the total number of eigenvalues found in the search interval.

INTEGER
If info \(=0\), the execution is successful. If info \(\neq 0\), see Output Eigensolver info Details.

\section*{?feast_sygv/?feast_hegv}

Extended Eigensolver interface for generalized eigenvalue problem with dense matrices.

\section*{Syntax}
```

call sfeast_sygv(uplo, n, a, lda, b, ldb, fpm, epsout, loop, emin, emax, m0, e, x, m,
res, info)
call dfeast_sygv(uplo, n, a, lda, b, ldb, fpm, epsout, loop, emin, emax, m0, e, x, m,
res, info)

```
```

call cfeast_hegv(uplo, n, a, lda, b, ldb, fpm, epsout, loop, emin, emax, m0, e, x, m,
res, info)
call zfeast_hegv(uplo, n, a, lda, b, ldb, fpm, epsout, loop, emin, emax, m0, e, x, m,
res, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routines compute all the eigenvalues and eigenvectors for generalized eigenvalue problems, \(A x=\lambda B x\), within a given search interval.

\section*{Input Parameters}
```

uplo

```
n
a
b

1 db
fpm

CHARACTER*1
Must be 'U' or 'L' or 'F'.
If \(U P L O=' U ', a\) and \(b\) store the upper triangular parts of \(A\) and \(B\) respectively.

If \(U P L O=' L ', a\) and \(b\) store the lower triangular parts of \(A\) and \(B\) respectively.

If \(U P L O=' \mathrm{~F}^{\prime}\), a and \(b\) store the full matrices \(A\) and \(B\) respectively.
INTEGER
Sets the size of the problem. \(n>0\).
REAL for sfeast_sygv
DOUBLE PRECISION for dfeast_sygv
COMPLEX for cfeast_hegv
COMPLEX*16 for zfeast_hegv
Array of dimension Ida by \(n\), contains either full matrix \(A\) or upper or lower triangular part of the matrix \(A\), as specified by uplo

INTEGER
The leading dimension of the array \(a\). Must be at least max \((1, n)\).
REAL for sfeast_sygv
DOUBLE PRECISION for dfeast_sygv
COMPLEX for cfeast_hegv
COMPLEX*16 for zfeast_hegv
Array of dimension 1 db by \(n\), contains either full matrix \(B\) or upper or lower triangular part of the matrix \(B\), as specified by uplo

INTEGER
The leading dimension of the array \(B\). Must be at least max \((1, n)\).
INTEGER

Array, dimension of 128 . This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values.
```

REAL for sfeast_sygv and cfeast_hegv
DOUBLE PRECISION for dfeast_Sygv and zfeast_hegv

```

The lower and upper bounds of the interval to be searched for eigenvalues; emin \(\leq\) emax.

NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use.

INTEGER
On entry, specifies the initial guess for subspace dimension to be used, \(0<\) \(m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info \(=3\).

REAL for sfeast_sygv
DOUBLE PRECISION for dfeast_sygv
COMPLEX for cfeast_hegv
COMPLEX*16 for zfeast_hegv
On entry, if \(f p m(5)=1\), the array \(x(n, m)\) contains a basis of guess subspace where \(n\) is the order of the input matrix.

\section*{Output Parameters}
epsout
loop
e

X
REAL for sfeast_sygv and cfeast_hegv
DOUBLE PRECISION for dfeast_sygv and zfeast_hegv
On output, contains the relative error on the trace: \(\mid\) trace \(_{i}-\) trace \(_{i-1} \mid / \max (\mid\) emin|, |emax|)

INTEGER
On output, contains the number of refinement loop executed. Ignored on input.

REAL for sfeast_sygv and cfeast_hegv
DOUBLE PRECISION for dfeast_sygv and zfeast_hegv
Array of length \(m 0\). On output, the first \(m\) entries of \(e\) are eigenvalues found in the interval.

On output, the first \(m\) columns of \(x\) contain the orthonormal eigenvectors corresponding to the computed eigenvalues \(e\), with the \(i\)-th column of \(x\) holding the eigenvector associated with \(e(i)\).
m
res
info

INTEGER
The total number of eigenvalues found in the interval [emin, emax]: \(0 \leq m\) \(\leq m 0\).

REAL for sfeast_sygv and cfeast_hegv
DOUBLE PRECISION for dfeast_sygv and zfeast_hegv
Array of length \(m 0\). On exit, the first \(m\) components contain the relative residual vector:
\[
\frac{\left\|A x_{i}-\lambda_{i} B x_{i}\right\|_{1}}{\max \left(\left|E_{\text {min }}\right|,\left|E_{\text {max }}\right|\right)\left\|B x_{i}\right\|_{1}}
\]
for \(i=1,2, \ldots, m\), and where \(m\) is the total number of eigenvalues found in the search interval.

INTEGER
If info \(=0\), the execution is successful. If info \(\neq 0\), see Output Eigensolver info Details.

\section*{?feast_sbev/?feast_hbev \\ Extended Eigensolver interface for standard eigenvalue problem with banded matrices.}

\section*{Syntax}
```

call sfeast_sbev(uplo, n, kla, a, lda, fpm, epsout, loop, emin, emax, m0, e, x, m, res,
info)
call dfeast_sbev(uplo, n, kla, a, lda, fpm, epsout, loop, emin, emax, m0, e, x, m, res,
info)
call cfeast_hbev(uplo, n, kla, a, lda, fpm, epsout, loop, emin, emax, m0, e, x, m, res,
info)
call zfeast_hbev(uplo, n, kla, a, lda, fpm, epsout, loop, emin, emax, m0, e, x, m, res,
info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routines compute all the eigenvalues and eigenvectors for standard eigenvalue problems, \(A x=\lambda x\), within a given search interval.

\section*{Input Parameters}
```

uplo

```
    CHARACTER*1
    Must be 'U' or 'L' or 'F'.
    If uplo = 'U', a stores the upper triangular parts of \(A\).
    If uplo = 'L', a stores the lower triangular parts of \(A\).
\begin{tabular}{|c|c|}
\hline & If uplo= ' F ', a stores the full matrix \(A\). \\
\hline \multirow[t]{2}{*}{\(n\)} & INTEGER \\
\hline & Sets the size of the problem. \(n>0\). \\
\hline \multirow[t]{2}{*}{kla} & INTEGER \\
\hline & The number of super- or sub-diagonals within the band in \(A(k l a \geq 0)\). \\
\hline \multirow[t]{5}{*}{a} & REAL for sfeast_sbev \\
\hline & DOUBLE PRECISION for dfeast_sbev \\
\hline & COMPLEX for cfeast_hbev \\
\hline & COMPLEX*16 for zfeast_hbev \\
\hline & Array of dimension lda by \(n\), contains either full matrix \(A\) or upper or lower triangular part of the matrix \(A\), as specified by uplo \\
\hline \multirow[t]{2}{*}{Ida} & INTEGER \\
\hline & The leading dimension of the array \(a\). Must be at least max \((1, n)\). \\
\hline \multirow[t]{2}{*}{fpm} & INTEGER \\
\hline & Array, dimension of 128 . This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values. \\
\hline \multirow[t]{4}{*}{emin, emax} & REAL for sfeast_sbev and cfeast_h.bev \\
\hline & DOUBLE PRECISION for dfeast_sbev and zfeast_hbev \\
\hline & The lower and upper bounds of the interval to be searched for eigenvalues; emin \(\leq\) emax. \\
\hline & NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use. \\
\hline \multirow[t]{2}{*}{mo} & INTEGER \\
\hline & On entry, specifies the initial guess for subspace dimension to be used, \(0<\) \(m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info \(=3\). \\
\hline \multirow[t]{4}{*}{\(x\)} & REAL for sfeast_sbev \\
\hline & DOUBLE PRECISION for dfeast_sbev \\
\hline & COMPLEX for cfeast_hbev \\
\hline & COMPLEX*16 for zfeast_hbev \\
\hline
\end{tabular}

On entry, if \(f p m(5)=1\), the array \(x(n, m)\) contains a basis of guess subspace where \(n\) is the order of the input matrix.

\section*{Output Parameters}
epsout
loop
e

X
m
res
info

REAL for sfeast_sbev and cfeast_hbev
DOUBLE PRECISION for dfeast_sbev and zfeast_hbev
On output, contains the relative error on the trace: \(\left|t^{t r a c e}{ }_{i}-\operatorname{trace}_{i-1}\right| / \max (\mid\) emin|, |emax|)

INTEGER
On output, contains the number of refinement loop executed. Ignored on input.

REAL for sfeast_sbev and cfeast_hbev
DOUBLE PRECISION for dfeast_sbev and zfeast_hbev
Array of length \(m 0\). On output, the first \(m\) entries of \(e\) are eigenvalues found in the interval.

On output, the first \(m\) columns of \(x\) contain the orthonormal eigenvectors corresponding to the computed eigenvalues \(e\), with the \(i\)-th column of \(x\) holding the eigenvector associated with \(e(i)\).

INTEGER
The total number of eigenvalues found in the interval [emin, emax]: \(0 \leq m\) \(\leq \mathrm{m} 0\).

REAL for sfeast_sbev and cfeast_hbev
DOUBLE PRECISION for dfeast_sbev and zfeast_hbev
Array of length \(m 0\). On exit, the first \(m\) components contain the relative residual vector:
\[
\frac{\left\|A x_{i}-\lambda_{i} x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)\left\|x_{i}\right\|_{1}}
\]
for \(i=1,2, \ldots, m\), and where \(m\) is the total number of eigenvalues found in the search interval.

INTEGER
If info \(=0\), the execution is successful. If info \(\neq 0\), see Output Eigensolver info Details.
?feast_sbgv/?feast_hbgv
Extended Eigensolver interface for generalized
eigenvalue problem with banded matrices.
Syntax
```

call sfeast_sbgv(uplo, n, kla, a, lda, klb, b, ldb, fpm, epsout, loop, emin, emax, m0, e,
x, m, res, info)

```
```

call dfeast_sbgv(uplo, n, kla, a, lda, klb, b, ldb, fpm, epsout, loop, emin, emax, m0, e,
x, m, res, info)
call cfeast_hbgv(uplo, n, kla, a, lda, klb, b, ldb, fpm, epsout, loop, emin, emax, m0, e,
x, m, res, info)
call zfeast_hbgv(uplo, n, kla, a, lda, klb, b, ldb, fpm, epsout, loop, emin, emax, m0, e,
x, m, res, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routines compute all the eigenvalues and eigenvectors for generalized eigenvalue problems, \(A x=\lambda B x\), within a given search interval.

\section*{NOTE}

Both matrices \(A\) and \(B\) must use the same family of storage format. The bandwidth, however, can be different ( \(k l b\) can be different from \(k l a\) ).

\section*{Input Parameters}
```

uplo

```
n
kla
a

Ida
\(k l b\)

\section*{CHARACTER*1}

Must be 'U' or 'L' or 'F'.
If \(U P L O=\) ' \(U\) ', \(a\) and \(b\) store the upper triangular parts of \(A\) and \(B\) respectively.

If \(U P L O=\) 'L', \(a\) and \(b\) store the lower triangular parts of \(A\) and \(B\) respectively.

If \(U P L O=' \mathrm{~F}\) ', \(a\) and \(b\) store the full matrices \(A\) and \(B\) respectively.
INTEGER
Sets the size of the problem. \(n>0\).
INTEGER
The number of super- or sub-diagonals within the band in \(A(k l a \geq 0)\).
REAL for sfeast_sbgv
DOUBLE PRECISION for dfeast_sbgv
COMPLEX for cfeast_h.bgv
COMPLEX*16 for zfeast_hbgv
Array of dimension lda by \(n\), contains either full matrix \(A\) or upper or lower triangular part of the matrix \(A\), as specified by uplo

INTEGER
The leading dimension of the array \(a\). Must be at least max \((1, n)\).
INTEGER
The number of super- or sub-diagonals within the band in \(B(k l b \geq 0)\).
b
\(x\)
```

REAL for sfeast_sbgv
DOUBLE PRECISION for dfeast_sbgv
COMPLEX for cfeast_h.bgv
COMPLEX*16 for zfeast_hbgv

```

Array of dimension \(l d b\) by \(n\), contains either full matrix \(B\) or upper or lower triangular part of the matrix \(B\), as specified by uplo

INTEGER
The leading dimension of the array \(B\). Must be at least \(\max (1, n)\).
INTEGER
Array, dimension of 128 . This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values.

REAL for sfeast_sbgv and cfeast_hbgv
DOUBLE PRECISION for dfeast_sbgv and zfeast_hbgv
The lower and upper bounds of the interval to be searched for eigenvalues; emin \(\leq\) emax.

NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use.

\section*{INTEGER}

On entry, specifies the initial guess for subspace dimension to be used, \(0<\) \(m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info \(=3\).

REAL for sfeast_sbgv
DOUBLE PRECISION for dfeast_sbgv
COMPLEX for cfeast_hbgv
COMPLEX*16 for zfeast_hbgv
On entry, if \(f p m(5)=1\), the array \(x(n, m)\) contains a basis of guess subspace where \(n\) is the order of the input matrix.

\section*{Output Parameters}
epsout

REAL for sfeast_sbgv and cfeast_hbgv
DOUBLE PRECISION for dfeast_sbgv and zfeast_hbgv
On output, contains the relative error on the trace: \(\mid\) trace \(_{i}-\) trace \(_{i-1} \mid / \max (\mid\) emin|, |emax|)
```

IOOp INTEGER
INTEGER

```
e

X
m
res
info
On output, contains the number of refinement loop executed. Ignored on input.

REAL for sfeast_sbgv and cfeast_hbgv
DOUBLE PRECISION for dfeast_sbgv and zfeast_hbgv
Array of length \(m 0\). On output, the first \(m\) entries of \(e\) are eigenvalues found in the interval.

On output, the first \(m\) columns of \(x\) contain the orthonormal eigenvectors corresponding to the computed eigenvalues \(e\), with the \(i\)-th column of \(x\) holding the eigenvector associated with \(e(i)\).

INTEGER
The total number of eigenvalues found in the interval [emin, emax]: \(0 \leq m\) \(\leq m 0\).

REAL for sfeast_sbgv and cfeast_hbgv
DOUBLE PRECISION for dfeast_sbgv and zfeast_hbgv
Array of length \(m 0\). On exit, the first \(m\) components contain the relative residual vector:
\[
\frac{\left\|A x_{i}-\lambda_{i} B x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)\left\|B x_{i}\right\|_{1}}
\]
for \(i=1,2, \ldots, m\), and where \(m\) is the total number of eigenvalues found in the search interval.

INTEGER
If info \(=0\), the execution is successful. If info \(\neq 0\), see Output Eigensolver info Details.
?feast_scsrev/?feast_hcsrev
Extended Eigensolver interface for standard
eigenvalue problem with sparse matrices.

\section*{Syntax}
```

call sfeast_scsrev(uplo, n, a, ia, ja, fpm, epsout, loop, emin, emax, m0, e, x, m, res,
info)
call dfeast_scsrev(uplo, n, a, ia, ja, fpm, epsout, loop, emin, emax, m0, e, x, m, res,
info)
call cfeast_hcsrev(uplo, n, a, ia, ja, fpm, epsout, loop, emin, emax, m0, e, x, m, res,
info)
call zfeast_hcsrev(uplo, n, a, ia, ja, fpm, epsout, loop, emin, emax, m0, e, x, m, res,
info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routines compute all the eigenvalues and eigenvectors for standard eigenvalue problems, \(A x=\lambda x\), within a given search interval.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{uplo} & CHARACTER*1 \\
\hline & Must be 'U' or 'L' or 'F'. \\
\hline & If uplo = 'U', a stores the upper triangular parts of \(A\). \\
\hline & If uplo = 'L', a stores the lower triangular parts of \(A\). \\
\hline & If uplo= 'F', a stores the full matrix \(A\). \\
\hline \multirow[t]{2}{*}{\(n\)} & INTEGER \\
\hline & Sets the size of the problem. \(n>0\). \\
\hline \multirow[t]{4}{*}{a} & REAL for sfeast_scsrev \\
\hline & DOUBLE PRECISION for dfeast_scsrev \\
\hline & COMPLEX for cfeast_hcsrev \\
\hline & COMPLEX*16 for zfeast_hcsrev \\
\hline
\end{tabular}

Array containing the nonzero elements of either the full matrix \(A\) or the upper or lower triangular part of the matrix \(A\), as specified by uplo.

INTEGER
Array of length \(n+1\), containing indices of elements in the array \(a\), such that ia(i) is the index in the array a of the first non-zero element from the row \(i\). The value of the last element \(\operatorname{ia}(n+1)\) is equal to the number of non-zeros plus one.

INTEGER
Array containing the column indices for each non-zero element of the matrix \(A\) being represented in the array \(a\). Its length is equal to the length of the array \(a\).

INTEGER
Array, dimension of 128 . This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values.

REAL for sfeast_scsrev and cfeast_hcsrev
DOUBLE PRECISION for dfeast_scsrev and zfeast_hcsrev
The lower and upper bounds of the interval to be searched for eigenvalues; emin \(\leq\) emax.

NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use.
m

\section*{Output Parameters}

INTEGER
On entry, specifies the initial guess for subspace dimension to be used, \(0<\) \(m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info \(=3\).

REAL for sfeast_scsrev
DOUBLE PRECISION for dfeast_scsrev
COMPLEX for cfeast_hcsrev
COMPLEX*16 for zfeast_hcsrev
On entry, if \(f p m(5)=1\), the array \(x(n, m)\) contains a basis of guess subspace where \(n\) is the order of the input matrix.
fpm


On output, the last 64 values correspond to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO iparm (1) to iparm (64) (regardless of the value of \(f_{p m}(64)\) on input).

REAL for sfeast_scsrev and cfeast_hcsrev
DOUBLE PRECISION for dfeast_scsrev and zfeast_hcsrev
On output, contains the relative error on the trace: \(\mid\) trace \(_{i}-\) trace \(_{i-1} \mid / \max (\mid\) emin|, |emax|)

INTEGER
On output, contains the number of refinement loop executed. Ignored on input.

REAL for sfeast_scsrev and cfeast_hcsrev
DOUBLE PRECISION for dfeast_scsrev and zfeast_hcsrev
Array of length \(m 0\). On output, the first \(m\) entries of \(e\) are eigenvalues found in the interval.

On output, the first \(m\) columns of \(x\) contain the orthonormal eigenvectors corresponding to the computed eigenvalues \(e\), with the \(i\)-th column of \(x\) holding the eigenvector associated with e(i).

INTEGER
The total number of eigenvalues found in the interval [emin, emax]: \(0 \leq m\) \(\leq m 0\).
res
info

REAL for sfeast_scsrev and cfeast_hcsrev
DOUBLE PRECISION for dfeast_scsrev and zfeast_hcsrev
Array of length \(m 0\). On exit, the first \(m\) components contain the relative residual vector:
\[
\frac{\left\|A x_{i}-\lambda_{i} x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)\left\|x_{i}\right\|_{1}}
\]
for \(i=1,2, \ldots, m\), and where \(m\) is the total number of eigenvalues found in the search interval.

INTEGER
If info \(=0\), the execution is successful. If info \(\neq 0\), see Output Eigensolver info Details.
?feast_scsrgv/?feast_hcsrgv
Extended Eigensolver interface for generalized
eigenvalue problem with sparse matrices.
Syntax
```

call sfeast_scsrgv(uplo, n, a, ia, ja, b, ib, jb, fpm, epsout, loop, emin, emax, m0, e,
x, m, res, info)
call dfeast_scsrgv(uplo, n, a, ia, ja, b, ib, jb, fpm, epsout, loop, emin, emax, mo, e,
x, m, res, info)
call cfeast_hcsrgv(uplo, n, a, ia, ja, b, ib, jb, fpm, epsout, loop, emin, emax, m0, e,
x, m, res, info)
call zfeast_hcsrgv(uplo, n, a, ia, ja, b, ib, jb, fpm, epsout, loop, emin, emax, m0, e,
x, m, res, info)

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The routines compute all the eigenvalues and eigenvectors for generalized eigenvalue problems, \(A x=\lambda B x\), within a given search interval.

\section*{NOTE}

Both matrices \(A\) and \(B\) must use the same family of storage format. The position of the nonzero elements can be different (CSR coordinates \(i b\) and \(j b\) can be different from ia and \(j a\) ).

\section*{Input Parameters}
uplo
CHARACTER*1
Must be 'U' or 'L' or 'F'.
If \(U P L O=\) ' \(U ', a\) and \(b\) store the upper triangular parts of \(A\) and \(B\) respectively.

If UPLO \(=\) 'L', \(a\) and \(b\) store the lower triangular parts of \(A\) and \(B\) respectively.

If \(U P L O=' F\) ', \(a\) and \(b\) store the full matrices \(A\) and \(B\) respectively.
INTEGER
Sets the size of the problem. \(n>0\).
REAL for sfeast_scsrgv
DOUBLE PRECISION for dfeast_scsrgv
COMPLEX for cfeast_hcsrgv
COMPLEX*16 for zfeast_hcsrgv
Array containing the nonzero elements of either the full matrix \(A\) or the upper or lower triangular part of the matrix \(A\), as specified by uplo.

INTEGER
Array of length \(n+1\), containing indices of elements in the array \(a\), such that \(i a(i)\) is the index in the array \(a\) of the first non-zero element from the row \(i\). The value of the last element \(i a(n+1)\) is equal to the number of non-zeros plus one.

INTEGER
Array containing the column indices for each non-zero element of the matrix \(A\) being represented in the array \(a\). Its length is equal to the length of the array \(a\).

REAL for sfeast_scsrgv
DOUBLE PRECISION for dfeast_scsrgv
COMPLEX for cfeast_hcsrgv
COMPLEX*16 for zfeast_hcsrgv
Array of dimension 1 db by *, contains the nonzero elements of either the full matrix \(B\) or the upper or lower triangular part of the matrix \(B\), as specified by uplo.

INTEGER
Array of length \(n+1\), containing indices of elements in the array \(b\), such that \(i b(i)\) is the index in the array \(b\) of the first non-zero element from the row \(i\). The value of the last element \(i b(n+1)\) is equal to the number of non-zeros plus one.

INTEGER
Array containing the column indices for each non-zero element of the matrix \(B\) being represented in the array \(b\). Its length is equal to the length of the array \(b\).

INTEGER
Array, dimension of 128 . This array is used to pass various parameters to Extended Eigensolver routines. See Extended Eigensolver Input Parameters for a complete description of the parameters and their default values.
emin, emax
mo

X

\section*{Output Parameters}
```

fpm

```
epsout
loop
e

REAL for sfeast_scsrgv and cfeast_hcsrgv
DOUBLE PRECISION for dfeast_scsrgv and zfeast_hcsrgv
The lower and upper bounds of the interval to be searched for eigenvalues; emin \(\leq\) emax.

NOTE Users are advised to avoid situations in which eigenvalues nearly coincide with the interval endpoints. This may lead to unpredictable selection or omission of such eigenvalues. Users should instead specify a slightly larger interval than needed and, if required, pick valid eigenvalues and their corresponding eigenvectors for subsequent use.

INTEGER
On entry, specifies the initial guess for subspace dimension to be used, \(0<\) \(m 0 \leq n\). Set \(m 0 \geq m\) where \(m\) is the total number of eigenvalues located in the interval [emin, emax]. If the initial guess is wrong, Extended Eigensolver routines return info \(=3\).

REAL for sfeast_scsrgv
DOUBLE PRECISION for dfeast_scsrgv
COMPLEX for cfeast_hcsrgv
COMPLEX*16 for zfeast_hcsrgv
On entry, if \(f p m(5)=1\), the array \(x(n, m)\) contains a basis of guess subspace where \(n\) is the order of the input matrix.

On output, the last 64 values correspond to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISOiparm(1) to iparm(64) (regardless of the value of \(\operatorname{fpm}(64)\) on input).

REAL for sfeast_scsrgv and cfeast_hcsrgv
DOUBLE PRECISION for dfeast_scsrgv and zfeast_hcsrgv
On output, contains the relative error on the trace: \(\mid\) trace \(_{i}-\) trace \(_{i-1} \mid / \max (\mid\) emin|, |emax|)

INTEGER
On output, contains the number of refinement loop executed. Ignored on input.

REAL for sfeast_scsrgv and cfeast_hcsrgv DOUBLE PRECISION for dfeast_scsrgv and zfeast_hcsrgv
Array of length mO . On output, the first \(m\) entries of \(e\) are eigenvalues found in the interval.
```

x On output, the first m columns of x contain the orthonormal eigenvectors corresponding to the computed eigenvalues e, with the i-th column of x holding the eigenvector associated with $e(i)$.
INTEGER
The total number of eigenvalues found in the interval [emin, emax]: $0 \leq m$ $\leq \mathrm{mO}$.
REAL for sfeast_scsrgv and cfeast_hcsrgv
DOUBLE PRECISION for dfeast_scsrgv and zfeast_hcsrgv
Array of length $m 0$. On exit, the first m components contain the relative residual vector:
$\frac{\left\|A x_{i}-\lambda_{i} B x_{i}\right\|_{1}}{\max \left(\left|E_{\min }\right|,\left|E_{\max }\right|\right)\left\|B x_{i}\right\|_{1}}$
for $i=1,2, \ldots, m$, and where m is the total number of eigenvalues found in the search interval.
INTEGER
If info $=0$, the execution is successful. If info $\neq 0$, see Output Eigensolver info Details.

```

\section*{Extended Eigensolver Interfaces for Extremal Eigenvalues/Singular Values}

The topics in this section discuss Extended Eigensolver interfaces to find extremal eigenvalues as well as singular values.

\section*{Extended Eigensolver Interfaces to find largest/smallest eigenvalues}

The predefined interfaces include routines for standard and generalized eigenvalue problems and sparse matrices.
\begin{tabular}{lcl}
\hline Matrix Type & Standard Eigenvalue Problem & \begin{tabular}{l} 
Generalized Eigenvalue \\
Problem
\end{tabular} \\
\hline Sparse & mkl_sparse_?_ev & mkl_sparse_?_gv \\
\hline
\end{tabular}
```

mkl_sparse_?_ev
Computes the largest/smallest eigenvalues and
corresponding eigenvectors of a standard eigenvalue
problem
Syntax
stat = mkl_sparse_s_ev (which, pm, A, descrA, k0, k, E, X, res);
stat = mkl_sparse_d_ev (which, pm, A, descrA, k0, k, E, X, res);

```

Include Files
- mkl_solvers_ee.f90

\section*{Description}

The mkl_sparse_?_ev routine computes the largest/smallest eigenvalues and corresponding eigenvectors of a standard eigenvalue problem.
```

Ax = lambda x

```
where \(A\) is the real symmetric matrix.

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline which & CHARACTER \\
\hline & \begin{tabular}{l}
Indicates eigenvalues for which to search: \\
- which = 'L' indicates the largest eigenvalues. \\
- which = 'S' indicates the smallest eigenvalues.
\end{tabular} \\
\hline pm & C_INT \\
\hline & Array of size 128. This array is used to pass various parameters to Extended Eigensolver routines. See - Extended Eigensolver Input Parameters for Extremal Eigenvalue Problem for a complete description of the parameters and their default values. \\
\hline A & SPARSE_MATRIX_T \\
\hline & Handle containing sparse matrix in internal data structure. \\
\hline descrA & MATRIX_DESCR \\
\hline & Structure specifying sparse matrix properties. \\
\hline & sparse_matrix_type_t Specifies the type of a sparse matrix: \\
\hline & type •SPARSE_MATRIX_TYPE_GENERAL \\
\hline & \begin{tabular}{l}
The matrix is processed as-is. \\
-SPARSE_MATRIX_TYPE_SYMMETRIC
\end{tabular} \\
\hline & The matrix is symmetric (only the requested triangle is processed). \\
\hline & \begin{tabular}{ll} 
sparse_fill_mode_t & \begin{tabular}{l} 
Specifies the triangular matrix part for \\
symmetric, Hermitian, triangular, and block- \\
mode
\end{tabular} \\
triangular matrices:
\end{tabular} \\
\hline & -SPARSE_FILI_MODE_LONER \\
\hline & \begin{tabular}{l}
The lower triangular matrix part is processed. \\
-SPARSE_FILL_MODE_UPPER
\end{tabular} \\
\hline & The upper triangular matrix part is processed. \\
\hline & sparse_diag_type_t Specifies the diagonal type for non-general diag matrices: \\
\hline & -SPARSE_DIAG_NON_UNIT \\
\hline & \begin{tabular}{l}
Diagonal elements might not be equal to one. \\
- SPARSE DIAG UNIT
\end{tabular} \\
\hline
\end{tabular}
k0

\section*{Output Parameters}
k

E

X

Res

Stat

\section*{Return Values}
```

SPARSE_STATUS_SUCCESS
SPARSE_STATUS_NOT_INITIALIZED
SPARSE_STATUS_ALLOC_FAILED
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```

C_INT
Number of eigenvalues found.
C_FLOAT for mkl_sparse_s_ev
C_DOUBLE for mkl_sparse_d_ev
Array of size \(k 0\). Contains k largest/smallest eigenvalues.
C_FLOAT for mkl_sparse_s_ev
C_DOUBLE for mkl_sparse_d_ev
Array of size \(k 0^{*}\) Number of columns of the matrix A. Contains \(k\) eigenvectors.

C_FLOAT for mkl_sparse_s_ev
C_DOUBLE for mkl_sparse_d_ev
Array of size \(k 0\). Contains \(k\) residuals.
INTEGER
The function returns a value indicating whether the operation was successful or not, and why.

The operation was successful.
The routine encountered an empty handle or matrix array. Internal memory allocation failed.

The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_?_gv
Computes the largest/smallest eigenvalues and
corresponding eigenvectors of a generalized
eigenvalue problem
Syntax
```

stat = mkl_sparse_s_gv (which, pm, A, descrA, B, descrB, k0, k, E, X, res);
stat = mkl_sparse_d_gv (which, pm, A, descrA, B, descrB, k0, k, E, X, res);

```

\section*{Include Files}
- mkl_solvers_ee.f90

\section*{Description}

The mkl_sparse_?_gv routine computes the largest/smallest eigenvalues and corresponding eigenvectors of a generalized eigenvalue problem.
```

Ax = lambda Bx

```
where \(A\) is the real symmetric matrix and \(B\) is the real symmetric positive definite matrix.

\section*{Input Parameters}
which
pm

A
descrA

\section*{CHARACTER}

Indicates eigenvalues for which to search:
- which = 'L' indicates the largest eigenvalues.
- which = 'S' indicates the smallest eigenvalues.

C_INT
Array of size 128. This array is used to pass various parameters to Extended Eigensolver routines. See - Extended Eigensolver Input Parameters for Extremal Eigenvalue Problem for a complete description of the parameters and their default values.

SPARSE_MATRIX_T
Handle containing sparse matrix in internal data structure.
MATRIX_DESCR
Structure specifying sparse matrix properties.
sparse_matrix_type_t Specifies the type of a sparse matrix:
type
-SPARSE_MATRIX_TYPE_GENERAL
The matrix is processed as-is.
-SPARSE_MATRIX_TYPE_SYMMETRIC
The matrix is symmetric (only the requested triangle is processed).
sparse_fill_mode_t Specifies the triangular matrix part for mode symmetric, Hermitian, triangular, and blocktriangular matrices:
```

\bulletSPARSE_FILL_MODE_LOWER

```

The lower triangular matrix part is processed.
-SPARSE_FILL_MODE_UPPER
The upper triangular matrix part is processed.
sparse_diag_type_t Specifies the diagonal type for non-general diag

\section*{matrices:}
-SPARSE_DIAG_NON_UNIT

Diagonal elements might not be equal to one.
-SPARSE_DIAG_UNIT
Diagonal elements are equal to one

B
descrB
k0

\section*{Output Parameters}

C_INT
The desired number of the largest/smallest eigenvalues to find.
k

E
C_INT

Number of eigenvalues found.
C_FLOAT for mkl_sparse_s_gv
C_DOUBLE for mkl_sparse_d_gv
Array of size \(k 0\). Contains \(k\) largest/smallest eigenvalues.
```

X
C_FLOAT formkl_sparse_s_gv
C_DOUBLE formkl_sparse_d_gv
Array of size k **Number of columns of matrix A. Contains k
eigenvectors.
C_FLOAT formkl_sparse_s_gv
C_DOUBLE formkl_sparse_d_gv
Array of size k0. Contains k residuals.
INTEGER

```
    The function returns a value indicating whether the operation was
    successful or not, and why.

Return Values
SPARSE_STATUS_SUCCESS
SPARSE_STATUS_NOT_INITIALIZED
SPARSE_STATUS_ALLOC_FAILED
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED
The operation was successful.
The routine encountered an empty handle or matrix array.
Internal memory allocation failed.
The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.

\section*{Extended Eigensolver Interfaces to find largest/smallest singular values}

The predefined interfaces include routines to find the largest and smallest singular values and the corresponding singular vectors of sparse matrices.
\begin{tabular}{ll}
\hline Matrix Type & \begin{tabular}{l} 
Standard singular value \\
problem
\end{tabular} \\
\hline Sparse & mkl_sparse_?_svd \\
\hline
\end{tabular}
```

mkl_sparse_?_svd
Computes the largest/smallest singular values of a
singular-value problem
Syntax

```
```

stat = mkl_sparse_s_svd (whichS, whichV, pm, A, descrA, k0, k, E, XL, XR, res);

```
stat = mkl_sparse_s_svd (whichS, whichV, pm, A, descrA, k0, k, E, XL, XR, res);
stat = mkl_sparse_d_svd (whichS, whichV, pm, A, descrA, k0, k, E, XL, XR, res);
```

stat = mkl_sparse_d_svd (whichS, whichV, pm, A, descrA, k0, k, E, XL, XR, res);

```

Include Files
- mkl_solvers_ee.f90

\section*{Description}

The mkl_sparse_?_svd routine computes the largest/smallest singular values of a singular-value problem. AATx \(=\sigma x\) or ATAx \(=\sigma x\), where \(A\) is the real rectangular matrix.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Input Parameters} \\
\hline whichS & \multicolumn{2}{|l|}{CHARACTER} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
- whichS = 'L' indicates the largest eigenvalues. \\
- whichS = 'S' indicates the smallest eigenvalues.
\end{tabular}} \\
\hline whichV & \multicolumn{2}{|l|}{CHARACTER} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
- whichV = 'R' indicates right singular vectors. \\
- whichV = 'L' indicates left singular vectors.
\end{tabular}} \\
\hline pm & \multicolumn{2}{|l|}{C_INT} \\
\hline & \multicolumn{2}{|l|}{Array of size 128. This array is used to pass various parameters to Extended Eigensolver routines. See • Extended Eigensolver Input Parameters for Extremal Eigenvalue Problem for a complete description of the parameters and their default values.} \\
\hline \multirow[t]{2}{*}{A} & \multicolumn{2}{|l|}{SPARSE_MATRIX_T} \\
\hline & \multicolumn{2}{|l|}{Handle containing sparse matrix in internal data structure.} \\
\hline \multirow[t]{15}{*}{descrA} & \multicolumn{2}{|l|}{MATRIX_DESCR} \\
\hline & \multicolumn{2}{|l|}{Structure specifying sparse matrix properties.} \\
\hline & \multirow[t]{2}{*}{sparse_matrix_type_t type} & \begin{tabular}{l}
Specifies the type of a sparse matrix: \\
-SPARSE_MATRIX_TYPE_GENERAL
\end{tabular} \\
\hline & & \begin{tabular}{l}
The matrix is processed as-is. \\
-SPARSE_MATRIX_TYPE_SYMMETRIC
\end{tabular} \\
\hline & \multirow{5}{*}{sparse_fill_mode_t mode} & The matrix is symmetric (only the requested triangle is processed). \\
\hline & & Specifies the triangular matrix part for symmetric, Hermitian, triangular, and blocktriangular matrices: \\
\hline & & -SPARSE_FILL_MODE_LOWER \\
\hline & & The lower triangular matrix part is processed. \\
\hline & & -SPARSE_FILL_MODE_UPPER \\
\hline & & The upper triangular matrix part is processed. \\
\hline & sparse_diag_type_t diag & Specifies the diagonal type for non-general matrices: \\
\hline & & -SPARSE_DIAG_NON_UNIT \\
\hline & & Diagonal elements might not be equal to one. \\
\hline & & -SPARSE_DIAG_UNIT \\
\hline & & Diagonal elements are equal to one \\
\hline
\end{tabular}
k0
C_INT
The desired number of the largest/smallest eigenvalues to find.

\section*{Output Parameters}
k
C_INT
Number of eigenvalues found.

E
C_FLOAT for mkl_sparse_s_svd
C_DOUBLE for mkl_sparse_d_svd
Array of size \(k 0\). Contains \(k\) largest/smallest eigenvalues.
XL
Contains \(k\)-corresponding left singular vectors.
Contains \(k\)-corresponding right singular vectors.
C_FLOAT for mkl_sparse_s_svd
C_DOUBLE for mkl_sparse_d_svd
Array that contains \(k\) residuals.
INTEGER
The function returns a value indicating whether the operation was successful or not, and why.

\section*{Return Values}
```

SPARSE_STATUS_SUCCESS
SPARSE_STATUS_NOT_INITIALIZED
SPARSE_STATUS_ALLOC_FAILED
SPARSE_STATUS_INVALID_VALUE
SPARSE_STATUS_EXECUTION_FAILED
SPARSE_STATUS_INTERNAL_ERROR
SPARSE_STATUS_NOT_SUPPORTED

```

The operation was successful.
The routine encountered an empty handle or matrix array. Internal memory allocation failed.

The input parameters contain an invalid value.
Execution failed.
An error in algorithm implementation occurred.
The requested operation is not supported.
mkl_sparse_ee_init
Initializes Extended Eigensolver input parameters with
default values
Syntax
```

stat = mkl_sparse_ee_init (MKL_INT* pm);

```

Include Files
- mkl_solvers_ee.f90

\section*{Description}

This routine sets all Extended Eigensolver parameters to their default values.

\section*{Output Parameters}
\[
\begin{array}{ll}
\text { pm } & \text { C_INT } \\
& \text { Array of size } 128 . \text { This array is used to pass various parameters to } \\
\text { Extended Eigensolver routines. See • Extended Eigensolver Input } \\
& \text { Parameters for Extremal Eigenvalue Problem for a complete } \\
& \text { description of the parameters and their default values. }
\end{array}
\]

\section*{Extended Eigensolver Input Parameters for Extremal Eigenvalue Problem}

The input parameters for Extended Eigensolver routines are contained in an integer array named pm. To call the Extended Eigensolver interfaces, initialize this array using the mkl_sparse_ee_init routine.
\begin{tabular}{lll}
\hline Parameter & \begin{tabular}{l} 
Defa \\
ult
\end{tabular} & \begin{tabular}{l} 
Description \\
\(p m(1)\) \\
\hline 0
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Parameter & Defa ult & Description \\
\hline & & or \\
\hline & & \[
\frac{\|A x-\lambda B x\|}{|\lambda|}<10^{-p m(2)+1}
\] \\
\hline & & If 1 , the stopping criteria with respect to the true residuals is: \\
\hline & & \[
\| A x-\lambda x| |<10^{-p m(2)+1}
\] \\
\hline & & or \\
\hline & & \[
\| A x-\lambda B x| |<10^{-p m(2)+1}
\] \\
\hline & & for a generalized eigenproblem. \\
\hline & & The residual norm estimates are based on the magnitude of the last eigenvector of the Schur decomposition matrix and the exact formula can be found in the literature. When \(\mathrm{pm}(8)=0\), the residual norm estimate is additionally divided by the magnitude of the computed eigenvalue and compared to \(10^{(-\mathrm{pm}(2)+1)}\). \\
\hline pm (9) & 0 & Specifies if for detecting convergence the solver must compute the true residuals for eigenpairs for the Krylov-Schur method or it can only use the residual norm estimates. \\
\hline & & If 0 , only residual norm estimates are used. \\
\hline & & If 1 , the solver computes not just residual norm estimates but also the true residuals as defined in the description of \(\mathrm{pm}(8)\). \\
\hline \(p m(10)\) & 0 & \begin{tabular}{l}
Used only for the Krylov-Schur method and only as an output parameter. \\
Reports the reason for exiting the iteration loop of the method: \\
- If 0, the iterations stopped since convergence has been detected. \\
- If -1 , maximum number of iterations has been reached and even the residual norm estimates have not converged. \\
- If -2 , maximum number of iterations has been reached despite the residual norm estimates have converged (but the true residuals for eigenpairs have not). \\
- If -3 , the iterations stagnated and even the residual norm estimates have not converged. \\
- If -4, the iterations stagnated while the eigenvalues have converged (but the true residuals for eigenpairs do not).
\end{tabular} \\
\hline \[
\begin{aligned}
& p m(11) \text { to } \\
& p m(129)
\end{aligned}
\] & - & Reserved for future use. \\
\hline
\end{tabular}

\section*{Vector Mathematical Functions}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Vector Mathematics functions (VM) compute a mathematical function of each of the vector elements. VM includes a set of highly optimized functions (arithmetic, power, trigonometric, exponential, hyperbolic, special, and rounding) that operate on vectors of real and complex numbers.

Application programs that improve performance with VM include nonlinear programming software, computation of integrals, financial calculations, computer graphics, and many others.
VM functions fall into the following groups according to the operations they perform:
- VM Mathematical Functions compute values of mathematical functions, such as sine, cosine, exponential, or logarithm, on vectors stored contiguously in memory.
- VM Pack/Unpack Functions convert to and from vectors with positive increment indexing, vector indexing, and mask indexing (see Appendix "Vector Arguments in VM" for details on vector indexing methods).
- VM Service Functions set/get the accuracy modes and the error codes, and free memory.

The VM mathematical functions take an input vector as an argument, compute values of the respective function element-wise, and return the results in an output vector. All the VM mathematical functions can perform in-place operations, where the input and output arrays are at the same memory locations. For VM mathematical functions with positive increment indexing, in-place operations are supported only when the input and output increments have the same value.

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) interfaces are given in mkl_vml.f90; the mkl_vml.fi include file available in the previous versions of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) is retained for backward compatibility
Examples that demonstrate how to use the VM functions are located in:
\$ \{MKL\}/examples/vmlf/source
See VM performance and accuracy data in the online VM Performance and Accuracy Data document available at https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-documentation.html.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Vm Data Types, Accuracy Modes, and Performance Tips}

VM includes mathematical and pack/unpack vector functions for single and double precision vector arguments of real and compex types. Intel® oneAPI Math Kernel Library (oneMKL) provides Fortran and C interfaces for all VM functions, including the associated service functions. The Function Naming Conventions topic shows how to call these functions.
Performance depends on a number of factors, including vectorization and threading overhead. The recommended usage is as follows:
- Use VM for vector lengths larger than 40 elements.
- Use the Intel \({ }^{\circledR}\) Compiler for vector lengths less than 40 elements.

All VM vector functions support the following accuracy modes:
- High Accuracy (HA), the default mode
- Low Accuracy (LA), which improves performance by reducing accuracy of the two least significant bits
- Enhanced Performance (EP), which provides better performance at the cost of significantly reduced accuracy. Approximately half of the bits in the mantissa are correct.

Note that using the EP mode does not guarantee accurate processing of corner cases and special values. Although the default accuracy is HA, LA is sufficient in most cases. For applications that require less accuracy (for example, media applications, some Monte Carlo simulations, etc.), the EP mode may be sufficient.

VM handles special values in accordance with the C99 standard [C99].
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) offers both functions and environment variables to switch between modes for VM. See the Inte/® oneAPI Math Kernel Library (oneMKL) Developer Guide for details about the environment variables. Use the vmlsetmode (mode) function (see Table "Values of the mode Parameter") to switch between the HA, LA, and EP modes. The vmlgetmode () function returns the current mode.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{See Also}

Function Naming Conventions

\section*{VM Naming Conventions}

The VM function names are lowercase.
The VM mathematical and pack/unpack function names have the following structure:
```

v[m]<?><name><mod>

```
where
- \(\quad v\) is a prefix indicating vector operations.
- [ \(m\) ] is an optional prefix for mathematical functions that indicates additional argument to specify a VM mode for a given function call (see vmlsetmode for possible values and their description).
- <?> is a precision prefix that indicates one of the following data types:
\begin{tabular}{ll}
\(s\) & REAL \(\quad\) (KIND=4). \\
\(\boldsymbol{d}\) & REAL (KIND=8). \\
\(\boldsymbol{c}\) & COMPLEX (KIND=4). \\
\(\boldsymbol{z}\) & COMPLEX \(\quad(\mathrm{KIND}=8)\).
\end{tabular}
- <name> indicates the function short name. See examples in Table "VM Mathematical Functions".
- <mod> field is present only in the pack/unpack functions and indicates the indexing method used:
```

i indexing with a positive increment
v indexing with an index vector
m indexing with a mask vector.

```

The VM service function names have the following structure:
```

vm/<name>

```
where
<name> indicates the function short name. See examples in Table "VM Service Functions".
To call VM functions from an application program, use conventional function calls. For example, call the vector single precision real exponential function as
```

call vsexp (n, a, y)
call vmsexp (n, a, y, mode) with a specified mode

```

\section*{VM Function Interfaces}

VM interfaces include the function names and argument lists. The following sections describe the interfaces for the VM functions. Note that some of the functions have multiple input and output arguments
Some VM functions may also take scalar arguments as input. See the function description for the naming conventions of such arguments.

\section*{VM Mathematical Function Interfaces}
```

call v<?><name>(n, a, [scalar input arguments,]y)
call v<?><name>i(n, a, inca, [scalar input arguments,]y, incy)
call v<?><name>(n, a, b, [scalar input arguments,]y)
callv<?><name>i(n, a, inca, b, incb, [scalar input arguments,]y, incy)
call v<?><name>(}n,a,y,z
callv<?><name>i(n, a, inca, y, incy, z, incz)
call vm<?><name>(n, a, [scalar input arguments,]y, mode)
call vm<?><name>i(n, a, inca, [scalar input arguments,]y, incy, mode)
call vm<?><name>(n, a, b, [scalar input arguments,]y, mode)
callvm<?><name>i(n, a, inca, b, incb, [scalar input arguments,]y, incy, mode)
call vm<?><name>(n, a, y, z, mode)
callvm<?><name>i(n, a, inca, y, incy, z, incz, mode)

```

\section*{VM Mathematical Functions}

\section*{VM Pack Function Interfaces}
```

callv<?>packi(n, a, inca, y)
call v<?>packv(n, a, ia, y)
call v<?>packm(n, a, ma, y)

```

\section*{VM Unpack Function Interfaces}
```

call v<?>unpacki(n, a, y, incy)
call v<?>unpackv(n, a, y, iy)
call v<?>unpackm(n, a, y, my)

```

\section*{VM Service Function Interfaces}
```

oldmode = vmlsetmode(mode)
mode = vmlgetmode()
olderr = vmlseterrstatus (err)
err = vmlgeterrstatus()
olderr = vmlclearerrstatus()
oldcallback = vmlseterrorcallback(callback)
callback = vmlgeterrorcallback()
oldcallback = vmlclearerrorcallback()

```

Note that oldmode, olderr, and oldcallback refer to settings prior to the call.

\section*{VM Input Parameters}
\begin{tabular}{ll}
\(n\) & number of elements to be calculated \\
\(a\) & first input vector \\
\(b\) & second input vector \\
\(i n c a\) & vector increment for the input vector \(a\) \\
\(i n c b\) & vector increment for the input vector \(b\) \\
\(i a\) & index vector for the input vector \(a\) \\
\(m a\) & mask vector for the input vector \(a\)
\end{tabular}
\begin{tabular}{ll} 
incy & vector increment for the output vector \(y\) \\
incz & vector increment for the output vector \(z\) \\
iy & index vector for the output vector \(y\) \\
\(m y\) & mask vector for the output vector \(y\) \\
err & error code \\
mode & VM mode \\
callback & address of the callback function
\end{tabular}

\section*{VM Output Parameters}
\begin{tabular}{ll}
\(y\) & first output vector \\
\(z\) & second output vector \\
err & error code \\
mode & VM mode \\
olderr & former error code \\
oldmode & former VM mode \\
callback & address of the callback function \\
oldcallback & address of the former callback function
\end{tabular}

See the data types of the parameters used in each function in the respective function description section. All Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) VM mathematical functions can perform in-place operations. For VM mathematical functions with positive increment indexing, (for example, v?PowI), in-place operations are supported only when the input and output increments have the same value.

\section*{Vector Indexing Methods}

Classic VM mathematical functions work with unit stride. Strided VM mathematical functions (names with "I" suffix) work with arbitrary integer increments. Increments may be positive, negative or equal to zero. For example:
```

VSEXPI (n, a, inca, r, incr)

```
is equivalent to:
```

for (i=0; i<n; i++)
{
r[i * incr] = exp (a[i * inca]);
}
do i=1, n
r((i-1)*incr+1) = EXP (a((i-1)*inca+1))
end do

```
where
\(i\) - current index,
inca - input index increment,
incr - output index increment.
\(n\) - the number of elements to be computed (important: \(n\) is not the maximum array size).

So, when calling VSEXPI ( \(n\), \(a\), inca, \(r\), incr) be sure that the input vector \(a\) is allocated at least for 1 \(+(n-1) *\) inca elements and the result vector \(r\) has a space for \(1+(n-1) *\) incr elements.

NOTE The order of computations is not guaranteed and no array bounds-checking is performed; therefore, the results for overlapped and in-place arrays are not generally deterministic for increments other than 1.

For output index increment, equal to 0 , the result is not deterministic and generally nonsensical.
Use negative increments to step from base pointers in reverse order.
For example:
```

VSEXPI (n, a, -2, r, -3)

```
is equivalent to:
```

do i=1, n
r((i-1)*(-3)+1) = EXP (a((i-1)* (-2)+1));
end do

```

NOTE Pass pointers to the desired ending array element in memory as an argument for negative strides.

For example:
```

VSEXPI (n, a, 2, r(1000:), -3)

```

Use a zero increment for one fixed argument rather than an array.
For example:
```

VSMULI (n, a, 1, b, 0, r, 1)

```
is equivalent to:
```

do i=1, n
r(i) = a(i) * b(1)
end do

```

VM Pack/Unpack functions use the following indexing methods to do this task:
- positive increment
- index vector
- mask vector

The indexing method used in a particular function is indicated by the indexing modifier (see the description of the <mod> field in Function Naming Conventions). For more information on the indexing methods, see Vector Arguments in VM.

\section*{VM Pack/Unpack Functions}

\section*{VM Error Diagnostics}

The VM mathematical functions incorporate the error handling mechanism, which is controlled by the following service functions:


These functions operate with a global variable called VM Error Status. The VM Error Status flags an error, a warning, or a successful execution of a VM function.
vmlgeterrcallback, vmlseterrcallback, vmlclearerrcallback
vmlsetmode, vmlgetmode

These functions enable you to customize the error handling. For example, you can identify a particular argument in a vector where an error occurred or that caused a warning.

These functions get and set a VM mode. If you set a new VM mode using the vml setmode function, you can store the previous VM mode returned by the routine and restore it at any point of your application.

If both an error and a warning situation occur during the function call, the VM Error Status variable keeps only the value of the error code. See Table "Values of the VM Error Status" for possible values. If a VM function does not encounter errors or warnings, it sets the VM Error Status to VML_STATUS_OK.
If you use incorrect input arguments to a VM function (VML_STATUS_BADSIZE and VML_STATUS_BADMEM), the function calls xerbla to report errors. See Table "Values of the VM Error Status" for details.

You can use the vmlsetmode and vmlgetmode functions to modify error handling behavior. Depending on the VM mode, the error handling behavior includes the following operations:
- setting the VM Error Status to a value corresponding to the observed error or warning
- writing error text information to the stderr stream
- raising the appropriate exception on an error, if necessary
- calling the additional error handler callback function that is set by vmlseterrorcallback.

\section*{See Also}
vmlgeterrstatus Gets the VM Error Status.
vmlseterrstatus Sets the new VM Error Status according to err and stores the previous VM Error Status to olderrSets the global VM Status according to new values and returns the previous VM Status.
vmlclearerrstatus Sets the VM Error Status to VML_STATUS_OK and stores the previous VM Error Status to olderr.
vmlseterrorcallback Sets the additional error handler callback function and gets the old callback function.
vmlgeterrorcallback Gets the additional error handler callback function.
vmlclearerrorcallback Deletes the additional error handler callback function and retrieves the former callback function.
vmlgetmode Gets the VM mode.
vmlsetmode Sets a new mode for VM functions according to the mode parameter and stores the previous VM mode to oldmode.

\section*{VM Mathematical Functions}

This section describes VM functions that compute values of mathematical functions on real and complex vector arguments.
Each function is introduced by its short name, a brief description of its purpose, and the calling sequence for each type of data, as well as a description of the input/output arguments.
The input range of parameters is equal to the mathematical range of the input data type, unless the function description specifies input threshold values, which mark off the precision overflow, as follows:
- FLT_MAX denotes the maximum number representable in single precision real data type
- DBL_MAX denotes the maximum number representable in double precision real data type

Table "VM Mathematical Functions" lists available mathematical functions and associated data types.

\section*{VM Mathematical Functions}
Function Data Types Description

Arithmetic Functions
\begin{tabular}{|c|c|c|}
\hline Function & Data Types & Description \\
\hline v?add & \(s, d, c, z\) & Adds vector elements \\
\hline v?sub & \(s, d, c, z\) & Subtracts vector elements \\
\hline v?sqr & \(s, d\) & Squares vector elements \\
\hline v?mul & \(s, d, c, z\) & Multiplies vector elements \\
\hline v?mulbyconj & \(C, Z\) & Multiplies elements of one vector by conjugated elements of the second vector \\
\hline v?conj & C, \(Z\) & Conjugates vector elements \\
\hline v?abs & \(s, d, c, z\) & Computes the absolute value of vector elements \\
\hline v?arg & \(c, z\) & Computes the argument of vector elements \\
\hline v?linearfrac & \(s, d\) & Performs linear fraction transformation of vectors \\
\hline v? fmod & \(s, d\) & Performs element by element computation of the modulus function of vector \(a\) with respect to vector \(b\) \\
\hline v?remainder & \(s, d\) & Performs element by element computation of the remainder function on the elements of vector \(a\) and the corresponding elements of vector b \\
\hline
\end{tabular}

\section*{Power and Root Functions}
```

v?inv
v?div
v?sqre
v?invsqrt
v?cbrt
v?invcbrt s,d
v?pow203 s,d
v?pow3o2 s,d
v?pow s,d,c,z
v?powx s,d,c,z
v?powr s,d
v?hypot

```

\section*{Exponential and Logarithmic Functions}
\begin{tabular}{ll} 
v?exp & \(s, d, c, z\) \\
v?exp2 & \(s, d\) \\
v?exp10 & \(s, d\) \\
v?expm1 & \(s, d\) \\
v?ln & \(s, d, c, z\) \\
v?log2 & \(s, d\) \\
v?log10 & \(s, d, c, z\) \\
v?log1p & \(s, d\) \\
v?logb & \(s, d\)
\end{tabular}

\section*{Trigonometric Functions}
```

v?cos
v?sin
v?sincos
v?cis c, z
v?tan
v?acos
v?asin
v?atan
v?atan2
s,d,c,z
s,d,c,z
s,d
s,d, c, z
s,d,c,z
s,d,c,z
s,d,c,z
s,d

```

Inverts vector elements
Divides elements of one vector by elements of the second vector Computes the square root of vector elements
Computes the inverse square root of vector elements
Computes the cube root of vector elements
Computes the inverse cube root of vector elements
Computes the cube root of the square of each vector element
Computes the square root of the cube of each vector element
Raises each vector element to the specified power
Raises each vector element to the constant power
Computes \(a\) to the power \(b\) for elements of two vectors, where the elements of vector argument \(a\) are all non-negative
Computes the square root of sum of squares

Computes the base e exponential of vector elements
Computes the base 2 exponential of vector elements
Computes the base 10 exponential of vector elements
Computes the base e exponential of vector elements decreased by 1
Computes the natural logarithm of vector elements
Computes the base 2 logarithm of vector elements
Computes the base 10 logarithm of vector elements
Computes the natural logarithm of vector elements that are increased by 1
Computes the exponents of the elements of input vector a

Computes the cosine of vector elements
Computes the sine of vector elements
Computes the sine and cosine of vector elements
Computes the complex exponent of vector elements (cosine and sine combined to complex value)
Computes the tangent of vector elements
Computes the inverse cosine of vector elements
Computes the inverse sine of vector elements
Computes the inverse tangent of vector elements
Computes the four-quadrant inverse tangent of ratios of the elements of two vectors
\begin{tabular}{|c|c|c|}
\hline Function & Data Types & Description \\
\hline v?cospi & \(s, d\) & Computes the cosine of vector elements multiplied by п \\
\hline v?sinpi & \(s, d\) & Computes the sine of vector elements multiplied by п \\
\hline v?tanpi & \(s, d\) & Computes the tangent of vector elements multiplied by п \\
\hline v?acospi & \(s, d\) & Computes the inverse cosine of vector elements divided by \(п\) \\
\hline v?asinpi & \(s, d\) & Computes the inverse sine of vector elements divided by \(п\) \\
\hline v?atanpi & \(s, d\) & Computes the inverse tangent of vector elements divided by \(п\) \\
\hline v?atan2pi & \(s, d\) & Computes the four-quadrant inverse tangent of the ratios of the corresponding elementss of two vectors divided by \(п\) \\
\hline \(v ? \operatorname{cosd}\) & \(s, d\) & Computes the cosine of vector elements multiplied by \(п / 180\) \\
\hline v?sind & \(s, d\) & Computes the sine of vector elements multiplied by \(\pi / 180\) \\
\hline v?tand & \(s, d\) & Computes the tangent of vector elements multiplied by \(п / 180\) \\
\hline \multicolumn{3}{|l|}{Hyperbolic Functions} \\
\hline v?cosh & \(s, d, c, z\) & Computes the hyperbolic cosine of vector elements \\
\hline \(v ?\) sinh & \(s, d, c, z\) & Computes the hyperbolic sine of vector elements \\
\hline \(v ?\) tanh & \(s, d, c, z\) & Computes the hyperbolic tangent of vector elements \\
\hline v?acosh & \(s, d, c, z\) & Computes the inverse hyperbolic cosine of vector elements \\
\hline v?asinh & \(s, d, c, z\) & Computes the inverse hyperbolic sine of vector elements \\
\hline v?atanh & \(s, d, c, z\) & Computes the inverse hyperbolic tangent of vector elements. \\
\hline \multicolumn{3}{|l|}{Special Functions} \\
\hline v?erf & \(s, d\) & Computes the error function value of vector elements \\
\hline v?erfc & \(s, d\) & Computes the complementary error function value of vector elements \\
\hline v?cdfnorm & \(s, d\) & Computes the cumulative normal distribution function value of vector elements \\
\hline v?erfinv & \(s, d\) & Computes the inverse error function value of vector elements \\
\hline v?erfcinv & \(s, d\) & Computes the inverse complementary error function value of vector elements \\
\hline v?cdfnorminv & \(s, d\) & Computes the inverse cumulative normal distribution function value of vector elements \\
\hline v?lgamma & \(s, d\) & Computes the natural logarithm for the absolute value of the gamma function of vector elements \\
\hline v?tgamma & \(s, d\) & Computes the gamma function of vector elements \\
\hline v?expint1 & \(s, d\) & Computes the exponential integral of vector elements \\
\hline \multicolumn{3}{|l|}{Rounding Functions} \\
\hline v?floor & \(s, d\) & Rounds towards minus infinity \\
\hline v?ceil & \(s, d\) & Rounds towards plus infinity \\
\hline v?trunc & \(s, d\) & Rounds towards zero infinity \\
\hline v?round & \(s, d\) & Rounds to nearest integer \\
\hline v?nearbyint & \(s, d\) & Rounds according to current mode \\
\hline v?rint & \(s, d\) & Rounds according to current mode and raising inexact result exception \\
\hline \(v ? m o d f\) & \(s, d\) & Computes the integer and fractional parts \\
\hline v?frac & \(s, d\) & Computes the fractional part \\
\hline \multicolumn{3}{|l|}{Miscellaneous Functions} \\
\hline v?copysign & \(s, d\) & Returns vector of elements of one argument with signs changed to match other argument elements \\
\hline v?nextafter & \(s, d\) & Returns vector of elements containing the next representable floating-point values following the values from the elements of one vector in the direction of the corresponding elements of another vector \\
\hline v?fdim & \(s, d\) & Returns vector containing the differences of the corresponding elements of the vector arguments if the first is larger and +0 otherwise \\
\hline v?fmax & \(s, d\) & Returns the larger of each pair of elements of the two vector arguments \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Function & Data Types & Description \\
\hline v?fmin & \(s, d\) & \begin{tabular}{l} 
Returns the smaller of each pair of elements of the two vector \\
arguments
\end{tabular} \\
v?maxmag & \(s, d\) & \begin{tabular}{l} 
Returns the element with the larger magnitude between each pair of \\
elements of the two vector arguments \\
Returns the element with the smaller magnitude between each pair \\
of elements of the two vector arguments
\end{tabular} \\
\hline
\end{tabular}

\section*{Special Value Notations}

This topic defines notations of special values for complex functions. The definitions are provided in text, tables, or formulas.
- \(z, z 1, z 2\), etc. denote complex numbers.
- \(i, i^{2}=-1\) is the imaginary unit.
- \(x, X, x 1, x 2\), etc. denote real imaginary parts.
- \(y, Y, y 1, y 2\), etc. denote imaginary parts.
- \(X\) and \(Y\) represent any finite positive IEEE-754 floating point values, if not stated otherwise.
- Quiet NaN and signaling NaN are denoted with QNAN and SNAN, respectively.
- The IEEE-754 positive infinities or floating-point numbers are denoted with a + sign before \(X, Y\), etc.
- The IEEE-754 negative infinities or floating-point numbers are denoted with a - sign before \(X, Y\), etc.
\(\operatorname{CONJ}(z)\) and CIS (z) are defined as follows:
\(\operatorname{CONJ}(x+i \cdot y)=x-i \cdot y\)
\(\operatorname{CIS}(\mathrm{y})=\cos (\mathrm{y})+\mathrm{i} \cdot \sin (\mathrm{y})\).
The special value tables show the result of the function for the \(z\) argument at the intersection of the RE (z) column and the \(i^{*} I M(z)\) row. If the function raises an exception on the argument \(z\), the lower part of this cell shows the raised exception and the VM Error Status. An empty cell indicates that this argument is normal and the result is defined mathematically.

\section*{Arithmetic Functions}

Arithmetic functions perform the basic mathematical operations like addition, subtraction, multiplication or computation of the absolute value of the vector elements.
v?Add
Performs element by element addition of vector \(a\) and vector \(b\).

\section*{Syntax}
```

call vsadd(n, a, b, y)
call vsaddi(n, a, inca, b, incb, y, incy)
call vmsadd(n, a, b, y, mode)
call vmsaddi(n, a, inca, b, incb, y, incy, mode)
call vdadd(n, a, b, y)
call vdaddi(n, a, inca, b, incb, y, incy)
call vmdadd(n, a, b, y, mode)
call vmdaddi(n, a, inca, b, incb, y, incy, mode)
call vcadd(n, a, b, y)
call vcaddi(n, a, inca, b, incb, y, incy)

```
```

call vmcadd(n, a, b, y, mode)
call vmcaddi(n, a, inca, b, incb, y, incy, mode)
call vzadd(n, a, b, y)
call vzaddi(n, a, inca, b, incb, y, incy)
call vmzadd(}n,a,b,y, mode
call vmzaddi(n, a, inca, b, incb, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{7}{*}{\(a, b\)} & DOUBLE PRECISION for vdadd, vmdadd \\
\hline & COMPLEX for vcadd, vmcadd \\
\hline & DOUBLE COMPLEX for vzadd, vmzadd \\
\hline & REAL, INTENT (IN) for vsAdd, vmsAdd \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdadd, vmdadd \\
\hline & COMPLEX, INTENT (IN) for vcadd, vmcadd \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzadd, vmzadd \\
\hline inca, incb, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER(KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Arrays that specify the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).
```

Name Type Description
DOUBLE PRECISION, INTENT (OUT) for
vdadd, vmdadd
COMPLEX, INTENT (OUT) for vcadd,
vmcadd
DOUBLE COMPLEX, INTENT (OUT) for
vzadd, vmzadd

```

\section*{Description}

The v ? Add function performs element by element addition of vector \(a\) and vector \(b\).
Special values for Real Function v?Add
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline+0 & +0 & +0 & \\
+0 & -0 & +0 & \\
-0 & +0 & +0 & \\
-0 & -0 & -0 & INVALID \\
\(+\infty\) & \(+\infty\) & \(+\infty\) & INVALID \\
\(+\infty\) & \(-\infty\) & QNAN & \\
\(-\infty\) & \(+\infty\) & QNAN & INVALID \\
\(-\infty\) & \(-\infty\) & \(-\infty\) & INVALID \\
SNAN & any value & QNAN & \\
any value & SNAN & QNAN & \\
QNAN & non-SNAN & QNAN & \\
non-SNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
```

Add(x1+i*y1,x2+i*y2) = (x1+x2) + i*(y1+y2)

```

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE (x), RE (y), \(\operatorname{IM}(x)\), IM ( \(y\) ) arguments are finite numbers, but the real or imaginary part of the computed result is so large that it does not fit the target precision. In this case, the function returns \(\infty\) in that part of the result, raises the OVERFLOW exception, and sets the VM Error Status to VML_STATUS_OVERFLOW (overriding any possible VML_STATUS_ACCURACYWARNING status).
v?Sub
Performs element by element subtraction of vector b from vector a.

\section*{Syntax}
```

call vssub(n, a, b, y)
call vssubi(n, a, inca, b, incb, y, incy)
call vmssub(n, a, b, y, mode)
call vmssubi(n, a, inca, b, incb, y, incy, mode)
call vdsub(n, a, b, y)
call vdsubi(n, a, inca, b, incb, y, incy)
call vmdsub(n, a, b, y, mode)

```
```

call vmdsubi(n, a, inca, b, incb, y, incy, mode)
call vcsub(n, a, b, y)
call vcsubi(n, a, inca, b, incb, y, incy)
call vmcsub(}n,a,b,y,mode
call vmcsubi(n, a, inca, b, incb, y, incy, mode)
call vzsub(}n,a,b,y
call vzsubi(n, a, inca, b, incb, y, incy)
call vmzsub(n, a, b, y, mode)
call vmzsubi(n, a, inca, b, incb, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{7}{*}{\(a, b\)} & DOUBLE PRECISION for vdsub, vmdsub \\
\hline & COMPLEX for vcsub, vmcsub \\
\hline & DOUBLE COMPLEX for vzsub, vmzsub \\
\hline & REAL, INTENT (IN) for vssub, vmssub \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdsub, vmdsub \\
\hline & COMPLEX, INTENT (IN) for vcsub, vmcsub \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzsub, vmzsub \\
\hline \[
\begin{aligned}
& \text { inca, incb, } \\
& \text { incy }
\end{aligned}
\] & INTEGER, INTENT(IN) \\
\hline mode & INTEGER (KIND=8), INTENT (IN) \\
\hline
\end{tabular}
mode

\section*{Description}

Specifies the number of elements to be calculated.

Arrays that specify the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).
Name Type Description
```

COMPLEX for vcsub, vmcsub
DOUBLE COMPLEX for vzsub, vmzsub
REALINTENT (OUT) for vssub, vmssub
DOUBLE PRECISION, INTENT (OUT) for
vdsub, vmdsub
COMPLEX, INTENT (OUT) for vcsub,
vmcsub
DOUBLE COMPLEX, INTENT (OUT) for
vzsub, vmzsub

```

\section*{Description}

The v? Sub function performs element by element subtraction of vector \(b\) from vector \(a\).

\section*{Special values for Real Function v?Sub(x)}
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline+0 & +0 & +0 & \\
+0 & -0 & +0 & \\
-0 & +0 & -0 & \\
-0 & -0 & +0 & INVALID \\
\(+\infty\) & \(+\infty\) & \(+\infty\) & \\
\(+\infty\) & \(-\infty\) & \(-\infty\) & INVALID \\
\(-\infty\) & \(+\infty\) & QNAN & INVALID \\
\(-\infty\) & \(-\infty\) & QNAN & INVALID \\
SNAN & any value & QNAN & \\
any value & SNAN & QNAN & \\
QNAN & non-SNAN & QNAN & \\
non-SNAN & & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
```

Sub(x1+i*y1,x2+i*y2) = (x1-x2) + i*(y1-y2).

```

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE (x), RE (y), \(\operatorname{IM}(x)\), IM ( \(y\) ) arguments are finite numbers, but the real or imaginary part of the computed result is so large that it does not fit the target precision. In this case, the function returns \(\infty\) in that part of the result, raises the OVERFLOW exception, and sets the VM Error Status to VML_STATUS_OVERFLOW (overriding any possible VML_STATUS_ACCURACYWARNING status).

\section*{v?Sqr}

Performs element by element squaring of the vector.

\section*{Syntax}
```

call vssqr(n, a, y)
call vssqri(n, a, inca, y, incy)
call vmssqr(n, a, y, mode)
call vmssqri(n, a, inca, y, incy, mode)

```
```

call vdsqr(n, a, y)
call vdsqri(n, a, inca, y, incy)
call vmdsqr(n, a, y, mode)
call vmdsqri(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \(n\) & INTEGER, INTENT (IN) & Specifies the number of elements to be calculated. \\
\hline \multirow[t]{3}{*}{a} & DOUBLE PRECISION for vdsqr, vmdsqr & Array that specifies the input vector \(\mathrm{a}^{\text {. }}\) \\
\hline & REAL, INTENT (IN) for vssqr, vmssqr & \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdsqr, vmdsqr & \\
\hline inca, incy & INTEGER, INTENT(IN) & Specifies increments for the elements of \(a\) and \(y\). \\
\hline mode & INTEGER (KIND=8), INTENT ( IN) & Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
\(y\) & DOUBLE PRECISION for vdsqr, & Array that specifies the output vector \(y\). \\
& vmdsqr \\
& REAL, INTENT (OUT) for vSSqr, \\
& vmssqr \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdsqr, vmdsqr
\end{tabular}

\section*{Description}

The v?Sqr function performs element by element squaring of the vector.
Special Values for Real Function v?Sqr(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & +0 & \\
\(+\infty\) & \(+\infty\) & \\
\(-\infty\) & \(+\infty\) & INVALID \\
\hline QNAN & QNAN & \\
\hline SNAN & QNAN & \\
\hline
\end{tabular}
```

v?Mul
Performs element by element multiplication of vector
a and vector b.

```

\section*{Syntax}
```

call vsmul(n, a, b, y)
call vsmuli(n, a, inca, b, incb, y, incy)
call vmsmul(n, a, b, y, mode)
call vmsmuli(n, a, inca, b, incb, y, incy, mode)
call vdmul(n, a, b, y)
call vdmuli(n, a, inca, b, incb, y, incy)
call vmdmul(n, a, b, y, mode)
call vmdmuli(n, a, inca, b, incb, y, incy, mode)
call vcmul(n, a, b, y)
call vcmuli(n, a, inca, b, incb, y, incy)
call vmcmul(}n,a,b,y, mode
call vmcmuli(n, a, inca, b, incb, y, incy, mode)
call vzmul(n, a, b, y)
call vzmuli(n, a, inca, b, incb, y, incy)
call vmzmul(n, a, b, y, mode)
call vmzmuli(n, a, inca, b, incb, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \(n\) & INTEGER, INTENT (IN) & Specifies the number of elements to be calculated. \\
\hline \multirow[t]{7}{*}{\(a, b\)} & DOUBLE PRECISION for vdmul, vmdmul & Arrays that specify the input vectors \(a\) and \(b\). \\
\hline & COMPLEX for vcmul, vmcmul & \\
\hline & DOUBLE COMPLEX for vzmul, vmzmul & \\
\hline & REAL, INTENT (IN) for vsmul, vmsmul & \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdmul, vmdmul & \\
\hline & COMPLEX, INTENT (IN) for vcmul, vmcmul & \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzmul, vmzmul & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Name & Type \\
\begin{tabular}{l} 
inca, incb, \\
incy
\end{tabular} & INTEGER, INTENT(IN) \\
mode & INTEGER(KIND=8), INTENT (IN)
\end{tabular}

\section*{Output Parameters}
```

Name Type
y
DOUBLE PRECISION for vdmul,
vmdmul
COMPLEX, for vcmul, vmcmul
DOUBLE COMPLEX for vzmul, vmzmul
REAL, INTENT (OUT) for vsmul,
vmsmul
DOUBLE PRECISION, INTENT (OUT) for
vdmul, vmdmul
COMPLEX, INTENT (OUT) for vcmul,
vmcmul
DOUBLE COMPLEX, INTENT (OUT) for
vzmul, vmzmul

```

\section*{Description}

The v?Mul function performs element by element multiplication of vector \(a\) and vector \(b\).
Special values for Real Function v?Mul(x)
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline+0 & +0 & +0 & \\
+0 & -0 & -0 & \\
-0 & +0 & -0 & \\
-0 & -0 & +0 & INVALID \\
+0 & \(+\infty\) & QNAN & INVALID \\
+0 & \(-\infty\) & QNAN & INVALID \\
-0 & \(+\infty\) & QNAN & INVALID \\
-0 & \(-\infty\) & QNAN & INVALID \\
\(+\infty\) & +0 & QNAN & INVALID \\
\(+\infty\) & -0 & QNAN & INVALID \\
\(-\infty\) & +0 & QNAN & INVALID \\
\(-\infty\) & -0 & \(+\infty\) & \\
\(+\infty\) & \(+\infty\) & \(-\infty\) & \\
\(+\infty\) & \(-\infty\) & \(-\infty\) & INVALID
\end{tabular}
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline any value & SNAN & QNAN & INVALID \\
QNAN & non-SNAN & QNAN & \\
non-SNAN & QNAN & QNAN & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
\(\operatorname{Mul}\left(x 1+i^{\star} y 1, x 2+i^{\star} y 2\right)=\left(x 1^{\star} x 2-y 1^{\star} y 2\right)+i *\left(x 1^{\star} y 2+y 1^{*} x 2\right)\).
Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE (x), RE (y), IM ( x ), IM ( y ) arguments are finite numbers, but the real or imaginary part of the computed result is so large that it does not fit the target precision. In this case, the function returns \(\infty\) in that part of the result, raises the OVERFLOW exception, and sets the VM Error Status to VML_STATUS_OVERFLOW (overriding any possible VML_STATUS_ACCURACYWARNING status).
```

v?MulByConj
Performs element by element multiplication of vector
a element and conjugated vector b element.

```
Syntax
```

call vcmulbyconj(n, a, b, y)
call vsmulbyconji(n, a, inca, b, incb, y, incy)
call vmcmulbyconj(}n,a,b,y,mode
call vmsmulbyconji(n, a, inca, b, incb, y, incy, mode)
call vzmulbyconj(n, a, b, y)
call vdmulbyconji(n, a, inca, b, incb, y, incy)
call vmzmulbyconj(n, a, b, y, mode)
call vmdmulbyconji(n, a, inca, b, incb, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a, b\) & \begin{tabular}{l} 
DOUBLE COMPLEX for vzmulbyconj, \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
Vmzmulbyconj \\
vomplex, INTENT (IN) for \\
incy incb, \\
incy
\end{tabular}
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Arrays that specify the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).
\begin{tabular}{ll} 
Name & Type \\
mode & INTEGER (KIND=8), INTENT (IN)
\end{tabular}

\section*{Output Parameters}
```

Name Type
y DOUBLE COMPLEX for vzmulbyconj,
vmzmulbyconj
COMPLEX, INTENT (OUT) for
vcmulbyconj, vmcmulbyconj
DOUBLE COMPLEX, INTENT (OUT) for
vzmulbyconj, vmzmulbyconj

```

\section*{Description}

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The v?MulByConj function performs element by element multiplication of vector a element and conjugated vector \(b\) element.

Specifications for special values of the functions are found according to the formula
```

MulByConj(x1+i*y1,x2+i*y2) = Mul(x1+i*y1,x2-i*y2).

```

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE (x), RE (y), IM \((x)\), IM ( \(y\) ) arguments are finite numbers, but the real or imaginary part of the computed result is so large that it does not fit the target precision. In this case, the function returns \(\infty\) in that part of the result, raises the OVERFLOW exception, and sets the VM Error Status to VML_STATUS_OVERFLOW (overriding any possible VML_STATUS_ACCURACYWARNING status).
v?Conj
Performs element by element conjugation of the vector.

\section*{Syntax}
```

call vcconj(n, a, y)
call vcconji(n, a, inca, y, incy)
call vmcconj(n, a, y, mode)
call vmcconji(n, a, inca, y, incy, mode)
call vzconj(n, a, y)
call vzconji(n, a, inca, y, incy)
call vmzconj(n, a, y, mode)
call vmzconji(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a\) & \begin{tabular}{l} 
DOUBLE COMPLEX, INTENT (IN) for \\
vzconj, vmzconj \\
\\
COMPLEX, INTENT (IN) for vcconj, \\
\\
\\
\\
vmcconj \\
inca, incy \\
moUBLE COMPLEX, INTENT (IN) for \\
mzconj, vmzconj
\end{tabular} \\
& INTEGER, INTENT(IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name
y
DOUBLE COMPLEX for vzconj,
vmzconj
COMPLEX, INTENT (OUT) for vcconj,
vmcconj
DOUBLE COMPLEX, INTENT (OUT) for
vzconj, vmzconj

```

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The v ? Conj function performs element by element conjugation of the vector.
No special values are specified. The function does not raise floating-point exceptions.
v?Abs
Computes absolute value of vector elements.

\section*{Syntax}
```

call vsabs(n, a, y)
call vsabsi(n, a, inca, y, incy)
call vmsabs(n, a, y, mode)
call vmsabsi(n, a, inca, y, incy, mode)
call vdabs(n, a, y)
call vdabsi(n, a, inca, y, incy)
call vmdabs(n, a, y, mode)
call vmdabsi(n, a, inca, y, incy, mode)
call vcabs(n, a, y)

```
```

call vcabsi(n, a, inca, y, incy)
call vmcabs(n, a, y, mode)
call vmcabsi(n, a, inca, y, incy, mode)
call vzabs(n, a, y)
call vzabsi(n, a, inca, y, incy)
call vmzabs(n, a, y, mode)
call vmzabsi(n, a, inca, y, incy, mode)
Include Files

```
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{7}{*}{a} & DOUBLE PRECISION for vdabs, vmdabs \\
\hline & COMPLEX for vcabs, vmcabs \\
\hline & DOUBLE COMPLEX for vzabs, vmzabs \\
\hline & REAL, INTENT (IN) for vsabs, vmsabs \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdabs, vmdabs \\
\hline & COMPLEX, INTENT (IN) for vcabs, vmcabs \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzabs, vmzabs \\
\hline inca, incy & INTEGER, INTENT (IN) \\
\hline mode & INTEGER(KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The \(v ? A b s\) function computes an absolute value of vector elements.
Special Values for Real Function v?Abs(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & +0 & \\
\(+\infty\) & \(+\infty\) & \\
\(-\infty\) & \(+\infty\) & INVALID \\
QNAN & QNAN & \\
SNAN & QNAN & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
```

Abs(z)= Hypot(RE(z),IM(z)).

```
v?Arg
Computes argument of vector elements.

\section*{Syntax}
```

call vcarg(n, a, y)
call vcargi(n, a, inca, y, incy)
call vmcarg(n, a, y, mode)
call vmcargi(n, a, inca, y, incy, mode)
call vzarg(n, a, y)
call vzargi(n, a, inca, y, incy)
call vmzarg(n, a, y, mode)
call vmzargi(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}

\section*{Name}
n
a
inca, incy

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
\begin{tabular}{ll} 
Name & Type \\
mode & INTEGER (KIND=8), INTENT (IN)
\end{tabular}

\section*{Description}

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & DOUBLE PRECISION for vzarg, \\
& vmzarg \\
& REAL, INTENT (OUT) for vcarg, \\
& vmcarg \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vzarg, vmzarg
\end{tabular}

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The v?Arg function computes argument of vector elements.
See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Arg(z)
\begin{tabular}{|c|l|l|l|l|l|l|l|}
\hline \begin{tabular}{c}
\(\mathbf{R E}(\mathbf{z})\) \\
\(\mathbf{i} \cdot \mathbf{I M}(\mathbf{z}\) \\
\(\mathbf{r}\)
\end{tabular} & \(\mathbf{- \infty}\) & \(\mathbf{- X}\) & \(\mathbf{- 0}\) & \(\mathbf{+ 0}\) & \(\mathbf{+ X}\) & \(\mathbf{+ \infty}\) & \(\mathbf{+}\) \\
\hline\(+\mathrm{i} \cdot \infty\) & \(+3 \cdot \pi / 4\) & \(+\pi / 2\) & \(+\pi / 2\) & \(+\pi / 2\) & \(+\pi / 2\) & \(+\pi / 4\) & NAN \\
\hline\(+\mathrm{i} \cdot \mathrm{Y}\) & \(+\pi\) & & \(+\pi / 2\) & \(+\pi / 2\) & & +0 & NAN \\
\hline\(+\mathrm{i} \cdot 0\) & \(+\pi\) & \(+\pi\) & \(+\pi\) & +0 & +0 & +0 & NAN \\
\hline\(-\mathrm{i} \cdot 0\) & \(-\pi\) & \(-\pi\) & \(-\pi\) & -0 & -0 & -0 & NAN \\
\hline\(-\mathrm{i} \cdot \mathrm{Y}\) & \(-\pi\) & & \(-\pi / 2\) & \(-\pi / 2\) & & -0 & NAN \\
\hline\(-\mathrm{i} \cdot \infty\) & \(-3 \cdot \pi / 4\) & \(-\pi / 2\) & \(-\pi / 2\) & \(-\pi / 2\) & \(-\pi / 2\) & \(-\pi / 4\) & NAN \\
\hline\(+\mathrm{i} \cdot \mathrm{NAN}\) & NAN \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when real or imaginary part of the argument is SNAN
- \(\operatorname{Arg}(z)=A \tan 2(\operatorname{IM}(z), \operatorname{RE}(z))\).
v?LinearFrac
Performs linear fraction transformation of vectors a and \(b\) with scalar parameters.

\section*{Syntax}
```

call vslinearfrac(n, a, b, scalea, shifta, scaleb, shiftb, y)
call vslinearfraci(n, a, inca, b, incb, scalea, shifta, scaleb, shiftb, y, incy)
call vmslinearfrac(n, a, b, scalea, shifta, scaleb, shiftb, y, mode)
call vmslinearfraci(n, a, inca, b, incb, scalea, shifta, scaleb, shiftb, y, incy, mode)
call vdlinearfrac(n, a, b, scalea, shifta, scaleb, shiftb, y)

```
```

call vdlinearfraci(n, a, inca, b, incb, scalea, shifta, scaleb, shiftb, y, incy)
call vmdlinearfrac(n, a, b, scalea, shifta, scaleb, shiftb, y, mode)
call vmdlinearfraci(n, a, inca, b, incb, scalea, shifta, scaleb, shiftb, y, incy, mode)
Include Files

```
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \(a, b\) & \begin{tabular}{l}
DOUBLE PRECISION for vdlinearfrac, vmdlinearfrac REAL, INTENT (IN) for vslinearfrac, vmslinearfrac \\
DOUBLE PRECISION, INTENT (IN) for vdlinearfrac, vmdlinearfrac
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { inca, incb, } \\
& \text { incy }
\end{aligned}
\] & INTEGER, INTENT(IN) \\
\hline scalea, scaleb & \begin{tabular}{l}
DOUBLE PRECISION for vdlinearfrac, vmdlinearfrac REAL, INTENT (IN) for vslinearfrac, vmslinearfrac \\
DOUBLE PRECISION, INTENT (IN) for vdlinearfrac, vmdlinearfrac
\end{tabular} \\
\hline shifta, shiftb & \begin{tabular}{l}
DOUBLE PRECISION for vdlinearfrac, vmdlinearfrac REAL, INTENT (IN) for vslinearfrac, vmslinearfrac \\
DOUBLE PRECISION, INTENT (IN) for vdlinearfrac, vmdlinearfrac
\end{tabular} \\
\hline mode & INTEGER (KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Arrays that specify the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Constant values for scaling multipliers of vectors \(a\) and \(b\).

Constant values for shifting addends of vectors a and \(b\).

Overrides global VM mode setting for this function call. See vmisetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & DOUBLE PRECISION for \\
& vdlinearfrac, vmdlinearfrac \\
& REAL, INTENT (OUT) for \\
& vslinearfrac, vmslinearfrac
\end{tabular}

\section*{Description}

Array that specifies the output vector \(y\).
```

Name Type Description
DOUBLE PRECISION, INTENT (OUT) for
vdlinearfrac, vmdlinearfrac

```

\section*{Description}

The v?LinearFrac function performs a linear fraction transformation of vector \(a\) by vector \(b\) with scalar parameters: scaling multipliers scalea, scaleb and shifting addends shifta, shiftb:
\(y[i]=(s c a l e a \cdot a[i]+\) shifta \() /(s c a l e b \cdot b[i]+s h i f t b), i=1,2 \ldots n\)
The v? LinearFrac function is implemented in the EP accuracy mode only, therefore no special values are defined for this function. If used in HA or LA mode, v? LinearFrac sets the VM Error Status to VML_STATUS_ACCURACYWARNING (see the Values of the VM Status table). Correctness is guaranteed within the threshold limitations defined for each input parameter (see the table below); otherwise, the behavior is unspecified.
```

Threshold Limitations on Input Parameters
$2^{\mathrm{E}_{\text {MIN }} / 2} \leq \mid$ scalea $\mid \leq 2^{\left(\mathrm{E}_{\text {MAX }}-2\right) / 2}$
$2^{\mathrm{E}_{\text {MIN }} / 2} \leq \mid$ scaleb $\mid \leq 2^{\left(\mathrm{E}_{\text {MAX }}-2\right) / 2}$
\mid shifta| $\leq 2^{\mathrm{E}_{\text {max }}-2}$
\mid shiftb| $\leq 2^{E_{\text {max }}-2}$
$2^{\mathrm{E}_{\text {MIN }} / 2} \leq a[i] \leq 2^{\left(\mathrm{E}_{\text {MAX }}-2\right) / 2}$
$2^{\mathrm{E}_{\text {MIN }} / 2} \leq b[i] \leq 2^{\left(\mathrm{E}_{\text {MAX }}-2\right) / 2}$
$a[i] \neq-\left(\right.$ shifta/scalea)* $\left(1-\delta_{1}\right),\left|\delta_{1}\right| \leq 2^{1-(p-1) / 2}$
b[i] $\neq-($ shiftb/scaleb $) *\left(1-\delta_{2}\right),\left|\delta_{2}\right| \leq 2^{1-(p-1) / 2}$

```
\(\mathrm{E}_{\mathrm{MIN}}\) and \(\mathrm{E}_{\text {MAX }}\) are the minimum and maximum exponents and \(p\) is the number of significant bits (precision) for the corresponding data type according to the ANSI/IEEE Standard 754-2008 ([IEEE754]):
- for single precision \(\mathrm{E}_{\text {MIN }}=-126, \mathrm{E}_{\text {MAX }}=127, p=24\)
- for double precision \(\mathrm{E}_{\mathrm{MIN}}=-1022, \mathrm{E}_{\mathrm{MAX}}=1023, p=53\)

The thresholds become less strict for common cases with scalea=0 and/or scaleb=0:
- if scalea=0, there are no limitations for the values of a[i] and shifta.
- if scaleb=0, there are no limitations for the values of \(b[i]\) and shiftb.

\section*{Example}

To use the v?linearfrac to shift vector a by a scalar value, set scaleb to 0 . Note that even if scaleb is 0 , b must be declared.

To use the v?linearfrac to compute shifta/(scaleb•b[i]+shiftb), set scalea to 0 . Note that even if scalea is 0 , a must be declared.

\section*{v?Fmod}

The v?Fmod function performs element by element computation of the modulus function of vector a with respect to vector \(b\).

\section*{Syntax}
```

call vsfmod (n, a, b, y)
call vsfmodi(n, a, inca, b, incb, y, incy)
call vmsfmod (n, a, b, y, mode)
call vmsfmodi(n, a, inca, b, incb, y, incy, mode)
call vdfmod (n, a, b, y)
call vdfmodi(n, a, inca, b, incb, y, incy)
call vmdfmod (n, a, b, y, mode)
call vmdfmodi(n, a, inca, b, incb, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & D \\
\(n\) & INTEGER & S \\
\(a, b\) & REAL for vsFmod & P \\
& REAL for vmsFmod & a \\
& DOUBLE PRECISION for vdFmod \\
inca, incb, \\
incy & INTEGBLE PRECISION for vmdFmod \\
mode & & INTENT(IN)
\end{tabular}

\section*{Output Parameters}

\section*{Name Type}
\(\begin{array}{ll}y & \text { REAL for vsFmod } \\ \text { REAL for vmsFmod }\end{array}\)

\section*{Description}

Pointer to an array containing the output vector \(y\).

DOUBLE PRECISION for vdFmod
DOUBLE PRECISION for vmdFmod

\section*{Description}

The v? Fmod function computes the modulus function of each element of vector \(a\), with respect to the corresponding elements of vector \(b\) :
```

ai

```

In general, the modulus function fmod ( \(a_{i}, b_{i}\) ) returns the value \(a_{i}-n * b_{i}\) for some integer \(n\) such that if \(b_{i}\) is nonzero, the result has the same sign as \(a_{i}\) and a magnitude less than the magnitude of \(b_{i}\).

Special values for Real Function \(v ? F \bmod (x, y)\)
\begin{tabular}{|c|c|c|c|c|}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline \(x\) not NAN & \(\pm 0\) & NAN & VML_STATUS_SING & INVALID \\
\hline \(\pm \infty\) & \(y\) not NAN & NAN & VML_STATUS_SING & INVALID \\
\hline \(\pm 0\) & \(y \neq 0\), not NAN & \(\pm 0\) & & \\
\hline \(x\) finite & \(\pm \infty\) & \(x\) & & UNDERFLOW if \(x\) is subnormal \\
\hline NAN & \(y\) & NAN & & \\
\hline \(x\) & NAN & NAN & & \\
\hline
\end{tabular}

\section*{NOTE}

If element \(i\) in the result of \(v\) ? Fmod is 0 , its sign is that of \(a_{i}\).

\section*{See Also}

Div Performs element by element division of vector \(a\) by vector \(b\)
Remainder Performs element by element computation of the remainder function on the elements of vector \(a\) and the corresponding elements of vector \(b\).

\section*{v?Remainder}

Performs element by element computation of the remainder function on the elements of vector \(a\) and the corresponding elements of vector \(b\).

Syntax
```

call vsremainder (}n,a,b,y
call vsremainderi(n, a, inca, b, incb, y, incy)
call vmsremainder (}n,a,b,y,mode
call vmsremainderi(n, a, inca, b, incb, y, incy, mode)
call vdremainder (n, a, b, y)
call vdremainderi(n, a, inca, b, incb, y, incy)
call vmdremainder (}n,a,b,y,mode
call vmdremainderi(n, a, inca, b, incb, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
\(n\) & INTEGER & \begin{tabular}{l} 
Specifies the number of elements to be \\
calculated.
\end{tabular} \\
\(a, b\) & REAL for vsRemainder & \begin{tabular}{l} 
Pointers to arrays containing the input vectors \(a\) \\
and \(b\).
\end{tabular} \\
& REAL for vmsRemainder \\
& DOUBLE PRECISION for vdRemainder
\end{tabular}
\begin{tabular}{ll} 
Name & Type \\
& DOUBLE PRECISION for vmdRemainder \\
\begin{tabular}{l} 
inca, incb, \\
incy
\end{tabular} & INTEGER, INTENT(IN) \\
mode & INTEGER \(\quad(\) KIND=8 \()\)
\end{tabular}

\section*{Description}

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

DOUBLE PRECISION for vdRemainder
DOUBLE PRECISION for vmdRemainder

\section*{Description}

Computes the remainder of each element of vector \(a\), with respect to the corresponding elements of vector \(b\) : compute the values of \(n\) such that
```

n = a i - n* b

```
where \(n\) is the integer nearest to the exact value of \(a_{i} / b_{i}\). If two integers are equally close to \(a_{i} / b_{i}, n\) is the even one. If \(n\) is zero, it has the same sign as \(a_{i}\).
Special values for Real Function v?Remainder( \(x, y\) )
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & VM Error Status \\
\hline\(x\) not NAN & \(\pm 0\) & NAN & VML_STATUS_DOM \\
\(\pm \infty\) & \(y\) not NAN & NAN & INVALID \\
\(\pm 0\) & \(y \neq 0\), not NAN & \(\pm 0\) & INVALID \\
\(x\) finite & \(\pm \infty\) & \(x\) & UNDERFLOW if \(x\) is \\
& & NAN & subnormal \\
NAN & \(y\) & NAN & \\
\(x\) & NAN & & \\
\hline
\end{tabular}

\section*{NOTE}

If element \(i\) in the result of \(v\) ?Remainder is 0 , its sign is that of \(a_{i}\).

\section*{See Also}

Div Performs element by element division of vector \(a\) by vector \(b\)
Fmod The v? Fmod function performs element by element computation of the modulus function of vector \(a\) with respect to vector \(b\).

Power and Root Functions
```

v?Inv
Performs element by element inversion of the vector.

```

\section*{Syntax}
```

call vsinv(n, a, y)
call vsinvi(n, a, inca, y, incy)
call vmsinv(n, a, y, mode)
call vmsinvi(n, a, inca, y, incy, mode)
call vdinv(n, a, y)
call vdinvi(n, a, inca, y, incy)
call vmdinv(n, a, y, mode)
call vmdinvi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
```

- mkl_vml.f90

```

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \(n\) & INTEGER, INTENT(IN) & Specifies the number of elements to be calculated. \\
\hline a & DOUBLE PRECISION for vdinv, vmdinv & Array that specifies the input vector \(a\). \\
\hline & REAL, INTENT (IN) for vsinv, vmsinv & \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdinv, vmdinv & \\
\hline inca, incy & INTEGER, INTENT(IN) & Specifies increments for the elements of \(a\) and \(y\). \\
\hline mode & INTEGER(KIND=8), INTENT (IN) & Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
\(y\) & \begin{tabular}{l} 
DOUBLE PRECISION for vdinv, \\
vmdinv
\end{tabular} & Array that specifies the output vector \(y\). \\
REAL, INTENT (OUT) for vsinv, \\
vmsinv \\
DOUBLE PRECISION, INTENT (OUT) for \\
vdinv, vmdinv
\end{tabular}

The v? Inv function performs element by element inversion of the vector.

Special Values for Real Function v?Inv(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(+\infty\) & +0 & & \\
\(-\infty\) & -0 & & \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}
v?Div
Performs element by element division of vector a by vector b

\section*{Syntax}
```

call vsdiv(n, a, b, y)
call vsdivi(n, a, inca, b, incb, y, incy)
call vmsdiv(n, a, b, y, mode)
call vmsdivi(n, a, inca, b, incb, y, incy, mode)
call vddiv(n, a, b, y)
call vddivi(n, a, inca, b, incb, y, incy)
call vmddiv(n, a, b, y, mode)
call vmddivi(n, a, inca, b, incb, y, incy, mode)
call vcdiv(n, a, b, y)
call vcdivi(n, a, inca, b, incb, y, incy)
call vmcdiv(n, a, b, y, mode)
call vmcdivi(n, a, inca, b, incb, y, incy, mode)
call vzdiv(n, a, b, y)
call vzdivi(n, a, inca, b, incb, y, incy)
call vmzdiv(n, a, b, y, mode)
call vmzdivi(n, a, inca, b, incb, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a, b\) & \begin{tabular}{l} 
DOUBLE PRECISION for vddiv, \\
vmddiv
\end{tabular} \\
& COMPIEX for vadiv, vmcdiv
\end{tabular}
\begin{tabular}{ll} 
Name & Type \\
& DOUBLE COMPLEX for vzdiv, vmzdiv \\
& REAL, INTENT (IN) for vsdiv, vmsdiv \\
& vOUBLE PRECISION, INTENT (IN) for \\
& \begin{tabular}{l} 
COMPLEX, INTENT (IN) for vcdiv, \\
\\
vmcdiv
\end{tabular} \\
& \begin{tabular}{l} 
DOUBLE COMPLEX, INTENT (IN) for \\
inca, incb, \\
incy \\
mode
\end{tabular} \\
& INTEGER, INTENT(IN)
\end{tabular}

\section*{Description}

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

Precision Overflow Thresholds for Real v?Div Function
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(\mathrm{abs}(a[i])<\operatorname{abs}(b[i]) \star\) FLT_MAX \\
double precision & \(\mathrm{abs}(a[i])<\operatorname{abs}(b[i]) \star\) DBL_MAX \\
\hline
\end{tabular}

Precision overflow thresholds for the complex v?Div function are beyond the scope of this document.

\section*{Output Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{7}{*}{Y} & DOUBLE PRECISION for vddiv, vmddiv & Array that specifies the output vector \(y\). \\
\hline & COMPLEX for vcdiv, vmcdiv & \\
\hline & DOUBLE COMPLEX for vzdiv, vmzdiv & \\
\hline & REAL, INTENT (OUT) for vsdiv, vmsdiv & \\
\hline & DOUBLE PRECISION, INTENT (OUT) for vddiv, vmddiv & \\
\hline & COMPLEX, INTENT (OUT) for vcdiv, vmcdiv & \\
\hline & DOUBLE COMPLEX, INTENT (OUT) for vzdiv, vmzdiv & \\
\hline
\end{tabular}

\section*{Description}

The v?Div function performs element by element division of vector \(a\) by vector \(b\).
Special values for Real Function v?Div(x)
\begin{tabular}{llllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(X>+0\) & +0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE
\end{tabular}
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(X>+0\) & -0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(\mathrm{X}<+0\) & +0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(\mathrm{X}<+0\) & -0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
+0 & +0 & QNAN & VML_STATUS_SING & \\
-0 & -0 & QNAN & VML_STATUS_SING & \\
\(X>+0\) & \(+\infty\) & +0 & & \\
\(X>+0\) & \(-\infty\) & -0 & & \\
\(+\infty\) & \(+\infty\) & QNAN & & \\
\(-\infty\) & \(-\infty\) & QNAN & & \\
QNAN & QNAN & QNAN & & \\
SNAN & SNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
```

Div(x1+i*y1,x2+i*y2) = (x1+i*y1)* (x2-i*y2)/(x2*x2+y2*y2).

```

Overflow in a complex function occurs when \(\mathrm{x} 2+\mathrm{i}\) * y 2 is not zero, \(\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2\) are finite numbers, but the real or imaginary part of the exact result is so large that it does not fit the target precision. In that case, the function returns \(\infty\) in that part of the result, raises the OVERFLOW exception, and sets the VM Error Status to VML_STATUS_OVERFLOW.
v?Sqrt
Computes a square root of vector elements.

\section*{Syntax}
```

call vssqrt(n, a, y)
call vssqrti(n, a, inca, y, incy)
call vmssqrt(n, a, y, mode)
call vmssqrti(n, a, inca, y, incy, mode)
call vdsqrt(n, a, y)
call vdsqrti(n, a, inca, y, incy)
call vmdsqrt(n, a, y, mode)
call vmdsqrti(n, a, inca, y, incy, mode)
call vcsqrt(n, a, y)
call vcsqrti(n, a, inca, y, incy)
call vmcsqrt(n, a, y, mode)
call vmcsqrti(n, a, inca, y, incy, mode)
call vzsqrt(n, a, y)
call vzsqrti(n, a, inca, y, incy)
call vmzsqrt(n, a, y, mode)
call vmzsqrti(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{7}{*}{a} & DOUBLE PRECISION for vdsqrt, vmdsqrt \\
\hline & COMPLEX for vcsqrt, vmcsqrt \\
\hline & DOUBLE COMPLEX for vzsqrt, vmzsqrt \\
\hline & REAL, INTENT (IN) for vssqrt, vmssqrt \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdsqrt, vmdsqrt \\
\hline & COMPLEX, INTENT (IN) for vcsqrt, vmcsqrt \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzsqrt, vmzsqrt \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER(KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Output Parameters}
```

Name
y
Type
REAL for vssqurt, vmssqrt
DOUBLE PRECISION for vdsqrt,
vmdsqrt
COMPLEX for vcsqrt, vmcsqrt
DOUBLE COMPLEX for vzsqrt,
vmzsqrt
REAL, INTENT (OUT) for vssqrt,
vmssqrt
DOUBLE PRECISION, INTENT (OUT) for
vdsqrt, vmdsqrt
COMPLEX, INTENT (OUT) for vcsqrt,
vmcsqrt
DOUBLE COMPLEX, INTENT (OUT) for
vzsqrt, vmzsqrt

```

\section*{Type}

REAL for vssqrt, vmssqrt
DOUBLE PRECISION for vdsqrt, vmdsqrt

COMPLEX for vcsqrt, vmcsqrt
DOUBLE COMPLEX for vzsqrt, vmzsqrt

REAL, INTENT (OUT) for vssqrt, vmssqrt

DOUBLE PRECISION, INTENT (OUT) for vdsqrt, vmdsqrt

COMPLEX, INTENT (OUT) for vcsqrt, vmcsqrt

DOUBLE COMPLEX, INTENT (OUT) for vzsqrt, vmzsqrt

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The v?Sqre function computes a square root of vector elements.
Special Values for Real Function v?Sqrt(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(X<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & +0 & & \\
-0 & -0 & & \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & \\
\(+\infty\) & \(+\infty\) & & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Sqrt(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z) }
\end{gathered}
\] & \(-\infty\) & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(+\infty+\mathrm{i} \cdot \infty\) \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & \(+0+\mathrm{i} \cdot \infty\) & & & & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i.QNAN \\
\hline +i. 0 & \(+0+\mathrm{i} \cdot \infty\) & & \(+0+\mathrm{i} \cdot 0\) & \(+0+\mathrm{i} \cdot 0\) & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i. QNAN \\
\hline -i. 0 & \(+0-\mathrm{i} \cdot \infty\) & & +0-i \(\cdot 0\) & +0-i \(\cdot 0\) & & \(+\infty-\mathrm{i} \cdot 0\) & QNAN+i.QNAN \\
\hline -i.Y & \(+0-\mathrm{i} \cdot \infty\) & & & & & \(+\infty\)-i. 0 & QNAN+i.QNAN \\
\hline -i. \(\infty\) & \(+\infty-\mathrm{i} \cdot \infty\) \\
\hline \(+i \cdot N A N\) & QNAN+i.QNAN & QNAN+i. QNAN & QNAN+I:QNAN & QNAN+i.QNAN & QNAN+I:QNAN & \(+\infty+i \cdot\) QNAN & QNAN+i.QNAN \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when the real or imaginary part of the argument is SNAN
- \(\operatorname{Sqrt}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Sqrt}(z))\).
v?InvSqrt
Computes an inverse square root of vector elements.

\section*{Syntax}
```

call vsinvsqrt(n, a, y)
call vsinvsqrti(n, a, inca, y, incy)
call vmsinvsqrt(n, a, y, mode)
call vmsinvsqrti(n, a, inca, y, incy, mode)
call vdinvsqrt(n, a, y)
call vdinvsqrti(n, a, inca, y, incy)
call vmdinvsqrt(n, a, y, mode)
call vmdinvsqrti(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a\) & DOUBLE PRECISION for vdinvsqrt, \\
& vmdinvsqrt \\
& REAL, INTENT (IN) for vsinvsqrt, \\
& vmsinvsqrt \\
& DOUBLE PRECISION, INTENT (IN) for \\
inca, incy & vdinvsqrt, vmdinvsqrt \\
mode & INTEGER, INTENT(IN) \\
&
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & DOUBLE PRECISION for vdinvsqrt, \\
& vmdinvsqrt \\
& REAL, INTENT (OUT) for vsinvsqrt, \\
& vmsinvsqrt \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdinvsqrt, vmdinvsqrt
\end{tabular}

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The v? InvSqrt function computes an inverse square root of vector elements.
Special Values for Real Function v?InvSqrt(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(X<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & +0 & & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}
v?Cbrt
Computes a cube root of vector elements.

\section*{Syntax}
```

call vscbrt(n, a, y)
call vscbrti(n, a, inca, y, incy)
call vmscbrt(n, a, y, mode)
call vmscbrti(n, a, inca, y, incy, mode)
call vdcbrt(n, a, y)
call vdcbrti(n, a, inca, y, incy)
call vmdcbrt(n, a, y, mode)
call vmdcbrti(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a\) & \begin{tabular}{l} 
DOUBLE PRECISION for vdcbrt, \\
vmdcbrt
\end{tabular} \\
& REAL, INTENT (IN) for vscbrt, \\
& vmscbrt \\
inca, incy & DOUBLE PRECISION, INTENT (IN) for \\
modebrt, vmdcbrt
\end{tabular}\(\quad\)\begin{tabular}{l} 
INTEGER, INTENT(IN)
\end{tabular}

\section*{Output Parameters}

\section*{Name}

\section*{Type}

DOUBLE PRECISION for vdcbrt, vmdcbrt

REAL, INTENT (OUT) for vscbrt, vmscbrt

DOUBLE PRECISION, INTENT (OUT) for vdcbrt, vmdcbrt

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The v?Cbrt function computes a cube root of vector elements.

Special Values for Real Function v?Cbrt(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & INVALID \\
\(-\infty\) & \(-\infty\) & \\
QNAN & QNAN & \\
SNAN & QNAN & \\
\hline
\end{tabular}
v? InvCbrt
Computes an inverse cube root of vector elements.

\section*{Syntax}
```

call vsinvcbrt(n, a, y)
call vsinvcbrti(n, a, inca, y, incy)
call vmsinvcbrt(n, a, y, mode)
call vmsinvcbrti(n, a, inca, y, incy, mode)
call vdinvcbrt(n, a, y)
call vdinvcbrti(n, a, inca, y, incy)
call vmdinvcbrt(n, a, y, mode)
call vmdinvcbrti(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

Input Parameters
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{3}{*}{a} & DOUBLE PRECISION for vdinvcbrt, vmdinvcbrt \\
\hline & REAL, INTENT (IN) for vsinvcbrt, vmsinvcbrt \\
\hline & DOUBLE PRECISION, INTENT(IN) for vdinvcbrt, vmdinvcbrt \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER(KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
```

Name Type Description
y DOUBLE PRECISION for vdinvcbrt,
vmdinvcbrt
REAL, INTENT (OUT) for vsinvcbrt,
vmsinvcbrt
DOUBLE PRECISION, INTENT (OUT) for
vdinvcbrt, vmdinvcbrt

```

\section*{Description}

The v? InvCbrt function computes an inverse cube root of vector elements.
Special Values for Real Function v?InvCbrt(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(+\infty\) & +0 & & \\
\(-\infty\) & -0 & & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}
v?Pow2o3
Computes the cube root of the square of each vector element.

Syntax
```

call vspow2o3(n, a, y)
call vspow2o3i(n, a, inca, y, incy)
call vmspow2o3(n, a, y, mode)
call vmspow2o3i(n, a, inca, y, incy, mode)
call vdpow2o3(n, a, y)
call vdpow2o3i(n, a, inca, y, incy)
call vmdpow2o3(n, a, y, mode)
call vmdpow2o3i(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER, INTENT (IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{3}{*}{\(a\)} & DOUBLE PRECISION for vdpow2o3, vmdpow2o3 & Arrays, specify the input vector a. \\
\hline & REAL, INTENT (IN) for vspow2o3, vmspow2o3 & \\
\hline & DOUBLE PRECISION, INTENT(IN) for vdpow203, vmdpow2o3 & \\
\hline inca, incy & INTEGER, INTENT(IN) & Specifies increments for the elements of \(a\) and \(y\). \\
\hline mode & INTEGER (KIND=8), INTENT (IN) & Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & DOUBLE PRECISION for vdpow203, \\
& vmdpow2o3 \\
& REAL, INTENT (OUT) for vspow203, \\
& vmspow203 \\
& \begin{tabular}{l} 
DOUBLE PRECISION, INTENT (OUT) for \\
\\
\\
\\
\end{tabular}\(\quad\)\begin{tabular}{l} 
vdpow203, vmdpow203
\end{tabular}
\end{tabular}

\section*{Description}

The v? Pow2o3 function computes the cube root of the square of each vector element.
Special Values for Real Function v?Pow203(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & +0 & \\
\(+\infty\) & \(+\infty\) & \\
\(-\infty\) & \(+\infty\) & INVALID \\
\hline QNAN & QNAN & \\
SNAN & QNAN & \\
\hline
\end{tabular}
v?Pow3o2
Computes the square root of the cube of each vector element.

\section*{Syntax}
```

call vspow3o2(n, a, y)
call vspow3o2i(n, a, inca, y, incy)
call vmspow3o2(n, a, y, mode)
call vmspow3o2i(n, a, inca, y, incy, mode)
call vdpow3o2(n, a, y)

```
```

call vdpow3o2i(n, a, inca, y, incy)
call vmdpow3o2(n, a, y, mode)
call vmdpow3o2i(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
a & \begin{tabular}{l} 
DOUBLE PRECISION for vdpow3o2, \\
vmdpow3o2
\end{tabular} \\
& REAL, INTENT (IN) for vspow3o2, \\
& vmspow3o2 \\
inca, incy & DOUBLE PRECISION, INTENT (IN) for \\
mode & INTEGER, INTENT(IN) \\
& INTEGER (KIND=8), INTENT (IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Arrays, specify the input vector \(a\).

> Specifies increments for the elements of \(a\) and \(y\).
> Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

Precision Overflow Thresholds for Pow3o2 Function
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & abs \((a[i])<(\text { FLT_MAX })^{2 / 3}\) \\
double precision & \(\operatorname{abs}(a[i])<(\text { DBL_MAX })^{2 / 3}\) \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{Name}
\(y\)

\section*{Type}

DOUBLE PRECISION for vdpow3o2, vmdpow3o2

REAL, INTENT (OUT) for vspow3o2, vmspow3o2

DOUBLE PRECISION, INTENT (OUT) for vdpow3o2, vmdpow3o2

\section*{Description}

Array, specifies the output vector \(y\).

\section*{Description}

The v? Pow 302 function computes the square root of the cube of each vector element.
Special Values for Real Function v?Pow3o2(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(X<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & +0 & & \\
-0 & -0 & &
\end{tabular}
\begin{tabular}{lll}
\hline Argument & Result & VM Error Status \\
\hline\(-\infty\) & QNAN & VML_STATUS_ERRDOM \\
\(+\infty\) & \(+\infty\) & \\
QNAN & QNAN & INVALID \\
SNAN & QNAN & INVALID \\
\hline
\end{tabular}
v?Pow
Computes a to the power b for elements of two vectors.

\section*{Syntax}
```

call vspow(n, a, b, y)
call vspowi(n, a, inca, b, incb, y, incy)
call vmspow(n, a, b, y, mode)
call vmspowi(n, a, inca, b, incb, y, incy, mode)
call vdpow(n, a, b, y)
call vdpowi(n, a, inca, b, incb, y, incy)
call vmdpow(n, a, b, y, mode)
call vmdpowi(n, a, inca, b, incb, y, incy, mode)
call vcpow(}n,a,b,y
call vcpowi(n, a, inca, b, incb, y, incy)
call vmcpow(n, a, b, y, mode)
call vmcpowi(n, a, inca, b, incb, y, incy, mode)
call vzpow(}n,a,b,y
call vzpowi(n, a, inca, b, incb, y, incy)
call vmzpow(n, a, b, y, mode)
call vmzpowi(n, a, inca, b, incb, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters
\begin{tabular}{lll} 
Name & Type & Description \\
\(n\) & INTEGER, INTENT (IN) \(b\) & \begin{tabular}{l} 
Dpecifies the number of elements to be \\
calculated.
\end{tabular} \\
& \begin{tabular}{l} 
VOUBLE PRECISION for vdpow, \\
COMPLEX for vcpow, vmcpow
\end{tabular} & Arrays that specify the input vectors a and \(b\).
\end{tabular}
\begin{tabular}{ll} 
Name & Type \\
& \begin{tabular}{l} 
DOUBLE PRECISION, INTENT (IN) for \\
vdpow, vmdpow \\
COMPLEX, INTENT (IN) for vcpow, \\
vmcpow \\
DOUBLE COMPLEX, INTENT (IN) for \\
vzpow, vmzpow
\end{tabular} \\
\begin{tabular}{ll} 
inca, incb, \\
incy \\
mode
\end{tabular} & INTEGER, INTENT(IN)
\end{tabular}

\section*{Description}

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

Precision Overflow Thresholds for Real v?Pow Function
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(\mathrm{abs}(a[i])<(\text { FLT_MAX })^{1 / b[i]}\) \\
double precision & \(\mathrm{abs}(\mathrm{a}[\mathrm{i}])<\left(\mathrm{DBL} \_M A X\right)^{1 / b[i]}\) \\
\hline
\end{tabular}

Precision overflow thresholds for the complex v?Pow function are beyond the scope of this document.

\section*{Output Parameters}

\section*{Name Type Description}
```

y
DOUBLE PRECISION for vdpow,
vmdpow
COMPLEX for vcpow, vmcpow
DOUBLE COMPLEX for vzpow, vmzpow
REAL, INTENT (OUT) for vspow,
vmspow
DOUBLE PRECISION, INTENT (OUT) for
vdpow, vmdpow
COMPLEX, INTENT (OUT) for vcpow,
vmcpow
DOUBLE COMPLEX, INTENT (OUT) for
vzpow, vmzpow

```

\section*{Description}

The v? Pow function computes \(a\) to the power \(b\) for elements of two vectors.
The real function \(v(s / d)\) Pow has certain limitations on the input range of \(a\) and \(b\) parameters. Specifically, if \(a\) [i] is positive, then \(b\) [i] may be arbitrary. For negative \(a\) [i], the value of \(b\) [i] must be an integer (either positive or negative).

The complex function \(v(c / z)\) Pow has no input range limitations.

Special values for Real Function v?Pow( \(x, y\) )
\begin{tabular}{|c|c|c|c|c|}
\hline Argument 1
(X) & \begin{tabular}{l}
Argument 2 \\
(Y)
\end{tabular} & Result & VM Error Status & Exception \\
\hline +0 & neg. odd integer & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline -0 & neg. odd integer & \(-\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline +0 & neg. even integer & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline -0 & neg. even integer & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline +0 & neg. non-integer & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline -0 & neg. non-integer & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline -0 & pos. odd integer & +0 & & \\
\hline -0 & pos. odd integer & -0 & & \\
\hline +0 & pos. even integer & +0 & & \\
\hline -0 & pos. even integer & +0 & & \\
\hline +0 & pos. non-integer & +0 & & \\
\hline -0 & pos. non-integer & +0 & & \\
\hline -1 & \(+\infty\) & +1 & & \\
\hline -1 & \(-\infty\) & +1 & & \\
\hline +1 & any value & +1 & & \\
\hline +1 & +0 & +1 & & \\
\hline +1 & -0 & +1 & & \\
\hline +1 & \(+\infty\) & +1 & & \\
\hline +1 & \(-\infty\) & +1 & & \\
\hline +1 & QNAN & +1 & & \\
\hline any value & +0 & +1 & & \\
\hline +0 & +0 & +1 & & \\
\hline -0 & +0 & +1 & & \\
\hline \(+\infty\) & +0 & +1 & & \\
\hline \(-\infty\) & +0 & +1 & & \\
\hline QNAN & +0 & +1 & & \\
\hline any value & -0 & +1 & & \\
\hline +0 & -0 & +1 & & \\
\hline -0 & -0 & +1 & & \\
\hline \(+\infty\) & -0 & +1 & & \\
\hline \(-\infty\) & -0 & +1 & & \\
\hline QNAN & -0 & +1 & & \\
\hline \(\mathrm{X}<+0\) & non-integer & QNAN & VML_STATUS_ERRDOM & INVALID \\
\hline \(|X|<1\) & \(-\infty\) & \(+\infty\) & & \\
\hline +0 & \(-\infty\) & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline -0 & \(-\infty\) & \(+\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
\hline \(|X|>1\) & \(-\infty\) & +0 & & \\
\hline \(+\infty\) & \(-\infty\) & +0 & & \\
\hline \(-\infty\) & \(-\infty\) & +0 & & \\
\hline \(|X|<1\) & \(+\infty\) & +0 & & \\
\hline +0 & \(+\infty\) & +0 & & \\
\hline -0 & \(+\infty\) & +0 & & \\
\hline \(|X|>1\) & \(+\infty\) & \(+\infty\) & & \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\(\mathbf{( X )}\) & \(\mathbf{( Y )}\) & & & \\
\hline\(+\infty\) & \(+\infty\) & \(+\infty\) & & \\
\(-\infty\) & \(+\infty\) & \(+\infty\) & & \\
\(-\infty\) & neg. odd integer & -0 & & \\
\(-\infty\) & neg. even integer & +0 & & \\
\(-\infty\) & neg. non-integer & +0 & & OVERFLOW \\
\(-\infty\) & pos. odd integer & \(-\infty\) & & INVALID \\
\(-\infty\) & pos. even integer & \(+\infty\) & & INVALID \\
\(-\infty\) & pos. non-integer & \(+\infty\) & & INVALID \\
\(+\infty\) & \(X<+0\) & +0 & & \\
\(+\infty\) & \(X>+0\) & \(+\infty\) & & \\
Big finite value* & Big finite value* & \(+/-\infty\) & & \\
QNAN & QNAN & QNAN & & \\
QNAN & SNAN & QNAN & & \\
SNAN & QNAN & QNAN & & \\
SNAN & SNAN & & & \\
\hline
\end{tabular}

The complex double precision versions of this function, vzPow and vmzPow, are implemented in the EP accuracy mode only. If used in HA or LA mode, vzPow and vmzPow set the VM Error Status to VML_STATUS_ACCURACYWARNING (see the Values of the VM Status table).
* Overflow in a real function is supported only in the HA/LA accuracy modes. The overflow occurs when \(x\) and \(y\) are finite numbers, but the result is too large to fit the target precision. In this case, the function:
1. Returns \(\infty\) in the result.
2. Raises the OVERFLOW exception.
3. Sets the VM Error Status to VML_STATUS_OVERFLOW.

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE (x), RE (y), IM ( x ) , IM ( y ) arguments are finite numbers, but the real or imaginary part of the computed result is so large that it does not fit the target precision. In this case, the function returns \(\infty\) in that part of the result, raises the OVERFLOW exception, and sets the VM Error Status to VML_STATUS_OVERFLOW (overriding any possible VML_STATUS_ACCURACYWARNING status).
v?Powx
Computes vector a to the scalar power \(b\).

\section*{Syntax}
```

call vspowx(n, a, b, y)
call vspowxi(n, a, inca, b, y, incy)
call vmspowx(n, a, b, y, mode)
call vmspowxi(n, a, inca, b, y, incy, mode)
call vdpowx(n, a, b, y)
call vdpowxi(n, a, inca, b, y, incy)
call vmdpowx(n, a, b, y, mode)
call vmdpowxi(n, a, inca, b, y, incy, mode)
call vcpowx(n, a, b, y)

```
```

call vcpowxi(n, a, inca, b, y, incy)
call vmcpowx(n, a, b, y, mode)
call vmcpowxi(n, a, inca, b, y, incy, mode)
call vzpowx(n, a, b, y)
call vzpowxi(n, a, inca, b, y, incy)
call vmzpowx(n, a, b, y, mode)
call vmzpowxi(n, a, inca, b, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}

\section*{Name \\ Type}
n
a
b vmdpowx vmzpowx vmspowx vmcpowx

INTEGER, INTENT (IN)
DOUBLE PRECISION for vdpowx,

COMPLEX for vcpowx, vmcpowx
DOUBLE COMPLEX for vzpowx,

REAL, INTENT (IN) for vspowx,

DOUBLE PRECISION, INTENT (IN) for vdpowx, vmdpowx

COMPLEX, INTENT (IN) for vcpowx,

DOUBLE COMPLEX, INTENT (IN) for vzpowx, vmzpowx

DOUBLE PRECISION for vdpowx, vmdpowx

COMPLEX for vcpowx, vmcpowx
DOUBLE COMPLEX for vzpowx, vmzpowx

REAL, INTENT (IN) for vspowx, vmspowx

DOUBLE PRECISION, INTENT (IN) for vdpowx, vmdpowx

COMPLEX, INTENT (IN) for vcpowx, vmcpowx

DOUBLE COMPLEX, INTENT (IN) for vzpowx, vmzpowx

\section*{Description}

Number of elements to be calculated.
Array a that specifies the input vector

Scalar value \(b\) that is the constant power.
\begin{tabular}{ll} 
Name & Type \\
inca, incy & INTEGER, INTENT(IN) \\
mode & INTEGER(KIND=8), INTENT (IN)
\end{tabular}

\section*{Description}

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Precision Overflow Thresholds for Real v?Powx Function}
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & abs \((a[i])<(\text { FLT_MAX })^{1 / b}\) \\
double precision & abs \((a[i])<(\text { DBL_MAX })^{1 / b}\) \\
\hline
\end{tabular}

Precision overflow thresholds for the complex v? Powx function are beyond the scope of this document.

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
\(y\) & \begin{tabular}{l} 
DOUBLE PRECISION for vdpowx, \\
vmdpowx
\end{tabular} & Array that specifies the output vector \(y\).
\end{tabular}

The v? Powx function computes \(a\) to the power \(b\) for a vector \(a\) and a scalar \(b\).
The real function \(v(s / d)\) Powx has certain limitations on the input range of \(a\) and \(b\) parameters. Specifically, if \(a\) [i] is positive, then \(b\) may be arbitrary. For negative \(a\) [i], the value of \(b\) must be an integer (either positive or negative).
The complex function \(v(c / z)\) Powx has no input range limitations.
Special values and VM Error Status treatment are the same as for the v? Pow function.
v?Powr
Computes a to the power b for elements of two vectors, where the elements of vector argument a are all non-negative.

\section*{Syntax}
```

call vspowr (n, a, b, y)
call vspowri(n, a, inca, b, incb, y, incy)

```
```

call vmspowr (n, a, b, y, mode)
call vmspowri(n, a, inca, b, incb, y, incy, mode)
call vdpowr (n, a, b, y)
call vdpowri(n, a, inca, b, incb, y, incy)
call vmdpowr (}n,a,b,y, mode
call vmdpowri(n, a, inca, b, incb, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \(n\) & INTEGER & Specifies the number of elements to be calculated. \\
\hline \multirow[t]{3}{*}{\(a, b\)} & REAL for vsPowr REAL for vmsPowr & Pointers to arrays containing the input vectors a and \(b\). \\
\hline & DOUBLE PRECISION for vdPowr & \\
\hline & DOUBLE PRECISION for vmdPowr & \\
\hline \[
\begin{aligned}
& \text { inca, incb, } \\
& \text { incy }
\end{aligned}
\] & INTEGER, INTENT(IN) & Specifies increments for the elements of \(a, b\), and \(y\). \\
\hline mode & INTEGER (KIND=8) & Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description. \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{Name Type}
\(y\)
REAL for vsPowr
REAL for vmsPowr

\section*{Description}

Pointer to an array containing the output vector \(y\).

DOUBLE PRECISION for vdPowr
DOUBLE PRECISION for vmdPowr

\section*{Description}

The v?Powr function raises each element of vector \(a\) by the corresponding element of vector \(b\). The elements of \(a\) are all nonnegative ( \(a_{i} \geq 0\) ).

\section*{Precision Overflow Thresholds for Real Function v?Powr}
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(a_{i}<(\text { FLT_MAX })^{1 / b_{i}}\) \\
double precision & \(a_{i}<\left(\right.\) DBL_MAX \(^{1 / b_{i}}\) \\
\hline
\end{tabular}

Special values and VM Error Status treatment for v?Powr function are the same as for v?Pow, unless otherwise indicated in this table:

Special values for Real Function v?Powr(x)
\begin{tabular}{|c|c|c|c|c|}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline \(x<0\) & any value \(y\) & NAN & VML_STATUS_ERRDOM & INVALID \\
\hline \(0<x<\infty\) & \(\pm 0\) & 1 & & \\
\hline \(\pm 0\) & \(-\infty<y<0\) & \(+\infty\) & & \\
\hline \(\pm 0\) & \(-\infty\) & \(+\infty\) & & \\
\hline \(\pm 0\) & \(y>0\) & +0 & & \\
\hline 1 & \(-\infty<y<\infty\) & 1 & & \\
\hline \(\pm 0\) & \(\pm 0\) & NAN & & \\
\hline \(+\infty\) & \(\pm 0\) & NAN & & \\
\hline 1 & \(+\infty\) & NAN & & \\
\hline \(x \geq 0\) & NAN & NAN & & \\
\hline NAN & any value \(y\) & NAN & & \\
\hline \(0<x<1\) & \(-\infty\) & \(+\infty\) & & \\
\hline \(x>1\) & \(-\infty\) & +0 & & \\
\hline \(0 \leq x<1\) & \(+\infty\) & +0 & & \\
\hline \(x>1\) & \(+\infty\) & \(+\infty\) & & \\
\hline \(+\infty\) & \(x<+0\) & \(+0\) & & \\
\hline \(+\infty\) & \(x>+0\) & \(+\infty\) & & \\
\hline QNAN & QNAN & QNAN & VML_STATUS_ERRDOM & \\
\hline QNAN & SNAN & QNAN & VML_STATUS_ERRDOM & INVALID \\
\hline SNAN & QNAN & QNAN & VML_STATUS_ERRDOM & INVALID \\
\hline SNAN & SNAN & QNAN & VML_STATUS_ERRDOM & INVALID \\
\hline
\end{tabular}

\section*{See Also}

Pow Computes \(a\) to the power \(b\) for elements of two vectors.
Powx Computes vector \(a\) to the scalar power \(b\).
v?Hypot
Computes a square root of sum of two squared elements.

\section*{Syntax}
```

call vshypot(n, a, b, y)
call vshypoti(n, a, inca, b, incb, y, incy)
call vmshypot(n, a, b, y, mode)
call vmshypoti(n, a, inca, b, incb, y, incy, mode)
call vdhypot(}n,a,b,y
call vdhypoti(n, a, inca, b, incb, y, incy)
call vmdhypot(}n,a,b,y, mode
call vmdhypoti(n, a, inca, b, incb, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \(n\) & INTEGER, INTENT (IN) & Number of elements to be calculated. \\
\hline \multirow[t]{3}{*}{\(a, b\)} & DOUBLE PRECISION for vdhypot, vmdhypot & Arrays that specify the input vectors \(a\) and \(b\) \\
\hline & REAL, INTENT (IN) for vshypot, vmshypot & \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdhypot, vmdhypot & \\
\hline \[
\begin{aligned}
& \text { inca, incb, } \\
& \text { incy }
\end{aligned}
\] & INTEGER, INTENT(IN) & Specifies increments for the elements of \(a, b\), and \(y\). \\
\hline mode & INTEGER (KIND=8), INTENT (IN) & Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description. \\
\hline \multicolumn{3}{|l|}{Precision Overflow Thresholds for Hypot Function} \\
\hline Data Type & \multicolumn{2}{|l|}{Threshold Limitations on Input Parameters} \\
\hline \multirow[t]{2}{*}{single precision} & \multicolumn{2}{|l|}{abs(a[i]) < sqrt(FLT_MAX)} \\
\hline & \multicolumn{2}{|l|}{abs(b[i]) < sqrt(FLT_MAX)} \\
\hline \multirow[t]{2}{*}{double precision} & \multicolumn{2}{|l|}{abs(a[i]) < sqrt(DBL_MAX)} \\
\hline & \multicolumn{2}{|l|}{abs(b[i]) < sqrt(DBL_MAX)} \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & DOUBLE PRECISION for vdhypot, \\
& vmdhypot \\
& REAL, INTENT (OUT) for vshypot, \\
& vmshypot \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdhypot, vmdhypot
\end{tabular}

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The function v?Hypot computes a square root of sum of two squared elements.
Special values for Real Function v?Hypot(x)
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline+0 & +0 & +0 & \\
-0 & -0 & +0 & \\
\(+\infty\) & any value & \(+\infty\) & \\
any value & \(+\infty\) & \(+\infty\) & INVALID
\end{tabular}
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline any value & SNAN & QNAN & INVALID \\
QNAN & any value & QNAN & \\
any value & QNAN & QNAN & \\
\hline
\end{tabular}

\section*{Exponential and Logarithmic Functions}
v?Exp
Computes an exponential of vector elements.
Syntax
```

call vsexp(n, a, y)
call vsexpi(n, a, inca, y, incy)
call vmsexp(n, a, y, mode)
call vmsexpi(n, a, inca, y, incy, mode)
call vdexp(n, a, y)
call vdexpi(n, a, inca, y, incy)
call vmdexp(n, a, y, mode)
call vmdexpi(n, a, inca, y, incy, mode)
call vcexp(n, a, y)
call vcexpi(n, a, inca, y, incy)
call vmcexp(n, a, y, mode)
call vmcexpi(n, a, inca, y, incy, mode)
call vzexp(n, a, y)
call vzexpi(n, a, inca, y, incy)
call vmzexp(n, a, y, mode)
call vmzexpi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

Input Parameters
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline a & DOUBLE PRECISION for vdexp, vmdexp \\
\hline & COMPLEX for vcexp, vmcexp \\
\hline & DOUBLE COMPLEX for vzexp, vmzexp \\
\hline & REAL, INTENT (IN) for vsexp, vmsexp \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Name & Type \\
& DOUBLE PRECISION, INTENT (IN) for \\
vdexp, vmdexp \\
& COMPLEX, INTENT (IN) for vcexp, \\
& vmcexp \\
& DOUBLE COMPLEX, INTENT (IN) for \\
vzexp, vmzexp \\
inca, incy & INTEGER, INTENT(IN) \\
mode & INTEGER(KIND=8), INTENT (IN)
\end{tabular}

\section*{Description}

Specifies increments for the elements of \(a\) and \(y\). Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Precision Overflow Thresholds for Real v?Exp Function}
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(a[i]<\operatorname{Ln}(\) FLT_MAX ) \\
double precision & \(a[i]<\operatorname{Ln}(\) DBL_MAX \()\) \\
\hline
\end{tabular}

Precision overflow thresholds for the complex v?Exp function are beyond the scope of this document.

\section*{Output Parameters}

\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(-\infty\) & +0 & & \\
QNAN & QNAN & & INVALID \\
\hline SNAN & QNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Exp(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z) }
\end{gathered}
\] & \(-\infty\) & -X & -0 & +0 & +X & + & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(+0+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} \\
\hline +i.Y & +0.CIS(Y) & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & \begin{tabular}{l}
QNAN \\
+i -QNAN
\end{tabular} \\
\hline +i. 0 & +0.CIS(0) & & +1+i. 0 & \(+1+\mathrm{i} \cdot 0\) & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i•0 \\
\hline -i. 0 & +0.CIS(0) & & +1-i.0 & +1-i.0 & & \(+\infty-\mathrm{i} \cdot 0\) & QNAN-i. 0 \\
\hline -i.Y & +0.CIS(Y) & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & \begin{tabular}{l}
QNAN \\
\(+i \cdot\) QNAN
\end{tabular} \\
\hline -i \(\cdot \infty\) & +0-i \(\cdot 0\) & \begin{tabular}{l}
QNAN \\
+i.QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i -QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i -QNAN \\
INVALID
\end{tabular} \\
\hline \[
\begin{gathered}
+i \cdot N A \\
N
\end{gathered}
\] & \(+0+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes:}
- raises the INVALID exception when real or imaginary part of the argument is SNAN
- raises the INVALID exception on argument \(z=-\infty+i \cdot\) QNAN
- raises the OVERFLOW exception and sets the VM Error Status to VML_STATUS_OVERFLOW in the case of overflow, that is, when both RE (z) and IM (z) are finite non-zero numbers, but the real or imaginary part of the exact result is so large that it does not meet the target precision.

\section*{v?Exp2}

Computes the base 2 exponential of vector elements.

\section*{Syntax}
```

call vsexp2 (n, a, y)
call vsexp2i(n, a, inca, y, incy)
call vmsexp2 (n, a, y, mode)
call vmsexp2i(n, a, inca, y, incy, mode)
call vdexp2 (n, a, y)
call vdexp2i(n, a, inca, y, incy)
call vmdexp2 (n, a, y, mode)
call vmdexp2i(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters
\begin{tabular}{lll} 
Name & Type & Description \\
\(n\) & INTEGER & \begin{tabular}{l} 
Specifies the number of elements to be \\
calculated.
\end{tabular} \\
a REAL for vmsExp2 \\
DOUBLE PRECISION for vdExp2
\end{tabular}\(\quad\)\begin{tabular}{l} 
Pointer to the array containing the input vector \\
a.
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
\(y\) & REAL for vSExp2 & \begin{tabular}{l} 
Pointer to an array containing the output vector \\
\(y\).
\end{tabular} \\
& REAL for vmsExp2 & \\
& DOUBLE PRECISION for vdExp2 &
\end{tabular}

\section*{Description}

The v?Exp2 function computes the base 2 exponential of vector elements.
Precision Overflow Thresholds for Real Function v?Exp2
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(a_{i}<\log _{2}\) (FLT_MAX) \\
double precision & \(a_{i}<\log _{2}\) (DBL_MAX) \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in this table:
Special values for Real Function v?Exp2(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & \\
\(x>\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & OVERFLOW \\
\(x<\) underflow & +0 & VML_STATUS_UNDERFLOW & UNDERFLOW \\
\(+\infty\) & \(+\infty\) & & \\
\(-\infty\) & +0 & & INVALID \\
\hline QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

\section*{See Also}

Exp Computes an exponential of vector elements.
Exp10 Computes the base 10 exponential of vector elements.
v?Exp10
Computes the base 10 exponential of vector elements.

\section*{Syntax}
```

call vsexp10 (n, a, y)
call vsexp10i(n, a, inca, y, incy)
call vmsexp10 (n, a, y, mode)
call vmsexplOi(n, a, inca, y, incy, mode)
call vdexpl0 (n, a, y)
call vdexp10i(n, a, inca, y, incy)
call vmdexp10 (n, a, y, mode)
call vmdexp10i(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER \\
a & \\
& REAL for vSExp10 \\
& REAL for vmsExp10 \\
& DOUBLE PRECISION for vdExp10 \\
inca, incy & INTEGER, INTENT(IN) \\
mode & INTEGER (KIND=8)
\end{tabular}

\section*{Output Parameters}

\section*{Name Type}
\(\begin{array}{ll}y & \text { REAL for } v s E x p 10 \\ \text { REAL for } v m s E x p 10\end{array}\)
DOUBLE PRECISION for vdExp10
DOUBLE PRECISION for vmdExp10

\section*{Description}

The v?Exp10 function computes the base 10 exponential of vector elements.
Precision Overflow Thresholds for Real Function v?Exp10
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(a_{i}<\log _{10}\) (FLT_MAX) \\
double precision & \(a_{i}<\log _{10}(\) DBL_MAX \()\) \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in this table:
Special values for Real Function v?Pow(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & \\
\(x>\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & OVERFLOW \\
\(x<\) underflow & +0 & & UND_STATUS_UNDERFLOW \\
\(+\infty\) & \(+\infty\) & & \\
\(-\infty\) & +0 & QNAN & INVALID \\
\hline QNAN & QNAN & & \\
\hline
\end{tabular}

\section*{See Also}

Exp Computes an exponential of vector elements.
Exp2 Computes the base 2 exponential of vector elements.
v?Expm1
Computes an exponential of vector elements decreased by 1.

Syntax
```

call vsexpm1(n, a, y)
call vsexpm1i(n, a, inca, y, incy)
call vmsexpm1(n, a, y, mode)
call vmsexpm1i(n, a, inca, y, incy, mode)
call vdexpm1(n, a, y)
call vdexpmli(n, a, inca, y, incy)
call vdexpm1(n, a, y, mode)
call vmdexpm1i(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}

\section*{Name \\ Type}

INTEGER, INTENT (IN)

\section*{Description}

Specifies the number of elements to be calculated.
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{3}{*}{a} & DOUBLE PRECISION for vdexpm1, vmdexpm1 & Array that specifies the input vector \(a\). \\
\hline & REAL, INTENT (IN) for vsexpm1, vmsexpm1 & \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdexpm1, vmdexpm1 & \\
\hline inca, incy & INTEGER, INTENT(IN) & Specifies increments for the elements of \(a\) and \(y\). \\
\hline mode & INTEGER (KIND=8), INTENT (IN) & Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description. \\
\hline \multicolumn{3}{|l|}{Precision Overflow Thresholds for Expm1 Function} \\
\hline Data Type & Threshold Limitations & on Input Parameters \\
\hline single precision & a[i] < Ln ( FLT_MAX & \\
\hline double precision & \(a[i]<\operatorname{Ln}(\mathrm{DBL}\) _MAX & \\
\hline
\end{tabular}

\section*{Output Parameters}
```

Name Type Description
y
DOUBLE PRECISION for vdexpm1,
vmdexpm1
REAL, INTENT (OUT) for vsexpm1,
vmsexpm1
DOUBLE PRECISION, INTENT (OUT) for
vdexpm1, vmdexpm1

```

\section*{Description}

The v?Expm1 function computes an exponential of vector elements decreased by 1 .
Special Values for Real Function v?Expm1(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & +0 & & \\
\(X>\) overflow & \(+\infty\) & & \\
\(+\infty\) & \(+\infty\) & & \\
\(-\infty\) & -1 & & OVERFLOW \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}
v? Ln
Computes natural logarithm of vector elements.

\section*{Syntax}
```

call vsln(n, a, y)
call vslni(n, a, inca, y, incy)

```
```

call vmsln(n, a, y, mode)
call vmslni(n, a, inca, y, incy, mode)
call vdln(n, a, y)
call vdlni(n, a, inca, y, incy)
call vmdln(n, a, y, mode)
call vmdlni(n, a, inca, y, incy, mode)
call vcln(n, a, y)
call vclni(n, a, inca, y, incy)
call vmcln(n, a, y, mode)
call vmclni(n, a, inca, y, incy, mode)
call vzln(n, a, y)
call vzlni(n, a, inca, y, incy)
call vmzln(n, a, y, mode)
call vmzlni(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{7}{*}{a} & DOUBLE PRECISION for vdln, vmdln \\
\hline & COMPLEX for vcln, vmcln \\
\hline & DOUBLE COMPLEX for vzln, vmzln \\
\hline & REAL, INTENT (IN) for vsln, vmsln \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdln, vmdln \\
\hline & COMPLEX, INTENT (IN) for vcln, vmcln \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzln, vmzln \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER(KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMo de for possible values and their description.

\section*{Output Parameters}
```

Name Type Description
y DOUBLE PRECISION for vdln, vmdln Array that specifies the output vector y.
COMPLEX for vcln, vmcln
DOUBLE COMPLEX for vzln, vmzln
REAL, INTENT (OUT) for vsln, vmsln
DOUBLE PRECISION, INTENT (OUT) for
vdln, vmdln
COMPLEX, INTENT (OUT) for vcln,
vmcln
DOUBLE COMPLEX, INTENT (OUT) for
vzln, vmzln

```

\section*{Description}

The \(v\) ? Ln function computes natural logarithm of vector elements.
Special Values for Real Function v?Ln(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & +0 & & \\
\(X<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & \(+\infty\) & & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Ln(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM }(z \\
)
\end{gathered}
\] & - \(\infty\) & -X & -0 & +0 & +X & + & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(\infty+i \cdot \frac{3 \pi}{4}\) & \[
+\infty+\mathfrak{i} \cdot \pi / 2
\] & \(+\infty+\mathrm{i} \cdot \pi / 2\) & \(+\infty+\mathrm{i} \cdot \pi / 2\) & \(+\infty+\mathrm{i} \cdot \pi / 2\) & \(+\infty+\mathrm{i} \cdot \pi / 4\) & \(+\infty+\mathrm{i} \cdot\) QNAN \\
\hline +i.Y & \(+\infty+\mathrm{i} \cdot \pi\) & & & & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} \\
\hline +i.0 & \(+\infty+\mathrm{i} \cdot \pi\) & & \begin{tabular}{l}
\(-\infty+\mathrm{i} \cdot \pi\) \\
ZERODIVID \\
E
\end{tabular} & \begin{tabular}{l}
\[
-\infty+i \cdot 0
\] \\
ZERODIVID \\
E
\end{tabular} & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
+i.QNAN \\
INVALID
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\mathrm{i} \cdot \mathrm{IM}(\mathrm{z} \\
)
\end{gathered}
\] & \(-\infty\) & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline -i. 0 & \(+\infty-\mathrm{i} \cdot \pi\) & & \begin{tabular}{l}
\(-\infty-\mathrm{i} \cdot \pi\) \\
ZERODIVID \\
E
\end{tabular} & \begin{tabular}{l}
\[
-\infty-\mathrm{i} \cdot 0
\] \\
ZERODIVID \\
E
\end{tabular} & & \(+\infty-\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} \\
\hline -i.Y & \(+\infty-\mathrm{i} \cdot \pi\) & & & & & \(+\infty\)-i. 0 & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} \\
\hline -i \(\cdot \infty\) & \(\infty-i \cdot \frac{3 \pi}{4}\) & \(+\infty-\mathrm{i} \cdot \pi / 2\) & \(+\infty-\mathrm{i} \cdot \pi / 4\) & \(+\infty+i \cdot\) QNAN \\
\hline +i•NAN & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
+i.QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i.QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN
\[
+\mathrm{i} \cdot \text { QNAN }
\] \\
INVALID
\end{tabular} & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes:}
- raises INVALID exception when real or imaginary part of the argument is SNAN
v?Log2
Computes the base 2 logarithm of vector elements.

\section*{Syntax}
```

call vslog2 (n, a, y)
call vslog2i(n, a, inca, y, incy)
call vmslog2 (n, a, y, mode)
call vmslog2i(n, a, inca, y, incy, mode)
call vdlog2 (n, a, y)
call vdlog2i(n, a, inca, y, incy)
call vmdlog2 (n, a, y, mode)
call vmdlog2i(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER \\
\(a\) & REAL for vslog2 \\
& REAL for vmslog2
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Name} & Type & Description \\
\hline & DOUBLE PRECISION for valog2 & \\
\hline & DOUBLE PRECISION for vmdlog2 & \\
\hline inca, incy & INTEGER, INTENT(IN) & Specifies increments for the elements of \(a\) and \(y\). \\
\hline mode & INTEGER (KIND=8) & Overrides the global VM mode setting for this function call. See vmlSetmode for possible values and their description. \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & REAL for vslog2 \\
& REAL for vmslog2 \\
& DOUBLE PRECISION for vdlog2 \\
& DOUBLE PRECISION for vmdlog2
\end{tabular}

\section*{Description}

The \(v ? \log 2\) function computes the base 2 logarithm of vector elements.
See Special Value Notations for the conventions used in this table:
Special values for Real Function v?Log2(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & +0 & & \\
\(x<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & \(+\infty\) & & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

\section*{See Also}

Ln Computes natural logarithm of vector elements.
Log10 Computes the base 10 logarithm of vector elements.
v?Log10
Computes the base 10 logarithm of vector elements.
Syntax
```

call vslog10(n, a, y)
call vslog10i(n, a, inca, y, incy)
call vmslog10(n, a, y, mode)
call vmslog10i(n, a, inca, y, incy, mode)
call vdlog10(n, a, y)

```
```

call vdlog10i(n, a, inca, y, incy)
call vmdlog10(n, a, y, mode)
call vmdlog10i(n, a, inca, y, incy, mode)
call vclog10(n, a, y)
call vclog10i(n, a, inca, y, incy)
call vmclog10(n, a, y, mode)
call vmclog10i(n, a, inca, y, incy, mode)
call vzlog10(n, a, y)
call vzlog10i(n, a, inca, y, incy)
call vmzlog10(n, a, y, mode)
call vmzlog10i(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{7}{*}{a} & DOUBLE PRECISION for vdlog10, vmdlog10 \\
\hline & COMPLEX for vclog10, vmclog10 \\
\hline & DOUBLE COMPLEX for vzlog10, vmzlog10 \\
\hline & REAL, INTENT (IN) for vslog10, vmslog10 \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdlog10, vmdlog10 \\
\hline & COMPLEX, INTENT (IN) for vclog10, vmclog10 \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzlog10, vmzlog10 \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER(KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name
Type
DOUBLE PRECISION for vdlog10,
vmdlog10
COMPLEX for vclog10, vmclog10
DOUBLE COMPLEX for vzlog10,
vmzlog10
REAL, INTENT (OUT) for vslog10,
vmslog10
DOUBLE PRECISION, INTENT (OUT) for
vdlog10, vmdlog10
COMPLEX, INTENT (OUT) for vclog10,
vmclog10
DOUBLE COMPLEX, INTENT (OUT) for
vzlog10, vmzlog10

```

\section*{Description}

The v?Log10 function computes the base 10 logarithm of vector elements.
Special Values for Real Function v?Log10(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & +0 & & \\
\(X<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & \(+\infty\) & & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Log10(z)



Notes:
- raises INVALID exception when real or imaginary part of the argument is SNAN

\section*{v?Log1p}

Computes a natural logarithm of vector elements that
are increased by 1.

\section*{Syntax}
```

call vsloglp(n, a, y)
call vslog1pi(n, a, inca, y, incy)
call vmslog1p(n, a, y, mode)
call vmsloglpi(n, a, inca, y, incy, mode)
call vdlog1p(n, a, y)
call vdloglpi(n, a, inca, y, incy)
call vmdlog1p(n, a, y, mode)
call vmdloglpi(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{3}{*}{a} & DOUBLE PRECISION for vdlog1p, vmdlog1p \\
\hline & REAL, INTENT (IN) for vslog1p, vmslog1p \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdlog1p, vmdlog1p \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER(KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name
Type
DOUBLE PRECISION for vdlog1p,
vmdlog1p
REAL, INTENT (OUT) for vslog1p,
vmslog1p
DOUBLE PRECISION, INTENT (OUT) for
vdlog1p, vmdlog1p

```

\section*{Description}

The \(v ? \log 1 p\) function computes a natural logarithm of vector elements that are increased by 1.
Special Values for Real Function v?Log1p(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline-1 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(X<-1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & +0 & & \\
-0 & -0 & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & & \\
\(+\infty\) & QNAN & & INVALID \\
\hline QNAN & QNAN & & \\
\hline
\end{tabular}
v?Logb
Computes the exponents of the elements of input vector \(a\).

\section*{Syntax}
```

call vslogb (n, a, y)

```
```

call vslogbi(n, a, inca, y, incy)
call vmslogb (n, a, y, mode)
call vmslogbi(n, a, inca, y, incy, mode)
call vdlogb (n, a, y)
call vdlogbi(n, a, inca, y, incy)
call vmdlogb (n, a, y, mode)
call vmdlogbi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER \\
a & REAL for vslogb \\
& REAL for vmslogb \\
& DOUBLE PRECISION for vdlogb \\
& DOUBLE PRECISION for vmdlogb \\
inca, incy & INTEGER, INTENT(IN) \\
mode & INTEGER (KIND=8)
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & REAL for vslogb \\
& REAL for vmslogb \\
& DOUBLE PRECISION for valogb \\
& DOUBLE PRECISION for vmdlogb
\end{tabular}

\section*{Description}

The v? Logb function computes the exponents of the elements of the input vector \(a\). For each element \(a_{i}\) of vector \(a\), this is the integral part of \(\log _{2}\left|a_{i}\right|\). The returned value is exact and is independent of the current rounding direction mode.
See Special Value Notations for the conventions used in this table:
Special values for Real Function v?Logb(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & \(-\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_ERRDOM & ZERODIVIDE
\end{tabular}
\begin{tabular}{lll}
\hline Argument & Result & VM Error Status \\
\hline\(-\infty\) & \(+\infty\) & \\
\(+\infty\) & \(+\infty\) & Exception \\
QNAN & QNAN & \\
SNAN & QNAN & INVALID \\
\hline
\end{tabular}

\section*{Trigonometric Functions}
v?Cos
Computes cosine of vector elements.
Syntax
```

call vscos(n, a, y)
call vscosi(n, a, inca, y, incy)
call vmscos(n, a, y, mode)
call vmscosi(n, a, inca, y, incy, mode)
call vdcos(n, a, y)
call vdcosi(n, a, inca, y, incy)
call vmdcos(n, a, y, mode)
call vmdcosi(n, a, inca, y, incy, mode)
call vccos(n, a, y)
call vccosi(n, a, inca, y, incy)
call vmccos(n, a, y, mode)
call vmccosi(n, a, inca, y, incy, mode)
call vzcos(n, a, y)
call vzcosi(n, a, inca, y, incy)
call vmzcos(n, a, y, mode)
call vmzcosi(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a\) & \begin{tabular}{l} 
DOUBLE PRECISION for vdcos, \\
vmdcos \\
COMPLEX for vccos, vmccos
\end{tabular}
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).
\begin{tabular}{ll} 
Name & Type \\
& DOUBLE PRECISION for vzCOS, \\
& vmzCos \\
& REAL, INTENT (IN) for vScos, vmscos \\
& DOUBLE PRECISION, INTENT (IN) for \\
& vdcos, vmdcos \\
& COMPLEX, INTENT (IN) for vCcos, \\
& vmccos \\
inca, incy & DOUBLE PRECISION, INTENT (IN) for \\
mode & INTEGER, INTENT(IN)
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & DOUBLE PRECISION for vdcos, \\
& vmdcos \\
& COMPLEX for vccos, vmccos \\
& DOUBLE PRECISION for vzcos, \\
& vmzcos \\
& REAL, INTENT (OUT) for vScos, \\
& vmscos \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdCOS, vmdcos \\
& COMPLEX, INTENT (OUT) for vCCOS, \\
& vmCCOS \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vzCOS, vmzCOS
\end{tabular}

\section*{Description}

> Specifies increments for the elements of \(a\) and \(y\).
> Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The v ? Cos function computes cosine of vector elements.
Note that arguments abs (a[i]) \(\leq 2^{13}\) and abs (a[i]) \(\leq 2^{16}\) for single and double precisions respectively are called fast computational path. These are trigonometric function arguments for which VM provides the best possible performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA) and Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast on the entire function domain. However, these functions provide less accuracy.

\section*{Special Values for Real Function v?Cos(x)}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & &
\end{tabular}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula \(\operatorname{Cos}(z)=\operatorname{Cosh}\left(i^{*} z\right)\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201
v?Sin
Computes sine of vector elements.
Syntax
```

call vssin(n, a, y)
call vssini(n, a, inca, y, incy)
call vmssin(n, a, y, mode)
call vmssini(n, a, inca, y, incy, mode)
call vdsin(n, a, y)
call vdsini(n, a, inca, y, incy)
call vmdsin(n, a, y, mode)
call vmdsini(n, a, inca, y, incy, mode)
call vcsin(n, a, y)
call vcsini(n, a, inca, y, incy)
call vmcsin(n, a, y, mode)
call vmcsini(n, a, inca, y, incy, mode)
call vzsin(n, a, y)
call vzsini(n, a, inca, y, incy)
call vmzsin(n, a, y, mode)
call vmzsini(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters

\section*{Name \\ Type}
n
INTEGER, INTENT (IN)

\section*{Description}

Specifies the number of elements to be calculated.
\begin{tabular}{ll} 
Name & Type \\
a & DOUBLE PRECISION for vdsin, \\
& vmdsin \\
& COMPLEX for vcsin, vmcsin \\
& DOUBLE PRECISION for vzsin, \\
& vmzsin \\
& REAL, INTENT(IN) for vssin, vmssin \\
& DOUBLE PRECISION, INTENT(IN) for \\
& vdsin, vmdsin \\
& COMPLEX, INTENT(IN) for vcsin, \\
& vmcsin \\
& DOUBLE PRECISION, INTENT(IN) for \\
inca, incy & INTEGER, INTENT(IN) \\
mode & INTEGER(KIND=8), INTENT(IN)
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & DOUBLE PRECISION for vdsin, \\
& vmdsin \\
& COMPLEX for vcsin, vmcsin \\
& vouble PRECISION for vzsin, \\
& REAL, INTENT (OUT) for vssin, \\
& vmssin \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdsin, vmdsin \\
& COMPLEX, INTENT (OUT) for vcsin, \\
& vmcsin \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vzsin, vmzsin
\end{tabular}

\section*{Description}

Array that specifies the input vector \(a\). Specifies increments for the elements of \(a\) and \(y\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The function computes sine of vector elements.
Note that arguments abs (a[i]) \(\leq 2^{13}\) and \(\mathrm{abs}(a[i]) \leq 2^{16}\) for single and double precisions respectively are called fast computational path. These are trigonometric function arguments for which VM provides the best possible performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA) and Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast on the entire function domain. However, these functions provide less accuracy.

Special Values for Real Function v?Sin(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula \(\operatorname{Sin}(z)=-i * \operatorname{Sinh}(i * z)\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{v?SinCos}

Computes sine and cosine of vector elements.
Syntax
```

call vssincos(n, a, y, z)
call vssincosi(n, a, inca, y, incy, z, incz)
call vmssincos(n, a, y, z, mode)
call vmssincosi(n, a, inca, y, incy, z, incz, mode)
call vdsincos(n, a, y, z)
call vdsincosi(n, a, inca, y, incy, z, incz)
call vmdsincos(n, a, y, z, mode)
call vmdsincosi(n, a, inca, y, incy, z, incz, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
\(n\) & INTEGER, INTENT (IN) & \begin{tabular}{l} 
Specifies the number of elements to be \\
calculated.
\end{tabular} \\
& \begin{tabular}{l} 
DOUBLE PRECISION for vdsincos, \\
\\
vmdsincos
\end{tabular} & Array that specifies the input vector \(a\).
\end{tabular}
\begin{tabular}{ll} 
Name & Type \\
\begin{tabular}{l} 
inca, incy, \\
incz
\end{tabular} & INTEGER, INTENT(IN) \\
mode & INTEGER(KIND=8), INTENT (IN)
\end{tabular}

\section*{Description}

Specifies increments for the elements of \(a, y\), and \(z\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Arrays that specify the output vectors \(y\) (for sine values) and \(z\) (for cosine values).

\section*{Description}

The function computes sine and cosine of vector elements.
Note that arguments abs (a[i]) \(\leq 2^{13}\) and \(\operatorname{abs}(a[i]) \leq 2^{16}\) for single and double precisions respectively are called fast computational path. These are trigonometric function arguments for which VM provides the best possible performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA) and Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast on the entire function domain. However, these functions provide less accuracy.
Special Values for Real Function v?SinCos(x)
\begin{tabular}{lllll}
\hline Argument & Result 1 & Result 2 & VM Error Status & Exception \\
\hline+0 & +0 & +1 & & \\
-0 & -0 & +1 & & INVALID \\
\(+\infty\) & QNAN & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & QNAN & VML_STATUS_ERRDOM & \\
QNAN & QNAN & QNAN & & INVALID \\
\hline SNAN & QNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
Sin(z) \(=-i * \operatorname{Sinh}(i * z)\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201
v?CIS
Computes complex exponent of real vector elements
(cosine and sine of real vector elements combined to
complex value).

\section*{Syntax}
```

call vccis(n, a, y)
call vccisi(n, a, inca, y, incy)
call vmccis(n, a, y, mode)
call vmccisi(n, a, inca, y, incy, mode)
call vzcis(n, a, y)
call vzcisi(n, a, inca, y, incy)
call vmzcis(n, a, y, mode)
call vmzcisi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline n & INTEGER, INTENT (IN) \\
\hline a & DOUBLE PRECISION for vzcis, vmzcis \\
\hline & REAL, INTENT (IN) for vccis, vmccis DOUBLE PRECISION, INTENT (IN) for vzcis, vmzcis \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER (KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name}
y
Type
DOUBLE COMPLEX for vzcis, vmzcis COMPLEX, INTENT (OUT) for vccis, vmccis

DOUBLE COMPLEX, INTENT (OUT) for vzcis, vmzcis

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The v?CIS function computes complex exponent of real vector elements (cosine and sine of real vector elements combined to complex value).
See Special Value Notations for the conventions used in the table below.

Special Values for Complex Function v?CIS(x)
\begin{tabular}{|c|c|}
\hline X & CIS(x) \\
\hline \(+\infty\) & QNAN+i•QNAN \\
\hline & INVALID \\
\hline + 0 & \(+1+\mathrm{i} \cdot 0\) \\
\hline - 0 & +1-i•0 \\
\hline \(-\infty\) & QNAN+i•QNAN \\
\hline & INVALID \\
\hline NAN & QNAN+i•QNAN \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when the argument is SNAN
- raises INVALID exception and sets the VM Error Status to VML_STATUS_ERRDOM for \(x=+\infty, x=-\infty\)
v?Tan
Computes tangent of vector elements.

\section*{Syntax}
```

call vstan(n, a, y)
call vstani(n, a, inca, y, incy)
call vmstan(n, a, y, mode)
call vmstani(n, a, inca, y, incy, mode)
call vdtan(n, a, y)
call vdtani(n, a, inca, y, incy)
call vmdtan(n, a, y, mode)
call vmdtani(n, a, inca, y, incy, mode)
call vctan(n, a, y)
call vctani(n, a, inca, y, incy)
call vmctan(n, a, y, mode)
call vmctani(n, a, inca, y, incy, mode)
call vztan(n, a, y)
call vztani(n, a, inca, y, incy)
call vmztan(n, a, y, mode)
call vmztani(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
a & \\
& vOUBLE PRECISION for vdtan, \\
& COMPLEX for vctan, vmctan \\
& DOUBLE COMPLEX for vztan, vmztan \\
& REAL, INTENT (IN) for vstan, vmstan \\
& DOUBLE PRECISION, INTENT (IN) for \\
& vdtan, vmdtan \\
& COMPLEX, INTENT (IN) for vctan, \\
& vmctan \\
inca, incy & DOUBLE COMPLEX, INTENT (IN) for \\
mode & INTEGER, INTENT(IN)
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & DOUBLE PRECISION for vdtan, \\
& vmdtan \\
& COMPLEX for vctan, vmctan \\
& DOUBLE COMPLEX for vztan, vmztan \\
& REAL, INTENT (OUT) for vstan, \\
& vmstan \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdtan, vmdtan \\
& COMPLEX, INTENT (OUT) for vctan, \\
& vmctan \\
& DOUBLE COMPLEX, INTENT (OUT) for \\
& vztan, vmztan
\end{tabular}

\section*{Description}

The v?Tan function computes tangent of vector elements.

Note that arguments abs(a[i]) \(\leq 2^{13}\) and \(\mathrm{abs}(a[i]) \leq 2^{16}\) for single and double precisions respectively are called fast computational path. These are trigonometric function arguments for which VM provides the best possible performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA) and Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast on the entire function domain. However, these functions provide less accuracy.
Special Values for Real Function v?Tan(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
\(\operatorname{Tan}(z)=-i * \operatorname{Tanh}(i * z)\).

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201
\(v\) ?Acos
Computes inverse cosine of vector elements.
Syntax
```

call vsacos(n, a, y)
call vsacosi(n, a, inca, y, incy)
call vmsacos(n, a, y, mode)
call vmsacosi(n, a, inca, y, incy, mode)
call vdacos(n, a, y)
call vdacosi(n, a, inca, y, incy)
call vmdacos(n, a, y, mode)
call vmdacosi(n, a, inca, y, incy, mode)
call vcacos(n, a, y)
call vcacosi(n, a, inca, y, incy)
call vmcacos(n, a, y, mode)
call vmcacosi(n, a, inca, y, incy, mode)
call vzacos(n, a, y)
call vzacosi(n, a, inca, y, incy)
call vmzacos(n, a, y, mode)
call vmzacosi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

Input Parameters
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{7}{*}{a} & DOUBLE PRECISION for vdacos, vmdacos \\
\hline & COMPLEX for vcacos, vmcacos \\
\hline & DOUBLE COMPLEX for vzacos, vmzacos \\
\hline & REAL, INTENT (IN) for vsacos, vmsacos \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdacos, vmdacos \\
\hline & COMPLEX, INTENT (IN) for vcacos, vmcacos \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzacos, vmzacos \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER (KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The v?Acos function computes inverse cosine of vector elements.
Special Values for Real Function \(\mathbf{v}\) ?Acos(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & \(+\pi / 2\) & & \\
-0 & \(+\pi / 2\) & & \\
+1 & +0 & & INVALID \\
-1 & \(+\pi\) & VML_STATUS_ERRDOM & INVALID \\
\(|X|>1\) & QNAN & QML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & \\
\(-\infty\) & QNAN & & INVALID \\
QNAN & QNAN & & \\
SNAN & & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Acos(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM }(z \\
)
\end{gathered}
\] & - & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(+3 \cdot \pi / 4-\mathrm{i} \cdot \infty\) & \(+\pi / 2-\mathrm{i} \cdot \infty\) & \(+\pi / 4-\mathrm{i} \cdot \infty\) & QNAN-i \(\cdot \infty\) \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & \(+\pi\) - \(\mathrm{i} \cdot \infty\) & & & & & \(+0-\mathrm{i} \cdot \infty\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline +i. 0 & \(+\pi\) - \(\mathbf{i} \cdot \infty\) & & \(+\pi / 2-\mathrm{i} \cdot 0\) & \(+\pi / 2-\mathrm{i} \cdot 0\) & & \(+0-\mathrm{i} \cdot \infty\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i. 0 & \(+\pi+\mathrm{i} \cdot \infty\) & & \(+\pi / 2+\mathrm{i} \cdot 0\) & \(+\pi / 2+i \cdot 0\) & & \(+0+\mathrm{i} \cdot \infty\) & \begin{tabular}{l}
QNAN \\
+i QNAN
\end{tabular} \\
\hline -i.Y & \(+\pi+\mathrm{i} \cdot \infty\) & & & & & \(+0+\mathrm{i} \cdot \infty\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i \(\cdot \infty\) & \(+3 \pi / 4+\mathrm{i} \cdot \infty\) & \(+\pi / 2+\mathrm{i} \cdot \infty\) & \(+\pi / 4+\mathrm{i} \cdot \infty\) & QNAN+i•m \\
\hline +i•NAN & QNAN+i•m & \begin{tabular}{l}
QNAN \\
\(+i \cdot\) QNAN
\end{tabular} & \[
\begin{aligned}
& \hline+\pi / \\
& 2+\dot{i} \cdot \text { QNAN }
\end{aligned}
\] & \[
\begin{aligned}
& \hline+\pi / \\
& 2+\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & QNAN+i•m & \begin{tabular}{l}
QNAN \\
+i.QNAN
\end{tabular} \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when real or imaginary part of the argument is SNAN
- \(\operatorname{Acos}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Acos}(z))\).

\section*{v?Asin}

Computes inverse sine of vector elements.

\section*{Syntax}
```

call vsasin(n, a, y)
call vsasini(n, a, inca, y, incy)
call vmsasin(n, a, y, mode)
call vmsasini(n, a, inca, y, incy, mode)
call vdasin(n, a, y)
call vdasini(n, a, inca, y, incy)

```
```

call vmdasin(n, a, y, mode)
call vmdasini(n, a, inca, y, incy, mode)
call vcasin(n, a, y)
call vcasini(n, a, inca, y, incy)
call vmcasin(n, a, y, mode)
call vmcasini(n, a, inca, y, incy, mode)
call vzasin(n, a, y)
call vzasini(n, a, inca, y, incy)
call vmzasin(n, a, y, mode)
call vmzasini(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline n & INTEGER, INTENT (IN) \\
\hline \multirow[t]{7}{*}{a} & DOUBLE PRECISION for vdasin, vmdasin \\
\hline & COMPLEX for vcasin, vmcasin \\
\hline & DOUBLE COMPLEX for vzasin, vmzasin \\
\hline & REAL, INTENT (IN) for vsasin, vmsasin \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdasin, vmdasin \\
\hline & COMPLEX, INTENT (IN) for vcasin, vmcasin \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzasin, vmzasin \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER (KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).
Name Type Description
```

COMPLEX for vcasin, vmcasin
DOUBLE COMPLEX for vzasin,
vmzasin
REAL, INTENT (OUT) for vsasin,
vmsasin
DOUBLE PRECISION, INTENT (OUT) for
vdasin, vmdasin
COMPLEX, INTENT (OUT) for vcasin,
vmcasin
DOUBLE COMPLEX, INTENT (OUT) for
vzasin, vmzasin

```

\section*{Description}

The v?Asin function computes inverse sine of vector elements.
Special Values for Real Function v?Asin(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & \\
+1 & \(+\pi / 2\) & & INVALID \\
-1 & \(-\pi / 2\) & VML_STATUS_ERRDOM & INVALID \\
\(|X|>1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & \\
\(-\infty\) & QNAN & & INVALID \\
QNAN & QNAN & & \\
SNAN & & & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula Asin(z) \(=-i^{\star} A \sinh \left(i^{*} z\right)\).
v?Atan
Computes inverse tangent of vector elements.
Syntax
```

call vsatan(n, a, y)
call vsatani(n, a, inca, y, incy)
call vmsatan(n, a, y, mode)
call vmsatani(n, a, inca, y, incy, mode)
call vdatan(n, a, y)
call vdatani(n, a, inca, y, incy)
call vmdatan(n, a, y, mode)
call vmdatani(n, a, inca, y, incy, mode)
call vcatan(n, a, y)

```
```

call vcatani(n, a, inca, y, incy)
call vmcatan(n, a, y, mode)
call vmcatani(n, a, inca, y, incy, mode)
call vzatan(n, a, y)
call vzatani(n, a, inca, y, incy)
call vmzatan(n, a, y, mode)
call vmzatani(n, a, inca, y, incy, mode)
Include Files

```
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{7}{*}{a} & DOUBLE PRECISION for vdatan, vmdatan \\
\hline & COMPLEX for vcatan, vmcatan \\
\hline & DOUBLE COMPLEX for vzatan, vmzatan \\
\hline & REAL, INTENT (IN) for vsatan, vmsatan \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdatan, vmdatan \\
\hline & COMPLEX, INTENT (IN) for vcatan, vmcatan \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzatan, vmzatan \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER (KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & DOUBLE PRECISION for vdatan, \\
vmdatan \\
& COMPLEX for vcatan, vmcatan \\
& DOUBLE COMPLEX for vzatan, \\
& vmzatan
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).
Name Type Description
```

REAL, INTENT (OUT) for vsatan,
vmsatan
DOUBLE PRECISION, INTENT (OUT) for
vdatan, vmdatan
COMPLEX, INTENT (OUT) for vcatan,
vmcatan
DOUBLE COMPLEX, INTENT (OUT) for
vzatan, vmzatan

```

\section*{Description}

The v?Atan function computes inverse tangent of vector elements.
Special Values for Real Function v?Atan(x)
\begin{tabular}{lll}
\hline Argument & Result & VM Error Status \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\pi / 2\) & \\
\(-\infty\) & \(-\pi / 2\) & Exception \\
QNAN & QNAN & \\
SNAN & QNAN & \\
\hline
\end{tabular}

Specifications for special values of the complex functions are defined according to the following formula
Atan \((z)=-i * A t a n h(i * z)\).
v?Atan2
Computes four-quadrant inverse tangent of elements of two vectors.

\section*{Syntax}
```

call vsatan2(n, a, b, y)
call vsatan2i(n, a, inca, b, incb, y, incy)
call vmsatan2(n, a, b, y, mode)
call vmsatan2i(n, a, inca, b, incb, y, incy, mode)
call vdatan2(n, a, b, y)
call vdatan2i(n, a, inca, b, incb, y, incy)
call vmdatan2(n, a, b, y, mode)
call vmdatan2i(n, a, inca, b, incb, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{3}{*}{\(a, b\)} & DOUBLE PRECISION for vdatan2, vmdatan2 \\
\hline & REAL, INTENT (IN) for vsatan2, vmsatan2 \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdatan2, vmdatan2 \\
\hline \[
\begin{aligned}
& \text { inca, incb, } \\
& \text { incy }
\end{aligned}
\] & INTEGER, INTENT(IN) \\
\hline mode & INTEGER(KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Arrays that specify the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\) and \(y\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name}
y

\section*{Type}

DOUBLE PRECISION for vdatan2, vmdatan2

REAL, INTENT (OUT) for vsatan2, vmsatan2

DOUBLE PRECISION, INTENT (OUT) for vdatan2, vmdatan2

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The \(v\) ?Atan 2 function computes four-quadrant inverse tangent of elements of two vectors.
The elements of the output vectory are computed as the four-quadrant arctangent of \(a[i] / b\) [i].
Special values for Real Function v?Atan2(x)
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline\(-\infty\) & \(-\infty\) & \(-3 * \pi / 4\) & \(-\pi / 2\) \\
\(-\infty\) & \(X<+0\) & \(-\pi / 2\) \\
\(-\infty\) & -0 & \(-\pi / 2\) \\
\(-\infty\) & +0 & \(-\pi / 2\) & \\
\(-\infty\) & \(X>+0\) & \(-\pi / 4\) \\
\(-\infty\) & \(+\infty\) & \(-\pi\) & \\
\(X<+0\) & \(-\infty\) & \(-\pi / 2\) & \\
\(X<+0\) & -0 & \(-\pi / 2\) & \\
\(X<+0\) & +0 & -0 \\
-0 & \(+\infty\) & \(-\pi\) & \\
-0 & \(-\infty\) & \(-\pi\) &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline -0 & -0 & \(-\pi\) & \\
\hline -0 & +0 & -0 & \\
\hline -0 & \(x>+0\) & -0 & \\
\hline -0 & \(+\infty\) & -0 & \\
\hline +0 & \(-\infty\) & \(+\pi\) & \\
\hline +0 & \(x<+0\) & \(+\pi\) & \\
\hline +0 & -0 & \(+\pi\) & \\
\hline +0 & +0 & +0 & \\
\hline +0 & X > +0 & +0 & \\
\hline +0 & \(+\infty\) & +0 & \\
\hline \(x>+0\) & \(-\infty\) & \(+\pi\) & \\
\hline \(x>+0\) & -0 & \(+\pi / 2\) & \\
\hline \(x>+0\) & +0 & \(+\pi / 2\) & \\
\hline \(x>+0\) & \(+\infty\) & +0 & \\
\hline \(+\infty\) & \(-\infty\) & \(+3 * \pi / 4\) & \\
\hline \(+\infty\) & \(x<+0\) & \(+\pi / 2\) & \\
\hline \(+\infty\) & -0 & \(+\pi / 2\) & \\
\hline \(+\infty\) & +0 & \(+\pi / 2\) & \\
\hline \(+\infty\) & \(x>+0\) & \(+\pi / 2\) & \\
\hline \(+\infty\) & \(+\infty\) & \(+\pi / 4\) & \\
\hline \(\mathrm{X}>+0\) & QNAN & QNAN & \\
\hline \(\mathrm{X}>+0\) & SNAN & QNAN & INVALID \\
\hline QNAN & \(x>+0\) & QNAN & \\
\hline SNAN & \(\mathrm{X}>+0\) & QNAN & INVALID \\
\hline QNAN & QNAN & QNAN & \\
\hline QNAN & SNAN & QNAN & INVALID \\
\hline SNAN & QNAN & QNAN & INVALID \\
\hline SNAN & SNAN & QNAN & INVALID \\
\hline
\end{tabular}
v?Cospi
Computes the cosine of vector elements multiplied by п.

\section*{Syntax}
```

call vscospi (n, a, y)
call vscospii(n, a, inca, y, incy)
call vmscospi (n, a, y, mode)
call vmscospii(n, a, inca, y, incy, mode)
call vdcospi (n, a, y)
call vdcospii(n, a, inca, y, incy)
call vmdcospi (n, a, y, mode)
call vmdcospii(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER \\
a & \\
& REAL for vscospi \\
& REAL for vmscospi \\
inca, incy & DOUBLE PRECISION for vdcospi \\
mode & INTEGER, INTENT(IN) \\
& INTEGER (KIND=8)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name Type}
\(y \quad\) REAL for vscospi
REAL for vmscospi
DOUBLE PRECISION for vdcospi
DOUBLE PRECISION for vmdcospi

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Cospi function computes the cosine of vector elements multiplied by \(n\). For an argument \(x\), the function computes \(\cos \left(\pi^{*} x\right)\).
Special values for Real Function v?Cospi(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & \\
\(n+0.5\), for any integer \(n\) & +0 & & \\
\begin{tabular}{ll} 
where \(n+0.5\) is & \\
representable & QML_STATUS_ERRDOM \\
\(\pm \infty\) & QNAN \\
QNAN & QNAN
\end{tabular} & INVALID \\
SNAN & & & INVALID \\
\hline
\end{tabular}

\section*{Application Notes}

If arguments \(\operatorname{abs}\left(a_{i}\right) \leq 2^{22}\) for single precision or \(a b s\left(a_{i}\right) \leq 2^{43}\) for double precision, they belong to the fast computational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

\section*{See Also}

Cos Computes cosine of vector elements.
Cosd Computes the cosine of vector elements multiplied by \(\pi / 180\).
v?Sinpi
Computes the sine of vector elements multiplied by п.

\section*{Syntax}
```

call vssinpi (n, a, y)
call vssinpii(n, a, inca, y, incy)
call vmssinpi (n, a, y, mode)
call vmssinpii(n, a, inca, y, incy, mode)
call vdsinpi (n, a, y)
call vdsinpii(n, a, inca, y, incy)
call vmdsinpi (n, a, y, mode)
call vmdsinpii(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER \\
a & REAL for vssinpi \\
& REAL for vmssinpi \\
& DOUBLE PRECISION for \\
& DOUBLE PRECISION for \\
inca, incy & INTEGER, INTENT(IN) \\
mode & INTEGER (KIND=8)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name Type
y
REAL for vssinpi
REAL for vmssinpi
DOUBLE PRECISION for vdsinpi
DOUBLE PRECISION for vmdsinpi

```

\section*{Description}

Pointer to an array containing the output vector \(y\).

Description
The v?Sinpi function computes the sine of vector elements multiplied by \(\pi\). For an argument \(x\), the function computes \(\sin \left(n^{*} x\right)\).

Special values for Real Function v?Sinpi(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & \\
\(+n\), positive integer & +0 & & \\
\(-n\), negative integer & -0 & INVASID & \\
\(\pm \infty\) & QNAN & QNAN & INVALID \\
QNAN & QNAN & & \\
SNAN & & & \\
\hline
\end{tabular}

\section*{Application Notes}

If arguments \(\operatorname{abs}\left(a_{i}\right) \leq 2^{22}\) for single precision or \(\operatorname{abs}\left(a_{i}\right) \leq 2^{51}\) for double precision, they belong to the fast computational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

\section*{See Also}

Sin Computes sine of vector elements.
Sind Computes the sine of vector elements multiplied by \(\pi / 180\).
v?Tanpi
Computes the tangent of vector elements multiplied
bу п.
Syntax
```

call vstanpi (n, a, y)
call vstanpii(n, a, inca, y, incy)
call vmstanpi (n, a, y, mode)
call vmstanpii(n, a, inca, y, incy, mode)
call vdtanpi (n, a, y)
call vdtanpii(n, a, inca, y, incy)
call vmdtanpi (n, a, y, mode)
call vmdtanpii(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \(n\) & Integer & Specifies the number of elements to be calculated. \\
\hline \multirow[t]{4}{*}{a} & REAL for vstanpi & \multirow[t]{4}{*}{Pointer to the array containing the input vector a.} \\
\hline & REAL for vmstanpi & \\
\hline & DOUBLE PRECISION for vdtanpi & \\
\hline & DOUBLE PRECISION for vmdtanpi & \\
\hline inca, incy & INTEGER, INTENT(IN) & Specifies increments for the elements of \(a\) and \(y\). \\
\hline mode & INTEGER (KIND=8) & Overrides the global VM mode setting for this function call. See vmlSetMode for possible values and their description. \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{Name Type}
\(y \quad\) REAL for vstanpi
REAL for vmstanpi
DOUBLE PRECISION for vdtanpi
DOUBLE PRECISION for vmdtanpi

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Tanpi function computes the tangent of vector elements multiplied by \(п\). For an argument \(x\), the function computes \(\tan \left(\pi^{*} x\right)\).
Special values for Real Function v?Tanpi(x)
\begin{tabular}{lll}
\hline Argument & Result & VM Error Status \\
\hline+0 & +1 & \\
-0 & +1 & Exception \\
\(\pm \infty\) & QNAN & \\
\(n\), even integer & copysign \((0.0, n)\) & \\
\(n\), odd integer & copysign \((0.0,-n)\) & \\
\(n+0.5\), for \(n\) even integer & \(+\infty\) & \\
\begin{tabular}{ll}
\(n+\infty\) \\
and \(n+0.5\) representable
\end{tabular} & & \\
\(n+0.5\), for \(n\) odd integer & \(-\infty\) & \\
\begin{tabular}{l} 
and \(n+0.5\) representable
\end{tabular} & & \\
QNAN & QNAN & QNAN
\end{tabular}

The copysign \((x, y)\) function returns the first vector argument \(x\) with the sign changed to match that of the second argument \(y\).

\section*{Application Notes}

If arguments abs \(\left(a_{i}\right) \leq 2{ }^{13}\) for single precision or \(\operatorname{abs}\left(a_{i}\right) \leq 267\) for double precision, they belong to the fast computational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

\section*{See Also}

Tan Computes tangent of vector elements.
Tand Computes the tangent of vector elements multiplied by \(\pi / 180\).
```

v?Acospi
Computes the inverse cosine of vector elements
divided bу п.
Syntax

```
```

call vsacospi (n, a, y)

```
call vsacospi (n, a, y)
call vsacospii(n, a, inca, y, incy)
call vsacospii(n, a, inca, y, incy)
call vmsacospi (n, a, y, mode)
call vmsacospi (n, a, y, mode)
call vmsacospii(n, a, inca, y, incy, mode)
call vmsacospii(n, a, inca, y, incy, mode)
call vdacospi (n, a, y)
call vdacospi (n, a, y)
call vdacospii(n, a, inca, y, incy)
call vdacospii(n, a, inca, y, incy)
call vmdacospi (n, a, y, mode)
call vmdacospi (n, a, y, mode)
call vmdacospii(n, a, inca, y, incy, mode)
```

call vmdacospii(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER \\
\(a\) & REAL for vsacospi \\
& REAL for vmsacospi \\
& DOUBLE PRECISION for vdacospi \\
inca, incy & INOUBLE PRECISION for vmdacospi \\
mode & INTEGER (KIND=8)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name Type
y REAL for vsacospi
REAL for vmsacospi
DOUBLE PRECISION for vdacospi
DOUBLE PRECISION for vmdacospi

```

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The \(v\) ?Acospi function computes the inverse cosine of vector elements divided by \(\pi\). For an argument \(x\), the function computes \(\operatorname{acos}(x) / п\).

See Special Value Notations for the conventions used in this table:
Special values for Real Function v?Acospi(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & \(+1 / 2\) & & \\
-0 & \(+1 / 2\) & & \\
+1 & +0 & & INVALID \\
-1 & +1 & VML_STATUS_ERRDOM & INVALID \\
\(|x|>1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & \\
\(-\infty\) & QNAN & & INVALID \\
QNAN & QNAN & & \\
\hline SNAN & & & \\
\hline
\end{tabular}

\section*{See Also}

Acos Computes inverse cosine of vector elements.
v?Asinpi
Computes the inverse sine of vector elements divided вуп.

Syntax
```

call vsasinpi (n, a, y)
call vsasinpii(n, a, inca, y, incy)
call vmsasinpi (n, a, y, mode)
call vmsasinpii(n, a, inca, y, incy, mode)
call vdasinpi (n, a, y)
call vdasinpii(n, a, inca, y, incy)
call vmdasinpi (n, a, y, mode)
call vmdasinpii(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER \\
a & \\
& REAL for vsasinpi \\
& REAL for vmsasinpi \\
& DOUBLE PRECISION for vdasinpi \\
inca, incy & DOUBLE PRECISION for vmdasinpi \\
mode & INTEGER, INTENT(IN) \\
&
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name}

\section*{Type}
\(y\)

> REAL for vsasinpi
> REAL for vmsasinpi

\section*{Description}

Pointer to an array containing the output vector \(y\).

DOUBLE PRECISION for vdasinpi
DOUBLE PRECISION for vmdasinpi

\section*{Description}

The v?Asinpi function computes the inverse sine of vector elements divided by \(n\). For an argument \(x\), the function computes \(\operatorname{asin}(x) / п\).
Special values for Real Function v?Asinpi(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & \\
+1 & \(+1 / 2\) & & INVALID \\
-1 & \(-1 / 2\) & VML_STATUS_ERRDOM & INVALID \\
\(|x|>1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & \\
\(-\infty\) & QNAN & & INVALID \\
QNAN & QNAN & & \\
\hline SNAN & QNAN & & \\
\hline
\end{tabular}

\section*{See Also}

Asin Computes inverse sine of vector elements.
v?Atanpi
Computes the inverse tangent of vector elements
divided bу \(п\).

\section*{Syntax}
```

call vsatanpi (n, a, y)
call vsatanpii(n, a, inca, y, incy)
call vmsatanpi (n, a, y, mode)
call vmsatanpii(n, a, inca, y, incy, mode)
call vdatanpi (n, a, y)
call vdatanpii(n, a, inca, y, incy)
call vmdatanpi (n, a, y, mode)
call vmdatanpii(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER \\
a & REAL for vsatanpi \\
& REAL for vmsatanpi \\
& DOUBLE PRECISION for vdatanpi \\
inca, incy & INTEGBLE PRECISION for vmdatanpi \\
mode & INTEGER (KIND=8)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Atanpi function computes the inverse tangent of vector elements divided by \(п\). For an argument \(x\), the function computes \(\operatorname{atan}(x) / \pi\).
Special values for Real Function v?Atanpi(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & &
\end{tabular}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline-0 & -0 & & \\
\(+\infty\) & \(+1 / 2\) & & \\
\(-\infty\) & \(-1 / 2\) & INVALID \\
\hline QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

\section*{See Also}

Atan Computes inverse tangent of vector elements.
v?Atan2pi
Computes the four-quadrant inverse tangent of the ratios of the corresponding elements of two vectors divided bу п.

Syntax
```

call vsatan2pi (n, a, b, y)
call vsatan2pii(n, a, inca, b, incb, y, incy)
call vmsatan2pi (n, a, b, y, mode)
call vmsatan2pii(n, a, inca, b, incb, y, incy, mode)
call vdatan2pi (n, a, b, y)
call vdatan2pii(n, a, inca, b, incb, y, incy)
call vmdatan2pi (n, a, b, y, mode)
call vmdatan2pii(n, a, inca, b, incb, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER \\
\(a, b\) & REAL for vsatan2pi \\
& REAL for vmsatan2pi \\
& DOUBLE PRECISION for vdatan2pi \\
& DOUBLE PRECISION for vmdatan2pi \\
\begin{tabular}{ll} 
inca, incb, \\
incy \\
mode
\end{tabular} & INTEGER, INTENT(IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to the arrays containing the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\) and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name \\ Type}
\(y\)
REAL for vsatan2pi
REAL for vmsatan2pi
DOUBLE PRECISION for vdatan2pi
DOUBLE PRECISION for vmdatan2pi

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Atan2pi function computes the four-quadrant inverse tangent of the ratios of the corresponding elements of two vectors divided by \(п\).
For the elements of the output vector \(y\), the function computers the four-quadrant arctangent of \(a_{i} / b_{i}\), with the result divided by \(п\).

Special values for Real Function v?Atan2pi( \(x, y\) )
\begin{tabular}{|c|c|c|c|}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline \(-\infty\) & \(-\infty\) & -3/4 & \\
\hline \(-\infty\) & \(x<+0\) & -1/2 & \\
\hline \(-\infty\) & -0 & +1/2 & \\
\hline \(-\infty\) & +0 & -1/2 & \\
\hline \(-\infty\) & \(x>+0\) & -1/2 & \\
\hline \(-\infty\) & \(+\infty\) & -1/4 & \\
\hline \(x<+0\) & \(-\infty\) & -1 & \\
\hline \(x<+0\) & -0 & -1/2 & \\
\hline \(x<+0\) & +0 & -1/2 & \\
\hline \(x<+0\) & \(+\infty\) & -0 & \\
\hline -0 & \(-\infty\) & -1 & \\
\hline -0 & \(x<+0\) & -1 & \\
\hline -0 & -0 & -1 & \\
\hline -0 & +0 & -0 & \\
\hline -0 & \(x>+0\) & -0 & \\
\hline -0 & \(+\infty\) & -0 & \\
\hline +0 & \(-\infty\) & +1 & \\
\hline +0 & \(x<+0\) & +1 & \\
\hline +0 & -0 & +1 & \\
\hline +0 & +0 & +0 & \\
\hline +0 & \(x>+0\) & +0 & \\
\hline +0 & \(+\infty\) & +0 & \\
\hline \(x>+0\) & \(-\infty\) & +1 & \\
\hline \(x>+0\) & -0 & +1/2 & \\
\hline \(x>+0\) & +0 & +1/2 & \\
\hline \(x>+0\) & \(+\infty\) & +1/4 & \\
\hline \(+\infty\) & \(-\infty\) & +3/4 & \\
\hline \(+\infty\) & \(x<+0\) & +1/2 & \\
\hline \(+\infty\) & -0 & +1/2 & \\
\hline \(+\infty\) & +0 & +1/2 & \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & Exception \\
\hline\(+\infty\) & \(x>+0\) & \(+1 / 2\) & \\
\(+\infty\) & \(+\infty\) & \(+1 / 4\) & \\
\(x>+0\) & QNAN & QNAN & \\
\(x>+0\) & SNAN & QNAN & INVALID \\
QNAN & \(x>+0\) & QNAN & \\
SNAN & \(x>+0\) & QNAN & INVALID \\
QNAN & QNAN & QNAN & \\
QNAN & SNAN & QNAN & INVALID \\
SNAN & QNAN & QNAN & INVALID \\
SNAN & SNAN & QNAN & INVALID \\
\hline
\end{tabular}

\section*{See Also}

Atan2 Computes four-quadrant inverse tangent of elements of two vectors.
v?Cosd
Computes the cosine of vector elements multiplied by п/180.

\section*{Syntax}
```

call vscosd (n, a, y)
call vscosdi(n, a, inca, y, incy)
call vmscosd (n, a, y, mode)
call vmscosdi(n, a, inca, y, incy, mode)
call vdcosd (n, a, y)
call vdcosdi(n, a, inca, y, incy)
call vmdcosd (n, a, y, mode)
call vmdcosdi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER \\
\(a\) & REAL for vscosd \\
& REAL for vmscosd \\
& DOUBLE PRECISION for vdcosd \\
& DOUBLE PRECISION for vmdcosd \\
inca, incy & INTEGER, INTENT(IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
\begin{tabular}{lll} 
Name & Type & \\
mode & INTEGER \(\quad(\mathrm{KIND}=8)\)
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & REAL for vscosd \\
& REAL for vmscosd \\
& DOUBLE PRECISION for vdcosd \\
& DOUBLE PRECISION for vmdcosd
\end{tabular}

\section*{Description}

Overrides the global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The \(v\) ? Cosd function computes the cosine of vector elements multiplied by \(\pi / 180\). For an argument \(x\), the function computes \(\cos \left(\pi^{*} x / 180\right)\).
Special values for Real Function v?Cosd(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & \\
\(\pm \infty\) & QNAN_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & INVALID \\
SNAN & QNAN & & \\
\hline
\end{tabular}

\section*{Application Notes}

If arguments \(\operatorname{abs}\left(a_{i}\right) \leq 2^{24}\) for single precision or \(\operatorname{abs}\left(a_{i}\right) \leq 2^{52}\) for double precision, they belong to the fast computational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

See Also
Cos Computes cosine of vector elements.
Cospi Computes the cosine of vector elements multiplied by \(п\).
\(v\) ?Sind
Computes the sine of vector elements multiplied by п/ 180.

Syntax
```

call vssind (n, a, y)
call vssindi(n, a, inca, y, incy)
call vmssind (n, a, y, mode)
call vmssindi(n, a, inca, y, incy, mode)
call vdsind (n, a, y)
call vdsindi(n, a, inca, y, incy)

```
```

call vmdsind (n, a, y, mode)
call vmdsindi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER \\
a & REAL for vssind \\
& REAL for vmssind \\
& DOUBLE PRECISION for vdsind \\
& DOUBLE PRECISION for vmdsind \\
inca, incy & INTEGER, INTENT(IN) \\
mode & INTEGER (KIND=8)
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & REAL for vssind \\
& REAL for vmssind \\
& DOUBLE PRECISION for vdsind \\
& DOUBLE PRECISION for vmdsind
\end{tabular}

\section*{Description}

The \(v\) ?Sind function computes the sine of vector elements multiplied by \(\pi / 180\). For an argument \(x\), the function computes \(\sin \left(\Pi^{*} x / 180\right)\).
Special values for Real Function v?Sind(x)
\begin{tabular}{lll}
\hline Argument & Result & VM Error Status \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(\pm \infty\) & QNAN & \\
QNAN & QNAN & INVALID \\
SNAN & QNAN & INVALID \\
\hline
\end{tabular}

\section*{Application Notes}

If arguments \(\operatorname{abs}\left(a_{i}\right) \leq 2^{24}\) for single precision or \(\operatorname{abs}\left(a_{i}\right) \leq 2^{52}\) for double precision, they belong to the fast computational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

\section*{See Also}

Sin Computes sine of vector elements.
Sinpi Computes the sine of vector elements multiplied by \(п\).
v?Tand
Computes the tangent of vector elements multiplied by п/180.

\section*{Syntax}
```

call vstand (n, a, y)
call vstandi(n, a, inca, y, incy)
call vmstand (n, a, y, mode)
call vmstandi(n, a, inca, y, incy, mode)
call vdtand (n, a, y)
call vdtandi(n, a, inca, y, incy)
call vmdtand (n, a, y, mode)
call vmdtandi(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters
\begin{tabular}{ll} 
Name & Type \\
\(n\) & INTEGER \\
\(a\) & REAL for vstand \\
& REAL for vmstand \\
& DOUBLE PRECISION for vdtand \\
inca, incy & INTEGBLE PRECISION for vmdtand \\
mode & INTEGER (KIND=8)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll} 
Name & Type \\
\(y\) & REAL for vstand \\
& REAL for vmstand \\
& DOUBLE PRECISION for vdtand \\
& DOUBLE PRECISION for vmdtand
\end{tabular}

\section*{Description}

The \(v\) ? Tand function computes the tangent of vector elements multiplied by \(n / 180\). For an argument \(x\), the function computes \(\tan \left(n^{*} x / 180\right)\).

Special values for Real Function v?Tand(x)
\begin{tabular}{lll}
\hline Argument & Result & VM Error Status \\
\hline+0 & +1 & \\
-0 & +1 & \\
\(\pm \infty\) & QNAN & Exception \\
QNAN & QNAN & INVALID \\
SNAN & QNAN & INVALID \\
\hline
\end{tabular}

The copysign \((x, y)\) function returns the first vector argument \(x\) with the sign changed to match that of the second argument \(y\).

\section*{Application Notes}

If arguments \(\operatorname{abs}\left(a_{i}\right) \leq 2^{38}\) for single precision or \(\operatorname{abs}\left(a_{i}\right) \leq 2^{67}\) for double precision, they belong to the fast computational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

\section*{See Also}

Tan Computes tangent of vector elements.
Tanpi Computes the tangent of vector elements multiplied by \(п\).

\section*{Hyperbolic Functions}
v?Cosh
Computes hyperbolic cosine of vector elements.

\section*{Syntax}
```

call vscosh(n, a, y)
call vscoshi(n, a, inca, y, incy)
call vmscosh(n, a, y, mode)
call vmscoshi(n, a, inca, y, incy, mode)
call vdcosh(n, a, y)
call vdcoshi(n, a, inca, y, incy)
call vmdcosh(n, a, y, mode)

```
```

call vmdcoshi(n, a, inca, y, incy, mode)
call vccosh(n, a, y)
call vccoshi(n, a, inca, y, incy)
call vmccosh(n, a, y, mode)
call vmccoshi(n, a, inca, y, incy, mode)
call vzcosh(n, a, y)
call vzcoshi(n, a, inca, y, incy)
call vmzcosh(n, a, y, mode)
call vmzcoshi(n, a, inca, y, incy, mode)

```
Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{7}{*}{a} & DOUBLE PRECISION for vdcosh, vmdcosh \\
\hline & COMPLEX for vccosh, vmccosh \\
\hline & DOUBLE COMPLEX for vzcosh, vmzcosh \\
\hline & REAL, INTENT (IN) for vscosh, vmscosh \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdcosh, vmdcosh \\
\hline & COMPLEX, INTENT (IN) for vccosh, vmccosh \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzcosh, vmzcosh \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER (KIND=8) , INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

Precision Overflow Thresholds for Real v?Cosh Function
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(-\operatorname{Ln}\left(F L T \_M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(F L T \_M A X\right)+\operatorname{Ln} 2\) \\
double precision & \(-\operatorname{Ln}\left(D B L \_M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(D B L \_M A X\right)+\operatorname{Ln} 2\) \\
\hline
\end{tabular}

Precision overflow thresholds for the complex \(v\) ?Cosh function are beyond the scope of this document.

\section*{Output Parameters}
```

Name
Type
DOUBLE PRECISION for vdcosh,
vmdcosh
COMPLEX for vccosh, vmccosh
DOUBLE COMPLEX for vzcosh,
vmzcosh
REAL, INTENT (OUT) for vscosh,
vmscosh
DOUBLE PRECISION, INTENT (OUT) for
vdcosh, vmdcosh
COMPLEX, INTENT (OUT) for vccosh,
vmccosh
DOUBLE COMPLEX, INTENT (OUT) for
vzcosh, vmzcosh

```

\section*{Description}

The v?Cosh function computes hyperbolic cosine of vector elements.
Special Values for Real Function v?Cosh(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +1 & & \\
-0 & +1 & & OVERFLOW \\
\(X>\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & OVERFLOW \\
\(X<-\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & \\
\(+\infty\) & \(+\infty\) & & \\
\(-\infty\) & \(+\infty\) & & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Cosh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z) }
\end{gathered}
\] & \(-\infty\) & -X & -0 & +0 & +X & + & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN } \\
& \text { INVALID }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
+i.QNAN \\
INVALID
\end{tabular} & QNAN-i•0 INVALID & \begin{tabular}{l}
QNAN+i•0 \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i.QNAN \\
INVALID
\end{tabular} & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN } \\
& \text { INVALID }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
\hline +i.Y & \[
\begin{aligned}
& +\infty \cdot \operatorname{Cos}(Y)- \\
& i \cdot \infty \cdot \operatorname{Sin}(Y)
\end{aligned}
\] & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & \[
\begin{aligned}
& \text { QNAN } \\
& +\dot{\mathrm{i} \cdot \text { QNAN }}
\end{aligned}
\] \\
\hline \(+\mathrm{i} \cdot 0\) & \(+\infty-\mathrm{i} \cdot 0\) & & +1-i.0 & \(+1+\mathrm{i} \cdot 0\) & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i• 0 \\
\hline -i. 0 & \(+\infty+\mathrm{i} \cdot 0\) & & \(+1+\mathrm{i} \cdot 0\) & +1-i.0 & & \(+\infty-\mathrm{i} \cdot 0\) & QNAN-i•O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RE(z) } \\
& \text { i•IM(z) }
\end{aligned}
\] & \(-\infty\) & -X & -0 & +0 & +X & + & NAN \\
\hline -i.Y & \[
\begin{aligned}
& +\infty \cdot \operatorname{Cos}(Y)- \\
& i \cdot \infty \cdot \operatorname{Sin}(Y)
\end{aligned}
\] & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i \(\cdot \infty\) & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN } \\
& \text { INVALID }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & QNAN+i•0 INVALID & QNAN-i•0 INVALID & \begin{tabular}{l}
QNAN \\
\(+i \cdot\) QNAN \\
INVALID
\end{tabular} & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN } \\
& \text { INVALID }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} \\
\hline \(+\mathrm{i} \cdot \mathrm{NAN}\) & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & QNANi•QNAN & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QNAN } \\
& +\dot{\mathrm{i}} \cdot \text { QNAN }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Notes:}
- raises the INVALID exception when the real or imaginary part of the argument is SNAN
- raises the OVERFLOW exception and sets the VM Error Status to VML_STATUS_OVERFLOW in the case of overflow, that is, when \(\operatorname{RE}(z), I M(z)\) are finite non-zero numbers, but the real or imaginary part of the exact result is so large that it does not meet the target precision.
- \(\operatorname{Cosh}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Cosh}(z))\)
- \(\operatorname{Cosh}(-z)=\operatorname{Cosh}(z)\).

\section*{v?Sinh}

Computes hyperbolic sine of vector elements.

\section*{Syntax}
```

call vssinh(n, a, y)
call vssinhi(n, a, inca, y, incy)
call vmssinh(n, a, y, mode)
call vmssinhi(n, a, inca, y, incy, mode)
call vdsinh(n, a, y)
call vdsinhi(n, a, inca, y, incy)
call vmdsinh(n, a, y, mode)
call vmdsinhi(n, a, inca, y, incy, mode)
call vcsinh(n, a, y)
call vcsinhi(n, a, inca, y, incy)
call vmcsinh(n, a, y, mode)
call vmcsinhi(n, a, inca, y, incy, mode)
call vzsinh(n, a, y)
call vzsinhi(n, a, inca, y, incy)
call vmzsinh(n, a, y, mode)
call vmzsinhi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{7}{*}{a} & DOUBLE PRECISION for vdsinh, vmdsinh \\
\hline & COMPLEX for vcsinh, vmcsinh \\
\hline & DOUBLE COMPLEX for vzsinh, vmzsinh \\
\hline & REAL, INTENT (IN) for vssinh, vmssinh \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdsinh, vmdsinh \\
\hline & COMPLEX, INTENT(IN) for vcsinh, vmcsinh \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzsinh, vmzsinh \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER (KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

Precision Overflow Thresholds for Real v?Sinh Function
\begin{tabular}{ll}
\hline Data Type & Threshold Limitations on Input Parameters \\
\hline single precision & \(-\operatorname{Ln}(\) FLT_MAX \()-\operatorname{Ln} 2<a[i]<\operatorname{Ln}(\) FLT_MAX \()+\operatorname{Ln} 2\) \\
double precision & \(-\operatorname{Ln}\left(D B L_{-} M A X\right)-\operatorname{Ln} 2<a[i]<\operatorname{Ln}\left(D B L \_M A X\right)+\operatorname{Ln} 2\)
\end{tabular}

Precision overflow thresholds for the complex v?Sinh function are beyond the scope of this document.

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
\(y\) & DOUBLE PRECISION for vdsinh, & Array that specifies the output vector \(y\). \\
& vmdsinh \\
& DOMPLEX for vCsinh, vmcsinh \\
& vmzsinh \\
& REAL, INTENT (OUT) for vssinh, \\
& vmssinh \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdsinh, vmdsinh \\
& COMPLEX, INTENT (OUT) for vcsinh, \\
& vmcsinh
\end{tabular}

\section*{Name \\ Type \\ ```
DOUBLE COMPLEX, INTENT (OUT) for \\ vzsinh, vmzsinh
```}

\section*{Description}

\section*{Description}

The v?Sinh function computes hyperbolic sine of vector elements.
Special Values for Real Function v?Sinh(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & \\
\(X>\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & OVERFLOW \\
\(X<-\) overflow & \(-\infty\) & VML_STATUS_OVERFLOW & \\
\(+\infty\) & \(+\infty\) & & INVALID \\
\(-\infty\) & \(-\infty\) & & \\
QNAN & QNAN & QNAN & \\
SNAN & & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Sinh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\mathrm{i} \cdot \mathrm{IM}(z)
\end{gathered}
\] & \(-\infty\) & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \begin{tabular}{l}
\(-\infty+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
\(-0+i \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
\[
+0+\mathrm{i} \cdot \mathrm{QNA}
\] \\
N \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
INVALID
\end{tabular} & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
\hline +i.Y & \[
\begin{aligned}
& -\infty \cdot \operatorname{Cos}(Y)+ \\
& i \cdot \infty \cdot \operatorname{Sin}(Y)
\end{aligned}
\] & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline +i.0 & \(-\infty+i \cdot 0\) & & \(-0+i \cdot 0\) & \(+0+\mathrm{i} \cdot 0\) & & \(+\infty+\mathrm{i} \cdot 0\) & QNAN+i• 0 \\
\hline -i. 0 & \(-\infty-\mathrm{i} \cdot 0\) & & -0-i.0 & +0-i. 0 & & \(+\infty-\mathrm{i} \cdot 0\) & QNAN-i•0 \\
\hline -i.Y & \[
\begin{aligned}
& -\infty \cdot \operatorname{Cos}(Y)+ \\
& i \cdot \infty \cdot \operatorname{Sin}(Y)
\end{aligned}
\] & & & & & \(+\infty \cdot \mathrm{CIS}(\mathrm{Y})\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i \(\cdot \infty\) & \begin{tabular}{l}
\(-\infty+i \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i.QNAN \\
INVALID
\end{tabular} & \(-0+i \cdot Q N A N\) INVALID & \begin{tabular}{l}
\[
+0+\mathrm{i} \cdot \mathrm{QNA}
\] \\
N \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} \\
\hline +i•NAN & \(-\infty+i \cdot\) QNAN & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & -0+i•QNAN & \[
\begin{aligned}
& +0+\mathrm{i} \cdot \mathrm{QNA} \\
& \mathrm{~N}
\end{aligned}
\] & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Notes:}
- raises the INVALID exception when the real or imaginary part of the argument is SNAN
- raises the OVERFLOW exception and sets the VM Error Status to VML_STATUS_OVERFLOW in the case of overflow, that is, when \(\operatorname{RE}(z), \operatorname{IM}(z)\) are finite non-zero numbers, but the real or imaginary part of the exact result is so large that it does not meet the target precision.
- \(\operatorname{Sinh}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Sinh}(z))\)
- \(\operatorname{Sinh}(-z)=-\operatorname{Sinh}(z)\).

\section*{v?Tanh}

Computes hyperbolic tangent of vector elements.

\section*{Syntax}
```

call vstanh( n, a, y )
call vstanhi(n, a, inca, y, incy)
call vmstanh( n, a, y, mode )
call vmstanhi(n, a, inca, y, incy, mode)
call vdtanh( n, a, y )
call vdtanhi(n, a, inca, y, incy)
call vmdtanh( n, a, y, mode )
call vmdtanhi(n, a, inca, y, incy, mode)
call vctanh( n, a, y )
call vctanhi(n, a, inca, y, incy)
call vmctanh( n, a, y, mode )
call vmctanhi(n, a, inca, y, incy, mode)
call vztanh( n, a, y )
call vztanhi(n, a, inca, y, incy)
call vmztanh( n, a, y, mode )
call vmztanhi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
& \begin{tabular}{l}
DOUBLE PRECISION for vdtanh, \\
\\
vmdtanh
\end{tabular} \\
& COMPLEX for vctanh, vmctanh \\
& DOUBLE COMPLEX for vztanh, \\
& Rmztanh \\
& vmstanh \\
& DOUBLE PRECISION, INTENT (IN) for \\
& vdtanh, vmdtanh \\
& COMPLEX, INTENT (IN) for vctanh, for vstanh, \\
& vmctanh
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).
\begin{tabular}{lll}
Name & Type & Description \\
inca, incy & VOUBLE COMPLEX, INTENT (IN) for & \\
mode & INTEGER, INTENT(IN) & Specifies increments for the elements of \(a\) and \(y\). \\
INTEGER (KIND=8), INTENT (IN) & \begin{tabular}{l}
Overrides global VM mode setting for this \\
function call. See vmlSetMode for possible \\
values and their description.
\end{tabular}
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & DOUBLE PRECISION for vdtanh, \\
& vmdtanh \\
& COMPLEX for vctanh, vmctanh \\
& DOUBLE COMPLEX for vztanh, \\
& vmztanh \\
& veAL, INTENT (OUT) for vstanh, \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdtanh, vmdtanh \\
& COMPLEX, INTENT (OUT) for vctanh, \\
& vmctanh \\
& DOUBLE COMPLEX, INTENT (OUT) for \\
& vztanh, vmztanh
\end{tabular}

\section*{Description}

The v?Tanh function computes hyperbolic tangent of vector elements.
Special Values for Real Function v?Tanh(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & +1 & \\
\(-\infty\) & -1 & INVALID \\
\hline QNAN & QNAN & \\
SNAN & QNAN & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Tanh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { RE(z) } \\
& \text { i•IM(z) }
\end{aligned}
\] & - \(\infty\) & -X & -0 & +0 & +X & + & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(-1+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
+i•QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & \(+1+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z) }
\end{gathered}
\] & - & -X & -0 & +0 & +X & + & NAN \\
\hline +i.Y & \(-1+\mathrm{i} \cdot 0 \cdot \operatorname{Tan}(\) Y) & & & & & \[
\begin{aligned}
& +1+\mathrm{i} \cdot 0 \cdot \mathrm{Ta} \\
& \mathrm{n}(\mathrm{Y})
\end{aligned}
\] & QNAN
\[
+\mathrm{i} \cdot \text { QNAN }
\] \\
\hline +i. 0 & \(-1+\mathrm{i} \cdot 0\) & & \(-0+\mathrm{i} \cdot 0\) & +0+i• 0 & & +1+i•0 & QNAN+i•0 \\
\hline -i. 0 & -1-i•0 & & -0-i.0 & +0-i \(\cdot 0\) & & +1-i \(\cdot 0\) & QNAN-i•0 \\
\hline -i.Y & \(-1+i \cdot 0 \cdot \operatorname{Tan}(\) Y) & & & & & \[
\begin{aligned}
& +1+\mathrm{i} \cdot 0 \cdot \mathrm{Ta} \\
& \mathrm{n}(\mathrm{Y})
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} \\
\hline -i \(\cdot \infty\) & -1-i•0 & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\) \\
INVALID
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i.QNAN \\
INVALID
\end{tabular} & +1-i \(\cdot 0\) & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
\hline +i•NAN & \(-1+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot\) QNAN
\end{tabular} & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \(+1+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Notes:}
- raises INVALID exception when real or imaginary part of the argument is SNAN
- \(\operatorname{Tanh}(\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Tanh}(z))\)
- \(\operatorname{Tanh}(-z)=-\operatorname{Tanh}(z)\).
v?Acosh
Computes inverse hyperbolic cosine (nonnegative) of vector elements.

\section*{Syntax}
```

call vsacosh( n, a, y )
call vsacoshi(n, a, inca, y, incy)
call vmsacosh( n, a, Y, mode )
call vmsacoshi(n, a, inca, y, incy, mode)
call vdacosh( n, a, y )
call vdacoshi(n, a, inca, y, incy)
call vmdacosh( n, a, y, mode )
call vmdacoshi(n, a, inca, y, incy, mode)
call vcacosh( n, a, y )
call vcacoshi(n, a, inca, y, incy)
call vmcacosh( n, a, y, mode )
call vmcacoshi(n, a, inca, y, incy, mode)
call vzacosh( n, a, y )
call vzacoshi(n, a, inca, y, incy)
call vmzacosh( n, a, y, mode )
call vmzacoshi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

Input Parameters
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{7}{*}{a} & DOUBLE PRECISION for vdacosh, vmdacosh \\
\hline & COMPLEX for vcacosh, vmcacosh \\
\hline & DOUBLE COMPLEX for vzacosh, vmzacosh \\
\hline & REAL, INTENT (IN) for vsacosh, vmsacosh \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdacosh, vmdacosh \\
\hline & COMPLEX, INTENT (IN) for vcacosh, vmcacosh \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzacosh, vmzacosh \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER (KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The \(v\) ?Acosh function computes inverse hyperbolic cosine (nonnegative) of vector elements.
Special Values for Real Function v?Acosh(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & +0 & & \\
\(X<+1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & \(+\infty\) & & \\
QNAN & QNAN & & INVALID \\
\hline SNAN & QNAN & & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Acosh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\mathrm{i} \cdot \mathrm{IM}(\mathrm{z} \\
)
\end{gathered}
\] & - \(\infty\) & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(\cdots+i \cdot \frac{3 \pi}{4}\) & \(+\infty+\mathrm{i} \cdot \pi / 2\) & \(+\infty+\mathrm{i} \cdot \pi / 4\) & \(+\infty+\mathrm{i} \cdot \mathrm{QNAN}\) \\
\hline +i.Y & \(+\infty+\mathrm{i} \cdot \pi\) & & & & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline \(+\mathrm{i} \cdot 0\) & \(+\infty+\mathrm{i} \cdot \pi\) & & \(+0+\mathrm{i} \cdot \pi / 2\) & \(+0+\mathrm{i} \cdot \pi / 2\) & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i. 0 & \(+\infty+\mathrm{i} \cdot \pi\) & & \(+0+\mathrm{i} \cdot \pi / 2\) & \(+0+\mathrm{i} \cdot \pi / 2\) & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i.Y & \(+\infty+\mathrm{i} \cdot \pi\) & & & & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i \(\cdot \infty\) & \(+\infty-i \cdot \frac{3 \pi}{4}\) & \(+\infty-\mathrm{i} \cdot \pi / 2\) & \(+\infty-\mathrm{i} \cdot \pi / 4\) & \(+\infty+\mathrm{i} \cdot \mathrm{QNAN}\) \\
\hline +i•NAN & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & \[
\begin{aligned}
& +\infty \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when real or imaginary part of the argument is SNAN
- \(\operatorname{Acosh}(\operatorname{ConJ}(z))=\operatorname{CONJ}(\operatorname{Acosh}(z))\).
v?Asinh
Computes inverse hyperbolic sine of vector elements.

\section*{Syntax}
```

call vsasinh( n, a, y )
call vsasinhi(n, a, inca, y, incy)
call vmsasinh( n, a, y, mode )

```
```

call vmsasinhi(n, a, inca, y, incy, mode)
call vdasinh( n, a, y )
call vdasinhi(n, a, inca, y, incy)
call vmdasinh( n, a, y, mode )
call vmdasinhi(n, a, inca, y, incy, mode)
call vcasinh( n, a, y )
call vcasinhi(n, a, inca, y, incy)
call vmcasinh( n, a, y, mode )
call vmcasinhi(n, a, inca, y, incy, mode)
call vzasinh( n, a, y )
call vzasinhi(n, a, inca, y, incy)
call vmzasinh( n, a, y, mode )
call vmzasinhi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{6}{*}{a} & DOUBLE PRECISION for vdasinh, vmdasinh \\
\hline & COMPLEX for vcasinh, vmcasinh DOUBLE COMPLEX for vzasinh, vmzasinh \\
\hline & REAL, INTENT (IN) for vsasinh, vmsasinh \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdasinh, vmdasinh \\
\hline & COMPLEX, INTENT(IN) for vcasinh, vmcasinh \\
\hline & DOUBLE COMPLEX, INTENT(IN) for vzasinh, vmzasinh \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER(KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
```

Name
Type
DOUBLE PRECISION for vdasinh, vmdasinh
COMPLEX for vcasinh, vmcasinh
DOUBLE COMPLEX for vzasinh, vmzasinh
REAL, INTENT (OUT) for vsasinh, vmsasinh
DOUBLE PRECISION, INTENT (OUT) for vdasinh, vmdasinh
COMPLEX, INTENT (OUT) for vcasinh, vmcasinh
DOUBLE COMPLEX, INTENT (OUT) for vzasinh, vmzasinh

```

\section*{Description}

The v?Asinh function computes inverse hyperbolic sine of vector elements.
Special Values for Real Function v?Asinh(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & \\
\(-\infty\) & \(-\infty\) & INVALID \\
\hline QNAN & QNAN & \\
SNAN & QNAN & \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Asinh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z } \\
\text {) }
\end{gathered}
\] & - \(\infty\) & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(-\infty+\mathrm{i} \cdot \pi / 4\) & \(-\infty+\mathrm{i} \cdot \pi / 2\) & \(+\infty+\mathrm{i} \cdot \pi / 4\) & \(+\infty+i \cdot\) QNAN \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & \(-\infty+\mathrm{i} \cdot 0\) & & & & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline +i.0 & \(+\infty+\mathrm{i} \cdot 0\) & & \(+0+\mathrm{i} \cdot 0\) & \(+0+\mathrm{i} \cdot 0\) & & \(+\infty+\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i. 0 & \(-\infty-\mathrm{i} \cdot 0\) & & -0-i. 0 & \(+0-\mathrm{i} \cdot 0\) & & \(+\infty-\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN- \\
i•QNAN
\end{tabular} \\
\hline -i.Y & \(-\infty-\mathrm{i} \cdot 0\) & & & & & \(+\infty-\mathrm{i} \cdot 0\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline -i \(\cdot \infty\) & \(-\infty-\mathrm{i} \cdot \pi / 4\) & \(-\infty-\mathrm{i} \cdot \pi / 2\) & \(-\infty-\mathrm{i} \cdot \pi / 2\) & \(+\infty-\mathrm{i} \cdot \pi / 2\) & \(+\infty-\mathrm{i} \cdot \pi / 2\) & \(+\infty-\mathrm{i} \cdot \pi / 4\) & \(+\infty+\mathrm{i}\)-QNAN \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM(z } \\
\text {) }
\end{gathered}
\] & \(-\infty\) & -X & -0 & +0 & +X & \(+\infty\) & NAN \\
\hline +i•NAN & \(-\infty+\mathrm{i} \cdot\) QNAN & \[
\begin{aligned}
& \text { QNAN } \\
& +\dot{\mathrm{i}} \cdot \mathrm{QNAN}
\end{aligned}
\] & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] & \(+\infty+\mathrm{i} \cdot \mathrm{QNAN}\) & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
\hline
\end{tabular}

Notes:
- raises INVALID exception when real or imaginary part of the argument is SNAN
- Asinh \((\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Asinh}(z))\)
- Asinh \((-z)=-A \sinh (z)\).
v?Atanh
Computes inverse hyperbolic tangent of vector elements.

\section*{Syntax}
```

call vsatanh( n, a, y )
call vsatanhi(n, a, inca, y, incy)
call vmsatanh( n, a, y, mode )
call vmsatanhi(n, a, inca, y, incy, mode)
call vdatanh( n, a, y )
call vdatanhi(n, a, inca, y, incy)
call vmdatanh( n, a, y, mode )
call vmdatanhi(n, a, inca, y, incy, mode)
call vcatanh( n, a, y )
call vcatanhi(n, a, inca, y, incy)
call vmcatanh( }n,a,y, mode
call vmcatanhi(n, a, inca, y, incy, mode)
call vzatanh( n, a, y )
call vzatanhi(n, a, inca, y, incy)
call vmzatanh( n, a, y, mode )
call vmzatanhi(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}

\section*{Name \\ Type}
n

INTEGER, INTENT (IN)

\section*{Description}

Specifies the number of elements to be calculated.
\begin{tabular}{ll}
Name & Type \\
a & DOUBLE PRECISION for vdatanh, \\
& vmdatanh \\
& COMPLEX for vcatanh, vmcatanh \\
& DOUBLE COMPLEX for vzatanh, \\
& vmzatanh \\
& REAL, INTENT (IN) for vsatanh, \\
& vmsatanh \\
& DOUBLE PRECISION, INTENT (IN) for \\
& vdatanh, vmdatanh \\
& COMPLEX, INTENT (IN) for vcatanh, \\
& vmcatanh \\
& DOUBLE COMPLEX, INTENT (IN) for \\
& vzatanh, vmzatanh \\
inca, incy & INTEGER, INTENT(IN) \\
mode & INTEGER (KIND=8), INTENT (IN)
\end{tabular}

\section*{Output Parameters}
Name \begin{tabular}{ll}
Type \\
DOUBLE PRECISION for vdatanh, \\
& vmdatanh \\
& COMPLEX for vcatanh, vmcatanh \\
& DOUBLE COMPLEX for vzatanh, \\
& vmzatanh \\
& REAL, INTENT (OUT) for vsatanh, \\
& vmsatanh \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdatanh, vmdatanh \\
& COMPLEX, INTENT (OUT) for vcatanh, \\
& vmcatanh \\
& DOUBLE COMPLEX, INTENT (OUT) for \\
& vzatanh, vmzatanh
\end{tabular}

\section*{Description}

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The v?Atanh function computes inverse hyperbolic tangent of vector elements.

\section*{Special Values for Real Function v?Atanh(x)}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-1 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE
\end{tabular}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(|X|>1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

See Special Value Notations for the conventions used in the table below.
Special Values for Complex Function v?Atanh(z)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { RE(z) } \\
\text { i•IM }(z \\
)
\end{gathered}
\] & - \(\infty\) & -X & -0 & +0 & +X & + & NAN \\
\hline \(+\mathrm{i} \cdot \infty\) & \(-0+\mathrm{i} \cdot \pi / 2\) & \(-0+\mathrm{i} \cdot \pi / 2\) & \(-0+\mathrm{i} \cdot \pi / 2\) & \(+0+\mathrm{i} \cdot \pi / 2\) \\
\hline \(+\mathrm{i} \cdot \mathrm{Y}\) & \(-0+\mathrm{i} \cdot \pi / 2\) & & & & & \(+0+\mathrm{i} \cdot \pi / 2\) & \begin{tabular}{l}
QNAN \\
+i•QNAN
\end{tabular} \\
\hline +i.0 & \(-0+\mathrm{i} \cdot \pi / 2\) & & -0+i.0 & \(+0+\mathrm{i} \cdot 0\) & & \(+0+\mathrm{i} \cdot \pi / 2\) & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
\hline -i. 0 & -0-i \(\cdot \pi / 2\) & & -0-i.0 & +0-i. 0 & & \(+0-\mathrm{i} \cdot \pi / 2\) & \begin{tabular}{l}
QNAN- \\
i•QNAN
\end{tabular} \\
\hline -i.Y & \(-0-\mathrm{i} \cdot \pi / 2\) & & & & & \(+0-\mathrm{i} \cdot \pi / 2\) & \[
\begin{aligned}
& \text { QNAN } \\
& +\mathrm{i} \cdot \text { QNAN }
\end{aligned}
\] \\
\hline -i \(\cdot \infty\) & -0-i \(\cdot \pi / 2\) & -0-i \(\cdot \pi / 2\) & -0-i \(\cdot \pi / 2\) & +0-i \(\cdot \pi / 2\) & +0-i \(\cdot \pi / 2\) & +0-i \(\cdot \pi / 2\) & \(+0-\mathrm{i} \cdot \pi / 2\) \\
\hline +i.NAN & \(-0+i \cdot Q N A N\) & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & -0+i•QNAN & \[
\begin{aligned}
& +0+\mathrm{i} \cdot \mathrm{QNA} \\
& \mathrm{~N}
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} & \[
\begin{aligned}
& +0+i \cdot Q N A \\
& N
\end{aligned}
\] & \begin{tabular}{l}
QNAN \\
\(+\mathrm{i} \cdot \mathrm{QNAN}\)
\end{tabular} \\
\hline
\end{tabular}

Notes:
- Atanh \((+-1+-i * 0)=+-\infty+-i * 0\), and ZERODIVIDE exception is raised
- raises INVALID exception when real or imaginary part of the argument is SNAN
- Atanh \((\operatorname{CONJ}(z))=\operatorname{CONJ}(\operatorname{Atanh}(z))\)
- Atanh \((-z)=-\operatorname{Atanh}(z)\).

\section*{Special Functions}
v?Erf
Computes the error function value of vector elements.

\section*{Syntax}
```

call vserf( n, a, y )
call vserfi(n, a, inca, y, incy)
call vmserf( n, a, y, mode )
call vmserfi(n, a, inca, y, incy, mode)
call vderf( n, a, y )
call vderfi(n, a, inca, y, incy)
call vmderf( n, a, y, mode )

```
```

call vmderfi(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline a & \begin{tabular}{l}
DOUBLE PRECISION for vderf, vmderf \\
REAL, INTENT (IN) for vserf, vmserf DOUBLE PRECISION, INTENT (IN) for vderf, vmderf
\end{tabular} \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER (KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Output Parameters}

Name Type
```

y

```
DOUBLE PRECISION for vderf,
vmderf
REAL, INTENT (OUT) for vserf,
vmserf
DOUBLE PRECISION, INTENT (OUT) for
vderf, vmderf

\section*{Description}

Specifies the number of elements to be calculated.

Array, specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Array, specifies the output vector \(y\).

\section*{Description}

The Erf function computes the error function values for elements of the input vector \(a\) and writes them to the output vector \(y\).
The error function is defined as given by:

Useful relations:

\section*{1. \(\operatorname{erfc}(x)=1-\operatorname{erf}(x)\),}
where erfc is the complementary error function.
\[
\text { 2. } \Phi(x)=\frac{1}{2} \operatorname{erf}(x / \sqrt{2}) \text {, }
\]
where
\[
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \exp \left(-t^{2} / 2\right) d t
\]
is the cumulative normal distribution function.
\[
\text { 3. } \Phi^{-1}(x)=\sqrt{2} \operatorname{erf}^{-1}(2 x-1)
\]
where \(\Phi^{-1}(x)\) and \(\operatorname{erf}^{-1}(x)\) are the inverses to \(\Phi(x)\) and \(\operatorname{erf}(x)\) respectively.
The following figure illustrates the relationships among Erf family functions (Erf, Erfc, CdfNorm).
__border__top

\section*{Erf Family Functions Relationship}

Useful relations for these functions:
\[
\begin{gathered}
\operatorname{erf}(x)+\operatorname{erfc}(x)=1 \\
\operatorname{cdfnorm}(x)=\frac{1}{2}\left(1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right)=1-\frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)
\end{gathered}
\]

Special Values for Real Function v?Erf(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline\(+\infty\) & +1 & \\
\(-\infty\) & -1 & \\
QNAN & QNAN & \\
SNAN & QNAN & INVALID \\
\hline
\end{tabular}

\section*{See Also}

Erfc
CdfNorm
v?Erfc
Computes the complementary error function value of vector elements.

\section*{Syntax}
```

call vserfc( n, a, y )
call vserfci(n, a, inca, y, incy)
call vmserfc( n, a, y, mode )
call vmserfci(n, a, inca, y, incy, mode)
call vderfc( n, a, y )
call vderfci(n, a, inca, y, incy)
call vmderfc( n, a, y, mode )
call vmderfci(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\(\left.\begin{array}{ll}\text { Name } & \text { Type } \\
n & \text { INTEGER, INTENT (IN) } \\
& \\
& \begin{array}{l}\text { DOUBLE PRECISION for vderfc, } \\
\text { vmderfc }\end{array} \\
& \text { REAL, INTENT (IN) for vserfc, } \\
\text { vmserfc }\end{array}\right]\)\begin{tabular}{l}
DOUBLE PRECISION, INTENT (IN) for \\
mode incy
\end{tabular}\(\quad\)\begin{tabular}{l}
INTEGER, INTENT(IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name \\ Type}
\(y\)

DOUBLE PRECISION for vderfc, vmderfc

REAL, INTENT (OUT) for vserfc, vmserfc

DOUBLE PRECISION, INTENT (OUT) for vderfc, vmderfc

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The Erfc function computes the complementary error function values for elements of the input vector \(a\) and writes them to the output vector \(y\).
The complementary error function is defined as follows:

Useful relations:
\[
\begin{gathered}
\text { 1. } \operatorname{erfc}(x)=1-\operatorname{erf}(x) \\
\text { 2. } \Phi(x)=\frac{1}{2} \operatorname{erf}(x / \sqrt{2})
\end{gathered}
\]
where
\[
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \exp \left(-t^{2} / 2\right) d t
\]
is the cumulative normal distribution function.
\[
\text { 3. } \Phi^{-1}(x)=\sqrt{2} \operatorname{erf}^{-1}(2 x-1)
\]
where \(\Phi^{-1}(x)\) and \(\operatorname{erf}^{-1}(x)\) are the inverses to \(\Phi(x)\) and \(\operatorname{erf}(x)\) respectively.
See also Figure "Erf Family Functions Relationship" in Erf function description for Erfc function relationship with the other functions of Erf family.

Special Values for Real Function v?Erfc(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(X>\) underflow & +0 & VML_STATUS_UNDERFLOW & UNDERFLOW
\end{tabular}
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(+\infty\) & +0 & & \\
\(-\infty\) & +2 & & \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

\section*{See Also}

Erf
CdfNorm

\section*{v?CdfNorm}

Computes the cumulative normal distribution function values of vector elements.

\section*{Syntax}
```

call vscdfnorm( n, a, y )
call vscdfnormi(n, a, inca, y, incy)
call vmscdfnorm( n, a, y, mode )
call vmscdfnormi(n, a, inca, y, incy, mode)
call vdcdfnorm( n, a, y )
call vdcdfnormi(n, a, inca, y, incy)
call vmdcdfnorm( n, a, y, mode )
call vmdcdfnormi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
a & \begin{tabular}{l}
DOUBLE PRECISION for vdcdfnorm, \\
vmdcdfnorm
\end{tabular} \\
& REAL, INTENT (IN) for vscdfnorm, \\
& vmscdfnorm \\
inca, incy & \begin{tabular}{l}
DOUBLE PRECISION, INTENT (IN) for \\
vdcdfnorm, vmdcdfnorm
\end{tabular} \\
mode & INTEGER, INTENT(IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
```

Name Type Description
y
DOUBLE PRECISION for vdcdfnorm,
vmdcdfnorm
REAL, INTENT (OUT) for vscdfnorm,
vmscdfnorm
DOUBLE PRECISION, INTENT (OUT) for
vdcdfnorm, vmdcdfnorm

```

\section*{Description}
```

Array that specifies the output vector $y$. vmdcdfnorm
REAL, INTENT (OUT) for vscdfnorm, vmscdfnorm
DOUBLE PRECISION, INTENT (OUT) for vdcdfnorm, vmdcdfnorm

```

\section*{Description}

The CdfNorm function computes the cumulative normal distribution function values for elements of the input vector \(a\) and writes them to the output vector \(y\).

The cumulative normal distribution function is defined as given by:
\[
\operatorname{CdfNorm}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t
\]

Useful relations:
\[
\operatorname{cdfnorm}(x)=\frac{1}{2}\left(1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right)=1-\frac{1}{2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)
\]
where Erf and Erfc are the error and complementary error functions.
See also Figure "Erf Family Functions Relationship" in Erf function description for CdfNorm function relationship with the other functions of Erf family.

Special Values for Real Function v?CdfNorm(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(X<\) underflow & +0 & VML_STATUS_UNDERFLOW & UNDERFLOW \\
\(+\infty\) & +1 & & \\
\(-\infty\) & +0 & & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & \\
\hline
\end{tabular}

\footnotetext{
See Also
Erf
Erfc
v?ErfInv
Computes inverse error function value of vector elements.
}

\section*{Syntax}
```

call vserfinv( n, a, y )
call vserfinvi(n, a, inca, y, incy)
call vmserfinv( n, a, y, mode )
call vmserfinvi(n, a, inca, y, incy, mode)
call vderfinv( n, a, y )
call vderfinvi(n, a, inca, y, incy)
call vmderfinv( n, a, y, mode )
call vmderfinvi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a\) & \begin{tabular}{l}
DOUBLE PRECISION for vderfinv, \\
\\
\\
\\
\\
\\
\\
\\
Rmderfinv \\
vmserfinv
\end{tabular} \\
& \begin{tabular}{l}
DOUBLE PRECISION, INTENT (IN) for \\
vderfinv, vmderfinv
\end{tabular} \\
mode & INTEGER, INTENT(IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name}
\(y\)

Type
DOUBLE PRECISION for vderfinv, vmderfinv

REAL, INTENT (OUT) for vserfinv, vmserfinv

DOUBLE PRECISION, INTENT (OUT) for vderfinv, vmderfinv

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The Erfinv function computes the inverse error function values for elements of the input vector a and writes them to the output vector \(y\)
\(y=\operatorname{erf}^{-1}(a)\),
where \(\operatorname{erf}(x)\) is the error function defined as given by:

Useful relations:
\[
\text { 1. } \operatorname{erf}^{-1}(x)=\operatorname{erfc}^{-1}(1-x)
\]
where erfc is the complementary error function.
\[
\text { 2. } \Phi(x)=\frac{1}{2} \operatorname{erf}(x / \sqrt{2}) \text {, }
\]
where
\[
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \exp \left(-t^{2} / 2\right) d t
\]
is the cumulative normal distribution function.
\[
\text { 3. } \Phi^{-1}(x)=\sqrt{2} \operatorname{erf}^{-1}(2 x-1)
\]
where \(\Phi^{-1}(x)\) and \(\operatorname{erf}^{-1}(x)\) are the inverses to \(\Phi(x)\) and \(\operatorname{erf}(x)\) respectively.
Figure "ErfInv Family Functions Relationship" illustrates the relationships among ErfInv family functions (ErfInv, ErfcInv, CdfNormInv).
\(\qquad\) top

\section*{ErfInv Family Functions Relationship}

Useful relations for these functions:
\[
\begin{gathered}
\operatorname{erfcinv}(x)=\operatorname{erfinv}(1-x) \\
\operatorname{cdfnorminv}(x)=\sqrt{2} \operatorname{erfinv}(2 x-1)=\sqrt{2 \operatorname{erfcinv}}(2-2 x)
\end{gathered}
\]

Special Values for Real Function v?ErfInv(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & +0 & & \\
-0 & -0 & & \\
+1 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-1 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(|X|>1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

See Also
ErfcInv
CdfNormInv

\section*{v?Erfclnv}

Computes the inverse complementary error function value of vector elements.

\section*{Syntax}
```

call vserfcinv( n, a, y )
call vserfcinvi(n, a, inca, y, incy)
call vmserfcinv( n, a, y, mode )
call vmserfcinvi(n, a, inca, y, incy, mode)
call vderfcinv( n, a, y )
call vderfcinvi(n, a, inca, y, incy)
call vmderfcinv( n, a, y, mode )
call vmderfcinvi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a\) & \begin{tabular}{l}
DOUBLE PRECISION for vderfcinv, \\
vmderfcinv
\end{tabular} \\
& REAL, INTENT (IN) for vserfcinv, \\
& vmserfcinv \\
inca, incy & \begin{tabular}{l}
\begin{tabular}{l}
voUBLE PRECISION, INTENT (IN) for
\end{tabular} \\
mode
\end{tabular}
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(y\) & \begin{tabular}{l}
DOUBLE PRECISION for vderfcinv, \\
\\
vmderfcinv
\end{tabular} & Array that specifies the output vector \(y\). \\
& REAL, INTENT (OUT) for vserfcinv, \\
& vmserfcinv \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vderfcinv, vmderfcinv
\end{tabular}

\section*{Description}

The Erfcinv function computes the inverse complimentary error function values for elements of the input vector \(a\) and writes them to the output vector \(y\).

The inverse complementary error function is defined as given by:
\[
\operatorname{erfcinv}(x)=\operatorname{erfinv}(1-x)
\]

where \(\operatorname{erf}(x)\) denotes the error function and \(\operatorname{erfinv}(x)\) denotes the inverse error function.
See also Figure "Erfinv Family Functions Relationship" in ErfInv function description for ErfcInv function relationship with the other functions of ErfInv family.
\begin{tabular}{llll}
\multicolumn{2}{c}{ Special Values for Real Function v?ErfcInv(x) } & \\
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & +0 & & \\
+2 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(X<-0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(X>+2\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

\section*{See Also}

ErfInv
CdfNormInv

\section*{v?CdfNormInv}

Computes the inverse cumulative normal distribution function values of vector elements.

\section*{Syntax}
```

call vscdfnorminv( n, a, y )
call vscdfnorminvi(n, a, inca, y, incy)

```
```

call vmscdfnorminv( n, a, y, mode )
call vmscdfnorminvi(n, a, inca, y, incy, mode)
call vdcdfnorminv( n, a, y )
call vdcdfnorminvi(n, a, inca, y, incy)
call vmdcdfnorminv( n, a, y, mode )
call vmdcdfnorminvi(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{3}{*}{\(a\)} & DOUBLE PRECISION for vdcdfnorminv, vmdcdfnorminv \\
\hline & REAL, INTENT (IN) for vscdfnorminv, vmscdfnorminv \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdcdfnorminv, vmdcdfnorminv \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER(KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Output Parameters}

\section*{Name}
\(y\)
DOUBLE PRECISION for vdcdfnorminv, vmdcdfnorminv

REAL, INTENT (OUT) for vscdfnorminv, vmscdfnorminv

DOUBLE PRECISION, INTENT (OUT) for vdcdfnorminv, vmdcdfnorminv

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The cdfNormInv function computes the inverse cumulative normal distribution function values for elements of the input vector \(a\) and writes them to the output vector \(y\).

The inverse cumulative normal distribution function is defined as given by:

\section*{\(\operatorname{CdfNormInv}(x)=\operatorname{CdfNorm}^{-1}(x)\)}
where CdfNorm (x) denotes the cumulative normal distribution function.
Useful relations:
\[
\operatorname{cdfnomminv}(x)=\sqrt{2} \operatorname{erfinv}(2 x-1)=\sqrt{2} \operatorname{erfcinv}(2-2 x)
\]
where erfinv (x) denotes the inverse error function and \(\operatorname{erfcinv}(\mathrm{x})\) denotes the inverse complementary error functions.
See also Figure "ErfInv Family Functions Relationship" in Erfinv function description for CdfNormInv function relationship with the other functions of ErfInv family.
Special Values for Real Function v?CdfNormInv(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0.5 & +0 & & \\
+1 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
+0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(X<-0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(X>+1\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

\section*{See Also}

Erfinv
ErfcInv

\section*{v?LGamma}

Computes the natural logarithm of the absolute value of gamma function for vector elements.

\section*{Syntax}
```

call vslgamma( n, a, y )
call vslgammai(n, a, inca, y, incy)
call vmslgamma( n, a, y, mode )
call vmslgammai(n, a, inca, y, incy, mode)
call vdlgamma( n, a, y )
call vdlgammai(n, a, inca, y, incy)
call vmdlgamma( n, a, y, mode )
call vmdlgammai(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a\) & \begin{tabular}{l}
DOUBLE PRECISION for valgamma, \\
vmdlgamma \\
\\
\\
\\
\\
\\
\\
REAL, INTENT (IN) for vslgamma, \\
inca, incy \\
modgamma \\
mode
\end{tabular}\(\quad\)\begin{tabular}{l}
INTEGER, INTENT(IN)
\end{tabular} \\
& INTEGER(KIND=8), INTENT (IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & DOUBLE PRECISION for volgamma, \\
& vmdlgamma \\
& REAL, INTENT (OUT) for vslgamma, \\
& vmslgamma \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdlgamma, vmdlgamma
\end{tabular}

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The v?LGamma function computes the natural logarithm of the absolute value of gamma function for elements of the input vector \(a\) and writes them to the output vector \(y\). Precision overflow thresholds for the v?LGamma function are beyond the scope of this document. If the result does not meet the target precision, the function raises the OVERFLOW exception and sets the VM Error Status to VML_STATUS_OVERFLOW.

Special Values for Real Function v?LGamma(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+1 & +0 & & \\
+2 & +0 & & \\
+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
negative integer & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(-\infty\) & \(+\infty\) & & \\
\(+\infty\) & \(+\infty\) & VML_STATUS_OVERFLOW & \\
\(X>\) overflow & \(+\infty\) & &
\end{tabular}
\begin{tabular}{lll}
\hline Argument & Result & VM Error Status \\
\hline SNAN & QNAN & Exception \\
\hline
\end{tabular}

\section*{v?TGamma}

Computes the gamma function of vector elements.

\section*{Syntax}
```

call vstgamma( n, a, y )
call vstgammai(n, a, inca, y, incy)
call vmstgamma( n, a, y, mode )
call vmstgammai(n, a, inca, y, incy, mode)
call vdtgamma( n, a, y )
call vdtgammai(n, a, inca, y, incy)
call vmdtgamma( n, a, y, mode )
call vmdtgammai(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}

\section*{Name Type}
\(n\)
a
inca, incy INTEGER, INTENT(IN)
mode
INTEGER (KIND=8), INTENT (IN)

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).
Name Type Description
```

DOUBLE PRECISION, INTENT (OUT) for

```
vdtgamma, vmdtgamma

\section*{Description}

The v?TGamma function computes the gamma function for elements of the input vector \(a\) and writes them to the output vector \(y\). Precision overflow thresholds for the \(v\) ?TGamma function are beyond the scope of this document. If the result does not meet the target precision, the function raises the OVERFLOW exception and sets the VM Error Status to VML_STATUS_OVERFLOW.
Special Values for Real Function v?TGamma(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(-\infty\) & VML_STATUS_SING & ZERODIVIDE \\
negative integer & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
\(+\infty\) & \(+\infty\) & & \\
\(X>\) overflow & \(+\infty\) & VML_STATUS_OVERFLOW & OVERFLOW \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

\section*{v?ExpInt1}

Computes the exponential integral of vector elements.

\section*{Syntax}
```

call vsexpint1( n, a, y )
call vsexpint1i(n, a, inca, y, incy)
call vmsexpint1( n, a, y, mode )
call vmsexpint1i(n, a, inca, y, incy, mode)
call vdexpintl( n, a, y )
call vdexpint1i(n, a, inca, y, incy)
call vdexpint1( n, a, y, mode )
call vmdexpint1i(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a\) & \begin{tabular}{l}
REAL (KIND=4), INTENT (IN) for \\
vsexpint1, vmsexpint1
\end{tabular}
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).
\begin{tabular}{ll}
Name & Type \\
& REAL (KIND=8), INTENT (IN) for \\
& vdexpint1, vmdexpint1 \\
inca, incy & INTEGER, INTENT(IN) \\
mode & INTEGER (KIND=8), INTENT (IN)
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & REAL \((\mathrm{KIND}=4)\), INTENT (OUT) for \\
& vsexpint1, vmsexpint1 \\
& REAL \((\mathrm{KIND}=8)\), INTENT (OUT) for \\
& vdexpint1, vmdexpint1
\end{tabular}

\section*{Description}

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).

REAL (KIND=8), INTENT (OUT) for vdexpint1, vmdexpint1

\section*{Description}

The v?ExpInt1 function computes the exponential integral \(E_{1}\) of vector elements.
For positive real values \(x\), this can be written as:
\(E_{1}(x)=\int_{x}^{\infty} \frac{e^{-t}}{t} \mathrm{~d} t=\int_{1}^{\infty} \frac{e^{-x t}}{t} \mathrm{~d} t\).
For negative real values \(x\), the result is defined as NAN.
Special Values for Real Function v?ExpInt1(x)
\begin{tabular}{llll}
\hline Argument & Result & VM Error Status & Exception \\
\hline\(x<+0\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
+0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
-0 & \(+\infty\) & VML_STATUS_SING & ZERODIVIDE \\
\(+\infty\) & +0 & & \\
\(-\infty\) & QNAN & VML_STATUS_ERRDOM & INVALID \\
QNAN & QNAN & & \\
SNAN & QNAN & & INVALID \\
\hline
\end{tabular}

\section*{Rounding Functions}
```

v?Floor
Computes an integer value rounded towards minus
infinity for each vector element.
Syntax

```
```

call vsfloor( n, a, y )

```
call vsfloor(n, a, y)
call vsfloori(n, a, inca, y, incy)
call vsfloori(n, a, inca, y, incy)
call vmsfloor(n, a, y, mode)
call vmsfloor(n, a, y, mode)
call vmsfloori(n, a, inca, y, incy, mode)
call vmsfloori(n, a, inca, y, incy, mode)
call vdfloor(n, a, y)
```

call vdfloor( n, a, y )

```
```

call vdfloori(n, a, inca, y, incy)
call vmdfloor( n, a, y, mode )
call vmdfloori(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
a & \begin{tabular}{l}
DOUBLE PRECISION for vdfloor, \\
vmdfloor
\end{tabular} \\
& REAL, INTENT (IN) for vSfloor, \\
& vmsfloor \\
inca, incy & \begin{tabular}{l}
DOUBLE PRECISION, INTENT (IN) for \\
vdfloor, vmdfloor
\end{tabular} \\
mode & INTEGER, INTENT(IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).
Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this
function call. See vmlSetMode for possible
values and their description.

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Output Parameters}
```

Name Type
y
DOUBLE PRECISION for vdfloor,
vmdfloor
REAL, INTENT (OUT) for vsfloor,
vmsfloor
DOUBLE PRECISION, INTENT (OUT) for
vdfloor, vmdfloor

```

\section*{Description}

The function computes an integer value rounded towards minus infinity for each vector element.

Special Values for Real Function v?Floor(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & \\
\(-\infty\) & \(-\infty\) & INVALID \\
SNAN & QNAN & \\
QNAN & QNAN & \\
\hline
\end{tabular}
v?Ceil
Computes an integer value rounded towards plus infinity for each vector element.

\section*{Syntax}
```

call vsceil( n, a, y )
call vsceili(n, a, inca, y, incy)
call vmsceil( n, a, y, mode )
call vmsceili(n, a, inca, y, incy, mode)
call vdceil( n, a, y )
call vdceili(n, a, inca, y, incy)
call vmdceil( n, a, y, mode )
call vmdceili(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}

Name
n
Type
INTEGER, INTENT (IN)

\section*{Description}

Specifies the number of elements to be calculated.
```

Name Type Description
a DOUBLE PRECISION for vdceil,
vmdceil
REAL, INTENT(IN) for vsceil,
vmsceil
DOUBLE PRECISION, INTENT(IN) for
vdceil, vmdceil
inca, incy INTEGER, INTENT(IN)
mode
INTEGER(KIND=8), INTENT(IN)

```

\section*{Description}
```

Array that specifies the input vector $a$.
Specifies increments for the elements of $a$ and $y$.
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

```

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & DOUBLE PRECISION for vdceil, \\
& vmdceil \\
& REAL, INTENT (OUT) for vsceil, \\
& vmsceil \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdceil, vmdceil
\end{tabular}

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The function computes an integer value rounded towards plus infinity for each vector element.

Special Values for Real Function v?Ceil(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & \\
\(-\infty\) & \(-\infty\) & INVALID
\end{tabular}
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline QNAN & QNAN & \\
\hline
\end{tabular}
v?Trunc
Computes an integer value rounded towards zero for each vector element.

\section*{Syntax}
```

call vstrunc( n, a, y )
call vstrunci(n, a, inca, y, incy)
call vmstrunc( n, a, y, mode )
call vmstrunci(n, a, inca, y, incy, mode)
call vdtrunc( n, a, y )
call vdtrunci(n, a, inca, y, incy)
call vmdtrunc( n, a, y, mode )
call vmdtrunci(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

Input Parameters
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a\) & \begin{tabular}{l}
DOUBLE PRECISION for vdTrunc, \\
\\
\\
\\
\\
RmdTrunc \\
\\
\\
\\
\\
\\
vmsTrunc \\
inca, incy \\
moUBLE PRECISION, INTENT (IN) for \\
mode
\end{tabular} \\
& INTEGER, INTENT(IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Array that specifies the output vector \(y\).
Name Type Description
```

DOUBLE PRECISION, INTENT (OUT) for
vdTrunc, vmdTrunc

```

\section*{Description}

The function computes an integer value rounded towards zero for each vector element.

Special Values for Real Function v?Trunc(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & \\
\(-\infty\) & \(-\infty\) & INVALID \\
SNAN & QNAN & \\
QNAN & QNAN & \\
\hline
\end{tabular}
v?Round
Computes a value rounded to the nearest integer for each vector element.

\section*{Syntax}
```

call vsround( n, a, y )
call vsroundi(n, a, inca, y, incy)
call vmsround( n, a, y, mode )
call vmsroundi(n, a, inca, y, incy, mode)
call vdround( n, a, y )
call vdroundi(n, a, inca, y, incy)
call vmdround( n, a, y, mode )
call vmdroundi(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a\) & DOUBLE PRECISION for vdround, \\
& vmdround \\
& REAL, INTENT (IN) for vsround, \\
& vmsround \\
& DOUBLE PRECISION, INTENT (IN) for \\
inca, incy & vdround, vmdround \\
mode & INTEGER, INTENT(IN) \\
& INTEGER(KIND=8), INTENT (IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector a.

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & DOUBLE PRECISION for vdround, \\
& vmdround \\
& REAL, INTENT (OUT) for vsround, \\
& vmsround \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdround, vmdround
\end{tabular}

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The function computes a value rounded to the nearest integer for each vector element. Input elements that are halfway between two consecutive integers are always rounded away from zero regardless of the rounding mode.

Special Values for Real Function v?Round(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & INVALID \\
\(-\infty\) & \(-\infty\) & \\
SNAN & QNAN & \\
QNAN & QNAN & \\
\hline
\end{tabular}

\section*{v?NearbyInt}

Computes a rounded integer value in the current rounding mode for each vector element.

\section*{Syntax}
```

call vsnearbyint( n, a, y )
call vsnearbyinti(n, a, inca, y, incy)
call vmsnearbyint( n, a, y, mode )
call vmsnearbyinti(n, a, inca, y, incy, mode)
call vdnearbyint( n, a, y )
call vdnearbyinti(n, a, inca, y, incy)
call vmdnearbyint( n, a, y, mode )
call vmdnearbyinti(n, a, inca, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a\) & \begin{tabular}{l}
DOUBLE PRECISION for vdnearbyint, \\
vmdnearbyint
\end{tabular} \\
& \begin{tabular}{l}
REAL, INTENT(IN) for vsnearbyint, \\
vmsnearbyint
\end{tabular} \\
inca, incy & \begin{tabular}{l}
DOUBLE PRECISION, INTENT (IN) for \\
vdnearbyint, vmdnearbyint
\end{tabular} \\
mode & INTEGER, INTENT(IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name Type Description
y DOUBLE PRECISION for vdnearbyint, Array that specifies the output vector y.
vmdnearbyint
REAL, INTENT (OUT) for vsnearbyint,
vmsnearbyint
DOUBLE PRECISION, INTENT (OUT) for
vdnearbyint, vmdnearbyint

```

\section*{Description}

The v?NearbyInt function computes a rounded integer value in a current rounding mode for each vector element.

Special Values for Real Function v?NearbyInt(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & INVALID \\
\(-\infty\) & \(-\infty\) & \\
SNAN & QNAN & \\
QNAN & QNAN & \\
\hline
\end{tabular}
v?Rint
Computes a rounded integer value in the current rounding mode.

\section*{Syntax}
```

call vsrint( n, a, y )
call vsrinti(n, a, inca, y, incy)
call vmsrint( n, a, y, mode )
call vmsrinti(n, a, inca, y, incy, mode)
call vdrint( n, a, y )
call vdrinti(n, a, inca, y, incy)
call vmdrint( n, a, y, mode )
call vmdrinti(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a\) & \begin{tabular}{l}
DOUBLE PRECISION for vdrint, \\
vmdrint
\end{tabular} \\
& REAL, INTENT (IN) for vsrint, \\
& vmsrint \\
& \begin{tabular}{l}
DOUBLE PRECISION, INTENT (IN) for \\
vdrint, vmdrint
\end{tabular} \\
inca, incy & INTEGER, INTENT(IN) \\
mode & INTEGER(KIND=8), INTENT (IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}

\section*{Name \\ Type}
y

DOUBLE PRECISION for vdrint, vmdrint

REAL, INTENT (OUT) for vsrint, vmsrint

DOUBLE PRECISION, INTENT (OUT) for vdrint, vmdrint

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The v?Rint function computes a rounded floating-point integer value using the current rounding mode for each vector element.

The rounding mode affects the results computed for inputs that fall between consecutive integers. For example:
- \(f(0.5)=0\), for rounding modes set to round to nearest round toward zero or to minus infinity.
- \(\mathrm{f}(0.5)=1\), for rounding modes set to plus infinity.
- \(f(-1.5)=-2\), for rounding modes set to round to nearest or to minus infinity.
- \(\mathrm{f}(-1.5)=-1\), for rounding modes set to round toward zero or to plus infinity.

Special Values for Real Function v?Rint(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & \(+\infty\) & \\
\(-\infty\) & \(-\infty\) & INVALID \\
SNAN & QNAN & \\
QNAN & QNAN & \\
\hline
\end{tabular}

\section*{v?Modf}

Computes a truncated integer value and the remaining fraction part for each vector element.

\section*{Syntax}
```

call vsmodf( n, a, y, z )
call vsmodfi(n, a, inca, y, incy, z, incz)
call vmsmodf( n, a, y, z, mode )
call vmsmodfi(n, a, inca, y, incy, z, incz, mode)
call vdmodf( n, a, y, z )
call vdmodfi(n, a, inca, y, incy, z, incz)
call vmdmodf( n, a, y, z, mode )
call vmdmodfi(n, a, inca, y, incy, z, incz, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{3}{*}{a} & DOUBLE PRECISION for vdmodf, vmdmodf \\
\hline & REAL, INTENT (IN) for vsmodf, vmsmodf \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdmodf, vmdmodf \\
\hline \[
\begin{aligned}
& \text { inca, incy, } \\
& \text { incz }
\end{aligned}
\] & INTEGER, INTENT(IN) \\
\hline mode & INTEGER (KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y, z\) & DOUBLE PRECISION for vdmodf, \\
& vmdmodf \\
& REAL, INTENT (OUT) for vsmodf, \\
& vmsmodf \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdmodf, vmdmodf
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array, specifies the input vector \(a\).

Specifies increments for the elements of \(a, y\), and \(z\).

Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Array, specifies the output vector \(y\) and \(z\).

\section*{Description}

The function computes a truncated integer value and the remaining fraction part for each vector element.

Special Values for Real Function v?Modf(x)
\begin{tabular}{llll}
\hline Argument & Result: \(y(i)\) & Result: \(z(i)\) & Exception \\
\hline+0 & +0 & +0 & \\
-0 & -0 & -0 & \\
\(+\infty\) & \(+\infty\) & +0 & INVALID \\
\(-\infty\) & \(-\infty\) & -0 & \\
SNAN & QNAN & QNAN & \\
QNAN & QNAN & QNAN & \\
\hline
\end{tabular}
v?Frac
Computes a signed fractional part for each vector element.

\section*{Syntax}
```

call vsfrac( n, a, y )
call vsfraci(n, a, inca, y, incy)
call vmsfrac( n, a, y, mode )
call vmsfraci(n, a, inca, y, incy, mode)
call vdfrac( n, a, y )
call vdfraci(n, a, inca, y, incy)
call vmdfrac( n, a, y, mode )
call vmdfraci(n, a, inca, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline \(n\) & INTEGER, INTENT (IN) \\
\hline \multirow[t]{3}{*}{\(a\)} & DOUBLE PRECISION for vdfrac, vmdfrac \\
\hline & REAL, INTENT (IN) for vsfrac, vmsfrac \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdfrac, vmdfrac \\
\hline inca, incy & INTEGER, INTENT(IN) \\
\hline mode & INTEGER (KIND=8), INTENT (IN) \\
\hline
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Array that specifies the input vector \(a\).

Specifies increments for the elements of \(a\) and \(y\).
Overrides global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & DOUBLE PRECISION for vdfrac, \\
& vmdfrac \\
& REAL, INTENT (OUT) for vsfrac, \\
& vmsfrac \\
& DOUBLE PRECISION, INTENT (OUT) for \\
& vdfrac, vmdfrac
\end{tabular}

\section*{Description}

Array that specifies the output vector \(y\).

\section*{Description}

The function computes a signed fractional part for each vector element.

Special Values for Real Function v?Frac(x)
\begin{tabular}{lll}
\hline Argument & Result & Exception \\
\hline+0 & +0 & \\
-0 & -0 & \\
\(+\infty\) & +0 & INVALID \\
\(-\infty\) & -0 & \\
SNAN & QNAN & \\
QNAN & QNAN & \\
\hline
\end{tabular}

\section*{VM Pack/Unpack Functions}

This section describes VM functions that convert vectors with unit increment to and from vectors with positive increment indexing, vector indexing, and mask indexing (see Appendix "Vector Arguments in VM" for details on vector indexing methods).
The table below lists available VM Pack/Unpack functions, together with data types and indexing methods associated with them.

VM Pack/Unpack Functions
\begin{tabular}{llll}
\hline Function Short Name & \begin{tabular}{l}
Data \\
Types
\end{tabular} & \begin{tabular}{l}
Indexing \\
Methods
\end{tabular} & Description \\
\hline v?pack & \(\mathrm{S}, \mathrm{d}, \mathrm{C}\), & \(\mathrm{I}, \mathrm{V}, \mathrm{M}\) & Gathers elements of arrays, indexed by different methods. \\
z ? unpack & \(\mathrm{S}, \mathrm{d}, \mathrm{C}\), & \(\mathrm{I}, \mathrm{V}, \mathrm{M}\) & Scatters vector elements to arrays with different indexing. \\
& z & & \\
\hline
\end{tabular}

\section*{See Also}

Appendix "Vector Arguments in VM"

\section*{v?Pack}

Copies elements of an array with specified indexing to a vector with unit increment.

\section*{Syntax}
```

call vspacki( n, a, inca, y )
call vspackv( n, a, ia, y )
call vspackm( n, a, ma, y )
call vdpacki( n, a, inca, y )
call vdpackv( n, a, ia, y )
call vdpackm( n, a, ma, y )
call vcpacki( n, a, inca, y )
call vcpackv( n, a, ia, y )
call vcpackm( n, a, ma, y )
call vzpacki( n, a, inca, y )
call vzpackv( n, a, ia, y )
call vzpackm( n, a, ma, y )

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \(n\) & INTEGER, INTENT (IN) & Specifies the number of elements to be calculated. \\
\hline \multirow[t]{7}{*}{a} & DOUBLE PRECISION for vdpacki, vdpackv, vdpackm & Array, DIMENSION at least (1 \(+(n-1) * i n c a)\) for v?packi, \\
\hline & COMPLEX for vcpacki, vcpackv, vcpackm & Array, DIMENSION at least max (\(n\), max (ia[j])), \(j=0, \ldots, n-1\) for v?packv, \\
\hline & DOUBLE COMPLEX for vzpacki, vzpackv, vzpackm & Array, DIMENSION at least \(n\) for v?packm. \\
\hline & REAL, INTENT (IN) for vspacki, vspackv, vspackm & \\
\hline & DOUBLE PRECISION, INTENT (IN) for vdpacki, vdpackv, vdpackm & \\
\hline & COMPLEX, INTENT (IN) for vcpacki, vcpackv, vcpackm & \\
\hline & DOUBLE COMPLEX, INTENT (IN) for vzpacki, vzpackv, vzpackm & \\
\hline inca & INTEGER, INTENT (IN) for vspacki, vdpacki, vcpacki, vzpacki & Specifies the increment for the elements of \(a\). \\
\hline \multirow[t]{3}{*}{ia} & FORTRAN 77: INTEGER for & Array, DIMENSION at least \(n\). \\
\hline & vspackv, vdpackv, vcpackv, vzpackv & Specifies the index vector for the elements of \(a\). \\
\hline & INTEGER, INTENT (IN) for vspackv, vdpackv, vcpackv, vzpackv & \\
\hline \multirow[t]{4}{*}{ma} & FORTRAN 77: INTEGER for & Array, DIMENSION at least \(n\), \\
\hline & vspackm, vdpackm, vcpackm, vzpackm & Specifies the mask vector for the elements of \(a\). \\
\hline & Fortran 90: INTEGER, & \\
\hline & INTENT (IN) for vspackm, vdpackm, vcpackm, vzpackm & \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & DOUBLE PRECISION for vdpacki, \\
& vdpackv, vdpackm \\
& COMPLEX for vcpacki, vcpackv, \\
& vcpackm
\end{tabular}

\section*{Description}

Array, DIMENSION at least \(n\). Specifies the output vector \(y\).
Name \(\quad\)\begin{tabular}{l}
Type \\
\\
DOUBLE COMPLEX for vzpacki, \\
\\
vzpackv, vzpackm \\
\\
vEAL, INTENT (OUT) for vspacki, \\
\\
DOUBLE PRECISION, INTENT (OUT) for \\
\\
vdpacki, vdpackv, vdpackm \\
\\
COMPLEX, INTENT (OUT) for vcpacki, \\
\\
vCpackv, vcpackm \\
\\
\\
\\
\\
\\
\end{tabular}

\section*{v?Unpack}

Copies elements of a vector with unit increment to an array with specified indexing.

\section*{Syntax}
```

```
call vsunpacki(n, a, y, incy)
```

```
call vsunpacki(n, a, y, incy)
call vsunpackv(n, a, y, iy)
call vsunpackv(n, a, y, iy)
call vsunpackm(n, a, y, my)
call vsunpackm(n, a, y, my)
call vdunpacki(n, a, y, incy)
call vdunpacki(n, a, y, incy)
call vdunpackv(n, a, y, iy)
call vdunpackv(n, a, y, iy)
call vdunpackm(n, a, y, my)
call vdunpackm(n, a, y, my)
call vcunpacki(n, a, y, incy)
call vcunpacki(n, a, y, incy)
call vcunpackv(n, a, y, iy)
call vcunpackv(n, a, y, iy)
call vcunpackm(n, a, y, my)
call vcunpackm(n, a, y, my)
call vzunpacki(n, a, y, incy)
call vzunpacki(n, a, y, incy)
call vzunpackv(n, a, y, iy)
call vzunpackv(n, a, y, iy)
call vzunpackm(n, a, y, my)
```

```
call vzunpackm(n, a, y, my)
```

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER, INTENT (IN) \\
\(a\) & \begin{tabular}{l}
DOUBLE PRECISION for vdunpacki, \\
vdunpackv, vdunpackm
\end{tabular} \\
& \begin{tabular}{l}
COMPLEX for vcunpacki, vcunpackv, \\
vcunpackm
\end{tabular}
\end{tabular}
```

DOUBLE COMPLEX for vzpacki,
vzpackv, vzpackm
REAL, INTENT (OUT) for vspacki,
vspackv, vspackm
DOUBLE PRECISION, INTENT (OUT) for
vdpacki, vdpackv, vdpackm
*,vzpackv, vzpackm

```

\section*{Description}

\section*{Description}

Specifies the number of elements to be calculated.

Array, DIMENSION at least \(n\).
Specifies the input vector \(a\).
\begin{tabular}{ll}
Name & Type \\
& \begin{tabular}{l}
DOUBLE COMPLEX for vzunpacki, \\
\\
vzunpackv, vznpackm
\end{tabular} \\
& REAL, INTENT (IN) for vsunpacki, \\
& vsunpackv, vsunpackm \\
& DOUBLE PRECISION, INTENT (IN) for \\
& vdunpacki, vdunpackv, vdunpackm \\
COMPLEX, INTENT (IN) for vcunpacki,
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline Y & \begin{tabular}{l}
DOUBLE PRECISION for vdunpacki, vdunpackv, vdunpackm \\
COMPLEX, INTENT (IN) for vcunpacki, vcunpackv, vcunpackm DOUBLE COMPLEX, INTENT (IN) for vzunpacki, vzunpackv, vzunpackm REAL, INTENT (OUT) for vsunpacki, vsunpackv, vsunpackm \\
DOUBLE PRECISION, INTENT (OUT) for vdunpacki, vdunpackv, vdunpackm \\
COMPLEX, INTENT (OUT) for vcunpacki, vcunpackv, vcunpackm DOUBLE COMPLEX, INTENT (OUT) for vzunpacki, vzunpackv, vzunpackm
\end{tabular} & \begin{tabular}{l}
Array, DIMENSION \\
for v?unpacki, at least \((1+(n-1)\) *incy) \\
for v?unpackv, at least \\
max (\(n, \max (i y[j])\)),j=0,..., n-1 \\
for v?unpackm, at least \(n\) \\
for v?UnpackI, at least \((1+(n-1)\) *incy) \\
for v?UnpackV, at least \\
max(n, max(ia[j])),j=0,..., n-1, for v?UnpackM, at least \(n\).
\end{tabular} \\
\hline
\end{tabular}

\section*{VM Service Functions}

The VM Service functions enable you to set/get the accuracy mode and error code. These functions are available both in the Fortran and C interfaces. The table below lists available VM Service functions and their short description.

VM Service Functions
\begin{tabular}{ll}
\hline Function Short Name & Description \\
\hline vmlsetmode & Sets the VM mode \\
vmlgetmode & Gets the VM mode \\
vmlseterrstatus & Sets the VM Error Status \\
vmlgeterrstatus & Gets the VM Error Status \\
vmlclearerrstatus & Clears the VM Error Status \\
vmlseterrorcallback & Sets the additional error handler callback function \\
vmlgeterrorcallback & Gets the additional error handler callback function \\
vmlclearerrorcallback & Deletes the additional error handler callback function \\
\hline
\end{tabular}

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{vmISetMode}

Sets a new mode for VM functions according to the mode parameter and stores the previous VM mode to oldmode.

\section*{Syntax}
```

oldmode = vmlsetmode( mode )

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
mode & INTEGER (KIND=8), INTENT (IN)
\end{tabular}

\section*{Description}

Specifies the VM mode to be set.

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
oldmode & INTEGER*8 & Specifies the former VM mode. \\
& INTEGER \((\) KIND \(=8)\) &
\end{tabular}

\section*{Description}

The vmlSetMode function sets a new mode for VM functions according to the mode parameter and stores the previous VM mode to oldmode. The mode change has a global effect on all the VM functions within a thread.

\section*{NOTE}

You can override the global mode setting and change the mode for a given VM function call by using a respective \(\mathrm{vm}[\mathrm{s}, \mathrm{d}]<\mathrm{Func}>\) variant of the function.

The mode parameter is designed to control accuracy, handling of denormalized numbers, and error handling. Table "Values of the mode Parameter" lists values of the mode parameter. You can obtain all other possible values of the mode parameter from the mode parameter values by a using bitwise OR (|) operation to combine one value for accuracy, one value for handling of denormalized numbers, and one value for error control options. The default value of the mode parameter is VML_HA | VML_FTZDAZ_CURRENT | VML_ERRMODE_DEFAULT.
The VML_FTZDAZ_ON mode is specifically designed to improve the performance of computations that involve denormalized numbers at the cost of reasonable accuracy loss. This mode changes the numeric behavior of the functions: denormalized input values are treated as zeros (DAZ = denormals-are-zero) and denormalized results are flushed to zero (FTZ = flush-to-zero). Accuracy loss may occur if input and/or output values are close to denormal range.

\section*{Values of the mode Parameter}
\begin{tabular}{ll}
\hline Value of mode & Description \\
\hline Accuracy Control & high accuracy versions of VM functions \\
VML_HA & low accuracy versions of VM functions \\
VML_LA & enhanced performance accuracy versions of VM functions \\
VML_EP & Faster processing of denormalized inputs is enabled. \\
Denormalized Numbers Handling Control & Faster processing of denormalized inputs is disabled. \\
VML_FTZDAZ_ON & Keep the current CPU settings for denormalized inputs. \\
VML_FTZDAZ_OFF & \begin{tabular}{l}
On computation error, VM Error status is updated, but otherwise no \\
action is set. Cannot be combined with other VML_ERRMODE
\end{tabular} \\
VML_FTZDAZ_CURRENT & \begin{tabular}{l}
settings. \\
On computation error, VM Error status is not updated and no action is
\end{tabular} \\
VML_ERRMODE_IGNORE & \begin{tabular}{l}
set. Cannot be combined with other VML_ERRMODE settings.
\end{tabular} \\
On error, the error text information is written to stderr.
\end{tabular}

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Examples}

The following example shows how to set low accuracy, fast processing for denormalized numbers and stderr error mode:
```

oldmode = vmlsetmode( VML_LA )
call vmlsetmode( IOR(VML_LA, VML_FTZDAZ_ON, VML_ERRMODE_STDERR) )

```

\section*{vmlgetmode}

Gets the VM mode.

\section*{Syntax}
```

mod = vmlgetmode()

```

\section*{Include Files}
- mkl_vml.f90

\section*{Output Parameters}

Name

\section*{Type}
mod
INTEGER

\section*{Description}

Specifies the packed mode parameter.

\section*{Description}

The function vmlgetmode returns the VM mode parameter that controls accuracy, handling of denormalized numbers, and error handling options. The mod variable value is a combination of the values listed in the table "Values of the mode Parameter". You can obtain these values using the respective mask from the table "Values of Mask for the mode Parameter".
Values of Mask for the mode Parameter
\begin{tabular}{ll}
\hline Value of mask & Description \\
\hline VML_ACCURACY_MASK & Specifies mask for accuracy mode selection. \\
VML_FTZDAZ_MASK & Specifies mask for FTZDAZ mode selection. \\
VML_ERRMODE_MASK & Specifies mask for error mode selection. \\
\hline
\end{tabular}

See example below:

\section*{Examples}
```

mod = vmlgetmode()
accm = IAND (mod, VML_ACCURACY_MASK)
denm = IAND (mod, VML_FTZDAZ_MASK)
errm = IAND (mod, VML_ERRMODE_MASK)

```

\section*{vmlSetErrStatus}

Sets the new VM Error Status according to err and stores the previous VM Error Status to olderrSets the global VM Status according to new values and returns the previous VM Status.

\section*{Syntax}
```

olderr = vmlseterrstatus( status )

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
status & INTEGER, INTENT (IN)
\end{tabular}

\section*{Description}

Specifies the VM error status to be set.

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
olderr & INTEGER
\end{tabular}

\section*{Description}

Specifies the former VM error status.

\section*{Description}

Table "Values of the VM Status" lists possible values of the err parameter.
Values of the VM Status
\begin{tabular}{ll}
\hline Status & Description \\
\hline Successful Execution & The execution was completed successfully. \\
VML_STATUS_OK & \\
Warnings & \begin{tabular}{l}
The execution was completed successfully in a different accuracy \\
mode.
\end{tabular} \\
VML_STATUS_ACCURACYWARNING & \begin{tabular}{l}
The function does not support the preset accuracy mode. The Low
\end{tabular} \\
Errors & \begin{tabular}{l}
Accuracy mode is used instead. \\
NULL pointer is passed.
\end{tabular} \\
VML_STATUS_BADSIZE & \begin{tabular}{l}
At least one of array values is out of a range of definition. \\
At least one of the input array values causes a divide-by-zero \\
exception or produces an invalid (QNaN) result.
\end{tabular} \\
VML_STATUS_ERRDOM & \begin{tabular}{l}
An overflow has happened during the calculation process.
\end{tabular} \\
VML_STATUS_SING & An underflow has happened during the calculation process.
\end{tabular}

\section*{Examples}
```

olderr = vmlSetErrStatus( VML_STATUS_OK );
olderr = vmlSetErrStatus( VML_STATUS_ERRDOM );
olderr = vmlSetErrStatus( VML_STATUS_UNDERFLOW );

```

\section*{vmlgeterrstatus}

Gets the VM Error Status.
Syntax
```

err = vmlgeterrstatus( )

```

\section*{Include Files}
- mkl_vml.f90

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
err & INTEGER
\end{tabular}

\section*{vmlclearerrstatus}

Sets the VM Error Status to VML_STATUS_OK and stores the previous VM Error Status to olderr.

\section*{Syntax}
```

olderr = vmlclearerrstatus( )

```

\section*{Include Files}
- mkl_vml.f90

\section*{Output Parameters}
Name Type
olderr INTEGER
vmISetErrorCallBack
Sets the additional error handler callback function and gets the old callback function.

Syntax
oldcallback = vmlseterrorcallback(callback)
Include Files
- mkl_vml.f90

\section*{Description}

Specifies the VM error status.

\section*{Description}

Specifies the former VM error status.

\section*{Input Parameters}

\section*{Name}
callback Address of the callback function.

\section*{Description}

The callback function has the following format:

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
oldcallback & INTEGER
\end{tabular}

\section*{Description}

Address of the former callback function.

\section*{NOTE}

This function does not have a FORTRAN 77 interface due to the use of internal structures.

\section*{Description}

The callback function is called on each VM mathematical function error if VML_ERRMODE_CALLBACK error mode is set (see "Values of the mode Parameter").

Use the vmlSetErrorCallBack () function if you need to define your own callback function instead of default empty callback function.
The input structure for a callback function contains the following information about the error encountered:
- the input value that caused an error
- location (array index) of this value
- the computed result value
- error code
- name of the function in which the error occurred.

You can insert your own error processing into the callback function. This may include correcting the passed result values in order to pass them back and resume computation. The standard error handler is called after the callback function only if it returns 0 .

\section*{vmlGetErrorCallBack}

Gets the additional error handler callback function.

\section*{Syntax}
```

callback = vmlgeterrorcallback( )

```

Include Files
- mkl_vml.f90

\section*{Output Parameters}

\section*{Name}
```

callback

```

\section*{vmIClearErrorCallBack}

Deletes the additional error handler callback function and retrieves the former callback function.

\section*{Syntax}
```

oldcallback = vmlclearerrorcallback( )

```

Include Files
- mkl_vml.f90

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
oldcallback & INTEGER
\end{tabular}

\section*{Description}

Address of the callback function

\section*{Miscellaneous VM Functions}
v?CopySign
Returns vector of elements of one argument with
signs changed to match other argument elements.
Syntax
```

call vscopysign (n, a, y)
call vscopysigni(n, a, inca, b, incb, y, incy)
call vmscopysign ( }n,a,y, mode
call vmscopysigni(n, a, inca, b, incb, y, incy, mode)
call vdcopysign (n, a, y)
call vdcopysigni(n, a, inca, b, incb, y, incy)
call vmdcopysign (n, a, y, mode)
call vmdcopysigni(n, a, inca, b, incb, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER \\
a & \\
& REAL for vscopysign \\
& REAL for vmscopysign \\
& DOUBLE PRECISION for vdcopysign \\
inca, incb, \\
incy & INTEUBLE PRECISION for vmdcopysign \\
mode & INTEGER (KIND=8)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointer to the array containing the input vector a.

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?CopySign function returns the first vector argument elements with the sign changed to match the sign of the second vector argument's corresponding elements.

\section*{v?NextAfter}

Returns vector of elements containing the next representable floating-point values following the values from the elements of one vector in the direction of the corresponding elements of another vector.

\section*{Syntax}
```

call vsnextafter ( }n,a,b,y
call vsnextafteri(n, a, inca, b, incb, y, incy)
call vmsnextafter ( }n,a,b,y,mode
call vmsnextafteri(n, a, inca, b, incb, y, incy, mode)
call vdnextafter ( n, a, b, y)
call vdnextafteri(n, a, inca, b, incb, y, incy)
call vmdnextafter ( }n,a,b,y,mode
call vmdnextafteri(n, a, inca, b, incb, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

Input Parameters
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER \\
\(a, b\) & REAL for vsnextafter \\
& REAL for vmsnextafter \\
& DOUBLE PRECISION for vdnextafter \\
& DOUBLE PRECISION for vmdnextafter \\
& \\
\begin{tabular}{ll}
inca, incb, \\
incy
\end{tabular} & INTEGER, INTENT(IN) \\
mode & INTEGER (KIND=8)
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(y\) & REAL for vsnextafter & Pointer to an array containing the output vector \\
& \(y\).
\end{tabular}

\section*{Name Type Description}
```

REAL for vmsnextafter
DOUBLE PRECISION for vdnextafter
DOUBLE PRECISION for
vmdnextafterjjssd

```

\section*{Description}

The v?NextAfter function returns a vector containing the next representable floating-point values following the first vector argument elements in the direction of the second vector argument's corresponding elements. Special cases:
Overflow The function raises overflow and inexact floating-point exceptions and sets VML_STATUS_OVERFLOW if an input vector argument element is finite and the corresponding result vector element value is infinite.

Underflow The function raises underflow and inexact floating-point exceptions and sets VML_STATUS_UNDERFLOW if a result vector element value is subnormal or zero, and different from the corresponding input vector argument element.

Even though underflow or overflow can occur, the returned value is independent of the current rounding direction mode.

\section*{v?Fdim}

Returns vector containing the differences of the corresponding elements of the vector arguments if the first is larger and +0 otherwise.

\section*{Syntax}
```

call vsfdim (n, a, b, y)
call vsfdimi(n, a, inca, b, incb, y, incy)
call vmsfdim (n, a, b, y, mode)
call vmsfdimi(n, a, inca, b, incb, y, incy, mode)
call vdfdim ( }n,a,b,y
call vdfdimi(n, a, inca, b, incb, y, incy)
call vmdfdim (n, a, b, y, mode)
call vmdfdimi(n, a, inca, b, incb, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters

\section*{Name Type}
\(n \quad\) INTEGER

\section*{Description}

Specifies the number of elements to be calculated.
\begin{tabular}{ll}
Name & Type \\
\(a, b\) & REAL for vsfdim \\
& REAL for vmsfdim \\
& DOUBLE PRECISION for vdfdim \\
inca, incb, & INTEGLE PRECISION for vmdfdim \\
incy & \\
INTEGER (KIND=8) \\
mode &
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & REAL for vsfdim \\
& REAL for vmsfdim \\
& DOUBLE PRECISION for vdfdim \\
& DOUBLE PRECISION for vmdfdimjjssd
\end{tabular}

\section*{Description}

Pointers to the arrays containing the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlSetMode for possible values and their description.

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?Fdim function returns a vector containing the differences of the corresponding elements of the first and second vector arguments if the first element is larger, and +0 otherwise.

Special values for Real Function v?Fdim(\(x, y\))
\begin{tabular}{llll}
\hline Argument 1 & Argument 2 & Result & VM Error Status
\end{tabular} Exception \begin{tabular}{l}
INVALID \\
\hline any \\
any \\
QNAN \\
QNAN \\
SNAN
\end{tabular}
v?Fmax
Returns the larger of each pair of elements of the two vector arguments.

\section*{Syntax}
```

call vsfmax (n, a, b, y)
call vsfmaxi(n, a, inca, b, incb, y, incy)
call vmsfmax ( }n,a,b,y, mode
call vmsfmaxi(n, a, inca, b, incb, y, incy, mode)
call vdfmax (n, a, b, y)
call vdfmaxi(n, a, inca, b, incb, y, incy)
call vmdfmax ( }n,a,b,y, mode
call vmdfmaxi(n, a, inca, b, incb, y, incy, mode)

```

Include Files
- mkl_vml.f90

Input Parameters
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER \\
\(a, b\) & REAL for vsfmax \\
& REAL for vmsfmax \\
& DOUBLE PRECISION for vdfmax \\
& DOUBLE PRECISION for vmdfmax \\
\begin{tabular}{ll}
inca, incb, \\
incy \\
mode
\end{tabular} & INTEGER, INTENT(IN)
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
\(y\) & REAL for vsfmax \\
& REAL for vmsfmax \\
& DOUBLE PRECISION for vdfmax \\
& DOUBLE PRECISION for vmdfmaxjjssd
\end{tabular}

\section*{Description}

The v? Fmax function returns a vector with element values equal to the larger value from each pair of corresponding elements of the two vectors \(a\) and \(b\) : if \(a_{i}<b_{i}\) v? Fmax returns \(b_{i}\), otherwise v? Fmax returns \(a_{i}\).
Special values for Real Function v?Fmax (\(x, y\))
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(a_{i}\) not NAN & NAN & \(a_{i}\) & \\
NAN & \(b_{i}\) not NAN & \(b_{i}\) & \\
NAN & NAN & NAN & \\
\hline
\end{tabular}

\section*{See Also}

Fmin Returns the smaller of each pair of elements of the two vector arguments. MaxMag Returns the element with the larger magnitude between each pair of elements of the two vector arguments.

\section*{v?Fmin}

Returns the smaller of each pair of elements of the two vector arguments.

\section*{Syntax}
```

call vsfmin (n, a, b, y)
call vsfmini(n, a, inca, b, incb, y, incy)
call vmsfmin ( }n,a,b,y,mode
call vmsfmini(n, a, inca, b, incb, y, incy, mode)
call vdfmin ( n, a, b, y)
call vdfmini(n, a, inca, b, incb, y, incy)
call vmdfmin ( }n,a,b,y, mode
call vmdfmini(n, a, inca, b, incb, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER \\
\(a, b\) & REAL for vsfmin \\
& REAL for vmsfmin \\
& DOUBLE PRECISION for vdfmin \\
& DOUBLE PRECISION for vmdfmin \\
inca, incb, \\
incy & INTEGER, INTENT(IN) \\
mode & INTEGER (KIND=8)
\end{tabular}

\section*{Output Parameters}

\section*{Name}
\(y\)

\section*{Type}

REAL for vsfmin
REAL for vmsfmin

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to the arrays containing the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

DOUBLE PRECISION for vdfmin
DOUBLE PRECISION for vmdfminjjssd

\section*{Description}

The v?Fmin function returns a vector with element values equal to the smaller value from each pair of corresponding elements of the two vectors \(a\) and \(b\) : if \(b_{i}<a_{i} v\) ? Fmin returns \(b_{i}\), otherwise v? Fmin returns \(a_{i}\).

Special values for Real Function v?Fmin(\(\mathbf{x}, \mathrm{y}\))
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(a_{i}\) not NAN & NAN & \(a_{i}\) & &
\end{tabular}
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline NAN & \(b_{i}\) not NAN & \(b_{i}\) & & \\
NAN & NAN & NAN & \\
\hline
\end{tabular}

\section*{See Also}

Fmax Returns the larger of each pair of elements of the two vector arguments.
MinMag Returns the element with the smaller magnitude between each pair of elements of the two vector arguments.
```

v?MaxMag

```

Returns the element with the larger magnitude between each pair of elements of the two vector arguments.

Syntax
```

call vsmaxmag ( n, a, b, y)
call vsmaxmagi(n, a, inca, b, incb, y, incy)
call vmsmaxmag ( n, a, b, y, mode)
call vmsmaxmagi(n, a, inca, b, incb, y, incy, mode)
call vdmaxmag ( }n,a,b,y
call vdmaxmagi(n, a, inca, b, incb, y, incy)
call vmdmaxmag ( }n,a,b,y,mode
call vmdmaxmagi(n, a, inca, b, incb, y, incy, mode)

```

\section*{Include Files}
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER \\
\(a, b\) & REAL for vsmaxmag \\
& REAL for vmsmaxmag \\
& DOUBLE PRECISION for vdmaxmag \\
& DOUBLE PRECISION for vmdmaxmag \\
\begin{tabular}{ll}
inca, incb, \\
incy \\
mode
\end{tabular} & INTEGER, INTENT(IN)
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to the arrays containing the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name Type
y REAL for vsmaxmag
REAL for vmsmaxmag
DOUBLE PRECISION for vdmaxmag
DOUBLE PRECISION for
vmdmaxmagjjssd

```

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?MaxMag function returns a vector with element values equal to the element with the larger magnitude from each pair of corresponding elements of the two vectors \(a\) and \(b\) :
- If \(\left|a_{i}\right|>\left|b_{i}\right|\) v?MaxMag returns \(a_{i}\), otherwise v?MaxMag returns \(a_{i}\).
- If \(\left|b_{i}\right|>\left|a_{i}\right|\) v?MaxMag returns \(b_{i}\), otherwise v?MaxMag returns \(a_{i}\).
- Otherwise v?MaxMag behaves like v? Fmax.

Special values for Real Function v?MaxMag(\(x, y\))
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(a_{i}\) not NAN & NAN & \(a_{i}\) & & \\
NAN & \(b_{i}\) not NAN & \(b_{i}\) & & \\
NAN & NAN & NAN & & \\
\hline
\end{tabular}

\section*{See Also}

MinMag Returns the element with the smaller magnitude between each pair of elements of the two vector arguments.
Fmax Returns the larger of each pair of elements of the two vector arguments.

\section*{v?MinMag}

Returns the element with the smaller magnitude between each pair of elements of the two vector arguments.

\section*{Syntax}
```

call vsminmag ( }n,a,b,y
call vsminmagi(n, a, inca, b, incb, y, incy)
call vmsminmag ( }n,a,b,y,mode
call vmsminmagi(n, a, inca, b, incb, y, incy, mode)
call vdminmag ( }n,a,b,y
call vdminmagi(n, a, inca, b, incb, y, incy)
call vmdminmag ( }n,a,b,y, mode
call vmdminmagi(n, a, inca, b, incb, y, incy, mode)

```

Include Files
- mkl_vml.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER \\
\(a, b\) & REAL for vsminmag \\
& REAL for vmsminmag \\
& DOUBLE PRECISION for vdminmag \\
& DOUBLE PRECISION for vmdminmag \\
\begin{tabular}{ll}
inca, incb, \\
incy \\
mode & INTEGER, INTENT(IN)
\end{tabular} &
\end{tabular}

\section*{Description}

Specifies the number of elements to be calculated.

Pointers to the arrays containing the input vectors \(a\) and \(b\).

Specifies increments for the elements of \(a, b\), and \(y\).

Overrides the global VM mode setting for this function call. See vmlsetMode for possible values and their description.

\section*{Output Parameters}
```

Name Type
y REAL for vsminmag
REAL for vmsminmag
DOUBLE PRECISION for vdminmag
DOUBLE PRECISION for
vmdminmagjjssd

```

\section*{Description}

Pointer to an array containing the output vector \(y\).

\section*{Description}

The v?MinMag function returns a vector with element values equal to the element with the smaller magnitude from each pair of corresponding elements of the two vectors \(a\) and \(b\) :
- If \(\left|a_{i}\right|<\left|b_{i}\right|\) v?MaxMag returns \(a_{i}\), otherwise v?MaxMag returns \(a_{i}\).
- If \(\left|b_{i}\right|<\left|a_{i}\right|\) v?MaxMag returns \(b_{i}\), otherwise v?MaxMag returns \(a_{i}\).
- Otherwise v?MaxMag behaves like v?Fmin.

Special values for Real Function v?MinMag(\(x, y\))
\begin{tabular}{lllll}
\hline Argument 1 & Argument 2 & Result & VM Error Status & Exception \\
\hline\(a_{i}\) not NAN & NAN & \(a_{i}\) & & \\
NAN & \(b_{i}\) not NAN & \(b_{i}\) & & \\
NAN & NAN & NAN & & \\
\hline
\end{tabular}

\section*{See Also}

MaxMag Returns the element with the larger magnitude between each pair of elements of the two vector arguments.
Fmin Returns the smaller of each pair of elements of the two vector arguments.

\section*{Statistical Functions}

Statistical functions in Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) are known as the Vector Statistics (VS). They are designed for the purpose of
- generating vectors of pseudorandom, quasi-random, and non-deterministic random numbers
- performing mathematical operations of convolution and correlation
- computing basic statistical estimates for single and double precision multi-dimensional datasets

The corresponding functionality is described in the respective Random Number Generators, Convolution and Correlation, and Summary Statistics topics.

See VS performance data in the online VS Performance Data document available at https://www.intel.com/ content/www/us/en/developer/tools/oneapi/onemkl-documentation.html.
The basic notion in VS is a task. The task object is a data structure or descriptor that holds the parameters related to a specific statistical operation: random number generation, convolution and correlation, or summary statistics estimation. Such parameters can be an identifier of a random number generator, its internal state and parameters, data arrays, their shape and dimensions, an identifier of the operation and so forth. You can modify the VS task parameters using the VS service functions.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Random Number Generators}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) VS provides a set of routines implementing commonly used pseudorandom, quasi-random, or non-deterministic random number generators with continuous and discrete distribution. To improve performance, all these routines were developed using the calls to the highly optimizedBasic Random Number Generators (BRNGs) and vector mathematical functions (VM, see "Vector Mathematical Functions").

VS provides interfaces both for Fortran and C languages. For users of the Fortran 90 or Fortran 95 language the mkl_vsl.f 90 header file is provided. The mkl_vsl.fiheader file available in the previous versions of Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) is retained for backward compatibility.All header files are found in the following directory:
```

\$ {MKL } / include

```

The mkl_vsl.f90 header is intended for use with the Fortran include clause and is compatible with both standard forms of F90/F95 sources - the free and 72-columns fixed forms. If you need to use the VS interface with 80- or 132-columns fixed form sources, you may add a new file to your project. That file is formatted as a 72-columns fixed-form source and consists of a single include clause as follows:
```

include 'mkl_vsl.f90'

```

This include clause causes the compiler to generate the module files mkl_vsl.mod and mkl _vsl_type.mod, which are used to process the Fortran use clauses referencing to the VS interface:
```

use mkl_vsl_type
use mkl_vsl

```

Because of this specific feature, you do not need to include the mkl_vsl.f90 header into each source of your project. You only need to include the header into some of the sources. In any case, make sure that the sources that depend on the VS interface are compiled after those that include the header so that the module files mkl_vsl.mod and mkl_vsl_type.mod are generated prior to using them.

\begin{abstract}
NOTE
For the Fortran interface, VS provides both a subroutine-style interface and a function-style interface. The default interface in this case is a function-style interface. The function-style interface, unlike the subroutine-style interface, allows the user to get error status of each routine. The subroutine-style interface is provided for backward compatibility only. To use the subroutine-style interface, manually include mkl_vsl_subroutine.fi file instead of mkl_vsl.f90 by changing the line include 'mkl_vsl.f90' in include\mkl.fi with the line include 'mkl_vsl_subroutine.fi'.
\end{abstract}

All VS routines can be classified into three major categories:
- Transformation routines for different types of statistical distributions, for example, uniform, normal (Gaussian), binomial, etc. These routines indirectly call basic random number generators, which are pseudorandom, quasi-random, or non-deterministic random number generators. Detailed description of the generators can be found in Distribution Generators.
- Service routines to handle random number streams: create, initialize, delete, copy, save to a binary file, load from a binary file, get the index of a basic generator. The description of these routines can be found in Service Routines.
- Registration routines for basic pseudorandom generators and routines that obtain properties of the registered generators (see Advanced Service Routines).
The last two categories are referred to as service routines.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Random Number Generators Conventions}

This document makes no specific differentiation between random, pseudorandom, and quasi-random numbers, nor between random, pseudorandom, and quasi-random number generators unless the context requires otherwise. For details, refer to the 'Random Numbers' section in VS Notesdocument provided at the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) web page.
All generators of nonuniform distributions, both discrete and continuous, are built on the basis of the uniform distribution generators, called Basic Random Number Generators (BRNGs). The pseudorandom numbers with nonuniform distribution are obtained through an appropriate transformation of the uniformly distributed pseudorandom numbers. Such transformations are referred to as generation methods. For a given distribution, several generation methods can be used. See VS Notes for the description of methods available for each generator.

An RNG task determines environment in which random number generation is performed, in particular parameters of the BRNG and its internal state. Output of VS generators is a stream of random numbers that are used in Monte Carlo simulations. A random stream descriptor and a random stream are used as synonyms of an RNG task in the document unless the context requires otherwise.

The random stream descriptor specifies which BRNG should be used in a given transformation method. See the Random Streams and RNGs in Parallel Computation section of VS Notes.

The term computational node means a logical or physical unit that can process data in parallel.

\section*{Random Number Generators Mathematical Notation}

The following notation is used throughout the text:

R

The set of natural numbers \(N=\{1,2,3 \ldots\}\).
The set of integers \(Z=\{\ldots-3,-2,-1,0,1,2,3 \ldots\}\).
The set of real numbers.

\(\oplus\) or \(\mathbf{x o r}\)
\[
C_{\alpha}^{\kappa} \text { or }\binom{\alpha}{\kappa}
\]
\(\Phi(x)\)
\(\Gamma(\alpha)\)
\(B(p, q)\)

The floor of \(a\) (the largest integer less than or equal to \(a\)).

Bitwise exclusive OR.
Binomial coefficient or combination (\(\alpha \in R, \alpha \geq 0\); \(k \in N \cup\{0\}\)).

For \(\alpha \geq k\) binomial coefficient is defined as
\[
C_{\alpha}^{\kappa}=\frac{\alpha(\alpha-1) \ldots(\alpha-\kappa+1)}{\kappa!}
\]

If \(\alpha<k\), then
\[
C_{\alpha}^{\kappa}=0
\]

Cumulative Gaussian distribution function
\[
\begin{aligned}
& \left.\left.\qquad(X)=\int_{-\infty}^{x} \frac{I}{\sqrt{2 \pi}} \text { exp }\left(-\frac{7^{2}}{2}\right)\right]^{7}\right] \\
& \text { defined over }-\infty<x<+\infty \\
& \Phi(-\infty)=0, \Phi(+\infty)=1
\end{aligned}
\]

The complete gamma function
\[
\Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t
\]
where \(\alpha>0\).
The complete beta function
\[
B(O, G)=\int_{0}^{1} t^{p-1}(1-t)^{q-1} G \pm
\]
\begin{tabular}{ll}
\(\operatorname{LCG}(a, c, m) \quad\)\begin{tabular}{l}
Linear Congruential Generator \(x_{n+1}=\left(a x_{n}+c\right)\) mod \(m\), where \(a\) is \\
called the multiplier, \(c\) is called the increment, and \(m\) is called the \\
modulus of the generator.
\end{tabular} \\
\(\operatorname{MCG}(a, m) \quad\)\begin{tabular}{l}
Multiplicative Congruential Generator \(x_{n+1}=\left(a x_{n}\right)\) mod \(m\) is a special \\
case of Linear Congruential Generator, where the increment \(c\) is taken \\
to be 0.
\end{tabular} \\
\(\operatorname{GFSR}(p, q)\) \\
& \(x_{n}=x_{n-p} \oplus x_{n-q}\).
\end{tabular}

\section*{Random Number Generators Naming Conventions}

The names of the routines in VS random number generators are lowercase (virnguniform). The names are not case-sensitive.
The names of generator routines have the following structure:
\(\mathrm{v}<t y p e\) of result>rng<distribution>
where
- \(v\) is the prefix of a VS vector function.
- <type of result> is either s, d, or i and specifies one of the following types:
\begin{tabular}{ll}
s & REAL \\
d & DOUBLE PRECISION \\
i & INTEGER
\end{tabular}

Prefixes s and d apply to continuous distributions only, prefix i applies only to discrete case.
- rng indicates that the routine is a random generator.
- <distribution> specifies the type of statistical distribution.

Names of service routines follow the template below:

\section*{vsl<name>}
where
- vsl is the prefix of a VS service function.
- <name> contains a short function name.

For a more detailed description of service routines, refer to Service Routines and Advanced Service Routines.
The prototype of each generator routine corresponding to a given probability distribution fits the following structure:
```

status = <function name>( method, stream, n, r, [<distribution parameters>] )

```
where
- method defines the method of generation. A detailed description of this parameter can be found in table "Values of <method> in method parameter". See below, where the structure of the method parameter name is explained.
- stream defines the descriptor of the random stream and must have a non-zero value. Random streams, descriptors, and their usage are discussed further in Random Streams and Service Routines.
- \(n\) defines the number of random values to be generated. If \(n\) is less than or equal to zero, no values are generated. Furthermore, if \(n\) is negative, an error condition is set.
- \(r\) defines the destination array for the generated numbers. The dimension of the array must be large enough to store at least \(n\) random numbers.
- status defines the error status of a VS routine. See Error Reporting for a detailed description of error status values.
Additional parameters included into <distribution parameters> field are individual for each generator routine and are described in detail in Distribution Generators.

To invoke a distribution generator, use a call to the respective VS routine. For example, to obtain a vector \(r\), composed of \(n\) independent and identically distributed random numbers with normal (Gaussian) distribution, that have the mean value \(a\) and standard deviation sigma, write the following:
```

status = vsrnggaussian(method, stream, n, r, a, sigma )

```

The name of a method parameter has the following structure:
```

VSL_RNG_METHOD_method<distribution>_<method>
VSL_RNG_METHOD_<distribution>_<method>_ACCURATE

```
where
- <distribution> is the probability distribution.
- <method> is the method name.

Type of the name structure for the method parameter corresponds to fast and accurate modes of random number generation (see "Distribution Generators" and VS Notes for details).
Method names VSL_RNG_METHOD_<distribution>_<method>
and
VSL_RNG_METHOD_<distribution>_<method>_ACCURATE
should be used with
v<precision>Rng<distribution>
function only, where
- <precision> is
\(s\)
for single precision continuous distribution
d for double precision continuous distribution
\(i \quad\) for discrete distribution
- <distribution> is the probability distribution.
is the probability distribution. Table "Values of <method> in method parameter" provides specific predefined values of the method name. The third column contains names of the functions that use the given method.

Values of <method> in method parameter
\begin{tabular}{lll}
\hline Method & Short Description & Functions \\
\hline STD & Standard method. Currently there is only one method for these & Uniform \\
functions. & (continuous), \\
& & Uniform \\
& & (discrete),
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Method & Short Description & Functions \\
\hline & & UniformBits, UniformBits32, UniformBits64 \\
\hline \multirow[t]{2}{*}{BOXMULLER} & BOXMULLER generates normally distributed random number \(x\) thru the pair of uniformly distributed numbers \(u_{1}\) and \(u_{2}\) according to the formula: & Gaussian, GaussianMV \\
\hline & \[
x=\sqrt{-2 \ln u_{1}} \sin 2 \pi u_{2}
\] & \\
\hline \multirow[t]{3}{*}{BOXMULLER2} & BOXMULLER2 generates normally distributed random numbers \(x_{1}\) and \(x_{2}\) thru the pair of uniformly distributed numbers \(u_{1}\) and \(u_{2}\) according to the formulas: & Gaussian, GaussianMV, Lognormal \\
\hline & & \\
\hline & & \\
\hline ICDF & Inverse cumulative distribution function method. & \begin{tabular}{l}
Exponential, \\
Laplace, \\
Weibull, Cauchy, \\
Rayleigh, \\
Gumbel, \\
Bernoulli, \\
Geometric, \\
Gaussian, \\
GaussianMV, \\
Lognormal
\end{tabular} \\
\hline GNORM & For \(\alpha>1\), a gamma distributed random number is generated as a cube of properly scaled normal random number; for \(0.6 \leq \alpha<\) 1 , a gamma distributed random number is generated using rejection from Weibull distribution; for \(\alpha<0.6\), a gamma distributed random number is obtained using transformation of exponential power distribution; for \(\alpha=1\), gamma distribution is reduced to exponential distribution. & Gamma \\
\hline CJA & For \(\min (p, q)>1\), Cheng method is used; for \(\min (p, q)<\) 1 , Johnk method is used, if \(q+k \cdot p^{2}+c \leq 0(k=0.852 \ldots\), \(C=-0.956 \ldots\)) otherwise, Atkinson switching algorithm is used; for \(\max (p, q)<1\), method of Johnk is used; for \(\min (p, q)\) 1, \(\max (p, q)>1\), Atkinson switching algorithm is used (CJA stands for the first letters of Cheng, Johnk, Atkinson); for \(p=\) 1 or \(q=1\), inverse cumulative distribution function method is used;for \(p=1\) and \(q=1\), beta distribution is reduced to uniform distribution. & Beta \\
\hline BTPE & Acceptance/rejection method for ntrial•min \((p, 1-p) \geq 30\) & Binomial \\
\hline
\end{tabular}
with decomposition into 4 regions:
\begin{tabular}{|c|c|c|}
\hline Method & Short Description & Functions \\
\hline & \begin{tabular}{l}
- 2 parallelograms \\
- triangle \\
- left exponential tail \\
- right exponential tail
\end{tabular} & \\
\hline \multirow[t]{2}{*}{H2PE} & Acceptance/rejection method for large mode of distribution with decomposition into 3 regions: & Hypergeometric \\
\hline & \begin{tabular}{l}
- rectangular \\
- left exponential tail \\
- right exponential tail
\end{tabular} & \\
\hline \multirow[t]{3}{*}{PTPE} & Acceptance/rejection method for \(\lambda \geq 27\) with decomposition into 4 regions: & Poisson \\
\hline & \begin{tabular}{l}
- 2 parallelograms \\
- triangle \\
- left exponential tail \\
- right exponential tail;
\end{tabular} & \\
\hline & otherwise, table lookup method is used. & \\
\hline \multirow[t]{2}{*}{POISNORM} & for \(\lambda \geq 1\), method based on Poisson inverse CDF approximation by Gaussian inverse CDF; & Poisson, PoissonV \\
\hline & for \(\lambda<1\), table lookup method is used. & \\
\hline \multirow[t]{2}{*}{NBAR} & Acceptance/rejection method for, & NegBinomial \\
\hline & \[
\left.\left.(\mathrm{L}-\square) \quad\right|_{1} ^{-}\right]-1
\] & \\
\hline
\end{tabular}
with decomposition into 5 regions:
- rectangular
- 2 trapezoid
- left exponential tail
- right exponential tail

Random number generator of chi-square distribution with \(v\) degrees of freedom. To generate any successive random number \(x\) of the chi-square distribution:
- If \(v\) is 1 or 3 , a chi-square distributed random number is generated as a sum of squares of \(v\) independent normal random numbers with mean value \(\mathrm{a}=0\) and standard deviation \(\sigma=1\).
- If \(v\) is even and \(2 \leq v \leq 16\), a chi-square distributed random number is generated using the formula:
\(x=-2 \ln \left(\prod_{i=1}^{v / 2} u_{i}\right)\)
where \(u_{i}\) are successive random numbers uniformly distributed over the interval \((0,1)\)
- If \(v \geq 17\) or \(v\) is odd and \(5 \leq v \leq 15\), a chi-square distribution is reduced to a Gamma distribution with these parameters:
\begin{tabular}{lll}
\hline Method & Short Description & Functions \\
\hline & • Shape \(a=v / 2\) & \\
& • Offset \(a=0\) & \\
& - Scale factor \(\beta=2\) & \\
& The random numbers of the Gamma distribution are & \\
& generated using the VSL_RNG_METHOD_GAMMA_GNORM & \\
& method.
\end{tabular}

\section*{NOTE}

In this document, routines are often referred to by their base name (Gaussian) when this does not lead to ambiguity. In the routine reference, the full name (vsrnggaussian, vsRngGaussian) is always used in prototypes and code examples.

\section*{Basic Generators}

VS provides pseudorandom, quasi-random, and non-deterministic random number generators. This includes the following BRNGs, which differ in speed and other properties:
- the 31-bit multiplicative congruential pseudorandom number generator MCG (1132489760, \(2^{31}\)-1) [L'Ecuyer99]
- the 32-bit generalized feedback shift register pseudorandom number generator \(\operatorname{GFSR}(250,103)\) [Kirkpatrick81]
- the combined multiple recursive pseudorandom number generator MRG32k3a [L'Ecuyer99a]
- the 59-bit multiplicative congruential pseudorandom number generator MCG \(\left(13^{13}, 2^{59}\right)\) from NAG Numerical Libraries [NAG]
- Wichmann-Hill pseudorandom number generator (a set of 273 basic generators) from NAG Numerical Libraries [NAG]
- Mersenne Twister pseudorandom number generator MT19937 [Matsumoto98] with period length 219937-1 of the produced sequence
- Set of 6024 Mersenne Twister pseudorandom number generators MT2203 [Matsumoto98], [Matsumoto00]. Each of them generates a sequence of period length equal to \(2^{2203}-1\). Parameters of the generators provide mutual independence of the corresponding sequences.
- SIMD-oriented Fast Mersenne Twister pseudorandom number generator SFMT19937 [Saito08] with a period length equal to \(2^{19937}-1\) of the produced sequence.
- Sobol quasi-random number generator [Sobol76], [Bratley88], which works in arbitrary dimension. For dimensions greater than 40 the user should supply initialization parameters (initial direction numbers and primitive polynomials or direction numbers) by using vslNewStreamEx function. See additional details on interface for registration of the parameters in the library in VS Notes.
- Niederreiter quasi-random number generator [Bratley92], which works in arbitrary dimension. For dimensions greater than 318 the user should supply initialization parameters (irreducible polynomials or direction numbers) by using vslNewStreamEx function. See additional details on interface for registration of the parameters in the library in VS Notes.
- Non-deterministic random number generator (RDRAND-based generators only) [AVX], [InteISWMan].

\footnotetext{
NOTE
You can use a non-deterministic random number generator only if the underlying hardware supports it. For instructions on how to detect if an Intel CPU supports a non-deterministic random number generator see, for example, Chapter 8: Post-32nm Processor Instructions in [AVX] or Chapter 4: RdRand Instruction Usage in [BMT].
}

\section*{NOTE}

The time required by some non-deterministic sources to generate a random number is not constant, so you might have to make multiple requests before the next random number is available. VS limits the number of retries for requests to the non-deterministic source to 10 . You can redefine the maximum number of retries during the initialization of the non-deterministic random number generator with the vsINewStreamEx function.
For more details on the non-deterministic source implementation for Intel CPUs please refer to Section 7.3.17, Volume 1, Random Number Generator Instruction in [IntelSWMan] and Section 4.2.2, RdRand Retry Loop in [BMT].
- Philox \(4 \times 32-10\) counter-based pseudorandom number generator with a period of \(2^{128}\) PHILOX4X32X10[Salmon11].
- ARS-5 counter-based pseudorandom number generator with a period of \(2^{128}\), which uses instructions from the AES-NI set \(\operatorname{ARS5}\) [Salmon11].
See some testing results for the generators in VS Notes and comparative performance data at https:// www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-documentation.html.

VS provides means of registration of such user-designed generators through the steps described in Advanced Service Routines.

For some basic generators, VS provides two methods of creating independent random streams in multiprocessor computations, which are the leapfrog method and the block-splitting method. These sequence splitting methods are also useful in sequential Monte Carlo.
In addition, MT2203 pseudorandom number generator is a set of 6024 generators designed to create up to 6024 independent random sequences, which might be used in parallel Monte Carlo simulations. Another generator that has the same feature is Wichmann-Hill. It allows creating up to 273 independent random streams. The properties of the generators designed for parallel computations are discussed in detail in [Coddington94].
You may want to design and use your own basic generators. VS provides means of registration of such userdesigned generators through the steps described in Advanced Service Routines.

There is also an option to utilize externally generated random numbers in VS distribution generator routines. For this purpose VS provides three additional basic random number generators:
- for external random data packed in 32-bit integer array
- for external random data stored in double precision floating-point array; data is supposed to be uniformly distributed over (\(\mathrm{a}, \mathrm{b}\)) interval
- for external random data stored in single precision floating-point array; data is supposed to be uniformly distributed over (\(a, b\)) interval.

Such basic generators are called the abstract basic random number generators.
See VS Notes for a more detailed description of the generator properties.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{BRNG Parameter Definition}

Predefined values for the brng input parameter are as follows:
Values of brng parameter
Value Short Description

A 31-bit multiplicative congruential generator.
\begin{tabular}{ll}
\hline Value & Short Description \\
\hline VSL_BRNG_R250 & A generalized feedback shift register generator. \\
VSL_BRNG_MRG32K3A & \begin{tabular}{l}
A combined multiple recursive generator with two components \\
of order 3.
\end{tabular} \\
VSL_BRNG_MCG59 & A 59-bit multiplicative congruential generator. \\
VSL_BRNG_WH & \begin{tabular}{l}
A set of 273 Wichmann-Hill combined multiplicative \\
congruential generators.
\end{tabular} \\
VSL_BRNG_MT19937 & A Mersenne Twister pseudorandom number generator. \\
VSL_BRNG_MT2203 & \begin{tabular}{l}
A set of 6024 Mersenne Twister pseudorandom number \\
generators.
\end{tabular} \\
VSL_BRNG_SFMT19937 & \begin{tabular}{l}
A SIMD-oriented Fast Mersenne Twister pseudorandom number \\
generator.
\end{tabular} \\
VSL_BRNG_SOBOL & \begin{tabular}{l}
A 32-bit Gray code-based generator producing low-discrepancy \\
sequences for dimensions 1 \\
dimensions are also available. 5
\end{tabular} \\
VSL_BRNG_NIEDERR user-defined
\end{tabular}

See VS Notes for detailed description.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Random Streams}

Random stream (or stream) is an abstract source of pseudo- and quasi-random sequences of uniform distribution. You can operate with stream state descriptors only. A stream state descriptor, which holds state descriptive information for a particular BRNG, is a necessary parameter in each routine of a distribution generator. Only the distribution generator routines operate with random streams directly. See VS Notes for details.

\section*{NOTE}

Random streams associated with abstract basic random number generator are called the abstract random streams. See VS Notes for detailed description of abstract streams and their use.

You can create unlimited number of random streams by VS Service Routines like NewStream and utilize them in any distribution generator to get the sequence of numbers of given probability distribution. When they are no longer needed, the streams should be deleted calling service routine DeleteStream.

VS provides service functions SaveStreamF and LoadStreamF to save random stream descriptive data to a binary file and to read this data from a binary file respectively. See VS Notes for detailed description.

\section*{BRNG Data Types}

\section*{FORTRAN 77:}

\section*{INTEGER*4 vslstreamstate (2)}

Fortran 90:
```

TYPEVSL_STREAM_STATEINTEGER*4 descriptor1INTEGER*4 descriptor2ENDTYPE VSL_STREAM_STATE

```

\section*{Error Reporting}

VS RNG routines return status codes of the performed operation to report errors to the calling program. The application should perform error-related actions and/or recover from the error. The status codes are of integer type and have the following format:
VSL_ERROR_<ERROR_NAME> - indicates VS errors common for all VS domains.
VSL_RNG_ERROR_<ERROR_NAME> - indicates VS RNG errors.
VS RNG errors are of negative values while warnings are of positive values. The status code of zero value indicates successful completion of the operation: VSL_ERROR_OK (or synonymic VSL_STATUS_OK).

\section*{Status Codes}

Status Code

\section*{Description}

\section*{Common VSL}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_BADARGS
VSL_ERROR_CPU_NOT_SUPPORTED
VSL_ERROR_FEATURE_NOT_IMPLEMENTED
VSL_ERROR_MEM_FAILURE
VSL_ERROR_NULL_PTR
VSL_ERROR_UNKNOWN

```

No error, execution is successful.
Input argument value is not valid.
CPU version is not supported.
Feature invoked is not implemented.
System cannot allocate memory.
Input pointer argument is NULL.
Unknown error.

\section*{VS RNG Specific}
```

VSL_RNG_ERROR_BAD_FILE_FORMAT
VSL_RNG_ERROR_BAD_MEM_FORMAT
VSL RNG ERROR BAD NBITS

```

File format is unknown.
Descriptive random stream format is unknown.

The value in NBits field is bad.
\begin{tabular}{|c|c|}
\hline Status Code & Description \\
\hline VSL_RNG_ERROR_BAD_NSEEDS & The value in NSeeds field is bad. \\
\hline VSL_RNG_ERROR_BAD_STREAM & The random stream is invalid. \\
\hline VSL_RNG_ERROR_BAD_STREAM_STATE_SIZE & The value in StreamStateSize field is bad. \\
\hline VSL_RNG_ERROR_BAD_UPDATE & Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, \(<0\) or \(>\) nmax. \\
\hline VSL_RNG_ERROR_BAD_WORD_SIZE & The value in WordSize field is bad. \\
\hline VSL_RNG_ERROR_BRNG_NOT_SUPPORTED & BRNG is not supported by the function. \\
\hline VSL_RNG_ERROR_BRNG_TABLE_FULL & Registration cannot be completed due to lack of free entries in the table of registered BRNGs. \\
\hline VSL_RNG_ERROR_BRNGS_INCOMPATIBLE & Two BRNGs are not compatible for the operation. \\
\hline VSL_RNG_ERROR_FILE_CLOSE & Error in closing the file. \\
\hline VSL_RNG_ERROR_FILE_OPEN & Error in opening the file. \\
\hline VSL_RNG_ERROR_FILE_READ & Error in reading the file. \\
\hline VSL_RNG_ERROR_FILE_WRITE & Error in writing the file. \\
\hline VSL_RNG_ERROR_INVALID_ABSTRACT_STREAM & The abstract random stream is invalid. \\
\hline VSL_RNG_ERROR_INVALID_BRNG_INDEX & BRNG index is not valid. \\
\hline VSL_RNG_ERROR_LEAPFROG_UNSUPPORTED & BRNG does not support Leapfrog method. \\
\hline VSL_RNG_ERROR_NO_NUMBERS & Callback function for an abstract BRNG returns zero as the number of updated entries in a buffer. \\
\hline VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED & Period of the generator is exceeded. \\
\hline VSL_RNG_ERROR_SKIPAHEAD_UNSUPPORTED & BRNG does not support Skip-Ahead method. \\
\hline VSL_RNG_ERROR_SKIPAHEADEX_UNSUPPORTED & BRNG does not support advanced Skip-Ahead method. \\
\hline VSL_RNG_ERROR_UNSUPPORTED_FILE_VER & File format version is not supported. \\
\hline VSL_RNG_ERROR_NONDETERM_NOT_SUPPORTED & Non-deterministic random number generator is not supported on the CPU running the application. \\
\hline VSL_RNG_ERROR_NONDETERM_ NRETRIES_EXCEEDED & Number of retries to generate a random number using non-deterministic random number generator exceeds threshold (see Section 7.2.1.12 Non-deterministic in [VS Notes] for more details) \\
\hline VSL_RNG_ERROR_ARS5_NOT_SUPPORTED & ARS-5 random number generator is not supported on the CPU running the application. \\
\hline
\end{tabular}

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{VS RNG Usage ModelIntel \({ }^{\oplus}\) oneMKL RNG Usage Model}

A typical algorithm for VSoneMKL random number generators is as follows:
1. Create and initialize stream/streams. Functions vslNewStream, vslNewStreamEx, vslCopyStream,
vslCopyStreamState, vslLeapfrogStream, vslSkipAheadStream, vslSkipAheadStreamEx.
2. Call one or more RNGs.
3. Process the output.
4. Delete the stream or streams with the function vslDeleteStream.

\section*{NOTE}

You may reiterate steps 2-3. Random number streams may be generated for different threads.

The following example demonstrates generation of a random stream that is output of basic generator MT19937. The seed is equal to 777 . The stream is used to generate 10,000 normally distributed random numbers in blocks of 1,000 random numbers with parameters \(a=5\) and sigma \(=2\). Delete the streams after completing the generation. The purpose of the example is to calculate the sample mean for normal distribution with the given parameters.

\section*{Example of VS RNG Usage}
```

include 'mkl_vsl.f90'
program MKL_VSL_GAUSSIAN
USE MKL_VSL_TYPE
USE MKL_VSL
real(kind=8) r(1000) ! buffer for random numbers
real(kind=8) s ! average
real(kind=8) a, sigma ! parameters of normal distribution
TYPE (VSL_STREAM_STATE) :: stream
integer(kind=4) errcode
integer(kind=4) i,j
integer brng,method,seed,n
n}=100
s=0.0
a = 5.0
sigma = 2.0
brng=VSL_BRNG_MT19937

```

```

seed=777
***** Initializing *****
errcode=vslnewstream( stream, brng, seed )
***** Generating *****
do i = 1,10

```
```

        errcode=vdrnggaussian( method, stream, n, r, a, sigma )
        do j = 1, 1000
                s = s + r(j)
        end do
    end do
s = s / 10000.0
***** Deinitialize *****
errcode=vsldeletestream( stream )
***** Printing results *****
print *,"Sample mean of normal distribution = ", s
end

```

Additionally, examples that demonstrate usage of VS random number generators are available in:
\$ \{MKL\}/examples/vslf/source

\section*{Service Routines}

Stream handling comprises routines for creating, deleting, or copying the streams and getting the index of a basic generator. A random stream can also be saved to and then read from a binary file. Table "Service Routines" lists all available service routines

\section*{Service Routines}
\begin{tabular}{ll}
Routine & Short Description \\
\hline vslNewStream & Creates and initializes a random stream. \\
vslNewStreamEx & \begin{tabular}{l}
Creates and initializes a random stream for the generators \\
with multiple initial conditions.
\end{tabular} \\
vsliNewAbstractStream & \begin{tabular}{l}
Creates and initializes an abstract random stream for integer \\
arrays.
\end{tabular} \\
vsldNewAbstractStream & \begin{tabular}{l}
Creates and initializes an abstract random stream for double \\
precision floating-point arrays.
\end{tabular} \\
vslsNewAbstractStream & \begin{tabular}{l}
Creates and initializes an abstract random stream for single \\
precision floating-point arrays.
\end{tabular} \\
vslDeleteStream & Deletes previously created stream. \\
vslCopyStream & Copies a stream to another stream. \\
vslCopyStreamState & Creates a copy of a random stream state. \\
vslSaveStreamF & Writes a stream to a binary file. \\
vslLoadStreamF & Reads a stream from a binary file. \\
vslSaveStreamM & \begin{tabular}{l}
Writes a random stream descriptive data, including state, to a \\
memory buffer.
\end{tabular} \\
vslLoadStreamM & \begin{tabular}{l}
Creates a new stream and reads stream descriptive data, \\
including state, from the memory buffer.
\end{tabular} \\
vslGetStreamSize & \begin{tabular}{l}
Computes size of memory necessary to hold the random \\
stream.
\end{tabular} \\
&
\end{tabular}
\begin{tabular}{ll}
\hline Routine & Short Description \\
\hline vslLeapfrogStream & \begin{tabular}{l}
Initializes the stream by the leapfrog method to generate a \\
subsequence of the original sequence.
\end{tabular} \\
vslSkipAheadStream & Initializes the stream by the skip-ahead method. \\
vsISkipAheadStreamEx & Initializes the stream by the advanced skip-ahead method. \\
vslGetStreamStateBrng & \begin{tabular}{l}
Obtains the index of the basic generator responsible for the \\
generation of a given random stream.
\end{tabular} \\
vslGetNumRegBrngs & Obtains the number of currently registered basic generators. \\
\hline
\end{tabular}

Most of the generator-based work comprises three basic steps:
1. Creating and initializing a stream (vslNewStream, vslNewStreamEx, vslCopyStream, vslCopyStreamState, vslLeapfrogStream, vslSkipAheadStream, vslSkipAheadStreamEx).
2. Generating random numbers with given distribution, see Distribution Generators.
3. Deleting the stream (vslDeleteStream).

Note that you can concurrently create multiple streams and obtain random data from one or several generators by using the stream state. You must use the vslDeleteStream function to delete all the streams afterwards.

\section*{vslNewStream}

Creates and initializes a random stream.

\section*{Syntax}
```

status = vslnewstream( stream, brng, seed )

```

\section*{Include Files}
- mkl.fi, mkl_vsl.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
brng & INTEGER, INTENT (IN) \\
seed & \\
\end{tabular}

\section*{Description}

Index of the basic generator to initialize the stream. See Table Values of brng parameter for specific value.

Initial condition of the stream. In the case of a quasirandom number generator seed parameter is used to set the dimension. If the dimension is greater than the dimension that brng can support or is less than 1 , then the dimension is assumed to be equal to 1 .

\section*{Output Parameters}
\begin{tabular}{ll}
Name & Type \\
stream & TYPE (VSL_STREAM_STATE), \\
& INTENT (OUT)
\end{tabular}

\section*{Description}

Stream state descriptor INTENT (OUT)

\section*{Description}

For a basic generator with number brng, this function creates a new stream and initializes it with a 32-bit seed. The seed is an initial value used to select a particular sequence generated by the basic generator brng. The function is also applicable for generators with multiple initial conditions. Use this function to create and
initialize a new stream with a 32-bit seed only. If you need to provide multiple initial conditions such as several 32-bit or wider seeds, use the function vsINewStreamEx. See VS Notes for a more detailed description of stream initialization for different basic generators.

\section*{NOTE}

This function is not applicable for abstract basic random number generators. Please use vsliNewAbstractStream, vslsNewAbstractStream or vsldNewAbstractStream to utilize integer, single-precision or double-precision external random data respectively.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_RNG_ERROR_INVALID_BRNG_INDEX
VSL_ERROR_MEM_FAILURE System cannot allocate memory for stream.
VSL_RNG_ERROR_NONDETERMINISTIC_NOT_SUPP Non-deterministic random number generator is not
ORTED supported.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
Indicates no error, execution is successful.
BRNG index is invalid.
System cannot allocate memory for stream.
Non-deterministic random number generator is not supported.
ARS-5 random number generator is not supported on the CPU running the application.

```

\section*{vslNewStreamEx}

Creates and initializes a random stream for generators with multiple initial conditions.

\section*{Syntax}
```

status = vslnewstreamex( stream, brng, n, params )

```

Include Files
- mkl.fi, mkl_vsl.f90

Input Parameters
\begin{tabular}{lll}
Name & Type & \begin{tabular}{l}
Description \\
brng
\end{tabular} \\
INTEGER, INTENT (IN) & \begin{tabular}{l}
Index of the basic generator to initialize the stream. See \\
Table "Values of brng parameter" for specific value.
\end{tabular} \\
\(n\) & INTEGER, INTENT (IN) & \begin{tabular}{l}
Number of initial conditions contained in params
\end{tabular} \\
params & INTEGER \(\left(\operatorname{KIND=4),~INTENT~(IN)~} \begin{array}{l}\text { Array of initial conditions necessary for the basic generator } \\
\text { brng to initialize the stream. In the case of a quasi-random } \\
\text { number generator only the first element in params }\end{array}\right.\)
\end{tabular}

\section*{Name Type}

\section*{Output Parameters}
```

Name Type
stream TYPE(VSL_STREAM_STATE),
INTENT (OUT)

```

\section*{Description}
parameter is used to set the dimension. If the dimension is greater than the dimension that brng can support or is less than 1 , then the dimension is assumed to be equal to 1 .

\section*{Description}

Stream state descriptor

\section*{Description}

The vslNewStreamEx function provides an advanced tool to set the initial conditions for a basic generator if its input arguments imply several initialization parameters. Initial values are used to select a particular sequence generated by the basic generator brng. Whenever possible, use vslNewStream, which is analogous to vslNewStreamEx except that it takes only one 32-bit initial condition. In particular, vslNewStreamEx may be used to initialize the state table in Generalized Feedback Shift Register Generators (GFSRs). A more detailed description of this issue can be found in VS Notes.
This function is also used to pass user-defined initialization parameters of quasi-random number generators into the library. See VS Notes for the format for their passing and registration in VS.

\section*{NOTE}

This function is not applicable for abstract basic random number generators. Please use vsliNewAbstractStream, vslsNewAbstractStream or vsldNewAbstractStream to utilize integer, single-precision or double-precision external random data respectively.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK
VSL_RNG_ERROR_INVALID_BRNG_INDEX
VSL_ERROR_MEM_FAILURE
VSL_RNG_ERROR_NONDETERMINISTIC_NOT_SUPP Non-deterministic random number generator is not
ORTED
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED

```

Indicates no error, execution is successful.
BRNG index is invalid.
System cannot allocate memory for stream.
Non-deterministic random number generator is not supported.

ARS-5 random number generator is not supported on the CPU running the application.

\section*{vsliNewAbstractStream}

Creates and initializes an abstract random stream for integer arrays.

\section*{Syntax}
```

status = vslinewabstractstream( stream, n, ibuf, icallback )

```

\section*{Include Files}
- mkl.fi, mkl_vsl.f90

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(n\) & INTEGER, INTENT (IN) & Size of the array ibuf \\
ibuf & INTEGER (KIND=4), INTENT (IN) & Array of \(n\) 32-bit integers \\
icallback & See Note below & Address of the callback function used for ibuf update
\end{tabular}

\section*{NOTE}

Format of the callback function in FORTRAN 77:
```

INTEGER FUNCTION IUPDATEFUNC( stream, n, ibuf, nmin, nmax, idx )
INTEGER*4 stream(2)
INTEGER n
INTEGER*4 ibuf(n)
INTEGER nmin
INTEGER nmax
INTEGER idx
Format of the callback function in Fortran 90:

```
```

INTEGER FUNCTION IUPDATEFUNC[C]( stream, n, ibuf, nmin, nmax, idx )

```
INTEGER FUNCTION IUPDATEFUNC[C](stream, n, ibuf, nmin, nmax, idx)
TYPE(VSL_STREAM_STATE),POINTER :: stream[reference]
TYPE(VSL_STREAM_STATE),POINTER :: stream[reference]
INTEGER(KIND=4),INTENT (IN) :: n[reference]
INTEGER(KIND=4),INTENT (IN) :: n[reference]
INTEGER(KIND=4),INTENT (OUT) :: ibuf[reference](0:n-1)
INTEGER(KIND=4),INTENT (OUT) :: ibuf[reference](0:n-1)
INTEGER(KIND=4),INTENT(IN) :: nmin[reference]
INTEGER(KIND=4),INTENT(IN) :: nmin[reference]
INTEGER(KIND=4),INTENT(IN) :: nmax[reference]
INTEGER(KIND=4),INTENT(IN) :: nmax[reference]
INTEGER(KIND=4),INTENT(IN) :: idx[reference]
```

INTEGER(KIND=4),INTENT(IN) :: idx[reference]

```

The callback function returns the number of elements in the array actually updated by the function. Table icallback Callback Function Parameters gives the description of the callback function parameters.
icallback Callback Function Parameters
\begin{tabular}{ll}
Parameters & Short Description \\
\hline stream & Abstract random stream descriptor \\
\(n\) & Size of ibuf \\
ibuf & Array of random numbers associated with the stream stream
\end{tabular}
\begin{tabular}{ll}
\hline Parameters & Short Description \\
\hline\(n \min\) & Minimal quantity of numbers to update \\
\(n \max\) & Maximal quantity of numbers that can be updated \\
\(i d x\) & Position in cyclic buffer ibuf to start update \(0 \leq i d x<n\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
stream & TYPE (VSL_STREAM_STATE), & Descriptor of the stream state structure \\
& TINTENT (OUT)
\end{tabular}

\section*{Description}

The vsliNewAbstractStream function creates a new abstract stream and associates it with an integer array ibuf and your callback function icallback that is intended for updating of ibuf content.

\section*{Return Values}
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_BADARGS Parameter n is not positive.
VSL_ERROR_MEM_FAILURE
VSL_ERROR_NULL_PTR
Indicates no error, execution is successful.
Parameter $n$ is not positive.
System cannot allocate memory for stream.
Either buffer or callback function parameter is a NULL pointer.

```

\section*{vsldNewAbstractStream}

Creates and initializes an abstract random stream for double precision floating-point arrays.

\section*{Syntax}
```

status = vsldnewabstractstream( stream, n, dbuf, a, b, dcallback )

```

\section*{Include Files}
```

- mkl.fi,mkl_vsl.f90

```

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
\(n\) & INTEGER, INTENT (IN) & Size of the array dbuf \\
dbuf & REAL (KIND=8), INTENT (IN) & \begin{tabular}{l}
Array of \(n\) double precision floating-point random numbers \\
with uniform distribution over interval \((a, b)\)
\end{tabular} \\
\(a\) & REAL (KIND=8), INTENT (IN) & Left boundary a \\
\(b\) & REAL (KIND=8), INTENT (IN) & \begin{tabular}{l}
Right boundary b \\
dcallback \\
See Note below
\end{tabular} \\
& \begin{tabular}{l}
Address of the callback function used for update of the \\
array \(d b u f\)
\end{tabular}
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
stream & TYPE (VSL_STREAM_STATE), & Descriptor of the stream state structure \\
& INTENT (OUT) &
\end{tabular}

\section*{NOTE}

Format of the callback function in FORTRAN 77:
```

INTEGER FUNCTION DUPDATEFUNC( stream, n, dbuf, nmin, nmax, idx )
INTEGER*4 stream(2)
INTEGER n
DOUBLE PRECISION dbuf(n)
INTEGER nmin
INTEGER nmax
INTEGER idx

```

Format of the callback function in Fortran 90:
```

INTEGER FUNCTION DUPDATEFUNC[C]( stream, n, dbuf, nmin, nmax, idx )
TYPE(VSL_STREAM_STATE),POINTER :: stream[reference]
INTEGER(KIND=4),INTENT(IN) :: n[reference]
REAL(KIND=8),INTENT (OUT) :: dbuf[reference](0:n-1)
INTEGER(KIND=4),INTENT(IN) :: nmin[reference]
INTEGER(KIND=4),INTENT(IN) :: nmax[reference]
INTEGER(KIND=4),INTENT(IN) :: idx[reference]

```

The callback function returns the number of elements in the array actually updated by the function. Table dcallback Callback Function Parameters gives the description of the callback function parameters.

\section*{dcallback Callback Function Parameters}
\begin{tabular}{ll}
Parameters & Short Description \\
\hline stream & Abstract random stream descriptor \\
\(n\) & Size of \(d b u f\) \\
\(d b u f\) & Array of random numbers associated with the stream stream \\
\(n m i n\) & Minimal quantity of numbers to update \\
\(n \max\) & Maximal quantity of numbers that can be updated \\
\(i d x\) & Position in cyclic buffer \(d b u f\) to start update \(0 \leq i d x<n\).
\end{tabular}

\section*{Description}

The vsldNewAbstractStream function creates a new abstract stream for double precision floating-point arrays with random numbers of the uniform distribution over interval (\(a, b\)). The function associates the stream with a double precision array dbuf and your callback function dcallback that is intended for updating of \(d b u f\) content.

\section*{Return Values}
```

VSL_ERROR_OK,VSL_STATUS_OK

```
VSL_ERROR_BADARGS
VSL_ERROR_MEM_FAILURE
VSL_ERROR_NULL_PTR
```

Parameter $n$ is not positive.
System cannot allocate memory for stream.
Either buffer or callback function parameter is a NULL pointer.

## vslsNewAbstractStream

Creates and initializes an abstract random stream for
single precision floating-point arrays.
Syntax

```
status = vslsnewabstractstream(stream, n, sbuf, a, b, scallback)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description
$n$	INTEGER, INTENT(IN)	Size of the array sbuf
sbuf	REAL (KIND=4), INTENT (IN)	Array of $n$ single precision floating-point random numbers with uniform distribution over interval $(a, b)$
a	REAL (KIND=4), INTENT (IN)	Left boundary a
b	REAL (KIND=4), INTENT (IN)	Right boundary b
scallback	See Note below	Address of the callback function used for update of the array sbuf

## Output Parameters

Name	Type
stream	TYPE (VSL_STREAM_STATE),
	INTENT (OUT)

## Description

Descriptor of the stream state structure

## NOTE

Format of the callback function in FORTRAN 77:

```
INTEGER FUNCTION SUPDATEFUNC(stream, n, ibuf, nmin, nmax, idx)
INTEGER*4 stream(2)
INTEGER n
REAL sbuf(n)
INTEGER nmin
INTEGER nmax
INTEGER idx
```

Format of the callback function in Fortran 90:

```
INTEGER FUNCTION SUPDATEFUNC[C](stream, n, sbuf, nmin, nmax, idx)
TYPE(VSL STREAM STATE),POINTER :: stream[reference]
INTEGER(K
REAL(KIND=4), INTENT(OUT) :: sbuf[reference](0:n-1)
INTEGER(KIND=4),INTENT(IN) :: nmin[reference]
INTEGER(KIND=4),INTENT(IN) :: nmax[reference]
INTEGER(KIND=4),INTENT(IN) :: idx[reference]
```

The callback function returns the number of elements in the array actually updated by the function. Table scallback Callback Function Parameters gives the description of the callback function parameters.
scallback Callback Function Parameters

Parameters	Short Description
stream	Abstract random stream descriptor
$n$	Size of sbuf
sbuf	Array of random numbers associated with the stream stream
nmin	Minimal quantity of numbers to update
nmax	Maximal quantity of numbers that can be updated
$i d x$	Position in cyclic buffer sbuf to start update $0 \leq i d x<n$.

## Description

The vslsNewAbstractStream function creates a new abstract stream for single precision floating-point arrays with random numbers of the uniform distribution over interval ( $a, b$ ). The function associates the stream with a single precision array sbuf and your callback function scallback that is intended for updating of sbuf content.

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_MEM_FAILURE
VSL_ERROR_NULL_PTR
```

VSL_ERROR_BADARGS Parameter $n$ is not positive.

Indicates no error, execution is successful.
Parameter $n$ is not positive.
System cannot allocate memory for stream.
Either buffer or callback function parameter is a NULL pointer.

## vslDeleteStream

Deletes a random stream.

## Syntax

```
status = vsldeletestream(stream)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input/Output Parameters

Name	Type	Description		
stream	TYPE (VSL_STREAM_STATE),			
	INTENT (OUT)		$\quad$	Stream state descriptor. Must have non-zero value. After
:---				
the stream is successfully deleted, the descriptor becomes				
invalid.				

## Description

The function deletes the random stream created by one of the initialization functions.

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR stream parameter is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
```

vslCopyStream
Creates a copy of a random stream.
Syntax

```
status = vslcopystream(newstream, srcstream)
```


## Include Files

- mkl.fi, mkl_vsl.f90

Input Parameters
Name Type Description

srcstream	TYPE (VSL_STREAM_STATE), $\quad$ Descriptor of the stream to be copied
	INTENT (IN)

## Output Parameters

Name	Type	Description
newstream	TYPE (VSL_STREAM_STATE),	Copied random stream descriptor
	INTENT (OUT)	

## Description

The function creates an exact copy of srcstream and stores its descriptor to newstream.

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_ERROR_MEM_FAILURE
```

Indicates no error, execution is successful.
srcstream parameter is a NULL pointer.
srestream is not a valid random stream.
System cannot allocate memory for newstream.
vslCopyStreamState
Creates a copy of a random stream state.
Syntax

```
status = vslcopystreamstate(deststream, srcstream)
```


## Include Files

- mkl.fi, mkl_vsl.f90

Input Parameters

Name	Type	Description		
srcstream	TYPE (VSL_STREAM_STATE),			
	INTENT (IN)		$\quad$	Descriptor of the destination stream where the state of
:---				
scrstream stream is copied				

## Output Parameters

Name	Type	Description
deststrea	TYPE (VSL_STREAM_STATE),	Descriptor of the stream with the state to be copied
$m$	INTENT (OUT)	

## Description

The vslCopyStreamState function copies a stream state from srcstream to the existing deststream stream. Both the streams should be generated by the same basic generator. An error message is generated when the index of the BRNG that produced deststream stream differs from the index of the BRNG that generated srcstream stream.

Unlike vslCopyStream function, which creates a new stream and copies both the stream state and other data from srcstream, the function vslCopyStreamState copies only srcstream stream state data to the generated deststream stream.

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BRNGS_INCOMPATIBLE
```

Indicates no error, execution is successful.
Either srcstream or deststream is a NULL pointer.
Either srcstream or deststream is not a valid random stream.

BRNG associated with srcstream is not compatible with BRNG associated with deststream.

```
vslSaveStreamF
Writes random stream descriptive data, including
stream state, to binary file.
Syntax
errstatus = vslsavestreamf(stream, fname)
```

Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description
stream	TYPE (VSL_STREAM_STATE),	Random stream to be written to the file
	INTENT (IN)	
fname	CHARACTER $(*), \operatorname{INTENT}($ IN $)$	File name specified as a C-style null-terminated string

## Output Parameters

## Name Type

errstatus INTEGER

## Description

Error status of the operation

## Description

The vslSaveStreamF function writes the random stream descriptive data, including the stream state, to the binary file. Random stream descriptive data is saved to the binary file with the name fname. The random stream stream must be a valid stream created by vslNewStream-like or vslCopyStream-like service routines. If the stream cannot be saved to the file, errstatus has a non-zero value. The random stream can be read from the binary file using the vslLoadStreamF function.

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR Either fname or stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_FILE_OPEN Indicates an error in opening the file.
VSL_RNG_ERROR_FILE_WRITE Indicates an error in writing the file.
VSL_RNG_ERROR_FILE_CLOSE Indicates an error in closing the file.
VSL_ERROR_MEM_FAILURE System cannot allocate memory for internal needs.
```

vslLoadStreamF
Creates new stream and reads stream descriptive
data, including stream state, from binary file.
Syntax
errstatus $=$ vslloadstreamf( stream, fname )

## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type
fname	CHARACTER (*), INTENT (IN)

## Description

File name specified as a C-style null-terminated string

## Output Parameters

Name	Type	Description
stream	TYPE (VSL_STREAM_STATE),	Descriptor of a new random stream
	INTENT (OUT)	
errstatus	INTEGER	Error status of the operation

## Description

The vslloadStreamF function creates a new stream and reads stream descriptive data, including the stream state, from the binary file. A new random stream is created using the stream descriptive data from the binary file with the name fname. If the stream cannot be read (for example, an I/O error occurs or the file format is invalid), errstatus has a non-zero value. To save random stream to the file, use vslSaveStreamF function.

## Caution

Calling vslloadStreamF with a previously initialized stream pointer can have unintended consequences such as a memory leak. To initialize a stream which has been in use until calling vslloadStreamF, you should call the vsIDeleteStream function first to deallocate the resources.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_FILE_OPEN
VSL_RNG_ERROR_FILE_WRITE
VSL_RNG_ERROR_FILE_CLOSE
VSL_ERROR_MEM_FAILURE
VSL_RNG_ERROR_BAD_FILE_FORMAT
VSL_RNG_ERROR_UNSUPPORTED_FILE_VER
```

Indicates no error, execution is successful.
fname is a NULL pointer.
Indicates an error in opening the file.
Indicates an error in writing the file.
Indicates an error in closing the file.
System cannot allocate memory for internal needs.
Unknown file format.
File format version is unsupported.

```
VSL_RNG_ERROR_NONDETERMINISTIC_NOT_SUPP Non-deterministic random number generator is not
ORTED supported.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
 CPU running the application.
```

vsISaveStreamM
Writes random stream descriptive data, including
stream state, to a memory buffer.
Syntax
errstatus $=$ vslsavestreamm ( stream, memptr )

Include Files

- mkl.fi, mkl_vsl.f90

Input Parameters

Name	Type	Description
stream	TYPE (VSL_STREAM_STATE),   INTENT (IN)	Random stream to be written to the memory
memptr	INTEGER(KIND=1),   DIMENSION (*), INTENT (IN)	Memory buffer to save random stream descriptive data to

## Output Parameters

Name	Type	Description
errstatus	INTEGER	Error status of the operation

## Description

The vslSaveStreamM function writes the random stream descriptive data, including the stream state, to the memory at memptr. Random stream stream must be a valid stream created by vslNewStream-like or vslCopyStream-like service routines. The memptr parameter must be a valid pointer to the memory of size sufficient to hold the random stream stream. Use the service routine vslGetStreamSize to determine this amount of memory.

If the stream cannot be saved to the memory, errstatus has a non-zero value. The random stream can be read from the memory pointed by memptr using the vslLoadStreamM function.

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM stream is a NULL pointer.
```


## vslLoadStreamM

Creates a new stream and reads stream descriptive
data, including stream state, from the memory buffer.

```
Syntax
errstatus = vslloadstreamm(stream, memptr)
```


## Include Files

```
- mkl.fi,mkl_vsl.f90
```


## Input Parameters

```
Name Type
memptr INTEGER(KIND=1),
 DIMENSION(*), INTENT(IN) DIMENSION(*), INTENT (IN)
```


## Description

Memory buffer to load random stream descriptive data from

## Output Parameters

Name	Type
stream	TYPE (VSL_STREAM_STATE),
	INTENT (OUT)
errstatus	INTEGER

## Description

Descriptor of a new random stream

Error status of the operation

## Description

The vslLoadStreamM function creates a new stream and reads stream descriptive data, including the stream state, from the memory buffer. A new random stream is created using the stream descriptive data from the memory pointer by memptr. If the stream cannot be read (for example, memptr is invalid), errstatus has a non-zero value. To save random stream to the memory, use vslSaveStreamM function. Use the service routine vslGetStreamSize to determine the amount of memory sufficient to hold the random stream.

## Caution

Calling LoadStreamM with a previously initialized stream pointer can have unintended consequences such as a memory leak. To initialize a stream which has been in use until calling vslloadStreamM, you should call the vsIDeleteStream function first to deallocate the resources.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_ERROR_MEM_FAILURE
VSL_RNG_ERROR_BAD_MEM_FORMAT
Indicates no error, execution is successful.
```

memptr is a NULL pointer.
System cannot allocate memory for internal needs.
Descriptive random stream format is unknown.

```
VSL_RNG_ERROR_NONDETERMINISTIC_NOT_SUPP Non-deterministic random number generator is not
ORTED - _ supported.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
 CPU running the application.
```

vsIGetStreamSize
Computes size of memory necessary to hold the
random stream.
Syntax
memsize $=$ vslgetstreamsize( stream )

Include Files

- mkl.fi, mkl_vsl.f90

Input Parameters

Name	Type	Description
stream	TYPE (VSL_STREAM_STATE),	Random stream
	INTENT (IN)	

## Output Parameters

Name	Type
memsize	INTEGER

## Description

Amount of memory in bytes necessary to hold descriptive data of random stream stream

## Description

The vslGetStreamsize function returns the size of memory in bytes which is necessary to hold the given random stream. Use the output of the function to allocate the buffer to which you will save the random stream by means of the vslSaveStreamM function.

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_RNG_ERROR_BAD_STREAM stream is a NULL pointer.
```

vslLeapfrogStream
Initializes a stream using the leapfrog method.
Syntax
status $=$ vslleapfrogstream ( stream, k, nstreams )

Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description
stream	TYPE (VSL_STREAM_STATE),	Descriptor of the stream to which leapfrog method is   applied
$k$	INTENT (IN)	Index of the computational node, or stream number
nstreams	INTEGER, INTENT (IN)	Largest number of computational nodes, or stride

## Description

The vslleapfrogStream function generates random numbers in a random stream with non-unit stride. This feature is particularly useful in distributing random numbers from the original stream across the nstreams buffers without generating the original random sequence with subsequent manual distribution.

One of the important applications of the leapfrog method is splitting the original sequence into nonoverlapping subsequences across nstreams computational nodes. The function initializes the original random stream (see Figure "Leapfrog Method") to generate random numbers for the computational node $k, 0 \leq k<$ nstreams, where nstreams is the largest number of computational nodes used.

## __border_ <br> $\qquad$

Leapfrog Method

he stream contains $1,4,7,10,13,16,19, \ldots$
he stream contains $2,5,8,11,14,17,20, \ldots$
he stream contains $3,6,9,12,15,18,21, \ldots$

The leapfrog method is supported only for those basic generators that allow splitting elements by the leapfrog method, which is more efficient than simply generating them by a generator with subsequent manual distribution across computational nodes. See VS Notes for details.
For quasi-random basic generators, the leapfrog method allows generating individual components of quasirandom vectors instead of whole quasi-random vectors. In this case nstreams parameter should be equal to the dimension of the quasi-random vector while $k$ parameter should be the index of a component to be generated ( $0 \leq k<n s t r e a m s$ ). Other parameters values are not allowed.
The following code illustrates the initialization of three independent streams using the leapfrog method:

## Code for Leapfrog Method

```
TYPE(VSL_STREAM_STATE) ::stream1
TYPE(VSL_STREAM_STATE) ::stream2
TYPE(VSL_STREAM_STATE) ::stream3
! Creating 3 identical streams
status = vslnewstream(stream1, VSL_BRNG_MCG31, 174)
status = vslcopystream(stream2, stream1)
status = vslcopystream(stream3, stream1)
! Leapfrogging the streams
status = vslleapfrogstream(stream1, 0, 3)
status = vslleapfrogstream(stream2, 1, 3)
status = vslleapfrogstream(stream3, 2, 3)
! Generating random numbers
! Deleting the streams
status = vsldeletestream(stream1)
status = vsldeletestream(stream2)
status = vsldeletestream(stream3)
```


## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_LEAPFROG_UNSUPPORTED BRNG does not support Leapfrog method.
```


## vsISkipAheadStream

Initializes a stream using the block-splitting method.

## Syntax

```
status = vslskipaheadstream(stream, nskip)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description
stream	TYPE (VSL_STREAM_STATE),	Descriptor of the stream to which block-splitting method is   applied
	INTENT (IN)	INTEGER (KIND=8), INTENT (IN)

## Description

The vslSkipAheadStream function skips a given number of elements in a random stream. This feature is particularly useful in distributing random numbers from original random stream across different computational nodes. If the largest number of random numbers used by a computational node is nskip, then the original random sequence may be split by vslSkipAheadStream into non-overlapping blocks of nskip size so that each block corresponds to the respective computational node. The number of computational nodes is unlimited. This method is known as the block-splitting method or as the skip-ahead method. (see Figure "Block-Splitting Method").
__border__top

## Block-Splitting Method



The skip-ahead method is supported only for those basic generators that allow skipping elements by the skip-ahead method, which is more efficient than simply generating them by generator with subsequent manual skipping. See VS Notes for details.

Please note that for quasi-random basic generators the skip-ahead method works with components of quasirandom vectors rather than with whole quasi-random vectors. Therefore, to skip NS quasi-random vectors, set the nskip parameter equal to the NS*DIMEN, where DIMEN is the dimension of the quasi-random vector. If this operation results in exceeding the period of the quasi-random number generator, which is $2^{32}-1$, the library returns the VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED error code.

The following code illustrates how to initialize three independent streams using the vslskipAheadStream function:

## Code for Block-Splitting Method

```
type(VSL STREAM STATE) ::stream1
type(VSL_STREAM_STATE) ::stream2
type(VSL_STREAM_STATE) ::stream3
! Creating the 1st stream
status = vslnewstream(stream1, VSL_BRNG_MCG31, 174)
! Skipping ahead by }7\mathrm{ elements the 2nd stream
status = vslcopystream(stream2, stream1);
status = vslskipaheadstream(stream2, 7);
! Skipping ahead by }7\mathrm{ elements the 3rd stream
status = vslcopystream(stream3, stream2);
status = vslskipaheadstream(stream3, 7);
! Generating random numbers
...
! Deleting the streams
status = vsldeletestream(stream1)
status = vsldeletestream(stream2)
status = vsldeletestream(stream3)
```

Return Values

VSL_ERROR_OK, VSL_STATUS_OK	Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR	stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM	stream is not a valid random stream.
VSL_RNG_ERROR_SKIPAHEAD_UNSUPPORTED	BRNG does not support the Skip-Ahead method.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the quasi-random number generator is exceeded

## vslSkipAheadStreamEx

Initializes a stream using the block-splitting method
with partitioned number of skipped elements.

## Syntax

```
status = vslskipAheadstreamEx(stream, n, nskip)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description
stream	TYPE (VSL_STREAM_STATE),   INTENT (IN)	Pointer to the stream state structure to which block-   splitting method is applied
$n$	INTEGER, INTENT (IN)	Number of summands in nskip
nskip	INTEGER (KIND=8), INTENT (IN)	Partitioned number of skipped elements

## Description

The vslSkipAheadStreamEx function skips a given number of elements in a random stream. This feature is particularly useful in distributing random numbers from original random stream across different computational nodes. If the largest number of random numbers used by a computational node is nskip, then the original random sequence may be split by vslSkipAheadStreamex into non-overlapping blocks of nskip size so that each block corresponds to the respective computational node. The number of computational nodes is unlimited. This method is known as the block-splitting method or as the skip-ahead method.

Use this function when the number of elements to skip in a random stream is greater than $2^{63}$. Prior calls to the function represent the number of skipped elements with array of size $n$ as shown below:

```
nskip[0]+ nskip[1]*264+nskip[2]* 2'128+ ... +nskip[n-1]*2(64*(n-1));
```

When the number of skipped elements is less than $2^{63}$ you can use either vslSkipAheadtreamEx or vslSkipAheadStream. The following code illustrates how to initialize three independent streams using the vslSkipAheadStreamEx function:

```
type(VSL_STREAM_STATE) ::stream1 type(VSL_STREAM_STATE) ::stream2
type(VSL_STREAM_STATE) : :stream3
! Creating the 1st stream
status = vslnewstream(stream1, VSL_BRNG_MRG32K3A, 174)
! To skip 2^64 elements in the random stream skipaheadstreamEx(nskip) function should ! be
called with nskip represented as nskip = 2^64 = 0 + 1 * 2^64
integer(kind=8) nskip(2)
nskip(1) = 0
nskip(2) = 1
! Skipping ahead by 2^64 elements the 2nd stream
status = vslcopystream(stream2, stream1)
status = vslskipaheadstreamex (stream2, 2, nskip)
! Skipping ahead by 2^64 elements the 3rd stream
status = vslcopystream(stream3, stream2)
status = vslskipaheadstreamex (stream3, 2, nskip)
! Generating random numbers
! Deleting the streams
status = vsldeletestream(stream1)
status = vsldeletestream(stream2)
status = vsldeletestream(stream3)
```


## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_SKIPAHEADEX_UNSUPPORTED
```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
BRNG does not support the advanced Skip-Ahead method.
vsIGetStreamStateBrng
Returns index of a basic generator used for generation of a given random stream.

## Syntax

```
brng = vslgetstreamstatebrng(stream)
```

Include Files

- mkl.fi,mkl_vsl.f90


## Input Parameters

Name	Type	Description
stream	TYPE (VSL_STREAM_STATE),	Descriptor of the stream state
	TINTENT (IN)	

## Output Parameters

Name	Type	Description
brng	INTEGER	Index of the basic generator assigned for the generation of   stream ; negative in case of an error

## Description

The vslGetStreamStateBrng function retrieves the index of a basic generator used for generation of a given random stream.

## Return Values

```
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
```

vslGetNumRegBrngs
Obtains the number of currently registered basic
generators.
Syntax
nregbrngs = vslgetnumregbrngs( )

Include Files

- mkl.fi, mkl_vsl.f90


## Output Parameters

## Name Type

nregbrngs INTEGER

## Description

Number of basic generators registered at the moment of the function call

## Description

The vslGetNumRegBrngs function obtains the number of currently registered basic generators. Whenever user registers a user-designed basic generator, the number of registered basic generators is incremented. The maximum number of basic generators that can be registered is determined by the VSL_MAX_REG_BRNGS parameter.

## Distribution Generators

oneMKLVS routines are used to generate random numbers with different types of distribution. Each function group is introduced below by the type of underlying distribution and contains a short description of its functionality, as well as specifications of the call sequence and the explanation of input and output parameters. Table "Continuous Distribution Generators" and Table "Discrete Distribution Generators" list the random number generator routines with data types and output distributions, and sets correspondence between data types of the generator routines and the basic random number generators.
Continuous Distribution Generators

Type of Distribution	Data   Types	BRNG Data   Type	Description
vRngUniform	$s, d$	$s, d$	Uniform continuous distribution on the   interval [a,b)
vRngGaussian	$s, d$	Normal (Gaussian) distribution	
vRngGaussianMV	$s, d$	Normal (Gaussian) multivariate distribution	
vRngExponential	$s, d$	Exponential distribution	
vRngLaplace	$s, d$	Laplace distribution (double exponential	
vRngWeibull	$s, d$	Weibull distribution	
vRngCauchy	$s, d$	Cauchy distribution	
vRngRayleigh	$s, d$	Rayleigh distribution	
vRngLognormal	$s, d$	$s, d$	Lognormal distribution

## Discrete Distribution Generators

Type of Distribution	Data Types	BRNG Data Type	Description
vRngUniform	i	d	Uniform discrete distribution on the interval $[a, b)$
vRngUniformBits	i	i	Underlying BRNG integer recurrence
vRngUniformBits 32	i	i	Uniformly distributed bits in 32-bit chunks
vRngUniformBits64	i	i	Uniformly distributed bits in 64-bit chunks
vRngBernoulli	i	S	Bernoulli distribution
vRngGeometric	i	S	Geometric distribution
vRngBinomial	i	d	Binomial distribution
vRngHypergeometric	i	d	Hypergeometric distribution
vRngPoisson	i	```s (for VSL_RNG_METHOD_POIS SON_POISNORM) s (for distribution parameter }\lambda\geq27) and  (for \lambda<27) (for VSL_RNG_METHOD_POIS SON_PTPE)```	Poisson distribution
vRngPoisson	i	S	Poisson distribution with varying mean
vRngNegBinomial	i	d	Negative binomial distribution, or Pascal distribution
vRngMultinomial	i	d	Multinomial distribution

## Modes of random number generation

The library provides two modes of random number generation, accurate and fast. Accurate generation mode is intended for the applications that are highly demanding to accuracy of calculations. When used in this mode, the generators produce random numbers lying completely within definitional domain for all values of the distribution parameters. For example, random numbers obtained from the generator of continuous distribution that is uniform on interval $[a, b]$ belong to this interval irrespective of what $a$ and $b$ values may be. Fast mode provides high performance of generation and also guarantees that generated random numbers belong to the definitional domain except for some specific values of distribution parameters. The generation mode is set by specifying relevant value of the method parameter in generator routines. List of distributions that support accurate mode of generation is given in the table below.

Distribution Generators Supporting Accurate Mode

Type of Distribution	Data Types
vRngUniform	$\mathrm{s}, \mathrm{d}$


Type of Distribution	Data Types
vRngExponential	$\mathrm{s}, \mathrm{d}$
vRngWeibull	$\mathrm{s}, \mathrm{d}$
vRngRayleigh	$\mathrm{s}, \mathrm{d}$
vRngLognormal	$\mathrm{s}, \mathrm{d}$
vRngGamma	$\mathrm{s}, \mathrm{d}$
vRngBeta	$\mathrm{s}, \mathrm{d}$

See additional details about accurate and fast mode of random number generation in VS Notes.

## New method names

The current version of oneMKL has a modified structure of VS RNG method names. (SeeRNG Naming Conventions for details.) The old names are kept for backward compatibility. The tables below set correspondence between the new and legacy method names for VS random number generators.

## Method Names for Continuous Distribution Generators

RNG	Legacy Method Name	New Method Name
vRngUniform	```VSL_METHOD_SUNIFORM_STD, VSL_METHOD_DUNIFORM_STD, VSL_METHOD_SUNIFORM_STD_ACCURATE, VSL_METHOD_DUNIFORM_STD_ACCURATE```	$\begin{aligned} & \text { VSL_RNG_METHOD_UNIFORM_STD, } \\ & \text { VSL_RNG_METHOD_UNIFORM_STD_ACCURATE } \end{aligned}$
vRngGaussian	```VSL_METHOD_SGAUSSIAN_BOXMULLER, VSL_METHOD_SGAUSSIAN_BOXMULLER2, VSL_METHOD_SGAUSSIAN_ICDF, VSL_METHOD_DGAUSSIAN_BOXMULLER, VSL_METHOD_DGAUSSIAN_BOXMULLER2, VSL_METHOD_DGAUSSIAN_ICDF```	```VSL_RNG_METHOD_GAUSSIAN_BOXMULLER, VSL_RNG_METHOD_GAUSSIAN_BOXMULLER2, VSL_RNG_METHOD_GAUSSIAN_ICDF```
vRngGaussian	```IVSL_METHOD_SGAUSSIANMV BOXMULLER, VSL_METHOD_SGAUSSIANMV_BOXMULLER2, VSL_METHOD_SGAUSSIANMV_ICDF, VSL_METHOD_DGAUSSIANMV_BOXMULLER, VSL_METHOD_DGAUSSIANMV_BOXMULLER2, VSL_METHOD_DGAUSSIANMV_ICDF```	```VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER VSL_RNG_METHOD_GAUSSIANMV BOXMULLER 2, VSL_RNG_METHOD_GAUSSIANMV_ICDF```
vRngExponent	```#SL_METHOD_SEXPONENTIAL_ICDF, VSL_METHOD_DEXPONENTIAL_ICDF, VSL_METHOD_SEXPONENTIAL_ICDF_ACCUR ATE, VSL_METHOD_DEXPONENTIAL_ICDF_ACCUR ATE```	```VSL_RNG_METHOD_EXPONENTIAL_ICDF, VSL_RNG_METHOD_EXPONENTIAL_ICDF_ACC URATE```
vRngLaplace	VSL_METHOD_SLAPLACE_ICDF, VSL_METHOD_DLAPLACEL_ICDF	VSL_RNG_METHOD_LAPLACE_ICDF
vRngWeibull	```VSL_METHOD_SWEIBULL_ICDF, VSL_METHOD_DWEIBULL_ICDF, VSL_METHOD_SWEIBULL_ICDF_ACCURATE, VSL_METHOD_DWEIBULL_ICDF_ACCURATE```	```VSL_RNG_METHOD_WEIBULL_ICDF, VSL_RNG_METHOD_WEIBULL_ICDF_ACCURAT E```


RNG	Legacy Method Name	New Method Name
vRngCauchy	VSL_METHOD_SCAUCHY_ICDF, VSL_METHOD_DCAUCHY_ICDF	VSL_RNG_METHOD_CAUCHY_ICDF
vRngRayleigh	```VSL_METHOD_SRAYLEIGH_ICDF, VSL_METHOD_DRAYLEIGH_ICDF, VSL_METHOD_SRAYLEIGH_ICDF_ACCURATE, VSL_METHOD_DRAYLEIGH_ICDF_ACCURATE```	```VSL_RNG_METHOD_RAYLEIGH_ICDF, VSL_RNG_METHOD_RAYLEIGH_ICDF_ACCURA TE```
vRngLognormal	```VSL_METHOD_SLOGNORMAL_BOXMULLER2, VSL_METHOD_DLOGNORMAL_BOXMULLER2, VSL_METHOD_SLOGNORMAL_BOXMULLER2_A CCURATE, VSL_METHOD_DLOGNORMAL_BOXMULLER2_A CCURATE VSL_METHOD_SLOGNORMAL_ICDF, VSL_METHOD_DLOGNORMAL_ICDF, VSL_METHOD_SLOGNORMAL_ICDF_ACCURAT E, VSL_METHOD_DLOGNORMAL_ICDF_ACCURAT E```	```VSL_RNG_METHOD_LOGNORMAL_BOXMULLER2 VSL_RNG_METHOD_LOGNORMAL_BOXMULLER2 _ACCURATE VSL_RNG_METHOD_LOGNORMAL_ICDF, VSL_RNG_METHOD_LOGNORMAL_ICDF_ACCUR ATE```
vRngGumbel	VSL_METHOD_SGUMBEL_ICDF, VSL_METHOD_DGUMBEL_ICDF	VSL_RNG_METHOD_GUMBEL_ICDF
vRngGamma	```VSL_METHOD_SGAMMA_GNORM, VSL_METHOD_DGAMMA_GNORM, VSL_METHOD_SGAMMA_GNORM_ACCURATE, VSL_METHOD_DGAMMA_GNORM_ACCURATE```	VSL_RNG_METHOD_GAMMA_GNORM, VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE
vRngBeta	```VSL_METHOD_SBETA_CJA, VSL_METHOD_DBETA_CJA, VSL_METHOD_SBETA_CJA_ACCURATE, VSL_METHOD_DBETA_CJA_ACCURATE```	$\begin{aligned} & \text { VSL_RNG_METHOD_BETA_CJA, } \\ & \text { VSL_RNG_METHOD_BETA_CJA_ACCURATE } \end{aligned}$

Method Names for Discrete Distribution Generators

RNG	Legacy Method Name	New Method Name
vRngUniform	VSL_METHOD_IUNIFORM_STD	VSL_RNG_METHOD_UNIFORM_STD
vRngUniformBitsVSL_METHOD_IUNIFORMBITS_STD	VSL_RNG_METHOD_UNIFORMBITS_STD	
vRngBernoulli	VSL_METHOD_IBERNOULLI_ICDF	VSL_RNG_METHOD_BERNOULLI_ICDF
vRngGeometric	VSL_METHOD_IGEOMETRIC_ICDF	VSL_RNG_METHOD_GEOMETRIC_ICDF
vRngBinomial	VSL_METHOD_IBINOMIAL_BTPE	VSL_RNG_METHOD_BINOMIAL_BTPE
vRngHypergeometVSL_METHOD_IHYPERGEOMETRIC_H2PE	VSL_RNG_METHOD_HYPERGEOMETRIC_H2PE	
VRngPoisson	VSL_METHOD_IPOISSON_PTPE,	VSL_RNG_METHOD_POISSON_PTPE,
VRngPoissonV	VSL_METHOD_IPOISSONV_POISNORM	VSL_RNG_METHOD_POISSONV_POISNORM
VRngNegBinomialVSL_METHOD_INEGBINOMIAL_NBAR	VSL_RNG_METHOD_NEGBINOMIAL_NBAR	

## Continuous Distributions

This section describes routines for generating random numbers with continuous distribution.
vRngUniform Continuous Distribution Generators
Generates random numbers with uniform distribution.
Syntax

```
status = vsrnguniform(method, stream, n, r, a, b)
status = vdrnguniform(method, stream, n, r, a, b)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Description

The vRngUniform function generates random numbers uniformly distributed over the interval [a, b), where $a, b$ are the left and right bounds of the interval, respectively, and $a, b \in R ; a<b$.
The probability density function is given by:

$$
f_{a, b}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a}, & X \in[a, b) \\
0, & x \notin[a, b)
\end{array},-\infty<\mathrm{X}<+\infty\right.
$$

The cumulative distribution function is as follows:

$$
f_{a, b}(x)=\left\{\begin{array}{rl}
0, & x<a \\
\frac{x-a}{b-a}, & a \leq x<b,-\infty<x<+\infty \\
1, & x \geq b
\end{array} .\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Input Parameters

Name	Type
method	INTEGER,

## Description

Generation method; the specific values are as follows:
VSL_RNG_METHOD_UNIFORM_STD
VSL_RNG_METHOD_UNIFORM_STD_ACCURATE
Standard method.

Name	Type
stream	TYPE (VSL_STREAM_STATE), INTENT (IN)
$n$	INTEGER, INTENT(IN)
a	DOUBLE PRECISION for vdrnguniform
	REAL (KIND=4), INTENT(IN) for vsrnguniform
	REAL (KIND=8), INTENT (IN) for vdrnguniform
b	DOUBLE PRECISION for vdrnguniform
	REAL (KIND=4), INTENT (IN) for vsrnguniform
	REAL (KIND=8), INTENT(IN) for vdrnguniform

## Output Parameters

```
Name Type
r
DOUBLE PRECISION for
 vdrnguniform
 REAL (KIND=4), INTENT(OUT)
 for vsrnguniform
 REAL (KIND=8), INTENT(OUT)
 for vdrnguniform
```


## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
```

VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED
ED

## Description

Descriptor of the stream state structure.

Number of random values to be generated.
Left bound a.

Right bound b.

## Description

Vector of $n$ random numbers uniformly distributed over the interval [a,b)

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax .

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

Period of the generator has been exceeded.
Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.

```
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
```

ARS-5 random number generator is not supported on the CPU running the application.
vRngGaussian
Generates normally distributed random numbers.

## Syntax

```
status = vsrnggaussian(method, stream, n, r, a, sigma)
status = vdrnggaussian(method, stream, n, r, a, sigma)
```

Include Files

- mkl.fi, mkl_vsl.f90


## Description

The vRngGaussian function generates random numbers with normal (Gaussian) distribution with mean value a and standard deviation $\sigma$, where

```
a, \sigma\inR; \sigma > 0.
```

The probability density function is given by:

$$
f_{a, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right),-\infty<x<+\infty
$$

The cumulative distribution function is as follows:

$$
F_{a, \sigma}(x)=\int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(y-a)^{2}}{2 \sigma^{2}}\right) d y,-\infty<x<+\infty .
$$

The cumulative distribution function $F_{a, \sigma}(x)$ can be expressed in terms of standard normal distribution $\Phi(x)$ as

$$
F_{a, \sigma}(x)=\Phi((x-a) / \sigma)
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Input Parameters

Name	Type
method	INTEGER,

stream TYPE (VSL_STREAM_STATE), INTENT (IN)
n
a
sigma
INTEGER, INTENT (IN)

DOUBLE PRECISION for vdrnggaussian
REAL (KIND=4), INTENT (IN) for vsrnggaussian

REAL (KIND=8), INTENT (IN)
for vdrnggaussian

DOUBLE PRECISION for vdrnggaussian
REAL (KIND=4), INTENT (IN)
for vsrnggaussian
REAL (KIND=8), INTENT (IN)
for vdrnggaussian

## Output Parameters

## Name Type

```
\(r\)
DOUBLE PRECISION for vdrnggaussian
REAL (KIND=4), INTENT (OUT)
for vsrnggaussian
```


## Description

Generation method. The specific values are as follows:

```
VSL_RNG_METHOD_GAUSSIAN_BOXMULLER
```


## VSL_RNG_METHOD_GAUSSIAN_BOXMULLER2

```
VSL_RNG_METHOD_GAUSSIAN_ICDF
```

See brief description of the methods BOXMULLER, BOXMULLER2, and ICDF in Table "Values of <method> in method parameter"

Descriptor of the stream state structure

Number of random values to be generated.

Mean value $a$.

Standard deviation $\sigma$.

## Description

Vector of $n$ normally distributed random numbers.

Name	Type
	REAL (KIND=8), INTENT (OUT)
	for vdrnggaussian

## Return Values

```
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

```
```

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an invalid
VSL_RNG_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an invalid
number of updated entries in a buffer, that is, < 0 or >
number of updated entries in a buffer, that is, < 0 or >
nmax.
nmax.
VSL_RNG_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as the
VSL_RNG_ERROR_NO_NUMBERS Callback function for an abstract BRNG returns 0 as the
number of updated entries in a buffer.
number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED - - _ _ non-deterministic random number generator exceeds
ED - - _ _ non-deterministic random number generator exceeds
threshold.
threshold.
ARS-5 random number generator is not supported on the
ARS-5 random number generator is not supported on the
CPU running the application.

```
 CPU running the application.
```

```
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
```

```
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
```


## vRngGaussianMV

Generates random numbers from multivariate normal distribution.

## Syntax

```
```

status = vsrnggaussianmv( method, stream, n, r, dimen, mstorage, a, t )

```
```

status = vsrnggaussianmv( method, stream, n, r, dimen, mstorage, a, t )
status = vdrnggaussianmv( method, stream, n, r, dimen, mstorage, a, t )

```
```

status = vdrnggaussianmv( method, stream, n, r, dimen, mstorage, a, t )

```
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

## Name Type

 method INTEGER, INTENT (IN)
## Description

REAL (KIND=8), INTENT (OUT)
for vdrnggaussian

## Description

Generation method. The specific values are as follows:

```
VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER
VSL_RNG_METHOD_GAUSSIANMV_BOXMULLER2
VSL_RNG_METHOD_GAUSSIANMV_ICDF
```

See brief description of the methods BOXMULLER, BOXMULLER2, and ICDF in Table "Values of <method> in method parameter"

Name	Type
stream	TYPE (VSL_STREAM_STATE),         $n$
INTENT (IN)	
dimen	INTEGER, INTENT (IN)
mstorage	INTEGER, INTENT (IN)

a
$t$

> DOUBLE PRECISION for vdrnggaussianmv
> REAL(KIND=4), INTENT(IN) for vsrnggaussianmv
> REAL(KIND=8), INTENT(IN) for vdrnggaussianmv

DOUBLE PRECISION for
vdrnggaussianmv
REAL (KIND=4), INTENT (IN) for vsrnggaussianmv
REAL (KIND=8), INTENT (IN) for vdrnggaussianmv

## Output Parameters

## Name Type

r

## Description

Descriptor of the stream state structure.

Number of $d$-dimensional vectors to be generated
Dimension $d(d \geq 1)$ of output random vectors
Matrix storage scheme for upper triangular matrix $T^{T}$. The routine supports three matrix storage schemes:

- VSL_MATRIX_STORAGE_FULL- all $d x d$ elements of the matrix $T^{T}$ are passed, however, only the upper triangle part is actually used in the routine.
- VSL_MATRIX_STORAGE_PACKED-upper triangle elements of $T^{T}$ are packed by rows into a onedimensional array.
- VSL_MATRIX_STORAGE_DIAGONAL—only diagonal elements of $\bar{T}^{T}$ are passed.


## Description

Array of $n$ random vectors of dimension dimen
vdrnggaussianmv
REAL (KIND=4), INTENT (OUT)
for vsrnggaussianmv
REAL (KIND=8), INTENT (OUT)
for vdrnggaussianmv

Mean vector $a$ of dimension $d$

Elements of the upper triangular matrix passed according to the matrix $T^{T}$ storage scheme mstorage.

$$
f_{a, c}(x)=\frac{1}{\sqrt{\operatorname{det}(2 \pi C)}} \exp \left(-1 / 2(x-a)^{T} C^{-1}(x-a)\right)
$$

where $x \in R^{d}$.
Matrix $C$ can be represented as $C=T T^{T}$, where $T$ is a lower triangular matrix - Cholesky factor of $C$.
Instead of variance-covariance matrix $C$ the generation routines require Cholesky factor of $C$ in input. To compute Cholesky factor of matrix C, the user may call Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) LAPACK routines for matrix factorization:?potrf or ?pptrf for v?RngGaussianMV/v?rnggaussianmv routines (? means either sir d for single and double precision respectively). See Application Notes for more details.

Product and Performance Information
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/   PerformanceIndex.   Notice revision \#20201201

## Application Notes

Since matrices are stored in Fortran by columns, while in C they are stored by rows, the usage of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) factorization routines (assuming Fortran matrices storage) in combination with multivariate normal RNG (assuming C matrix storage) is slightly different in C and Fortran. The following tables help in using these routines in C and Fortran. For further information please refer to the appropriate VS example file.
Using Cholesky Factorization Routines in Fortran


## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_RNG_ERROR_BAD_STREAM
```

VSL_ERROR_NULL_PTR stream is a NULL pointer.

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.

VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid   number of updated entries in a buffer, that is, $<0$ or $>$   nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the   number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED	
EDNumber of retries to generate a random number by using   non-deterministic random number generator exceeds   threshold.	
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED	ARS-5 random number generator is not supported on the   CPU running the application.

## vRngExponential

Generates exponentially distributed random numbers.

## Syntax

```
status = vsrngexponential(method, stream, n, r, a, beta)
status = vdrngexponential(method, stream, n, r, a, beta)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description
method	INTEGER, INTENT(IN)	Generation method. The specific values are as follows:
		VSL_RNG_METHOD_EXPONENTIAL_ICDF
		VSL_RNG_METHOD_EXPONENTIAL_ICDF_ACCURATE
		Inverse cumulative distribution function method
stream	TYPE (VSL_STREAM_STATE), INTENT (IN)	Descriptor of the stream state structure.
$n$	INTEGER, INTENT(IN)	Number of random values to be generated
a	DOUBLE PRECISION for vdrngexponential	Displacement a
	REAL (KIND=4), INTENT (IN) for vsrngexponential	
	REAL (KIND=8), INTENT (IN) for vdrngexponential	
beta	DOUBLE PRECISION for vdrngexponential	Scalefactor $\beta$.

# Name Type <br> REAL (KIND=4), INTENT (IN) for vsrngexponential <br> REAL (KIND=8), INTENT (IN) for vdrngexponential 

Description

## Output Parameters

Name	Type
$r$	DOUBLE PRECISION for
	vdrngexponential
	REAL (KIND=4), INTENT (OUT)
	for vsrngexponential
	REAL (KIND=8), INTENT (OUT)
	for vdrngexponential

## Description

Vector of $n$ exponentially distributed random numbers

## Description

The vRngExponential function generates random numbers with exponential distribution that has displacement a and scalefactor $\beta$, where $a, \beta \in R ; \beta>0$.

The probability density function is given by:

$$
f_{a, \beta}(x)=\left\{\begin{array}{ll}
\frac{1}{\beta} \exp ((-(x-a)) / \beta), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty .\right.
$$

The cumulative distribution function is as follows:

$$
F_{a, \beta}(x)=\left\{\begin{array}{l}
1-\exp ((-(x-a)) / \beta), \quad x \geq a \\
0, \\
x<a
\end{array},-\infty<x<+\infty .\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL RNG ERROR BAD STREAM
VSL_RNG_ERROR_BAD_UPDATE
```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.

VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
$\begin{aligned} & \text { VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED } \\ & \text { ED } \end{aligned}$	Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED	ARS-5 random number generator is not supported on the CPU running the application.

vRngLaplace
Generates random numbers with Laplace distribution.
Syntax

```
status = vsrnglaplace(method, stream, n, r, a, beta)
status = vdrnglaplace(method, stream, n, r, a, beta)
```

Include Files

- mkl.fi,mkl_vsl.f90


## Input Parameters

Name	Type	Description
method	INTEGER, INTENT (IN)	Generation method. The specific values are as follows:
		VSL_RNG_METHOD_LAPLACE_ICDF
		Inverse cumulative distribution function method
stream	TYPE (VSL_STREAM_STATE), INTENT (IN)	Descriptor of the stream state structure.
$n$	INTEGER, INTENT(IN)	Number of random values to be generated
a	DOUBLE PRECISION for vdrnglaplace	Mean value a
	REAL (KIND=4), INTENT (IN) for vsrnglaplace	
	REAL (KIND=8), INTENT (IN) for vdrnglaplace	
beta	DOUBLE PRECISION for vdrnglaplace	Scalefactor $\beta$.
	REAL (KIND=4), INTENT (IN) for vsrnglaplace	
	REAL (KIND=8), INTENT (IN) for vdrnglaplace	

## Output Parameters

```
Name Type Description
r DOUBLE PRECISION for
 vdrnglaplace
 REAL (KIND=4), INTENT (OUT)
 for vsrnglaplace
 REAL (KIND=8), INTENT (OUT)
 for vdrnglaplace
```


## Description

The vRngLaplace function generates random numbers with Laplace distribution with mean value (or average) $a$ and scalefactor $\beta$, where $a, \beta \in R ; \beta>0$. The scalefactor value determines the standard deviation as

$$
\sigma=\beta \sqrt{2}
$$

The probability density function is given by:

$$
f_{a, \beta}(x)=\frac{1}{\sqrt{2 \beta}} \exp \left(-\frac{|x-a|}{\beta}\right),-\infty<x<+\infty
$$

The cumulative distribution function is as follows:

$$
f_{a, \beta}(x)=\left\{\begin{array}{ll}
\frac{1}{2} \exp \left(-\frac{|x-a|}{\beta}\right), & x \geq a \\
1-\frac{1}{2} \exp \left(-\frac{|x-a|}{\beta}\right), & x<a
\end{array},-\infty<x<+\infty .\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.

VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the   number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED	

vRngWeibull
Generates Weibull distributed random numbers.
Syntax

```
status = vsrngweibull(method, stream, n, r, alpha, a, beta)
status = vdrngweibull(method, stream, n, r, alpha, a, beta)
```

Include Files

- mkl.fi,mkl_vsl.f90


## Input Parameters

Name	Type	Description
method	INTEGER, INTENT(IN)	Generation method. The specific values are as follows:
		VSL_RNG_METHOD_WEIBULL_ICDF
		VSL_RNG_METHOD_WEIBULL_ICDF_ACCURATE
		Inverse cumulative distribution function method
stream	TYPE (VSL_STREAM_STATE), INTENT (IN)	Descriptor of the stream state structure.
$n$	INTEGER, INTENT (IN)	Number of random values to be generated
alpha	DOUBLE PRECISION for vdrngweibull	Shape $\alpha$.
	REAL (KIND=4), INTENT (IN) for vsrngweibull	
	REAL (KIND=8), INTENT (IN) for vdrngweibull	
a	DOUBLE PRECISION for vdrngweibull	Displacement a
	REAL (KIND=4), INTENT (IN) for vsrngweibull	
	REAL (KIND=8), INTENT (IN) for vdrngweibull	


Name	Type	Description
beta	DOUBLE PRECISION for	Scalefactor $\beta$.
	vdrngweibull	
	REAL (KIND=4), INTENT (IN) for	
	vsrngweibull	
	REAL (KIND=8), INTENT (IN) for	
	vdrngweibull	

## Output Parameters

Name	Type	Description
$r$	DOUBLE PRECISION for	Vector of $n$ Weibull distributed random numbers
	vdrngweibull	
	REAL (KIND=4), INTENT (OUT)	
	for vsrngweibull	
	REAL (KIND=8), INTENT (OUT)	
	for vdrngweibull	

## Description

The vRngWeibull function generates Weibull distributed random numbers with displacement $a$, scalefactor $\beta$, and shape $\alpha$, where $\alpha, \beta, a \in R ; \alpha>0, \beta>0$.

The probability density function is given by:

$$
f_{a, \alpha, \beta}(x)=\left\{\begin{array}{cl}
\frac{\alpha}{\beta^{\alpha}}(x-a)^{\alpha-1} \exp \left(-\left(\frac{x-a}{\beta}\right)^{\alpha}\right), & x \geq a \\
0, & x<a
\end{array}\right.
$$

The cumulative distribution function is as follows:

$$
F_{a, \alpha, \beta}(x)=\left\{\begin{array}{c}
1-\exp \left(-\left(\frac{x-a}{\beta}\right)^{\alpha}\right), \quad x \geq a \\
0, \\
x<a
\end{array}\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

VSL_ERROR_OK, VSL_STATUS_OK Indicates no error, execution is successful.

```
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an invalid
number of updated entries in a buffer, that is, < 0 or >
nmax.
Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
Period of the generator has been exceeded.
Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
ARS-5 random number generator is not supported on the CPU running the application.
```

vRngCauchy
Generates Cauchy distributed random values.
Syntax

```
status = vsrngcauchy(method, stream, n, r, a, beta)
status = vdrngcauchy(method, stream, n, r, a, beta)
```

Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description
method	INTEGER, INTENT (IN)	Generation method. The specific values are as follows:
		VSL_RNG_METHOD_CAUCHY_ICDF
		Inverse cumulative distribution function method
stream	TYPE (VSL_STREAM_STATE), INTENT (IN)	Descriptor of the stream state structure.
$n$	INTEGER, INTENT(IN)	Number of random values to be generated
a	DOUBLE PRECISION for vdrngcauchy	Displacementa.
	REAL (KIND=4), INTENT (IN) for vsrngcauchy	
	REAL (KIND=8), INTENT (IN) for vdrngcauchy	
beta	DOUBLE PRECISION for vdrngcauchy	Scalefactor $\beta$.

```
Name Type Description
REAL(KIND=4), INTENT(IN) for
vsrngcauchy
REAL (KIND=8), INTENT (IN) for
vdrngcauchy
```


## Output Parameters

Name	Type	Description
$r$	DOUBLE PRECISION for	Vector of $n$ Cauchy distributed random numbers
	vdrngcauchy	
	REAL (KIN D=4), INTENT (OUT)	
	for vsrngcauchy	
	REAL (KIND=8), INTENT (OUT)	
	for vdrngcauchy	

## Description

The function generates Cauchy distributed random numbers with displacement $a$ and scalefactor $\beta$, where $a$, $\beta \in R ; \beta>0$.

The probability density function is given by:

$$
f_{a, \beta}(x)=\frac{1}{\pi \beta\left(1+\left(\frac{x-a}{\beta}\right)^{2}\right)},-\infty<x<+\infty .
$$

The cumulative distribution function is as follows:

$$
F_{a, \beta}(x)=\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x-a}{\beta}\right),-\infty<x<+\infty .
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
```

VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.

VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid   number of updated entries in a buffer, that is, $<0$ or $>$   nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the   number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEEDNumber of retries to generate a random number by using   non-deterministic random number generator exceeds   threshold.	
ED	ARS-5 random number generator is not supported on the   CPU running the application.

## vRngRayleigh

Generates Rayleigh distributed random values.

## Syntax

```
status = vsrngrayleigh(method, stream, n, r, a, beta)
status = vdrngrayleigh(method, stream, n, r, a, beta)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description
method	INTEGER, INTENT (IN)	Generation method. The specific values are as follows:
		VSL_RNG_METHOD_RAYLEIGH_ICDF
		VSL_RNG_METHOD_RAYLEIGH_ICDF_ACCURATE
		Inverse cumulative distribution function method
stream	TYPE (VSL_STREAM_STATE), INTENT (IN)	Descriptor of the stream state structure.
$n$	INTEGER, INTENT(IN)	Number of random values to be generated
a	DOUBLE PRECISION for vdrngrayleigh	Displacement a
	REAL (KIND=4), INTENT (IN) for vsrngrayleigh	
	REAL (KIND=8), INTENT (IN) for vdrngrayleigh	
beta	DOUBLE PRECISION for vdrngrayleigh	Scalefactor $\beta$.
	REAL (KIND=4), INTENT (IN) for vsrngrayleigh	

## Name Type Description

REAL (KIND=8), INTENT (IN) for vdrngrayleigh

## Output Parameters

```
Name Type
r
DOUBLE PRECISION for
Description
Vector of \(n\) Rayleigh distributed random numbers
```


## Description

The vRngRayleigh function generates Rayleigh distributed random numbers with displacement a and scalefactor $\beta$, where $a, \beta \in R ; \beta>0$.

The Rayleigh distribution is a special case of the Weibull distribution, where the shape parameter $\alpha=2$. The probability density function is given by:

$$
f_{a, \beta}(x)=\left\{\begin{array}{ll}
\frac{2(x-a)}{\beta^{2}} \exp \left(-\frac{(x-a)^{2}}{\beta^{2}}\right), & x \geq a \\
0, \quad x<a
\end{array},-\infty<x<+\infty .\right.
$$

The cumulative distribution function is as follows:

$$
F_{a, \beta}(x)=\left\{\begin{array}{ll}
1-\exp \left(-\frac{(x-a)^{2}}{\beta^{2}}\right), & x \geq a \\
0, & x<a
\end{array},-\infty<x<+\infty .\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.

VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid   number of updated entries in a buffer, that is, $<0$ or $>$   nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the   number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED	
EDNumber of retries to generate a random number by using   non-deterministic random number generator exceeds   threshold.	
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED	ARS-5 random number generator is not supported on the   CPU running the application.

## vRngLognormal

Generates lognormally distributed random numbers.

## Syntax

```
status = vsrnglognormal(method, stream, n, r, a, sigma, b, beta)
status = vdrnglognormal(method, stream, n, r, a, sigma, b, beta)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description
method	INTEGER, INTENT(IN)	Generation method. The specific values are as follows:
		VSL_RNG_METHOD_LOGNORMAL_BOXMULLER2
		VSL_RNG_METHOD_LOGNORMAL_BOXMULLER2_ACCURATE
		Box Muller 2 based method
		VSL_RNG_METHOD_LOGNORMAL_ICDF
		VSL_RNG_METHOD_LOGNORMAL_ICDF_ACCURATE
		Inverse cumulative distribution function based method
stream	TYPE (VSL_STREAM_STATE), INTENT (IN)	Descriptor of the stream state structure.
$n$	INTEGER, INTENT (IN)	Number of random values to be generated
a	DOUBLE PRECISION for vdrnglognormal	Average $a$ of the subject normal distribution
	REAL (KIND=4), INTENT (IN) for vsrnglognormal	
	REAL (KIND=8), INTENT (IN) for vdrnglognormal	

```
Name Type Description
sigma DOUBLE PRECISION for
 vdrnglognormal
 REAL (KIND=4), INTENT(IN) for
 vsrnglognormal
 REAL (KIND=8), INTENT (IN) for
 vdrnglognormal
b
 DOUBLE PRECISION for
 vdrnglognormal
 REAL (KIND=4), INTENT (IN) for
 vsrnglognormal
 REAL (KIND=8), INTENT (IN) for
 vdrnglognormal
beta DOUBLE PRECISION for Scalefactor }\beta\mathrm{ .
 vdrnglognormal
 REAL (KIND=4), INTENT (IN) for
 vsrnglognormal
 REAL (KIND=8), INTENT (IN) for
 vdrnglognormal
```


## Output Parameters

Name	Type	Description
$r$	DOUBLE PRECISION for vdrnglognormal	Vector of $n$ lognormally distributed random numbers
	REAL (KIND=4), INTENT (OUT) for vsrnglognormal	
	REAL (KIND=8), INTENT (OUT)	

## Description

The vRngLognormal function generates lognormally distributed random numbers with average of distribution $a$ and standard deviation $\sigma$ of subject normal distribution, displacement $b$, and scalefactor $\beta$, where $a, \sigma, b$, $\beta \in R ; \sigma>0, \beta>0$.
The probability density function is given by:

$$
f_{a, \sigma, b, \beta}(x)= \begin{cases}\frac{1}{\sigma(x-b) \sqrt{2 \pi}} \exp \left(-\frac{[\ln ((x-b) / \beta)-a]^{2}}{2 \sigma^{2}}\right), & x>b \\ 0, & x \leq b\end{cases}
$$

The cumulative distribution function is as follows:

$$
F_{a, \sigma, b, \beta}(x)= \begin{cases}\Phi((\ln ((x-b) / \beta)-a) / \sigma), & x>b \\ 0, & x \leq b\end{cases}
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

VSL_ERROR_OK, VSL_STATUS_OK	Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR	stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM	stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED ED	Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED	ARS-5 random number generator is not supported on the CPU running the application.

## vRngGumbel

Generates Gumbel distributed random values.

## Syntax

```
status = vsrnggumbel(method, stream, n, r, a, beta)
status = vdrnggumbel(method, stream, n, r, a, beta)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type
method	INTEGER, INTENT (IN)

## Description

Generation method. The specific values are as follows:

```
VSL_RNG_METHOD_GUMBEL_ICDF
```

Inverse cumulative distribution function method

Name	Type	Description
stream	TYPE (VSL_STREAM_STATE), INTENT (IN)	Descriptor of the stream state structure
$n$	INTEGER, INTENT (IN)	Number of random values to be generated
a	DOUBLE PRECISION for vdrnggumbel	Displacementa.
	REAL (KIND=4), INTENT (IN) for vsrnggumbel	
	REAL (KIND=8), INTENT (IN) for vdrnggumbel	
beta	DOUBLE PRECISION for vdrnggumbel	Scalefactor $\beta$.
	REAL (KIND=4), INTENT (IN) for vsrnggumbel	
	REAL (KIND=8), INTENT (IN) for vdrnggumbel	

## Output Parameters

```
Name Type
r
 DOUBLE PRECISION for
 vdrnggumbel
 REAL (KIND=4), INTENT (OUT)
 for vsrnggumbel
 REAL (KIND=8), INTENT (OUT)
 for vdrnggumbel
```


## Description

Vector of $n$ random numbers with Gumbel distribution

## Description

The vRngGumbel function generates Gumbel distributed random numbers with displacement a and scalefactor $\beta$, where $a, \beta \in R ; \beta>0$.
The probability density function is given by:

$$
f_{a, \beta}(x)=\left\{\frac{1}{\beta} \exp \left(\frac{x-a}{\beta}\right) \exp (-\exp ((x-a) / \beta)),-\infty<x<+\infty\right.
$$

The cumulative distribution function is as follows:

$$
E_{a, \beta}(x)=1-\exp (-\exp ((x-a) / \beta)),-\infty<x<+\infty
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

## Product and Performance Information

Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an invalid
number of updated entries in a buffer, that is, < 0 or >
nmax.
Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
Period of the generator has been exceeded.
Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.
ARS-5 random number generator is not supported on the CPU running the application.
```


## vRngGamma

Generates gamma distributed random values.

## Syntax

```
status = vsrnggamma(method, stream, n, r, alpha, a, beta)
status = vdrnggamma(method, stream, n, r, alpha, a, beta)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type
method	
stream	TYPEGER, INTENT (IN)
	INTENT (IN)
$n$	INTEGER, INTENT (IN)

## Description

Generation method. The specific values are as follows:

```
VSL_RNG_METHOD_GAMMA_GNORM
VSL_RNG_METHOD_GAMMA_GNORM_ACCURATE
```

Acceptance/rejection method using random numbers with Gaussian distribution. See brief description of the method GNORM in Table "Values of <method> in method parameter"

Descriptor of the stream state structure

Number of random values to be generated

```
Name Type Description
alpha
a
 DOUBLE PRECISION for
 vdrnggamma
 REAL(KIND=4), INTENT(IN) for
 vsrnggamma
 REAL (KIND=8), INTENT(IN) for
 vdrnggamma
 DOUBLE PRECISION for
 vdrnggamma
 REAL (KIND=4), INTENT (IN) for
 vsrnggamma
 REAL (KIND=8), INTENT (IN) for
 vdrnggamma
beta DOUBLE PRECISION for Scalefactor }\beta\mathrm{ .
 vdrnggamma
 REAL (KIND=4), INTENT (IN) for
 vsrnggamma
 REAL (KIND=8), INTENT (IN) for
 vdrnggamma
```


## Output Parameters

```
Name Type Description
r DOUBLE PRECISION for
 vdrnggamma
 REAL (KIND=4), INTENT (OUT)
 for vsrnggamma
 REAL (KIND=8), INTENT (OUT)
 for vdrnggamma
```


## Description

```
Vector of \(n\) random numbers with gamma distribution
```


## Description

The vRngGamma function generates random numbers with gamma distribution that has shape parameter $\alpha$, displacement $a$, and scale parameter $\beta$, where $\alpha, \beta$, and $a \in R$; $\alpha>0, \beta>0$.

The probability density function is given by:

$$
f_{\alpha, a, \beta}(x)=\left\{\begin{array}{c}
\frac{1}{\Gamma(\alpha) \beta^{\alpha}}(x-a)^{\alpha-1} e^{-(x-a) / \beta}, x \geq a \\
0, \\
x<a
\end{array},-\infty<x<+\infty\right.
$$

where $\Gamma(\alpha)$ is the complete gamma function.
The cumulative distribution function is as follows:

$$
F_{\alpha, a, \beta}(x)=\left\{\begin{array}{c}
\int_{a}^{x} \frac{1}{\Gamma(\alpha) \beta^{\alpha}}(y-a)^{\alpha-1} e^{-(y-a) / \beta} d y, x \geq a \\
0, \quad x<a
\end{array},-\infty<x<+\infty\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
ED
```

VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

Period of the generator has been exceeded.
Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.

ARS-5 random number generator is not supported on the CPU running the application.
vRngBeta
Generates beta distributed random values.

## Syntax

```
status = vsrngbeta(method, stream, n, r, p, q, a, beta)
status = vdrngbeta(method, stream, n, r, p, q, a, beta)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description
method	INTEGER, INTENT(IN)	Generation method. The specific values are as follows:
		VSL_RNG_METHOD_BETA_CJA
		VSL_RNG_METHOD_BETA_CJA_ACCURATE
		See brief description of the method CJA in Table "Values of <method> in method parameter"
stream	TYPE (VSL_STREAM_STATE), INTENT (IN)	Descriptor of the stream state structure
$n$	INTEGER, INTENT (IN)	Number of random values to be generated
$p$	DOUBLE PRECISION for vdrngbeta	Shape $p$
	REAL (KIND=4), INTENT (IN) for vsrngbeta	
	REAL (KIND=8), INTENT (IN) for vdrngbeta	
$q$	DOUBLE PRECISION for vdrngbeta	Shape $q$
	REAL (KIND=4), INTENT (IN) for vsrngbeta	
	REAL (KIND=8), INTENT (IN) for vdrngbeta	
a	DOUBLE PRECISION for vdrngbeta	Displacementa.
	REAL (KIND=4), INTENT (IN) for vsrngbeta	
	REAL (KIND=8), INTENT (IN) for vdrngbeta	
beta	DOUBLE PRECISION for vdrngbeta	Scalefactor $\beta$.
	REAL (KIND=4), INTENT (IN) for vsrngbeta	
	REAL (KIND=8), INTENT (IN) for vdrngbeta	

## Output Parameters

## Name Type

r
DOUBLE PRECISION for vdrngbeta

## Description

Vector of $n$ random numbers with beta distribution

## Name Type Description

REAL (KIND=4), INTENT (OUT)
for vsrngbeta
REAL (KIND=8), INTENT (OUT)
for vdrngbeta

## Description

The vRngBeta function generates random numbers with beta distribution that has shape parameters $p$ and $q$, displacement $a$, and scale parameter $\beta$, where $p, q, a$, and $\beta \in R ; p>0, q>0, \beta>0$.
The probability density function is given by:

$$
f_{p, q, a, \beta}(x)=\left\{\begin{array}{c}
\frac{1}{B(p, q) \beta^{p+q-1}}(x-a)^{p-1}(\beta+a-x)^{q-1}, a \leq x<a+\beta \\
0, \\
x<a, x \geq a+\beta
\end{array},-\infty<x<\right.
$$

where $B(p, q)$ is the complete beta function.
The cumulative distribution function is as follows:

$$
F_{p, q, a, \beta}(x)=\left\{\begin{array}{cc}
0, & x<a \\
\int_{a}^{x} \frac{1}{B(p, q) \beta^{p+q-1}}(y-a)^{p-1}(\beta+a-y)^{q-1} d y, & a \leq x<a+\beta,-\infty<x \\
1, & x \geq a+\beta
\end{array}\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
```

VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

Period of the generator has been exceeded.

```
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED non-deterministic random number generator exceeds threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the CPU running the application.
```

vRngChiSquare
Generates chi-square distributed random values.

## Syntax

```
status = vsrngchisquare(method, stream, n, r, v)
status = vdrngchisquare(method, stream, n, r, v)
```

Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description
method	INTEGER, INTENT (IN)	Generation method. The specific value is:
		VSL_RNG_METHOD_CHISQUARE_CHI2GAMMA
		For a description of
		VSL_RNG_METHOD_CHISQUARE_CHI2GAMMA, see Random Number Generators Naming Conventions.
stream	TYPE (VSL_STREAM_STATE),	Descriptor of the stream state structure
	INTENT (IN)	
$n$	INTEGER, INTENT (IN)	Number of random values to be generated
v	INTEGER, INTENT (IN)	Degrees of freedom

## Output Parameters

Name	Type	Description
$r$	REAL $($ KIND=4), INTENT (OUT)	Vector of $n$ random numbers with chi-square distribution
	for vsrngchisquare	
	REAL $($ KIND=8), INTENT (OUT)	
	for vdrngchisquare	

## Description

The vRngChiSquare function generates random numbers with chi-square distribution and $v$ degrees of freedom, $v \in N, v>0$.

The probability density function is:

$$
f_{v}(x)= \begin{cases}\frac{\frac{v-2}{2} e^{-\frac{x}{2}}}{2^{v / 2} \Gamma\left(\frac{v}{2}\right)}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

The cumulative distribution function is:

$$
F_{v}(x)= \begin{cases}\int_{0}^{x} \frac{\frac{v-2}{2} e^{-\frac{y}{2}}}{2^{v / 2} \Gamma\left(\frac{v}{2}\right)} d y, x \geq 0 \\ 0, & x<0\end{cases}
$$

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
Period of the generator has been exceeded.
Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
ARS-5 random number generator is not supported on the CPU running the application.
```


## Discrete Distributions

This section describes routines for generating random numbers with discrete distribution.
vRngUni form Discrete Distribution Generators
Generates random numbers uniformly distributed over
the interval [a, b).
Syntax

```
status = virnguniform(method, stream, n, r, a, b)
```

Include Files

- mkl.fi, mkl_vsl.f90

Input Parameters

## Name Type <br> Description

method
INTEGER, INTENT(IN)

Generation method; the specific value is as follows:

```
VSL_RNG_METHOD_UNIFORM_STD
```



## Output Parameters

Name	Type	Description
$r$	INTEGER $($ KIND =4 $)$,	Vector of $n$ random numbers uniformly distributed over the   interval $[a, b)$

## Description

The vRngUniform function generates random numbers uniformly distributed over the interval [a, b), where $a, b$ are the left and right bounds of the interval respectively, and $a, b \in z ; a<b$.
The probability distribution is given by:

The cumulative distribution function is as follows:

$$
F_{a, b}(x)=\left\{\begin{array}{c}
0, \quad x<a \\
\frac{\lfloor x-a+1\rfloor}{b-a}, a \leq x<b, x \in R \\
1, \quad x \geq b
\end{array}\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
```

Indicates no error, execution is successful.
stream is a NULL pointer.

VSL_RNG_ERROR_BAD_STREAM	stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
```VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED ED```	Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED	ARS-5 random number generator is not supported on the CPU running the application.

vRngUniformBits

Generates bits of underlying BRNG integer recurrence.

Syntax

```
status = virnguniformbits( method, stream, n, r )
```

Include Files

- mkl.fi, mkl_vsl.f90

Input Parameters

Name	Type	Description
method	INTEGER, INTENT (IN)	Generation method; the specific value is stream
TYPL_RNG_METHOD_UNIFORMBITS_STD INTENT (IN)		
n	INTEGER, INTENT (IN)	

Output Parameters

Name Type

r INTEGER (KIND=4) , INTENT (OUT)

Description

Vector of n random integer numbers. If the stream was generated by a 64 or a 128-bit generator, each integer value is represented by two or four elements of r respectively. The number of bytes occupied by each integer is contained in the field wordsize of the structure VSL_BRNG_PROPERTIES. The total number of bits that are actually used to store the value are contained in the field nbits of the same structure. See Advanced Service Routines for a more detailed discussion of VSLBRngProperties.

Description

The vRngUniformBits function generates integer random values with uniform bit distribution. The generators of uniformly distributed numbers can be represented as recurrence relations over integer values in modular arithmetic. Apparently, each integer can be treated as a vector of several bits. In a truly random generator, these bits are random, while in pseudorandom generators this randomness can be violated. For example, a well known drawback of linear congruential generators is that lower bits are less random than higher bits (for example, see [Knuth81]). For this reason, care should be taken when using this function. Typically, in a 32-bit LCG only 24 higher bits of an integer value can be considered random. See VS Notes for details.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

Return Values

VSL_ERROR_OK, VSL_STATUS_OK	Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR	stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM	stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
```VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED ED```	Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED	ARS-5 random number generator is not supported on the CPU running the application.

vRngUniformBits32
Generates uniformly distributed bits in 32-bit chunks.
Syntax

```
status = virnguniformbits32(method, stream, n, r)
```

Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description		
method	INTEGER, INTENT (IN)		$\quad$	Generation method; the specific value is
:---				
stream				
$n$	$\quad$	TYSL_RNG_METHOD_UNIFORMBITS32_STD		
:---				
INTENT (IN)				

## Output Parameters

Name	Type
$r$	INTEGER (KIND=4),
	INTENT (OUT)

## Description

Vector of $n$ 32-bit random integer numbers with uniform bit distribution.

## Description

The vRngUniformBits 32 function generates uniformly distributed bits in 32-bit chunks. Unlike vRngUniformBits, which provides the output of underlying integer recurrence and does not guarantee uniform distribution across bits, vRngUniformBits32 is designed to ensure each bit in the 32-bit chunk is uniformly distributed. See VS Notes for details.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_BRNG_NOT_SUPPORTED BRNG is not supported by the function.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED non-deterministic random number generator exceeds
 threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
 CPU running the application.
```

vRngUniformBits64
Generates uniformly distributed bits in 64-bit chunks.

## Syntax

```
status = virnguniformbits64(method, stream, n, r)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type
method	INTEGER, INTENT (IN)
stream	TYPE (VSL_STREAM_STATE),      $n$
INTENT (IN)	
	INTEGER, INTENT (IN)

## Description

Generation method; the specific value is VSL_RNG_METHOD_UNIFORMBITS64_STD

Descriptor of the stream state structure.

Number of random values to be generated

## Output Parameters

## Name Type <br> $r \quad$ INTEGER (KIND=8), INTENT (OUT)

## Description

Vector of $n$ 64-bit random integer numbers with uniform bit distribution.

## Description

The vRngUniformBits 64 function generates uniformly distributed bits in 64-bit chunks. Unlike vRngUniformBits, which provides the output of underlying integer recurrence and does not guarantee uniform distribution across bits, vRngUniformBits64 is designed to ensure each bit in the 64-bit chunk is uniformly distributed. See VS Notes for details.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BRNG_NOT_SUPPORTED
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
BRNG is not supported by the function.
Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.

ARS-5 random number generator is not supported on the CPU running the application.

## Syntax

```
status = virngbernoulli(method, stream, n, r, p)
```

Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters



## Output Parameters

Name	Type	Description
$r$	INTEGER $($ KIND $=4)$,	Vector of $n$ Bernoulli distributed random values

## Description

The vRngBernoulli function generates Bernoulli distributed random numbers with probability $p$ of a single trial success, where

```
p\inR; 0 \leqp\leq 1.
```

A variate is called Bernoulli distributed, if after a trial it is equal to 1 with probability of success $p$, and to 0 with probability $1-p$.

The probability distribution is given by:

$$
\begin{aligned}
& P(X=1)=p \\
& P(X=0)=1-p
\end{aligned}
$$

The cumulative distribution function is as follows:

$$
F_{p}(x)=\left\{\begin{aligned}
& 0, x<0 \\
& 1-p, 0 \leq x \\
& 1, x \geq 1
\end{aligned}\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

## Return Values

VSL_ERROR_OK, VSL_STATUS_OK	Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR	stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM	stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid   number of updated entries in a buffer, that is, < or $>$   nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the   number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED	ARS-5 random number generator is not supported on the   CPU running the application.

## vRngGeometric

Generates geometrically distributed random values.

## Syntax

```
status = virnggeometric(method, stream, n, r, p)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type
method	INTEGER, INTENT (IN)
stream	
	IYPE (VSL_STREAM_STATE),
$p$	INTEGER, INTENT (IN)
	REAL (KIND=8), INTENT (IN)

## Description

Generation method. The specific value is as follows:
VSL_RNG_METHOD_GEOMETRIC_ICDF

Inverse cumulative distribution function method.
Descriptor of the stream state structure.

Number of random values to be generated
Success probability $p$ of a trial

## Output Parameters

## Name Type <br> $r$ INTEGER(KIND=4), INTENT (OUT)

## Description

Vector of $n$ geometrically distributed random values

## Description

The vRngGeometric function generates geometrically distributed random numbers with probability $p$ of a single trial success, where $p \in R ; 0<p<1$.
A geometrically distributed variate represents the number of independent Bernoulli trials preceding the first success. The probability of a single Bernoulli trial success is $p$.

The probability distribution is given by:
$P(X=k)=p \cdot(1-p)^{k}, k \in\{0,1,2, \ldots\}$.
The cumulative distribution function is as follows:

$$
F_{p}(x)=\left\{\begin{array}{ll}
0, & x<0 \\
1-(1-p)^{\lfloor x+1\rfloor}, & 0 \geq x
\end{array} \quad x \in R .\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

## Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED
ED
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
```

```
vRngBinomial
Generates binomially distributed random numbers.
Syntax
status = virngbinomial(method, stream, n, r, ntrial, p)
```


## Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description
method	INTEGER, INTENT (IN)	Generation method. The specific value is as follows:
		VSL_RNG_METHOD_BINOMIAL_BTPE
		See brief description of the BTPE method in Table "Values of <method> in method parameter".
stream	TYPE (VSL_STREAM_STATE), INTENT (IN)	Descriptor of the stream state structure.
$n$	INTEGER, INTENT (IN)	Number of random values to be generated
ntrial	INTEGER(KIND=4), INTENT (IN)	Number of independent trials m
$p$	REAL (KIND=8), INTENT (IN)	Success probability $p$ of a single trial

## Output Parameters

Name	Type	Description
$r$	INTEGER (KIND=4),	Vector of $n$ binomially distributed random values

## Description

The vRngBinomial function generates binomially distributed random numbers with number of independent Bernoulli trials $m$, and with probability $p$ of a single trial success, where $p \in R ; 0 \leq p \leq 1, m \in N$.

A binomially distributed variate represents the number of successes in $m$ independent Bernoulli trials with probability of a single trial success $p$.

The probability distribution is given by:

$$
P(X=k)=C_{m}^{k} p^{k}(1-p)^{m-k}, k \in\{0,1, \ldots, m\} .
$$

The cumulative distribution function is as follows:

$$
F_{m, p}(X)= \begin{cases}0, & x<0 \\ \sum_{k=0}^{\lfloor\times\rfloor} C_{m}^{k} p^{k}(1-p)^{m-k}, & 0 \leq x<m, x \in R \\ 1, & x \geq m\end{cases}
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

VSL_ERROR_OK, VSL_STATUS_OK	Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR	stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM	stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED ED	Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED	ARS-5 random number generator is not supported on the CPU running the application.

## vRngHypergeometric

Generates hypergeometrically distributed random values.

## Syntax

```
status = virnghypergeometric(method, stream, n, r, l, s, m)
```

Include Files

- mkl.fi, mkl_vsl.f90


## Input Parameters

Name	Type	Description
method	INTEGER, INTENT(IN)	Generation method. The specific value is as follows:
		VSL_RNG_METHOD_HYPERGEOMETRIC_H2PE
		See brief description of the H2PE method in Table "Values of <method> in method parameter"
stream	TYPE (VSL_STREAM_STATE), INTENT (IN)	Descriptor of the stream state structure.
$n$	INTEGER, INTENT (IN)	Number of random values to be generated
1	INTEGER(KIND=4), INTENT (IN)	Lot size 1
$s$	INTEGER(KIND=4), INTENT (IN)	Size of sampling without replacements
m	INTEGER(KIND=4), INTENT (IN)	Number of marked elements m

## Output Parameters

Name	Type
$r$	INTEGER (KIND=4),
	INTENT (OUT)

## Description

Vector of $n$ hypergeometrically distributed random values

## Description

The vRngHypergeometric function generates hypergeometrically distributed random values with lot size $I$, size of sampling $s$, and number of marked elements in the lot $m$, where $1, m, s \in N \cup\{0\} ; 1 \geq \max (s, m)$.
Consider a lot of $/$ elements comprising $m$ "marked" and $I-m$ "unmarked" elements. A trial sampling without replacement of exactly $s$ elements from this lot helps to define the hypergeometric distribution, which is the probability that the group of $s$ elements contains exactly $k$ marked elements.

The probability distribution is given by:)

,$k \in\{\max (0, s+m-l), \ldots, \min (s, m)\}$
The cumulative distribution function is as follows:

$$
F_{1, s, \mathbb{M}}(x)=\left\{\begin{array}{cl}
0, & x<\max (0, s+m-1) \\
\sum_{k=\max }^{\lfloor x\rfloor}(0, s+\mathbb{w}-1) & \frac{C_{\mathbb{m}}^{k} C_{1-\mathbb{R}}^{s-k}}{C_{2}^{s}}, \\
1, & \max (0, s+m-1) \leq x \leq \min (s, m) \\
1, & x>\min (s, m)
\end{array}\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201
Return Values

```
VSL_ERROR_OK,VSL_STATUS_OK
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE Callback function for an abstract BRNG returns an invalid
 number of updated entries in a buffer, that is, < 0 or >
 nmax.
 Callback function for an abstract BRNG returns 0 as the
 number of updated entries in a buffer.
 Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED Number of retries to generate a random number by using
ED non-deterministic random number generator exceeds
 threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED ARS-5 random number generator is not supported on the
 CPU running the application.
```

vRngPoisson
Generates Poisson distributed random values.

## Syntax

```
status = virngpoisson(method, stream, n, r, lambda)
```

Include Files

- mkl.fi, mkl_vsl.f90

Input Parameters

## Name Type

method INTEGER, INTENT (IN)

## Description

Generation method. The specific values are as follows:
VSL_RNG_METHOD_POISSON_PTPE
VSL_RNG_METHOD_POISSON_POISNORM

Name	Type	Description
stream	TYPE (VSL_STREAM_STATE),   INTENT (IN)   Table "Values of <method> in method parameter".	
$n$	INTEGER, INTENT (IN)	Descriptor of the stream state structure.

## Output Parameters

## Name Type

$r \quad$ INTEGER (KIND=4),

## Description

The vRng"Poisson function generates Poisson distributed random numbers with distribution parameter $\lambda$, where $\lambda \in R ; \lambda>0$.

The probability distribution is given by:

$k \in\{0,1,2, \ldots\}$.
The cumulative distribution function is as follows:

$$
F_{\lambda}(x)=\left\{\begin{array}{ll}
\sum_{k=0}^{\lfloor x\rfloor} \frac{\lambda^{k} e^{-\lambda}}{k!}, & x \geq 0 \\
0, & x<0
\end{array}, x \in R\right.
$$

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

## Return Values

VSL_ERROR_OK, VSL_STATUS_OK	Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR	stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM	stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or $>$ nmax.
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED	Period of the generator has been exceeded.
```VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED ED```	Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED	ARS-5 random number generator is not supported on the CPU running the application.

vRngPoissonV
Generates Poisson distributed random values with varying mean.

Syntax

```
status = virngpoissonv( method, stream, n, r, lambda )
```


Include Files

- mkl.fi, mkl_vsl.f90

Input Parameters

Name	Type	Description
method	INTEGER, INTENT (IN)	Generation method. The specific value is as follows:
		VSL_RNG_METHOD_POISSONV_POISNORM
		See brief description of the POISNORM method in Table "Values of <method> in method parameter"
stream	TYPE (VSL_STREAM_STATE), INTENT (IN)	Descriptor of the stream state structure.
n	INTEGER, INTENT (IN)	Number of random values to be generated
lambda	REAL (KIND=8), INTENT (IN)	Array of n distribution parameters λ_{i}.

Output Parameters

\section*{Name Type Description
 r \quad| INTEGER (KIN D=4) , |
| :--- |
| INTENT (OUT) |
 Vector of n Poisson distributed random values}

Description

The vRngPoissonv function generates n Poisson distributed random numbers $x_{i}(i=1, \ldots, n)$ with distribution parameter λ_{i}, where $\lambda_{i} \in R ; \lambda_{i}>0$.
The probability distribution is given by:

$$
P\left(X_{i}=k\right)=\frac{\lambda_{i}^{k} \exp \left(-\lambda_{i}\right)}{k!}, k \in\{0,1,2, \ldots\}
$$

The cumulative distribution function is as follows:

$$
F_{\lambda_{i}}(x)=\left\{\begin{array}{ll}
\sum_{k=0}^{\lfloor x\rfloor} \frac{\lambda_{i}^{*} e^{-\lambda_{i}}}{k!}, & x \geq 0 \\
0, & x<0
\end{array}, X \in R\right.
$$

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Return Values

```
VSL_ERROR_OK, VSL_STATUS_OK
VSL_ERROR_NULL_PTR
VSL_RNG_ERROR_BAD_STREAM
VSL_RNG_ERROR_BAD_UPDATE
VSL_RNG_ERROR_NO_NUMBERS
VSL_RNG_ERROR_QRNG_PERIOD_ELAPSED Period of the generator has been exceeded.
VSL_RNG_ERROR_NONDETERM_NRETRIES_EXCEED
ED
```

Indicates no error, execution is successful.
stream is a NULL pointer.
stream is not a valid random stream.
Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or > max.

Callback function for an abstract BRNG returns 0 as the number of updated entries in a buffer.

Period of the generator has been exceeded.
Number of retries to generate a random number by using non-deterministic random number generator exceeds threshold.

```
VSL_RNG_ERROR_ARS5_NOT_SUPPORTED
```

ARS-5 random number generator is not supported on the CPU running the application.
vRngNegBinomial
Generates random numbers with negative binomial
distribution.

Syntax

```
status = virngnegbinomial( method, stream, n, r, a, p )
```


Include Files

```
- mkl.fi,mkl_vsl.f90
```


Input Parameters

Name	Type	Description
method	INTEGER, INTENT(IN)	Generation method. The specific value is:
		VSL_RNG_METHOD_NEGBINOMIAL_NBAR
		See brief description of the NBAR method in Table "Values of <method> in method parameter"
stream	TYPE (VSL_STREAM_STATE), INTENT (IN)	descriptor of the stream state structure.
n	INTEGER, INTENT (IN)	Number of random values to be generated
a	REAL (KIND=8), INTENT (IN)	The first distribution parameter a
p	REAL (KIND=8), INTENT (IN)	The second distribution parameter p

Output Parameters

Name	Type	Description
r	INTEGER $(\mathrm{KIND=4)}$,	Vector of n random values with negative binomial
	INTENT (OUT)	distribution.

Description

The vRngNegBinomial function generates random numbers with negative binomial distribution and distribution parameters a and p, where $p, a \in R ; 0<p<1$; $a>0$.

If the first distribution parameter $a \in N$, this distribution is the same as Pascal distribution. If $a \in N$, the distribution can be interpreted as the expected time of a-th success in a sequence of Bernoulli trials, when the probability of success is p.
The probability distribution is given by:

$$
P(X=k)=C_{a+k-1}^{k} p^{a}(1-p)^{k}, k \in\{0,1,2, \ldots\} .
$$

The cumulative distribution function is as follows:

$$
F_{a, p}(x)=\left\{\begin{array}{ll}
\sum_{k=0}^{\lfloor x\rfloor} C_{a+k-1}^{k} p^{a}(1-p)^{k}, & x \geq 0 \\
0, & x<0
\end{array} \quad, x \in R\right.
$$

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Return Values

VSL_ERROR_OK, VSL_STATUS_OK	Indicates no error, execution is successful.
VSL_ERROR_NULL_PTR	stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STREAM	stream is not a valid random stream.
VSL_RNG_ERROR_BAD_UPDATE	Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, <0 or $>$
nmax.	
VSL_RNG_ERROR_NO_NUMBERS	Callback function for an abstract BRNG returns 0 as the
number of updated entries in a buffer.	

vRngMultinomial
Generates multinomially distributed random numbers.
Syntax

```
status = virngmultinomial( method, stream, n, r, ntrial, k, p );
```

Include Files

- mkl.fi
- mkl_vsl.f90

Input Parameters

```
method INTEGER, INTENT(IN)
Generation method. The specific value is as follows:
VSL_RNG_METHOD_MULTINOMIAL_MULTPOISSON
TYPE (VSL_STREAM_STATE), INTENT (IN)
```

Pointer to the stream state structure.

```
n INTEGER, INTENT (IN)
Number of random values to be generated.
ntrial INTEGER(KIND=4), INTENT(IN)
Number of independent trials m.
INTEGER(KIND=4), INTENT (IN)
Number of possible outcomes.
p REAL (KIND=8), INTENT(IN)
Probability vector of k possible outcomes.
```


Output Parameters

r
INTEGER (KIND=4), INTENT (OUT)
Array of n random vectors of dimension k.

Description

The vRngMultinomial function generates multinomially distributed random numbers with m independent trials and k possible mutually exclusive outcomes, with corresponding probabilities p_{i}, where $p_{i} \in R$; $0 \leq p_{i} \leq$ $1, m \in N, k \in N$.
The probability distribution is given by:

$$
P\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\frac{m!}{\prod_{i=1}^{k} x_{i}!} \prod_{i=1}^{k} p_{i}^{x_{i}}, \quad 0 \leq x_{i} \leq m, \sum_{i=1}^{k} x_{i}=m
$$

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Return Values

```
VSL_ERROR_OK, Indicates no error (execution was successful).
VSL_STATUS_OK
VSL_ERROR_NULL_PTR stream is a NULL pointer.
VSL_RNG_ERROR_BAD_STR stream is not a valid random stream.
EAM
VSL_RNG_ERROR_BAD_UPD A callback function for an abstract BRNG returns an invalid number of updated
ATE - - entries in a buffer; that is, < 0 or > nmax.
VSL_RNG_ERROR_NO_NUMB A callback function for an abstract BRNG returns 0 as the number of updated
ERS entries in a buffer.
VSL_RNG_ERROR_ARS5_NO An ARS-5 random number generator is not supported on the CPU running the
T_SUPPORTED application.
```

```
VSL_DISTR_MULTINOMIAL Bad multinomial distribution probability array.
    _BAD_PROBABILITY_ARRA
Y
```


Advanced Service Routines

This section describes service routines for obtaining properties of the previously registered basic generators (vslGetBrngProperties). See VS Notes ("Basic Generators" section of VS Structure chapter) for substantiation of the need for several basic generators including user-defined BRNGs.

NOTE

The vslRegisterBrng function is provided in C for registering a user-defined basic generator, but it is not supported for Fortran. If you need to use a user-defined generator in Fortran, use an abstract basic random generator and abstract stream as described in the VS Notes.

Advanced Service Routine Data Types

The Advanced Service routines refer to a structure defining the properties of the basic generator.
This structure is described in Fortran 90 as follows:

```
TYPE VSL_BRNG_PROPERTIES
    INTEGGER streamstatesize
    INTEGER nseeds
    INTEGER includeszero
    INTEGER wordsize
    INTEGER nbits
    INTEGER reserved(8)
END TYPE VSL_BRNG_PROPERTIES
```

The following table provides brief descriptions of the fields engaged in the above structure:

Field Descriptions

Field	Short Description
streamstatesize	The size, in bytes, of the stream state structure for a given basic generator.
nseeds	The number of 32-bit initial conditions (seeds) necessary to initialize the stream state structure for a given basic generator.
includeszero	Flag value indicating whether the generator can produce a random 0.
wordsize	Machine word size, in bytes, used in integer-value computations. Possible values: 4, 8, and 16 for 32, 64, and 128-bit generators, respectively.
nbits	The number of bits required to represent a random value in integer arithmetic. Note that, for instance, 48-bit random values are stored to 64-bit (8 byte) memory locations. In this case, wordsize/ WordSize is equal to 8 (number of bytes used to store the random value), while nbits/NBits contains the actual number of bits occupied by the value (in this example, 48).
reserved (8)	Reserved for internal use.

NOTE

Using Advanced Service routines for defining generators is not supported for Fortran, but you can use the Fortran interface to get information about a previously-registered generator using vslGetBrngProperties.

```
vslGetBrngProperties
Returns structure with properties of a given basic
generator.
Syntax
status = vslgetbrngproperties( brng, properties )
```


Include Files

- mkl.fi, mkl_vsl.f90

Input Parameters

Name	Type
brng	INTEGER (KIND=4), INTENT (IN)

Description

Number (index) of the registered basic generator; used for identification. See specific values in Table "Values of brng parameter". Negative values indicate the registration error.

Output Parameters

Name	Type
propertie	TYPE (VSL_BRNG_PROPERTIES),
s	INTENT (OUT)

Description

Pointer to the structure containing properties of the generator with number brng

Description

The vslGetBrngProperties function returns a structure with properties of a given basic generator.

Return Values

```
VSL_ERROR_OK,VSL_STATUS_OK
VSL_RNG_ERROR_INVALID_BRNG_INDEX BRNG index is invalid.
```


Convolution and Correlation

Intel® oneAPI Math Kernel Library (oneMKL) VS provides a set of routines intended to perform linear convolution and correlation transformations for single and double precision real and complex data.
For correct definition of implemented operations, see the Mathematical Notation and Definitions.
The current implementation provides:

- Fourier algorithms for one-dimensional single and double precision real and complex data
- Fourier algorithms for multi-dimensional single and double precision real and complex data
- Direct algorithms for one-dimensional single and double precision real and complex data
- Direct algorithms for multi-dimensional single and double precision real and complex data

One-dimensional algorithms cover the following functions from the IBM* ESSL library:

```
SCONF, SCORF
SCOND, SCORD
SDCON, SDCOR
DDCON, DDCOR
SDDCON, SDDCOR.
```

Special wrappers are designed to simulate these ESSL functions. The wrappers are provided as sample sources:

```
$ {MKL}/examples/vslf/essl/vsl_wrappers
```

Additionally, you can browse the examples demonstrating the calculation of the ESSL functions through the wrappers:

```
${MKL}/examples/vslf/essl
```

The convolution and correlation API provides interfaces for Fortran 90 and $\mathrm{C} / 89$ languages. You can use the Fortran 90 interface with programs written in Fortran.
Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides the mkl_vsl.f90 header file. All header files are in the directory

```
$ {MKL}/include
```

See more details about the Fortran header in Random Number Generators topic.
The convolution and correlation API is implemented through task objects, or tasks. Task object is a data structure, or descriptor, which holds parameters that determine the specific convolution or correlation operation. Such parameters may be precision, type, and number of dimensions of user data, an identifier of the computation algorithm to be used, shapes of data arrays, and so on.

All the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) VS convolution and correlation routines process task objects in one way or another: either create a new task descriptor, change the parameter settings, compute mathematical results of the convolution or correlation using the stored parameters, or perform other operations. Accordingly, all routines are split into the following groups:

Task Constructors - routines that create a new task object descriptor and set up most common parameters.
Task Editors - routines that can set or modify some parameter settings in the existing task descriptor.
Task Execution Routines - compute results of the convolution or correlation operation over the actual input data, using the operation parameters held in the task descriptor.
Task Copy - routines used to make several copies of the task descriptor.
Task Destructors - routines that delete task objects and free the memory.
When the task is executed or copied for the first time, a special process runs which is called task commitment. During this process, consistency of task parameters is checked and the required work data are prepared. If the parameters are consistent, the task is tagged as committed successfully. The task remains committed until you edit its parameters. Hence, the task can be executed multiple times after a single commitment process. Since the task commitment process may include costly intermediate calculations such as preparation of Fourier transform of input data, launching the process only once can help speed up overall performance.

Convolution and Correlation Naming Conventions

The names of routines in the convolution and correlation API are written in lowercase (vslsconvexec), while the names of Fortran types and constants are written in uppercase. The names are not case-sensitive.

The names of routines have the following structure:
vsl [datatype] \{conv|corr\}<base name>
where

- vsl is a prefix indicating that the routine belongs to Intel ${ }^{\circledR}$ MKL Vector Statistics.
- [datatype] is optional. If present, the symbol specifies the type of the input and output data and can be s (for single precision real type), d (for double precision real type), c (for single precision complex type), or z (for double precision complex type).
- Conv or Corr specifies whether the routine refers to convolution or correlation task, respectively.
- <base name> field specifies a particular functionality that the routine is designed for, for example, NewTask, DeleteTask.

Convolution and Correlation Data Types

All convolution or correlation routines use the following types for specifying data objects:

```
Type
FORTRAN 77: INTEGER*4 task
(2)
Fortran 90:
TYPE (VSL_CONV_TASK)
FORTRAN 77: INTEGER*4 task Pointer to a task descriptor for correlation
(2)
Fortran 90:
TYPE(VSL_CORR_TASK)
FORTRAN 77: REAL*4 Input/output user real data in single precision
Fortran 90: REAL (KIND=4)
FORTRAN 77: REAL*8 Input/output user real data in double precision
Fortran 90: REAL(KIND=8)
FORTRAN 77: COMLEX*8 Input/output user complex data in single precision
Fortran 90: COMPLEX(KIND=4)
FORTRAN 77: COMPLEX*16 Input/output user complex data in double precision
Fortran 90: COMPLEX(KIND=8)
FORTRAN 77: INTEGER All other data
Fortran 90: INTEGER
```

Generic integer type (without specifying the byte size) is used for all integer data.

NOTE

The actual size of the generic integer type is platform-dependent. Before you compile your application, set an appropriate byte size for integers. See details in the 'Using the ILP64 Interface vs. LP64 Interface' section of the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide.

Convolution and Correlation Parameters

Basic parameters held by the task descriptor are assigned values when the task object is created, copied, or modified by task editors. Parameters of the correlation or convolution task are initially set up by task constructors when the task object is created. Parameter changes or additional settings are made by task editors. More parameters which define location of the data being convolved need to be specified when the task execution routine is invoked.

According to how the parameters are passed or assigned values, all of them can be categorized as either explicit (directly passed as routine parameters when a task object is created or executed) or optional (assigned some default or implicit values during task construction).

The following table lists all applicable parameters used in the Intel® oneAPI Math Kernel Library (oneMKL) convolution and correlation API.

Convolution and Correlation Task Parameters

Name	Category	Type	Default Value Label	Description
job	explicit	integer	Implied by the constructor name	Specifies whether the task relates to convolution or correlation
type	explicit	integer	Implied by the constructor name	Specifies the type (real or complex) of the input/output data. Set to real in the current version.
precision	explicit	integer	Implied by the constructor name	Specifies precision (single or double) of the input/output data to be provided in arrays x, y, z.
mode	explicit	integer	None	Specifies whether the convolution/ correlation computation should be done via Fourier transforms, or by a direct method, or by automatically choosing between the two. See SetMode for the list of named constants for this parameter.
method	optional	integer	"auto"	Hints at a particular computation method if several methods are available for the given mode. Setting this parameter to "auto" means that software will choose the best available method.
internal_pre cision	optional	integer	Set equal to the value of precision	Specifies precision of internal calculations. Can enforce double precision calculations even when input/output data are single precision. See SetInternalPrecision for the list of named constants for this parameter.
dims	explicit	integer	None	Specifies the rank (number of dimensions) of the user data provided in arrays x, y, z. Can be in the range from 1 to 7 .
x, y	explicit	real arrays	None	Specify input data arrays. See Data Allocation for more information.
z	explicit	real array	None	Specifies output data array. See Data Allocation for more information.
xshape, yshape, zshape	explicit	integer arrays	None	Define shapes of the arrays x, y, z. See Data Allocation for more information.
xstride, ystride, zstride	explicit	integer arrays	None	Define strides within arrays x, y, z, that is specify the physical location of the input and output data in these arrays. See Data Allocation for more information.

Name	Category	Type	Default Value Label	Description
start	optional	integer array	Undefined	Defines the first element of the mathematical result that will be stored to output array z. See Set Start and Data Allocation for more information.
decimation	optional	integer array	Undefined	Defines how to thin out the mathematical result that will be stored to output array z. See SetDecimation and Data Allocation for more information.

Convolution and Correlation Task Status and Error Reporting

The task status is an integer value, which is zero if no error has been detected while processing the task, or a specific non-zero error code otherwise. Negative status values indicate errors, and positive values indicate warnings.
An error can be caused by invalid parameter values, a system fault like a memory allocation failure, or can be an internal error self-detected by the software.
Each task descriptor contains the current status of the task. When creating a task object, the constructor assigns the VSL_STATUS_OK status to the task. When processing the task afterwards, other routines such as editors or executors can change the task status if an error occurs and write a corresponding error code into the task status field.

Note that at the stage of creating a task or editing its parameters, the set of parameters may be inconsistent. The parameter consistency check is only performed during the task commitment operation, which is implicitly invoked before task execution or task copying. If an error is detected at this stage, task execution or task copying is terminated and the task descriptor saves the corresponding error code. Once an error occurs, any further attempts to process that task descriptor is terminated and the task keeps the same error code.
Normally, every convolution or correlation function (except DeleteTask) returns the status assigned to the task while performing the function operation.

The header files define symbolic names for the status codes. These names are defined as integer constants via the PARAMETER operators.
If there is no error, the VSL_STATUS_OK status is returned, which is defined as zero:

F90/F95:

```
INTEGER(KIND=4) VSL_STATUS_OK
PARAMETER(VSL_STATUS_OK = 人 )
```

In case of an error, a non-zero error code is returned, which indicates the origin of the failure. The following status codes for the convolution/correlation error codes are pre-defined in the header files.

Convolution/Correlation Status Codes

Status Code	Description
VSL_CC_ERROR_NOT_IMPLEMENTED	Requested functionality is not implemented.
VSL_CC_ERROR_ALLOCATION_FAILURE	Memory allocation failure.
VSL_CC_ERROR_BAD_DESCRIPTOR	Task descriptor is corrupted.
VSL_CC_ERROR_SERVICE_FAILURE	A service function has failed.
VSL_CC_ERROR_EDIT_FAILURE	Failure while editing the task.
VSL_CC_ERROR_EDIT_PROHIBITED	You cannot edit this parameter.

Status Code	Description
VSL_CC_ERROR_COMMIT_FAILURE	Task commitment has failed.
VSL_CC_ERROR_COPY_FAILURE	Failure while copying the task.
VSL_CC_ERROR_DELETE_FAILURE	Failure while deleting the task.
VSL_CC_ERROR_BAD_ARGUMENT	Bad argument or task parameter.
VSL_CC_ERROR_JOB	Bad parameter: job.
SL_CC_ERROR_KIND	Bad parameter: kind.
VSL_CC_ERROR_MODE	Bad parameter: mode.
VSL_CC_ERROR_METHOD	Bad parameter: method.
VSL_CC_ERROR_TYPE	Bad parameter: type.
VSL_CC_ERROR_EXTERNAL_PRECISION	Bad parameter: external_precision.
VSL_CC_ERROR_INTERNAL_PRECISION	Bad parameter: internal_precision.
VSL_CC_ERROR_PRECISION	Incompatible external/internal precisions.
VSL_CC_ERROR_DIMS	Bad parameter: dims.
VSL_CC_ERROR_XSHAPE	Bad parameter: xshape.
VSL_CC_ERROR_YSHAPE	Bad parameter: yshape.
	Callback function for an abstract BRNG returns an invalid number of updated entries in a buffer, that is, < 0 or $>$ nmax.
VSL_CC_ERROR_ZSHAPE	Bad parameter: zshape.
VSL_CC_ERROR_XSTRIDE	Bad parameter: xstride.
VSL_CC_ERROR_YSTRIDE	Bad parameter: ystride.
VSL_CC_ERROR_ZSTRIDE	Bad parameter: zstride.
VSL_CC_ERROR_X	Bad parameter: x.
VSL_CC_ERROR_Y	Bad parameter: y.
VSL_CC_ERROR_Z	Bad parameter: z.
VSL_CC_ERROR_START	Bad parameter: start.
VSL_CC_ERROR_DECIMATION	Bad parameter: decimation.
VSL_CC_ERROR_OTHER	Another error.

Convolution and Correlation Task Constructors

Task constructors are routines intended for creating a new task descriptor and setting up basic parameters. No additional parameter adjustment is typically required and other routines can use the task object.
Intel ${ }^{\circledR}$ MKL implementation of the convolution and correlation API provides two different forms of constructors: a general form and an X-form. X-form constructors work in the same way as the general form constructors but also assign particular data to the first operand vector used in the convolution or correlation operation (stored in array x).

Using X-form constructors is recommended when you need to compute multiple convolutions or correlations with the same data vector held in array x against different vectors held in array y. This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.
Each constructor routine has an associated one-dimensional version that provides algorithmic and computational benefits.

NOTE

If the constructor fails to create a task descriptor, it returns the NULL task pointer.

The Table "Task Constructors" lists available task constructors:
Task Constructors

Routine	Description
vslConvNewTask/vslCorrNewTask	Creates a new convolution or correlation task descriptor for a multidimensional case.
vslConvNewTask1D/	Creates a new convolution or correlation task descriptor for a one-dimensional case.
vslCorrNewTask1D	Creates a new convolution or correlation task descriptor as an VslConvNewTaskX/vslCorrNewTaskX
Xslform for a multidimensional case.	
vslCorrNewTaskX1D	Creates a new convolution or correlation task descriptor as an
	X-form for a one-dimensional case.

vslConvNewTask/vslCorrNewTask

Creates a new convolution or correlation task descriptor for multidimensional case.

Syntax

```
status = vslsconvnewtask(task, mode, dims, xshape, yshape, zshape)
status = vsldconvnewtask(task, mode, dims, xshape, yshape, zshape)
status = vslcconvnewtask(task, mode, dims, xshape, yshape, zshape)
status = vslzconvnewtask(task, mode, dims, xshape, yshape, zshape)
status = vslscorrnewtask(task, mode, dims, xshape, yshape, zshape)
status = vsldcorrnewtask(task, mode, dims, xshape, yshape, zshape)
status = vslccorrnewtask(task, mode, dims, xshape, yshape, zshape)
status = vslzcorrnewtask(task, mode, dims, xshape, yshape, zshape)
```


Include Files

- mkl.fi, mkl_vsl.f90

Input Parameters

Name	Type
mode	FORTRAN 77: INTEGER
	Fortran 90: INTEGER
dims	
	FORTRAN 77: INTEGER
	Fortran 90: INTEGER
xshape	FORTRAN 77: INTEGER
	Fortran 90: INTEGER,
	DIMENSION (*)
	FORTRAN 77: INTEGER
	Fortran 90: INTEGER,
	DIMENSION (*)
zshape	FORTRAN 77: INTEGER
	Fortran 90: INTEGER,
	DIMENSION (*)

Description

Specifies whether convolution/correlation calculation must be performed by using a direct algorithm or through Fourier transform of the input data. See Table "Values of mode parameter" for a list of possible values.

Rank of user data. Specifies number of dimensions for the input and output arrays x, y, and z used during the execution stage. Must be in the range from 1 to 7 . The value is explicitly assigned by the constructor.

Defines the shape of the input data for the source array x. See Data Allocation for more information.

Defines the shape of the input data for the source array y. See Data Allocation for more information.

Defines the shape of the output data to be stored in array z. See Data Allocation for more information.

Output Parameters

```
Name
```


Type

```
task
FORTRAN 77: INTEGER*4
task(2) for vslsconvnewtask, vsldconvnewtask, vslcconvnewtask, vslzconvnewtask
INTEGER*4 task(2) for vslscorrnewtask, vsldcorrnewtask, vslccorrnewtask, vslzcorrnewtask
```

```
Fortran 90:
```

Fortran 90:
TYPE(VSL_CONV_TASK) for
vslsconvnewtask,
vsldconvnewtask,
vslcconvnewtask,
vslzconvnewtask
TYPE(VSL_CORR_TASK) for
vslscorrnewtask,
vsldcorrnewtask,
vslccorrnewtask,
vslzcorrnewtask

```

\section*{Description}

Pointer to the task descriptor if created successfully or NULL pointer otherwise.
```

status FORTRAN 77: INTEGER
Fortran 90: INTEGER

```
Name Type Description

\section*{Description}

Set to VSL_STATUS_OK if the task is created successfully or set to non-zero error code otherwise.

\section*{Description}

Each vslConvNewTask/vslCorrNewTask constructor creates a new convolution or correlation task descriptor with the user specified values for explicit parameters. The optional parameters are set to their default values (see Table "Convolution and Correlation Task Parameters").

The parameters xshape, yshape, and zshape define the shapes of the input and output data provided by the arrays \(x, y\), and \(z\), respectively. Each shape parameter is an array of integers with its length equal to the value of dims. You explicitly assign the shape parameters when calling the constructor. If the value of the parameter dims is 1, then xshape, yshape, zshape are equal to the number of elements read from the arrays \(x\) and \(y\) or stored to the array \(z\). Note that values of shape parameters may differ from physical shapes of arrays \(x, y\), and \(z\) if non-trivial strides are assigned.
If the constructor fails to create a task descriptor, it returns a NULL task pointer.

\section*{vslConvNewTask1D/vslCorrNewTask1D}

Creates a new convolution or correlation task
descriptor for one-dimensional case.

\section*{Syntax}
```

status = vslsconvnewtaskld(task, mode, xshape, yshape, zshape)
status = vsldconvnewtaskld(task, mode, xshape, yshape, zshape)
status = vslcconvnewtaskld(task, mode, xshape, yshape, zshape)
status = vslzconvnewtaskld(task, mode, xshape, yshape, zshape)
status = vslscorrnewtaskld(task, mode, xshape, yshape, zshape)
status = vsldcorrnewtaskld(task, mode, xshape, yshape, zshape)
status = vslccorrnewtaskld(task, mode, xshape, yshape, zshape)
status = vslzcorrnewtaskld(task, mode, xshape, yshape, zshape)

```

\section*{Include Files}
- mkl.fi, mkl_vsl.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
mode & INTEGER \\
& \\
xshape & INTEGER \\
yshape & INTEGER
\end{tabular}

\section*{Description}

Specifies whether convolution/correlation calculation must be performed by using a direct algorithm or through Fourier transform of the input data. See Table "Values of mode parameter" for a list of possible values.

Defines the length of the input data sequence for the source array \(x\). See Data Allocation for more information.

Defines the length of the input data sequence for the source array \(y\). See Data Allocation for more information.
\begin{tabular}{ll} 
Name & Type \\
zshape & INTEGER
\end{tabular}

\section*{Output Parameters}
```

Name Type
task FORTRAN 77: INTEGER*4
task(2) for
vslsconvnewtask1d,
vsldconvnewtask1d,
vslcconvnewtask1d,
vslzconvnewtask1d
INTEGER*4 task(2) for
vslscorrnewtask1d,
vsldcorrnewtaskld,
vslccorrnewtaskld,
vslzcorrnewtask1d
TYPE (VSL_CONV_TASK) for
vslsconvnewtaskld,
vsldconvnewtaskld,
vslcconvnewtask1d,
vslzconvnewtask1d
TYPE (VSL_CORR_TASK) for
vslscorrnewtaskld,
vsldcorrnewtaskld,
vslccorrnewtask1d,
vslzcorrnewtask1d
vSLCorrTaskPtr* for
vslsCorrNewTask1D,
vsldCorrNewTask1D,
vslcCorrNewTask1D,
vslzCorrNewTask1D
status INTEGER

```

\section*{Description}

Defines the length of the output data sequence to be stored in array \(z\). See Data Allocation for more information.

\section*{Description}

Pointer to the task descriptor if created successfully or NULL pointer otherwise.

Set to VSL_STATUS_OK if the task is created successfully or set to non-zero error code otherwise.

\section*{Description}

Each vslConvNewTask1D/vslCorrNewTask1D constructor creates a new convolution or correlation task descriptor with the user specified values for explicit parameters. The optional parameters are set to their default values (see Table "Convolution and Correlation Task Parameters"). Unlike vslConvNewTask/ vslCorrNewTask, these routines represent a special one-dimensional version of the constructor which assumes that the value of the parameter dims is 1 . The parameters xshape, yshape, and zshape are equal to the number of elements read from the arrays \(x\) and \(y\) or stored to the array \(z\). You explicitly assign the shape parameters when calling the constructor.
```

vslConvNewTaskX/vslCorrNewTaskX
Creates a new convolution or correlation task
descriptor for multidimensional case and assigns
source data to the first operand vector.

```

\section*{Syntax}
```

status = vslsconvnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vsldconvnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vslcconvnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vslzconvnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vslscorrnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vsldcorrnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vslccorrnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)
status = vslzcorrnewtaskx(task, mode, dims, xshape, yshape, zshape, x, xstride)

```

\section*{Include Files}
- mkl.fi, mkl_vsl.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
mode & INTEGER \\
dims & \\
INTEGER \\
xshape & INTEGER, DIMENSION (*) \\
yshape & INTEGER, DIMENSION (*) \\
zshape & INTEGER, DIMENSION (*) \\
x & \begin{tabular}{l} 
REAL*8 for real data in double \\
precision flavors,
\end{tabular}
\end{tabular}

\section*{Description}

Specifies whether convolution/correlation calculation must be performed by using a direct algorithm or through Fourier transform of the input data. See Table "Values of mode parameter" for a list of possible values.

Rank of user data. Specifies number of dimensions for the input and output arrays \(x, y\), and \(z\) used during the execution stage. Must be in the range from 1 to 7 . The value is explicitly assigned by the constructor.

Defines the shape of the input data for the source array \(x\). See Data Allocation for more information.

Defines the shape of the input data for the source array \(y\). See Data Allocation for more information.

Defines the shape of the output data to be stored in array z.See Data Allocation for more information.

Pointer to the array containing input data for the first operand vector.See Data Allocation for more information.

\section*{Name Type Description}

REAL (KIND=8), DIMENSION
(*) for real data in double precision flavors,

COMPLEX(KIND=4), DIMENSION
(*) for complex data in single precision flavors,

COMPLEX(KIND=8), DIMENSION
(*) for complex data in double precision flavors
xstride INTEGER, DIMENSION(*) Strides for input data in the array \(x\).

\section*{Output Parameters}
```

Name Type
task INTEGER*4 task(2) for
vslscorrnewtaskx,
vsldcorrnewtaskx,
vslccorrnewtaskx,
vslzcorrnewtaskx
TYPE (VSL_CONV_TASK) for
vslsconvnewtaskx,
vsldconvnewtaskx,
vslcconvnewtaskx,
vslzconvnewtaskx
TYPE (VSL_CORR_TASK) for
vslscorrnewtaskx,
vsldcorrnewtaskx,
vslccorrnewtaskx,
vslzcorrnewtaskx
VSLCorrTaskPtr* for
vslsCorrNewTaskX,
vsldCorrNewTaskX,
vslcCorrNewTaskX,
vslzCorrNewTaskX
status INTEGER

```

\section*{Description}

Pointer to the task descriptor if created successfully or NULL pointer otherwise.

Set to VSL_STATUS_OK if the task is created successfully or set to non-zero error code otherwise.

\section*{Description}

Each vslConvNewTaskX/vslCorrNewTaskX constructor creates a new convolution or correlation task descriptor with the user specified values for explicit parameters. The optional parameters are set to their default values (see Table "Convolution and Correlation Task Parameters").

Unlike vslConvNewTask/vslCorrNewTask, these routines represent the so called X-form version of the constructor, which means that in addition to creating the task descriptor they assign particular data to the first operand vector in array \(x\) used in convolution or correlation operation. The task descriptor created by the vslConvNewTaskX/vslCorrNewTaskX constructor keeps the pointer to the array \(x\) all the time, that is, until the task object is deleted by one of the destructor routines (see vslConvDeleteTask/vslCorrDeleteTask).

Using this form of constructors is recommended when you need to compute multiple convolutions or correlations with the same data vector in array \(x\) against different vectors in array \(y\). This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.

The parameters xshape, yshape, and zshape define the shapes of the input and output data provided by the arrays \(x, y\), and \(z\), respectively. Each shape parameter is an array of integers with its length equal to the value of dims. You explicitly assign the shape parameters when calling the constructor. If the value of the parameter dims is 1, then xshape, yshape, and zshape are equal to the number of elements read from the arrays \(x\) and \(y\) or stored to the array \(z\). Note that values of shape parameters may differ from physical shapes of arrays \(x, y\), and \(z\) if non-trivial strides are assigned.

The stride parameter xstride specifies the physical location of the input data in the array \(x\). In a onedimensional case, stride is an interval between locations of consecutive elements of the array. For example, if the value of the parameter xstride is \(s\), then only every \(s^{\text {th }}\) element of the array \(x\) will be used to form the input sequence. The stride value must be positive or negative but not zero.

\section*{vslConvNewTaskX1D/vsICorrNewTaskX1D}

Creates a new convolution or correlation task
descriptor for one-dimensional case and assigns source data to the first operand vector.

\section*{Syntax}
```

status = vslsconvnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)
status = vsldconvnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)
status = vslcconvnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)
status = vslzconvnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)
status = vslscorrnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)
status = vsldcorrnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)
status = vslccorrnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)
status = vslzcorrnewtaskxld(task, mode, xshape, yshape, zshape, x, xstride)

```

Include Files
- mkl.fi, mkl_vsl.f90

\section*{Input Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
mode & INTEGER & \begin{tabular}{l} 
Specifies whether convolution/correlation calculation must \\
be performed by using a direct algorithm or through Fourier \\
transform of the input data. See Table "Values of mode \\
parameter" for a list of possible values.
\end{tabular} \\
xshape & INTEGER & \begin{tabular}{l} 
Defines the length of the input data sequence for the \\
source array \(x\). See Data Allocation for more information.
\end{tabular}
\end{tabular}
\begin{tabular}{ll} 
Name & Type \\
yshape & INTEGER \\
zshape & \\
&
\end{tabular}
x precision flavors

REAL*8 for real data in double precision flavors,

COMPLEX* 8 for complex data in single precision flavors, COMPLEX*16 for complex data in double precision flavors REAL (KIND=4), DIMENSION
(*) for real data in single precision flavors,

REAL (KIND=8), DIMENSION
(*) for real data in double precision flavors,

COMPLEX(KIND=4), DIMENSION
(*) for complex data in single precision flavors,
```

COMPLEX(KIND=8), DIMENSION

```
(*) for complex data in double

\section*{Output Parameters}
```

Name
task
INTEGER*4 task(2) for
vslscorrnewtaskx1d,
vsldcorrnewtaskxld,
vslccorrnewtaskxld,
vslzcorrnewtaskx1d
TYPE (VSL_CONV_TASK) for
vslsconvnewtaskxld,
vsldconvnewtaskxld,
vslcconvnewtaskxld,
vslzconvnewtaskx1d
TYPE (VSL_CORR_TASK) for
vslscorrnewtaskxld,
vsldcorrnewtaskxld,
vslccorrnewtaskxld,
vslzcorrnewtaskx1d

```

\section*{Description}

Defines the length of the input data sequence for the source array \(y\). See Data Allocation for more information.

Defines the length of the output data sequence to be stored in array \(z\). See Data Allocation for more information.

Pointer to the array containing input data for the first operand vector. See Data Allocation for more information.

Stride for input data sequence in the arrayx.

\section*{Description}

Pointer to the task descriptor if created successfully or NULL pointer otherwise.
```

Name Type
VSLCorrTaskPtr* for
vslsCorrNewTaskX1D,
vsldCorrNewTaskX1D,
vslcCorrNewTaskX1D,
vslzCorrNewTaskX1D
status INTEGER

```

\section*{Description}

Set to VSL_STATUS_OK if the task is created successfully or set to non-zero error code otherwise.

\section*{Description}

Each vslConvNewTaskX1D/vslCorrNewTaskX1D constructor creates a new convolution or correlation task descriptor with the user specified values for explicit parameters. The optional parameters are set to their default values (see Table "Convolution and Correlation Task Parameters").
These routines represent a special one-dimensional version of the so called X-form of the constructor. This assumes that the value of the parameter dims is 1 and that in addition to creating the task descriptor, constructor routines assign particular data to the first operand vector in array \(x\) used in convolution or correlation operation. The task descriptor created by the vslConvNewTaskX1D/vslCorrNewTaskX1D constructor keeps the pointer to the array \(x\) all the time, that is, until the task object is deleted by one of the destructor routines (see vslConvDeleteTask/vslCorrDeleteTask).

Using this form of constructors is recommended when you need to compute multiple convolutions or correlations with the same data vector in array \(x\) against different vectors in array \(y\). This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.
The parameters xshape, yshape, and zshape are equal to the number of elements read from the arrays \(x\) and \(y\) or stored to the array \(z\). You explicitly assign the shape parameters when calling the constructor.
The stride parameters xstride specifies the physical location of the input data in the array \(x\) and is an interval between locations of consecutive elements of the array. For example, if the value of the parameter \(x\) stride is \(s\), then only every \(s^{\text {th }}\) element of the array \(x\) will be used to form the input sequence. The stride value must be positive or negative but not zero.

\section*{Convolution and Correlation Task Editors}

Task editors in convolution and correlation API of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) are routines intended for setting up or changing the following task parameters (seeTable "Convolution and Correlation Task Parameters"):
- mode
- internal_precision
- start
- decimation

For setting up or changing each of the above parameters, a separate routine exists.

\section*{NOTE}

Fields of the task descriptor structure are accessible only through the set of task editor routines provided with the software.

The work data computed during the last commitment process may become invalid with respect to new parameter settings. That is why after applying any of the editor routines to change the task descriptor settings, the task loses its commitment status and goes through the full commitment process again during the next execution or copy operation. For more information on task commitment, see the Introduction to Convolution and Correlation.
Table "Task Editors" lists available task editors.
Task Editors
\begin{tabular}{ll}
\hline Routine & Description \\
\hline vslConvSetMode/vslCorrSetMode & \begin{tabular}{l} 
Changes the value of the parameter mode for the \\
operation of convolution or correlation.
\end{tabular} \\
\begin{tabular}{l} 
vslConvSetInternalPrecision/ \\
vslCorrSetInternalPrecision
\end{tabular} & \begin{tabular}{l} 
Changes the value of the parameter \\
internal_precision for the operation of convolution or \\
correlation.
\end{tabular} \\
vslConvSetStart/vslCorrSetStart & \begin{tabular}{l} 
Sets the value of the parameter start for the operation \\
of convolution or correlation.
\end{tabular} \\
vslConvSetDecimation/ & \begin{tabular}{l} 
Sets the value of the parameter decimation for the \\
operation of convolution or correlation.
\end{tabular} \\
\hline
\end{tabular}

\section*{NOTE}

You can use the NULL task pointer in calls to editor routines. In this case, the routine is terminated and no system crash occurs.

\section*{vslConvSetMode/vslCorrSetMode}

Changes the value of the parameter mode in the convolution or correlation task descriptor.

\section*{Syntax}
```

status = vslconvsetmode(task, newmode)
status = vslcorrsetmode(task, newmode)

```

\section*{Include Files}
- mkl.fi, mkl_vsl.f90

\section*{Input Parameters}
```

Name Type
task FORTRAN 77: INTEGER*4
task(2) for vslconvsetmode
INTEGER*4 task(2) for
vslcorrsetmode
Fortran 90:
TYPE (VSL_CONV_TASK) for
vslconvsetmode
TYPE (VSL_CORR_TASK) for
vslcorrsetmode

```
\begin{tabular}{lll} 
Name & Type & Description \\
newmode & FORTRAN 77: INTEGER & New value of the parameter mode. \\
& Fortran 90: INTEGER &
\end{tabular}

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
status & FORTRAN 77: INTEGER & Current status of the task. \\
& Fortran \(90:\) INTEGER &
\end{tabular}

\section*{Description}

This function is declared in mkl_vsl.f90 for the Fortran interface.
The function routine changes the value of the parameter mode for the operation of convolution or correlation. This parameter defines whether the computation should be done via Fourier transforms of the input/output data or using a direct algorithm. Initial value for mode is assigned by a task constructor.

Predefined values for the mode parameter are as follows:
Values of mode parameter
\begin{tabular}{ll}
\hline Value & Purpose \\
\hline VSL_CONV_MODE_FFT & Compute convolution by using fast Fourier transform. \\
VSL_CORR_MODE_FFT & Compute correlation by using fast Fourier transform. \\
VSL_CONV_MODE_DIRECT & Compute convolution directly. \\
VSL_CORR_MODE_DIRECT & Compute correlation directly. \\
VSL_CONV_MODE_AUTO & Automatically choose direct or Fourier mode for convolution. \\
VSL_CORR_MODE_AUTO & Automatically choose direct or Fourier mode for correlation. \\
\hline
\end{tabular}
vsIConvSetInternalPrecision/vslCorrSetInternalPrecision
Changes the value of the parameter internal_precision
in the convolution or correlation task descriptor.

\section*{Syntax}
```

status = vslconvsetinternalprecision(task, precision)
status = vslcorrsetinternalprecision(task, precision)

```

\section*{Include Files}
- mkl.fi,mkl_vsl.f90

\section*{Input Parameters}
```

Name Type Description
task INTEGER*4 task(2) for
n
TYPE (VSL_CONV_TASK) for
vslconvsetinternalprecisio
n
TYPE (VSL_CORR_TASK) for
vslcorrsetinternalprecisio
n
precision INTEGER New value of the parameter internal_precision.

```

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
status & INTEGER & Current status of the task.
\end{tabular}

\section*{Description}

The vslConvSetInternalPrecision/vslCorrSetInternalPrecision routine changes the value of the parameter internal_precision for the operation of convolution or correlation. This parameter defines whether the internal computations of the convolution or correlation result should be done in single or double precision. Initial value for internal_precision is assigned by a task constructor and set to either "single" or "double" according to the particular flavor of the constructor used.

Changing the internal_precision can be useful if the default setting of this parameter was "single" but you want to calculate the result with double precision even if input and output data are represented in single precision.

Predefined values for the internal_precision input parameter are as follows:
Values of internal_precision Parameter
\begin{tabular}{ll}
\hline Value & Purpose \\
\hline VSL_CONV_PRECISION_SINGLE & Compute convolution with single precision. \\
VSL_CORR_PRECISION_SINGLE & Compute correlation with single precision. \\
VSL_CONV_PRECISION_DOUBLE & Compute convolution with double precision. \\
VSL_CORR_PRECISION_DOUBLE & Compute correlation with double precision. \\
\hline
\end{tabular}

\section*{vslConvSetStart/vslCorrSetStart}

Changes the value of the parameter start in the convolution or correlation task descriptor.

\section*{Syntax}
```

status = vslconvsetstart(task, start)
status = vslcorrsetstart(task, start)

```

\section*{Include Files}
- mkl.fi, mkl_vsl.f90

\section*{Input Parameters}
```

Name Type
task INTEGER*4 task(2) for
vslcorrsetstart
TYPE (VSL_CONV_TASK) for
vslconvsetstart
TYPE (VSL_CORR_TASK) for
vslcorrsetstart
start INTEGER, DIMENSION (*) New value of the parameter start.

```

\section*{Output Parameters}
\begin{tabular}{lll} 
Name & Type & Description \\
status & INTEGER & Current status of the task.
\end{tabular}

\section*{Description}

The vslConvSetStart/vslCorrSetStart routine sets the value of the parameter start for the operation of convolution or correlation. In a one-dimensional case, this parameter points to the first element in the mathematical result that should be stored in the output array. In a multidimensional case, start is an array of indices and its length is equal to the number of dimensions specified by the parameter dims. For more information about the definition and effect of this parameter, see Data Allocation.

During the initial task descriptor construction, the default value for start is undefined and this parameter is not used. Therefore the only way to set and use the start parameter is via assigning it some value by one of the vslConvSetStart/vslCorrSetStart routines.
vslConvSetDecimation/vslCorrSetDecimation
Changes the value of the parameter decimation in the convolution or correlation task descriptor.

Syntax
```

status = vslconvsetdecimation(task, decimation)
status = vslcorrsetdecimation(task, decimation)

```

\section*{Include Files}
- mkl.fi, mkl_vsl.f90

Input Parameters
\begin{tabular}{lll} 
Name & Type & Description \\
task & \begin{tabular}{l} 
INTEGER*4 task (2) for \\
vslcorrsetdecimation
\end{tabular} & Pointer to the task descriptor.
\end{tabular}
```

Name Type Description
TYPE (VSL_CONV_TASK) for
vslconvsetdecimation
TYPE (VSL_CORR_TASK) for
vslcorrsetdecimation
decimatio INTEGER, DIMENSION (*)
n

```

\section*{Output Parameters}

\section*{Name Type}
status INTEGER

\section*{Description}

New value of the parameter decimation.

\section*{Description}

Current status of the task.

\section*{Description}

The routine sets the value of the parameter decimation for the operation of convolution or correlation. This parameter determines how to thin out the mathematical result of convolution or correlation before writing it into the output data array. For example, in a one-dimensional case, if decimation \(=d>1\), only every \(d\)-th element of the mathematical result is written to the output array \(z\). In a multidimensional case, decimation is an array of indices and its length is equal to the number of dimensions specified by the parameter dims. For more information about the definition and effect of this parameter, see Data Allocation.

During the initial task descriptor construction, the default value for decimation is undefined and this parameter is not used. Therefore the only way to set and use the decimation parameter is via assigning it some value by one of the vslSetDecimation routines.

\section*{Task Execution Routines}

Task execution routines compute convolution or correlation results based on parameters held by the task descriptor and on the user data supplied for input vectors.
After you create and adjust a task, you can execute it multiple times by applying to different input/output data of the same type, precision, and shape.
Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides the following forms of convolution/correlation execution routines:
- General form executors that use the task descriptor created by the general form constructor and expect to get two source data arrays \(x\) and \(y\) on input
- X-form executors that use the task descriptor created by the X-form constructor and expect to get only one source data array \(y\) on input because the first array \(x\) has been already specified on the construction stage

When the task is executed for the first time, the execution routine includes a task commitment operation, which involves two basic steps: parameters consistency check and preparation of auxiliary data (for example, this might be the calculation of Fourier transform for input data).
Each execution routine has an associated one-dimensional version that provides algorithmic and computational benefits.

\section*{NOTE}

You can use the NULL task pointer in calls to execution routines. In this case, the routine is terminated and no system crash occurs.

If the task is executed successfully, the execution routine returns the zero status code. If an error is detected, the execution routine returns an error code which signals that a specific error has occurred. In particular, an error status code is returned in the following cases:
- if the task pointer is NULL
- if the task descriptor is corrupted
- if calculation has failed for some other reason.

\section*{NOTE}

Intel \({ }^{\circledR}\) MKL does not control floating-point errors, like overflow or gradual underflow, or operations with NaNs, etc.

If an error occurs, the task descriptor stores the error code.
The table below lists all task execution routines.
Task Execution Routines
\begin{tabular}{ll}
\hline Routine & Description \\
\hline vslConvExec/vslCorrExec & Computes convolution or correlation for a multidimensional case. \\
vslConvExec1D/vslCorrExec1D & Computes convolution or correlation for a one-dimensional case. \\
vslConvExecX/vslCorrExecX & \begin{tabular}{l} 
Computes convolution or correlation as X-form for a \\
multidimensional case.
\end{tabular} \\
vslConvExecX1D/vslCorrExecX1D & \begin{tabular}{l} 
Computes convolution or correlation as X-form for a one- \\
dimensional case.
\end{tabular} \\
\hline
\end{tabular}

\section*{vslConvExec/vslCorrExec \\ Computes convolution or correlation for multidimensional case.}

\section*{Syntax}
```

status = vslsconvexec(task, x, xstride, y, ystride, z, zstride)
status = vsldconvexec(task, x, xstride, y, ystride, z, zstride)
status = vslcconvexec(task, x, xstride, y, ystride, z, zstride)
status = vslzconvexec(task, x, xstride, y, ystride, z, zstride)
status = vslscorrexec(task, x, xstride, y, ystride, z, zstride)
status = vsldcorrexec(task, x, xstride, y, ystride, z, zstride)
status = vslccorrexec(task, x, xstride, y, ystride, z, zstride)
status = vslzcorrexec(task, x, xstride, y, ystride, z, zstride)

```

\section*{Include Files}
- mkl.fi, mkl_vsl.f90

\section*{Input Parameters}
\begin{tabular}{ll} 
Name & Type \\
task & INTEGER*4 task (2) for \\
& vslscorrexec, vsldcorrexec, \\
& vslccorrexec, vslzcorrexec
\end{tabular}
\begin{tabular}{|c|c|}
\hline Name & Type \\
\hline & TYPE (VSL_CONV_TASK) for vslsconvexec, vsldconvexec, vslcconvexec, vslzconvexec \\
\hline & TYPE (VSL_CORR_TASK) for vslscorrexec, vsldcorrexec, vslccorrexec, vslzcorrexec \\
\hline & ```
VSLCorrTaskPtr for
vslsCorrExec, vsldCorrExec,
vslcCorrExec, vslzCorrExec
``` \\
\hline \(x, y\) & REAL*8 for vsldconvexec and vsldcorrexec, \\
\hline & COMPLEX*8 forvslcconvexec and vslccorrexec, \\
\hline & COMPLEX*16 forvslzconvexec and vslzcorrexec \\
\hline & ```
REAL(KIND=4), DIMENSION(*)
for vslsconvexec and
vslscorrexec,
``` \\
\hline & ```
REAL(KIND=8), DIMENSION(*)
for vsldconvexec and
vsldcorrexec,
``` \\
\hline & COMPLEX(KIND=4), DIMENSION (*) forvslcconvexec and vslccorrexec, \\
\hline & \begin{tabular}{l}
COMPLEX(KIND=8), DIMENSION \\
(*) for vslzconvexec and vslzcorrexec
\end{tabular} \\
\hline xstride, ystride, zstride & INTEGER, DIMENSION (*) \\
\hline
\end{tabular}
xstride,
zstride

\section*{Output Parameters}

\section*{Name}

\section*{Type}

REAL*8 for vsldconvexec and vsldcorrexec,

COMPLEX*8 forvslcconvexec and vslccorrexec,

COMPLEX*16 forvslzconvexec
and vslzcorrexec
REAL (KIND=4), DIMENSION(*)
for vslsconvexec and
vslscorrexec,

\section*{Description}

\section*{Pointers to arrays containing input data. See Data} Allocation for more information.

Strides for input and output data. For more information, see stride parameters.

\section*{Description}

Pointer to the array that stores output data. See Data Allocation for more information.
```

Name Type Description
REAL(KIND=8), DIMENSION(*)
for vsldconvexec and
vsldcorrexec,
COMPLEX(KIND=4), DIMENSION
(*) forvslcconvexec and
vslccorrexec,
COMPLEX(KIND=8), DIMENSION
(*) for vslzconvexec and
vslzcorrexec
status INTEGER

```

Set to VSL_STATUS_OK if the task is executed successfully or set to non-zero error code otherwise.

\section*{Description}

Each of the vslConvExec/vslCorrExec routines computes convolution or correlation of the data provided by the arrays \(x\) and \(y\) and then stores the results in the array \(z\). Parameters of the operation are read from the task descriptor created previously by a corresponding vslConvNewTask/vslCorrNewTask constructor and pointed to by task. If task is NULL, no operation is done.

The stride parameters xstride, ystride, and zstride specify the physical location of the input and output data in the arrays \(x, y\), and \(z\), respectively. In a one-dimensional case, stride is an interval between locations of consecutive elements of the array. For example, if the value of the parameter zstride is s , then only every \(s^{\text {th }}\) element of the array \(z\) will be used to store the output data. The stride value must be positive or negative but not zero.

\section*{vsIConvExec1D/vsICorrExec1D}

Computes convolution or correlation for one-
dimensional case.

\section*{Syntax}
```

status = vslsconvexecld(task, x, xstride, y, ystride, z, zstride)
status = vsldconvexecld(task, x, xstride, y, ystride, z, zstride)
status = vslcconvexecld(task, x, xstride, y, ystride, z, zstride)
status = vslzconvexecld(task, x, xstride, y, ystride, z, zstride)
status = vslscorrexecld(task, x, xstride, y, ystride, z, zstride)
status = vsldcorrexecld(task, x, xstride, y, ystride, z, zstride)
status = vslccorrexecld(task, x, xstride, y, ystride, z, zstride)
status = vslzcorrexecld(task, x, xstride, y, ystride, z, zstride)

```

\section*{Include Files}
- mkl.fi, mkl_vsl.f90

\section*{Input Parameters}
```

Name
task
x, y
xstride, INTEGER
ystride,
zstride

```

\section*{Description}

Pointer to the task descriptor.

Pointers to arrays containing input data. See Data Allocation for more information.

Strides for input and output data. For more information, see stride parameters.

\section*{Output Parameters}
```

Name Type
z
COMPLEX*8 forvslcconvexec1d
and vslccorrexec1d,
COMPLEX*16
forvslzconvexecld and
vslzcorrexec1d
REAL(KIND=4), DIMENSION(*)
for vslsconvexec1d and
vslscorrexecld,
REAL(KIND=8), DIMENSION(*)
for vsldconvexec1d and
vsldcorrexecld,
COMPLEX(KIND=4), DIMENSION
(*) forvslcconvexec1d and
vslccorrexecld,
COMPLEX(KIND=8), DIMENSION
(*) for vslzconvexec1d and
vslzcorrexec1d
status INTEGER

```

\section*{Description}

Pointer to the array that stores output data. See Data Allocation for more information.

Set to VSL_STATUS_OK if the task is executed successfully or set to non-zero error code otherwise.

\section*{Description}

Each of the vslConvExec1D/vslCorrExec1D routines computes convolution or correlation of the data provided by the arrays \(x\) and \(y\) and then stores the results in the array \(z\). These routines represent a special one-dimensional version of the operation, assuming that the value of the parameter dims is 1 . Using this version of execution routines can help speed up performance in case of one-dimensional data.

Parameters of the operation are read from the task descriptor created previously by a corresponding vslConvNewTask1D/vslCorrNewTask1D constructor and pointed to by task. If task is NULL, no operation is done.

\section*{vslConvExecX/vslCorrExecX}

Computes convolution or correlation for multidimensional case with the fixed first operand vector.

\section*{Syntax}
```

status = vslsconvexecx(task, y, ystride, z, zstride)
status = vsldconvexecx(task, y, ystride, z, zstride)
status = vslcconvexecx(task, y, ystride, z, zstride)
status = vslzconvexecx(task, y, ystride, z, zstride)
status = vslscorrexecx(task, y, ystride, z, zstride)

```
```

status = vsldcorrexecx(task, y, ystride, z, zstride)
status = vslccorrexecx(task, y, ystride, z, zstride)
status = vslzcorrexecx(task, y, ystride, z, zstride)

```

\section*{Include Files}
- mkl.fi,mkl_vsl.f90

\section*{Input Parameters}

\section*{Name}

\section*{Type}
task
\(x, y\)

INTEGER*4 task(2) for vslscorrexecx, vsldcorrexecx, vslccorrexecx, vslzcorrexecx

TYPE (VSL_CONV_TASK) for vslsconvexecx, vsldconvexecx, vslcconvexecx, vslzconvexecx

TYPE (VSL_CORR_TASK) for vslscorrexecx, vsldcorrexecx, vslccorrexecx, vslzcorrexecx

VSLCorrTaskPtr for vslsCorrExecX, vsldCorrExecX, vslcCorrExecX, vslzCorrExecX

REAL*8 for vsldconvexecx and vsldcorrexecx,

COMPLEX*8 forvslcconvexecx and vslccorrexecx, COMPLEX*16 forvslzconvexecx and vslzcorrexecx

REAL (KIND=4), DIMENSION(*)
for vslsconvexecx and vslscorrexecx,

REAL (KIND=8), DIMENSION(*)
for vsldconvexecx and vsldcorrexecx, COMPLEX(KIND=4), DIMENSION
(*) forvslcconvexecx and vslccorrexecx,

\section*{Description}

Pointer to the task descriptor.

Pointer to array containing input data (for the second operand vector). See Data Allocation for more information.
```

Name Type Description
COMPLEX(KIND=8), DIMENSION
(*) for vslzconvexecx and
vslzcorrexecx
ystride ,z INTEGER, DIMENSION (*)
stride

```

Strides for input and output data. For more information, see stride parameters.

\section*{Output Parameters}

Name
z

REAL*8 for vsldconvexecx and vsldcorrexecx,

COMPLEX*8 forvslcconvexecx and vslccorrexecx, COMPLEX*16 forvslzconvexecx and vslzcorrexecx

REAL (KIND=4), DIMENSION(*) for vslsconvexecx and vslscorrexecx, REAL (KIND=8), DIMENSION(*) for vsldconvexecx and vsldcorrexecx, COMPLEX(KIND=4), DIMENSION
(*) forvslcconvexecx and vslccorrexecx, COMPLEX(KIND=8), DIMENSION
(*) for vslzconvexecx and vslzcorrexecx

\section*{Description}

Pointer to the array that stores output data. See Data Allocation for more information.

Set to VSL_STATUS_OK if the task is executed successfully or set to non-zero error code otherwise.

\section*{Description}

Each of the vslConvExecX/vslCorrExecX routines computes convolution or correlation of the data provided by the arrays \(x\) and \(y\) and then stores the results in the array \(z\). These routines represent a special version of the operation, which assumes that the first operand vector was set on the task construction stage and the task object keeps the pointer to the array \(x\).

Parameters of the operation are read from the task descriptor created previously by a corresponding vslConvNewTaskX/vslCorrNewTaskX constructor and pointed to by task. If task is NULL, no operation is done.

Using this form of execution routines is recommended when you need to compute multiple convolutions or correlations with the same data vector in array \(x\) against different vectors in array \(y\). This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.
```

vslConvExecX1D/vslCorrExecX1D
Computes convolution or correlation for one-
dimensional case with the fixed first operand vector.
Syntax

```
```

status = vslsconvexecxld(task, y, ystride, z, zstride)

```
status = vslsconvexecxld(task, y, ystride, z, zstride)
status = vsldconvexecxld(task, y, ystride, z, zstride)
status = vsldconvexecxld(task, y, ystride, z, zstride)
status = vslcconvexecxld(task, y, ystride, z, zstride)
status = vslcconvexecxld(task, y, ystride, z, zstride)
status = vslzconvexecxld(task, y, ystride, z, zstride)
status = vslzconvexecxld(task, y, ystride, z, zstride)
status = vslscorrexecxld(task, y, ystride, z, zstride)
status = vslscorrexecxld(task, y, ystride, z, zstride)
status = vsldcorrexecxld(task, y, ystride, z, zstride)
status = vsldcorrexecxld(task, y, ystride, z, zstride)
status = vslccorrexecxld(task, y, ystride, z, zstride)
status = vslccorrexecxld(task, y, ystride, z, zstride)
status = vslzcorrexecxld(task, y, ystride, z, zstride)
```

status = vslzcorrexecxld(task, y, ystride, z, zstride)

```

Include Files
- mkl.fi, mkl vsl.f90

\section*{Input Parameters}
```

Name Type Description
task INTEGER*4 task(2) for
vslscorrexecx1d,
vsldcorrexecx1d,
vslccorrexecx1d,
vslzcorrexecxld
TYPE (VSL_CONV_TASK) for
vslsconvexecxld,
vsldconvexecx1d,
vslcconvexecx1d,
vslzconvexecxld
TYPE (VSL_CORR_TASK) for
vslscorrexecx1d,
vsldcorrexecx1d,
vslccorrexecx1d,
vslzcorrexecxld
VSLCorrTaskPtr for
vslsCorrExecX1D,
vsldCorrExecX1D,
vslcCorrExecX1D,
vslzCorrExecX1D

```
\(x, y\)

REAL*8 for vsldconvexecx1d and vsldcorrexecx1d,

\section*{Description}

Pointer to the task descriptor.

Pointer to array containing input data (for the second operand vector). See Data Allocation for more information.
```

COMPLEX*8
forvslcconvexecxld and
vslccorrexecx1d,

```
```

Name Type
COMPLEX*16
forvslzconvexecxld and
vslzcorrexecx1d
REAL(KIND=4), DIMENSION(*)
for vslsconvexecxld and
vslscorrexecx1d,
REAL(KIND=8), DIMENSION(*)
for vsldconvexecxld and
vsldcorrexecx1d,
COMPLEX(KIND=4), DIMENSION
(*) forvslcconvexecxld and
vslccorrexecxld,
COMPLEX(KIND=8), DIMENSION
(*) for vslzconvexecxld and
vslzcorrexecxld
ystride, INTEGER
zstride

```

\section*{Output Parameters}

\section*{Name Type}
z
```

    COMPLEX*8
    forvslcconvexecx1d and
    vslccorrexecx1d,
    COMPLEX*16
    forvslzconvexecxld and
    vslzcorrexecx1d
    REAL(KIND=4), DIMENSION(*)
    for vslsconvexecx1d and
    vslscorrexecx1d,
    REAL(KIND=8), DIMENSION(*)
    for vsldconvexecx1d and
    vsldcorrexecx1d,
    COMPLEX(KIND=4), DIMENSION
    (*) forvslcconvexecxld and
    vslccorrexecx1d,
    COMPLEX(KIND=8), DIMENSION
    (*) for vslzconvexecxld and
    vslzcorrexecxld
    status INTEGER

```

\section*{Description}

Strides for input and output data. For more information, see stride parameters.

\section*{Description}

Pointer to the array that stores output data. See Data Allocation for more information.

Set to VSL_STATUS_OK if the task is executed successfully or set to non-zero error code otherwise.

\section*{Description}

Each of the vslConvExecX1D/vslCorrExecX1D routines computes convolution or correlation of onedimensional (assuming that dims \(=1\)) data provided by the arrays \(x\) and \(y\) and then stores the results in the array \(z\). These routines represent a special version of the operation, which expects that the first operand vector was set on the task construction stage.

Parameters of the operation are read from the task descriptor created previously by a corresponding vslConvNewTaskX1D/vslCorrNewTaskX1D constructor and pointed to by task. If task is NULL, no operation is done.

Using this form of execution routines is recommended when you need to compute multiple one-dimensional convolutions or correlations with the same data vector in array \(x\) against different vectors in array \(y\). This helps improve performance by eliminating unnecessary overhead in repeated computation of intermediate data required for the operation.

\section*{Convolution and Correlation Task Destructors}

Task destructors are routines designed for deleting task objects and deallocating memory.

\section*{vslConvDeleteTask/vslCorrDeleteTask}

Destroys the task object and frees the memory.

\section*{Syntax}
```

errcode = vslconvdeletetask(task)
errcode = vslcorrdeletetask(task)

```

\section*{Include Files}
- mkl.fi, mkl_vsl.f90

\section*{Input Parameters}
```

Name Type
task INTEGER*4 task(2) for
vslcorrdeletetask
TYPE (VSL_CONV_TASK) for
vslconvdeletetask
TYPE (VSL_CORR_TASK) for
vslcorrdeletetask

```

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
errcode & INTEGER & Contains 0 if the task object is deleted successfully. \\
& & Contains an error code if an error occurred.
\end{tabular}

\section*{Description}

The vslConvDeleteTask/vslCorrvDeleteTask routine deletes the task descriptor object and frees any working memory and the memory allocated for the data structure. The task pointer is set to NULL.

Note that if the vslConvDeleteTask/vslCorrvDeleteTask routine does not delete the task successfully, the routine returns an error code. This error code has no relation to the task status code and does not change it.

\section*{NOTE}

You can use the null task pointer in calls to destructor routines. In this case, the routine terminates with no system crash.

\section*{Convolution and Correlation Task Copiers}

The routines are designed for copying convolution and correlation task descriptors.
```

vslConvCopyTask/vslCorrCopyTask
Copies a descriptor for convolution or correlation task.
Syntax

```
```

status = vslconvcopytask(newtask, srctask)

```
status = vslconvcopytask(newtask, srctask)
status = vslcorrcopytask(newtask, srctask)
```

Include Files

- mkl.fi, mkl_vsl.f90

Input Parameters

```
Name Type Description
srctask INTEGER*4 srctask(2) for
 vslcorrcopytask
 TYPE (VSL_CONV_TASK) for
 vslconvcopytask
 TYPE (VSL_CORR_TASK) for
 vslcorrcopytask
```


## Output Parameters

Name	Type	Description
newtask	INTEGER*4 srctask (2) for	Pointer to the new task descriptor.
	vslcorrcopytask	
	TYPE (VSL_CONV_TASK) for	
	vslconvcopytask	
	TYPE (VSL_CORR_TASK) for	
	vslcorrcopytask	
	INTEGER	Current status of the source task.

## Description

If a task object srctask already exists, you can use an appropriate vslConvCopyTask/vslCorrCopyTask routine to make its copy in newtask. After the copy operation, both source and new task objects will become committed (see Introduction to Convolution and Correlation for information about task commitment). If the
source task was not previously committed, the commitment operation for this task is implicitly invoked before copying starts. If an error occurs during source task commitment, the task stores the error code in the status field. If an error occurs during copy operation, the routine returns a NULL pointer instead of a reference to a new task object.

## Convolution and Correlation Usage Examples

This section demonstrates how you can use the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) routines to perform some common convolution and correlation operations both for single-threaded and multithreaded calculations. The following two sample functionsscond1 and sconf1 simulate the convolution and correlation functions SCOND and SCONF found in IBM ESSL* library. The functions assume single-threaded calculations and can be used with C or $\mathrm{C}++$ compilers.

## Function scond1 for Single-Threaded Calculations

```
#include "mkl_vsl.h"
int scondl(
 float h[], int inch,
 float x[], int incx,
 float y[], int incy,
 int nh, int nx, int iy0, int ny)
{
 int status;
 VSLConvTaskPtr task;
 vslsConvNewTask1D(&task,VSL_CONV_MODE_DIRECT,nh,nx,ny);
 vslConvSetStart(task, &iy0);
 status = vslsConvExec1D(task, h,inch, x,incx, y,incy);
 vslConvDeleteTask(&task);
 return status;
}
```


## Function sconf1 for Single-Threaded Calculations

```
#include "mkl_vsl.h"
int sconfl(
 int init,
 float h[], int inc1h,
 float x[], int inclx, int inc2x,
 float y[], int incly, int inc2y,
 int nh, int nx, int m, int iy0, int ny,
 void* aux1, int naux1, void* aux2, int naux2)
{
 int status;
 /* assume that aux1!=0 and naux1 is big enough */
 VSLConvTaskPtr* task = (VSLConvTaskPtr*)aux1;
 if (init != 0)
 /* initialization: */
 status = vslsConvNewTaskX1D(task,VSL_CONV_MODE_FFT,
 nh,nx,ny, h,inc1h);
 if (init == 0) {
 /* calculations: */
 int i;
 vslConvSetStart(*task, &iy0);
 for (i=0; i<m; i++) {
 float* xi = &x[inc2x * i];
 float* yi = &y[inc2y * i];
 /* task is implicitly committed at i==0 */
 status = vslsConvExecX1D(*task, xi, inclx, yi, inc1y);
 };
 };
 vslConvDeleteTask(task);
 return status;
}
```


## Using Multiple Threads

For functions such as sconf1 described in the previous example, parallel calculations may be more preferable instead of cycling. If $m>1$, you can use multiple threads for invoking the task execution against different data sequences. For such cases, use task copy routines to create $m$ copies of the task object before the calculations stage and then run these copies with different threads. Ensure that you make all necessary parameter adjustments for the task (using Task Editors) before copying it.
The sample code in this case may look as follows:

```
if (init == 0) {
 int i, status, ss[M];
 VSLConvTaskPtr tasks [M];
 /* assume that M is big enough */
 . . .
 vslConvSetStart(*task, &iy0);
 for (i=0; i<m; i++)
 /* implicit commitment at i==0 */
 vslConvCopyTask(&tasks[i],*task);
```

    . . .
    Then, $m$ threads may be started to execute different copies of the task:

```
 float* xi = &x[inc2x * i];
 float* yi = &y[inc2y * i];
 ss[i]=vslsConvExecX1D(tasks[i], xi,inc1x, yi,inc1y);
```

And finally, after all threads have finished the calculations, overall status should be collected from all task objects. The following code signals the first error found, if any:

```
 for (i=0; i<m; i++) {
 status = ss[i];
 if (status != 0) /* O means "OK" */
 break;
 };
 return status;
}; /* end if init==0 */
```

Execution routines modify the task internal state (fields of the task structure). Such modifications may conflict with each other if different threads work with the same task object simultaneously. That is why different threads must use different copies of the task.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

## Convolution and Correlation Mathematical Notation and Definitions

The following notation is necessary to explain the underlying mathematical definitions used in the text:

$\mathbf{R}=(-\infty,+\infty)$	The set of real numbers.
$\mathbf{Z}=\{0, \pm 1, \pm 2, \ldots\}$	The set of integer numbers.
$\mathbf{z}^{\mathrm{N}}=\mathbf{Z} \times \ldots \times \mathbf{Z}$	The set of N -dimensional series of integer numbers.
$p=\left(p_{1}, \ldots, p_{\mathrm{N}}\right) \in \mathbf{Z}^{\mathrm{N}}$	N-dimensional series of integers.
$u: \mathbf{Z}^{\mathrm{N}} \rightarrow \mathbf{R}$	Function $u$ with arguments from $\mathbf{Z}^{\mathrm{N}}$ and values from $\mathbf{R}$.
$u(p)=u\left(p_{1}, \ldots, p_{\mathrm{N}}\right)$	The value of the function $u$ for the argument $\left(p_{1}, \ldots, p_{\mathrm{N}}\right)$.
$w=u^{*} v$	Function $w$ is the convolution of the functions $u, v$.
$w=u \bullet v$	Function $w$ is the correlation of the functions $u, v$.

Given series $p, q \in \mathbf{Z}^{\mathrm{N}}$ :

- series $r=p+q$ is defined as $r^{n}=p^{n}+q^{n}$ for every $n=1, \ldots, N$
- series $r=p-q$ is defined as $r^{n}=p^{n}-q^{n}$ for every $n=1, \ldots, N$
- series $r=\sup \{p, q\}$ is defines as $r^{n}=\max \left\{p^{n}, q^{n}\right\}$ for every $n=1, \ldots, N$
- series $r=\inf \{p, q\}$ is defined as $r^{n}=\min \left\{p^{n}, q^{n}\right\}$ for every $n=1, \ldots, N$
- inequality $p \leq q$ means that $p^{n} \leq q^{n}$ for every $n=1, \ldots, N$.

A function $u(p)$ is called a finite function if there exist series $\mathrm{P}^{\mathrm{min}}, \mathrm{P}^{\max } \in \mathbf{Z}^{\mathrm{N}}$ such that:

```
u(p)
 # 0
```

implies

```
P
```

Operations of convolution and correlation are only defined for finite functions.
Consider functions $u, v$ and series $\mathrm{P}^{\mathrm{min}}, \mathrm{P}^{\max } \mathrm{Q}^{\min }, \mathrm{Q}^{\max } \in \mathbf{Z}^{\mathrm{N}}$ such that:
$u(p) \neq 0$ implies $P^{m i n} \leq p \leq P^{m a x}$.
$v(q) \neq 0$ implies $Q^{m i n} \leq q \leq Q^{\max }$.
Definitions of linear correlation and linear convolution for functions $u$ and $v$ are given below.

## Linear Convolution

If function $w=u^{*} v$ is the convolution of $u$ and $v$, then:
$w(r) \neq 0$ implies $\mathbf{R}^{\text {min }} \leq r \leq \mathbf{R}^{\text {max }}$,
where $\mathbf{R}^{\min }=\mathrm{P}^{\min }+\mathrm{Q}^{\min }$ and $\mathrm{R}^{\max }=\mathrm{P}^{\max }+\mathrm{Q}^{\max }$.
If $\mathbf{R}^{\text {min }} \leq \Upsilon \leq \mathbf{R}^{\text {max }}$, then:
$w(r)=\sum u(t) \cdot v(r-t)$ is the sum for all $t \in \mathbf{Z}^{N}$ such that $\mathbf{T}^{\mathrm{min}} \leq t \leq \mathbf{T}^{\text {max }}$,
where $\mathbf{T}^{\min }=\sup \left\{P^{\min }, r-Q^{\max }\right\}$ and $\mathbf{T}^{\max }=\inf \left\{P^{\max }, r-Q^{\min }\right\}$.

## Linear Correlation

If function $w=u \bullet v$ is the correlation of $u$ and $v$, then:
$w(r) \neq 0$ implies $\mathbf{R}^{\min } \leq r \leq \mathbb{R}^{\max }$,
where $R^{\min }=Q^{\min }-P^{\max }$ and $R^{\max }=Q^{\max }-P^{\text {min }}$.
If $\mathbf{R}^{\text {min }} \leq r \leq$ R $^{\text {max }}$, then:
$w(r)=\sum u(t) \cdot v(r+t)$ is the sum for all $t \in \mathbf{Z}^{\mathbb{N}}$ such that $\mathbf{T}^{\min } \leq t \leq \mathbf{T}^{\max }$,
where $\mathbf{T}^{\min }=\sup \left\{P^{\min }, Q^{\min }-r\right\}$ and $\mathbf{T}^{\max }=\inf \left\{P^{\max }, Q^{\max }-r\right\}$.
Representation of the functions $u, v$, was the input/output data for the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) convolution and correlation functions is described in theData Allocation.

## Convolution and Correlation Data Allocation

This section explains the relation between:

- mathematical finite functions $u, v, w$ introduced in Mathematical Notation and Definitions;
- multi-dimensional input and output data vectors representing the functions $u, v, w$;
- arrays $u, v, w$ used to store the input and output data vectors in computer memory

The convolution and correlation routine parameters that determine the allocation of input and output data are the following:

- Data arrays $x, y, z$
- Shape arrays xshape, yshape, zshape
- Strides within arrays xstride, ystride, zstride
- Parameters start, decimation


## Finite Functions and Data Vectors

The finite functions $u(p), v(q)$, and $w(r)$ introduced above are represented as multi-dimensional vectors of input and output data:

```
inputu(in},\ldots,\mp@subsup{i}{\mathrm{ dims }}{})\mathrm{ for u(p
inputv(j}\mp@subsup{j}{1}{},\ldots,\mp@subsup{j}{\mathrm{ dims }}{})\mathrm{ for v(q}\mp@subsup{q}{1}{},\ldots,\mp@subsup{q}{N}{}
output(k
```

Parameter dims represents the number of dimensions and is equal to N .
The parameters xshape, yshape, and zshape define the shapes of input/output vectors:
inputu ( $i_{1}, \ldots, i_{\text {dims }}$ ) is defined if $1 \leq i_{n} \leq x \operatorname{shape}(n)$ for every $n=1, \ldots$, dims
inputv ( $j_{1}, \ldots, j_{\text {dims }}$ ) is defined if $1 \leq j_{n} \leq y \operatorname{shape}(n)$ for every $n=1, \ldots$, dims
output ( $k_{1}, \ldots, k_{\text {dims }}$ ) is defined if $1 \leq k_{n} \leq \operatorname{zshape}(n)$ for every $n=1, \ldots$, dims.
Relation between the input vectors and the functions $u$ and $v$ is defined by the following formulas:
inputu $\left(i_{1}, \ldots, i_{\text {dims }}\right)=u\left(p_{1}, \ldots, p_{N}\right)$, where $p_{n}=P_{n}{ }^{\text {min }}+\left(i_{n}-1\right)$ for every $n$
inputv $\left(j_{1}, \ldots, j_{\text {dims }}\right)=v\left(q_{1}, \ldots, q_{N}\right)$, where $q_{n}=Q_{n}{ }^{\text {min }}+\left(j_{n}-1\right)$ for every $n$.
The relation between the output vector and the function $w(r)$ is similar (but only in the case when parameters start and decimation are not defined):
output $\left(k_{1}, \ldots, k_{\text {dims }}\right)=w\left(r_{1}, \ldots, r_{N}\right)$, where $r_{n}=R_{n}{ }^{\text {min }}+\left(k_{n}-1\right)$ for every $n$.
If the parameter start is defined, it must belong to the interval $R_{n}{ }^{m i n} \leq s t a r t(n) \leq R_{n}{ }^{\text {max }}$. If defined, the start parameter replaces $\mathrm{R}^{\mathrm{min}}$ in the formula:
output $\left(k_{1}, \ldots, k_{\text {dims }}\right)=w\left(r_{1}, \ldots, r_{N}\right)$, where $r_{n}=\operatorname{start}(n)+\left(k_{n}-1\right)$
If the parameter decimation is defined, it changes the relation according to the following formula:
output $\left(k_{1}, \ldots, k_{\text {dims }}\right)=w\left(r_{1}, \ldots, r_{N}\right)$, where $r_{n}=R_{n}{ }^{\text {min }}+\left(k_{n}-1\right)$ *decimation $(n)$

If both parameters start and decimation are defined, the formula is as follows:
output $\left(k_{1}, \ldots, k_{\text {dims }}\right)=w\left(r_{1}, \ldots, r_{N}\right)$, where $r_{n}=\operatorname{start}(n)+\left(k_{n}-1\right)$ *decimation $(n)$
The convolution and correlation software checks the values of zshape, start, and decimation during task commitment. If $r_{n}$ exceeds $R_{n}{ }^{\max }$ for some $k_{n}, n=1, \ldots$, dims, an error is raised.

## Allocation of Data Vectors

Both parameter arrays $x$ and $y$ contain input data vectors in memory, while array $z$ is intended for storing output data vector. To access the memory, the convolution and correlation software uses only pointers to these arrays and ignores the array shapes.
For parameters $x, y$, and $z$, you can provide one-dimensional arrays with the requirement that actual length of these arrays be sufficient to store the data vectors.
The allocation of the input and output data inside the arrays $x, y$, and $z$ is described below assuming that the arrays are one-dimensional. Given multi-dimensional indices $i, j, k \in \mathbf{Z}^{N}$, one-dimensional indices $e, f, g \in \mathbf{Z}$ are defined such that:

```
inputu(i}\mp@subsup{i}{1}{},..,\mp@subsup{i}{\mathrm{ dims }}{})\mathrm{ is allocated at x(e)
inputv(j\mp@subsup{j}{1}{},..,jdims) is allocated at y(f)
output(\mp@subsup{k}{1}{},\ldots,\mp@subsup{k}{\mathrm{ dims }}{})\mathrm{ is allocated at z(g).}
```

The indices $e, f$, and $g$ are defined as follows:

```
e=1 + \sumxstride(n)\cdotdx(n) (the sum is for all n=1,\ldots,dims)
f=1+\sumystride(n)}\cdotdy(n) (the sum is for all n=1,\ldots,dims
g=1 + \sumzstride (n)}\cdotdz(n) (the sum is for all n=1,\ldots,dims
```

The distances $d x(n), d y(n)$, and $d z(n)$ depend on the signum of the stride:

```
dx(n) = in-1 if xstride(n)>0, or dx(n) = in
dy(n) = j}\mp@subsup{j}{n}{}-1 if ystride(n)>0, or dy(n) = j_ -yshape(n) if ystride(n)<
dz(n) = kn-1 if zstride(n)>0, or dz(n) = kn-zshape(n) if zstride(n)<0
```

The definitions of indices $e, f$, and $g$ assume that indexes for arrays $x, y$, and $z$ are started from unity:
$x(e)$ is defined for $e=1, \ldots$, length ( $x$ )
$y(f)$ is defined for $f=1, \ldots$, length ( $y$ )
$z(g)$ is defined for $g=1, \ldots$, length $(z)$
Below is a detailed explanation about how elements of the multi-dimensional output vector are stored in the array $z$ for one-dimensional and two-dimensional cases.
One-dimensional case. If dims=1, then zshape is the number of the output values to be stored in the array $z$. The actual length of array $z$ may be greater than zshape elements.

If zstride $>1$, output values are stored with the stride: output (1) is stored to $z(1)$, output (2) is stored to $z(1+z s t r i d e)$, and so on. Hence, the actual length of $z$ must be at least $1+z s t r i d e *(z s h a p e-1)$ elements or more.

If zstride<0, it still defines the stride between elements of array $z$. However, the order of the used elements is the opposite. For the $k$-th output value, output( $k$ ) is stored in $z(1+\mid$ zstride|* (zshape-k)), where | zstride| is the absolute value of zstride. The actual length of the array $z$ must be at least $1+\mid$ zstride| *(zshape - 1) elements.

Two-dimensional case. If $\operatorname{dims}=2$, the output data is a two-dimensional matrix. The value zstride (1) defines the stride inside matrix columns, that is, the stride between the output ( $k_{1}, k_{2}$ ) and output ( $k_{1}+1$, $k_{2}$ ) for every pair of indices $k_{1}, k_{2}$. On the other hand, zstride (2) defines the stride between columns, that is, the stride between output ( $k_{1}, k_{2}$ ) and output ( $k_{1}, k_{2}+1$ ).

If zstride (2) is greater than zshape (1), this causes sparse allocation of columns. If the value of zstride (2) is smaller than zshape (1), this may result in the transposition of the output matrix. For example, if zshape $=(2,3)$, you can define zstride $=(3,1)$ to allocate output values like transposed matrix of the shape $3 \times 2$.

Whether zstride assumes this kind of transformations or not, you need to ensure that different elements output ( $k_{1}, \ldots, k_{\text {dims }}$ ) will be stored in different locations $z(g)$.

## Summary Statistics

The Summary Statistics domain provides routines that compute basic statistical estimates for single and double precision multi-dimensional datasets.

The Summary Statistics routines calculate:

- raw and central moments up to the fourth order
- skewness and excess kurtosis (further referred to as kurtosis for brevity)
- variation coefficient
- quantiles and order statistics
- minimum and maximum
- variance-covariance/correlation matrix
- pooled/group variance-covariance matrix and mean
- partial variance-covariance/correlation matrix
- robust estimators for variance-covariance matrix and mean in presence of outliers
- raw/central partial sums up to the fourth order (for brevity referred to as raw/central sums)
- matrix of cross-products and sums of squares (for brevity referred to as cross-product matrix)
- median absolute deviation, mean absolute deviation

The library also contains functions to perform the following tasks:

- Detect outliers in datasets
- Support missing values in datasets
- Parameterize correlation matrices
- Compute quantiles for streaming data

Mathematical Notation and Definitions defines the supported operations in the Summary Statistics routines.
You can access the Summary Statistics routines through the Fortran 90 and C89 language interfaces. You can use the Fortran 90 interface with programs written in Fortran 95.

The mkl_vsl.f90 header file is in the $\$\{\mathrm{MKL}\} / i n c l u d e ~ d i r e c t o r y . ~$
See more details about the Fortran header in Random Number Generators topic.
You can find examples that demonstrate calculation of the Summary Statistics estimates in the \$\{MKL\}/ examples/vslf example directory.

The Summary Statistics API is implemented through task objects, or tasks. A task object is a data structure, or a descriptor, holding parameters that determine a specific Summary Statistics operation. For example, such parameters may be precision, dimensions of user data, the matrix of the observations, or shapes of data arrays.
All the Summary Statistics routines process a task object as follows:

1. Create a task.
2. Modify settings of the task parameters.
3. Compute statistical estimates.
4. Destroy the task.

The Summary Statistics functions fall into the following categories:

Task Constructors - routines that create a new task object descriptor and set up most common parameters (dimension, number of observations, and matrix of the observations).
Task Editors - routines that can set or modify some parameter settings in the existing task descriptor.
Task Computation Routine - a routine that computes specified statistical estimates.
Task Destructor - a routine that deletes the task object and frees the memory.
A Summary Statistics task object contains a series of pointers to the input and output data arrays. You can read and modify the datasets and estimates at any time but you should allocate and release memory for such data.
See detailed information on the algorithms, API, and their usage in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Summary Statistics Application Notes [SS Notes].

## Summary Statistics Naming Conventions

The names of routines in the Summary Statistics are in lowercase (vslssseditquantiles), while the names of types and constants are in uppercase. The names are not case-sensitive.

The names of routines have the following structure:
vsl[datatype]ss<base name>
where

- vslis a prefix indicating that the routine belongs to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Vector Statistics.
- [datatype] specifies the type of the input and/or output data and can be s (single precision real type), d (double precision real type), or i (integer type).
- SS/ss indicates that the routine is intended for calculations of the Summary Statistics estimates.
- <base name> specifies a particular functionality that the routine is designed for, for example, NewTask, Compute, DeleteTask.


## NOTE

The Summary Statistics routine vslDeleteTask for deletion of the task is independent of the data type and its name omits the [datatype] field.

## Summary Statistics Data Types

The Summary Statistics routines use the following data types for calculations:

```
Type Data Object
Fortran 90: TYPE (VSL_SS_TASK) Pointer to a Summary Statistics task
Fortran 90: REAL (KIND=4) Input/output user data in single precision
Fortran 90: REAL(KIND=8) Input/output user data in double precision
Fortran 90: INTEGER or Other data
INTEGER(KIND=8)
```


## NOTE

The actual size of the generic integer type is platform-specific and can be 32 or 64 bits in length. Before you compile your application, set an appropriate size for integers. See details in the 'Using the ILP64 Interface vs. LP64 Interface' section of the Inte『® oneAPI Math Kernel Library (oneMKL) Developer Guide.

## Summary Statistics Parameters

The basic parameters in the task descriptor (addresses of dimensions, number of observations, and datasets) are assigned values when the task editors create or modify the task object. Other parameters are determined by the specific task and changed by the task editors.

## Summary Statistics Task Status and Error Reporting

The task status is an integer value, which is zero if no error is detected, or a specific non-zero error code otherwise. Negative status values indicate errors, and positive values indicate warnings. An error can be caused by invalid parameter values or a memory allocation failure.

The header files define symbolic names for the status codes. These names are defined as integer constants via PARAMETER operators.
The header files define the following status codes for the Summary Statistics error codes:
Summary Statistics Status Codes

Status Code	Description
VSL_STATUS_OK	Operation is successfully completed.
VSL_SS_ERROR_ALLOCATION_FAILURE	Memory allocation has failed.
VSL_SS_ERROR_BAD_DIMEN	Dimension value is invalid.
VSL_SS_ERROR_BAD_OBSERV_N	Invalid number (zero or negative) of observations was obtained.
VSL_SS_ERROR_STORAGE_NOT_SUPPORTED	Storage format is not supported.
VSL_SS_ERROR_BAD_INDC_ADDR	Array of indices is not defined.
VSL_SS_ERROR_BAD_WEIGHTS	Array of weights contains negative values.
VSL_SS_ERROR_BAD_MEAN_ADDR	Array of means is not defined.
VSL_SS_ERROR_BAD_2R_MOM_ADDR	Array of the second order raw moments is not defined.
VSL_SS_ERROR_BAD_3R_MOM_ADDR	Array of the third order raw moments is not defined.
VSL_SS_ERROR_BAD_4R_MOM_ADDR	Array of the fourth order raw moments is not defined.
VSL_SS_ERROR_BAD_2C_MOM_ADDR	Array of the second order central moments is not defined.
VSL_SS_ERROR_BAD_3C_MOM_ADDR	Array of the third order central moments is not defined.
VSL_SS_ERROR_BAD_4C_MOM_ADDR	Array of the fourth order central moments is not defined.
VSL_SS_ERROR_BAD_KURTOSIS_ADDR	Array of kurtosis values is not defined.
VSL_SS_ERROR_BAD_SKEWNESS_ADDR	Array of skewness values is not defined.
VSL_SS_ERROR_BAD_MIN_ADDR	Array of minimum values is not defined.
VSL_SS_ERROR_BAD_MAX_ADDR	Array of maximum values is not defined.

## Status Code

VSL_SS_ERROR_BAD_VARIATION_ADDR
VSL_SS_ERROR_BAD_COV_ADDR
VSL_SS_ERROR_BAD_COR_ADDR
VSL_SS_ERROR_BAD_QUANT_ORDER_ADDR
VSL_SS_ERROR_BAD_QUANT_ORDER
VSL_SS_ERROR_BAD_QUANT_ADDR
VSL_SS_ERROR_BAD_ORDER_STATS_ADDR
VSL_SS_ERROR_MOMORDER_NOT_SUPPORTED
VSL_SS_NOT_FULL_RANK_MATRIX
VSL_SS_ERROR_ALL_OBSERVS_OUTLIERS

VSL_SS_ERROR_BAD_ROBUST_COV_ADDR
VSL_SS_ERROR_BAD_ROBUST_MEAN_ADDR
VSL_SS_ERROR_METHOD_NOT_SUPPORTED
VSL_SS_ERROR_NULL_TASK_DESCRIPTOR
VSL_SS_ERROR_BAD_OBSERV_ADDR
VSL_SS_ERROR_BAD_ACCUM_WEIGHT_ADDR

VSL_SS_ERROR_SINGULAR_COV
VSL_SS_ERROR_BAD_POOLED_COV_ADDR
VSL_SS_ERROR_BAD_POOLED_MEAN_ADDR
VSL_SS_ERROR_BAD_GROUP_COV_ADDR
VSL_SS_ERROR_BAD_GROUP_MEAN_ADDR
VSL_SS_ERROR_BAD_GROUP_INDC_ADDR
VSL_SS_ERROR_BAD_GROUP_INDC
VSL_SS_ERROR_BAD_OUTLIERS_PARAMS_ADDR

VSL_SS_ERROR_BAD_OUTLIERS_PARAMS_N_ADDR

VSL_SS_ERROR_BAD_OUTLIERS_WEIGHTS_ADDR

VSL_SS_ERROR_BAD_ROBUST_COV_PARAMS_ADDR

VSL_SS_ERROR_BAD_ROBUST_COV_PARAMS_N_ADDR

## Description

Array of variation coefficients is not defined.
Covariance matrix is not defined.
Correlation matrix is not defined.
Array of quantile orders is not defined.
Quantile order value is invalid.
Array of quantiles is not defined.
Array of order statistics is not defined.
Moment of requested order is not supported.
Correlation matrix is not of full rank.
All observations are outliers. (At least one observation must not be an outlier.)

Robust covariance matrix is not defined.
Array of robust means is not defined.
Requested method is not supported.
Task descriptor is null.
Dataset matrix is not defined.
Pointer to the variable that holds the value of accumulated weight is not defined.

Covariance matrix is singular.
Pooled covariance matrix is not defined.
Array of pooled means is not defined.
Group covariance matrix is not defined.
Array of group means is not defined.
Array of group indices is not defined.
Group indices have improper values.
Array of parameters for the outlier detection algorithm is not defined.

Pointer to size of the parameter array for the outlier detection algorithm is not defined.

Output of the outlier detection algorithm is not defined.

Array of parameters of the robust covariance estimation algorithm is not defined.

Pointer to the number of parameters of the algorithm for robust covariance is not defined.

Status Code	Description
VSL_SS_ERROR_BAD_STORAGE_ADDR	Pointer to the variable that holds the storage   format is not defined.
VSL_SS_ERROR_BAD_PARTIAL_COV_IDX_ADDR	Array that encodes sub-components of a   random vector for the partial covariance   algorithm is not defined.
	Array that encodes sub-components of a   VSL_SS_ERROR_BAD_PARTIAL_COV_IDX
	random vector for partial covariance has
improper values.	


Status Code	Description
VSL_SS_ERROR_BAD_MI_MISSING_VALS_N	Invalid number of missing values was obtained.
VSL_SS_SEMIDEFINITE_COR	Correlation matrix passed into the parameterization function is semi-definite.
VSL_SS_ERROR_BAD_PARAMTR_COR_ADDR	Correlation matrix to be parameterized is not defined.
VSL_SS_ERROR_BAD_COR	All eigenvalues of the correlation matrix to be parameterized are non-positive.
VSL_SS_ERROR_BAD_STREAM_QUANT_PARAMS_N_ADDR	Pointer to the number of parameters for the quantile computation algorithm for streaming data is not defined.
VSL_SS_ERROR_BAD_STREAM_QUANT_PARAMS_ADDR	Array of parameters of the quantile computation algorithm for streaming data is not defined.
VSL_SS_ERROR_BAD_STREAM_QUANT_PARAMS_N	Invalid number of parameters of the quantile computation algorithm for streaming data has been obtained.
VSL_SS_ERROR_BAD_STREAM_QUANT_PARAMS	Invalid parameters of the quantile computation algorithm for streaming data have been passed.
VSL_SS_ERROR_BAD_STREAM_QUANT_ORDER_ADDR	Array of the quantile orders for streaming data is not defined.
VSL_SS_ERROR_BAD_STREAM_QUANT_ORDER	Invalid quantile order for streaming data is defined.
VSL_SS_ERROR_BAD_STREAM_QUANT_ADDR	Array of quantiles for streaming data is not defined.
VSL_SS_ERROR_BAD_SUM_ADDR	Array of sums is not defined.
VSL_SS_ERROR_BAD_2R_SUM_ADDR	Array of raw sums of 2nd order is not defined.
VSL_SS_ERROR_BAD_3R_SUM_ADDR	Array of raw sums of 3rd order is not defined.
VSL_SS_ERROR_BAD_4R_SUM_ADDR	Array of raw sums of 4th order is not defined.
VSL_SS_ERROR_BAD_2C_SUM_ADDR	Array of central sums of 2 nd order is not defined.
VSL_SS_ERROR_BAD_3C_SUM_ADDR	Array of central sums of 3rd order is not defined.
VSL_SS_ERROR_BAD_4C_SUM_ADDR	Array of central sums of 4th order is not defined.
VSL_SS_ERROR_BAD_CP_SUM_ADDR	Cross-product matrix is not defined.
VSL_SS_ERROR_BAD_MDAD_ADDR	Array of median absolute deviations is not defined.
VSL_SS_ERROR_BAD_MNAD_ADDR	Array of mean absolute deviations is not defined.


Status Code	Description
VSL_SS_ERROR_BAD_SORTED_OBSERV_ADDR	Array for storing observation sorting results is
not defined.	
VSL_SS_ERROR_ERROR_INDICES_NOT_SUPPORTED	Array of indices is not supported.

Routines for robust covariance estimation, outlier detection, partial covariance estimation, multiple imputation, and parameterization of a correlation matrix can return internal error codes that are related to a specific implementation. Such error codes indicate invalid input data or other bugs in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) routines other than the Summary Statistics routines.

## Summary Statistics Task Constructors

Task constructors are routines intended for creating a new task descriptor and setting up basic parameters.

## NOTE

If the constructor fails to create a task descriptor, it returns the NULL task pointer.

```
vsISSNewTask
Creates and initializes a new summary statistics task
descriptor.
Syntax
status = vslsssnewtask(task, p, n, xstorage, x, w, indices)
status = vsldssnewtask(task, p, n, xstorage, x, w, indices)
```


## Include Files

- mkl_vsl.f90


## Input Parameters

Name	Type	Description
$p$	INTEGER	Dimension of the task, number of variables
$n$	INTEGER	Number of observations
xstorage	INTEGER	Storage format of matrix of observations
$x$	REAL (KIND=4) DIMENSION(*) for vslsssnewtask   REAL (KIND=8) DIMENSION(*) for vsldssnewtask	Matrix of observations
w	REAL (KIND=4) DIMENSION(*) for vslsssnewtask   REAL (KIND=8) DIMENSION(*) for vsldssnewtask	Array of weights of size $n$. Elements of the arrays are non-negative numbers. If a NULL pointer is passed, each observation is assigned weight equal to 1 .

## Name Type <br> indices INTEGER, DIMENSION(*)

## Description

Array of vector components that will be processed. Size of array is $p$. If a NULL pointer is passed, all components of random vector are processed.

## Output Parameters

Name	Type
task	TYPE (VSL_SS_TASK)
status	INTEGER

## Description

Descriptor of the task
Set to VSL_STATUS_OK if the task is created successfully, otherwise a non-zero error code is returned.

## Description

Each vslSSNewTask constructor routine creates a new summary statistics task descriptor with the userspecified value for a required parameter, dimension of the task. The optional parameters (matrix of observations, its storage format, number of observations, weights of observations, and indices of the random vector components) are set to their default values.

The observations of random $p$-dimensional vector $\xi=\left(\xi_{1}, \ldots, \xi_{i}, \ldots, \xi_{p}\right)$, which are $n$ vectors of dimension $p$, are passed as a one-dimensional array $x$. The parameter xstorage defines the storage format of the observations and takes one of the possible values listed in Table "Storage format of matrix of observations and order statistics".
Storage format of matrix of observations, order statistics, and matrix of sorted observations

Parameter	Description
VSL_SS_MATRIX_STORAGE_ROWS	The observations of random vector $\xi$ are packed by rows:   $n$ data points for the vector component $\xi_{1}$ come first, $n$   data points for the vector component $\xi_{2}$ come second,   and so forth.
VSL_SS_MATRIX_STORAGE_COLS	The observations of random vector $\xi$ are packed by   columns: the first $p-d i m e n s i o n a l ~ o b s e r v a t i o n ~ o f ~ t h e ~$
vector $\xi$ comes first, the second $p$-dimensional	
observation of the vector comes second, and so forth.	

## NOTE

Since matrices in Fortran are stored by columns while in C they are stored by rows, initialization of the xstorage variable in Fortran is opposite to that in C. Set xstorage to VSL_SS_MATRIX_STORAGE_COLS, if the dataset is stored as a two-dimensional matrix that consists of $p$ rows and $n$ columns; otherwise, use the VSL_SS_MATRIX_STORAGE_ROWS constant.

A one-dimensional array $w$ of size $n$ contains non-negative weights assigned to the observations. You can pass a NULL array into the constructor. In this case, each observation is assigned the default value of the weight.

You can choose vector components for which you wish to compute statistical estimates. If an element of the vector indices of size $p$ contains 0 , the observations that correspond to this component are excluded from the calculations. If you pass the nULL value of the parameter into the constructor, statistical estimates for all random variables are computed.

If the constructor fails to create a task descriptor, it returns the NULL task pointer.

## Summary Statistics Task Editors

Task editors are intended to set up or change the task parameters listed in Table "Parameters of Summary Statistics Task to Be Initialized or Modified". As an example, to compute the sample mean for a onedimensional dataset, initialize a variable for the mean value, and pass its address into the task as shown in the example below:

```
#define DIM 1
#define N 1000
int main()
{
 VSLSSTaskPtr task;
 double x[N];
 double mean;
 MKL_INT p, n, xstorage;
 int status;
 /* initialize variables used in the computations of sample mean */
 p = DIM;
 n = N;
 xstorage = VSL_SS_MATRIX_STORAGE_ROWS;
 mean = 0.0;
 /* create task */
 status = vsldSSNewTask(&task, &p, &n, &xstorage, x, 0, 0);
 /* initialize task parameters */
 status = vsldSSEditTask(task, VSL_SS_ED_MEAN, &mean);
 /* compute mean using SS fast method */
 status = vsldSSCompute(task, VSL_SS_MEAN, VSL_SS_METHOD_FAST);
 /* deallocate task resources */
 status = vslSSDeleteTask(&task);
 return 0;
}
```

Use the single (vslsssedittask) or double (vsldssedittask) version of an editor, to initialize single or double precision version task parameters, respectively. Use an integer version of an editor (vslissedittask) to initialize parameters of the integer type.
Table "Summary Statistics Task Editors" lists the task editors for Summary Statistics. Each of them initializes and/or modifies a respective group of related parameters.

## Summary Statistics Task Editors

Editor
vslSSEditTask
vslSSEditMoments

## Description

Changes a pointer in the task descriptor.
Changes pointers to arrays associated with raw and central moments.

Editor	Description
vsISSEditSums	Modifies the pointers to arrays that hold sum estimates.
vslSSEditCovCor	Changes pointers to arrays associated with covariance and/or correlation matrices.
vsISSEditCP	Modifies the pointers to cross-product matrix parameters.
vslSSEditPartialCovCor	Changes pointers to arrays associated with partial covariance and/or correlation matrices.
vslSSEditQuantiles	Changes pointers to arrays associated with quantile/order statistics calculations.
vslSSEditStreamQuantiles	Changes pointers to arrays for quantile related calculations for streaming data.
vslSSEditPooledCovariance	Changes pointers to arrays associated with algorithms related to a pooled covariance matrix.
vslSSEditRobustCovariance	Changes pointers to arrays for robust estimation of a covariance matrix and mean.
vslSSEditOutliersDetection	Changes pointers to arrays for detection of outliers.
vslSSEditMissingValues	Changes pointers to arrays associated with the method of supporting missing values in a dataset.
vslSSEditCorParameterization	Changes pointers to arrays associated with the algorithm for parameterization of a correlation matrix.

## NOTE

You can use the NULL task pointer in calls to editor routines. In this case, the routine is terminated and no system crash occurs.

## vsISSEditTask

Modifies address of an input/output parameter in the task descriptor.

## Syntax

```
status = vslsssedittask(task, parameter, par_addr)
status = vsldssedittask(task, parameter, par_addr)
status = vslissedittask(task, parameter, par_addr)
```


## Include Files

- mkl_vsl.f90


## Input Parameters

Name	Type
task	TYPE (VSL_SS_TASK)
parameter	INTEGER

## Description

Descriptor of the task
Parameter to change

Name	Type	Description
par_addr	REAL (KIND=4) DIMENSION (*) for	Address of the new parameter
	vslsssedittask	
	REAL (KIND=8) DIMENSION (*) for	
	vsldssedittask	
	INTEGER DIMENSION (*) for	
	vslissedittask	

## Output Parameters

## Name Type

status

INTEGER

## Description

Current status of the task

## Description

The vslSSEditTask routine replaces the pointer to the parameter stored in the Summary Statistics task descriptor with the par_addr pointer. If you pass the nULL pointer to the editor, no changes take place in the task and a corresponding error code is returned. See Table "Parameters of Summary Statistics Task to Be Initialized or Modified" for the predefined values of the parameter.
Use the single (vslsssedittask) or double (vsldssedittask) version of the editor, to initialize single or double precision version task parameters, respectively. Use an integer version of the editor (vslissedittask) to initialize parameters of the integer type.
Parameters of Summary Statistics Task to Be Initialized or Modified

Parameter Value	Type	Purpose	Initialization
VSL_SS_ED_DIMEN	i	Address of a variable that   holds the task dimension	Required. Positive integer value.
VSL_SS_ED_OBSERV_N	i	Address of a variable that   holds the number of   observations	Required. Positive integer value.
VSL_SS_ED_OBSERV	d, s	Address of the observation   matrix	Required. Provide the matrix   containing your observations.
VSL_SS_ED_OBSERV_STORAGE	i	Address of a variable that   holds the storage format for   the observation matrix	Required. Provide a storage   format supported by the library   whenever you pass a matrix of   observations. ${ }^{1}$
VSL_SS_ED_INDC	i	Address of the array of   indices	Optional. Provide this array if you   need to process individual   components of the random vector.   Set entry $i$ of the array to one to
include the ith coordinate in the			
analysis. Set entry $i$ of the array			
to zero to exclude the ith			
coordinate from the analysis.			


$\left.\begin{array}{llll}\hline \text { Parameter Value } & \text { Type } & \text { Purpose } & \text { Initialization }\end{array}\right]$| VSL_SS_ED_WEIGHTS |
| :--- |
|  |
| VSL_SS_ED_MEAN |


Parameter Value	Type	Purpose	Initialization


Parameter Value	Type	Purpose	Initialization


Parameter Value	Type	Purpose	Initialization
VSL_SS_ED_GROUP_COV_INDC	i	Address of an array of indices for which covariance/means should be computed	Optional. Set the $k$ th entry of the array to 1 if you need group covariance and mean for group $k$; otherwise set it to zero.
VSL_SS_ED_REQ_GROUP_INDC	i	Address of an array of indices for which group estimates such as covariance or means are requested	Optional. Set the $k$ th entry of the array to 1 if you need an estimate for group $k$; otherwise set it to zero.
VSL_SS_ED_GROUP_MEANS	i	Address of an array of group means	None.
$\begin{aligned} & \text { VSL_SS_ED_GROUP_COV_STOR } \\ & \text { AGE } \end{aligned}$	d, s	Address of a variable that holds the storage format for a group covariance matrix	Required. Provide a storage format supported by the library whenever you intend to get group covariance. ${ }^{2}$
VSL_SS_ED_GROUP_COV	d, s	Address of group covariance matrices	None.
$\begin{aligned} & \text { VSL_SS_ED_ROBUST_COV_STO } \\ & \text { RAGE } \end{aligned}$	d, s	Address of a variable that holds the storage format for a robust covariance matrix	Required. Provide a storage format supported by the library whenever you compute robust covariance ${ }^{2}$.
VSL_SS_ED_ROBUST_COV_PAR AMS_N	i	Address of a variable that holds the number of algorithmic parameters of the method for robust covariance estimation	Required. Set to the number of TBS parameters, VSL_SS_TBS_PARAMS_N.
$\begin{aligned} & \text { VSL_SS_ED_ROBUST_COV_PAR } \\ & \text { AMS } \end{aligned}$	d, s	Address of an array of parameters of the method for robust estimation of a covariance	Required. Set the entries of the array according to the description in vsISSEditRobustCovariance.
VSL_SS_ED_ROBUST_MEAN	i	Address of an array of robust means	None.
VSL_SS_ED_ROBUST_COV	d, s	Address of a robust covariance matrix	None.
VSL_SS_ED_OUTLIERS_PARAM S_N	d, s	Address of a variable that holds the number of parameters of the outlier detection method	Required. Set to the number of outlier detection parameters, VSL_SS_BACON_PARAMS_N.
$\begin{aligned} & \text { VSL_SS_ED_OUTLIERS_PARAM } \\ & \text { S } \end{aligned}$	i	Address of an array of algorithmic parameters for the outlier detection method	Required. Set the entries of the array according to the description in vsISSEditOutliersDetection.


Parameter Value	Type	Purpose	Initialization
VSL_SS_ED_OUTLIERS_WEIGH	d, s	Address of an array of   weights assigned to   observations by the outlier   detection method	None.


Parameter Value	Type	Purpose	Initialization
VSL_SS_ED_MI_SIMUL_VALS_	i		Address of a variable that   holds the number of   simulated values in the


Parameter Value	Type	Purpose	Initialization
VSL_SS_ED_STREAM_QUANT_P ARAMS_N	i	Address of a variable that holds the number of parameters of a quantile computation method for streaming data	Required. Set to the number of quantile computation parameters, VSL_SS_SQUANTS_ZW_PARAMS_N.
VSL_SS_ED_STREAM_QUANT_P ARAMS		Address of an array of parameters of a quantile computation method for streaming data	Required. Set the entries of the array according to the description in "Computing Quantiles for Streaming Data" in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Summary Statistics Application Notes document [SS Notes].
VSL_SS_ED_STREAM_QUANT_O RDER_N	i	Address of a variable that holds the number of quantile orders for streaming data	Required. Positive integer value.
VSL_SS_ED_STREAM_QUANT_O RDER	d, s	Address of an array of quantile orders for streaming data	Required. Set entries of the array to values from the interval $(0,1)$. Provide this parameter whenever you compute quantiles.
VSL_SS_ED_STREAM_QUANT_Q UANTILES	d, s	Address of an array of quantiles for streaming data	None.
VSL_SS_ED_SUM	d, s	Address of array of sums	Optional. Set entries of the array to meaningful values (typically zero) if you intend to compute a progressive estimate. Otherwise, do not initialize the array.
VSL_SS_ED_2R_SUM	d, s	Address of array of raw sums of 2nd order	Optional. Set entries of the array to meaningful values (typically zero) if you intend to compute a progressive estimate. Otherwise, do not initialize the array.
VSL_SS_ED_3R_SUM	d, s	Address of array of raw sums of 3rd order	Optional. Set entries of the array to meaningful values (typically zero) if you intend to compute a progressive estimate. Otherwise, do not initialize the array.
VSL_SS_ED_4R_SUM	d, s	Address of array of raw sums of 4th order	Optional. Set entries of the array to meaningful values (typically zero) if you intend to compute a progressive estimate. Otherwise, do not initialize the array.

\(\left.$$
\begin{array}{llll}\hline \text { Parameter Value } & \text { Type } & \text { Purpose } & \text { Initialization } \\
\hline \text { VSL_SS_ED_2C_SUM } & \text { d, s } & \begin{array}{l}\text { Address of array of central } \\
\text { sums of 2nd order }\end{array} & \begin{array}{l}\text { Optional. Set entries of the array } \\
\text { to meaningful values (typically } \\
\text { zero) if you intend to compute a }\end{array}
$$ <br>
progressive estimate. Otherwise, <br>

do not initialize the array.\end{array}\right]\)| VSL_SS_ED_3C_SUM |
| :--- |
|  |

1. See Table: "Storage format of matrix of observations and order statistics" for storage formats.
2. See Table: "Storage formats of a variance-covariance/correlation matrix" for storage formats.

## vslSSEditMoments

Modifies the pointers to arrays that hold moment estimates.

## Syntax

```
status = vslssseditmoments(task, mean, r2m, r3m, r4m, c2m,c3m,c4m)
status = vsldsseditmoments(task, mean, r2m, r3m, r4m, c2m, c3m, c4m)
```

Include Files

- mkl_vsl.f90


## Input Parameters

Name	Type
task	TYPE (VSL_SS_TASK)
mean	REAL (KIND=4) DIMENSION(*) for vslssseditmoments
	REAL (KIND=8) DIMENSION(*) for vsldsseditmoments
r2m	REAL (KIND=4) DIMENSION(*) for vslssseditmoments
	REAL (KIND=8) DIMENSION(*) for vsldsseditmoments
r3m	REAL (KIND=4) DIMENSION(*) for vslssseditmoments
	REAL (KIND=8) DIMENSION(*) for vsldsseditmoments
r 4 m	REAL (KIND=4) DIMENSION(*) for vslssseditmoments
	REAL (KIND=8) DIMENSION(*) for vsldsseditmoments
c2m	REAL (KIND=4) DIMENSION(*) for vslssseditmoments
	REAL (KIND=8) DIMENSION(*) for vsldsseditmoments
c3m	REAL (KIND=4) DIMENSION(*) for vslssseditmoments
	REAL (KIND=8) DIMENSION(*) for vsldsseditmoments
c 4 m	REAL (KIND=4) DIMENSION(*) for vslssseditmoments
	REAL (KIND=8) DIMENSION(*) for vsldsseditmoments

## Name

task
mean
r2m
r4m
c3m
c 4 m

## Type

TYPE (VSL_SS_TASK)
REAL (KIND=4) DIMENSION (*) for vslssseditmoments

REAL (KIND=8) DIMENSION(*) for vsldsseditmoments

REAL (KIND=4) DIMENSION (*) for vslssseditmoments

REAL (KIND=8) DIMENSION (*) for vsldsseditmoments

REAL (KIND=4) DIMENSION (*) for vslssseditmoments
REAL (KIND=8) DIMENSION(*) for vsldsseditmoments

REAL (KIND=4) DIMENSION (*) for vslssseditmoments

REAL (KIND=8) DIMENSION (*) for vsldsseditmoments

REAL (KIND=4) DIMENSION (*) for vslssseditmoments
REAL (KIND=8) DIMENSION (*) for vsldsseditmoments

REAL (KIND=4) DIMENSION (*) for vslssseditmoments

REAL (KIND=8) DIMENSION (*) for vsldsseditmoments

REAL (KIND=4) DIMENSION (*) for vslssseditmoments

REAL (KIND=8) DIMENSION(*) for vsldsseditmoments

## Description

Descriptor of the task
Pointer to the array of means

Pointer to the array of raw moments of the $2^{\text {nd }}$ order

Pointer to the array of raw moments of the $3^{\text {rd }}$ order

Pointer to the array of raw moments of the $4^{\text {th }}$ order

Pointer to the array of central moments of the $2^{\text {nd }}$ order

Pointer to the array of central moments of the $3^{\text {rd }}$ order

Pointer to the array of central moments of the $4^{\text {th }}$ order

## Description

Current status of the task

## Description

The vslSSEditMoments routine replaces pointers to the arrays that hold estimates of raw and central moments with values passed as corresponding parameters of the routine. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

```
vsISSEditSums
Modifies the pointers to arrays that hold sum
estimates.
```


## Syntax

```
status = vslssseditsums(task, sum, r2s, r3s, r4s, c2s, c3s, c4s)
status = vsldsseditsums(task, sum, r2s, r3s, r4s, c2s, c3s, c4s)
```


## Include Files

- mkl_vsl.f90


## Input Parameters

Name	Type
task	TYPE (VSL_SS_TASK)
sum	REAL (KIND=4) DIMENSION(*) for vslssseditsums
	REAL (KIND=8) DIMENSION(*) for vsldsseditsums
r2s	REAL (KIND=4) DIMENSION(*) for vslssseditsums
	REAL (KIND=8) DIMENSION (*) for vsldsseditsums
r3s	REAL (KIND=4) DIMENSION(*) for vslssseditsums
	REAL (KIND=8) DIMENSION(*) for vsldsseditsums
r4s	REAL (KIND=4) DIMENSION (*) for vslssseditsums
	REAL (KIND=8) DIMENSION(*) for vsldsseditsums
c2s	REAL (KIND=4) DIMENSION (*) for vslssseditsums
	REAL (KIND=8) DIMENSION(*) for vsldsseditsums
c3s	REAL (KIND=4) DIMENSION(*) for vslssseditsums
	REAL (KIND=8) DIMENSION(*) for vsldsseditsums
c4s	REAL (KIND=4) DIMENSION (*) for vslssseditsums
	REAL (KIND=8) DIMENSION(*) for vsldsseditsums

## Description

Descriptor of the task
Pointer to the array of sums

Pointer to the array of raw sums of the second order

Pointer to the array of raw sums of the third order

Pointer to the array of raw sums of the fourth order

Pointer to the array of central sums of the second order

Pointer to the array of central sums of the third order

Pointer to the array of central sums of the fourth order

## Output Parameters

Name	Type	Description
status	INTEGER	Current status of the task

## Description

The vslSSEditSums routine replaces pointers to the arrays that hold estimates of raw and central sums with values passed as corresponding parameters of the routine. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.
vsISSEditCovCor
Modifies the pointers to covariance/correlation/cross-
product parameters.

## Syntax

```
status = vslssseditcovcor(task, mean, cov, cov_storage, cor, cor_storage)
status = vsldsseditcovcor(task, mean, cov, cov_storage, cor, cor_storage)
```


## Include Files

- mkl_vsl.f90


## Input Parameters

Name	Type	Description
task	TYPE (VSL_SS_TASK)	Descriptor of the task
mean	REAL (KIND=4) DIMENSION(*) for vslssseditcovcor	Pointer to the array of means
	REAL (KIND=8) DIMENSION(*) for vsldsseditcovcor	
COV	REAL (KIND=4) DIMENSION(*) for vslssseditcovcor	Pointer to a covariance matrix
	REAL (KIND=8) DIMENSION(*) for vsldsseditcovcor	
Cov_storage	INTEGER	Pointer to the storage format of the covariance matrix
cor	REAL (KIND=4) DIMENSION (*) for vslssseditcovcor	Pointer to a correlation matrix
	REAL (KIND=8) DIMENSION(*) for vsldsseditcovcor	
cor_storage	INTEGER	Pointer to the storage format of the correlation matrix

## Output Parameters

## Name

status

## Type

INTEGER

## Description

Current status of the task

## Description

The vslSSEditCovCor routine replaces pointers to the array of means, covariance/correlation arrays, and their storage format with values passed as corresponding parameters of the routine. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

The storage parameters, cov_storage and cor_storage, describe the storage format used for the $p$-by-p symmetric variance-covariance/correlation/cross-product matrix $C$. The matrix $C$ can be described as
$C=\left(\begin{array}{cccccc}c_{1,1} & c_{1,2} & \cdots & \cdots & \cdots & c_{1, p} \\ c_{2,1} & c_{2,2} & \cdots & \cdots & \cdots & c_{2, p} \\ \vdots & \vdots & \ddots & & & \vdots \\ \vdots & \vdots & & c_{i, j} & & \vdots \\ \vdots & \vdots & & & \ddots & \vdots \\ c_{p, 1} & c_{p, 2} & \cdots & \cdots & \cdots & c_{p, p}\end{array}\right)$
Table "Storage formats of a variance-covariance/correlation/cross-product matrix" shows how the matrix is stored in a one-dimensional array $c p$ for different values of the storage parameters.

## Storage formats of variance-covariance/correlation/cross-product matrices

Parameter	Description
VSL_SS_MATRIX_STORAGE_FULL	The array $c p$ contains all elements of the matrix stored sequentially, column-by-column:
	cp (1) contains $c_{1,1}$
	$c p(2)$ contains $c_{2,1}$
	$c p(p)$ contains $c_{p, 1}$
	$c p(p+1)$ contains $c_{1,2}$
	$c p(p * p)$ contains $c_{p, p}$
	The size of array cp is $p^{*} p$.
VSL_SS_MATRIX_STORAGE_L_PACKED	The array $c p$ contains the lower triangular part of the symmetric matrix stored sequentially, column-bycolumn:
	$c p(1)$ contains $c_{1,1}$
	$c p(2)$ contains $c_{2,1}$
	$c p(3)$ contains $c_{3,1}$
	and so on.
	The size of the array is $p^{*}(p+1) / 2$.
VSL_SS_MATRIX_STORAGE_U_PACKED	The array ср contains the upper triangular part of the symmetric matrix stored sequentially, column-bycolumn:
	cp (1) contains $c_{1,1}$
	cp (2) contains $c_{1,2}$


Parameter	Description
	$c p(3)$ contains $c_{2,2}$
	and so on.
The size of the array is $p^{*}(p+1) / 2$.	

```
vslSSEditCP
Modifies the pointers to cross-product matrix
parameters.
```


## Syntax

```
status = vslssseditcp(task, mean, sum, cp, cp_storage)
```

status = vslssseditcp(task, mean, sum, cp, cp_storage)
status = vsldsseditcp(task, mean, sum, cp, cp_storage)

```
status = vsldsseditcp(task, mean, sum, cp, cp_storage)
```

Include Files

- mkl_vsl.f90


## Input Parameters

Name	Type
task	TYPan (VSL_SS_TASK)
	REAL (KIND=4) DIMENSION (*) for
	vslssseditcp
	REAL (KIND=8) DIMENSION (*) for
	vsldsseditcp
	REAL (KIND=4) DIMENSION (*) for
	vslssseditcp
	REAL (KIND=8) DIMENSION (*) for
	vsldsseditcp
	REAL (KIND=4) DIMENSION (*) for
	vslssseditcp
	REAL (KIND=8) DIMENSION (*) for
	vsldsseditcp
	INTEGER

## Output Parameters

## Name

status

Type
INTEGER

## Description

Descriptor of the task
Pointer to array of means

Pointer to array of sums

Pointer to a cross-product matrix

Pointer to the storage format of the crossproduct matrix

## Description

Current status of the task

## Description

The vslSSEditCP routine replaces pointers to the array of means, array of sums, cross-product matrix, and its storage format with values passed as corresponding parameters of the routine. See Table: "Storage formats of a variance-covariance/correlation/cross-product matrix" for possible values of the cp_storage parameter. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

Storage formats of variance-covariance/correlation/cross-product matrices

Parameter	Description
VSL_SS_MATRIX_STORAGE_FULL	The array $c p$ contains all elements of the matrix stored sequentially, column-by-column:   cp(1) contains $c_{1,1}$   cp (2) contains $c_{2,1}$   $c p(p)$ contains $c_{p, 1}$   $c p(p+1)$ contains $c_{1,2}$   $c p(p * p)$ contains $c_{p, p}$   The size of array cp is $p^{*} p$.
VSL_SS_MATRIX_STORAGE_L_PACKED	The array $c p$ contains the lower triangular part of the symmetric matrix stored sequentially, column-bycolumn:   cp (1) contains $c_{1,1}$   cp (2) contains $c_{2,1}$   cp (3) contains $c_{3,1}$   and so on.   The size of the array is $p^{*}(p+1) / 2$.
VSL_SS_MATRIX_STORAGE_U_PACKED	The array $c p$ contains the upper triangular part of the symmetric matrix stored sequentially, column-bycolumn:   cp (1) contains $C_{1,1}$   $c p(2)$ contains $c_{1,2}$   cp (3) contains $c_{2,2}$   and so on.   The size of the array is $p^{*}(p+1) / 2$.

```
vsISSEditPartialCovCor
Modifies the pointers to partial covariance/correlation
parameters.
Syntax
status = vslssseditpartialcovcor(task, p_idx_array, cov, cov_storage, cor, cor_storage,
p_cov, p_cov_storage, p_cor, p_cor_storage)
status = vsldsseditpartialcovcor(task, p_idx_array, cov, cov_storage, cor, cor_storage,
p_cov, p_cov_storage, p_cor, p_cor_storage)
```

Include Files

- mkl_vsl.f90

Input Parameters


## Description

Descriptor of the task
Pointer to the array that encodes indices of subcomponents $Z$ and $Y$ of the random vector as described in section Mathematical Notation and Definitions.
p_idx_array[i] equals to

- 1 if the $i$-th component of the random vector belongs to $Z$
1 , if the $i$-th component of the random vector belongs to $Y$.

Pointer to a covariance matrix

Pointer to the storage format of the covariance matrix

Pointer to a correlation matrix

Pointer to the storage format of the correlation matrix

Pointer to a partial covariance matrix

Pointer to the storage format of the partial covariance matrix

Pointer to a partial correlation matrix

Pointer to the storage format of the partial correlation matrix

## Output Parameters

Name	Type	Description
status	INTEGER	Current status of the task

## Description

The vslSSEditPartialCovCor routine replaces pointers to covariance/correlation arrays, partial covariance/ correlation arrays, and their storage format with values passed as corresponding parameters of the routine. See Table "Storage formats of a variance-covariance/correlation matrix" for possible values of the cov_storage, cor_storage, $p_{-}$cov_storage, and $p_{-}$cor_storage parameters. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

## vsISSEditQuantiles

Modifies the pointers to parameters related to quantile
computations.

## Syntax

```
status = vslssseditquantiles(task, quant_order_n, quant_order, quants, order_stats,
order_stats_storage)
status = vsldsseditquantiles(task, quant_order_n, quant_order, quants, order_stats,
order_stats_storage)
```


## Include Files

- mkl_vsl.f90


## Input Parameters

Name	Type
task	TYPE (VSL_SS_TASK)
quant_order_n	INTEGER
quant_order	REAL (KIND=4) DIMENSION(*) for vslssseditquantiles
	REAL (KIND=8) DIMENSION(*) for vsldsseditquantiles
quants	REAL (KIND=4) DIMENSION(*) for vslssseditquantiles
	REAL (KIND=8) DIMENSION(*) for vsldsseditquantiles
order_stats	REAL (KIND=4) DIMENSION(*) for vslssseditquantiles
	REAL (KIND=8) DIMENSION(*) for vsldsseditquantiles
order_stats_storage	INTEGER

## Description

Descriptor of the task
Pointer to the number of quantile orders

Pointer to the array of quantile orders

Pointer to the array of quantiles

Pointer to the array of order statistics

Pointer to the storage format of the order statistics array

## Output Parameters

## Name

status

## Type

INTEGER

## Description

Current status of the task

## Description

The vslSSEditQuantiles routine replaces pointers to the number of quantile orders, the array of quantile orders, the array of quantiles, the array that holds order statistics, and the storage format for the order statistics with values passed into the routine. See Table "Storage format of matrix of observations and order statistics" for possible values of the order_statistics_storage parameter. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

## vsISSEditStreamQuantiles

Modifies the pointers to parameters related to quantile computations for streaming data.

## Syntax

```
status = vslssseditstreamquantiles(task, quant_order_n, quant_order, quants, nparams,
params)
status = vsldsseditstreamquantiles(task, quant_order_n, quant_order, quants, nparams,
params)
```


## Include Files

- mkl_vsl.f90


## Input Parameters

Name
task
quant_order_n
quant_order
quants REAL (KIND=4) DIMENSION (*)
params
for vslssseditstreamquantiles
REAL (KIND=8) DIMENSION(*)
for vsldsseditstreamquantiles
nparams INTEGER Pointer to the number of the algorithm

## Type

TYPE (VSL_SS_TASK)
INTEGER Pointer to the number of quantile orders
REAL (KIND=4) DIMENSION (*) for vslssseditstreamquantiles REAL (KIND=8) DIMENSION(*)
for vsldsseditstreamquantiles

REAL (KIND=4) DIMENSION(*)
for vslssseditstreamquantiles
REAL (KIND=8) DIMENSION(*)

## Description

Descriptor of the task

Pointer to the array of quantile orders

Pointer to the array of quantiles parameters

Pointer to the array of the algorithm parameters

Name Type Description
for vsldsseditstreamquantiles

## Output Parameters

Name	Type	Description
status	INTEGER	Current status of the task

## Description

The vslSSEditStreamQuantiles routine replaces pointers to the number of quantile orders, the array of quantile orders, the array of quantiles, the number of the algorithm parameters, and the array of the algorithm parameters with values passed into the routine. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

```
vsISSEditPooledCovariance
Modifies pooled/group covariance matrix array
pointers.
Syntax
status = vslssseditpooledcovariance(task, grp_indices, pld_mean, pld_cov,
req_grp_indices, grp_means, grp_cov)
status = vsldsseditpooledcovariance(task, grp_indices, pld_mean, pld_cov,
req_grp_indices, grp_means, grp_cov)
```


## Include Files

- mkl_vsl.f90


## Input Parameters

```
Name
task TYPE(VSL_SS_TASK)
grp_indices INTEGER DIMENSION(*)
pld_mean REAL(KIND=4) DIMENSION(*) for
 vslssseditpooledcovariance
 REAL(KIND=8) DIMENSION(*) for
 vsldsseditpooledcovariance
pld_cov REAL(KIND=4) DIMENSION(*) for
 vslssseditpooledcovariance
 REAL(KIND=8) DIMENSION(*) for
 vsldsseditpooledcovariance
```

req_grp_indices INTEGER DIMENSION(*) Pointer to the array that contains indices
of groups for which estimates to return (such as covariance and mean) covariance matrix

Name	Type
grp_means	REAL (KIND=4) DIMENSION(*) for
	product=Fortran
	vslssseditpooledcovariance
	REAL(KIND=8) DIMENSION(*) for
grp_cov	vsldsseditpooledcovariance
	REAL(KIND=4) DIMENSION(*) for
	vslssseditpooledcovariance
	REAL(KIND=8) DIMENSION(*) for
	vsldsseditpooledcovariance

## Output Parameters

## Name

status

## Type

INTEGER

## Description

Pointer to the array of group means

Pointer to the array that holds group covariance matrices

## Description

Current status of the task

## Description

The vslSSEditPooledCovariance routine replaces pointers to the array of group indices, the array of pooled means, the array for a pooled covariance matrix, and pointers to the array of indices of group matrices, the array of group means, and the array for group covariance matrices with values passed in the editors. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.. Use the vslSSEditTask routine to replace the storage format for pooled and group covariance matrices.
vsISSEditRobustCovariance
Modifies pointers to arrays related to a robust covariance matrix.

## Syntax

```
status = vslssseditrobustcovariance(task, rcov_storage, nparams, params, rmean, rcov)
status = vsldsseditrobustcovariance(task, rcov_storage, nparams, params, rmean, rcov)
```


## Include Files

- mkl_vsl.f90


## Input Parameters

Name	Type	Description
task	TYPE (VSL_SS_TASK)	Descriptor of the task
rCov_storage	INTEGER	Pointer to the storage format of a robust   covariance matrix
nparams	INTEGER	Pointer to the number of method   parameters
params	REAL (KIND=4) DIMENSION(*) for	Pointer to the array of method parameters


Name	Type	Description
rmean	REAL (KIND=8) DIMENSION(*) for	
	vsldsseditrobustcovariance	
REAL (KIND=4) DIMENSION(*) for	Pointer to the array of robust means	
	vslssseditrobustcovariance	
	REAL (KIND=8) DIMENSION(*) for	
	REAL (KIND=4) DIMENSION(*) for	Pointer to a robust covariance matrix
	vslssseditrobustcovariance	
	REAL (KIND=8) DIMENSION(*) for	

## Output Parameters

Name	Type	Description
status	INTEGER	Current status of the task

## Description

The vslSSEditRobustCovariance routine uses values passed as parameters of the routine to replace:

- pointers to covariance matrix storage
- pointers to the number of method parameters and to the array of the method parameters of size nparams
- pointers to the arrays that hold robust means and covariance

See Table "Storage formats of a variance-covariance/correlation matrix" for possible values of the rcov_storage parameter. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides a Translated Biweight S-estimator (TBS) for robust estimation of a variance-covariance matrix and mean [Rocke96]. Use one iteration of the Maronna algorithm with the reweighting step [Maronna02] to compute the initial point of the algorithm. Pack the parameters of the TBS algorithm into the params array and pass them into the editor. Table "Structure of the Array of TBS Parameters" describes the params structure.

## Structure of the Array of TBS Parameters

Array Position	Algorithm   Parameter	Description
0	$\varepsilon$	Breakdown point, the number of outliers the algorithm can   hold. By default, the value is $(n-p) /(2 n)$.
1	$\alpha$	Asymptotic rejection probability, see details in [Rocke96]. By   default, the value is 0.001.
2	$\delta$	Stopping criterion: the algorithm is terminated if weights are   changed less than $\delta$. By default, the value is 0.001.


Array Position	Algorithm   Parameter	Description
3	max_iter	Maximum number of iterations. The algorithm terminates after   max_iter iterations. By default, the value is 10.
If you set this parameter to zero, the function returns a robust		
estimate of the variance-covariance matrix computed using		
the Maronna method [Maronna02] only.		

The robust estimator of variance-covariance implementation in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) requires that the number of observationsn be greater than twice the number of variables: $n>2 p$.

See additional details of the algorithm usage model in the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Summary Statistics Application Notes document [SS Notes].
vsISSEditOutliersDetection
Modifies array pointers related to multivariate outliers
detection.

## Syntax

```
status = vslssseditoutliersdetection(task, nparams, params, w)
status = vsldsseditoutliersdetection(task, nparams, params, w)
```

Include Files

- mkl_vsl.f90


## Input Parameters

Name	Type
task	TYPE(VSL_SS_TASK)
nparams	INTEGER
params	REAL (KIND=4) DIMENSION (*) for vslssseditoutliersdetection
	REAL (KIND=8) DIMENSION (*) for vsldsseditoutliersdetection
W	REAL (KIND=4) DIMENSION (*) for vslssseditoutliersdetection
	REAL (KIND=8) DIMENSION(*) for vsldsseditoutliersdetection

## Description

Descriptor of the task
Pointer to the number of method parameters

Pointer to the array of method parameters

## Output Parameters

## Name

status

Type
INTEGER

## Description

Current status of the task

## Description

The vslSSEditOutliersDetection routine uses the parameters passed to replace

- the pointers to the number of method parameters and to the array of the method parameters of size nparams
- the pointer to the array that holds the calculated weights of the observations

If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides the BACON algorithm ([Billor00]) for the detection of multivariate outliers. Pack the parameters of the BACON algorithm into the params array and pass them into the editor. Table "Structure of the Array of BACON Parameters" describes the params structure.
Structure of the Array of BACON Parameters

Array Position	Algorithm Parameter	Description
0	Method to start the algorithm	The parameter takes one of the following possible values: VSL_SS_METHOD_BACON_MEDIAN_INIT, if the algorithm is started using the median estimate. This is the default value of the parameter.
		VSL_SS_METHOD_BACON_MAHALANOBIS_INIT, if the algorithm is started using the Mahalanobis distances.
1	$\alpha$	One-tailed probability that defines the ( $1-\alpha$ ) quantile of $\chi^{2}$ distribution with $p$ degrees of freedom. The recommended value is $\alpha / n$, where $n$ is the number of observations. By default, the value is 0.05 .
2	$\delta$	Stopping criterion; the algorithm is terminated if the size of the basic subset is changed less than $\delta$. By default, the value is 0.005 .

Output of the algorithm is the vector of weights, BaconWeights, such that BaconWeights $(i)=0$ if $i$-th observation is detected as an outlier. Otherwise BaconWeights $(i)=w(i)$, where $w$ is the vector of input weights. If you do not provide the vector of input weights, BaconWeights $(i)$ is set to 1 if the $i$-th observation is not detected as an outlier.

See additional details about usage model of the algorithm in the Inte/ ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Summary Statistics Application Notes document [SS Notes].

## vsISSEditMissingValues

Modifies pointers to arrays associated with the method
of supporting missing values in a dataset.

## Syntax

```
status = vslssseditmissingvalues(task, nparams, params, init_estimates_n,
init_estimates, prior_n, prior, simul_missing_vals_n, simul_missing_vals, estimates_n,
estimates)
status = vsldsseditmissingvalues(task, nparams, params, init_estimates_n,
init_estimates, prior_n, prior, simul_missing_vals_n, simul_missing_vals, estimates_n,
estimates)
```


## Include Files

- mkl_vsl.f90

Input Parameters

Name	Type
task	TYPE (VSL_SS_TASK)
nparams	INTEGER
params	REAL (KIND=4) DIMENSION(*) for vslssseditmissingvalues   REAL (KIND=8) DIMENSION(*) for vsldsseditmissingvalues
init_estimates_n	INTEGER
init_estimates	REAL (KIND=4) DIMENSION(*) for vslssseditmissingvalues   REAL (KIND=8) DIMENSION(*) for vsldsseditmissingvalues
prior_n	INTEGER
prior	REAL (KIND=4) DIMENSION(*) for vslssseditmissingvalues   REAL (KIND=8) DIMENSION(*) for vsldsseditmissingvalues
simul_missing_vals_n	INTEGER

simul_missing_vals REAL(KIND=4) DIMENSION(*) for vslssseditmissingvalues REAL (KIND=8) DIMENSION(*) for vsldsseditmissingvalues
estimates_n
estimates

INTEGER

REAL (KIND=4) DIMENSION (*) for vslssseditmissingvalues

REAL (KIND=8) DIMENSION(*) for vsldsseditmissingvalues

## Description

Descriptor of the task
Pointer to the number of method parameters

Pointer to the array of method parameters

Pointer to the number of initial estimates for mean and a variancecovariance matrix

Pointer to the array that holds initial estimates for mean and a variancecovariance matrix

Pointer to the number of prior parameters

Pointer to the array of prior parameters

Pointer to the size of the array that holds output of the Multiple Imputation method

Pointer to the array of size $k^{\star} m$, where $k$ is the total number of missing values, and $m$ is number of copies of missing values. The array holds $m$ sets of simulated missing values for the matrix of observations.

Pointer to the number of estimates to be returned by the routine

Pointer to the array that holds estimates of the mean and a variance-covariance matrix.

## Output Parameters

## Name

status

Type
INTEGER

## Description

Current status of the task

## Description

The vslSSEditMissingValues routine uses values passed as parameters of the routine to replace pointers to the number and the array of the method parameters, pointers to the number and the array of initial mean/variance-covariance estimates, the pointer to the number and the array of prior parameters, pointers to the number and the array of simulated missing values, and pointers to the number and the array of the intermediate mean/covariance estimates. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

Before you call the Summary Statistics routines to process missing values, preprocess the dataset and denote missing observations with one of the following predefined constants:

- VSL_SS_SNAN, if the dataset is stored in single precision floating-point arithmetic
- VSL_SS_DNAN, if the dataset is stored in double precision floating-point arithmetic

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides theVSL_SS_METHOD_MI method to support missing values in the dataset based on the Multiple Imputation (MI) approach described in [Schafer97]. The following components support Multiple Imputation:

- Expectation Maximization (EM) algorithm to compute the start point for the Data Augmentation (DA) procedure
- DA function


## NOTE

The DA component of the MI procedure is simulation-based and uses the VSL_BRNG_MCG59 basic random number generator with predefined seed $=2^{50}$ and the Gaussian distribution generator (ICDFmethod) available in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) [Gaussian].

Pack the parameters of the MI algorithm into the params array. Table "Structure of the Array of MI Parameters" describes the params structure.

## Structure of the Array of MI Parameters

Array Position	Algorithm Parameter	Description
0	em_iter_num	Maximal number of iterations for the EM algorithm.   By default, this value is 50.
1	da_iter_num	Maximal number of iterations for the DA algorithm.   By default, this value is 30.
2	mapping criterion for the EM algorithm. The	
algorithm terminates if the maximal module of the		
element-wise difference between the previous and		
current parameter values is less than $\varepsilon$. By default,		
this value is 0.001.		

You can also pass initial estimates into the EM algorithm by packing both the vector of means and the variance-covariance matrix as a one-dimensional array init_estimates. The size of the array should be at least $p+p(p+1) / 2$. For $i=0, . ., p-1$, the init_estimates[ $i]$ array contains the initial estimate of means. The remaining positions of the array are occupied by the upper triangular part of the variance-covariance matrix.

If you provide no initial estimates for the EM algorithm, the editor uses the default values, that is, the vector of zero means and the unitary matrix as a variance-covariance matrix. You can also pass prior parameters for $\mu$ and $\Sigma$ into the library: $\mu_{0}, \tau, m$, and $\Lambda^{-1}$. Pack these parameters as a one-dimensional array prior with a size of at least
$\left(p^{2}+3 p+4\right) / 2$.
The storage format is as follows:

- prior [0], ..., prior[p-1] contain the elements of the vector $\mu_{0}$.
- $\operatorname{prior}[p]$ contains the parameter $\tau$.
- prior $[p+1]$ contains the parameter $m$.
- The remaining positions are occupied by the upper-triangular part of the inverted matrix $\Lambda^{-1}$.

If you provide no prior parameters, the editor uses their default values:

- The array of $p$ zeros is used as $\mu_{0}$.
- $\tau$ is set to 0 .
- $m$ is set to $p$.
- The zero matrix is used as an initial approximate of $\Lambda^{-1}$.

The EditMissingValues editor returns $m$ sets of imputed values and/or a sequence of parameter estimates drawn during the DA procedure.

The editor returns the imputed values as the simul_missing_vals array. The size of the array should be sufficient to hold $m$ sets each of the missing_vals_num size, that is, at least $m *$ missing_vals_num in total. The editor packs the imputed values one by one in the order of their appearance in the matrix of observations.

For example, consider a task of dimension 4. The total number of observations $n$ is 10 . The second observation vector misses variables 1 and 2, and the seventh observation vector lacks variable 1 . The number of sets to impute is $m=2$. Then, simul_missing_vals[0] and simul_missing_vals[1] contains the first and the second points for the second observation vector, and simul_missing_vals[2] holds the first point for the seventh observation. Positions 3, 4, and 5 are formed similarly.
To estimate convergence of the DA algorithm and choose a proper value of the number of DA iterations, request the sequence of parameter estimates that are produced during the DA procedure. The editor returns the sequence of parameters as a single array. The size of the array is

```
m*da_iter_num* (p+(p2+p)/2)
```

where

- $m$ is the number of sets of values to impute.
- da_iter_num is the number of DA iterations.
- The value $p+\left(p^{2}+p\right) / 2$ determines the size of the memory to hold one set of the parameter estimates.

In each set of the parameters, the vector of means occupies the first $p$ positions and the remaining $\left(p^{2}+p\right) / 2$ positions are intended for the upper triangular part of the variance-covariance matrix.
Upon successful generation of $m$ sets of imputed values, you can place them in cells of the data matrix with missing values and use the Summary Statistics routines to analyze and get estimates for each of the $m$ complete datasets.

## NOTE

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) implementation of the MI algorithm rewrites cells of the dataset that contain thevSL_SS_SNAN/VSL_SS_DNAN values. If you want to use the Summary Statistics routines to process the data with missing values again, mask the positions of the empty cells.

See additional details of the algorithm usage model in the Inte® oneAPI Math Kernel Library (oneMKL) Summary Statistics Application Notes document [SS Notes].
vsISSEditCorParameterization
Modifies pointers to arrays related to the algorithm of correlation matrix parameterization.

## Syntax

```
status = vslssseditcorparameterization(task, cor, cor_storage, pcor, pcor_storage)
status = vsldsseditcorparameterization(task, cor, cor_storage, pcor, pcor_storage)
```

Include Files

- mkl_vsl.f90

Input Parameters

Name	Type	Description
task	TYPE (VSL_SS_TASK)	Descriptor of the task
cor	REAL (KIND=4) DIMENSION(*) for vslssseditcorparameterization	Pointer to the correlation matrix
	REAL (KIND=8) DIMENSION(*) for vsldsseditcorparameterization	
cor_storage	INTEGER	Pointer to the storage format of the correlation matrix
pcor	REAL (KIND=4) DIMENSION(*) for vslssseditcorparameterization	Pointer to the parameterized correlation matrix
	REAL (KIND=8) DIMENSION(*) for vsldsseditcorparameterization	
por_storage	INTEGER	Pointer to the storage format of the parameterized correlation matrix

## Output Parameters

Name	Type
status	INTEGER

## Description

Current status of the task

## Description

The vslSSEditCorParameterization routine uses values passed as parameters of the routine to replace pointers to the correlation matrix, pointers to the correlation matrix storage format, a pointer to the parameterized correlation matrix, and a pointer to the parameterized correlation matrix storage format. See

Table "Storage formats of a variance-covariance/correlation matrix" for possible values of the cor_storage and pcor_storage parameters. If you pass a value of NULL for a specific input parameter, the value of that parameter in the task descriptor is unchanged.

## Summary Statistics Task Computation Routines

Task computation routines calculate statistical estimates on the data provided and parameters held in the task descriptor. After you create the task and initialize its parameters, you can call the computation routines as many times as necessary. Table "Summary Statistics Estimates Obtained with vslSSCompute Routine" lists the respective statistical estimates.

## NOTE

The Summary Statistics computation routines do not signal floating-point errors, such as overflow or gradual underflow, or operations with NaNs (except for the missing values in the observations).

## Summary Statistics Estimates Obtained with vsISSCompute Routine

Estimate	Support of Observations Available in Blocks	Description
VSL_SS_MEAN	Yes	Computes the array of means.
VSL_SS_SUM	Yes	Computes the array of sums.
VSL_SS_2R_MOM	Yes	Computes the array of the $2^{\text {nd }}$ order raw moments.
VSL_SS_2R_SUM	Yes	Computes the array of raw sums of the $2^{\text {nd }}$ order.
VSL_SS_3R_MOM	Yes	Computes the array of the $3^{\text {rd }}$ order raw moments.
VSL_SS_3R_SUM	Yes	Computes the array of raw sums of the $3^{\text {rd }}$ order.
VSL_SS_4R_MOM	Yes	Computes the array of the $4^{\text {th }}$ order raw moments.
VSL_SS_4R_SUM	Yes	Computes the array of raw sums of the $4^{\text {th }}$ order.
VSL_SS_2C_MOM	Yes	Computes the array of the $2^{\text {nd }}$ order central moments.
VSL_SS_2C_SUM	Yes	Computes the array of central sums of the $2^{\text {nd }}$ order.
VSL_SS_3C_MOM	Yes	Computes the array of the $3^{\text {rd }}$ order central moments.
VSL_SS_3C_SUM	Yes	Computes the array of central sums of the $3^{\text {rd }}$ order.
VSL_SS_4C_MOM	Yes	Computes the array of the $4^{\text {th }}$ order central moments.
VSL_SS_4C_SUM	Yes	Computes the array of central sums of the $4^{\text {th }}$ order.


Estimate	Support of Observations Available in Blocks	Description
VSL_SS_KURTOSIS	Yes	Computes the array of kurtosis values.
VSL_SS_SKEWNESS	Yes	Computes the array of skewness values.
VSL_SS_MIN	Yes	Computes the array of minimum values.
VSL_SS_MAX	Yes	Computes the array of maximum values.
VSL_SS_VARIATION	Yes	Computes the array of variation coefficients.
VSL_SS_COV	Yes	Computes a covariance matrix.
vSL_SS_COR	Yes	Computes a correlation matrix. The main diagonal of the correlation matrix holds variances of the random vector components.
VSL_SS_CP	Yes	Computes a cross-product matrix.
VSL_SS_POOLED_COV	No	Computes a pooled covariance matrix.
VSL_SS_POOLED_MEAN	No	Computes an array of pooled means.
VSL_SS_GROUP_COV	No	Computes group covariance matrices.
VSL_SS_GROUP_MEAN	No	Computes group means.
VSL_SS_QUANTS	No	Computes quantiles.
VSL_SS_ORDER_STATS	No	Computes order statistics.
VSL_SS_ROBUST_COV	No	Computes a robust covariance matrix.
VSL_SS_OUTLIERS	No	Detects outliers in the dataset.
VSL_SS_PARTIAL_COV	No	Computes a partial covariance matrix.
VSL_SS_PARTIAL_COR	No	Computes a partial correlation matrix.
VSL_SS_MISSING_VALS	No	Supports missing values in datasets.
VSL_SS_PARAMTR_COR	No	Computes a parameterized correlation matrix.
VSL_SS_STREAM_QUANTS	Yes	Computes quantiles for streaming data.
VSL_SS_MDAD	No	Computes median absolute deviation.
VSL_SS_MNAD	No	Computes mean absolute deviation.
VSL_SS_SORTED_OBSERV	No	Sorts the dataset by the components of the random vector $\xi$.

Table "Summary Statistics Computation Method"lists estimate calculation methods supported by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). See theInte®® oneAPI Math Kernel Library (oneMKL) Summary Statistics Application Notes document [SS Notes] for a detailed description of the methods.
Summary Statistics Computation Method
Method $\quad$ Description $\quad 1$

Fast method for calculation of the estimates:

Method	Description
	raw/central moments/sums, skewness, kurtosis, variation, variance-covariance/correlation/crossproduct matrix   - min/max/quantile/order statistics   - partial variance-covariance   - median/mean absolute deviation
VSL_SS_METHOD_FAST_USER_MEAN	Fast method for calculation of the estimates given userdefined mean:
	- central moments/sums of 2-4 order, skewness, kurtosis, variation, variance-covariance/correlation/ cross-product matrix, mean absolute deviation
VSL_SS_METHOD_1PASS	One-pass method for calculation of estimates:
	- raw/central moments/sums, skewness, kurtosis, variation, variance-covariance/correlation/crossproduct matrix   - pooled/group covariance matrix
VSL_SS_METHOD_TBS	TBS method for robust estimation of covariance and mean
VSL_SS_METHOD_BACON	BACON method for detection of multivariate outliers
VSL_SS_METHOD_MI	Multiple imputation method for support of missing values
VSL_SS_METHOD_SD	Spectral decomposition method for parameterization of a correlation matrix
VSL_SS_METHOD_SQUANTS_ZW	Zhang-Wang (ZW) method for quantile estimation for streaming data
VSL_SS_METHOD_SQUANTS_ZW_FAST	Fast ZW method for quantile estimation for streaming data
VSL_SS_METHOD_RADIX	Radix method for dataset sorting

You can calculate all requested estimates in one call of the routine. For example, to compute a kurtosis and covariance matrix using a fast method, pass a combination of the pre-defined parameters into the compute routine as shown in the example below:

```
method = VSL_SS_METHOD_FAST;
task_params = VSLL_SS_KÜRTOSIS|VSL_SS_COV;
status = vsldSSCompute(task, task_params, method);
```

To compute statistical estimates for the next block of observations, you can do one of the following:

- copy the observations to memory, starting with the address available to the task
- use one of the appropriate Editors to modify the pointer to the new dataset in the task.

The library does not detect your changes of the dataset and computed statistical estimates. To obtain statistical estimates for a new matrix, change the observations and initialize relevant arrays. You can follow this procedure to compute statistical estimates for observations that come in portions. See Table "Summary Statistics Estimates Obtained with vslSSCompute Routine"for information on such observations supported by the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Summary Statistics estimators.

To modify parameters of the task using the Task Editors, set the address of the targeted matrix of the observations or change the respective vector component indices. After you complete editing the task parameters, you can compute statistical estimates in the modified environment.

If the task completes successfully, the computation routine returns the zero status code. If an error is detected, the computation routine returns an error code. In particular, an error status code is returned in the following cases:

- the task pointer is NULL
- memory allocation has failed
- the calculation has failed for some other reason


## NOTE

You can use the NULL task pointer in calls to editor routines. In this case, the routine is terminated and no system crash occurs.

```
vsISSCompute
Computes Summary Statistics estimates.
Syntax
status = vslssscompute(task, estimates, method)
status = vsldsscompute(task, estimates, method)
```


## Include Files

- mkl_vsl.f90

Input Parameters

Name	Type
task	TYPE (VSL_SS_TASK)
estimates	INTEGER (KIND=8)
method	INTEGER

$$
\begin{aligned}
& \text { Description } \\
& \text { Descriptor of the task } \\
& \text { List of statistical estimates to compute } \\
& \text { Method to be used in calculations }
\end{aligned}
$$

## Output Parameters

Name	Type	Description
status	INTEGER	Current status of the task

## Description

The vslSSCompute routine calculates statistical estimates passed as the estimates parameter using the algorithms passed as the method parameter of the routine. The computations are done in the context of the task descriptor that contains pointers to all required and optional, if necessary, properly initialized arrays. In one call of the function, you can compute several estimates using proper methods for their calculation. See Table "Summary Statistics Estimates Obtained with compute Routine" for the list of the estimates that you can calculate with the vslSSCompute routine. See Table "Summary Statistics Computation Methods" for the list of possible values of the method parameter.

To initialize single or double precision version task parameters, use the single (vslssscompute) or double (vsldsscompute) version of the editor, respectively. To initialize parameters of the integer type, use an integer version of the editor (vslisscompute).

## NOTE

Requesting a combination of the VSL_SS_MISSING_VALS value and any other estimate parameter in the compute function results in processing only the missing values.

## Application Notes

Be aware that when computing a correlation matrix, the vsiSSCompute routine allocates an additional array for each thread which is running the task. If you are running on a large number of threads vslSSCompute might consume large amounts of memory.
When calculating covariance, correlation, or cross product, the number of bytes of memory required is at least $\left(P^{*} P^{*} T+P^{*} T\right)^{*} b$, where $P$ is the dimension of the task or number of variables, $T$ is the number of threads, and $b$ is the number of bytes required for each unit of data. If observation is weighted and the method is VSL_SS_METHOD_FAST, then the memory required is at least ( $P^{*} P^{*} T+P^{*} T+N^{*} P$ ) ${ }^{*} b$, where $N$ is the number of observations.

## Summary Statistics Task Destructor

Task destructor is the vslSSDeleteTask routine intended to delete task objects and release memory.

## vsISSDeleteTask

Destroys the task object and releases the memory.

## Syntax

```
status = vslssdeletetask(task)
```

Include Files

- mkl_vsl.f90

Input Parameters

Name	Type	Description
task	TYPE (VSL_SS_TASK $)$	Descriptor of the task to destroy

## Output Parameters

Name
status

Type

INTEGER

## Description

Sets to VSL_STATUS_OK if the task is deleted; otherwise a non-zero code is returned.

## Description

The vslSSDeleteTask routine deletes the task descriptor object, releases the memory allocated for the structure, and sets the task pointer to NULL. If vslSSDeleteTask fails to delete the task successfully, it returns an error code.

## NOTE

Call of the destructor with the null pointer as the parameter results in termination of the function with no system crash.

## Summary Statistics Usage Examples

The following examples show various standard operations with Summary Statistics routines.

## Calculating Fixed Estimates for Fixed Data

The example shows recurrent calculation of the same estimates with a given set of variables for the complete life cycle of the task in the case of a variance-covariance matrix. The set of vector components to process remains unchanged, and the data comes in blocks. Before you call the vslSSCompute routine, initialize pointers to arrays for mean and covariance and set buffers.

```
...
double w[2];
double indices[DIM] = {1, 0, 1};
/* calculating mean for 1st and 3d random vector components */
/* Initialize parameters of the task */
p = DIM;
n = N;
xstorage = VSL_SS_MATRIX_STORAGE_ROWS;
covstorage = VSL_SS_MATRIX_STORAGE_FULL;
W[0] = 0.0; W[1] = 0.0;
for (i = 0; i < p; i++) mean[i] = 0.0;
for (i = 0; i < p*p; i++) cov[i] = 0.0;
status = vsldSSNewTask(&task, &p, &n, &xstorage, x, 0, indices);
status = vsldSSEditTask (task, VSL_SS_ED_ACCUM_WEIGHT, w);
status = vsldSSEditCovCor(task, mean, cov, &Covstorage, 0, 0);
```

You can process data arrays that come in blocks as follows:

```
for (i = 0; i < num_of_blocks; i++)
{
 status = vsldSSCompute(task, VSL_SS_COV, VSL_SS_METHOD_FAST);
 /* Read new data block into array x */
}
```


## Calculating Different Estimates for Variable Data

The context of your calculation may change in the process of data analysis. The example below shows the data that comes in two blocks. You need to estimate a covariance matrix for the complete data, and the third central moment for the second block of the data using the weights that were accumulated for the previous datasets. The second block of the data is stored in another array. You can proceed as follows:

```
/* Set parameters for the task */
p = DIM;
n = N;
xstorage = VSL_SS_MATRIX_STORAGE_ROWS;
covstorage = VSL_SS_MATRIX_STORAGE_FULL;
w[0] = 0.0; w[1] = 0.0;
```

```
for (i = 0; i < p; i++) mean[i] = 0.0;
for (i = 0; i < p*p; i++) cov[i] = 0.0;
/* Create task */
status = vsldSSNewTask(&task, &p, &n, &xstorage, x1, 0, indices);
/* Initialize the task parameters */
status = vsldSSEditTask(task, VSL_SS_ED_ACCUM_WEIGHT, w);
status = vsldSSEditCovCor(task, mean, covv, &Cōvstorage, 0, 0);
/* Calculate covariance for the x1 data */
status = vsldSSCompute(task, VSL_SS_COV, VSL_SS_METHOD_FAST);
/* Initialize array of the 3d central moments and pass the pointer to the task */
for (i = 0; i < p; i++) c3_m[i] = 0.0;
/* Modify task context */
status = vsldSSEditTask(task, VSL_SS_ED_3C_MOM, c3_m);
status = vsldSSEditTask(task, VSL_SS_ED_OBSERV, x2);
/* Calculate covariance for the x1 & x2 data block */
/* Calculate the 3d central moment for the 2nd data block using earlier accumulated weight */
status = vsldSSCompute(task, VSL_SS_COV|VSL_SS_3C_MOM, VSL_SS_METHOD_FAST);
status = vslSSDeleteTask(&task);
```

Similarly, you can modify indices of the variables to be processed for the next data block.

## Summary Statistics Mathematical Notation and Definitions

The following notations are used in the mathematical definitions and the description of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Summary Statistics functions.

## Matrix and Weights of Observations

For a random $p$-dimensional vector $\xi=\left(\xi_{1}, \ldots, \xi_{i}, \ldots, \xi_{p}\right)$, this manual denotes the following:

- $(X)_{i}=\left(x_{i j}\right)_{j=1 \ldots n}$ is the result of $n$ independent observations for the $i$-th component $\xi_{i}$ of the vector $\xi$.
- The two-dimensional array $X=\left(x_{i j}\right)_{n \times p}$ is the matrix of observations.
- The column $[X]_{j}=\left(x_{i j}\right)_{i=1 \ldots p}$ of the matrix $X$ is the $j$-th observation of the random vector $\xi$.

Each observation $[X]_{j}$ is assigned a non-negative weight $w_{j}$, where

- The vector $\left(w_{j}\right)_{j=1 . . n}$ is a vector of weights corresponding to $n$ observations of the random vector $\xi$.
- $W=\sum_{i=1}^{n} w_{i}$
is the accumulated weight corresponding to observations $X$.


## Vector of sample means

$M(X)=\left(M_{1}(X), \ldots, M_{p}(X)\right)$ with $M_{i}(X)=\frac{1}{w} \sum_{j=1}^{n} w_{j} x_{i j}$
for all $i=1, \ldots, p$.

## Vector of sample partial sums

$S(X)=\left(S_{1}(X), \ldots, S_{p}(X)\right)$ with $S_{i}(X)=\sum_{j=1}^{n} w_{j} x_{i j}$
for all $i=1, \ldots, p$.
Vector of sample variances
$V(X)=\left(V_{1}(X), \ldots, V_{p}(X)\right)$ with $V_{i}(X)=\frac{1}{B} \sum_{j=1}^{n} w_{j}\left(x_{i j}-M_{i}(X)\right)^{2}, B=W-\sum_{j=1}^{n} w_{j}^{2} / W$
for all $i=1, \ldots, p$.
Vector of sample raw/algebraic moments of $\boldsymbol{k}$-th order, $k \geq 1$
$R^{(k)}(X)=\left(R_{1}^{(k)}(X), \ldots, R_{p}^{(k)}(X)\right)$ with $R_{i}^{(k)}(X)=\frac{1}{W} \sum_{j=1}^{n} w_{j} x_{i j}^{k}$
for all $i=1, \ldots, p$.
Vector of sample raw/algebraic partial sums of $\boldsymbol{k}$-th order, $\boldsymbol{k}=\mathbf{2 , 3 , 4}$ (raw/algebraic partial sums of squares/cubes/fourth powers)
$S^{k}(X)=\left(S_{1}^{k}(X), \ldots, S_{p}^{k}(X)\right)$ with $S_{i}^{k}(X)=\sum_{j=1}^{n} w_{j} x_{i j}^{k}$
for all $i=1, \ldots, p$.
Vector of sample central moments of the third and the fourth order $C^{(k)}(X)=\left(C_{1}^{(k)}(X), \ldots, C_{p}^{(k)}(X)\right)$ with $C_{i}^{(k)}(X)=\frac{1}{B} \sum_{j=1}^{n} w_{j}\left(x_{i j}-M_{i}(X)\right)^{k}, B=\sum_{j=1}^{n} w_{j}$
for all $i=1, \ldots, p$ and $k=3,4$.
Vector of sample central partial sums of $k$-th order, $k=2,3,4$ (central partial sums of squares/ cubes/fourth powers)
$S^{k}(X)=\left(S_{1}^{k}(X), \ldots, S_{p}^{k}(X)\right)$ with $S_{i}^{k}(X)=\sum_{j=1}^{n} w_{j}\left(x_{i j}-S_{i}(X)\right)^{k}$
for all $i=1, \ldots, p$.
Vector of sample excess kurtosis values
$B(X)=\left(B_{1}(X), \ldots, B_{p}(X)\right)$ with $B_{i}(X)=\frac{C_{i}^{(4)}(X)}{V_{i}^{2}(X)}-3$
for all $i=1, \ldots, p$.
Vector of sample skewness values
$\Gamma(X)=\left(\Gamma_{1}(X), \ldots, \Gamma_{p}(X)\right)$ with $\Gamma_{i}(X)=\frac{C_{i}^{(3)}(X)}{V_{i}^{1.5}(X)}$
for all $i=1, \ldots, p$.

## Vector of sample variation coefficients

$V C(X)=\left(V C_{1}(X), \ldots, V C_{p}(X)\right)$ with $V C_{i}(X)=\frac{V_{i}^{0.5}(X)}{M_{i}(X)}$
for all $i=1, \ldots, p$.

## Matrix of order statistics

Matrix $Y=\left(y_{i j}\right)_{p \times n}$, in which the $i$-th row $(Y)_{i}=\left(y_{i j}\right)_{j=1 \ldots n}$ is obtained as a result of sorting in the ascending order of row $(X)_{i}=\left(x_{i j}\right)_{j=1 \ldots n}$ in the original matrix of observations.

## Vector of sample minimum values

$\operatorname{Min}(X)=\left(\operatorname{Min}_{1}(X), \ldots, \operatorname{Min}_{p}(X)\right)$, where $\operatorname{Min}_{i}(X)=y_{i 1}$
for all $i=1, \ldots, p$.

## Vector of sample maximum values

$\operatorname{Max}(X)=\left(\operatorname{Max}_{1}(X), \ldots, \operatorname{Max}_{p}(X)\right)$, where $\operatorname{Max}_{i}(X)=y_{\text {in }}$
for all $i=1, \ldots, p$.

## Vector of sample median values

$\operatorname{Med}(X)=\left(\operatorname{Med}_{1}(X), \ldots, \operatorname{Med}_{p}(X)\right)$, where $\operatorname{Med}_{i}(X)=\left\{\begin{array}{c}y_{i,(n+1) / 2}, \text { if } n \text { is odd } \\ \left(y_{i, n / 2}+y_{i, n / 2+1}\right) / 2, \text { if } n \text { is even }\end{array}\right.$
for all $i=1, \ldots, p$.

## Vector of sample median absolute deviations

$M D A D(X)=\left(M D A D_{1}(X), \ldots, M D A D_{p}(X)\right)$, where $M D A D_{i}(X)=M e d_{i}(Z)$ with $Z=\left(z_{i j}\right)_{i=1 \ldots p, j=1 \ldots n \prime}$
$z_{i j}=\left|x_{i j}-\operatorname{Med}_{i}(X)\right|$
for all $i=1, \ldots, p$.

## Vector of sample mean absolute deviations

$M N A D(X)=\left(M N A D_{1}(X), \ldots, \operatorname{MNAD}_{p}(X)\right)$, where $M N A D_{i}(X)=M_{i}(Z)$ with $Z=\left(z_{i j}\right)_{i=1 \ldots p, j=1 \ldots n \prime}$
$z_{i j}=\left|x_{i j}-M_{i}(X)\right|$
for all $i=1, \ldots, p$.

## Vector of sample quantile values

For a positive integer number $q$ and $k$ belonging to the interval [ $0, q-1$ ], point $z_{i}$ is the $k$-th $q$ quantile of the random variable $\xi_{j}$ if $P\left\{\xi_{i} \leq z_{i}\right\} \geq \beta$ and $P\left\{\xi_{i} \leq z_{i}\right\} \geq 1-\beta$, where

- $\quad P$ is the probability measure.
- $\beta=k / n$ is the quantile order.

The calculation of quantiles is as follows:
$j=[(n-1) \beta]$ and $f=\{(n-1) \beta\}$ as integer and fractional parts of the number $(n-1) \beta$, respectively, and the vector of sample quantile values is
$Q(X, \beta)=\left(Q_{1}(X, \beta), \ldots, Q_{p}(X, \beta)\right)$
where
$\left(Q_{i}(X, \beta)=y_{i, j+1}+f\left(y_{i, j+2}-y_{i, j+1}\right)\right.$
for all $i=1, \ldots, p$.

Variance-covariance matrix
$C(X)=\left(C_{i j}(X)\right)_{p \times p}$
where
$c_{i j}(X)=\frac{1}{B} \sum_{k=1}^{n} w_{k}\left(x_{i k}-M_{i}(X)\right)\left(x_{j k}-M_{j}(X)\right), B=W-\sum_{j=1}^{n} w_{j}^{2} / W$

## Cross-product matrix (matrix of cross-products and sums of squares)

$C P(X)=\left(c p_{i j}(X)\right)_{p \times p}$
where
$c p_{i j}(X)=\sum_{k=1}^{n} w_{k}\left(x_{i k}-M_{i}(X)\right)\left(x_{j k}-M_{j}(X)\right)$

## Pooled and group variance-covariance matrices

The set $N=\{1, \ldots, n\}$ is partitioned into non-intersecting subsets
$G_{i}, i=1 . . g, N=\stackrel{\bigcup}{i=1} G_{i}$
The observation $[X]_{j}=\left(x_{i j}\right)_{i=1 \ldots p}$ belongs to the group $r$ if $j \in G_{r}$. One observation belongs to one group only. The group mean and variance-covariance matrices are calculated similarly to the formulas above:
$M^{(r)}(X)=\left(M_{1}^{(r)}(X), \ldots, M_{p}^{(r)}(X)\right)$ with $M_{i}^{(r)}(X)=\frac{1}{W^{(r)}} \sum_{j \in G_{r}} w_{j} x_{i j}, W^{(r)}=\sum_{j \in G_{r}} w_{j}$
for all $i=1, \ldots, p$,
$C^{(r)}(X)=\left(c_{i j}^{(r)}(X)\right)_{p \times p}$
where
$c_{i j}^{(r)}(X)=\frac{1}{B^{(r)}} \sum_{k \in G_{r}} w_{k}\left(x_{i k}-M_{i}^{(r)}(X)\right)\left(x_{j k}-M_{j}^{(r)}(X)\right), B^{(r)}=W^{(r)}-\sum_{j \in G_{r}} w_{j}^{2} / W^{(r)}$
for all $i=1, \ldots, p$ and $j=1, \ldots, p$.
A pooled variance-covariance matrix and a pooled mean are computed as weighted mean over group covariance matrices and group means, correspondingly:
$M^{\text {pooled }}(X)=\left(M_{1}^{\text {pooled }}(X), \ldots, M_{p}^{\text {pooled }}(X)\right)$ with $M_{i}^{\text {pooled }}(X)=\frac{1}{W^{(1)}+\ldots+W^{(g)}} \sum_{r=1}^{g} W^{(r)} M_{i}^{(r)}(X)$
for all $i=1, \ldots, p$,
$C^{\text {pooled }}(X)=\left(c_{i j}^{\text {pooled }}(X)\right)_{p \times p^{\prime}} c_{i j}^{\text {pooled }}(X)=\frac{1}{B^{(1)}+\ldots+B^{(g)}} \sum_{r=1}^{g} B^{(r)} c_{i j}^{(r)}(X)$
for all $i=1, \ldots, p$ and $j=1, \ldots, p$.

## Correlation matrix

$R(X)=\left(r_{i j}(X)\right)_{p \times p^{\prime}}$ where $r_{i j}(X)=\frac{c_{i j}}{\sqrt{c_{i i} c_{j j}}}$
for all $i=1, \ldots, p$ and $j=1, \ldots, p$.

## Partial variance-covariance matrix

For a random vector $\xi$ partitioned into two components $Z$ and $Y$, a variance-covariance matrix $C$ describes the structure of dependencies in the vector $\xi$ :
$C(X)=\left(\begin{array}{cc}C_{Z}(X) & C_{Z Y}(X) \\ C_{Y Z}(X) & C_{Y}(X)\end{array}\right)$.
The partial covariance matrix $P(X)=\left(p_{i j}(X)\right)_{k \times k}$ is defined as
$P(X)=C_{Y}(X)-C_{Y Z}(X) C_{Z}^{-1} C_{Z Y}(X)$.
where $k$ is the dimension of $Y$.

## Partial correlation matrix

The following is a partial correlation matrix for all $i=1, \ldots, k$ and $j=1, \ldots, k$ :
$R P(X)=\left(r p_{i j}(X)\right)_{k \times k^{\prime}}$ where $r p_{i j}(X)=\frac{p_{i j}(X)}{\sqrt{p_{i i}(X) p_{j j}(X)}}$
where

- $k$ is the dimension of $Y$.
- $p_{i j}(X)$ are elements of the partial variance-covariance matrix.


## Sorted dataset

Matrix $Y=\left(y_{i j}\right)_{p \times n \text {, }}$ in which the $i$-th row $(Y)_{i}$ is obtained as a result of sorting in ascending order the row $(X)_{i}$ $=\left(x_{i j}\right)_{j=1 . . n}$ in the original matrix of observations.

## Fourier Transform Functions

The general form of the discrete Fourier transform is
$z_{k_{1}}, k_{2}, \ldots, k_{d}=\sigma \times \sum_{j_{d}=0}^{n_{d}-1} \ldots \sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{1}=0}^{n_{1}-1} w_{j_{1}, j_{2}, \ldots, j_{d}} \exp \left(\delta i 2 \pi \sum_{l=1}^{d} j_{l} k_{l} / n_{l}\right)$
for $k_{1}=0, \ldots n_{1}-1 \quad(I=1, \ldots, d)$, where $\sigma$ is a scale factor, $\delta=-1$ for the forward transform, and $\delta=+1$ for the inverse (backward) transform. In the forward transform, the input (periodic) sequence $\left\{w_{j_{1}}, j_{2}, \ldots\right.$, $\left.j_{j}\right\}$ belongs to the set of complex-valued sequences and real-valued sequences. Respective domains for the backward transform are represented by complex-valued sequences and complex-valued conjugate-even sequences.
The Intel oneAPI Math Kernel Library (oneMKL) provides an interface for computing a discrete Fourier transform through the fast Fourier transform algorithm. Prefixes Dfti in function names and DFTI in the names of configuration parameters stand for Discrete Fourier Transform Interface.

The manual describes the following implementations of the fast Fourier transform functions available in Intel® oneAPI Math Kernel Library (oneMKL):

- Fast Fourier transform (FFT) functions for single-processor or shared-memory systems (see FFT Functions)
- Cluster FFT functions for distributed-memory architectures (available only for Intel ${ }^{\circledR} 64$ architectures)


## NOTE

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) also supports the FFTW3* interfaces to the fast Fourier transform functionality for shared memory paradigm (SMP) systems.

Both FFT and Cluster FFT functions compute an FFT in five steps:

1. Allocate a fresh descriptor for the problem with a call to the DftiCreateDescriptor or DfticreateDescriptorDM function. The descriptor captures the configuration of the transform, such as the dimensionality (or rank), sizes, number of transforms, memory layout of the input/output data (defined by strides), and scaling factors. Many of the configuration settings are assigned default values in this call which you might need to modify in your application.
2. Optionally adjust the descriptor configuration with a call to the DftiSetValue or DftiSetValueDM function as needed. Typically, you must carefully define the data storage layout for an FFT or the data distribution among processes for a Cluster FFT. The configuration settings of the descriptor, such as the default values, can be obtained with the DftiGetValue or DftiGetValueDM function.
3. Commit the descriptor with a call to the DftiCommitDescriptor or DftiCommitDescriptorDM function, that is, make the descriptor ready for the transform computation. Once the descriptor is committed, the parameters of the transform, such as the type and number of transforms, strides and distances, the type and storage layout of the data, and so on, are "frozen" in the descriptor.
4. Compute the transform with a call to the DftiComputeForward/DftiComputeBackward or DftiComputeForwardDM/DftiComputeBackwardDM functions as many times as needed. Because the descriptor is defined and committed separately, all that the compute functions do is take the input and output data and compute the transform as defined. To modify any configuration parameters for another call to a compute function, use DftiSetValue followed by DftiCommitDescriptor (DftiSetValueDM followed by DftiCommitDescriptorDM) or create and commit another descriptor.
5. Deallocate the descriptor with a call to the DftiFreeDescriptor or DftiFreeDescriptorDM function. This returns the memory internally consumed by the descriptor to the operating system.

All the above functions return an integer status value, which is zero upon successful completion of the operation. You can interpret a non-zero status with the help of the DftiErrorClass or DftiErrorMessage function.

The FFT functions support lengths with arbitrary factors. You can improve performance of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT if the length of your data vector permits factorization into powers of optimized radices. See the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide for specific radices supported efficiently.

## NOTE

The FFT functions assume the Cartesian representation of complex data (that is, the real and imaginary parts define a complex number). The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Vector Mathematical Functions provide efficient tools for conversion to and from polar representation (see Example "Conversion from Cartesian to polar representation of complex data" and Example "Conversion from polar to Cartesian representation of complex data").

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

## FFT Functions

The fast Fourier transform function library of Intel® oneAPI Math Kernel Library (oneMKL) provides onedimensional, two-dimensional, and multi-dimensional transforms (of up to seven dimensions) and offers both Fortran and C interfaces for all transform functions.

Table "FFT Functions in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL)"lists FFT functions implemented in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL):
FFT Functions in oneMKL

## Function Name Operation

Descriptor Manipulation Functions
DftiCreateDescriptor $\quad$ Allocates the descriptor data structure and initializes it with default configuration values.

Performs all initialization for the actual FFT computation.
Frees memory allocated for a descriptor.
Makes a copy of an existing descriptor.
FFT Computation Functions
DftiComputeForward Computes the forward FFT.
DftiComputeBackward Computes the backward FFT.

## Descriptor Configuration Functions

DftiSetValue Sets one particular configuration parameter with the specified configuration value.

Gets the value of one particular configuration parameter.
Status Checking Functions
DftiErrorclass
DftiErrorMessage
Checks if the status reflects an error of a predefined class.
Translates the numeric value of an error status into a message.

## FFT Interface

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT functions are provided with the Fortran and C interfaces.Fortran 95 is required because it offers features that have no counterpart in FORTRAN 77.

## NOTE

The Fortran interface of the FFT computation functions requires one-dimensional data arrays for any dimension of FFT problem. For multidimensional transforms, pass the address of the first column of the multidimensional data to the computation functions.

To use the FFT functions, you need to access the module MKL_DFTI through the Fortran use statement.
The Fortran interface provides a derived type DFTI_DESCRIPTOR, named constants representing various names of configuration parameters and their possible values, and overloaded functions through the generic functionality of Fortran 95.

## NOTE

The current version of the library may not support some of the FFT functions or functionality. You can find the complete list of the implementation-specific exceptions in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Release Notes.

For the main categories of Intel® oneAPI Math Kernel Library (oneMKL) FFT functions, see FFT Functions.

## Computing an FFT

You can find code examples that compute transforms in the Fourier Transform Functions Code Examples.
Usually you can compute an FFT by five function calls (refer to the usage model for details). A single data structure, the descriptor, stores configuration parameters that can be changed independently.
The descriptor data structure, when created, contains information about the length and domain of the FFT to be computed, as well as the setting of several configuration parameters. Default settings for some of these parameters are as follows:

- Scale factor: none (that is, $\sigma=1$ )
- Number of data sets: one
- Data storage: contiguous
- Placement of results: in-place (the computed result overwrites the input data)

The default settings can be changed one at a time through the function DftiSetValue as illustrated in Example "Changing Default Settings (Fortran)".

## Configuration Settings

Each of the configuration parameters is identified by a named constant in the MKL_DFTI module.
All the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT configuration parameters are readable. Some of them are read-only, while others can be set using the DftiCreateDescriptor or DftiSetValue function.
Values of the configuration parameters fall into the following groups:

- Values that have native data types. For example, the number of simultaneous transforms requested has an integer value, while the scale factor for a forward transform is a floating-point number.
- Values that are discrete in nature and are provided in the MKL_DFTI module as named constants. For example, the domain of the forward transform requires values to be named constants.

The Table "Configuration Parameters" summarizes the information on configuration parameters, along with their types and values. For more details of each configuration parameter, see the subsection describing this parameter.

Configuration Parameters

Configuration Parameter	Type/Value	Comments
Most common configuration parameters, no default, must be set explicitly by DftiCreateDescriptor		
DFTI_PRECISION	Named constant DFTI_SINGLE or DFTI_DOUBLE	Precision of the computation.
DFTI_FORWARD_DOMAIN	Named constant DFTI_COMPLEX or DFTI_REAL	Type of the transform.
DFTI_DIMENSION	Integer scalar	Dimension of the transform.
DFTI_LENGTHS	Integer scalar/array	Lengths of each dimension.


Configuration Parameter	Type/Value	Comments
DFTI_PLACEMENT	Named constant   DFTI_INPLACE or DFTI_NOT_INPLACE	Defines whether the result overwrites the input data. Default value: DFTI_INPLACE.
DFTI_FORWARD_SCALE	Floating-point scalar	Scale factor for the forward transform.   Default value: 1.0.   Precision of the value should be the same as defined by DFTI_PRECISION.
DFTI_BACKWARD_SCALE	Floating-point scalar	Scale factor for the backward transform.   Default value: 1.0.   Precision of the value should be the same as defined by DFTI_PRECISION.
DFTI_NUMBER_OF_USER_THREADS	Integer scalar	This configuration parameter is no longer used and kept for compatibility with previous versions of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).
DFTI_THREAD_LIMIT	Integer scalar	Limits the number of threads for the DftiComputeForward and DftiComputeBackward.
		Default value: 0 .
DFTI_DESCRIPTOR_NAME	Character string	Assigns a name to a descriptor. Assumed length of the string is   DFTI_MAX_NAME_LENGTH.   Default value: empty string.
Data layout configuration parameters for single and multiple transforms. Settable by DftiSetValue		
DFTI_INPUT_STRIDES	Integer array	Defines the input data layout.
		NOTE The default strides are set during creation of the descriptor based on the desired dimension and lengths. For more details, see DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES.
DFTI_OUTPUT_STRIDES	Integer array	Defines the output data layout.
		NOTE The default strides are set during creation of the descriptor based on the desired dimension and lengths. For more details, see DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES.
DFTI_NUMBER_OF_TRANSFORMS	Integer scalar	Number of transforms.
DFTI_INPUT_DISTANCE	Integer scalar	Defines the distance between input data sets for multiple transforms.   Default value: 0 .


Configuration Parameter	Type/Value	Comments
DFTI_OUTPUT_DISTANCE	Integer scalar	Defines the distance between output data sets for multiple transforms.
		Default value: 0 .
DFTI_COMPLEX_STORAGE	Named constant   DFTI_COMPLEX_COMPLE   X or DFTI_REAL_REAL	Defines whether the real and imaginary parts of data for a complex transform are interleaved in one array or split in two arrays.
		Default value: DFTI_COMPLEX_COMPLEX.
DFTI_REAL_STORAGE	Named constant   DFTI_REAL_REAL	Defines how real data for a real transform is stored. Only the DFTI_REAL_REAL value is supported.
DFTI_CONJUGATE_EVEN_STORAGE	Named constant```DFTI_COMPLEX_COMPLE x or DFTI_COMPLEX_REAL```	Defines whether the complex data in the backward domain of a real transform is stored as complex elements or as real elements.
		DFTI COMPLEX_REAL is supported only for 1D transforms.
		The default value is DFTI_COMPLEX_COMPLEX.
DFTI_PACKED_FORMAT	Named constant   DFTI_CCE_FORMAT,   DFTI_CCS_FORMAT,   DFTI_PACK_FORMAT, or   DFTI_PERM_FORMAT	Defines the layout for the elements of the conjugate-even sequence in the backward domain of the real transform (in association with the configuration parameter   DFTI_CONJUGATE_EVEN_STORAGE).
		The default value is DFTI_CCE_FORMAT.
		NOTE Transforms greater than 1D support only DFTI_CCE_FORMAT.
Advanced configuration parameters, settable by DftiSetValue		
DFTI_WORKSPACE	Named constant   DFTI_ALLOW or   DFTI_AVOID	Defines whether the library should prefer algorithms using additional memory.   Default value: DFTI_ALLOW.
DFTI_ORDERING	Named constant   DFTI_ORDERED or   DFTI_BACKWARD_SCRAM   BLED	Defines whether the result of a complex transform is ordered or permuted.   Default value: DFTI_ORDERED.
Read-Only configuration parameters		
DFTI_COMMIT_STATUS	Named constant   DFTI_UNCOMMITTED or   DFTI_COMMITTED	Readiness of the descriptor for computation.
DFTI_VERSION	String	Version of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). Assumed length of the string is DFTI_VERSION_LENGTH.

## See Also <br> Configuring and Computing an FFT in Fortran

## DFTI_PRECISION

The configuration parameter DFTI_PRECISION denotes the floating-point precision in which the transform is to be carried out. A setting of DFTI_SINGLE stands for single precision, and a setting of DFTI_DOUBLE stands for double precision. The data must be presented in this precision, the computation is carried out in this precision, and the result is delivered in this precision.

DFTI_PRECISION does not have a default value. Set it explicitly by calling the DftiCreateDescriptor function.

## NOTE

Fortran module MKL_DFTI also defines named constants DFTI_SINGLE_R and DFTI_DOUBLE_R, with the same semantics as DFTI_SINGLE and DFTI_DOUBLE, respectively. $\overline{\text { Do }}$ o not use these constants to set the DFTI_PRECISION configuration parameter. Use them only as described in DftiCreateDescriptor.

To better understand configuration of the precision of transforms, refer to these examples in your Intel® oneAPI Math Kernel Library (oneMKL) directory:
./examples/dftf/source/basic_sp_complex_dft_1d.f90
./examples/dftf/source/basic_dp_complex_dft_1d.f90

## See Also

DFTI_FORWARD_DOMAIN
DFTI_DIMENSION, DFTI_LENGTHS
DftiCreateDescriptor

## DFTI_FORWARD_DOMAIN

The general form of a discrete Fourier transform is
$z_{k_{1}}, k_{2}, \ldots, k_{d}=\sigma \times \sum_{j_{d}=0}^{n_{d}-1} \ldots \sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{1}=0}^{n_{1}-1} w_{j_{1}, j_{2}, \ldots, j_{d}} \exp \left(\delta i 2 \pi \sum_{l=1}^{d} j_{l} k_{l} / n_{l}\right)$
for $k_{1}=0, \ldots n_{1}-1(I=1, \ldots, d)$, where $\sigma$ is a scale factor, $\delta=-1$ for the forward transform, and $\delta=+1$ for the backward transform.
The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) implementation of the FFT algorithm, used for fast computation of discrete Fourier transforms, supports forward transforms on input sequences of two domains, as specified by the DFTI_FORWARD_DOMAIN configuration parameter: general complex-valued sequences (DFTI_COMPLEX domain) and genēral real-valued sequences (DFTI_REAL domain). The forward transform maps the forward domain to the corresponding backward domain, as shown in Table "Correspondence of Forward and Backward Domain".
The conjugate-even domain covers complex-valued sequences with the symmetry property:
$x\left(k_{1}, k_{2}, \ldots, k_{d}\right)=\operatorname{conjugate}\left(x\left(n_{1}-k_{1}, n_{2}-k_{2}, \ldots, n_{d}-k_{d}\right)\right)$
where the index arithmetic is performed modulo respective size, that is,
$x\left(\ldots, \operatorname{expr}_{s}, \ldots\right) \equiv x\left(\ldots, \bmod \left(\operatorname{expr}_{s}, n_{s}\right), \ldots\right)$,
and therefore
$x\left(\ldots, n_{s}, \ldots\right) \equiv x(\ldots, 0, \ldots)$.
Due to this property of conjugate-even sequences, only a part of such sequence is stored in the computer memory, as described in DFTI_CONJUGATE_EVEN_STORAGE.

Correspondence of Forward and Backward Domain

Forward Domain	Implied Backward Domain
Complex (DFTI_COMPLEX)	Complex (DFTI_COMPLEX)
Real (DFTI_REAL)	Conjugate-even

DFTI_FORWARD_DOMAIN does not have a default value. Set it explicitly by calling the DftiCreateDescriptor function.

To better understand usage of the DFTI_FORWARD_DOMAIN configuration parameter, you can refer to these examples in your Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory:
./examples/dftf/source/basic_sp_complex_dft_1d.f90
./examples/dftf/source/basic_sp_real_dft_1d.f90

## See Also

DFTI_PRECISION
DFTI_DIMENSION, DFTI_LENGTHS
DftiCreateDescriptor

## DFTI_DIMENSION, DFTI_LENGTHS

The dimension of the transform is a positive integer value represented in an integer scalar of Integer data type. For a one-dimensional transform, the transform length is specified by a positive integer value represented in an integer scalar of Integer data type. For multi-dimensional ( $\geq 2$ ) transform, the lengths of each of the dimensions are supplied in an integer array (of Integer data type).
DFTI_DIMENSION and DFTI_LENGTHS do not have a default value. To set them, use the DfticreateDescriptor function and not the DftiSetValue function.

To better understand usage of the DFTI_DIMENSION and DFTI_LENGTHS configuration parameters, you can refer to basic examples of one-, two-, and three-dimensional transforms in your Intel® oneAPI Math Kernel Library (oneMKL) directory. Naming conventions for the examples are self-explanatory. For example, refer to these examples of single-precision two-dimensional transforms:

```
./examples/dftf/source/basic_sp_real_dft_2d.f90
./examples/dftf/source/basic_sp_complex_dft_2d.f90
```


## See Also

DFTI_FORWARD_DOMAIN
DFTI_PRECISION
DftiCreateDescriptor
DftiSetValue

## DFTI_PLACEMENT

By default, the computational functions overwrite the input data with the output result. That is, the default setting of the configuration parameter DFTI_PLACEMENT is DFTI_INPLACE. You can change that by setting it to DFTI_NOT_INPLACE.

## NOTE

When the configuration parameter is set to DFTI_NOT_INPLACE, the input and output data sets must have no common elements.

To better understand usage of the DFTI_PLACEMENT configuration parameter, see this example in your Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory:

## See Also

DftiSetValue

## DFTI_FORWARD_SCALE, DFTI_BACKWARD_SCALE

The forward transform and backward transform are each associated with a scale factor $\sigma$ of its own having the default value of 1 . You can specify the scale factors using one or both of the configuration parameters DFTI_FORWARD_SCALE and DFTI_BACKWARD_SCALE. For example, for a one-dimensional transform of length $n$, you can use the default scale of 1 for the forward transform and set the scale factor for the backward transform to be $1 / n$, thus making the backward transform the inverse of the forward transform.
Set the scale factor configuration parameter using a real floating-point data type of the same precision as the value for DFTI_PRECISION.

## See Also

DftiSetValue
DFTI_PRECISION
DftiGetValue
DFTI_NUMBER_OF_USER_THREADS
The DFTI_NUMBER_OF_USER_THREADS configuration parameter is no longer used and kept for compatibility with previous versions of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).

## See Also

DftisetValue

## DFTI_THREAD_LIMIT

In some situations you may need to limit the number of threads that the DftiComputeForward and DftiComputeBackward functions use. For example, if more than one thread calls Intel® oneAPI Math Kernel Library (oneMKL), it might be important that the thread calling these functions does not oversubscribe computing resources (CPU cores). Similarly, a known limit of the maximum number of threads to be used in computations might help the DftiCommitDescriptor function to select a more optimal computation method.

Set the parameter DFTI_THREAD_LIMIT as follows:

- To a positive number, to specify the maximum number of threads to be used by the compute functions.
- To zero (the default value), to use the maximum number of threads permitted in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT functions. See "Techniques to Set the Number of Threads" in the Inte/® oneAPI Math Kernel Library (oneMKL) Developer Guide for more information.

On an attempt to set a negative value, the DftiSetValue function returns an error and does not update the descriptor.
The value of the DFTI_THREAD_LIMIT configuration parameter returned by the DftiGetValue function is defined as follows:

- 1 if Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) runs in the sequential mode
- Depends of the commit status of the descriptor if Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) runs in a threaded mode:

Commit Status	Value
Not committed	The value of DFTI_THREAD_LIMIT set in a previous call to the   DftiSetValue function or the default value
Committed	The upper limit on the number of threads used by the   DftiComputeForward and DftiComputeBackward functions

To better understand usage of the DFTI_THREAD_LIMIT configuration parameter, see this example in your Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory:
./examples/dftf/source/config_thread_limit.f90

## See Also

DftiGetValue
DftiSetValue
DftiCommitDescriptor
DftiComputeForward
DftiComputeBackward
Threading Control Functions
DFTI_COMMIT_STATUS

## DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES

The FFT interface provides configuration parameters that define the layout of multidimensional data in the computer memory. For $d$-dimensional data set $X$ defined by dimensions $N_{1} \times N_{2} \times \ldots \times N_{d}$, the layout describes where a particular element $X\left(k_{1}, k_{2}, \ldots, k_{d}\right)$ of the data set is located. The memory address of the element $X\left(k_{1}, k_{2}, \ldots, k_{d}\right)$ is expressed by the formula,
address of $X\left(k_{1}, k_{2}, \ldots, k_{d}\right)=$ the address stored in the pointer supplied to the compute function $+\left(s_{0}+\right.$ $\left.k_{1}{ }^{*} s_{1}+k_{2}{ }^{*} s_{2}+\ldots+k_{d}{ }^{*} s_{d}\right)^{*} u$,

Where $u$ is the number of bytes per element of the desired precision for the assumed data type in the corresponding domain (see Table "Assumed Element Types of the Input/Output Data" below), where $s_{0}$ is the displacement, and $s_{1}, \ldots, s_{d}$ are generalized strides. The configuration parameters DFTI_INPUT_STRIDES and DFTI_OUTPUT_STRIDES enable you to get and set these values. The configuration value is an array of values $\left(s_{0}, s_{1}, \ldots, s_{d}\right)$ of INTEGER data type.

The DFTI_FORWARD_DOMAIN, DFTI_COMPLEX_STORAGE, and DFTI_CONJUGATE_EVEN_STORAGE configuration parameters define the type of the elements as shown in Table "Assumed Element Types of the Input/Output Data":
Assumed Element Types of the Input/Output Data

Descriptor Configuration	Element   Type in the   Forward   Domain	Element   Type in the   Backward   Domain
DFTI_FORWARD_DOMAIN=DFTI_COMPLEX	Complex	Complex
DFTI_COMPLEX_STORAGE=DFTI_COMPLEX_COMPLEX	Real	Real
DFTI_FORWARD_DOMAIN=DFTI_COMPLEX	Real	Real
DFTI_COMPLEX_STORAGE=DFTI_REAL_REAL	Real	Complex
DFTI_FORWARD_DOMAIN=DFTI_REAL		
DFTI_CONJUGATE_EVEN_STORAGE=DFTI_COMPLEX_REAL		RTI_FORWARD_DOMAIN=DFTI_REAL

The DFTI_INPUT_STRIDES configuration parameter defines the layout of the input data, while the element type is defined by the forward domain for the DftiComputeForward function and by the backward domain for the DftiComputeBackward function. The DFTI_OUTPUT_STRIDES configuration parameter defines the layout of the output data, while the element type is defined by the backward domain for the DftiComputeForward function and by the forward domain for DftiComputeBackward function.

## NOTE

The DFTI_INPUT_STRIDES and DFTI_OUTPUT_STRIDES configuration parameters define the layout of input and output data, and not the forward-domain and backward-domain data. If the data layouts in forward domain and backward domain differ, set DFTI_INPUT_STRIDES and DFTI_OUTPUT_STRIDES explicitly and then commit the descriptor before calling computation functions.

For in-place transforms (DFTI_PLACEMENT=DFTI_INPLACE), the configuration set by DFTI_OUTPUT_STRIDES is ignored when the element types in the forward and backward domains are the same. If they are different, set DFTI_OUTPUT_STRIDES explicitly (even though the transform is in-place). Ensure a consistent configuration for in-place transforms, that is, the locations of the first elements on input and output must coincide in each dimension.
The FFT interface supports both positive and negative stride values. If you use negative strides, set the displacement of the data as follows:
$s_{0}=\sum_{i=1}^{d}\left(N_{i}-1\right) \cdot \max \left(-s_{i}, 0\right)$.
The default setting of strides in a general multi-dimensional case assumes that the array that contains the data has no padding. The order of the strides depends on the programming language. For example:

```
INTEGER :: dims(d) = [n1, n2, ..., nd]
status = DftiCreateDescriptor(hand, precision, domain, d, dims)
! The above call assumes data declaration: type X(n1,n2,\ldots, nd-1)
! Default strides are [0, 1, n1, n1*n2, ..., n1*n2*...* n m-1]
```

Note that in case of a real FFT (DFTI_FORWARD_DOMAIN=DFTI_REAL), where different data layouts in the backward domain are available (see DFTI_PACKED_FORMAT), the default value of the strides is not intuitive for the recommended CCE format (configuration setting DFTI_CONJUGATE_EVEN_STORAGE=DFTI_COMPLEX_COMPLEX). In case of an in-place real transform with the CCE $\overline{\text { format, }}$ set the strides explicitly, as follows:

```
INTEGER :: dims(d) = [n1, n2, ..., nd]
INTEGER :: rstrides (1+d) = [0, 1, 2* (n1/2+1), 2* (n1/2+1)*n2, ..., 2* n n-1*...* n n * (n
INTEGER :: cstrides (1+d) = [0, 1, (n1/2+1), (n1/2+1)*n2, ..., n nd-1*...* n
status = DftiCreateDescriptor(hand, precision, domain, d, dims)
status = DftiSetValue(hand, DFTI_CONJUGATE_EVEN_STORAGE, DFTI_COMPLEX_COMPLEX)
! Set the strides appropriately for forward/backward transform
```

> Limitation Note Transforms with the number of points N of a non-unit stride dimension exceeding $2^{\wedge}(27-p)-1$ for $N$ a power-of-two, or $2^{\wedge}(23-p)-1$ for $N$ not a power-of-two, are currently not supported, where $p=0$ for single precision and $p=1$ for double precision. If a descriptor is created (for example, using DftiCreateDescriptor) and set (for example, using DftiSetValue) to do such a transform, a DFTI_1D_MEMORY_EXCEEDS_INT32 error is returned at commit time (for example, by DftiCommitDescriptor).

To better understand configuration of strides, you can also refer to these examples in your Intel® oneAPI Math Kernel Library (oneMKL) directory:

```
./examples/dftf/source/basic_sp_complex_dft_2d.f90
./examples/dftf/source/basic_sp_complex_dft_3d.f90
./examples/dftf/source/basic_dp_complex_dft_2d.f90
./examples/dftf/source/basic_dp_complex_dft_3d.f90
./examples/dftf/source/basic_sp_real_dft_2d.f90
```

```
./examples/dftf/source/basic_sp_real_dft_3d.f90
./examples/dftf/source/basic_dp_real_dft_2d.f90
./examples/dftf/source/basic_dp_real_dft_3d.f90
```


## See Also

```
DFTI_FORWARD_DOMAIN
```

DFTI_PLACEMENT
FFT Code Examples
DftiSetValue
DftiCommitDescriptor
DftiComputeForward
DftiComputeBackward

## DFTI_NUMBER_OF_TRANSFORMS

If you need to perform a large number of identical FFTs, you can do this in a single call to a DftiCompute* function with the value of the DFTI_NUMBER_OF_TRANSFORMS configuration parameter equal to the actual number of the transforms. The default value of this parameter is 1 . You can set this parameter to a positive integer value of the Integer data type. When setting the number of transforms to a value greater than one, you also need to specify the distance between the input data sets and the distance between the output data sets using one of the DFTI_INPUT_DISTANCE and DFTI_OUTPUT_DISTANCE configuration parameters or both.

## Important

- The data sets to be transformed must not have common elements.
- All the sets of data must be located within the same memory block.

To better understand usage of the DFTI_NUMBER_OF_TRANSFORMS configuration parameter, see this example in your Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory:
./examples/dftf/source/config_number_of_transforms.f90

## See Also <br> FFT Computation Functions <br> DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE <br> DftisetValue

## DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE

The FFT interface in Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) enables computation of multiple transforms. To compute multiple transforms, you need to specify the data distribution of the multiple sets of data. The distance between the first data elements of consecutive data sets, DFTI_INPUT_DISTANCE for input data or DFTI_OUTPUT_DISTANCE for output data, specifies the distribution. The configuration setting is a value of INTEGER data type.

The default value for both configuration settings is one. You must set this parameter explicitly if the number of transforms is greater than one (see DFTI_NUMBER_OF_TRANSFORMS).
The distance is counted in elements of the data type defined by the descriptor configuration (rather than by the type of the variable passed to the computation functions). Specifically, the DFTI_FORWARD_DOMAIN, DFTI_COMPLEX_STORAGE, and DFTI_CONJUGATE_EVEN_STORAGE configuration parameters define the type of the elements as shown in Table "Assumed Element Types of the Input/Output Data".

## NOTE

The configuration parameters DFTI_INPUT_DISTANCE and DFTI_OUTPUT_DISTANCE define the distance within input and output data, and not within the forward-domain and backward-domain data. If the distances in the forward and backward domains differ, set DFTI_INPUT_DISTANCE and DFTI_OUTPUT_DISTANCE explicitly and then commit the descriptor before calling computation functions.

For in-place transforms (DFTI_PLACEMENT=DFTI_INPLACE), the configuration set by DFTI_OUTPUT_DISTANCE is ignored when the element types in the forward and backward domains are the same. If they are different, set DFTI_OUTPUT_DISTANCE explicitly (even though the transform is in-place). Ensure a consistent configuration for in-place transforms, that is, the locations of the data sets on input and output must coincide.
This example illustrates setting of the DFTI_INPUT_DISTANCE configuration parameter:

```
INTEGER :: dims(d) = [n1, n2, ..., nd]
INTEGER :: distance = n1*n2*...*nd
status = DftiCreateDescriptor(hand, precision, DFTI_COMPLEX, d, dims)
status = DftiSetValue(hand, DFTI_NUMBER_OF_TRANSFORMS, howmany)
status = DftiSetValue(hand, DFTI_INPUT_DISTANCE, distance);
```

To better understand configuration of the distances, see these code examples in your Intel® oneAPI Math Kernel Library (oneMKL) directory:
./examples/dftf/source/config_number_of_transforms.f90

## See Also

DFTI_PLACEMENT
DftiSetValue
DftiCommitDescriptor
DftiComputeForward
DftiComputeBackward

## DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE

Depending on the value of the DFTI_FORWARD_DOMAIN configuration parameter, the implementation of FFT supports several storage schemes for input and output data (see document [3] for the rationale behind the definition of the storage schemes). The data elements are placed within contiguous memory blocks, defined with generalized strides (see DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES). For multiple transforms, all sets of data should be located within the same memory block, and the data sets should be placed at the same distance from each other (see DFTI_NUMBER_OF TRANSFORMS and DFTI_INPUT DISTANCE, DFTI_OUTPUT_DISTANCE).

FFT Examples demonstrate the usage of storage formats.

## DFTI_COMPLEX_STORAGE: storage schemes for a complex domain

For the DFTI_COMPLEX forward domain, both input and output sequences belong to a complex domain. In this case, the configuration parameter DFTI_COMPLEX_STORAGE can have one of the two values:
DFTI_COMPLEX_COMPLEX (default) or DFTI_REAL_REAL.

## NOTE

In the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL)FFT interface, storage schemes for a forward complex domain and the respective backward complex domain are the same.

With DFTI_COMPLEX_COMPLEX storage, complex-valued data sequences are referenced by a single complex parameter (array) AZ so that a complex-valued element $z_{k_{1}, k_{2}, \ldots, k_{d}}$ of the m-th d-dimensional sequence is located at AZ[m*distance + stride0 + k1*stride1 + k2*stride2+ ... kd*strided] as a structure consisting of the real and imaginary parts.

This code illustrates the use of the DFTI_COMPLEX_COMPLEX storage:

```
complex :: AZ(N1,N2,N3,M) ! sizes and number of transforms
...
! on input: Z{k1,k2,k3,m} = AZ(k1,k2,k3,m)
status = DftiComputeForward(desc, AZ(:,1,1,1))
! on output: Z{k1,k2,k3,m} = AZ (k1,k2,k3,m)
```

With the DFTI_REAL_REAL storage, complex-valued data sequences are referenced by two real parameters AR and AI so that a complex-valued element $z_{k_{1}, k_{2}}, \ldots, k_{d}$ of the m-th sequence is computed as
AR[m*distance + stride0 + $\mathrm{k}_{1} *$ stride1 $+\mathrm{k}_{2} *$ stride $_{2}+\ldots \mathrm{k}_{\mathrm{d}}{ }^{*}$ strided] + $\sqrt{(-1)}$ *
AI[m*distance + stride $+k_{1} *$ stride $1+k_{2}{ }^{*}$ stride $_{2}+\ldots k_{d}{ }^{*}$ strided].
This code illustrates the use of the DFTI_REAL_REAL storage:

```
real :: AR(N1,N2,N3,M), AI (N1,N2,N3,M)
! on input: Z{k1,k2,k3,m} = cmplx(AR(k1,k2,k3,m),AI (k1,k2,k3,m))
status = DftiComputeForward(desc, AR(:,1,1,1), AI(:,1,1,1))
! on output: z{k1,k2,k3,m} = cmplx(AR(k1,k2,k3,m),AI (k1,k2,k3,m))
```


## DFTI_REAL_STORAGE: storage schemes for a real domain

The Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface supports only one configuration value for this storage scheme: DFTI_REAL_REAL. With the DFTI_REAL_REAL storage, real-valued data sequences in a real domain are referenced by one real parameter AR so that real-valued element of the $m$-th sequence is located as AR[m*distance + stride $0+k_{1} * s t r i d e 1+k_{2}{ }^{*}$ stride $2+\ldots k^{*}$ strided].

## DFTI_CONJUGATE_EVEN_STORAGE: storage scheme for a conjugate-even domain

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface supports two configuration values for this parameter: DFTI_COMPLEX_COMPLEX (default) and DFTI_COMPLEX_REAL (for 1D problems only). The conjugate-even symmetry of the data enables storing only about a half of the whole mathematical result, so that one part of it can be directly referenced in the memory while the other part can be reconstructed depending on the selected storage configuration.

With the DFTI_COMPLEX_COMPLEX storage, the complex-valued data sequences in the conjugate-even domain are referenced by one complex parameter AZ so that a complex-valued element $z_{k_{1}, k_{2}, \ldots, k_{d}}$ of the mth sequence can be referenced or reconstructed as described below.

Consider a $d$-dimensional real-to-complex transform:

$$
Z_{k_{1}, k_{2}, \ldots, k_{d}} \equiv \sum_{n_{1}=0}^{N_{1}-1} \cdots \sum_{n_{d}=0}^{N_{d}-1} R_{n_{1}, n_{2}, \ldots, n_{d}} e^{\frac{-2 \pi i}{N_{1}} k_{1} \cdot n_{1}} \cdots e^{\frac{-2 \pi i}{N_{d}} k_{d} \cdot n_{d}}
$$

Because the input sequence $R$ is real-valued, the mathematical result $Z$ has conjugate-even symmetry:

where index arithmetic is performed modulo the length of the respective dimension. Obviously, the first element of the result is real-valued:
$z_{0,0}, \ldots, 0=$ conjugate ( $z_{0}, 0, \ldots, 0$ ).

For dimensions with even lengths, some of the other elements are real-valued too. For example, if $N_{s}$ is even, $z_{0,0}, \ldots, N_{s} / 2,0, \ldots, 0=$ conjugate ( $z_{0}, 0, \ldots, N_{s} / 2,0, \ldots, 0$ ).
With the conjugate-even symmetry, approximately a half of the result suffices to fully reconstruct it. For an arbitrary dimension $h$, it suffices to store elements $z_{k_{1}, \ldots, k_{h}, \ldots, k_{d}}$ for the following indices:

- $k_{h}=0, \ldots,\left\lfloor N_{h} / 2\right\rfloor$
- $k_{i}=0, \ldots, N_{i}-1$, where $i=1, \ldots, d$ and $i \neq h$

The symmetry property enables reconstructing the remaining elements: for $k_{h}=\left\lfloor N_{h} / 2\right\rfloor+1, \ldots, N_{h}-1$. In the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface, the halved dimension is the first dimension.
The following code illustrates usage of the DFTI_COMPLEX_COMPLEX storage for a conjugate-even domain:

```
real :: AR(N1,N2,M) ! Array containing values of R
complex :: AZ(N1/2+1,N2,M) ! Array containing values of Z
! on input: R{k1,k2,m} = AR (k1,k2,m)
status = DftiComputeForward(desc, AR(:,1,1), AZ(:,1,1))
! on output:
! for k1=1 ... N1/2+1: Z{k1,k2,m} = AZ(k1,k2,m)
! for k1=N1/2+2 ... N1: Z{k1,k2,m} = conj(AZ (mod (N1-k1+1,N1)+1,mod (N2-k2+1,N2)+1,m))
```

For the backward transform, the input and output parameters and layouts exchange roles: set the strides describing the layout in the backward/forward domain as input/output strides, respectively. For example:

```
status = DftiSetValue(desc, DFTI_INPUT_STRIDES, fwd_domain_strides)
status = DftiSetValue(desc, DFTI_OUTPUT_STRIDES, bwd_domain_strides)
status = DftiCommitDescriptor(desc)
status = DftiComputeForward(desc, ...)
status = DftiSetValue(desc, DFTI_INPUT_STRIDES, bwd_domain_strides)
status = DftiSetValue(desc, DFTI_OUTPUT_STRIDES, fwd_domain_strides)
status = DftiCommitDescriptor(desc)
status = DftiComputeBackward(desc, ...)
```


## Important

For in-place transforms, ensure the first element of the input data has the same location as the first element of the output data for each dimension.

## See Also

DftiSetValue

## DFTI_PACKED_FORMAT

The result of the forward transform of real data is a conjugate-even sequence. Due to the symmetry property, only a part of the complex-valued sequence is stored in memory. The combination of the DFTI_PACKED_FORMAT and DFTI_CONJUGATE_EVEN_STORAGE COnfiguration parameters defines how the conjugate-even sequence data is packed. If DFTI_CONJUGATE_EVEN_STORAGE is set to DFTI_COMPLEX_COMPLEX (default), the only possible value of DFTI_PACKED_FORMAT is DFTI_CCE_FORMAT; this association of configuration parameters is supported for transforms of any dimension. For a description of the corresponding packed format, see DFTI_CONJUGATE_EVEN_STORAGE. For one-dimensional transforms (only) with DFTI_CONJUGATE_EVEN_STORAGE set to DFTI_COMPLEX_REAL, the DFTI_PACKED_FORMAT configuration parameter must be DFTI_CCS_FORMAT, DFTI_PACK_FORMAT, or DFTI_PERM_FORMAT. The corresponding packed formats are explained and illustrated below.

## DFTI_CCS_FORMAT for One-dimensional Transforms

The following figure illustrates the storage of a one-dimensional (1D) size- $N$ conjugate-even sequence in a real array for the CCS, PACK, and PERM packed formats. The CCS format requires an array of size $N+2$, while the other formats require an array of size $N$. Zero-based indexing is used.

## Storage of a 1D Size-N Conjugate-even Sequence in a Real Array

$\mathrm{n}=$	0	1	2	3	...	2L-2	2L-1	2 L	2L+1	$2 \mathrm{~L}+2$
CCS, $\mathrm{N}=2 \mathrm{~L}$	$\mathrm{R}_{0}$	0	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	...	$\mathrm{R}_{\mathrm{L} .1}$	$\mathrm{I}_{\mathrm{L}, 1}$	$\mathrm{R}_{\mathrm{L}}$	0	
PACK, $\mathrm{N}=2 \mathrm{~L}$	$\mathrm{R}_{0}$	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	$\mathrm{R}_{2}$	...	$\mathrm{I}_{\mathrm{L} \cdot 1}$	$\mathrm{R}_{\mathrm{L}}$			
PERM, $\mathrm{N}=2 \mathrm{~L}$	$\mathrm{R}_{0}$	$\mathrm{R}_{\mathrm{L}}$	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	...	$\mathrm{R}_{\mathrm{L}-1}$	$\mathrm{I}_{\mathrm{L}, 1}$			
CCS, $\mathrm{N}=2 \mathrm{~L}+1$	$\mathrm{R}_{0}$	0	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	...	$\mathrm{R}_{\mathrm{L}-1}$	$\mathrm{I}_{\mathrm{L}, 1}$	$\mathrm{R}_{\mathrm{L}}$	$\mathrm{I}_{\mathrm{L}}$	${ }_{\text {not }}^{\text {not }}$
PACK, $\mathrm{N}=2 \mathrm{~L}+1$	$\mathrm{R}_{0}$	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	$\mathrm{R}_{2}$	...	$\mathrm{I}_{\mathrm{L}-1}$	$\mathrm{R}_{\mathrm{L}}$	$\mathrm{I}_{\mathrm{L}}$		
PERM, $\mathrm{N}=2 \mathrm{~L}+1$	$\mathrm{R}_{0}$	$\mathrm{R}_{1}$	$\mathrm{I}_{1}$	$\mathrm{R}_{2}$	...	$\mathrm{I}_{\mathrm{L}-1}$	$\mathrm{R}_{\mathrm{L}}$	$\mathrm{I}_{\mathrm{L}}$		

NOTE For storage of a one-dimensional conjugate-even sequence in a real array, CCS is in the same format as CCE.

The real and imaginary parts of the complex-valued conjugate-even sequence $Z_{k}$ are located in a real-valued array AC as illustrated by figure "Storage of a 1D Size- $N$ Conjugate-even Sequence in a Real Array" and can be used to reconstruct the whole conjugate-even sequence as follows:

```
real :: AR (N), AC (N+2)
status = DftiSetValue(desc, DFTI_PACKED_FORMAT, DFTI_CCS_FORMAT)
! on input: R{k} = AR(k)
status = DftiComputeForward(desc, AR, AC) ! real-to-complex FFT
! on output:
! for k=1 ... N/2+1: Z{k} = cmplx(AC (1 + (2*(k-1)+0)),
 AC(1 + (2* (k-1)+1)))
! for k=N/2+2 ... N: Z{k} = cmplx(AC (1 + (2*mod (N-k+1,N) +0)),
 -AC}(1+(2*\operatorname{mod}(N-k+1,N)+1))
```


## DFTI_PACK_FORMAT for One-dimensional Transforms

The real and imaginary parts of the complex-valued conjugate-even sequence $Z_{k}$ are located in a real-valued array AC as illustrated by figure "Storage of a 1D Size- $N$ Conjugate-even Sequence in a Real Array" and can be used to reconstruct the whole conjugate-even sequence as follows:

```
real :: AR(N), AC (N)
status = DftiSetValue(desc, DFTI_PACKED_FORMAT, DFTI_PACK_FORMAT)
! on input: }R{k}=AR(k
status = DftiComputeForward(desc, AR, AC) ! real-to-complex FFT
! on output: Z{k} = cmplx(re, im), where
```

```
if (k == 1) then
 re = AC(1)
 im = 0
else if (k-1 == N-k+1) then
 re = AC (2* (k-1))
 im = 0
else if (k <= N/2+1) then
 re = AC (2* (k-1) +0)
 im}=AC(2*(k-1)+1
else
 re = AC (2* (N-k+1) +0)
 im}=-\textrm{AC}(2*(N-k+1)+1
end if
```


## DFTI_PERM_FORMAT for One-dimensional Transforms

The real and imaginary parts of the complex-valued conjugate-even sequence $Z_{k}$ are located in real-valued array AC as illustrated by figure "Storage of a 1D Size- $N$ Conjugate-even Sequence in a Real Array" and can be used to reconstruct the whole conjugate-even sequence as follows:

```
real :: AR(N), AC (N)
status = DftiSetValue(desc, DFTI_PACKED_FORMAT, DFTI_PERM_FORMAT)
..
! on input: R{k} = AR(k)
status = DftiComputeForward(desc, AR, AC) ! real-to-complex FFT
! on output: Z{k} = cmplx(re, im), where
if (k == 1) then
 re = AC(1)
 im = 0
! else if (k-1 == N-k+1) then
 re = AC(2)
 im = 0
 else if (k <= N/2+1) then
 re = AC (1+2* (k-1) +0-mod (N,2))
 im = AC (1+2* (k-1)+1-mod (N,2))
 else
 re = AC (1+2* (N-k+1) +0-mod (N, 2))
 im}=-\textrm{AC}(1+2*(N-k+1)+1-\operatorname{mod}(N,2)
 end if
```


## See Also

DftiSetValue

## DFTI_WORKSPACE

The computation step for some FFT algorithms requires a scratch space for permutation or other purposes. To manage the use of the auxiliary storage, Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) enables you to set the configuration parameterDFTI_WORKSPACE with the following values:

```
DFTI_ALLOW
DFTI_AVOID
```

(default) Permits the use of the auxiliary storage.
Instructs Intel® oneAPI Math Kernel Library (oneMKL) to avoid using the auxiliary storage if possible.

## See Also

DftiSetValue

## DFTI_COMMIT_STATUS

The DFTI_COMMIT_STATUS configuration parameter indicates whether the descriptor is ready for computation. The parameter has two possible values:

```
DFTI_UNCOMMITTED Default value, set after a successful call of DftiCreateDescriptor.
DFTI_COMMITTED The value after a successful call to DftiCommitDescriptor.
```

A computation function called with an uncommitted descriptor returns an error.
You cannot directly set this configuration parameter in a call to DftiSetValue, but a change in the configuration of a committed descriptor may change the commit status of the descriptor to DFTI_UNCOMMITTED.

## See Also

DftiCreateDescriptor
DftiCommitDescriptor
DftiSetValue

## DFTI_ORDERING

Some FFT algorithms apply an explicit permutation stage that is time consuming [4]. The exclusion of this step is similar to applying an FFT to input data whose order is scrambled, or allowing a scrambled order of the FFT results. In applications such as convolution and power spectrum calculation, the order of result or data is unimportant and thus using scrambled data is acceptable if it leads to better performance. The following options are available in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL):

- DFTI_ORDERED: Forward transform data ordered, backward transform data ordered (default option).
- DFTI_BACKWARD_SCRAMBLED: Forward transform data ordered, backward transform data scrambled.

Table "Scrambled Order Transform" tabulates the effect of this configuration setting.
Scrambled Order Transform

	DftiComputeForward	DftiComputeBackward
DFTI_ORDERING	Input $\rightarrow$ Output	Input $\rightarrow$ Output
DFTI_ORDERED	ordered $\rightarrow$ ordered	ordered $\rightarrow$ ordered
DFTI_BACKWARD_SCRAMBLED	ordered $\rightarrow$ scrambled	scrambled $\rightarrow$ ordered

## NOTE

The word "scrambled" in this table means "permit scrambled order if possible". In some situations permitting out-of-order data gives no performance advantage and an implementation may choose to ignore the suggestion.

## See Also

DftiSetValue

## FFT Descriptor Manipulation Functions

This category contains the following functions: create a descriptor, commit a descriptor, copy a descriptor, and free a descriptor.

## DftiCreateDescriptor

Allocates the descriptor data structure and initializes it with default configuration values.

```
Syntax
status = DftiCreateDescriptor(desc_handle, precision, forward_domain, dimension,
length)
```


## Include Files

- mkl_dfti.f90

Input Parameters

Name	Type
precision	INTEGER
forward_domain	INTEGER
dimension	INTEGER
length	INTEGER if dimension $=1$.                 

## Description

Precision of the transform: DFTI_SINGLE or DFTI_DOUBLE.

Forward domain of the transform:
DFTI_COMPLEX or DFTI_REAL.
Dimension of the transform.
Length of the transform for a one-dimensional transform. Lengths of each dimension for a multi-dimensional transform.

## Output Parameters

## Name

```
desc_handle
status
```


## Type

DFTI_DESCRIPTOR
INTEGER

## Description

## FFT descriptor.

Function completion status.

## Description

This function allocates memory for the descriptor data structure and instantiates it with all the default configuration settings for the precision, forward domain, dimension, and length of the desired transform. Because memory is allocated dynamically, the result is actually a pointer to the created descriptor. This function is slightly different from the "initialization" function that can be found in software packages or libraries that implement more traditional algorithms for computing an FFT. This function does not perform any significant computational work such as computation of twiddle factors. The function DftiCommitDescriptor does this work after the function DftiSetValue has set values of all necessary parameters.

The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

## Interface

```
 ! Note that the body provided below only illustrates the list of different
! parameters and the types of dummy parameters. You can rely only on the function
! name following keyword INTERFACE. For the precise definition of the
interface, see the include/mkl_dfti.f90 file in the Intel MKL directory.
INTERFACE DftiCreateDescriptor
```

```
FUNCTION some_actual_function_1d(desc, precision, domain, dim, length)
 INTEGER :: some_actual_function_1d
 INTEGER, INTENT(IN) :: length
END FUNCTION some_actual_function_1d
FUNCTION some_actual_function_md(desc, precision, domain, dim, lengths)
 INTEGER :: some_actual_function_md
 INTEGER, INTENT(IN), DIMENSION(*) :: lengths
END FUNCTION some_actual_function_md
END INTERFACE DftiCreateDescriptor
```

Note that the function is overloaded: the actual parameter for the formal parameter length can be a scalar or a rank-one array.
The function is also overloaded with respect to the type of the precision parameter in order to provide an option of using a precision-specific function for the generic name. Using more specific functions can reduce the size of statically linked executable for the applications using only single-precision FFTs or only doubleprecision FFTs. To use specific functions, change the "USE MKL_DFTI" statement in your program unit to one of the following:

```
USE MKL_DFTI, FORGET=>DFTI_SINGLE, DFTI_SINGLE=>DFTI_SINGLE_R
USE MKL_DFTI, FORGET=>DFTI_DOUBLE, DFTI_DOUBLE=>DFTI_DOUBLE_R
```

where the name "FORGET" can be replaced with any name that is not used in the program unit.

## See Also

DFTI_PRECISION configuration parameter
DFTI_FORWARD_DOMAIN configuration parameter
DFTI_DIMENSION, DFTI_LENGTHS configuration parameters
Configuration Parameters, summary table
DftiCommitDescriptor
Performs all initialization for the actual FFT computation.

## Syntax

```
status = DftiCommitDescriptor(desc_handle)
```


## Include Files

- mkl_dfti.f90


## Input Parameters

## Name

desc_handle

## Type

DFTI_DESCRIPTOR

## Description

FFT descriptor.

## Output Parameters

Name
desc_handle
status

## Type

DFTI_DESCRIPTOR
INTEGER

## Description

Updated FFT descriptor.
Function completion status.

## Description

This function completes initialization of a previously created descriptor, which is required before the descriptor can be used for FFT computations. Typically, committing the descriptor performs all initialization that is required for the actual FFT computation. The initialization done by the function may involve exploring different factorizations of the input length to find the optimal computation method.
If you call the DftiSetValue function to change configuration parameters of a committed descriptor (see Descriptor Configuration Functions), you must re-commit the descriptor before invoking a computation function. Typically, a committal function call is immediately followed by a computation function call (see FFT Computation Functions).

The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

## Interface

```
INTERFACE DftiCommitDescriptor
!Note that the body provided here is to illustrate the different
!argument list and types of dummy arguments. The interface
!does not guarantee what the actual function names are.
!Users can only rely on the function name following the
! keyword INTERFACE
 FUNCTION some_actual function_1 (Desc_Handle)
 INTEGER :: some_actual function_1
 TYPE (DFTI_DESCRIPTOR), POINTER : : Desc_Handle
 END FUNCTION some_actual function_1
END INTERFACE DftiCommitDescriptor
```


## DftiFreeDescriptor

Frees the memory allocated for a descriptor.

## Syntax

```
status = DftiFreeDescriptor(desc_handle)
```


## Include Files

- mkl_dfti.f90

Input Parameters

## Name

desc_handle

## Type

DESCRIPTOR HANDLE

## Description

FFT descriptor.

## Output Parameters

## Name

desc_handle
status

## Type

DESCRIPTOR_HANDLE

INTEGER

## Description

Memory for the FFT descriptor is released.

Function completion status.

## Description

This function frees all memory allocated for a descriptor.


#### Abstract

NOTE Memory allocation/deallocation inside Intel® oneAPI Math Kernel Library (oneMKL) is managed by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) memory management software. So, even after successful completion of FreeDescriptor, the memory space may continue being allocated for the application because the memory management software sometimes does not return the memory space to the OS, but considers the space free and can reuse it for future memory allocation. See Example mkl_free_buffers: Usage with FFT Functions on how to use Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) memory management software and release memory to the OS.


The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

## Interface

```
INTERFACE DftiFreeDescriptor
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
 FUNCTION some_actual_function_3(Desc_Handle)
 INTEGER :: some_actual_function_3
 TYPE (DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 END FUNCTION some_actual_function_3
END INTERFACE DftiFreeDescriptor
```


## DftiCopyDescriptor

Makes a copy of an existing descriptor.

## Syntax

```
status = DftiCopyDescriptor(desc_handle_original, desc_handle_copy)
```

Include Files

- mkl_dfti.f90


## Input Parameters

Name	Type
desc_handle_original	DESCRIPTOR_HANDLE
	DESCRIPTOR_HANDLE

## Output Parameters

## Type

DESCRIPTOR_HANDLE

INTEGER

## Description

The FFT descriptor to copy.
The FFT descriptor to copy.

## Description

The copy of the FFT descriptor.

Function completion status.

## Description

This function makes a copy of an existing descriptor. The resulting descriptor desc_handle_copy and the existing descriptor desc_handle_original specify the same configuration of the transform, but do not have any memory areas in common ("deep copy").

The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

## Interface

```
INTERFACE DftiCopyDescriptor
! Note that the body provided here is to illustrate the different
!argument list and types of dummy arguments. The interface
!does not guarantee what the actual function names are.
!Users can only rely on the function name following the
! keyword INTERFACE
 FUNCTION some_actual_function_2(Desc_Handle_Original,
 Desc_Handle_Copy)
 INTEGER :: some_actual_function_2
 TYPE (DFTI_DESCRIPTOR), POINTER : : Desc_Handle_Original, Desc_Handle_Copy
 END FUNCTION some_actual_function_2
END INTERFACE DftiCopyDescriptor
```


## FFT Descriptor Configuration Functions

This category contains the following functions: the value setting function DftiSetValue sets one particular configuration parameter to an appropriate value, and the value-getting function DftiGetValue reads the value of one particular configuration parameter. While all configuration parameters are readable, you cannot set a few of them. Some of these contain fixed information of a particular implementation such as version number, or dynamic information, which is derived by the implementation during execution of one of the functions. See Configuration Settings for details.

## DftiSetValue <br> Sets one particular configuration parameter with the specified configuration value.

```
Syntax
status = DftiSetValue(desc_handle, config_param, config_val)
```


## Include Files

- mkl_dfti.f90


## Input Parameters

Name	Type	Description
desc_handle	DFTI_DESCRIPTOR	FFT descriptor.
config_param	INTEGER	Configuration parameter.
config_val	Depends on the configuration   parameter.	Configuration value.

## Output Parameters

Name	Type	Description
desc_handle	DFTI_DESCRIPTOR	Updated FFT descriptor.
status	INTEGER	Function completion status.

## Description

This function sets one particular configuration parameter with the specified configuration value. Each configuration parameter is a named constant, and the configuration value must have the corresponding type, which can be a named constant or a native type. For available configuration parameters and the corresponding configuration values, see:

- DFTI_PRECISION
- DFTI_FORWARD_DOMAIN
- DETI_DIMENSION, DFTI_LENGTHS
- DETI_PLACEMENT
- DFTI_FORWARD_SCALE, DFTI_BACKWARD_SCALE
- DFTI_THREAD_LIMIT
- DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES
- DFTI_NUMBER_OF_TRANSFORMS
- DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
- DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE
- DFTI_PACKED_FORMAT
- DFTI_WORKSPACE
- DFTI_ORDERING

You cannot use the DftiSetValue function to change configuration parameters DFTI_FORWARD_DOMAIN, DFTI_PRECISION, DFTI_DIMENSION, and DFTI_LENGTHS. Use the DftiCreateDescriptor function to set them.
Function calls needed to configure an FFT descriptor for a particular call to an FFT computation function are summarized in Configuring and Computing an FFT in Fortran .

The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

## Interface

```
 INTERFACE DftiSetValue
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
 FUNCTION some_actual_function_6_INTVAL(Desc_Handle, Config_Param, INTVAL)
 INTEGER :: some_actual_function_6_INTVAL
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 INTEGER, INTENT(IN) :: INTVAL
 END FUNCTION some_actual_function_6_INTVAL
 FUNCTION some_actual_function_6_SGLVAL(Desc_Handle, Config_Param, SGLVAL)
 INTEGER :: some_actual_function_6_SGLVAL
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 REAL, INTENT(IN) :: SGLVAL
END FUNCTION some_actual_function_6_SGLVAL
 FUNCTION some actual function 6 DBLVAL(Desc Handle, Config Param, DBLVAL)
 INTEGER :: some__actuàl_function__6_DBLVAL
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 REAL (KIND(ODO)), INTENT(IN) :: DBLVAL
 END FUNCTION some_actual_function_6_DBLVAL
 FUNCTION some_actual_function_6_INTVEC(Desc_Handle, Config_Param, INTVEC)
 INTEGER :: some_actual_function_6_INTVEC
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config_Param
 INTEGER, INTENT(IN) :: INTVEC(*)
 END FUNCTION some_actual_function_6_INTVEC
 FUNCTION some_actual_function_6_CHARS(Desc_Handle, Config_Param, CHARS)
 INTEGER :: some_actual_function_6_CHARS
 Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
 INTEGER, INTENT(IN) :: Config Param
 CHARCTER(*), INTENT(IN) :: CHARRS
 END FUNCTION some_actual_function_6_CHARS
END INTERFACE DftiSetValue
```


## See Also

Configuration Settings for more information on configuration parameters.
DftiCreateDescriptor
DftiGetValue
DftiGetValue
Gets the configuration value of one particular configuration parameter.

## Syntax

```
status = DftiGetValue(desc_handle, config_param, config_val)
```


## Include Files

- mkl_dfti.f90


## Input Parameters

Name	Type
desc_handle	DFTI_DESCRIPTOR
config_param	INTEGER

## Description

FFT descriptor.
Configuration parameter. See Table
"Configuration Parameters" for allowable values of config_param.

## Description

Configuration value.

Function completion status.

## Description

This function gets the configuration value of one particular configuration parameter. Each configuration parameter is a named constant, and the configuration value must have the corresponding type, which can be a named constant or a native type. For available configuration parameters and the corresponding configuration values, see:

- DETI_PRECISION
- DFTI_FORWARD_DOMAIN
- DFTI_DIMENSION, DFTI_LENGTH
- DFTI_PLACEMENT
- DFTI_FORWARD_SCALE, DFTI_BACKWARD_SCALE
- DFTI_THREAD_LIMIT
- DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES
- DFTI_NUMBER_OF_TRANSFORMS
- DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
- DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE
- DFTI_PACKED_FORMAT
- DFTI_WORKSPACE
- DFTI_COMMIT_STATUS
- DFTI_ORDERING

The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

## Interface

## INTERFACE DftiGetValue

//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword InTERFACE
FUNCTION some_actual_function_7_INTVAL ( Desc_Handle, Config_Param, INTVAL )
INTEGER :: some_actual_function_7_INTVAL
Type (DFTI_DESCRIPTOR), POINTER : : Desc_Handle INTEGER, INTENT(IN) :: Config_Param

```
INTEGER, INTENT(OUT) :: INTVAL
END FUNCTION DFTI_GET_VALUE_INTVAL
FUNCTION some_actual_functiōn_7_SGLVAL(Desc_Handle, Config_Param, SGLVAL)
INTEGER :: some_actual_function_7_SGLVAL
Type(DFTI_DESCRIPTOR), POINTER : : Desc_Handle
INTEGER, INTENT(IN) :: Config_Param
REAL, INTENT(OUT) :: SGLVAL
END FUNCTION some_actual_function_7_SGLVAL
FUNCTION some_actūal_func\overline{tion_7_DBL}\overline{V}AL(Desc_Handle, Config_Param, DBLVAL)
INTEGER :: some_actual_function_7_DBLVAL
Type(DFTI_DESCRIPTOR), POINTER : : Desc_Handle
INTEGER, INTENT(IN) :: Config_Param
REAL (KIND(ODO)), INTENT(OUT) :: DBLVAL
END FUNCTION some_actual_function_7 _DBLVAL
FUNCTION some_actual_function_7_INTVEC(Desc_Handle, Config_Param, INTVEC)
INTEGER :: some_actual_function_7_INTVEC
Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle
INTEGER, INTENT(IN) :: Config_Param
INTEGER, INTENT(OUT) :: INTVEC
END FUNCTION some_actual_function_7_INTVEC
FUNCTION some_actual_function_7_INTPNT(Desc_Handle, Config_Param, INTPNT)
INTEGER :: some_actual_function_7_INTPNT
Type(DFTI_DESCRIPTOR), POINTER : : Desc_Handle
INTEGER, INTENT(IN) :: Config_Param
INTEGER, DIMENSION(*), POINTER : : INTPNT
END FUNCTION some_actual_function_7_INTPNT
FUNCTION some_actual_function_7_CHARS(Desc_Handle, Config_Param, CHARS)
INTEGER :: some_actual_function_7_CHARS
Type(DFTI_DESCRIPTOR), POINTER : : Desc_Handle
INTEGER, INTENT(IN) :: Config_Param
CHARCTER(*), INTENT (OUT) : : CHARS
END FUNCTION some_actual_function_7 _CHARS
END INTERFACE DftiGetValue
```


## Configuration Settings for more information on configuration parameters.

DftiSetValue

## FFT Computation Functions

This category contains the following functions: compute the forward transform and compute the backward transform.

## DftiComputeForward

Computes the forward FFT.

## Syntax

```
status = DftiComputeForward(desc_handle, x_inout)
status = DftiComputeForward(desc_handle, x_in, y_out)
status = DftiComputeForward(desc_handle, xre_inout, xim_inout)
status = DftiComputeForward(desc_handle, xre_in, xim_in, yre_out, yim_out)
```


## Input Parameters

```
Name
desc_handle
x_inout, x_in
```

xre_inout,
xim_inout,
xre_in, xim_in

## Type

DFTI_DESCRIPTOR
Array REAL (KIND=WP) or
COMPLEX(KIND=WP), DIMENSION(*),
where type and working precision WP must be consistent with the forward domain and precision specified in the descriptor.

Array REAL (KIND=WP), DIMENSION(*), where type and working precision WP must be consistent with the forward domain and precision specified in the descriptor.

## Description

FFT descriptor.
Data to be transformed in case of a real forward domain or, in the case of a complex forward domain in association with FTI_COMPLEX_COMPLEX, set for DFTI_COMPLEX_STORAGE.

Real and imaginary parts of the data to be transformed in the case of a complex forward domain.

The suffix in parameter names corresponds to the value of the configuration parameter DFTI_PLACEMENT as follows:

- _inout to DFTI_INPLACE
- _in to DFTI_NOT_INPLACE


## Output Parameters

Name	Type
y_out	Array REAL (KIND=WP) or COMPLEX(KIND=WP), DIMENSION(*), where type and working precision WP must be consistent with the forward domain and precision specified in the descriptor.
$\begin{aligned} & \text { xre_inout, } \\ & \text { xim_inout, } \\ & \text { yre_out, yim_out } \end{aligned}$	Array REAL (KIND=WP) , DIMENSION(*), where type and working precision WP must be consistent with the forward domain and precision specified in the descriptor.
status	INTEGER

## Description

The transformed data in case of a real backward domain or, in the case of a complex forward domain in association with DFTI_COMPLEX_COMPLEX, set for DFTI_COMPLEX_STORAGE.

Real and imaginary parts of the transformed data in the case of a complex forward domain in association with DFTI_REAL_REAL set for DFTI_COMPLEX_STORAGE.

Function completion status.
The suffix in parameter names corresponds to the value of the configuration parameter DFTI_PLACEMENT as follows:

- _inout to DFTI_INPLACE
- _out to DFTI_NOT_INPLACE


## Include Files

- mkl_dfti.f90


## Description

The DftiComputeForward function accepts the descriptor handle parameter and one or more data parameters. Given a successfully configured and committed descriptor, this function computes the forward FFT, that is, the transform with the minus sign in the exponent, $\delta=-1$.

The DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, and DFTI_CONJUGATE_EVEN_STORAGE configuration parameters define the layout of the input and output data and must be properly set in a call to the DftiSetValue function. The forward domain and the precision of the transform are determined by the configuration settings DFTI_FORWARD_DOMAIN and DFTI_PRECISION, which are during construction of the descriptor.

The FFT descriptor must be properly configured prior to the function call. Function calls needed to configure an FFT descriptor for a particular call to an FFT computation function are summarized in Configuring and Computing an FFT in Fortran.
The number and types of the data parameters that the function requires may vary depending on the configuration of the descriptor. This variation is accommodated by the generic interface. The generic Fortran interface to the computation functions is based on a set of specific functions. These functions can check for inconsistency between the required and actual number of parameters. However, the specific functions disregard the type of the actual parameters and instead use the interpretation defined in the descriptor by configuration parameters DFTI_FORWARD_DOMAIN, DFTI_INPUT_STRIDES, DFTI_INPUT_DISTANCE, and so on.

The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

## Interface

```
! Note that the body provided below only illustrates the list of different
! parameters and the types of dummy parameters. You can rely only on the function
! name following keyword INTERFACE. For the precise definition of the
! interface, see the include/mkl_dfti.f90 file in the Intel MKL directory.
INTERFACE DftiComputeForward
FUNCTION some_actual_function_1(desc,sSrcDst)
 INTEGER some_actual_function_1
 REAL(4), INTENT(INOUTT), DIMENSION(*) :: sSrcDst
END FUNCTION some_actual_function_1
FUNCTION some_actual_function_2(desc,cSrcDst)
 INTEGER some_actual_function_2
 COMPLEX(8), INTENT(INOUT), DIMMENSION(*) :: cSrcDst
 ND FUNCTION some_actual_function_2
FUNCTION some_actual_function_3(desc,sSrcDstRe,sSrcDstIm)
 INTEGER some_actual_function_3
 REAL(4), INTENT(INOUT), DIMENSION(*) :: sSrcDstRe
 REAL(4), INTENT(INOUT), DIMENSION(*) :: sSrcDstIm
 ...
END FUNCTION some_actual_function_3
END INTERFACE DftiComputeForward
```

The Fortran interface requires that the data parameters have the type of assumed-size rank-1 array, even for multidimensional transforms. The implementations of the FFT interface require the data stored linearly in memory with a regular stride pattern capable of describing multidimensional array layout (see also [3] and the more detailed discussion in DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES), and the function requires that the data parameters refer to the first element of the data. Consequently, the data arrays should be specified with the DIMENSION (*) attribute and the storage associated with the actual multidimensional arrays via the EQUIVALENCE statement.

```
See Also
Configuration Settings
DFTI_FORWARD_DOMAIN
DFTI_PLACEMENT
DFTI_PACKED_FORMAT
DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE
DFTI_DIMENSION, DFTI_LENGTHS
DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES
DftiComputeBackward
DftiSetValue
```


## DftiComputeBackward

Computes the backward FFT.

## Syntax

```
status = DftiComputeBackward(desc_handle, x_inout)
status = DftiComputeBackward(desc_handle, y_in, x_out)
status = DftiComputeBackward(desc_handle, xre_inout, xim_inout)
status = DftiComputeBackward(desc_handle, yre_in, yim_in, xre_out, xim_out)
```

Input Parameters

Name	Type	Description
desc_handle	DFTI_DESCRIPTOR	FFT descriptor.
x_inout, y_in	Array REAL (KIND=WP) or COMPLEX(KIND=WP), DIMENSION(*), where type and working precision WP must be consistent with the forward domain and precision specified in the descriptor.	Data to be transformed in case of a real forward domain or, in the case of a complex forward domain in association with DFTI_COMPLEX_COMPLEX, set for DFTI_COMPLEX_STORAGE.
xre_inout, xim_inout, yre_in, yim_in	Array REAL (KIND=WP), DIMENSION(*), where type and working precision WP must be consistent with the forward domain and precision specified in the descriptor.	Real and imaginary parts of the data to be transformed in the case of a complex forward domain in association with DFTI_REAL_REAL set for DFTI_COMPLEX_STORAGE.

The suffix in parameter names corresponds to the value of the configuration parameter DFTI_PLACEMENT as follows:

- _inout to DFTI_INPLACE
- _in to DFTI_NOT_INPLACE


## Output Parameters

Name	Type	Description
x_out	Array REAL (KIND=WP) or   COMPLEX (KIND=WP),   where type and working precision WP must   be consistent with the forward domain and   precision specified in the descriptor.	The transformed data in case of a real   forward domain or, in the case of a   complex forward domain in association   with DFTI_COMPLEX_COMPLEX, set for
DFTI_COMPLEX_STORAGE.		

The suffix in parameter names corresponds to the value of the configuration parameter DFTI_PLACEMENT as follows:

- _inout to DFTI_INPLACE
- _out to DFTI_NOT_INPLACE


## Include Files

- mkl_dfti.f90


## Description

The function accepts the descriptor handle parameter and one or more data parameters. Given a successfully configured and committed descriptor, the DftiComputeBackward function computes the inverse FFT, that is, the transform with the plus sign in the exponent, $\delta=+1$.

The DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, and DFTI_CONJUGATE_EVEN_STORAGE configuration parameters define the layout of the input and output data and must be properly set in a call to the DftiSetValue function. The forward domain and the precision of the transform are determined by the configuration settings DFTI_FORWARD_DOMAIN and DFTI_PRECISION, which are during construction of the descriptor.

The FFT descriptor must be properly configured prior to the function call. Function calls needed to configure an FFT descriptor for a particular call to an FFT computation function are summarized in Configuring and Computing an FFT in Fortran.
The number and types of the data parameters that the function requires may vary depending on the configuration of the descriptor. This variation is accommodated by the generic interface. The generic Fortran interface to the computation functions is based on a set of specific functions. These functions can check for inconsistency between the required and actual number of parameters. However, the specific functions disregard the type of the actual parameters and instead use the interpretation defined in the descriptor by configuration parameters DFTI_FORWARD_DOMAIN, DFTI_INPUT_STRIDES, DFTI_INPUT_DISTANCE, and so on.

The function returns zero when it completes successfully. See Status Checking Functions for more information on the returned status.

## Interface

```
! Note that the body provided below only illustrates the list of different
! parameters and the types of dummy parameters. You can rely only on the function
```

```
! name following keyword INTERFACE. For the precise definition of the
! interface, see the include/mkl_dfti.f90 file in the Intel MKL directory.
INTERFACE DftiComputeBackward
FUNCTION some_actual_function_1(desc,sSrcDst)
 INTEGER some_actual_function_1
 REAL(4), INTENT(INOUT), DIMENSION(*) :: sSrcDst
END FUNCTION some_actual_function_1
FUNCTION some_actual_function_2(desc,cSrcDst)
 INTEGER some_actual_function_2
 COMPLEX(8), INTENT(INOUT), DIMENSION(*) :: cSrcDst
END FUNCTION some_actual_function_2
FUNCTION some_actual_function_3(desc,sSrcDstRe,sSrcDstIm)
 INTEGER some__actual_function__
 REAL (4), INTENT(INOUTT), DIMEN
 REAL(4), INTENT(INOUT), DIMENSION(*) : : sSrcDstIm
END FUNCTION some_actual_function_3
END INTERFACE DftiComputeBackward
```

The Fortran interface requires that the data parameters have the type of assumed-size rank-1 array, even for multidimensional transforms. The implementations of the FFT interface require the data stored linearly in memory with a regular stride pattern capable of describing multidimensional array layout (see also [3] and the more detailed discussion in DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES), and the function requires that the data parameters refer to the first element of the data. Consequently, the data arrays should be specified with the DIMENSION (*) attribute and the storage associated with the actual multidimensional arrays via the EQUIVALENCE statement.

## See Also

Configuration Settings
DFTI_FORWARD_DOMAIN
DFTI_PLACEMENT
DFTI_PACKED_FORMAT
DFTI_COMPLEX_STORAGE, DFTI_REAL_STORAGE, DFTI_CONJUGATE_EVEN_STORAGE
DFTI_DIMENSION, DFTI_LENGTHS
DFTI_INPUT_DISTANCE, DFTI_OUTPUT_DISTANCE
DFTI_INPUT_STRIDES, DFTI_OUTPUT_STRIDES
DftiComputeForward
DftiSetValue

## Configuring and Computing an FFT in Fortran

The table below summarizes information on configuring and computing an FFT in Fortran for all kinds of transforms and possible combinations of input and output domains.

FFT to Compute	Input Data	Output Data	Required FFT Function Calls
Complex-tocomplex, in-place, forward or backward	Interleaved complex numbers	Interleaved complex numbers	```! Configure a Descriptor status = DftiCreateDescriptor(hand, <precision>, & DFTI_COMPLEX, <dimension>, <sizes>) status = DftiCommitDescriptor(hand) ! Compute an FFT ! forward FFT status = DftiComputeForward(hand, X_inout) ! or backward FFT status = DftiComputeBackward(hand, X_inout)```
Complex-tocomplex, out-of-place, forward or backward	Interleaved complex numbers	Interleaved complex numbers	```! Configure a Descriptor status = DftiCreateDescriptor(hand, <precision>, & DFTI_COMPLEX, <dimension>, <sizes>) status = DftiSetValue(hand, DFTI_PLACEMENT, & DFTI_NOT_INPLACE) status = DftiCommitDescriptor(hand) ! Compute an FFT ! forward FFT status = DftiComputeForward(hand, X_in, Y_out) ! or backward FFT status = DftiComputeBackward(hand, X_in, Y_out)```
Complex-tocomplex, in-place, forward or backward	Splitcomplex numbers	Splitcomplex numbers	```! Configure a Descriptor status = DftiCreateDescriptor(hand, <precision>, & DFTI_COMPLEX, <dimension>, <sizes>) status = DftiSetValue(hand, & DFTI_COMPLEX_STORAGE, DFTI_REAL_REAL) status = DftiCommitDescriptor(hand) ! Compute an FFT ! forward FFT status = DftiComputeForward(hand, Xre_inout, & Xim_inout) ! or backward FFT status = DftiComputeBackward(hand, Xre_inout, & Xim_inout)```
Complex-tocomplex, out-of-place, forward or backward	Splitcomplex numbers	Splitcomplex numbers	```! Configure a Descriptor status = DftiCreateDescriptor(hand, <precision>, & DFTI_COMPLEX, <dimension>, <sizes>) status = DftiSetValue(hand, & DFTI_COMPLEX_STORAGE, DFTI_REAL_REAL) status = DftiSetValue(hand, & DFTI_PLACEMENT, DFTI_NOT_INPLACE) status = DftiCommitDescriptor(hand) ! Compute an FFT ! forward FFT```

## FFT to Compute Input Data Output Required FFT Function Calls

## Data

```
status = DftiComputeForward(hand, Xre_in, &
 Xim_in, Yre_out, Yim_out)
! or backward FFT
status = DftiComputeBackward(hand, Xre_in, &
 Xim_in, Yre_out, Yim_out)
```

Real-to-complex,	Real   numbers
in-place,	
forward	

Real-to-complex, Real
out-of-place, numbers forward

! Configure a Descriptor
status = DftiCreateDescriptor (hand,
<precision>, \&
DFTI REAL, <dimension>, <sizes>)
status = DftiSetValue (hand, \&
DFTI_CONJUGATE_EVEN_STORAGE, \&
DFTI_COMPLEX_COMPLEX)
status = DftiSetValue (hand,
DFTI PACKED FORMAT, \&
DFTI_CCE_FORMAT)
status = DftiSetValue (hand,
DFTI_INPUT_STRIDES, \&
<real_strides>)
status = DftiSetValue (hand,
DFTI_OUTPUT_STRIDES, \&
<complex_strides>)
status = DftiCommitDescriptor (hand)
! Compute an FFT
status = DftiComputeForward(hand, X_inout)

Numbers in the CCE format

```
! Configure a Descriptor
```

status = DftiCreateDescriptor(hand, <precision>
\&,
DFTI_REAL, <dimension>, <sizes>)
status = DftiSetValue (hand, \&
DFTI_CONJUGATE EVEN_STORAGE, \&
DFTI_COMPLEX_COMPLEX)
status = DftiSetValue (hand, DFTI_PACKED_FORMAT,
\&
DFTI_CCE_FORMAT)
status = DftiSetValue (hand, DFTI_PLACEMENT, \&
DFTI_NOT_INPLACE)
status = DftiSetValue (hand, DFTI_INPUT_STRIDES,
\&
<real_strides>)
status = DftiSetValue (hand,
DFTI_OUTPUT_STRIDES, \&
<complex_strides>)
status = DftiCommitDescriptor(hand)
! Compute an FFT
status = DftiComputeForward(hand, X_in, Y_out)

Complex-to-real,	Numbers in   the CCE	Real   numbers
in-place,	format	
backward		! Configure a Descriptor   status $=$ DftiCreateDescriptor (hand,  
		DFTI_REAL, <dimension>, <sizes>)


FFT to Compute	Input Data	Output Data	Required FFT Function Calls
			```status = DftiSetValue(hand, & DFTI_CONJUGATE_EVEN_STORAGE, & DFTI_COMPLEX_COMPLEX) status = DftiSetValue(hand, DFTI_PACKED_FORMAT, & DFTI_CCE_FORMAT) status = DftiSetValue(hand, DFTI_INPUT_STRIDES, & <complex_strides>) status = DftiSetValue(hand, DFTI_OUTPUT_STRIDES, & <real_strides>) status = DftiCommitDescriptor(hand) ! Compute an FFT status = DftiComputeBackward(hand, X_inout)```
Complex-to-real, out-of-place, backward	Numbers in the CCE format	Real numbers	```! Configure a Descriptor status = DftiCreateDescriptor(hand, <precision>, & DFTI_REAL, <dimension>, <sizes>) status = DftiSetValue (hand, & DFTI_CONJUGATE_EVEN_STORAGE, & DFTI_COMPLEX_COMPLEX) status = DftiSetValue(hand, DFTI_PLACEMENT, & DFTI_NOT_INPLACE) status = DftiSetValue(hand, DFTI_PACKED_FORMAT, & DFTI_CCE_FORMAT) status = DftiSetValue(hand, DFTI_INPUT_STRIDES, & <complex_strides>) status = DftiSetValue(hand, DFTI_OUTPUT_STRIDES, & <real_strides>) status = DftiCommitDescriptor(hand) ! Compute an FFT status = DftiComputeBackward(hand, X_in, Y_out)```

You can find Fortran programs that illustrate configuring and computing FFTs in the examples/dftf/ subdirectory of your Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory.

Status Checking Functions

All of the descriptor manipulation, FFT computation, and descriptor configuration functions return an integer value denoting the status of the operation. The functions in this category check that status. The first function is a logical function that checks whether the status reflects an error of a predefined class, and the second is an error message function that returns a character string.

DftiErrorClass

Checks whether the status reflects an error of a predefined class.

```
Syntax
```

```
predicate = DftiErrorClass( status, error_class )
```

```
predicate = DftiErrorClass( status, error_class )
```


Include Files

- mkl_dfti.f90

Input Parameters

Name	Type
status	INTEGER
error_class	INTEGER

Output Parameters

Name Type
predicate LOGICAL

Description

Completion status of a fast Fourier transform (FFT) function.

Predefined error class.

Description

Result of checking.

Description

The FFT interface in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides a set of predefined error classeslisted in Table "Predefined Error Classes". They are named constants and have the type INTEGER.

Predefined Error Classes

Named Constants	Comments
DFTI_NO_ERROR	No error. The zero status belongs to this class.
DFTI_MEMORY_ERROR	Usually associated with memory allocation.
DFTI_INVALID_CONFIGURATION	Invalid settings in one or more configuration parameters.
DFTI_INCONSISTENT_CONFIGURATION	Inconsistent configuration or input parameters.
DFTI_NUMBER_OF_THREADS_ERROR	Number of OMP threads in the computation function is not equal to the number of OMP threads in the initialization stage (commit function).
DFTI_MULTITHREADED_ERROR	Usually associated with a value that OMP routines return in case of errors.
DFTI_BAD_DESCRIPTOR	Descriptor is unusable for computation. DFTI_UNIMPLEMENTED DFTI_MKL_INTERNAL_ERROR dependent.
DFTI_1D_LENGTH_EXCEEDS_INT32	Internal library error.
DFTI_1D_MEMORY_EXCEEDS_INT32	Length of one of the dimensions exceeds $2^{32}-1$ (4 4

NOTE

Use DFTI_1D_MEMORY_EXCEEDS_INT32 instead of DFTI_1D_LENGTH_EXCEEDS_INT32 for better accuracy.

The DftiErrorClass function returns the value of .TRUE. if the status belongs to the predefined error class. To check whether a function call was successful, call DftiErrorClass with a specific error class. However, the zero value of the status belongs to the DFTI_NO_ERROR class and thus the zero status indicates successful completion of an operation. See Example "Using Status Checking Functions" for an illustration of correct use of the status checking functions.

NOTE

It is incorrect to directly compare a status with a predefined class.

Interface

```
INTERFACE DftiErrorClass
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
    FUNCTION some_actual_function_8( Status, Error_Class )
    LOGICAL some_actual_function_8
    INTEGER, INTENT(IN) :: Status, Error_Class
    END FUNCTION some_actual_function_8
END INTERFACE DftiErrorClass
```


DftiErrorMessage

Generates an error message.

Syntax

```
error_message = DftiErrorMessage( status )
```

Include Files

- mkl_dfti.f90

Input Parameters

Name	Type	Description
status	INTEGER	Completion status of a function.

Output Parameters

Name	Type	Description
error_message	CHARACTER (LEN=DFTI_MAX_MESSAGE_LENGTH	The character string with the
	$)$	error message.

Description

The error message function generates an error message character string. In Fortran, use a character string of length DFTI_MAX_MESSAGE_LENGTH as a target for the error message.

Example Using Status Checking Function shows how this function can be used.

Interface

```
INTERFACE DftiErrorMessage
//Note that the body provided here is to illustrate the different
//argument list and types of dummy arguments. The interface
//does not guarantee what the actual function names are.
//Users can only rely on the function name following the
//keyword INTERFACE
    FUNCTION some_actual_function_9( Status )
    CHARACTER(LEN=DFTI_MAX_MESSAGE_LENGTH) some_actual_function_9( Status )
    INTEGER, INTENT(IN) :: Status
    END FUNCTION some_actual_function_9
END INTERFACE DftiErrorMessage
```


Cluster FFT Functions

This section describes the cluster Fast Fourier Transform (FFT) functions implemented in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).

NOTE

These functions are available only for Intel® 64 architectures.

The cluster FFT function library was designed to perform fast Fourier transforms on a cluster, that is, a group of computers interconnected via a network. Each computer (node) in the cluster has its own memory and processor(s). Data interchanges between the nodes are provided by the network.
One or more processes may be running in parallel on each cluster node. To organize communication between different processes, the cluster FFT function library uses the Message Passing Interface (MPI). To avoid dependence on a specific MPI implementation (for example, MPICH, Intel ${ }^{\circledR}$ MPI, and others), the library works with MPI via a message-passing library for linear algebra called BLACS.

Cluster FFT functions of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provide one-dimensional, twodimensional, and multi-dimensional (up to the order of 7) functions and both Fortran and C interfaces for all transform functions.

To develop applications using the cluster FFT functions, you should have basic skills in MPI programming.
The interfaces for the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) cluster FFT functions are similar to the corresponding interfaces for the conventional Intel® oneAPI Math Kernel Library (oneMKL)FFT functions. Refer there for details not explained in this section.
Table "Cluster FFT Functions in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL)" lists cluster FFT functions implemented in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL):

Cluster FFT Functions in oneMKL
Function Name Operation

Descriptor Manipulation Functions
DftiCreateDescriptorDM
Allocates memory for the descriptor data structure and preliminarily initializes it.

Function Name

DftiCommitDescriptorDM
DftiFreeDescriptorDM
FFT Computation Functions
DftiComputeForwardDM
DftiComputeBackwardDM
Descriptor Configuration Functions
DftiSetValueDM

DftiGetValueDM

Operation

Performs all initialization for the actual FFT computation.
Frees memory allocated for a descriptor.

Computes the forward FFT.
Computes the backward FFT.

Sets one particular configuration parameter with the specified configuration value.

Gets the value of one particular configuration parameter.

Computing Cluster FFT

The Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL)cluster FFT functions are provided with Fortran and C interfaces. Fortran stands for Fortran 95.

Cluster FFT computation is performed by DftiComputeForwardDM and DftiComputeBackwardDM functions, called in a program using MPI, which will be referred to as MPI program. After an MPI program starts, a number of processes are created. MPI identifies each process by its rank. The processes are independent of one another and communicate via MPI. A function called in an MPI program is invoked in all the processes. Each process manipulates data according to its rank. Input or output data for a cluster FFT transform is a sequence of real or complex values. A cluster FFT computation function operates on the local part of the input data, that is, some part of the data to be operated in a particular process, as well as generates local part of the output data. While each process performs its part of computations, running in parallel and communicating through MPI, the processes perform the entire FFT computation. FFT computations using the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) cluster FFT functions are typically effected by a number of steps listed below:

1. Initiate MPI by calling MPI_INIT (the function must be called prior to calling any FFT function and any MPI function).
2. Allocate memory for the descriptor and create it by calling DftiCreateDescriptorDM.
3. Specify one of several values of configuration parameters by one or more calls to DftiSetValueDM.
4. Obtain values of configuration parameters needed to create local data arrays; the values are retrieved by calling DftiGetValueDM.
5. Initialize the descriptor for the FFT computation by calling DftiCommitDescriptorDM.
6. Create arrays for local parts of input and output data and fill the local part of input data with values. (For more information, see Distributing Data among Processes.)
7. Compute the transform by calling DftiComputeForwardDM or DftiComputeBackwardDM.
8. Gather local output data into the global array using MPI functions. (This step is optional because you may need to immediately employ the data differently.)
9. Release memory allocated for the descriptor by calling DftiFreeDescriptorDM.
10. Finalize communication through MPI by calling MPI_FINALIZE (the function must be called after the last call to a cluster FFT function and the last call to an MPI function).

Several code examples in Examples for Cluster FFT Functions in the Code Examples appendix illustrate cluster FFT computations.

Distributing Data Among Processes

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) cluster FFT functions store all input and output multidimensional arrays (matrices) in one-dimensional arrays (vectors). The arrays are stored in the columnmajor order. For example, a two-dimensional matrix A of size (m, n) is stored in a vector B of size $m * n$ so that

```
B((j-1)*m+i)=A(i,j) (i=1, .., m,j=1, ...,n).
```


NOTE

Order of FFT dimensions is the same as the order of array dimensions in the programming language. For example, a 3-dimensional FFT with Lengths $=(m, n, l)$ can be computed over an array AR (m, n, l).

All MPI processes involved in cluster FFT computation operate their own portions of data. These local arrays make up the virtual global array that the fast Fourier transform is applied to. It is your responsibility to properly allocate local arrays (if needed), fill them with initial data and gather resulting data into an actual global array or process the resulting data differently. To be able do this, see sections below on how the virtual global array is composed of the local ones.

Multi-dimensional transforms

If the dimension of transform is greater than one, the cluster FFT function library splits data in the dimension whose index changes most slowly, so that the parts contain all elements with several consecutive values of this index. It is the first dimension in C and the last dimension in Fortran. If the global array is twodimensional, in C, it gives each process several consecutive rows. The term "rows" will be used regardless of the array dimension and programming language. Local arrays are placed in memory allocated for the virtual global array consecutively, in the order determined by process ranks. For example, in case of two processes, during the computation of a three-dimensional transform whose matrix has size $(11,15,12)$, the processes may store local arrays of sizes $(6,15,12)$ and $(5,15,12)$, respectively.

If p is the number of MPI processes and the matrix of a transform to be computed has size (m, n, l), in C , each MPI process works with local data array of size $\left(m_{q}, n, l\right)$, where $\Sigma m_{q}=m, q=0, \ldots, p-1$. Local input arrays must contain appropriate parts of the actual global input array, and then local output arrays will contain appropriate parts of the actual global output array. You can figure out which particular rows of the global array the local array must contain from the following configuration parameters of the cluster FFT interface: CDFT_LOCAL_NX, CDFT_LOCAL_START_X, and CDFT_LOCAL_SIZE. To retrieve values of the parameters, use the DftiGetValueDM function:

- CDFT_LOCAL_NX specifies how many rows of the global array the current process receives.
- CDFT_LOCAL_START_X specifies which row of the global input or output array corresponds to the first row of the local input or output array. If A is a global array and L is the appropriate local array, then

$$
\mathrm{L}(i, j, k)=A\left(i, j, k+c d f t _l o c a l _s t a r t _x-1\right), \text { where } i=1, \ldots, m, j=1, \ldots, n, k=1, \ldots, I_{q} .
$$

Example "2D Out-of-place Cluster FFT Computation" shows how the data is distributed among processes for a two-dimensional cluster FFT computation.

One-dimensional transforms

In this case, input and output data are distributed among processes differently and even the numbers of elements stored in a particular process before and after the transform may be different. Each local array stores a segment of consecutive elements of the appropriate global array. Such segment is determined by the number of elements and a shift with respect to the first array element. So, to specify segments of the global input and output arrays that a particular process receives, four configuration parameters are needed: CDFT_LOCAL_NX, CDFT_LOCAL_START_X, CDFT_LOCAL_OUT_NX, and CDFT_LOCAL_OUT_START_X. Use the DftiGetValueDM function to retrieve their values. The meaning of the four configuration parameters depends upon the type of the transform, as shown in Table "Data Distribution Configuration Parameters for 1D Transforms":

Data Distribution Configuration Parameters for 1D Transforms

Meaning of the Parameter	Forward Transform	Backward Transform
Number of elements in input array	CDFT_LOCAL_NX	CDFT_LOCAL_OUT_NX

Meaning of the Parameter	Forward Transform	Backward Transform
Elements shift in input array	CDFT_LOCAL_START_X	CDFT_LOCAL_OUT_START_X
Number of elements in output array	CDFT_LOCAL_OUT_NX	CDFT_LOCAL_NX
Elements shift in output array	CDFT_LOCAL_OUT_START_X	CDFT_LOCAL_START_X

Memory size for local data

The memory size needed for local arrays cannot be just calculated from CDFT_LOCAL_NX (CDFT_LOCAL_OUT_NX), because the cluster FFT functions sometimes require allocating a little bit more memory for local data than just the size of the appropriate sub-array. The configuration parameter CDFT_LOCAL_SIZE specifies the size of the local input and output array in data elements. Each local input and output arrays must have size not less than CDFT_LOCAL_SIZE*size_of_element. Note that in the current implementation of the cluster FFT interface, data elements can be real or complex values, each complex value consisting of the real and imaginary parts. If you employ a user-defined workspace for in-place transforms (for more information, refer to Table "Settable configuration Parameters"), it must have the same size as the local arrays. Example "1D In-place Cluster FFT Computations" illustrates how the cluster FFT functions distribute data among processes in case of a one-dimensional FFT computation performed with a user-defined workspace.

Available Auxiliary Functions

If a global input array is located on one MPI process and you want to obtain its local parts or you want to gather the global output array on one MPI process, you can use functions MKL_CDFT_ScatterData and MKL_CDFT_GatherData to distribute or gather data among processes, respectively. These functions are defined in a file that is delivered with Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) and located in the following subdirectory of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) installation directory: examples/cdftf/ source/cdft_example_support.f90.

Restriction on Lengths of Transforms

The algorithm that the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) cluster FFT functions use to distribute data among processes imposes a restriction on lengths of transforms with respect to the number of MPI processes used for the FFT computation:

- For a multi-dimensional transform, the lengths of the last two dimensions must be not less than the number of MPI processes.
- The length of a one-dimensional transform must be the product of two integers each of which is not less than the number of MPI processes.

Non-compliance with the restriction causes an error CDFT_SPREAD_ERROR (refer to Error Codes for details). To achieve the compliance, you can change the transform lengths and/or the number of MPI processes, which is specified at start of an MPI program. MPI-2 enables changing the number of processes during execution of an MPI program.

Cluster FFT Interface

To use the cluster FFT functions, you need to access the module MKL_CDFT through the "use" statement.
The Fortran interface provides a derived type DFTI_DESCRIPTOR_DM; a number of named constants representing various names of configuration parameters and their possible values; and a number of overloaded functions through the generic functionality of Fortran 95.
To provide communication between parallel processes through MPI, the following include statement must be present in your code:

- Fortran:

INCLUDE "mpif.h"
(for some MPI versions, "mpif90.h" header may be used instead).
There are three main categories of the cluster FFT functions in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL):

1. Descriptor Manipulation. There are three functions in this category. The DfticreateDescriptorDM function creates an FFT descriptor whose storage is allocated dynamically. The DftiCommitDescriptorDM function "commits" the descriptor to all its settings. The DftiFreeDescriptorDM function frees up the memory allocated for the descriptor.
2. FFT Computation. There are two functions in this category. The DftiComputeForwardDM function performs the forward FFT computation, and the DftiComputeBackwardDM function performs the backward FFT computation.
3. Descriptor Configuration. There are two functions in this category. The DftiSetValueDM function sets one specific configuration value to one of the many configuration parameters. The DftiGetValueDM function gets the current value of any of these configuration parameters, all of which are readable. These parameters, though many, are handled one at a time.

Cluster FFT Descriptor Manipulation Functions

There are three functions in this category: create a descriptor, commit a descriptor, and free a descriptor.
DftiCreateDescriptorDM
Allocates memory for the descriptor data structure and preliminarily initializes it.

Syntax

```
Status = DftiCreateDescriptorDM(comm, handle, v1, v2, dim, size)
```

Status = DftiCreateDescriptorDM(comm, handle, v1, v2, dim, sizes)

Include Files

- mkl_cdft.f90

Input Parameters

```
comm
```

v1
v2
dim
size
sizes

Output Parameters

handle

MPI communicator, e.g. MPI_COMM_WORLD.
Precision of the transform.
Type of the forward domain. Must be DFTI_COMPLEX for complex-tocomplex transforms or DFTI_REAL for real-to-complex transforms. Dimension of the transform.

Length of the transform in a one-dimensional case.
Lengths of the transform in a multi-dimensional case.

Pointer to the descriptor handle of transform. If the function completes successfully, the pointer to the created handle is stored in the variable.

Description

This function allocates memory in a particular MPI process for the descriptor data structure and instantiates it with default configuration settings with respect to the precision, domain, dimension, and length of the desired transform. The domain is understood to be the domain of the forward transform. The result is a
pointer to the created descriptor. This function is slightly different from the "initialization" function DftiCommitDescriptorDM in a more traditional software packages or libraries used for computing the FFT. This function does not perform any significant computation work, such as twiddle factors computation, because the default configuration settings can still be changed using the function DftiSetValueDM.

The value of the parameter v1 is specified through named constants DFTI_SINGLE and DFTI_DOUBLE. It corresponds to precision of input data, output data, and computation. A setting of DFTI_SINGLE indicates single-precision floating-point data type and a setting of DFTI_DOUBLE indicates double-precision floatingpoint data type.

The parameter dim is a simple positive integer indicating the dimension of the transform.
In Fortran, length is an integer or an array of integers.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. In this case, the pointer to the created descriptor handle is stored in handle. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

Interface

```
INTERFACE DftiCreateDescriptorDM
    INTEGER(4) FUNCTION DftiCreateDescriptorDMn(C,H,P1, P2, D, L)
        TYPE (DFTI_DESCRIPTOR_DM), POINTER : : H
        INTEGER(4) C,P1,P2,D,L(*)
    END FUNCTION
    INTEGER(4) FUNCTION DftiCreateDescriptorDM1 (C,H,P1, P2, D, L)
        TYPE(DFTI_DESCRIPTOR_DM), POINTER :: H
        INTEGER(4) C,P1,P2,D,L
    END FUNCTION
END INTERFACE
```


DftiCommitDescriptorDM
 Performs all initialization for the actual FFT
 computation.

Syntax

Status = DftiCommitDescriptorDM(handle)

Include Files

- mkl_cdft.f90

Input Parameters

handle
The descriptor handle. Must be valid, that is, created in a call to DftiCreateDescriptorDM.

Description

The cluster FFT interface requires a function that completes initialization of a previously created descriptor before the descriptor can be used for FFT computations in a particular MPI process. The DftiCommitDescriptorDM function performs all initialization that facilitates the actual FFT computation. For the current implementation, it may involve exploring many different factorizations of the input length to search for a highly efficient computation method.

Any changes of configuration parameters of a committed descriptor via the set value function (see Descriptor Configuration Functions) requires a re-committal of the descriptor before a computation function can be invoked. Typically, this committal function is called right before a computation function call (see FFT Computation Functions).

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

Interface

```
INTERFACE DftiCommitDescriptorDM
        INTEGER(4) FUNCTION DftiCommitDescriptorDM(handle);
            TYPE(DFTI_DESCRIPTOR_DM), POINTER :: handle
    END FUNCTION
END INTERFACE
```


DftiFreeDescriptorDM

Frees memory allocated for a descriptor.

Syntax

```
Status = DftiFreeDescriptorDM(handle)
```


Include Files

- mkl_cdft.f90

Input Parameters

handle
The descriptor handle. Must be valid, that is, created in a call to DfticreateDescriptorDM.

Output Parameters

handle
The descriptor handle. Memory allocated for the handle is released on output.

Description

This function frees up all memory allocated for a descriptor in a particular MPI process. Call the DftiFreeDescriptorDM function to delete the descriptor handle. Upon successful completion of DftiFreeDescriptorDM the descriptor handle is no longer valid.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

Interface

```
INTERFACE DftiFreeDescriptorDM
    INTEGER(4) FUNCTION DftiFreeDescriptorDM(handle)
    TYPE(DFTI_DESCRIPTOR_DM), POINTER : : handle
```

```
    END FUNCTION
END INTERFACE
```


Cluster FFT Computation Functions

There are two functions in this category: compute the forward transform and compute the backward transform.

```
DftiComputeForwardDM
Computes the forward FFT.
Syntax
Status = DftiComputeForwardDM(handle, in_X, out_X)
Status = DftiComputeForwardDM(handle, in_out_X)
```

Include Files

- mkl_cdft.f90

Input Parameters

```
handle
```

in_X, in_out_X

The descriptor handle.
Local part of input data. Array of real or complex values (depending on the forward domain type). Refer to Distributing Data among Processes on how to allocate and initialize the array.

Output Parameters

```
out_X, in_out_X
```

Local part of output data. Array of complex values. Refer to Distributing Data among Processes on how to allocate the array.

Description

The DftiComputeForwardDM function computes the forward FFT. Forward FFT is the transform using the factor $e^{-\mathrm{i} 2 \pi / n}$.

Before you call the function, the valid descriptor, created by DftiCreateDescriptorDM, must be configured and committed using the DftiCommitDescriptorDM function.

The computation is carried out by an internal call to the DftiComputeForward function. So, the functions have very much in common, and details not explicitly mentioned below can be found in the description of DftiComputeForward.
The local part of input data, as well as the local part of the output data, is an appropriate sequence of real or complex values (each complex value consists of two real numbers: real part and imaginary part) that a particular process stores. See Distributing Data Among Processes for details.
Refer to Configuration Settings for the list of configuration parameters that the descriptor passes to the function.
The configuration parameter DFTI_PRECISION determines the precision of input data, output data, and transform: a setting of DFTI_SINGLE indicates single-precision floating-point data type and a setting of DFTI_DOUBLE indicates double-precision floating-point data type.

The configuration parameter DFTI_PLACEMENT informs the function whether the computation should be inplace. If the value of this parameter is DFTI_INPLACE (default), you must call the function with two parameters, otherwise you must supply three parameters. If DFTI_PLACEMENT = DFTI_INPLACE and three parameters are supplied, then the third parameter is ignored.

Caution

Even in case of an out-of-place transform, local array of input data in_x may be changed. To save data, make its copy before calling DftiComputeForwardDM.

In case of an in-place transform, DftiComputeForwardDM dynamically allocates and deallocates a work buffer of the same size as the local input/output array requires.

NOTE

You can specify your own workspace of the same size through the configuration parameter CDFT_WORKSPACE to avoid redundant memory allocation.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

Interface

```
INTERFACE DftiComputeForwardDM
    INTEGER(4) FUNCTION DftiComputeForwardDM(h, in_X, out_X)
        TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
    COMPLEX(8), DIMENSION(*) :: in_x, out_X
    END FUNCTION DftiComputeForwardDM
    INTEGER(4) FUNCTION DftiComputeForwardDMi(h, in_out_X)
        TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
        COMPLEX(8), DIMENSION(*) :: in_out_X
    END FUNCTION DftiComputeForwardDMi
    INTEGER(4) FUNCTION DftiComputeForwardDMs(h, in_X, out_X)
        TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
        COMPLEX(4), DIMENSION(*) :: in_x, out_X
    END FUNCTION DftiComputeForwardDMs
    INTEGER(4) FUNCTION DftiComputeForwardDMis(h, in_out_X)
        TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
        COMPLEX(4), DIMENSION}(*) :: in_out_X
    END FUNCTION DftiComputeForwardDMis
END INTERFACE
```


DftiComputeBackwardDM

Computes the backward FFT.

Syntax

```
Status = DftiComputeBackwardDM(handle, in_X, out_X)
Status = DftiComputeBackwardDM(handle, in_out_X)
```


Include Files

- mkl_cdft.f90

Input Parameters

handle
in_X, in_out_X

The descriptor handle.
Local part of input data. Array of complex values. Refer to Distributing Data among Processes on how to allocate and initialize the array.

Output Parameters

```
out_X, in_out_X
```

Local part of output data. Array of real or complex values (depending on the forward domain type. Refer to Distributing Data among Processes on how to allocate the array.

Description

The DftiComputeBackwardDM function computes the backward FFT. Backward FFT is the transform using the factor $e^{\mathrm{i} 2 \pi / n}$.

Before you call the function, the valid descriptor, created by DftiCreateDescriptorDM, must be configured and committed using the DftiCommitDescriptorDM function.

The computation is carried out by an internal call to the DftiComputeBackward function. So, the functions have very much in common, and details not explicitly mentioned below can be found in the description of DftiComputeBackward.
The local part of input data, as well as the local part of the output data, is an appropriate sequence of real or complex values (each complex value consists of two real numbers: real part and imaginary part) that a particular process stores. See Distributing Data among Processes for details.
Refer to Configuration Settings for the list of configuration parameters that the descriptor passes to the function.

The configuration parameter DFTI_PRECISION determines the precision of input data, output data, and transform: a setting of DFTI_SINGLE indicates single-precision floating-point data type and a setting of DFTI_DOUBLE indicates double-precision floating-point data type.
The configuration parameter DFTI_PLACEMENT informs the function whether the computation should be inplace. If the value of this parameter is DFTI_INPLACE (default), you must call the function with two parameters, otherwise you must supply three parameters. If DFTI_PLACEMENT = DFTI_INPLACE and three parameters are supplied, then the third parameter is ignored.

Caution

Even in case of an out-of-place transform, local array of input data in_x may be changed. To save data, make its copy before calling DfticomputeBackwardDM.

In case of an in-place transform, DftiComputeBackwardDM dynamically allocates and deallocates a work buffer of the same size as the local input/output array requires.

NOTE

You can specify your own workspace of the same size through the configuration parameter CDFT_WORKSPACE to avoid redundant memory allocation.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

Interface

```
INTERFACE DftiComputeBackwardDM
    INTEGER(4) FUNCTION DftiComputeBackwardDM(h, in_X, out_X)
        TYPE (DFTI_DESCRIPTOR_DM), POINTER : : h
        COMPLEX(8), DIMENSION(*) :: in_x, out_X
    END FUNCTION DftiComputeBackwardDM
    INTEGER(4) FUNCTION DftiComputeBackwardDMi (h, in_out_X)
        TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
        COMPLEX(8), DIMENSION}(*) :: in_out_X
    END FUNCTION DftiComputeBackwardDMi
    INTEGER(4) FUNCTION DftiComputeBackwardDMs(h, in_X, out_X)
        TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
        COMPLEX(4), DIMENSION}(*) :: in_x, out_X
    END FUNCTION DftiComputeBackwardDMS
    INTEGER(4) FUNCTION DftiComputeBackwardDMis(h, in_out_X)
        TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
        COMPLEX(4), DIMENSION(*) :: in_out_X
    END FUNCTION DftiComputeBackwardDMis
END INTERFACE
```


Cluster FFT Descriptor Configuration Functions

There are two functions in this category: the value-setting function DftiSetValueDM sets one particular configuration parameter to an appropriate value, and the value-getting function DftiGetValueDM reads the value of one particular configuration parameter.
Some configuration parameters used by cluster FFT functions originate from the conventional FFT interface (see Configuration Settings for details).
Other configuration parameters are specific to the cluster FFT. Integer values of these parameters have type INTEGER (4). The exact type of the configuration parameters being floating-point scalars is REAL (4) or REAL (8). The configuration parameters whose values are named constants have the INTEGER type. They are defined in the MKL_CDFT module.
The names of the configuration parameters specific to the cluster FFT interface have the CDFT prefix.

DftiSetValueDM

Sets one particular configuration parameter with the specified configuration value.

Syntax

```
Status = DftiSetValueDM (handle, param, value)
```

Include Files

- mkl_cdft.f90

Input Parameters

```
handle
```

The descriptor handle. Must be valid, that is, created in a call to DftiCreateDescriptorDM.
param
value

Name of a parameter to be set up in the descriptor handle. See Table "Settable Configuration Parameters" for the list of available parameters.
Value of the parameter.

Description

This function sets one particular configuration parameter with the specified configuration value. The configuration parameter is one of the named constants listed in the table below, and the configuration value must have the corresponding type. See Configuration Settings for details of the meaning of each setting and for possible values of the parameters whose values are named constants.

Settable Configuration Parameters

Parameter Name	Data Type	Description	Default Value
DFTI_FORWARD_SCALE	Floating-point scalar	Scale factor of forward transform.	1.0
DFTI_BACKWARD_SCALE	Floating-point Scalar	Scale factor of backward transform.	1.0
	Named constant	Placement of the computation result.	DFTI_INPLACE

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

Interface

```
INTERFACE DftiSetValueDM
    INTEGER(4) FUNCTION DftiSetValueDM(h, p, v)
        TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
        INTEGER(4) :: p, v
    END FUNCTION
    INTEGER(4) FUNCTION DftiSetValueDMd(h, p, v)
        TYPE(DFTI DESCRIPTOR DM), POINTER : : h
        INTEGER(4) :: p
        REAL(8) :: v
    END FUNCTION
    INTEGER(4) FUNCTION DftiSetValueDMs(h, p, v)
        TYPE(DFTI DESCRIPTOR DM), POINTER :: h
        INTEGER(4) :: p
        REAL(4) :: v
    END FUNCTION
    INTEGER(4) FUNCTION DftiSetValueDMsw(h, p, v)
        TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
        INTEGER(4) :: p
        COMPLEX(4) :: v(*)
    END FUNCTION
    INTEGER(4) FUNCTION DftiSetValueDMdw(h, p, v)
        TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
        INTEGER(4) :: p
        COMPLEX(8) :: v(*)
    END FUNCTION
END INTERFACE
```


DftiGetValueDM

Gets the value of one particular configuration parameter.

Syntax

```
Status = DftiGetValueDM(handle, param, value)
```

Include Files

- mkl_cdft.f90

Input Parameters

handle
param

The descriptor handle. Must be valid, that is, created in a call to DftiCreateDescriptorDM.
Name of a parameter to be retrieved from the descriptor. See Table "Retrievable Configuration Parameters" for the list of available parameters.

Output Parameters

```
value
```

Value of the parameter.

Description

This function gets the configuration value of one particular configuration parameter. The configuration parameter is one of the named constants listed in the table below, and the configuration value is the corresponding appropriate type, which can be a named constant or a native type. Possible values of the named constants can be found in Table "Configuration Parameters" and relevant subsections of the Configuration Settings section.

Retrievable Configuration Parameters

Parameter Name	Data Type	Description
DFTI_PRECISION	Named constant	Precision of computation, input data and output data.
DFTI_DIMENSION	Integer scalar	Dimension of the transform
DFTI_LENGTHS	Array of integer values	Array of lengths of the transform. Number of lengths corresponds to the dimension of the transform.
DFTI_FORWARD_SCALE	Floating-point scalar	Scale factor of forward transform.
DFTI_BACKWARD_SCALE	Floating-point scalar	Scale factor of backward transform.
DFTI_PLACEMENT	Named constant	Placement of the computation result.
DFTI_COMMIT_STATUS	Named constant	Shows whether descriptor has been committed.
DFTI_FORWARD_DOMAIN	Named constant	Forward domain of transforms, has the value of DFTI_COMPLEX or DFTI_REAL.
DFTI_ORDERING	Named constant	Scrambling of data order.
CDFT_MPI_COMM	Type of MPI communicator	MPI communicator used for transforms.
CDFT_LOCAL_SIZE	Integer scalar	Necessary size of input, output, and buffer arrays in data elements.
CDFT_LOCAL_X_START	Integer scalar	Row/element number of the global array that corresponds to the first row/element of the local array. For more information, see Distributing Data among Processes.
CDFT_LOCAL_NX	Integer scalar	The number of rows/elements of the global array stored in the local array. For more information, see Distributing Data among Processes.
CDFT_LOCAL_OUT_X_START	Integer scalar	Element number of the appropriate global array that corresponds to the first element of the input or output local array in a 1D case. For details, see Distributing Data among Processes.

Parameter Name	Data Type	Description
CDFT_LOCAL_OUT_NX	Integer scalar	The number of elements of the appropriate global array that are stored in the input or output local array in a 1D case. For details, see Distributing Data among Processes.

Return Values

The function returns DFTI_NO_ERROR when completes successfully. If the function fails, it returns a value of another error class constant (for the list of constants, refer to Error Codes).

Interface

```
INTERFACE DftiGetValueDM
    INTEGER(4) FUNCTION DftiGetValueDM(h, p, v)
            TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
            INTEGER(4) :: p, v
    END FUNCTION
    INTEGER(4) FUNCTION DftiGetValueDMar(h, p, v)
            TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
            INTEGER(4) :: p, v(*)
    END FUNCTION
    INTEGER(4) FUNCTION DftiGetValueDMd(h, p, v)
            TYPE(DFTI_DESCRIPTOR_DM), POINTER : : h
            INTEGER(4) :: p
            REAL(8) :: v
    END FUNCTION
    INTEGER(4) FUNCTION DftiGetValueDMs(h, p, v)
        TYPE(DFTI_DESCRIPTOR_DM), POINTER :: h
        INTEGER(4) :: p
        REAL(4) :: v
    END FUNCTION
END INTERFACE
```


Error Codes

All the cluster FFT functions return an integer value denoting the status of the operation. These values are identified by named constants. Each function returns DFTI_NO_ERROR if no errors were encountered during execution. Otherwise, a function generates an error code. In addition to FFT error codes, the cluster FFT interface has its own ones. The named constants specific to the cluster FFT interface have the CDFT prefix in their names. Table "Error Codes that Cluster FFT Functions Return" lists error codes that the cluster FFT functions may return.

Error Codes that Cluster FFT Functions Return

Named Constants	Comments
DFTI_NO_ERROR	No error.
DFTI_MEMORY_ERROR	Usually associated with memory allocation.
DFTI_INVALID_CONFIGURATION	Invalid settings of one or more configuration parameters.
DFTI_INCONSISTENT_CONFIGURA	Inconsistent configuration or input parameters.
TION	

Named Constants	Comments
DFTI_NUMBER_OF_THREADS_ERRO R	Number of OMP threads in the computation function is not equal to the number of OMP threads in the initialization stage (commit function).
DFTI_MULTITHREADED_ERROR	Usually associated with a value that OMP routines return in case of errors.
DFTI_BAD_DESCRIPTOR	Descriptor is unusable for computation.
DFTI_UNIMPLEMENTED	Unimplemented legitimate settings; implementation dependent.
DFTI_MKL_INTERNAL_ERROR	Internal library error.
DFTI_1D_LENGTH_EXCEEDS_INT3	Length of one of the dimensions exceeds $2^{32}-1$ (4 bytes).
2	Data cannot be distributed (For more information, see Distributing
CDFT_SPREAD_ERROR	Data among Processes.)
CDFT_MPI_ERROR	MPI error. Occurs when calling MPI.

PBLAS Routines

Intel® oneAPI Math Kernel Libraryimplements the PBLAS (Parallel Basic Linear Algebra Subprograms) routines from the ScaLAPACK package for distributed-memory architecture. PBLAS is intended for using in vectorvector, matrix-vector, and matrix-matrix operations to simplify the parallelization of linear codes. The design of PBLAS is as consistent as possible with that of the BLAS. The routine descriptions are arranged in several sections according to the PBLAS level of operation:

- PBLAS Level 1 Routines (distributed vector-vector operations)
- PBLAS Level 2 Routines (distributed matrix-vector operations)
- PBLAS Level 3 Routines (distributed matrix-matrix operations)

Each section presents the routine and function group descriptions in alphabetical order by the routine group name; for example, the p?asum group, the p?axpy group. The question mark in the group name corresponds to a character indicating the data type (s, d, c, and z or their combination); see Routine Naming Conventions.

NOTE

PBLAS routines are provided only with Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) versions for Linux* and Windows* OSs.

Generally, PBLAS runs on a network of computers using MPI as a message-passing layer and a set of prebuilt communication subprograms (BLACS), as well as a set of PBLAS optimized for the target architecture. The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) version of PBLAS is optimized for Intel® processors. For the detailed system and environment requirements seeInte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Release Notes and Inte® oneAPI Math Kernel Library (oneMKL) Developer Guide.
For full reference on PBLAS routines and related information, see http://www.netlib.org/scalapack/html/ pblas_qref.html.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

PBLAS Routines Overview

The model of the computing environment for PBLAS is represented as a one-dimensional array of processes or also a two-dimensional process grid. To use PBLAS, all global matrices or vectors must be distributed on this array or grid prior to calling the PBLAS routines.

PBLAS uses the two-dimensional block-cyclic data distribution as a layout for dense matrix computations. This distribution provides good work balance between available processors, as well as gives the opportunity to use PBLAS Level 3 routines for optimal local computations. Information about the data distribution that is required to establish the mapping between each global array and its corresponding process and memory location is contained in the so called array descriptor associated with each global array. Table "Content of the array descriptor for dense matrices" gives an example of an array descriptor structure.
Content of Array Descriptor for Dense Matrices

Array Element \#	Name	Definition
1	$d t y p e$	Descriptor type (= 1 for dense matrices)
2	$c t x t$	BLACS context handle for the process grid
3	m	Number of rows in the global array
4	n	Number of columns in the global array
5	$m b$	Row blocking factor
6	$n b$	Column blocking factor
7	rsrc	Process row over which the first row of the global array is distributed
8	csrc	Process column over which the first column of the global array is distributed
9	$I l d$	Leading dimension of the local array

The number of rows and columns of a global dense matrix that a particular process in a grid receives after data distributing is denoted by $\operatorname{LOCr}()$ and $\operatorname{LOCC}()$, respectively. To compute these numbers, you can use the ScaLAPACK tool routine numroc.

After the block-cyclic distribution of global data is done, you may choose to perform an operation on a submatrix of the global matrix A, which is contained in the global subarray sub (A), defined by the following 6 values (for dense matrices):

m	The number of rows of sub (A)
n	The number of columns of sub (A)
a	A pointer to the local array containing the entire global array A
ia	The row index of sub (A) in the global array
ja	The column index of sub (A) in the global array
desca	The array descriptor for the global array A

Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides the PBLAS routines with interface similar to the interface used in the Netlib PBLAS (see http://www.netlib.org/scalapack/html/pblas_qref.html).

PBLAS Routine Naming Conventions

The naming convention for PBLAS routines is similar to that used for BLAS routines (see Routine Naming Conventions). A general rule is that each routine name in PBLAS, which has a BLAS equivalent, is simply the BLAS name prefixed by initial letter p that stands for "parallel".
The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) PBLAS routine names have the following structure:

```
p <character> <name> <mod> ( )
```

The <character> field indicates the Fortran data type:

s	real, single precision
c	complex, single precision
d	real, double precision
z	complex, double precision
i	integer

Some routines and functions can have combined character codes, such as sc or dz.
For example, the function pscasum uses a complex input array and returns a real value.
The <name> field, in PBLAS level 1, indicates the operation type. For example, the PBLAS level 1 routines p?dot, p?swap, p?copy compute a vector dot product, vector swap, and a copy vector, respectively.
In PBLAS level 2 and 3, <name> reflects the matrix argument type:

ge	general matrix
sy	symmetric matrix
he	Hermitian matrix
tr	triangular matrix

In PBLAS level 3, the <name>=tran indicates the transposition of the matrix.
The <mod> field, if present, provides additional details of the operation. The PBLAS level 1 names can have the following characters in the <mod> field:

$$
\begin{array}{ll}
\mathrm{c} & \text { conjugated vector } \\
\mathrm{u} & \text { unconjugated vector }
\end{array}
$$

The PBLAS level 2 names can have the following additional characters in the <mod> field:

mv	matrix-vector product
sv	solving a system of linear equations with matrix-vector operations
r	rank-1 update of a matrix
r2	rank-2 update of a matrix.

The PBLAS level 3 names can have the following additional characters in the <mod> field:

mm	matrix-matrix product
sm	solving a system of linear equations with matrix-matrix operations
rk	rank- k update of a matrix
r 2 k	rank- $2 k$ update of a matrix.

The examples below show how to interpret PBLAS routine names:

pddot	$<\mathrm{p}\rangle<\mathrm{d}\rangle<$ dot>: double-precision real distributed vector-vector dot product
pcdotc	<p> <c> <dot> <c>: complex distributed vector-vector dot product, conjugated
pscasum	<p> <sc> <asum> : sum of magnitudes of distributed vector elements, single precision real output and single precision complex input
pcdotu	<p> <c> <dot> <u>: distributed vector-vector dot product, unconjugated, complex

```
psgemv <p> <s> <ge> <mv>: distributed matrix-vector product, general matrix, single
    precision
pztrmm <p> <z> <tr> <mm>: distributed matrix-matrix product, triangular matrix,
    double-precision complex.
```


Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

PBLAS Level 1 Routines

PBLAS Level 1 includes routines and functions that perform distributed vector-vector operations. Table "PBLAS Level 1 Routine Groups and Their Data Types" lists the PBLAS Level 1 routine groups and the data types associated with them.

PBLAS Level 1 Routine Groups and Their Data Types

Routine or Function Group	Data Types	Description
p?amax	s, d, c, z	Calculates an index of the distributed vector element with maximum absolute value
p?asum	s, d, sc, dz	Calculates sum of magnitudes of a distributed vector
p?axpy	s, d, c, z	Calculates distributed vector-scalar product
p?copy	s, d, c, z	Copies a distributed vector
p?dot	s, d	Calculates a dot product of two distributed real vectors
p?dotc	c, z	Calculates a dot product of two distributed complex vectors, one of them is conjugated
p?dotu	c, z	Calculates a dot product of two distributed complex vectors
p?nrm2	$s, d, s c, d z$	Calculates the 2-norm (Euclidean norm) of a distributed vector
p?scal	s, d, c, z, cs, zd	Calculates a product of a distributed vector by a scalar
p?swap	s, d, c, z	Swaps two distributed vectors

p?amax
Computes the global index of the element of a distributed vector with maximum absolute value.

Syntax

```
call psamax(n, amax, indx, x, ix, jx, descx, incx)
call pdamax(n, amax, indx, x, ix, jx, descx, incx)
call pcamax(n, amax, indx, x, ix, jx, descx, incx)
call pzamax(n, amax, indx, x, ix, jx, descx, incx)
```


Include Files

- mkl_pblas.h

Description

The functions p?amax compute global index of the maximum element in absolute value of a distributed vector sub (x),
where sub(x) denotes $X(i x, j x: j x+n-1)$ if incx=m_x, and $X(i x: i x+n-1, j x)$ if incx= 1 .

Input Parameters

```
n (global) INTEGER. The length of distributed vector sub (x),n\geq0.
x (local) REAL for psamax
    DOUBLE PRECISION for pdamax
    COMPLEX for pcamax
    DOUBLE COMPLEX for pzamax
    Array, size (jx-1)*m_x + ix+(n-1)*abs(incx)).
    This array contains the entries of the distributed vector sub (x).
    (global) INTEGER. The row and column indices in the distributed matrix }
    indicating the first row and the first column of the submatrix sub ( }X\mathrm{ ),
    respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
```


Output Parameters

amax
indx
(global)REAL for psamax.
DOUBLE PRECISION for pdamax.
COMPLEX for pcamax.
DOUBLE COMPLEX for pzamax.
Maximum absolute value (magnitude) of elements of the distributed vector only in its scope.
(global) INTEGER. The global index of the maximum element in absolute value of the distributed vector sub (x) only in its scope.

```
p?asum
Computes the sum of magnitudes of elements of a
distributed vector.
```


Syntax

```
call psasum(n, asum, x, ix, jx, descx, incx)
```

call psasum(n, asum, x, ix, jx, descx, incx)
call pscasum(n, asum, x, ix, jx, descx, incx)

```
call pscasum(n, asum, x, ix, jx, descx, incx)
```

```
call pdasum(n, asum, x, ix, jx, descx, incx)
call pdzasum(n, asum, x, ix, jx, descx, incx)
```


Include Files

- mkl_pblas.h

Description

The functions p?asum compute the sum of the magnitudes of elements of a distributed vector sub (x), where sub (x) denotes $x(i x, j x: j x+n-1)$ if $i n c x=m_{-} x$, and $x(i x: i x+n-1, j x)$ if incx= 1 .

Input Parameters

```
n (global) INTEGER. The length of distributed vector sub (x), n\geq0.
x (local) REAL for psasum
    DOUBLE PRECISION for pdasum
    COMPLEX for pscasum
    DOUBLE COMPLEX for pdzasum
    Array, size (jx-1)*m_x + ix+(n-1)*abs(incx)).
    This array contains the entries of the distributed vector sub (x).
    (global) INTEGER. The row and column indices in the distributed matrix X
    indicating the first row and the first column of the submatrix sub ( }X\mathrm{ ),
    respectively.
    (global and local) INTEGER array of dimension 9. The array descriptor of the
        distributed matrix }X\mathrm{ .
    (global) INTEGER. Specifies the increment for the elements of sub (x). Only
        two values are supported, namely 1 and m_x. incx must not be zero.
```


Output Parameters

asum
(local) REAL for psasum and pscasum.
DOUBLE PRECISION for pdasum and pdzasum
Contains the sum of magnitudes of elements of the distributed vector only in its scope.

p?axpy
 Computes a distributed vector-scalar product and adds the result to a distributed vector.

Syntax

```
call psaxpy(n, a, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pdaxpy(n, a, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pcaxpy(n, a, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pzaxpy(n, a, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
```


Include Files

- mkl_pblas.h

Description

The p?axpy routines perform the following operation with distributed vectors:

```
sub(y) := sub(y) + a*sub(x)
```

where:
a is a scalar;
sub (x) and sub (y) are n-element distributed vectors.
sub (x) denotes $X(i x, j x: j x+n-1)$ if incx=m_x, and $x(i x: i x+n-1, j x)$ if incx= 1 ;
sub (y) denotes $Y(i y, j y: j y+n-1)$ if incy=m_y, and $Y(i y: i y+n-1, j y)$ if incy= 1 .

Input Parameters

n
a

X
ix, jx
descx
incx
y
(global) INTEGER. The length of distributed vectors, $n \geq 0$.
(local) REAL for psaxpy
DOUBLE PRECISION for pdaxpy
COMPLEX for pcaxpy
DOUBLE COMPLEX for pzaxpy
Specifies the scalar a.
(local) REAL for psaxpy
DOUBLE PRECISION for pdaxpy
COMPLEX for pcaxpy
DOUBLE COMPLEX for pzaxpy
Array, size $\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (X), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero.
(local) REAL for psaxpy
DOUBLE PRECISION for pdaxpy
COMPLEX for pcaxpy
DOUBLE COMPLEX for pzaxpy
Array, size $\left.(j y-1) * m_{-} y+i y+(n-1) * a b s(i n c y)\right)$.
This array contains the entries of the distributed vector sub (y).
iy, jy
descy
incy
(global) INTEGER. The row and column indices in the distributed matrix Y indicating the first row and the first column of the submatrix sub (Y), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix Y.
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and $m_{-} y$. incy must not be zero.

Output Parameters

y
Overwritten by sub (y) := sub (y) $+a^{\star} \operatorname{sub}(x)$.
p?copy
Copies one distributed vector to another vector.
Syntax

```
call pscopy(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pdcopy(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pccopy(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pzcopy(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call picopy(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
```

Include Files

- mkl_pblas.h

Description

The p?copy routines perform a copy operation with distributed vectors defined as

```
sub(y) = sub (x),
```

where sub (x) and sub (y) are n-element distributed vectors.

```
sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1;
sub(y) denotes Y(iy, jy:jy+n-1) if incy=m_y, and Y(iy: iy+n-1, jy) if incy= 1.
```


Input Parameters

n
x
(global) INTEGER. The length of distributed vectors, $n \geq 0$.
(local) REAL for pscopy
DOUBLE PRECISION for pdcopy
COMPLEX for pccopy
DOUBLE COMPLEX for pzcopy
INTEGER for picopy
Array, size $\left.(j x-1){ }^{*} m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).

```
ix, jx (global) INTEGER. The row and column indices in the distributed matrix }
    indicating the first row and the first column of the submatrix sub (X),
    respectively.
    (global and local) INTEGER array of dimension 9. The array descriptor of the
    distributed matrix }X\mathrm{ .
    (global) INTEGER. Specifies the increment for the elements of sub (x). Only
    two values are supported, namely 1 and m_x. incx must not be zero.
    (local) REAL for pscopy
    DOUBLE PRECISION for pdcopy
    COMPLEX for pccopy
    DOUBLE COMPLEX for pzcopy
    INTEGER for picopy
    Array, size (jy-1)*m_y + iy+(n-1)*abs(incy)).
    This array contains the entries of the distributed vector sub (y).
    (global) INTEGER. The row and column indices in the distributed matrix }
    indicating the first row and the first column of the submatrix sub (Y),
    respectively.
    (global and local) INTEGER array of dimension 9. The array descriptor of the
    distributed matrix }Y\mathrm{ .
    (global) INTEGER. Specifies the increment for the elements of sub (y). Only
    two values are supported, namely 1 and m_y. incy must not be zero.
```


Output Parameters

y
Overwritten with the distributed vector sub (x).

p?dot

Computes the dot product of two distributed real
vectors.

Syntax

```
call psdot(n, dot, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pddot(n, dot, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
```


Include Files

- mkl_pblas.h

Description

The ? dot functions compute the dot product dot of two distributed real vectors defined as

```
dot = sub(x)'*sub (y)
```

where sub (x) and sub (y) are n-element distributed vectors.
sub(x) denotes $x(i x, j x: j x+n-1)$ if incx=m_x, and $x(i x: i x+n-1, j x)$ if incx= 1 ;

```
sub(y) denotes Y(iy, jy:jy+n-1) if incy=m_y, and Y(iy: iy+n-1, jy) if incy= 1.
```

Input Parameters
n
x
ix, jx
descx
incx

Y
Y
iy, jy
descy
incy
(global) INTEGER. The length of distributed vectors, $n \geq 0$.
(local) REAL for psdot
DOUBLE PRECISION for pddot
Array, size $\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (X), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero.
(local)REAL for psdot
DOUBLE PRECISION for pddot
Array, size $\left.(j y-1) * m_{-} y+i y+(n-1) * a b s(i n c y)\right)$.
This array contains the entries of the distributed vector sub (y).
(global) INTEGER. The row and column indices in the distributed matrix Y indicating the first row and the first column of the submatrix sub (Y), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix Y.
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and $m_{_} y$. incy must not be zero.

Output Parameters

```
dot
```

(local) REAL for psdot
DOUBLE PRECISION for pddot
Dot product of sub (x) and sub (y) only in their scope.
p?dotc
Computes the dot product of two distributed complex
vectors, one of them is conjugated.

Syntax

```
call pcdotc(n, dotc, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pzdotc(n, dotc, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
```


Include Files

- mkl_pblas.h

Description

The p?dotc functions compute the dot product dotc of two distributed vectors, with one vector conjugated:

```
dotc = conjg(sub (x)')*sub (y)
```

where sub (x) and sub (y) are n-element distributed vectors.

```
sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1;
sub(y) denotes Y(iy, jy:jy+n-1) if incy=m_y, and Y(iy: iy+n-1, jy) if incy= 1.
```


Input Parameters

```
n (global) INTEGER. The length of distributed vectors, n\geq0.
x (local)COMPLEX for pcdotc
    DOUBLE COMPLEX for pzdotc
```

 Array, size \(\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)\).
 This array contains the entries of the distributed vector sub (\(x\)).
 (global) INTEGER. The row and column indices in the distributed matrix \(X\)
 indicating the first row and the first column of the submatrix sub (\(X\)),
 respectively.
 (global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero.
(local) COMPLEX for pcdotc
DOUBLE COMPLEX for pzdotc
Array, size $\left.(j y-1) * m_{-} y+i y+(n-1) * a b s(i n c y)\right)$.
This array contains the entries of the distributed vector sub (y).
(global) INTEGER. The row and column indices in the distributed matrix Y indicating the first row and the first column of the submatrix sub (Y), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix Y.
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and $m_{-} y$. incy must not be zero.

Output Parameters

dotc
(local) COMPLEX for pcdotc
DOUBLE COMPLEX for pzdotc
Dot product of sub (x) and sub(y) only in their scope.

```
p?dotu
Computes the dot product of two distributed complex
vectors.
```


Syntax

```
call pcdotu(n, dotu, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pzdotu(n, dotu, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
```


Include Files

- mkl_pblas.h

Description

The p?dotu functions compute the dot product dotu of two distributed vectors defined as

```
dotu = sub (x)'*sub (y)
```

where sub (x) and sub (y) are n-element distributed vectors.

```
sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1;
sub(y) denotes Y(iy, jy:jy+n-1) if incy=m_y, and Y(iy: iy+n-1, jy) if incy= 1.
Input Parameters
```

X
ix, jx
descx
incx (global) INTEGER. Specifies the increment for the elements of sub (x). Only
two values are supported, namely 1 and $m_{-} x$. incx must not be zero.
(local) COMPLEX for pcdotu
DOUBLE COMPLEX for pzdotu
Array, size $\left.(j y-1) * m_{-} y+i y+(n-1) * a b s(i n c y)\right)$.

This array contains the entries of the distributed vector sub (y).
(global) INTEGER. The row and column indices in the distributed matrix Y indicating the first row and the first column of the submatrix sub (Y), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix Y.
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and m_y. incy must not be zero.

Output Parameters

dotu
(local) COMPLEX for pcdotu
DOUBLE COMPLEX for pzdotu
Dot product of sub (x) and sub (y) only in their scope.

```
p?nrm2
Computes the Euclidean norm of a distributed vector.
```

Syntax

```
call psnrm2(n, norm2, x, ix, jx, descx, incx)
call pdnrm2(n, norm2, x, ix, jx, descx, incx)
call pscnrm2(n, norm2, x, ix, jx, descx, incx)
call pdznrm2(n, norm2, x, ix, jx, descx, incx)
```


Include Files

- mkl_pblas.h

Description

The p?nrm2 functions compute the Euclidean norm of a distributed vector sub (x), where sub (x) is an n-element distributed vector.

```
sub(x) denotes X(ix, jx:jx+n-1) if incx=m_x, and X(ix: ix+n-1, jx) if incx= 1.
Input Parameters
```

n
x
ix, jx
descx
incx
(global) INTEGER. The length of distributed vector sub (x), $n \geq 0$.
(local) REAL for psnrm2
DOUBLE PRECISION for pdnrm2
COMPLEX for pscnrm2
DOUBLE COMPLEX for pdznrm2
Array, size $\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (X), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and m_x. incx must not be zero.

Output Parameters

```
norm2
(local) REAL for psnrm2 and pscnrm2.
DOUBLE PRECISION for pdnrm2 and pdznrm2
```

Contains the Euclidean norm of a distributed vector only in its scope.

```
p?scal
Computes a product of a distributed vector by a
scalar.
```

Syntax

```
call psscal(n, a, x, ix, jx, descx, incx)
call pdscal(n, a, x, ix, jx, descx, incx)
call pcscal(n, a, x, ix, jx, descx, incx)
call pzscal(n, a, x, ix, jx, descx, incx)
call pcsscal(n, a, x, ix, jx, descx, incx)
call pzdscal(n, a, x, ix, jx, descx, incx)
```


Include Files

- mkl_pblas.h

Description

The p?scal routines multiplies a n-element distributed vector sub (x) by the scalar a:

```
sub (x) = a* sub (x),
```

where sub (x) denotes $X(i x, j x: j x+n-1)$ if $i n c x=m_{-} x$, and $X(i x: i x+n-1, j x)$ if incx= 1 .

Input Parameters

n
a

X
(global) INTEGER. The length of distributed vector sub (x), $n \geq 0$.
(global) REAL for psscal and pcsscal
DOUBLE PRECISION for pdscal and pzdscal
COMPLEX for pcscal
DOUBLE COMPLEX for pzscal
Specifies the scalar a.
(local) REAL for psscal
DOUBLE PRECISION for pdscal
COMPLEX for pcscal and pcsscal
DOUBLE COMPLEX for pzscal and pzdscal
Array, size (jx-1)*m_x + ix+(n-1)*abs(incx)).
This array contains the entries of the distributed vector sub (x).

```
ix, jx (global) INTEGER. The row and column indices in the distributed matrix }
    indicating the first row and the first column of the submatrix sub ( X),
    respectively.
    (global and local) INTEGER array of dimension 9. The array descriptor of the
    distributed matrix }X\mathrm{ .
    (global) INTEGER. Specifies the increment for the elements of sub (x). Only
    two values are supported, namely 1 and m_x. incx must not be zero.
```


Output Parameters

X
Overwritten by the updated distributed vector sub (x)
p?swap
Swaps two distributed vectors.

Syntax

```
call psswap(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pdswap(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pcswap(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
call pzswap(n, x, ix, jx, descx, incx, y, iy, jy, descy, incy)
```


Include Files

- mkl_pblas.h

Description

Given two distributed vectors sub (x) and sub (y) , the p?swap routines return vectors sub (y) and sub (x) swapped, each replacing the other.
Here sub (x) denotes $x(i x, j x: j x+n-1)$ if incx=m_x, and $x(i x: i x+n-1, j x)$ if incx= 1 ; sub (y) denotes $Y(i y, j y: j y+n-1)$ if $i n c y=m _y$, and $Y(i y$: $i y+n-1, j y)$ if $i n c y=1$.

Input Parameters

n
(global) INTEGER. The length of distributed vectors, $n \geq 0$.
(local) REAL for psswap
DOUBLE PRECISION for pdswap
COMPLEX for pcswap
DOUBLE COMPLEX for pzswap
Array, size $\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).
ix, jx
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (X), respectively.

```
descx
incx
y
iy, jy
descy
incy
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(X\).
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-} x\). incx must not be zero.
(local) REAL for psswap
DOUBLE PRECISION for pdswap
COMPLEX for pcswap
DOUBLE COMPLEX for pzswap
Array, size \(\left.(j y-1) * m_{-} y+i y+(n-1) * a b s(i n c y)\right)\).
This array contains the entries of the distributed vector sub \((y)\).
(global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub (Y), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and \(m_{\_} y\). incy must not be zero.
```


Output Parameters

$\begin{array}{ll}x & \text { Overwritten by distributed vector sub }(y) . \\ y & \text { Overwritten by distributed vector sub (x). }\end{array}$

PBLAS Level 2 Routines

This section describes PBLAS Level 2 routines, which perform distributed matrix-vector operations. Table "PBLAS Level 2 Routine Groups and Their Data Types" lists the PBLAS Level 2 routine groups and the data types associated with them.

PBLAS Level 2 Routine Groups and Their Data Types

Routine Groups	Data Types	Description
p?gemv	s, d, c, z	Matrix-vector product using a distributed general matrix p?agemv p?ger distributed general matrix
p?gerc	s, d, c, z	Rank-1 update of a distributed general matrix
p?geru	s, d	Rank-1 update (conjugated) of a distributed general matrix
p?hemv	c, z	Rank-1 update (unconjugated) of a distributed general matrix
p?ahemv	c, z	Matrix-vector product using a distributed Hermitian matrix

Routine Groups	Data Types	Description
p?her	c, z	Rank-1 update of a distributed Hermitian matrix
p?her2	c, z	Rank-2 update of a distributed Hermitian matrix
p?symv	s,d	Matrix-vector product using a distributed symmetric matrix
p?asymv	s, d	Matrix-vector product using absolute values for a distributed symmetric matrix
p?syr	s,d	Rank-1 update of a distributed symmetric matrix
p?syr2	s,d	Distributed matrix-vector product using a triangular matrix
p?trmv	s, d, c, z	Distributed matrix-vector product using absolute values for a triangular matrix
p?trsv	s, d, c, z	Solves a system of linear equations whose coefficients are in a distributed triangular matrix

p?gemv
Computes a distributed matrix-vector product using a general matrix.

Syntax

```
call psgemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)
call pdgemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)
call pcgemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)
call pzgemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)
```


Include Files

- mkl_pblas.h

Description

The p?gemv routines perform a distributed matrix-vector operation defined as

```
    sub(y) := alpha*sub (A)*sub (x) + beta*sub (y),
```

or

```
    sub(y) := alpha*sub (A)'*sub(x) + beta*sub (y),
```

or

```
    sub(y) := alpha*conjg(sub(A)')*sub(x) + beta*sub(y),
```

where
alpha and beta are scalars,

```
sub(A) is a m-by-n submatrix, sub (A) = A(ia:ia+m-1, ja:ja+n-1),
sub (x) and sub (y) are subvectors.
When trans = 'N' or 'n', sub(x) denotes X(ix, jx:jx+n-1) if incx = m_x, and X(ix: ix+n-1, jx)
if incx = 1, sub (y) denotes Y(iy, jy:jy+m-1) if incy = m_y, and Y(iy: iy+m-1, jy) if incy = 1.
When trans = 'T' or't', or 'C', or 'c', sub (x) denotes X(ix, jx:jx+m-1) if incx = m_x, and X(ix:
ix+m-1, jx) if incx = 1,sub(y) denotes Y(iy, jy:jy+n-1) if incy = m_y, and Y(iy: iy+m-1, jy) if
incy = 1.
```


Input Parameters

trans	(global) CHARACTER*1. Specifies the operation:
	if trans= 'N' or 'n', then sub (y) := alpha*sub (A)'*sub (x) +
	beta*sub (y) ;
	if trans= 'T' or 't', then sub (y) := alpha*sub (A)'*sub (x) +
	beta*sub (y) ;
	if trans= 'C' or 'c', then sub (y) := alpha*conjg(subA)')*sub (x) +
	beta*sub (y).
m	(global) INTEGER. Specifies the number of rows of the distributed matrix sub (A), $m \geq 0$.
n	(global) INTEGER. Specifies the number of columns of the distributed matrix sub (A), $n \geq 0$.
alpha	(global)REAL for psgemv
	DOUBLE PRECISION for pdgemv
	COMPLEX for pcgemv
	DOUBLE COMPLEX for pzgemv
	Specifies the scalar alpha.
a	(local)REAL for psgemv
	DOUBLE PRECISION for pdgemv
	COMPLEX for pcgemv
	DOUBLE COMPLEX for pzgemv
	Array, size (lld_a, LOCq(ja+n-1)). Before entry this array must contain the local pieces of the distributed matrix sub (A).
ia, ja	(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
desca	(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
x	(local)REAL for psgemv
	DOUBLE PRECISION for pdgemv
	COMPLEX for pcgemv

ix, jx	(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively.
descx	(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
incx	(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m x$. incx must not be zero.
beta	(global)REAL for psgemv
	DOUBLE PRECISION for pdgemv
	COMPLEX for pcgemv
	DOUBLE COMPLEX for pzgemv
	Specifies the scalar beta. When beta is set to zero, then sub (y) need not be set on input.
Y	(local)REAL for psgemv
	DOUBLE PRECISION for pdgemv
	COMPLEX for pcgemv
	DOUBLE COMPLEX for pzgemv
	Array, size (jy-1)*m_y + iy+(m-1)*abs(incy)) when trans = 'N' or 'n', and (jy-1)*m_y +iy+(n-1)*abs(incy)) otherwise.

This array contains the entries of the distributed vector sub (y).
(global) INTEGER. The row and column indices in the distributed matrix Y indicating the first row and the first column of the submatrix sub (y), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix Y.
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and $m_{_} y$. incy must not be zero.

Output Parameters

y
Overwritten by the updated distributed vector sub (y).

p?agemv
 Computes a distributed matrix-vector product using absolute values for a general matrix.

Syntax

```
call psagemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)
call pdagemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)
call pcagemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)
call pzagemv(trans, m, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy,
jy, descy, incy)
```


Include Files

- mkl_pblas.h

Description

The p?agemv routines perform a distributed matrix-vector operation defined as

```
    sub(y) := abs(alpha)*abs(sub(A)')*abs(sub (x)) + abs(beta*sub (y)),
or
    sub(y) := abs(alpha)*abs(sub(A)')*abs(sub (x)) + abs(beta*sub (y)),
or
    sub(y) := abs(alpha)*abs(conjg(sub(A)'))*abs(sub(x)) + abs(beta*sub(y)),
```

where
alpha and beta are scalars,

```
sub(A) is a m-by-n submatrix, sub(A) = A(ia:ia+m-1, ja:ja+n-1),
```

sub (x) and sub (y) are subvectors.

When trans $=$ ' N ' or 'n',
sub (x) denotes $x(i x: i x, j x: j x+n-1)$ if incx $=m_{-} x$, and
$x(i x: i x+n-1, j x: j x)$ if $i n c x=1$,
sub (y) denotes $Y(i y: i y, j y: j y+m-1)$ if incy $=m _y$, and
$Y(i y: i y+m-1, j y: j y)$ if $i n c y=1$.
When trans $=$ 'T' or 't', or 'C', or 'c',
sub (x) denotes $x(i x: i x, j x: j x+m-1)$ if incx $=m_{-} x$, and
$x(i x: i x+m-1, j x: j x)$ if $i n c x=1$,
sub (y) denotes $Y(i y: i y, j y: j y+n-1)$ if incy $=m_{1} y$, and
$Y(i y: i y+m-1, j y: j y)$ if $i n c y=1$.

Input Parameters

trans (global) CHARACTER*1. Specifies the operation:

```
if trans= 'N' or 'n', then sub(y) := |alpha|*|sub(A) |*|sub(x)| +
```

 | beta*sub (y) |
    ```
if trans= 'T' or 't', then sub(y) := |alpha|*|sub(A)'|*|sub(x)| +
| beta*sub (y) |
if trans= 'C' or 'c', then sub(y) := |alpha|*|sub(A)'|*|sub(x)| +
|beta*sub (y)|.
```

(global) INTEGER. Specifies the number of rows of the distributed matrix sub (A) , $m \geq 0$.
(global) INTEGER. Specifies the number of columns of the distributed matrix sub (A), $n \geq 0$.
(global)REAL for psagemv
DOUBLE PRECISION for pdagemv
COMPLEX for pcagemv
DOUBLE COMPLEX for pzagemv
Specifies the scalar alpha.
(local)REAL for psagemv
DOUBLE PRECISION for pdagemv
COMPLEX for pcagemv
DOUBLE COMPLEX for pzagemv
Array, size (lld_a, LOCq(ja+n-1)). Before entry this array must contain the local pieces of the distributed matrix sub (A).
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
(local)REAL for psagemv
DOUBLE PRECISION for pdagemv
COMPLEX for pcagemv
DOUBLE COMPLEX for pzagemv
Array, size (jx-1)*m_x +ix+(n-1)*abs(incx)) when trans = 'N' or 'n', and (jx-1)*m_x +ix+(m-1)*abs(incx)) otherwise.

This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero.

```
beta (global)REAL for psagemv
    DOUBLE PRECISION for pdagemv
COMPLEX for pcagemv
DOUBLE COMPLEX for pzagemv
Specifies the scalar beta. When beta is set to zero, then sub (y) need not
be set on input.
(local)REAL for psagemv
DOUBLE PRECISION for pdagemv
COMPLEX for pcagemv
DOUBLE COMPLEX for pzagemv
Array, size (jy-1)*m_y + iy+(m-1)*abs(incy)) when trans = 'N' or
'n', and (jy-1)*m_y + iy+(n-1)*abs(incy)) otherwise.
This array contains the entries of the distributed vector sub \((y)\).
(global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix \(\operatorname{sub}(y)\), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and m_y. incy must not be zero.
```


Output Parameters

y
Overwritten by the updated distributed vector sub (y).
p?ger
Performs a rank-1 update of a distributed general
matrix.
Syntax

```
call psger(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja, desca)
call pdger(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja, desca)
```


Include Files

- mkl_pblas.h

Description

The p?ger routines perform a distributed matrix-vector operation defined as

```
sub(A) := alpha*sub(x)*sub(y)' + sub(A),
```

where:
alpha is a scalar,

```
sub(A) is a m-by-n distributed general matrix, sub(A)=A(ia:ia+m-1, ja:ja+n-1),
```

sub (x) is an m-element distributed vector, $\operatorname{sub}(y)$ is an n-element distributed vector,

```
sub(x) denotes X(ix, jx:jx+m-1) if incx = m_x, and X(ix: ix+m-1, jx) if incx = 1,
```

sub (y) denotes $Y(i y, j y: j y+n-1)$ if $i n c y=m_{-} y$, and $Y(i y$: $i y+n-1, j y)$ if $i n c y=1$.

Input Parameters

m
n
alpha
x
ix, jx
descx
incx
y
iy, jy
descy
incy
a
(global) INTEGER. Specifies the number of rows of the distributed matrix sub (A), $m \geq 0$.
(global) INTEGER. Specifies the number of columns of the distributed matrix sub (A), $n \geq 0$.
(global)REAL for psger
DOUBLE REAL for pdger
Specifies the scalar alpha.
(local)REAL for psger
DOUBLE REAL for pdger
Array, size at least $\left.(j x-1) * m_{-} x+i x+(m-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero.
(local)REAL for psger
DOUBLE REAL for pdger
Array, size at least $\left.(j y-1) * m_{-} y+i y+(n-1) * a b s(i n c y)\right)$.
This array contains the entries of the distributed vector sub (y).
(global) INTEGER. The row and column indices in the distributed matrix Y indicating the first row and the first column of the submatrix sub (y), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix Y.
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and $m_{-} y$. incy must not be zero.
(local)REAL for psger
DOUBLE REAL for pdger
Array, size (lld_a, LOCq(ja+n-1)).

Before entry this array contains the local pieces of the distributed matrix sub (A).
ia, ja
desca
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.

Output Parameters

a

Overwritten by the updated distributed matrix sub (A).

p?gerc

Performs a rank-1 update (conjugated) of a distributed general matrix.

Syntax

```
call pcgerc(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)
call pzgerc(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)
```

Include Files

- mkl_pblas.h

Description

The p?gerc routines perform a distributed matrix-vector operation defined as

```
sub(A) := alpha*sub(x)*conjg(sub(y)') + sub(A),
```

where:
alpha is a scalar,
sub (A) is a m-by-n distributed general matrix, $\operatorname{sub}(A)=A(i a: i a+m-1, j a: j a+n-1)$, sub (x) is an m-element distributed vector, $\operatorname{sub}(y)$ is ann-element distributed vector,
sub (x) denotes $X(i x, j x: j x+m-1)$ if incx $=m_{-} x$, and $X(i x: i x+m-1, j x)$ if incx $=1$,
sub (y) denotes $Y(i y, j y: j y+n-1)$ if $i n c y=m _y$, and $Y(i y: i y+n-1, j y)$ if $i n c y=1$.
Input Parameters

| m | (global) INTEGER. Specifies the number of rows of the distributed matrix
 sub (A),$m \geq 0$. |
| :--- | :--- |
| n | (global) INTEGER. Specifies the number of columns of the distributed matrix |
| sub (A), $n \geq 0$. | |
| (global)COMPLEX for pcgerc | |
| DOUBLE COMPLEX for pzgerc | |
| Specifies the scalar alpha. | |

```
x
ix, jx
descx
incx
y
iy, jy
descy
incy
a
ia, ja
desca
```


Output Parameters

a
Overwritten by the updated distributed matrix sub (A) .
p?geru
Performs a rank-1 update (unconjugated) of a distributed general matrix.

Syntax

```
call pcgeru(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)
call pzgeru(m, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)
```


Include Files

- mkl_pblas.h

Description

The p?geru routines perform a matrix-vector operation defined as

```
sub(A) := alpha*sub(x)*sub(y)' + sub(A),
```

where:
alpha is a scalar,

```
sub (A) is a m-by-n distributed general matrix, sub (A)=A(ia:ia+m-1, ja:ja+n-1),
```

sub (x) is an m-element distributed vector, $\operatorname{sub}(y)$ is an n-element distributed vector,
sub (x) denotes $x\left(i x, j x: j x+m-1\right.$) if incx $=m_{-} x$, and $X(i x: i x+m-1, j x)$ if incx $=1$,
sub (y) denotes $Y(i y, j y: j y+n-1)$ if $i n c y=m _y$, and $Y(i y: i y+n-1, j y)$ if incy $=1$.

Input Parameters

| m | (global) INTEGER. Specifies the number of rows of the distributed matrix $\operatorname{sub}(A), m \geq 0$. |
| :---: | :---: |
| n | (global) INTEGER. Specifies the number of columns of the distributed matrix sub (A), $n \geq 0$. |
| alpha | (global)COMPLEX for pcgeru |
| | DOUBLE COMPLEX for pzgeru |
| | Specifies the scalar alpha. |
| x | (local)COMPLEX for pcgeru |
| | DOUBLE COMPLEX for pzgeru |
| | Array, size at least (jx-1)* $m_{-} x+i x+(n-1) * a b s(i n c x)$). |
| | This array contains the entries of the distributed vector sub (x). |
| ix, jx | (global) Integer. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively. |
| descx | (global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X. |
| incx | (global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero. |
| y | (local)COMPLEX for pcgeru |
| | DOUBLE COMPLEX for pzgeru |

```
Array, size at least (jy-1)*m_y + iy+(n-1)*abs(incy)).
This array contains the entries of the distributed vector sub \((y)\).
(global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and \(m_{-} y\). incy must not be zero.
(local)COMPLEX for pcgeru
DOUBLE COMPLEX for pzgeru
Array, size at least (lld_a, LOCq (ja+n-1)). Before entry this array contains the local pieces of the distributed matrix sub ( \(A\) ).
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(A\).
```


Output Parameters

a
Overwritten by the updated distributed matrix sub (A).
p?hemv
Computes a distributed matrix-vector product using a
Hermitian matrix.

Syntax

```
call pchemv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy, jy,
descy, incy)
call pzhemv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy, jy,
descy, incy)
```

Include Files

- mkl_pblas.h

Description

The p?hemv routines perform a distributed matrix-vector operation defined as

$$
\operatorname{sub}(y):=\text { alpha*sub }(A) * \operatorname{sub}(x)+b e t a * \operatorname{sub}(y),
$$

where:
alpha and beta are scalars,
sub (A) is a $n-b y-n$ Hermitian distributed matrix, sub $(A)=A(i a: i a+n-1, j a: j a+n-1)$,
sub (x) and sub (y) are distributed vectors.

```
sub(x) denotes X(ix, jx:jx+n-1) if incx = m_x, and X(ix: ix+n-1, jx) if incx = 1,
sub(y) denotes Y(iy, jy:jy+n-1) if incy = m_y, and Y(iy: iy+n-1, jy) if incy = 1.
```


Input Parameters

```
uplo
```

n
a
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub (A) is used:

If uplo = 'U' or 'u', then the upper triangular part of the sub (A) is used.

If uplo = 'L' or 'l', then the low triangular part of the sub (A) is used.
(global) INTEGER. Specifies the order of the distributed matrix sub (A), $n \geq$ 0.
(global)COMPLEX for pchemv
DOUBLE COMPLEX for pzhemv
Specifies the scalar alpha.
(local)COMPLEX for pchemv
DOUBLE COMPLEX for pzhemv
Array, size (lld_a, LOCq(ja+n-1)). This array contains the local pieces of the distributed matrix sub (A).

Before entry when uplo = 'U' or 'u', the n-by-n upper triangular part of the distributed matrix sub (A) must contain the upper triangular part of the Hermitian distributed matrix and the strictly lower triangular part of sub (A) is not referenced, and when uplo = 'L' or 'l', the n-by-n lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the Hermitian distributed matrix and the strictly upper triangular part of sub (A) is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
(local)COMPLEX for pchemv
DOUBLE COMPLEX for pzhemv
Array, size at least $\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.

```
incx (global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and \(m_{-}\). incx must not be zero.
(global)COMPLEX for pchemv
DOUBLE COMPLEX for pzhemv
Specifies the scalar beta. When beta is set to zero, then sub ( \(y\) ) need not be set on input.
(local)COMPLEX for pchemv
DOUBLE COMPLEX for pzhemv
Array, size at least \(\left.(j y-1) * m_{-} y+i y+(n-1) * a b s(i n c y)\right)\).
This array contains the entries of the distributed vector sub \((y)\).
(global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub ( \(y\) ), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and m_y. incy must not be zero.
```


Output Parameters

y
Overwritten by the updated distributed vector sub (y).
p?ahemv
Computes a distributed matrix-vector product using absolute values for a Hermitian matrix.

Syntax

```
call pcahemv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy, jy,
descy, incy)
call pzahemv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy, jy,
descy, incy)
```


Include Files

- mkl_pblas.h

Description

The p?ahemv routines perform a distributed matrix-vector operation defined as

```
sub(y) := abs(alpha)*abs(sub(A))*abs(sub(x)) + abs(beta*sub(y)),
```

where:
alpha and beta are scalars,
sub (A) is a $n-b y-n$ Hermitian distributed matrix, sub $(A)=A(i a: i a+n-1, j a: j a+n-1)$,
sub (x) and sub (y) are distributed vectors.
sub (x) denotes $x(i x, j x: j x+n-1)$ if incx $=m_{-} x$, and $X(i x: i x+n-1, j x)$ if incx $=1$,
sub (y) denotes $Y(i y, j y: j y+n-1)$ if incy $=m_{_} y$, and $Y(i y$: iy+n-1, jy) if incy $=1$.

Input Parameters

n
a
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub (A) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub (A) is used.
If uplo = 'L' or 'l', then the low triangular part of the sub (A) is used.
(global) INTEGER. Specifies the order of the distributed matrix sub (A), $n \geq$ 0 .
(global)COMPLEX for pcahemv
DOUBLE COMPLEX for pzahemv
Specifies the scalar alpha.
(local)COMPLEX for pcahemv
DOUBLE COMPLEX for pzahemv
Array, size (Ild_a, LOCq(ja+n-1)). This array contains the local pieces of the distributed matrix sub (A).

Before entry when uplo = 'U' or 'u', the n-by-n upper triangular part of the distributed matrix sub (A) must contain the upper triangular part of the Hermitian distributed matrix and the strictly lower triangular part of sub (A) is not referenced, and when uplo = 'L' or 'l', the n-by-n lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the Hermitian distributed matrix and the strictly upper triangular part of sub (A) is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
(local)COMPLEX for pcahemv
DOUBLE COMPLEX for pzahemv
Array, size at least $\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero.

```
beta
y
iy, jy
descy
incy
(global)COMPLEX for pcahemv
DOUBLE COMPLEX for pzahemv
Specifies the scalar beta. When beta is set to zero, then sub ( \(y\) ) need not be set on input.
(local)COMPLEX for pcahemv
DOUBLE COMPLEX for pzahemv
Array, size at least \(\left.(j y-1){ }^{*} m_{-} y+i y+(n-1) * a b s(i n c y)\right)\).
This array contains the entries of the distributed vector sub \((y)\).
(global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and \(m_{\_} y\). incy must not be zero.
```


Output Parameters

y
Overwritten by the updated distributed vector sub (y).

p?her
 Performs a rank-1 update of a distributed Hermitian
 matrix.

Syntax

```
call pcher(uplo, n, alpha, x, ix, jx, descx, incx, a, ia, ja, desca)
call pzher(uplo, n, alpha, x, ix, jx, descx, incx, a, ia, ja, desca)
```


Include Files

- mkl_pblas.h

Description

The p?her routines perform a distributed matrix-vector operation defined as

```
sub(A) := alpha*sub(x)*conjg(sub(x)') + sub(A),
```

where:
alpha is a real scalar,
sub (A) is a $n-b y-n$ distributed Hermitian matrix, sub $(A)=A(i a: i a+n-1, j a: j a+n-1)$,
sub (x) is distributed vector.
sub (x) denotes $x(i x, j x: j x+n-1)$ if incx $=m_{-} x$, and $X(i x: i x+n-1, j x)$ if incx $=1$.

Input Parameters

uplo
n
alpha

X
ix, jx
descx
incx
a
ia, ja
desca
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub (A) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub (A) is used.
If uplo = 'L' or 'l', then the low triangular part of the sub (A) is used.
(global) INTEGER. Specifies the order of the distributed matrix sub (A), $n \geq$ 0 .
(global)REAL for pcher
DOUBLE REAL for pzher
Specifies the scalar alpha.
(local)COMPLEX for pcher
DOUBLE COMPLEX for pzher
Array, size at least $\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero.
(local)COMPLEX for pcher
DOUBLE COMPLEX for pzher
Array, size (lld_a, $\operatorname{LOCq}(j a+n-1))$. This array contains the local pieces of the distributed matrix sub (A).

Before entry with uplo = 'U' or 'u', the n-by-n upper triangular part of the distributed matrix sub (A) must contain the upper triangular part of the Hermitian distributed matrix and the strictly lower triangular part of sub (A) is not referenced, and with uplo = 'L' or 'l', the n-by-n lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the Hermitian distributed matrix and the strictly upper triangular part of sub (A) is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.

Output Parameters

a
With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated distributed matrix sub (A).

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated distributed matrix sub (A).
p?her2
Performs a rank-2 update of a distributed Hermitian matrix.

Syntax

```
call pcher2(uplo, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)
call pzher2(uplo, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)
```

Include Files

- mkl_pblas.h

Description

The p?her2 routines perform a distributed matrix-vector operation defined as

```
sub(A) := alpha*sub (x)*conj(sub(y)')+ conj(alpha)*sub (y)*conj(sub(x)') + sub (A),
```

where:
alpha is a scalar,
sub (A) is a $n-b y-n$ distributed Hermitian matrix, sub $(A)=A(i a: i a+n-1, j a: j a+n-1)$,
sub (x) and sub (y) are distributed vectors.
sub (x) denotes $X(i x, j x: j x+n-1)$ if $i n c x=m_{-} x$, and $X(i x: i x+n-1, j x)$ if incx $=1$,
sub (y) denotes $Y(i y, j y: j y+n-1)$ if incy $=m_{_} y$, and $Y(i y$: iy+n-1, jy) if incy $=1$.

Input Parameters

| uplo | (global) CHARACTER*1. Specifies whether the upper or lower triangular part of the distributed Hermitian matrix sub (A) is used: |
| :---: | :---: |
| | If uplo = 'U' or 'u', then the upper triangular part of the sub (A) is used. |
| | If uplo = 'L' or 'l', then the low triangular part of the sub (A) is used. |
| n | (global) INTEGER. Specifies the order of the distributed matrix sub (A), $n \geq$ 0. |
| alpha | (global)COMPLEX for pcher2 |
| | DOUBLE COMPLEX for pzher2 |
| | Specifies the scalar alpha. |

x
(local)COMPLEX for pcher2
DOUBLE COMPLEX for pzher2
Array, size at least $\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero.
(local)COMPLEX for pcher2
DOUBLE COMPLEX for pzher2
Array, size at least $\left.(j y-1){ }^{*} m_{-} y+i y+(n-1) * a b s(i n c y)\right)$.
This array contains the entries of the distributed vector sub (y).
(global) INTEGER. The row and column indices in the distributed matrix Y indicating the first row and the first column of the submatrix sub (y), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix Y.
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and $m_{_} y$. incy must not be zero.
(local)COMPLEX for pcher2
DOUBLE COMPLEX for pzher2
Array, size (Ild_a, LOCq(ja+n-1)). This array contains the local pieces of the distributed matrix sub (A).
Before entry with uplo $=$ 'U' or 'u', the n-by- n upper triangular part of the distributed matrix $\operatorname{sub}(A)$ must contain the upper triangular part of the Hermitian distributed matrix and the strictly lower triangular part of sub (A) is not referenced, and with uplo = 'L' or 'l', the n-by-n lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the Hermitian distributed matrix and the strictly upper triangular part of sub (A) is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.

Output Parameters

a
With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated distributed matrix sub (A).

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated distributed matrix sub (A).

p?symv

Computes a distributed matrix-vector product using a symmetric matrix.

Syntax

```
call pssymv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy, jy,
descy, incy)
call pdsymv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy, jy,
descy, incy)
```


Include Files

- mkl_pblas.h

Description

The p?symv routines perform a distributed matrix-vector operation defined as

```
sub(y) := alpha*sub (A)*sub (x) + beta*sub (y),
```

where:
alpha and beta are scalars,
sub (A) is a n-by- n symmetric distributed matrix, sub $(A)=A(i a: i a+n-1, j a: j a+n-1)$,
sub (x) and sub (y) are distributed vectors.
sub (x) denotes $X(i x, j x: j x+n-1)$ if incx $=m_{-} x$, and $X(i x: i x+n-1, j x)$ if incx $=1$,
sub (y) denotes $Y(i y, j y: j y+n-1)$ if incy $=m_{_} y$, and $Y(i y$: iy+n-1, jy) if incy $=1$.

Input Parameters

| uplo | (global) CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub (A) is used: |
| :---: | :---: |
| | If uplo = 'U' or 'u', then the upper triangular part of the sub (A) is used. |
| | If uplo = 'L' or 'l', then the low triangular part of the sub (A) is used. |
| n | (global) INTEGER. Specifies the order of the distributed matrix sub (A), $n \geq$ 0. |
| alpha | (global)REAL for pssymv |
| | DOUBLE REAL for pdsymv |
| | Specifies the scalar alpha. |

a
(local)REAL for pssymv
DOUBLE REAL for pdsymv
Array, size (lld_a, $\operatorname{LOCq}(j a+n-1))$. This array contains the local pieces of the distributed matrix sub (A).
Before entry when uplo = 'U' or 'u', the n-by-n upper triangular part of the distributed matrix sub (A) must contain the upper triangular part of the symmetric distributed matrix and the strictly lower triangular part of sub (A) is not referenced, and when uplo = 'L' or 'l', the n-by- n lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the symmetric distributed matrix and the strictly upper triangular part of sub (A) is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
(local)REAL for pssymv
DOUBLE REAL for pdsymv
Array, size at least $\left.(j x-1){ }^{*} m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero.
(global)REAL for pssymv
DOUBLE REAL for pdsymv
Specifies the scalar beta. When beta is set to zero, then sub (y) need not be set on input.
(local)REAL for pssymv
DOUBLE REAL for pdsymv
Array, size at least $\left.(j y-1) * m_{-} y+i y+(n-1) * a b s(i n c y)\right)$.
This array contains the entries of the distributed vector sub (y).
(global) INTEGER. The row and column indices in the distributed matrix Y indicating the first row and the first column of the submatrix sub (y), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix Y.
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and m_y. incy must not be zero.

Output Parameters

y
Overwritten by the updated distributed vector sub (y).

p?asymv

Computes a distributed matrix-vector product using absolute values for a symmetric matrix.

Syntax

```
call psasymv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy, jy,
descy, incy)
call pdasymv(uplo, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta, y, iy, jy,
descy, incy)
```


Include Files

- mkl_pblas.h

Description

The p?symv routines perform a distributed matrix-vector operation defined as

```
sub(y) := abs(alpha)*abs(sub(A))*abs(sub(x)) + abs(beta*sub (y)),
```

where:
alpha and beta are scalars,
sub (A) is a $n-b y-n$ symmetric distributed matrix, sub $(A)=A(i a: i a+n-1, j a: j a+n-1)$,
sub (x) and sub (y) are distributed vectors.
sub (x) denotes $x(i x, j x: j x+n-1)$ if incx $=m_{-}$, and $X(i x: i x+n-1, j x)$ if incx $=1$, sub (y) denotes $Y(i y, j y: j y+n-1)$ if $i n c y=m_{-} y$, and $Y(i y$: iy+n-1, jy) if incy $=1$.

Input Parameters

uplo
n
a
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub (A) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub (A) is used.
If uplo = 'L' or 'l', then the low triangular part of the sub (A) is used. (global) INTEGER. Specifies the order of the distributed matrix sub (A), $n \geq$ 0.
(global)REAL for psasymv
DOUBLE REAL for pdasymv
Specifies the scalar alpha.
(local)REAL for psasymv

DOUBLE REAL for pdasymv
Array, size (Ild_a, LOCq(ja+n-1)). This array contains the local pieces of the distributed matrix sub (A).

Before entry when uplo = 'U' or 'u', the n-by-n upper triangular part of the distributed matrix sub (A) must contain the upper triangular part of the symmetric distributed matrix and the strictly lower triangular part of sub (A) is not referenced, and when uplo = 'L' or 'l', the n-by-n lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the symmetric distributed matrix and the strictly upper triangular part of sub (A) is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
(local)REAL for psasymv
DOUBLE PRECISION for pdasymv
Array, size at least $\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and m_{-x}. incx must not be zero.
(global)REAL for psasymv
DOUBLE PRECISION for pdasymv
Specifies the scalar beta. When beta is set to zero, then sub (y) need not be set on input.
(local)REAL for psasymv
DOUBLE PRECISION for pdasymv
Array, size at least (jy-1)*m_y+iy+(n-1)*abs(incy)).
This array contains the entries of the distributed vector sub (y).
(global) INTEGER. The row and column indices in the distributed matrix Y indicating the first row and the first column of the submatrix sub (y), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix Y.
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and m_y. incy must not be zero.

Output Parameters

y
Overwritten by the updated distributed vector sub (y).
p?syr
Performs a rank-1 update of a distributed symmetric matrix.

Syntax

```
call pssyr(uplo, n, alpha, x, ix, jx, descx, incx, a, ia, ja, desca)
call pdsyr(uplo, n, alpha, x, ix, jx, descx, incx, a, ia, ja, desca)
```

Include Files

- mkl_pblas.h

Description

The p?syr routines perform a distributed matrix-vector operation defined as

```
sub(A) := alpha*sub (x)*sub (x)' + sub(A),
```

where:

alpha is a scalar,

sub (A) is a $n-b y-n$ distributed symmetric matrix, sub $(A)=A(i a: i a+n-1, j a: j a+n-1)$,
sub (x) is distributed vector.
sub (x) denotes $X(i x, j x: j x+n-1)$ if incx $=m_{-} x$, and $x(i x: i x+n-1, j x)$ if incx $=1$,

Input Parameters

```
uplo
n
alpha
x
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub ( \(A\) ) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub \((A)\) is used.
If uplo = 'L' or 'l', then the low triangular part of the sub \((A)\) is used. (global) INTEGER. Specifies the order of the distributed matrix sub (A), \(n \geq\) 0.
(global)REAL for pssyr
DOUBLE REAL for pdsyr
Specifies the scalar alpha.
(local)REAL for pssyr
DOUBLE REAL for pdsyr
Array, size at least \(\left.(j x-1){ }^{m} m_{-} x+i x+(n-1) * a b s(i n c x)\right)\).
```

This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero.
(local)REAL for pssyr
DOUBLE REAL for pdsyr
Array, size (lld_a, LOCq(ja+n-1)). This array contains the local pieces of the distributed matrix sub (A).

Before entry with uplo = 'U' or 'u', the n-by-n upper triangular part of the distributed matrix sub (A) must contain the upper triangular part of the symmetric distributed matrix and the strictly lower triangular part of sub (A) is not referenced, and with uplo = 'L' or 'l', the n-by-n lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the symmetric distributed matrix and the strictly upper triangular part of sub (A) is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.

Output Parameters

a
With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated distributed matrix sub (A).

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated distributed matrix sub (A).
p?syr2
Performs a rank-2 update of a distributed symmetric
matrix.
Syntax

```
call pssyr2(uplo, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)
call pdsyr2(uplo, n, alpha, x, ix, jx, descx, incx, y, iy, jy, descy, incy, a, ia, ja,
desca)
```


Include Files

- mkl_pblas.h

Description

The p?syr2 routines perform a distributed matrix-vector operation defined as

```
sub(A) := alpha*sub (x)*sub (y)'+ alpha*sub (y)*sub (x)' + sub (A),
```

where:
alpha is a scalar,
sub (A) is a n-by- n distributed symmetric matrix, sub $(A)=A(i a: i a+n-1, j a: j a+n-1)$,
sub (x) and sub (y) are distributed vectors.
sub (x) denotes $X(i x, j x: j x+n-1)$ if incx $=m_{-} x$, and $X(i x: i x+n-1, j x)$ if incx $=1$,
sub (y) denotes $Y(i y, j y: j y+n-1)$ if incy $=m_{_} y$, and $Y(i y: i y+n-1, j y)$ if incy $=1$.

Input Parameters

| uplo | (global) CHARACTER*1. Specifies whether the upper or lower triangular part of the distributed symmetric matrix sub (A) is used: |
| :---: | :---: |
| | If uplo = 'U' or 'u', then the upper triangular part of the sub (A) is used. |
| | If uplo = 'L' or 'l', then the low triangular part of the sub (A) is used. |
| n | (global) INTEGER. Specifies the order of the distributed matrix sub (A), $n \geq$ 0. |
| alpha | (global)REAL for pssyr2 |
| | DOUBLE REAL for pdsyr2 |
| | Specifies the scalar alpha. |
| x | (local)REAL for pssyr2 |
| | DOUBLE REAL for pdsyr2 |
| | |
| | This array contains the entries of the distributed vector sub (x) |
| ix, jx | (global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively. |
| descx | (global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X. |
| incx | (global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero. |
| y | (local)REAL for pssyr2 |
| | DOUBLE REAL for pdsyr2 |
| | |

This array contains the entries of the distributed vector sub (y).
iy, jy
descy
incy
a
ia, ja
desca

Output Parameters

a
With uplo = 'U' or 'u', the upper triangular part of the array a is overwritten by the upper triangular part of the updated distributed matrix sub (A).

With uplo = 'L' or 'l', the lower triangular part of the array a is overwritten by the lower triangular part of the updated distributed matrix sub (A).
p?trmv
Computes a distributed matrix-vector product using a triangular matrix.

Syntax

```
call pstrmv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pdtrmv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pctrmv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pztrmv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
```


Include Files

- mkl_pblas.h

Description

The p? trmv routines perform one of the following distributed matrix-vector operations defined as

```
sub (x) := sub (A)* sub (x), or sub (x) := sub ( A)'*sub (x), or sub (x) := conjg(sub (A)')*sub (x),
```

where:
sub (A) is a n-by-n unit, or non-unit, upper or lower triangular distributed matrix, $\operatorname{sub}(A)=A(i a: i a+n-1$, ja:ja+n-1),
sub (x) is an n-element distributed vector.
sub (x) denotes $X(i x, j x: j x+n-1)$ if $i n c x=m_{-} x$, and $X(i x: i x+n-1, j x)$ if incx $=1$,

Input Parameters

When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub (A) are not referenced either, but are assumed to be unity.
ia, ja
desca
x
ix, jx
descx
incx
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
(local)REAL for pstrmv
DOUBLE PRECISION for pdtrmv
COMPLEX for pctrmv
DOUBLE COMPLEX for pztrmv
Array, size at least $\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero.

Output Parameters

x
Overwritten by the transformed distributed vector sub (x).
p?atrmv
Computes a distributed matrix-vector product using absolute values for a triangular matrix.

Syntax

```
call psatrmv(uplo, trans, diag, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta,
y, iy, jy, descy, incy)
call pdatrmv(uplo, trans, diag, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta,
y, iy, jy, descy, incy)
call pcatrmv(uplo, trans, diag, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta,
y, iy, jy, descy, incy)
call pzatrmv(uplo, trans, diag, n, alpha, a, ia, ja, desca, x, ix, jx, descx, incx, beta,
y, iy, jy, descy, incy)
```


Include Files

- mkl_pblas.h

Description

The p?atrmv routines perform one of the following distributed matrix-vector operations defined as

```
sub(y) := abs(alpha)*abs(sub (A))*abs(sub (x)) + abs(beta*sub (y)), or
sub(y) := abs(alpha)*abs(sub( A)')*abs(sub(x))+ abs(beta*sub (y)), or
sub(y) := abs(alpha)*abs(conjg(sub(A)'))*abs(sub(x)) + abs(beta*sub(y)),
where:
```

alpha and beta are scalars,
sub (A) is a n-by- n unit, or non-unit, upper or lower triangular distributed matrix, sub $(A)=A($ ia:ia+ $n-1$, ja:ja+n-1),
sub (x) is an n-element distributed vector.
sub (x) denotes $X(i x, j x: j x+n-1)$ if $i n c x=m_{-} x$, and $X(i x: i x+n-1, j x)$ if $i n c x=1$.

Input Parameters

```
uplo
    trans
diag
n
alpha
a
(local)REAL for psatrmv
DOUBLE PRECISION for pdatrmv
COMPLEX for pcatrmv
```

DOUBLE COMPLEX for pzatrmv
Array, size at least (lld_a, LOCq(1, ja+n-1)).
Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub (A), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub (A) is not referenced.

Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub (A), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix sub (A) is not referenced.

When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub (A) are not referenced either, but are assumed to be unity.
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
(local)REAL for psatrmv
DOUBLE PRECISION for pdatrmv
COMPLEX for pcatrmv
DOUBLE COMPLEX for pzatrmv
Array, size at least $\left.(j x-1) * m_{-} x+i x+(n-1) * a b s(i n c x)\right)$.
This array contains the entries of the distributed vector sub (x).
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and m_{-x}. incx must not be zero.
(global)REAL for psatrmv
DOUBLE PRECISION for pdatrmv
COMPLEX for pcatrmv
DOUBLE COMPLEX for pzatrmv
Specifies the scalar beta. When beta is set to zero, then sub (y) need not be set on input.
(local)REAL for psatrmv
DOUBLE PRECISION for pdatrmv
COMPLEX for pcatrmv

```
DOUBLE COMPLEX for pzatrmv
Array, size (jy-1)*m_y + iy+(m-1)*abs(incy)) when trans = 'N' or
'n', and (jy-1)*m_y + iy+(n-1)*abs(incy)) otherwise.
This array contains the entries of the distributed vector sub \((y)\).
(global) INTEGER. The row and column indices in the distributed matrix \(Y\) indicating the first row and the first column of the submatrix sub \((y)\), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(Y\).
(global) INTEGER. Specifies the increment for the elements of sub (y). Only two values are supported, namely 1 and \(m_{\_} y\). incy must not be zero.
```


Output Parameters

y
Overwritten by the transformed distributed vector sub (y).
p?trsv
Solves a system of linear equations whose coefficients are in a distributed triangular matrix.

Syntax

```
call pstrsv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pdtrsv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pctrsv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
call pztrsv(uplo, trans, diag, n, a, ia, ja, desca, x, ix, jx, descx, incx)
```


Include Files

- mkl_pblas.h

Description

The p?trsv routines solve one of the systems of equations:
sub $(A)^{*} \operatorname{sub}(x)=b$, or sub $(A)^{\prime} * \operatorname{sub}(x)=b$, or conjg(sub $\left.(A)^{\prime}\right) * \operatorname{sub}(x)=b$,
where:
sub (A) is a $n-b y-n$ unit, or non-unit, upper or lower triangular distributed matrix, sub (A) $=A(i a: i a+n-1$, ja:ja+n-1),
b and sub (x) are n-element distributed vectors,
sub (x) denotes $x(i x, j x: j x+n-1)$ if $i n c x=m_{-} x$, and $X(i x$: $i x+n-1, j x)$ if incx $=1$,.
The routine does not test for singularity or near-singularity. Such tests must be performed before calling this routine.

Input Parameters
uplo
(global) CHARACTER*1. Specifies whether the distributed matrix sub (A) is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
(global) CHARACTER*1. Specifies the form of the system of equations:
if transa $=$ ' N ' or ' n ', then $\operatorname{sub}(A) * \operatorname{sub}(x)=b$;
if transa $=$ 'T' or 't', then $\operatorname{sub}(A)$ '*sub $(x)=b$;
if transa $=$ ' C' or 'c', then conjg(sub (A)')*sub $(x)=b$.
(global) CHARACTER*1. Specifies whether the matrix $\operatorname{sub}(A)$ is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag $=$ ' N ' or ' n ', then the matrix is not unit triangular.
(global) INTEGER. Specifies the order of the distributed matrix sub (A), $n \geq$ 0.
(local)REAL for pstrsv
DOUBLE PRECISION for pdtrsv
COMPLEX for pctrsv
DOUBLE COMPLEX for pztrsv
Array, size at least (lld_a, LOCq(1, ja+n-1)).
Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub (A), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub (A) is not referenced.
Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub (A), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix sub (A) is not referenced.
When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub (A) are not referenced either, but are assumed to be unity.
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
(local)REAL for pstrsv
DOUBLE PRECISION for pdtrsv
COMPLEX for pctrsv
DOUBLE COMPLEX for pztrsv
Array, size at least $\left.(j x-1){ }^{m_{-}} x+i x+(n-1) * a b s(i n c x)\right)$.
ix, jx
descx
incx

This array contains the entries of the distributed vector sub (x). Before entry, sub (x) must contain the n-element right-hand side distributed vector b.
(global) INTEGER. The row and column indices in the distributed matrix X indicating the first row and the first column of the submatrix sub (x), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix X.
(global) INTEGER. Specifies the increment for the elements of sub (x). Only two values are supported, namely 1 and $m_{-} x$. incx must not be zero.

Output Parameters

X
Overwritten with the solution vector.

PBLAS Level 3 Routines

The PBLAS Level 3 routines perform distributed matrix-matrix operations. Table "PBLAS Level 3 Routine Groups and Their Data Types" lists the PBLAS Level 3 routine groups and the data types associated with them.

PBLAS Level 3 Routine Groups and Their Data Types

| Routine Group | Data Types | Description |
| :---: | :---: | :---: |
| p?geadd | s, d, c, z | Distributed matrix-matrix sum of general matrices |
| p?tradd | s, d, c, z | Distributed matrix-matrix sum of triangular matrices |
| p? gemm | s, d, c, z | Distributed matrix-matrix product of general matrices |
| p? hemm | c, z | Distributed matrix-matrix product, one matrix is Hermitian |
| p?herk | C, z | Rank-k update of a distributed Hermitian matrix |
| p?her 2 k | c, z | Rank-2k update of a distributed Hermitian matrix |
| p?symm | s, d, c, z | Matrix-matrix product of distributed symmetric matrices |
| p?syrk | s, d, c, z | Rank-k update of a distributed symmetric matrix |
| p?syr2k | s, d, c, z | Rank-2k update of a distributed symmetric matrix |
| p?tran | s, d | Transposition of a real distributed matrix |
| p?tranc | C, z | Transposition of a complex distributed matrix (conjugated) |
| p?tranu | c, z | Transposition of a complex distributed matrix |
| p?trmm | s, d, c, z | Distributed matrix-matrix product, one matrix is triangular |
| p?trsm | s, d, c, z | Solution of a distributed matrix equation, one matrix is triangular |

p?geadd
 Performs sum operation for two distributed general matrices.

Syntax

```
call psgeadd(trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pdgeadd(trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pcgeadd(trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pzgeadd(trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
```


Include Files

- mkl_pblas.h

Description

The p?geadd routines perform sum operation for two distributed general matrices. The operation is defined as

```
sub(C):=beta*sub(C) + alpha*op(sub(A)),
```

where:
op (x) is one of $o p(x)=x$, or op $(x)=x^{\prime}$,
alpha and beta are scalars,
sub (C) is an m-by-n distributed matrix, sub (C)=C(ic:ic+m-1, jc:jc+n-1).
sub (A) is a distributed matrix, sub $(A)=A(i a: i a+n-1, j a: j a+m-1)$.

Input Parameters

```
trans (global) CHARACTER*1. Specifies the operation:
if trans = 'N' or 'n', then op (sub (A)) := sub(A);
if trans = 'T' or 't', then op(sub (A)) := sub(A)';
if trans = 'C' or 'C', then op (sub (A)) := sub (A)'.
(global) INTEGER. Specifies the number of rows of the distributed matrix sub ( \(C\) ) and the number of columns of the submatrix sub ( \(A\) ), \(m \geq 0\).
(global) INTEGER. Specifies the number of columns of the distributed matrix sub ( \(C\) ) and the number of rows of the submatrix sub ( \(A\) ), \(n \geq 0\).
(global)REAL for psgeadd
DOUBLE PRECISION for pdgeadd
COMPLEX for pcgeadd
DOUBLE COMPLEX for pzgeadd
Specifies the scalar alpha.
a
(local)REAL for psgeadd
DOUBLE PRECISION for pdgeadd
COMPLEX for pcgeadd
```

ia, ja
c

DOUBLE COMPLEX for pzgeadd
Array, size (lld_a, LOCq(ja+m-1)). This array contains the local pieces of the distributed matrix sub (A).
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
(global)REAL for psgeadd
DOUBLE PRECISION for pdgeadd
COMPLEX for pcgeadd
DOUBLE COMPLEX for pzgeadd
Specifies the scalar beta.
When beta is equal to zero, then sub (C) need not be set on input.
(local)REAL for psgeadd
DOUBLE PRECISION for pdgeadd
COMPLEX for pcgeadd
DOUBLE COMPLEX for pzgeadd
Array, size (lld_c, LOCq(jc+n-1)).
This array contains the local pieces of the distributed matrix sub (C).
(global) INTEGER. The row and column indices in the distributed matrix C indicating the first row and the first column of the submatrix sub (C), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix C.

Output Parameters

c
Overwritten by the updated submatrix.
p?tradd
Performs sum operation for two distributed triangular matrices.

Syntax

```
call pstradd(uplo, trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pdtradd(uplo, trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pctradd(uplo, trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pztradd(uplo, trans, m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
```


Include Files

- mkl_pblas.h

Description

The p?tradd routines perform sum operation for two distributed triangular matrices. The operation is defined as

```
sub(C):=beta*sub (C) + alpha*op(sub (A)),
```

where:
$o p(x)$ is one of $o p(x)=x$, or op $(x)=x^{\prime}$, or op $(x)=\operatorname{conjg}\left(x^{\prime}\right)$.
alpha and beta are scalars,
sub (C) is an m-by-n distributed matrix, sub (C) $=C(i c: i c+m-1, j c: j c+n-1)$.
sub (A) is a distributed matrix, sub $(A)=A(i a: i a+n-1, j a: j a+m-1)$.

Input Parameters

uplo
trans
m
n
alpha
a
(global) CHARACTER*1. Specifies whether the distributed matrix sub (C) is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
(global) CHARACTER*1. Specifies the operation:
if trans $=$ 'N' or 'n', then op (sub (A)) := sub (A);
if trans = 'T' or 't', then op (sub (A)) := sub(A)';

(global) INTEGER. Specifies the number of rows of the distributed matrix sub (C) and the number of columns of the submatrix $\operatorname{sub}(A), m \geq 0$.
(global) INTEGER. Specifies the number of columns of the distributed matrix sub (C) and the number of rows of the submatrix sub (A), $n \geq 0$.
(global)REAL for pstradd
DOUBLE PRECISION for pdtradd
COMPLEX for pctradd
DOUBLE COMPLEX for pztradd
Specifies the scalar alpha.
(local)REAL for pstradd
DOUBLE PRECISION for pdtradd
COMPLEX for pctradd
DOUBLE COMPLEX for pztradd
Array, size (lld_a, LOCq(ja+m-1)). This array contains the local pieces of the distributed matrix sub (A).

```
ia,ja
desca
beta
c
ic, jc
descc
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(A\).
(global)REAL for pstradd
DOUBLE PRECISION for pdtradd
COMPLEX for pctradd
DOUBLE COMPLEX for pztradd
Specifies the scalar beta.
When beta is equal to zero, then sub ( \(C\) ) need not be set on input.
(local)REAL for pstradd
DOUBLE PRECISION for pdtradd
COMPLEX for pctradd
DOUBLE COMPLEX for pztradd
Array, size (lld_c, LOCq(jc+n-1)).
This array contains the local pieces of the distributed matrix sub ( \(C\) ).
(global) INTEGER. The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(C\).
```


Output Parameters

C
Overwritten by the updated submatrix.

p?gemm

Computes a scalar-matrix-matrix product and adds
the result to a scalar-matrix product for distributed
matrices.

Syntax

```
call psgemm(transa, transb, m, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c,
ic, jc, descc)
call pdgemm(transa, transb, m, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c,
ic, jc, descc)
call pcgemm(transa, transb, m, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c,
ic, jc, descc)
call pzgemm(transa, transb, m, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c,
ic, jc, descc)
```


Include Files

- mkl_pblas.h

Description

The p?gemm routines perform a matrix-matrix operation with general distributed matrices. The operation is defined as

```
sub(C) := alpha*op(sub(A))*op(sub (B)) + beta*sub (C),
```

where:
$\mathrm{op}(x)$ is one of $\mathrm{op}(x)=x$, or op $(x)=x^{\prime}$,
alpha and beta are scalars,
sub $(A)=A(i a: i a+m-1, j a: j a+k-1)$, sub $(B)=B(i b: i b+k-1, j b: j b+n-1)$, and $\operatorname{sub}(C)=C(i c: i c+m-1$, $j c: j c+n-1)$, are distributed matrices.

Input Parameters

transa
transb
m
n
k
alpha
(global) CHARACTER*1. Specifies the form of op (sub (A)) used in the matrix multiplication:

```
if transa = 'N' or 'n', then op(sub (A)) = sub(A);
if transa = 'T' or 't', then op(sub (A)) = sub(A)';
if transa = 'C' or 'c', then op(sub (A)) = sub(A)'.
```

(global) CHARACTER*1. Specifies the form of op (sub (B)) used in the matrix multiplication:

```
if transb = 'N' or 'n', then op(sub (B) ) = sub(B);
if transb = 'T' or 't', then op(sub (B) ) = sub(B)';
if transb = 'C' or 'c', then op(sub (B)) = sub(B)'.
```

(global) INTEGER. Specifies the number of rows of the distributed matrices op (sub (A)) and $\operatorname{sub}(C), m \geq 0$.
(global) INTEGER. Specifies the number of columns of the distributed matrices op (sub (B)) and sub (C), $n \geq 0$.

The value of n must be at least zero.
(global) INTEGER. Specifies the number of columns of the distributed matrix op (sub (A)) and the number of rows of the distributed matrix op (sub (B)).

The value of k must be greater than or equal to 0 .
(global)REAL for psgemm
DOUBLE PRECISION for pdgemm
COMPLEX for pcgemm
DOUBLE COMPLEX for pzgemm
Specifies the scalar alpha.
a
b

When alpha is equal to zero, then the local entries of the arrays a and b corresponding to the entries of the submatrices sub (A) and sub (B) respectively need not be set on input.
(local) REAL for psgemm
DOUBLE PRECISION for pdgemm
COMPLEX for pcgemm
DOUBLE COMPLEX for pzgemm
Array, size lld_a by kla, where kla is LOCc (ja+k-1) when transa = 'N' or ' n ', and is LOCq (ja+m-1) otherwise. Before entry this array must contain the local pieces of the distributed matrix sub (A).
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
(local)REAL for psgemm
DOUBLE PRECISION for pdgemm
COMPLEX for pcgemm
DOUBLE COMPLEX for pzgemm
Array, size lld_b by $k l b$, where $k l b$ is LOCc $(j b+n-1)$ when transb $=$ 'N' or 'n', and is LOCq ($j b+k-1$) otherwise. Before entry this array must contain the local pieces of the distributed matrix sub (B).
(global) INTEGER. The row and column indices in the distributed matrix B indicating the first row and the first column of the submatrix sub (B), respectively
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix B.
(global)REAL for psgemm
DOUBLE PRECISION for pdgemm
COMPLEX for pcgemm
DOUBLE COMPLEX for pzgemm
Specifies the scalar beta.
When beta is equal to zero, then sub (C) need not be set on input.
(local)REAL for psgemm
DOUBLE PRECISION for pdgemm
COMPLEX for pcgemm
DOUBLE COMPLEX for pzgemm
Array, size (lld_a, LOCq ($\left.j^{c+n-1}\right)$). Before entry this array must contain the local pieces of the distributed matrix sub (C).

```
ic, jc (global) InTEGER. The row and column indices in the distributed matrix C
    indicating the first row and the first column of the submatrix sub (C),
    respectively
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(C\).
```


Output Parameters

Overwritten by the m-by- n distributed matrix
alpha*op (sub (A)) *op (sub (B)) + beta*sub (C).

p?hemm

Performs a scalar-matrix-matrix product (one matrix operand is Hermitian) and adds the result to a scalarmatrix product.

Syntax

```
call pchemm(side, uplo, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic, jc,
descc)
call pzhemm(side, uplo, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic, jc,
descc)
```


Include Files

- mkl_pblas.h

Description

The p?hemm routines perform a matrix-matrix operation with distributed matrices. The operation is defined as

```
sub (C):=alpha*sub (A)*sub (B)+ beta*sub (C),
```

or

```
sub (C):=alpha*sub (B)*sub (A)+ beta*sub (C),
```

where:
alpha and beta are scalars,
sub (A) is a Hermitian distributed matrix, sub $(A)=A(i a: i a+m-1, j a: j a+m-1)$, if side = 'L', and
sub $(A)=A(i a: i a+n-1, j a: j a+n-1)$, if side $=$ 'R'.
sub (B) and sub (C) are m-by-n distributed matrices.
sub $(B)=B(i b: i b+m-1, j b: j b+n-1)$, sub $(C)=C(i c: i c+m-1, j c: j c+n-1)$.

Input Parameters

side
(global) CHARACTER*1. Specifies whether the Hermitian distributed matrix sub (A) appears on the left or right in the operation:

```
if side = 'L' or'l', then sub(C) := alpha*sub(A) *sub(B) +
beta*sub (C);
if side = 'R' or 'r', then sub(C) := alpha*sub (B) *sub (A) +
beta*sub(C).
```

uplo
m
n
b
beta
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub (A) is used:
if uplo = 'U' or 'u', then the upper triangular part is used;
if uplo = 'L' or 'l', then the lower triangular part is used.
(global) INTEGER. Specifies the number of rows of the distribute submatrix sub (C) , $m \geq 0$.
(global) INTEGER. Specifies the number of columns of the distribute submatrix sub (C), $n \geq 0$.
(global)COMPLEX for pchemm
DOUBLE COMPLEX for pzhemm
Specifies the scalar alpha.
(local)COMPLEX for pchemm
DOUBLE COMPLEX for pzhemm
Array, size (Ild_a, LOCq(ja+na-1)).
Before entry this array must contain the local pieces of the symmetric distributed matrix $\operatorname{sub}(A)$, such that when uplo = 'U' or 'u', the na-byna upper triangular part of the distributed matrix sub (A) must contain the upper triangular part of the Hermitian distributed matrix and the strictly lower triangular part of sub (A) is not referenced, and when uplo = 'L' or ' l', the na-by-na lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the Hermitian distributed matrix and the strictly upper triangular part of sub (A) is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
(local)COMPLEX for pchemm
DOUBLE COMPLEX for pzhemm
Array, size (lld_b, $\operatorname{LOCq}(j b+n-1)$). Before entry this array must contain the local pieces of the distributed matrix sub (B).
(global) INTEGER. The row and column indices in the distributed matrix B indicating the first row and the first column of the submatrix sub (B), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix B.
(global)COMPLEX for pchemm
DOUBLE COMPLEX for pzhemm
Specifies the scalar beta.
When beta is set to zero, then $\operatorname{sub}(C)$ need not be set on input.

```
C
(local)COMPLEX for pchemm
DOUBLE COMPLEX for pzhemm
Array, size (lld_c, \(\operatorname{LOCq}(j c+n-1))\). Before entry this array must contain the local pieces of the distributed matrix sub ( \(C\) ).
(global) INTEGER. The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(C\).
```


Output Parameters

C
Overwritten by the m-by-n updated distributed matrix.

p?herk
 Performs a rank-k update of a distributed Hermitian matrix.

Syntax

```
call pcherk(uplo, trans, n, k, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pzherk(uplo, trans, n, k, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
```

Include Files

- mkl_pblas.h

Description

The p ?herk routines perform a distributed matrix-matrix operation defined as

```
sub(C):=alpha*sub (A)*Conjg(sub (A)')+ beta*sub (C),
or
    sub (C):=alpha*conjg(sub (A)')*sub(A)+ beta*sub (C),
```

where:
alpha and beta are scalars,
sub (C) is an $n-b y-n$ Hermitian distributed matrix, sub $(C)=C(i c: i c+n-1, j c: j c+n-1)$.
sub (A) is a distributed matrix, sub (A) =A(ia:ia+n-1, ja:ja+k-1), if trans = 'N' or 'n', and sub $(A)=A(i a: i a+k-1, j a: j a+n-1)$ otherwise.

Input Parameters

uplo
trans
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub (C) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub (C) is used.
If uplo = 'L' or 'l', then the low triangular part of the sub (C) is used. (global) CHARACTER*1. Specifies the operation:

```
if trans = 'N' or 'n', then sub(C) := alpha*sub (A)*conjg(sub(A)')
+ beta*sub(C);
if trans = 'C' or 'c', then sub(C) := alpha*conjg(sub (A)')*sub(A)
+ beta*sub(C).
```

n
k
a
c
(global) INTEGER. Specifies the order of the distributed matrix sub (C) , $n \geq$ 0.
(global) INTEGER. On entry with trans $=$ ' N ' or ' n ', k specifies the number of columns of the distributed matrix sub (A), and on entry with trans $=$ 'T' or 't' or 'C' or 'c', k specifies the number of rows of the distributed matrix sub (A), $k \geq 0$.
(global)REAL for pcherk
DOUBLE PRECISION for pzherk
Specifies the scalar alpha.
(local)COMPLEX for pcherk
DOUBLE COMPLEX for pzherk
Array, size (lld_a, kla), where kla is LOCq(ja+k-1) when trans = 'N' or ' n ', and is LOCq (ja+n-1) otherwise. Before entry with trans $=$ ' N ' or ' n ', this array contains the local pieces of the distributed matrix sub (A).
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
(global)REAL for pcherk
DOUBLE PRECISION for pzherk
Specifies the scalar beta.
(local)COMPLEX for pcherk
DOUBLE COMPLEX for pzherk
Array, size (lld_c, LOCq(jc+n-1)).
Before entry with uplo = 'U' or 'u', this array contains n-by-n upper triangular part of the symmetric distributed matrix sub (C) and its strictly lower triangular part is not referenced.

Before entry with uplo = 'L' or 'l', this array contains n-by-n lower triangular part of the symmetric distributed matrix sub (C) and its strictly upper triangular part is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix C indicating the first row and the first column of the submatrix sub (C), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix C.

Output Parameters

C
With uplo = 'U' or 'u', the upper triangular part of sub (C) is overwritten by the upper triangular part of the updated distributed matrix.
With uplo = 'L' or 'l', the lower triangular part of sub (C) is overwritten by the upper triangular part of the updated distributed matrix.

p?her2k

Performs a rank-2k update of a Hermitian distributed matrix.

Syntax

```
call pcher2k(uplo, trans, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic,
jc, descc)
call pzher2k(uplo, trans, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic,
jc, descc)
```


Include Files

- mkl_pblas.h

Description

The p?her 2 k routines perform a distributed matrix-matrix operation defined as

```
    sub (C):=alpha*sub (A) *conjg(sub (B)') + conjg(alpha)*sub (B)*conjg(sub (A)') +beta*sub (C),
or
```

```
sub (C):=alpha* conjg(sub (A)')*sub (A)+ conjg(alpha)*conjg(sub (B)')*sub (A) + beta*sub (C),
```

```
sub (C):=alpha* conjg(sub (A)')*sub (A)+ conjg(alpha)*conjg(sub (B)')*sub (A) + beta*sub (C),
```

where:
alpha and beta are scalars,
sub (C) is an $n-b y-n$ Hermitian distributed matrix, sub $(C)=C(i c: i c+n-1, j c: j c+n-1)$.
sub (A) is a distributed matrix, sub (A) =A(ia:ia+n-1, ja:ja+k-1), if trans = 'N' or 'n', and sub(A) = A(ia:ia+k-1, ja:ja+n-1) otherwise.
sub (B) is a distributed matrix, sub $(B)=B(i b: i b+n-1, j b: j b+k-1)$, if trans $={ }^{\prime} N^{\prime}$ or 'n', and sub $(B)=B(i b: i b+k-1, j b: j b+n-1)$ otherwise.

Input Parameters

```
uplo
trans
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the Hermitian distributed matrix sub ( \(C\) ) is used:
If uplo = 'U' or 'u', then the upper triangular part of the sub \((C)\) is used.
If uplo = 'L' or 'l', then the low triangular part of the sub \((C)\) is used.
(global) CHARACTER*1. Specifies the operation:
```

```
if trans = 'N' or 'n', then sub(C) := alpha*sub(A)*conjg(sub(B)')
```

if trans = 'N' or 'n', then sub(C) := alpha*sub(A)*conjg(sub(B)')

+ conjg(alpha)*sub(B)*conjg(sub(A)') + beta*sub(C);

```
```

if trans = 'C' or 'c', then sub(C) := alpha*conjg(sub (A)')*sub (A)

+ conjg(alpha)*conjg(sub(B)')*sub(A) + beta*sub(C).

```
\(n\)
k
a
(global) INTEGER. Specifies the order of the distributed matrix sub \((C), n \geq\) 0.
(global) INTEGER. On entry with trans = 'n' or 'n', k specifies the number of columns of the distributed matrices sub ( \(A\) ) and sub ( \(B\) ), and on entry with trans = 'C' or 'c', \(k\) specifies the number of rows of the distributed matrices sub ( \(A\) ) and \(\operatorname{sub}(B), k \geq 0\).
(global)COMPLEX for pcher 2 k
DOUBLE COMPLEX for pzher2k
Specifies the scalar alpha.
(local)COMPLEX for pcher2k
Double complex for pzher2k
Array, size (lld_a, kla), where kla is LOCq( \(j a+k-1\) ) when trans \(='^{\prime}{ }^{\prime}\) or ' n ', and is LOCq ( \(j a+n-1\) ) otherwise. Before entry with trans \(=\) ' N ' or ' \(n\) ', this array contains the local pieces of the distributed matrix sub ( \(A\) ).
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)COMPLEX for pcher2k
double complex for pzher2k
Array, size (lld_b, klb), where \(k l b\) is LOCq ( \(j b+k-1\) ) when trans = 'N' or ' n ', and is LOCq ( \(j b+n-1\) ) otherwise. Before entry with trans \(=\) ' N ' or ' n ', this array contains the local pieces of the distributed matrix sub \((B)\).
(global) INTEGER. The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub ( \(B\) ), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(B\).
(global)REAL for pcher2k
DOUBLE PRECISION for pzher2k
Specifies the scalar beta.
(local)COMPLEX for pcher2k
double complex for pzher2k
Array, size (lld_c, LOCq(jc+n-1)).
Before entry with uplo = 'U' or 'u', this array contains \(n\)-by-n upper triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly lower triangular part is not referenced.

Before entry with uplo = 'L' or 'l', this array contains n-by-n lower triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly upper triangular part is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(C\).

\section*{Output Parameters}

C
With uplo = 'U' or 'u', the upper triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.
With uplo = 'L' or 'l', the lower triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.
```

p?symm
Performs a scalar-matrix-matrix product (one matrix
operand is symmetric) and adds the result to a scalar-
matrix product for distribute matrices.

```

\section*{Syntax}
```

call pssymm(side, uplo, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic, jc,
descc)
call pdsymm(side, uplo, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic, jc,
descc)
call pcsymm(side, uplo, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic, jc,
descc)
call pzsymm(side, uplo, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic, jc,
descc)

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?symm routines perform a matrix-matrix operation with distributed matrices. The operation is defined as
```

sub (C):=alpha*sub (A)*sub (B) + beta*sub (C),

```
or
```

sub (C):=alpha*sub (B)*sub (A)+ beta*sub (C),

```
where:
alpha and beta are scalars,
sub (A) is a symmetric distributed matrix, sub \((A)=A(i a: i a+m-1, j a: j a+m-1)\), if side \(=\) 'L', and sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\), if side \(=\) 'R'.
sub ( \(B\) ) and sub ( \(C\) ) are \(m\)-by-n distributed matrices.
sub \((B)=B(i b: i b+m-1, j b: j b+n-1)\), sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\).

\section*{Input Parameters}

m
n
alpha
\(a\)
ia, ja
desca
b
(global) CHARACTER*1. Specifies whether the symmetric distributed matrix sub ( \(A\) ) appears on the left or right in the operation:
if side \(=\) 'L' or 'l', then sub (C) \(:=\) alpha*sub (A) *sub \((B)+\) beta*sub (C) ;
if side \(=\) ' R ' or ' \(r\) ', then \(\operatorname{sub}(C):=a l p h a * \operatorname{sub}(B) * \operatorname{sub}(A)+\) beta*sub ( \(C\) ).
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub ( \(A\) ) is used:
if uplo = 'U' or 'u', then the upper triangular part is used;
if uplo = 'L' or 'l', then the lower triangular part is used.
(global) INTEGER. Specifies the number of rows of the distribute submatrix sub ( \(C\) ) , \(m \geq 0\).
(global) INTEGER. Specifies the number of columns of the distribute submatrix sub \((C), m \geq 0\).
(global)REAL for pssymm
DOUBLE PRECISION for pdsymm
COMPLEX for pcsymm
DOUBLE COMPLEX for pzsymm
Specifies the scalar alpha.
(local)REAL for pssymm
DOUBLE PRECISION for pdsymm
COMPLEX for pcsymm
DOUBLE COMPLEX for pzsymm
Array, size (lld_a, LOCq(ja+na-1)).
Before entry this array must contain the local pieces of the symmetric distributed matrix sub \((A)\), such that when uplo = 'U' or 'u', the na-byna upper triangular part of the distributed matrix sub ( \(A\) ) must contain the upper triangular part of the symmetric distributed matrix and the strictly lower triangular part of sub \((A)\) is not referenced, and when uplo = 'L' or ' l', the na-by-na lower triangular part of the distributed matrix sub (A) must contain the lower triangular part of the symmetric distributed matrix and the strictly upper triangular part of sub (A) is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)REAL for pssymm
DOUBLE PRECISION for pdsymm

COMPLEX for pcsymm
DOUBLE COMPLEX for pzsymm
Array, size (lld_b, \(\operatorname{LOCq}(j b+n-1)\) ). Before entry this array must contain the local pieces of the distributed matrix sub ( \(B\) ).
(global) INTEGER. The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub ( \(B\) ), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(B\).
(global)REAL for pssymm
DOUBLE PRECISION for pdsymm
COMPLEX for pcsymm
DOUBLE COMPLEX for pzsymm
Specifies the scalar beta.
When beta is set to zero, then sub ( \(C\) ) need not be set on input.
(local)REAL for pssymm
DOUBLE PRECISION for pdsymm
COMPLEX for pcsymm
DOUBLE COMPLEX for pzsymm
Array, size (lld_c, LOCq (jc+n-1) ). Before entry this array must contain the local pieces of the distributed matrix sub ( \(C\) ).
(global) INTEGER. The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(C\).

\section*{Output Parameters}
c
Overwritten by the m-by-n updated matrix.

\section*{p?syrk \\ Performs a rank-k update of a symmetric distributed matrix.}

\section*{Syntax}
```

call pssyrk(uplo, trans, n, k, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pdsyrk(uplo, trans, n, k, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pcsyrk(uplo, trans, n, k, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pzsyrk(uplo, trans, n, k, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?syrk routines perform a distributed matrix-matrix operation defined as
```

 sub (C) :=alpha*sub (A) *sub (A)'+ beta*sub (C),
    ```
or
```

sub (C) :=alpha*sub (A)'*sub (A) + beta*sub (C),

```
where:
alpha and beta are scalars,
sub (C) is an \(n\)-by-n symmetric distributed matrix, sub (C) \(=C(i c: i c+n-1, j c: j c+n-1)\).
sub (A) is a distributed matrix, sub (A) =A(ia:ia+n-1, ja:ja+k-1), if trans = 'N' or 'n', and sub \((A)=A(i a: i a+k-1, j a: j a+n-1)\) otherwise.

\section*{Input Parameters}
```

uplo
trans
n
k
alpha
a
(local)REAL for pssyrk
DOUBLE PRECISION for pdsyrk
COMPLEX for pcsyrk

```

DOUBLE COMPLEX for pzsyrk
Array, size (lld_a, kla), where kla is LOCq(ja+k-1) when trans = 'N' or ' n ', and is LOCq (ja+n-1) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', this array contains the local pieces of the distributed matrix sub ( \(A\) ).
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(A\).
(global)REAL for pssyrk
DOUBLE PRECISION for pdsyrk
COMPLEX for pcsyrk
DOUBLE COMPLEX for pzsyrk
Specifies the scalar beta.
(local)REAL for pssyrk
DOUBLE PRECISION for pdsyrk
COMPLEX for pcsyrk
DOUBLE COMPLEX for pzsyrk
Array, size (lld_c, LOCq(jc+n-1)).
Before entry with uplo = 'U' or 'u', this array contains \(n\)-by-n upper triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly lower triangular part is not referenced.

Before entry with uplo = 'L' or 'l', this array contains n-by-n lower triangular part of the symmetric distributed matrix sub ( \(C\) ) and its strictly upper triangular part is not referenced.
(global) INTEGER. The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub ( \(C\) ), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(C\).

\section*{Output Parameters}
c
With uplo = 'U' or 'u', the upper triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.
With uplo = 'L' or 'l', the lower triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.
p?syr2k
Performs a rank-2k update of a symmetric distributed matrix.

\section*{Syntax}
```

call pssyr2k(uplo, trans, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic,
jc, descc)
call pdsyr2k(uplo, trans, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic,
jc, descc)
call pcsyr2k(uplo, trans, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic,
jc, descc)
call pzsyr2k(uplo, trans, n, k, alpha, a, ia, ja, desca, b, ib, jb, descb, beta, c, ic,
jc, descc)

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?syr 2 k routines perform a distributed matrix-matrix operation defined as
```

 sub (C):=alpha*sub (A)*sub (B)'+alpha*sub (B)*sub (A)'+ beta*sub (C),
    ```
or
```

sub (C):=alpha*sub (A)'*sub (B) +alpha*sub (B)'*sub (A) + beta*sub (C),

```
where:
alpha and beta are scalars,
sub (C) is an \(n\)-by-n symmetric distributed matrix, sub (C) \(=C(i c: i c+n-1, j c: j c+n-1)\).
sub ( \(A\) ) is a distributed matrix, sub ( \(A\) ) =A(ia:ia+n-1, ja:ja+k-1), if trans = 'N' or 'n', and sub \((A)=A(i a: i a+k-1, j a: j a+n-1)\) otherwise.
sub ( \(B\) ) is a distributed matrix, sub \((B)=B(i b: i b+n-1, j b: j b+k-1)\), if trans \(={ }^{\prime} N^{\prime}\) or ' \(n^{\prime}\), and sub \((B)=B(i b: i b+k-1, j b: j b+n-1)\) otherwise.

\section*{Input Parameters}
uplo
trans
\(n\)
(global) CHARACTER*1. Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub ( \(C\) ) is used:

If uplo = 'U' or 'u', then the upper triangular part of the sub ( \(C\) ) is used.

If uplo = 'L' or 'l', then the low triangular part of the sub ( \(C\) ) is used.
(global) CHARACTER*1. Specifies the operation:
```

if trans = 'N' or 'n', then sub(C) := alpha*sub(A)*sub(B)' +
alpha*sub(B)*sub(A)' + beta*sub(C);
if trans = 'T' or 't', then sub(C) := alpha*sub(B)'*sub (A) +
alpha*sub(A)'*sub(B) + beta*sub(C).

```
(global) INTEGER. Specifies the order of the distributed matrix sub (C), \(n \geq\) 0.
k
alpha
a
ia, ja
desca
b
c
(global) INTEGER. On entry with trans \(=\) ' \(N\) ' or ' \(n\) ', \(k\) specifies the number of columns of the distributed matrices sub \((A)\) and sub ( \(B\) ), and on entry with trans \(=\) ' \(T\) ' or 't', \(k\) specifies the number of rows of the distributed matrices sub ( \(A\) ) and \(\operatorname{sub}(B), k \geq 0\).
(global)REAL for pssyr2k
DOUBLE PRECISION for pdsyr2k
COMPLEX for pcsyr2k
DOUBLE COMPLEX for pzsyr2k
Specifies the scalar alpha.
(local)REAL for pssyr2k
DOUBLE PRECISION for pdsyr2k
COMPLEX for pcsyr2k
DOUBLE COMPLEX for pzsyr2k
Array, size (lld_a, kla), where kla is LOCq( \(j a+k-1\) ) when trans = ' \(N\) ' or 'n', and is LOCq (ja+n-1) otherwise. Before entry with trans = 'N' or ' \(n\) ', this array contains the local pieces of the distributed matrix sub ( \(A\) ).
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)REAL for pssyr2k
DOUBLE PRECISION for pdsyr2k
COMPLEX for pcsyr2k
DOUBLE COMPLEX for pzsyr2k
Array, size (lld_b, klb), where \(k l b\) is LOCq ( \(j b+k-1\) ) when trans \(={ }^{\prime} \mathrm{N}^{\prime}\) or ' n ', and is LOCq ( \(j b+n-1\) ) otherwise. Before entry with trans \(=\) ' \(N\) ' or ' \(n\) ', this array contains the local pieces of the distributed matrix sub ( \(B\) ).
(global) INTEGER. The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub (B), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(B\).
(global)REAL for pssyr2k
DOUBLE PRECISION for pdsyr2k
COMPLEX for pcsyr2k
DOUBLE COMPLEX for pzsyr2k
Specifies the scalar beta.
(local)REAL for pssyr2k
```

 DOUBLE PRECISION for pdsyr 2k
 COMPLEX for pcsyr 2k
DOUBLE COMPLEX for pzsyr2k
Array, size (lld_c, LOCq(jc+n-1)).
Before entry with uplo = 'U' or 'u', this array contains n-by-n upper
triangular part of the symmetric distributed matrix sub (C) and its strictly
lower triangular part is not referenced.
Before entry with uplo = 'L' or 'l', this array contains n-by-n lower
triangular part of the symmetric distributed matrix sub (C) and its strictly
upper triangular part is not referenced.
(global) InTEGER. The row and column indices in the distributed matrix C indicating the first row and the first column of the submatrix sub (C), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix C.

```

\section*{Output Parameters}

With uplo = 'U' or 'u', the upper triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.

With uplo = 'L' or 'l', the lower triangular part of sub \((C)\) is overwritten by the upper triangular part of the updated distributed matrix.
p?tran
Transposes a real distributed matrix.

\section*{Syntax}
```

call pstran(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pdtran(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?tran routines transpose a real distributed matrix. The operation is defined as
```

sub(C):=beta*sub(C) + alpha*sub(A)',

```
where:
alpha and beta are scalars,
sub ( \(C\) ) is an m-by-n distributed matrix, sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\).
sub (A) is a distributed matrix, sub (A)=A(ia:ia+n-1, ja:ja+m-1).

\section*{Input Parameters}
m
n
a

C

\section*{Output Parameters}

C
(global) INTEGER. Specifies the number of rows of the distributed matrix sub (C), \(m \geq 0\).
(global) INTEGER. Specifies the number of columns of the distributed matrix sub (C), \(n \geq 0\).
(global)REAL for pstran
DOUBLE PRECISION for pdtran
Specifies the scalar alpha.
(local)REAL for pstran
double precision for pdtran
Array, size (lld_a, LOCq(ja+m-1)). This array contains the local pieces of the distributed matrix sub ( \(A\) ).
(global) Integer. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(A\).
(global)REAL for pstran
DOUBLE PRECISION for pdtran
Specifies the scalar beta.
When beta is equal to zero, then sub ( \(C\) ) need not be set on input.
(local)REAL for pstran
DOUBLE PRECISION for pdtran
Array, size (lld_c, LOCq(jc+n-1)).
This array contains the local pieces of the distributed matrix sub ( \(C\) ) .
(global) InTEGER. The row and column indices in the distributed matrix \(C\) indicating the first row and the first column of the submatrix sub (C), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(C\).

Overwritten by the updated submatrix.
p?tranu
Transposes a distributed complex matrix.

\section*{Syntax}
```

call pctranu(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

```
```

call pztranu(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?tranu routines transpose a complex distributed matrix. The operation is defined as
```

sub(C):=beta*sub(C) + alpha*sub(A)',

```
where:
alpha and beta are scalars,
sub ( \(C\) ) is an m-by-n distributed matrix, sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\).
sub \((A)\) is a distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+m-1)\).

\section*{Input Parameters}
m
n
alpha
a
beta

C
(global) INTEGER. Specifies the number of rows of the distributed matrix sub ( \(C\) ), \(m \geq 0\).
(global) INTEGER. Specifies the number of columns of the distributed matrix sub (C) , \(n \geq 0\).
(global)COMPLEX for pctranu
DOUBLE COMPLEX for pztranu
Specifies the scalar alpha.
(local)COMPLEX for pctranu
DOUBLE COMPLEX for pztranu
Array, size (lld_a, LOCq(ja+m-1)). This array contains the local pieces of the distributed matrix sub ( \(A\) ).
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub (A), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(A\).
(global)COMPLEX for pctranu
DOUBLE COMPLEX for pztranu
Specifies the scalar beta.
When beta is equal to zero, then sub ( \(C\) ) need not be set on input.
(local)COMPLEX for pctranu
DOUBLE COMPLEX for pztranu
Array, size (lld_c, LOCq(jc+n-1)).
This array contains the local pieces of the distributed matrix sub ( \(C\) ).
```

ic, jc (global) INTEGER. The row and column indices in the distributed matrix C
indicating the first row and the first column of the submatrix sub (C),
respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the
distributed matrix C.

```

\section*{Output Parameters}

C
Overwritten by the updated submatrix.
p?tranc
Transposes a complex distributed matrix, conjugated.

\section*{Syntax}
```

call pctranc(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pztranc(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

```

Include Files
- mkl_pblas.h

\section*{Description}

The p?tranc routines transpose a complex distributed matrix. The operation is defined as
```

sub (C):=beta*sub(C) + alpha*conjg(sub(A)'),

```
where:
alpha and beta are scalars,
sub (C) is an m-by-n distributed matrix, sub \((C)=C(i c: i c+m-1, j c: j c+n-1)\).
sub \((A)\) is a distributed matrix, sub \((A)=A(i a: i a+n-1, j a: j a+m-1)\).

\section*{Input Parameters}
(global) INTEGER. Specifies the number of rows of the distributed matrix sub ( \(C\) ) , \(m \geq 0\).
(global) INTEGER. Specifies the number of columns of the distributed matrix sub (C) , \(n \geq 0\).
(global)COMPLEX for pctranc
DOUBLE COMPLEX for pztranc
Specifies the scalar alpha.
a
(local)COMPLEX for pctranc
DOUBLE COMPLEX for pztranc
Array, size (lld_a, LOCq(ja+m-1)). This array contains the local pieces of the distributed matrix sub (A).
```

ia, ja (global) INTEGER. The row and column indices in the distributed matrix }
indicating the first row and the first column of the submatrix sub (A),
respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the
distributed matrix A.
(global)COMPLEX for pctranc
DOUBLE COMPLEX for pztranc
Specifies the scalar beta.
When beta is equal to zero, then sub (C) need not be set on input.
(local)COMPLEX for pctranc
DOUBLE COMPLEX for pztranc
Array, size (lld_c, LOCq(jc+n-1)).
This array contains the local pieces of the distributed matrix sub (C).
(global) INTEGER. The row and column indices in the distributed matrix C
indicating the first row and the first column of the submatrix sub (C),
respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the
distributed matrix C.

```

\section*{Output Parameters}
c
Overwritten by the updated submatrix.
p?trmm
Computes a scalar-matrix-matrix product (one matrix operand is triangular) for distributed matrices.

Syntax
```

call pstrmm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
call pdtrmm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
call pctrmm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
call pztrmm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)

```

Include Files
- mkl_pblas.h

\section*{Description}

The p?trmm routines perform a matrix-matrix operation using triangular matrices. The operation is defined as
```

 sub (B) := alpha*op (sub (A)) *sub (B)
    ```
or
```

sub (B) := alpha*sub (B)*op(sub (A))

```
where:

\section*{alpha is a scalar,}
```

sub (B) is an m-by-n distributed matrix, sub (B)=B(ib:ib+m-1, jb:jb+n-1).

```
\(A\) is a unit, or non-unit, upper or lower triangular distributed matrix, sub \((A)=A(i a: i a+m-1, j a: j a+m-1)\), if side \(=\) 'L' or 'l', and sub \((A)=A(i a: i a+n-1\), ja: ja+n-1), if side = 'R' or 'r'. \(\operatorname{op}(\operatorname{sub}(A))\) is one of op \((\operatorname{sub}(A))=\operatorname{sub}(A), \operatorname{orop}(\operatorname{sub}(A))=\operatorname{sub}(A)^{\prime}, \operatorname{orop}(\operatorname{sub}(A))=\) conjg(sub(A)').

\section*{Input Parameters}
side
uplo
a
(global) CHARACTER*1. Specifies whether op (sub (A)) appears on the left or right of sub ( \(B\) ) in the operation:
if side \(=\) 'L'or 'l', then sub (B) \(:=\) alpha*op \((\operatorname{sub}(A)) * \operatorname{sub}(B)\);
if side \(=' R\) ' or 'r', then \(\operatorname{sub}(B):=a l p h a * \operatorname{sub}(B) * o p(\operatorname{sub}(A))\).
(global) CHARACTER*1. Specifies whether the distributed matrix sub ( \(A\) ) is upper or lower triangular:
if uplo = 'U' or 'u', then the matrix is upper triangular;
if uplo = 'L' or 'l', then the matrix is low triangular.
(global) CHARACTER*1. Specifies the form of op (sub (A)) used in the matrix multiplication:
if transa \(=\) 'N' or 'n', then op (sub \((A))=\operatorname{sub}(A)\);
if transa \(=\) 'T' or 't', then op(sub (A) ) \(=\operatorname{sub}(A)\) ' ;
if transa \(=\) 'C' or 'c', then op(sub \((A))=\operatorname{conjg}(\operatorname{sub}(A) ')\).
(global) CHARACTER*1. Specifies whether the matrix \(\operatorname{sub}(A)\) is unit triangular:
if diag = 'U' or 'u' then the matrix is unit triangular;
if diag = 'N' or 'n', then the matrix is not unit triangular.
(global) INTEGER. Specifies the number of rows of the distributed matrix sub ( \(B\) ), \(m \geq 0\).
(global) INTEGER. Specifies the number of columns of the distributed matrix sub ( \(B\) ), \(n \geq 0\).
(global)REAL for pstrmm
DOUBLE PRECISION for pdtrmm
COMPLEX for pctrmm
DOUBLE COMPLEX for pztrmm
Specifies the scalar alpha.
When alpha is zero, then the arrayb need not be set before entry.
(local)REAL for pstrmm
DOUBLE PRECISION for pdtrmm
COMPLEX for pctrmm
\begin{tabular}{|c|c|}
\hline & DOUBLE COMPLEX for pztrmm \\
\hline & Array, size Ild_a by \(k a\), where \(k a\) is at least LOCq (1, ja+m-1) when side = 'L' or 'l' and is at least LOCq(1, ja+n-1) when side = 'R' or 'r'. \\
\hline & Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub ( \(A\) ), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub \((A)\) is not referenced. \\
\hline & Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub ( \(A\) ), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix sub ( \(A\) ) is not referenced. \\
\hline & When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub ( \(A\) ) are not referenced either, but are assumed to be unity. \\
\hline ia, ja & (global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively. \\
\hline desca & (global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(A\). \\
\hline b & (local)REAL for pstrmm \\
\hline & DOUBLE PRECISION for pdtrmm \\
\hline & COMPLEX for pctrmm \\
\hline & DOUBLE COMPLEX for pztrmm \\
\hline & Array, size (lld_b, LOCq (1, jbbn-1) ). \\
\hline & Before entry, this array contains the local pieces of the distributed matrix sub ( \(B\) ). \\
\hline ib, jb & (global) INTEGER. The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub ( \(B\) ), respectively. \\
\hline descb & (global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(B\). \\
\hline
\end{tabular}

\section*{Output Parameters}
\(b\)
Overwritten by the transformed distributed matrix.

\section*{p?trsm}

Solves a distributed matrix equation (one matrix operand is triangular).

\section*{Syntax}
```

call pstrsm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
call pdtrsm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)
call pctrsm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)

```
```

call pztrsm(side, uplo, transa, diag, m, n, alpha, a, ia, ja, desca, b, ib, jb, descb)

```

\section*{Include Files}
- mkl_pblas.h

\section*{Description}

The p?trsm routines solve one of the following distributed matrix equations:
```

op(sub(A))*X = alpha*sub (B),

```
or
```

X*op(sub (A)) = alpha*sub(B),

```
where:
alpha is a scalar,
```

X and sub (B) are m-by-n distributed matrices, sub (B)=B(ib:ib+m-1, jb:jb+n-1);

```
\(A\) is a unit, or non-unit, upper or lower triangular distributed matrix, sub \((A)=A(i a: i a+m-1, j a: j a+m-1)\), if side \(=\) 'L' or 'l', and sub \((A)=A(i a: i a+n-1, j a: j a+n-1)\), if side = 'R' or 'r';
\(\operatorname{op}(\operatorname{sub}(A))\) is one of op (sub \((A))=\operatorname{sub}(A), \operatorname{orop}(\operatorname{sub}(A))=\operatorname{sub}(A)^{\prime}, \operatorname{orop}(\operatorname{sub}(A))=\) conjg(sub (A)').

The distributed matrix sub \((B)\) is overwritten by the solution matrix \(X\).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline side & (global) CHARACTER*1. Specifies whether op (sub (A)) appears on the left or right of \(X\) in the equation: \\
\hline & if side \(=\) 'L' or 'l', then op(sub ( \(A\) ) **X = alpha*sub ( \(B\) ); \\
\hline & if side \(=\) 'R' or 'r', then \(X^{*} \mathrm{op}(\operatorname{sub}(A))=\) alpha*sub \((B)\). \\
\hline uplo & (global) CHARACTER*1. Specifies whether the distributed matrix sub ( \(A\) ) is upper or lower triangular: \\
\hline & if uplo = 'U' or 'u', then the matrix is upper triangular; \\
\hline & if uplo = 'L' or 'l', then the matrix is low triangular. \\
\hline transa & (global) CHARACTER*1. Specifies the form of op (sub (A)) used in the matrix equation: \\
\hline & if transa \(=\) 'N' or 'n', then op (sub ( \(A\) ) ) = sub \((A)\); \\
\hline & if transa \(=\) 'T' or 't', then op (sub (A) ) = sub \((A)\) '; \\
\hline & if transa \(=\) 'C' or 'c', then op (sub (A) ) = conjg (sub (A)'). \\
\hline diag & (global) CHARACTER*1. Specifies whether the matrix \(\operatorname{sub}(A)\) is unit triangular: \\
\hline & if diag = 'U' or 'u' then the matrix is unit triangular; \\
\hline & if diag = 'N' or 'n', then the matrix is not unit triangular. \\
\hline m & (global) INTEGER. Specifies the number of rows of the distributed matrix sub ( \(B\) ), \(m \geq 0\). \\
\hline
\end{tabular}
\(n\)
alpha
a
b
(global) INTEGER. Specifies the number of columns of the distributed matrix sub ( \(B\) ), \(n \geq 0\).
(global)REAL for pstrsm
DOUBLE PRECISION for pdtrsm
COMPLEX for pctrsm
DOUBLE COMPLEX for pztrsm
Specifies the scalar alpha.
When alpha is zero, then \(a\) is not referenced and \(b\) need not be set before entry.
(local)REAL for pstrsm
DOUBLE PRECISION for pdtrsm
COMPLEX for pctrsm
DOUBLE COMPLEX for pztrsm
Array, size lld_a by \(k a\), where \(k a\) is at least LOCq(1, ja+m-1) when side \(=\) 'L' or 'l' and is at least LOCq(1, ja+n-1) when side = 'R' or 'r'.

Before entry with uplo = 'U' or 'u', this array contains the local entries corresponding to the entries of the upper triangular distributed matrix sub ( \(A\) ), and the local entries corresponding to the entries of the strictly lower triangular part of the distributed matrix sub \((A)\) is not referenced.

Before entry with uplo = 'L' or 'l', this array contains the local entries corresponding to the entries of the lower triangular distributed matrix sub ( \(A\) ), and the local entries corresponding to the entries of the strictly upper triangular part of the distributed matrix sub \((A)\) is not referenced.

When diag = 'U' or 'u', the local entries corresponding to the diagonal elements of the submatrix sub ( \(A\) ) are not referenced either, but are assumed to be unity.
(global) INTEGER. The row and column indices in the distributed matrix \(A\) indicating the first row and the first column of the submatrix sub ( \(A\) ), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(A\).
(local)REAL for pstrsm
DOUBLE PRECISION for pdtrsm
COMPLEX for pctrsm
DOUBLE COMPLEX for pztrsm
Array, size (lld_b, LOCq (1, jb+n-1)).
Before entry, this array contains the local pieces of the distributed matrix sub ( \(B\) ).
ib, jb
descb
(global) INTEGER. The row and column indices in the distributed matrix \(B\) indicating the first row and the first column of the submatrix sub ( \(B\) ), respectively.
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix \(B\).

\section*{Partial Differential Equations Support}

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides tools for solving Partial Differential Equations (PDE). These tools are Trigonometric Transform interface routines (seeTrigonometric Transform Routines) and Poisson Solver (see Fast Poisson Solver Routines).

Poisson Solver is designed for fast solving of simple Helmholtz, Poisson, and Laplace problems. The solver is based on the Trigonometric Transform interface, which is, in turn, based on the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Fast Fourier Transform (FFT) interface (refer toFourier Transform Functions), optimized for Intel \({ }^{\circledR}\) processors.

Direct use of the Trigonometric Transform routines may be helpful to those who have already implemented their own solvers similar to the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver. As it may be hard enough to modify the original code so as to make it work with Poisson Solver, you are encouraged to use fast (staggered) sine/cosine transforms implemented in the Trigonometric Transform interface to improve performance of your solver.
Both Trigonometric Transform and Poisson Solver routines can be called from C and Fortran, although the interfaces description uses \(C\) convention. Fortran users can find routine calls specifics in Calling PDE Support Routines from Fortran.

\section*{NOTE}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Trigonometric Transform and Poisson Solver routines support Fortran versions starting with Fortran 90.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{Trigonometric Transform Routines}

In addition to the Fast Fourier Transform (FFT) interface, described in Fast Fourier Transforms, Intel® oneAPI Math Kernel Library (oneMKL) supports theReal Discrete Trigonometric Transforms (sometimes called real-toreal Discrete Fourier Transforms) interface. In this document, the interface is referred to as \(\Pi\) interface. It implements a group of routines ( \(T\) routines) used to compute sine/cosine, staggered sine/cosine, and twice staggered sine/cosine transforms (referred to as staggered2 sine/cosine transforms, for brevity). The \(\Pi\) interface provides much flexibility of use: you can adjust routines to your particular needs at the cost of manually tuning routine parameters or just call routines with default parameter values. The current Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) implementation of the \(\Pi T\) interface can be used in solving partial differential equations and contains routines that are helpful for Fast Poisson and similar solvers.
To describe the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) TT interface, the C convention is used. Fortran users should refer toCalling PDE Support Routines from Fortran.

For the list of Trigonometric Transforms currently implemented in Intel® oneAPI Math Kernel Library (oneMKL) TT interface, seeTransforms Implemented.
If you have got used to the FFTW interface (www.fftw.org), you can call the TT interface functions through real-to-real FFTW to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) wrappers without changing FFTW function calls in your code (refer toFFTW to Intel \({ }^{\circledR}\) MKL Wrappers for FFTW 3.x for details). However, you are strongly encouraged to use the native \(\Pi\) interface for better performance. Another reason why you should use the wrappers cautiously is that TT and the real-to-real FFTW interfaces are not fully compatible and some features of the real-to-real FFTW, such as strides and multidimensional transforms, are not available through wrappers.

\section*{Trigonometric Transforms Implemented}

TT routines allow computing the following transforms:
Forward sine transform
\(F(k)=\frac{2}{n} \sum_{i=1}^{n-1} f(i) \sin \frac{k i \pi}{n}, k=1, \ldots, n-1\)
Backward sine transform
\(f(i)=\sum_{k=1}^{n-1} F(k) \sin \frac{k i \pi}{n}, i=1, \ldots, n-1\)
Forward staggered sine transform
\(F(k)=\frac{1}{n} \sin \frac{(2 k-1) \pi}{2} f(n)+\frac{2}{n} \sum_{i=1}^{n-1} f(i) \sin \frac{(2 k-1) i \pi}{2 n}, k=1, \ldots, n\)
Backward staggered sine transform
\(f(i)=\sum_{k=1}^{n} F(k) \sin \frac{(2 k-1) i \pi}{2 n}, i=1, \ldots, n\)
Forward staggered2 sine transform
\(F(k)=\frac{2}{n} \sum_{i=1}^{n} f(i) \sin \frac{(2 k-1)(2 i-1) \pi}{4 n}, k=1, \ldots, n\)
Backward staggered2 sine transform
\(f(i)=\sum_{k=1}^{n} F(k) \sin \frac{(2 k-1)(2 i-1) \pi}{4 n}, i=1, \ldots, n\)
Forward cosine transform
\(F(k)=\frac{1}{n}[f(o)+f(n) \cos k \pi]+\frac{2}{n} \sum_{i=1}^{n-1} f(i) \cos \frac{k i \pi}{n}, k=0, \ldots, n\)
Backward cosine transform
\(f(i)=\frac{1}{2}[F(o)+F(n) \cos i \pi]+\sum_{k=1}^{n-1} F(k) \cos \frac{k i \pi}{n}, i=0, \ldots, n\)
Forward staggered cosine transform
\(F(k)=\frac{1}{n} f(0)+\frac{2}{n} \sum_{i=1}^{n-1} f(i) \cos \frac{(2 k+1) i \pi}{2 n}, k=0, \ldots, n-1\)
Backward staggered cosine transform
\(f(i)=\sum_{k=0}^{n-1} F(k) \cos \frac{(2 k+1) i \pi}{2 n}, i=0, \ldots, n-1\)
Forward staggered2 cosine transform
\(F(k)=\frac{2}{n} \sum_{i=1}^{n} f(i) \cos \frac{(2 k-1)(2 i-1) \pi}{4 n}, k=1, \ldots, n\)
Backward staggered2 cosine transform
\(f(i)=\sum_{k=1}^{n} F(k) \cos \frac{(2 k-1)(2 i-1) \pi}{4 n}, i=1, \ldots, n\)

\section*{NOTE}

The size of the transform \(n\) can be any integer greater or equal to 2 .

\section*{Sequence of Invoking TT Routines}

Computation of a transform using \(\Pi\) interface is conceptually divided into four steps, each of which is performed via a dedicated routine. Table "TT Interface Routines" lists the routines and briefly describes their purpose and use.
Most TT routines have versions operating with single-precision and double-precision data. Names of such routines begin respectively with " \(s\) " and " d ". The wildcard "?" stands for either of these symbols in routine names.

\section*{TT Interface Routines}
\begin{tabular}{ll}
\hline Routine & Description \\
\hline ?_init_trig_transform & \begin{tabular}{l} 
Initializes basic data structures of Trigonometric \\
Transforms.
\end{tabular} \\
?_commit_trig_transform & \begin{tabular}{l} 
Checks consistency and correctness of user-defined data \\
and creates a data structure to be used by Intel® oneAPI
\end{tabular} \\
Math Kernel Library (oneMKL) FFT interface \({ }^{1}\).
\end{tabular}
\({ }^{1}\) TT routines call Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface for better performance.
To find a transformed vector for a particular input vector only once, the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) TT interface routines are normally invoked in the order in which they are listed inTable "TT Interface Routines".

\section*{NOTE}

Though the order of invoking \(T\) routines may be changed, it is highly recommended to follow the above order of routine calls.

The diagram in Figure "Typical Order of Invoking TT Interface Routines" indicates the typical order in which \(\Pi\) interface routines can be invoked in a general case (prefixes and suffixes in routine names are omitted).
__border__top

\section*{Typical Order of Invoking TT Interface Routines}


A general scheme of using \(\Pi\) routines for double-precision computations is shown below. A similar scheme holds for single-precision computations with the only difference in the initial letter of routine names.
```

 d_init_trig_transform(&n, &tt_type, ipar, dpar, &ir);
 /* Change parameters in ipar if necessary. */
/* Note that the result of the Transform will be in f. If you want to preserve the data stored
in f,
save it to another location before the function call below */
d_commit_trig_transform(f, \&handle, ipar, dpar, \&ir);
d_forward_trig_transform(f, \&handle, ipar, dpar, \&ir);
d_backwar\overline{d_trig_transform(f, \&handle, ipar, dpar, \&ir);}
free_trig_transform(\&handle, ipar, \&ir);
/* here the user may clean the memory used by f, dpar, ipar */

```

You can find examples of code that uses TT interface routines to solve one-dimensional Helmholtz problem in the examples \(\backslash p d e t t f \backslash\) source folderin your Intel® oneAPI Math Kernel Library (oneMKL) directory.

\section*{Trigonometric Transform Interface Description}

All types in this documentation are either standard C types float and double or MKL_INT integer type. Fortran users can call the routines with REAL and DOUBLE PRECISION types of floating-point values and INTEGER or INTEGER*8 integer type depending on the programming interface (LP64 or ILP64). To better understand usage of the types, see examples in the examples \(\backslash p d e t t f \backslash\) source folderin your Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory.

\section*{Routine Options}

All \(\Pi\) routines use parameters to pass various options to one another. These parameters are arrays ipar, dpar and spar. Values for these parameters should be specified very carefully (see Common Parameters). You can change these values during computations to meet your needs.

\section*{WARNING}

To avoid failure or incorrect results, you must provide correct and consistent parameters to the routines.

\section*{User Data Arrays}
\(\pi\) routines take arrays of user data as input. For example, user arrays are passed to the routine d_forward_trig_transformto compute a forward Trigonometric Transform. To minimize storage requirements and improve the overall run-time efficiency, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) \(T T\) routines do not make copies of user input arrays.

\section*{NOTE}

If you need a copy of your input data arrays, you must save them yourself.

For better performance, align your data arrays as recommended in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide (search the document for coding techniques to improve performance).

\section*{TT Routines}

The section gives detailed description of \(\Pi\) routines, their syntax, parameters and values they return. Double-precision and single-precision versions of the same routine are described together.
TT routines call Intel \({ }^{\otimes}\) oneAPI Math Kernel Library (oneMKL) FFT interface (described inFFT Functions), which enhances performance of the routines.

\section*{?_init_trig_transform}

Initializes basic data structures of a Trigonometric
Transform.

\section*{Syntax}
```

void d_init_trig_transform(MKL_INT *n, MKL_INT *tt_type, MKL_INT ipar[], double dpar[],
MKL_INT *stat);
void s_init_trig_transform(MKL_INT *n, MKL_INT *tt_type, MKL_INT ipar[], float spar[],
MKL INT *stat);

```

Include Files
- mkl_trig_transforms.f90

\section*{Input Parameters}
\(n\)
MKL_INT*. Contains the size of the problem, which should be a positive integer greater than 1. Note that data vector of the transform, which other TT routines will use, must have size \(n+1\) for all but staggered 2 transforms. Staggered2 transforms require the vector of size \(n\).

MKL_INT*. Contains the type of transform to compute, defined via a set of named constants. The following constants are available in the current implementation of TT interface: MKL_SINE_TRANSFORM,
MKL_STAGGERED_SINE_TRANSFORM, MKL_STAGGERED2_SINE_TRANSFORM; MKL_COSINE_TRANSFORM, MKL_STAGGERED_COSINE_TRANSFORM, MKL_STAGGERED2_COSINE_TRANSFORM.

\section*{Output Parameters}
ipar
dpar
spar
stat

MKL_INT array of size 128. Contains integer data needed for Trigonometric Transform computations.
double array of size \(5 n / 2+2\). Contains double-precision data needed for Trigonometric Transform computations.
float array of size \(5 n / 2+2\). Contains single-precision data needed for Trigonometric Transform computations.

MKL_INT*. Contains the routine completion status, which is also written to ipar[6]. The status should be 0 to proceed to other \(\Pi T\) routines.

\section*{Description}

The ?_init_trig_transform routine initializes basic data structures for Trigonometric Transforms of appropriate precision. After a call to ?_init_trig_transform, all subsequently invoked \(T\) routines use values of ipar and dpar (spar) array parameters returned by ?_init_trig_transform. The routine initializes the entire array ipar. In the dpar or spar array, ?_init_trig_transform initializes elements that do not depend upon the type of transform. For a detailed description of arrays ipar, dpar and spar, refer to Common Parameters. You can skip a call to the initialization routine in your code. For more information, see Caveat on Parameter Modifications.

\section*{Return Values}
```

stat=0

```
stat \(=-99999\)
The routine successfully completed the task. In general, to proceed with computations, the routine should complete with this stat value. The routine failed to complete the task.
?_commit_trig_transform
Checks consistency and correctness of user's data as well as initializes certain data structures required to perform the Trigonometric Transform.

\section*{Syntax}
```

void d_commit_trig_transform(double f[], DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT
ipar[], double dpar[], MKL_INT *stat);
void s_commit_trig_transform(float f[], DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT ipar[],
float spar[], MKL_INT *stat);

```

Include Files
- mkl_trig_transforms.f90

Input Parameters
f
```

double for d_commit_trig_transform,
float fors_commit_trig_transform,

```
array of size \(n\) for staggered 2 transforms and of size \(n+1\) for all other transforms, where \(n\) is the size of the problem. Contains data vector to be transformed. Note that the following values should be 0.0 up to rounding errors:
- \(\quad f[0]\) and \(f[n]\) for sine transforms
- \(\quad f[n]\) for staggered cosine transforms
- \(\quad f[0]\) for staggered sine transforms.

Otherwise, the routine will produce a warning, and the result of the computations for sine transforms may be wrong. These restrictions meet the requirements of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver, which the \(T T\) interface is primarily designed for (for details, seeFast Poisson Solver Routines).

MKL_INT array of size 128. Contains integer data needed for Trigonometric Transform computations.
double array of size \(5 n / 2+2\). Contains double-precision data needed for Trigonometric Transform computations. The routine initializes most elements of this array.
float array of size \(5 n / 2+2\). Contains single-precision data needed for Trigonometric Transform computations. The routine initializes most elements of this array.

\section*{Output Parameters}
handle
ipar
dpar
spar
stat

DFTI_DESCRIPTOR_HANDLE*. The data structure used by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface (for details, refer toFFT Functions).

Contains integer data needed for Trigonometric Transform computations. On output, ipar [6] is updated with the stat value.

Contains double-precision data needed for Trigonometric Transform computations. On output, the entire array is initialized.

Contains single-precision data needed for Trigonometric Transform computations. On output, the entire array is initialized.

MKL_INT*. Contains the routine completion status, which is also written to ipar[6].

\section*{Description}

The routine ?_commit_trig_transform checks consistency and correctness of the parameters to be passed to the transform routines ?_forward_trig_transform and/or?_backward_trig_transform. The routine also initializes the following data structures: handle, dpar in case of d_commit_trig_transform, and spar in case of s_commit_trig_transform. The ?_commit_trig_transform routine initializes only those elements of dpar or spar that depend upon the type of transform, defined in the ?_init_trig_transform routine and passed to ?_commit_trig_transform with the ipar array. The size of the problem n, which determines sizes of the array parameters, is also passed to the routine with the ipar array and defined in the previously called ?_init_trig_transform routine. For a detailed description of arrays ipar, dpar and spar, refer to Common Parameters. The routine performs only a basic check for correctness and consistency
of the parameters. If you are going to modify parameters of \(T T\) routines, see Caveat on Parameter Modifications. Unlike ?_init_trig_transform, you must call the ?_commit_trig_transform routine in your code.

\section*{Return Values}
```

stat= 11
stat= 10
stat=1
stat=0
stat= -100
stat=-1000
stat=-10000

```

The routine produced some warnings and made some changes in the parameters to achieve their correctness and/or consistency. You may proceed with computations by assigning ipar [6]=0 if you are sure that the parameters are correct.

The routine made some changes in the parameters to achieve their correctness and/or consistency. You may proceed with computations by assigning ipar[6]=0 if you are sure that the parameters are correct.

The routine produced some warnings. You may proceed with computations by assigning ipar [6]=0 if you are sure that the parameters are correct.

The routine completed the task normally.
The routine stopped for any of the following reasons:
- An error in the user's data was encountered.
- Data in ipar, dpar or spar parameters became incorrect and/or inconsistent as a result of modifications.

The routine stopped because of an FFT interface error.
The routine stopped because the initialization failed to complete or the parameter ipar [0] was altered by mistake.

\section*{NOTE}

Although positive values of stat usually indicate minor problems with the input data and Trigonometric Transform computations can be continued, you are highly recommended to investigate the problem first and achieve stat=0.

\section*{?_forward_trig_transform}

Computes the forward Trigonometric Transform of type specified by the parameter.

\section*{Syntax}
```

void d_forward_trig_transform(double f[], DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT
ipar[], double dpar[], MKL_INT *stat);
void s_forward_trig_transform(float f[], DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT
ipar[], float spar[], MKL_INT *stat);

```

\section*{Include Files}
- mkl_trig_transforms.f90

\section*{Input Parameters}
```

f double ford_forward_trig_transform,
float for s_forward_trig_transform,

```
array of size \(n\) for staggered 2 transforms and of size \(n+1\) for all other transforms, where \(n\) is the size of the problem. On input, contains data vector to be transformed. Note that the following values should be 0.0 up to rounding errors:
- \(\quad f[0]\) and \(f[n]\) for sine transforms
- \(\quad f[n]\) for staggered cosine transforms
- \(\quad f[0]\) for staggered sine transforms.

Otherwise, the routine will produce a warning, and the result of the computations for sine transforms may be wrong. The above restrictions meet the requirements of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver, which the TT interface is primarily designed for (for details, seeFast Poisson Solver Routines).

DFTI_DESCRIPTOR_HANDLE*. The data structure used by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface (for details, seeFFT Functions).

MKL_INT array of size 128. Contains integer data needed for Trigonometric Transform computations.
double array of size \(5 n / 2+2\). Contains double-precision data needed for Trigonometric Transform computations.
float array of size \(5 n / 2+2\). Contains single-precision data needed for Trigonometric Transform computations.

\section*{Output Parameters}
\(f\)
ipar
stat
Contains the transformed vector on output.
Contains integer data needed for Trigonometric Transform computations. On output, ipar [6] is updated with the stat value.

MKL_INT*. Contains the routine completion status, which is also written to ipar[6].

\section*{Description}

The routine computes the forward Trigonometric Transform of type defined in the ?_init_trig_transform routine and passed to ? forward_trig_transform with the ipar array. The size of the problem n, which determines sizes of the array parameters, is also passed to the routine with the ipar array and defined in the previously called ?_init_trig_transform routine. The other data that facilitates the computation is created by ?_commit_trig_transform and supplied in dpar or spar. For a detailed description of arrays ipar, dpar and spar, refer to Common Parameters. The routine has a commit step, which calls the ?_commit_trig_transform routine. The transform is computed according to formulas given in Transforms Implemented. The routine replaces the input vector \(f\) with the transformed vector.

\section*{NOTE}

If you need a copy of the data vector \(f\) to be transformed, make the copy before calling the ?_forward_trig_transform routine.

\section*{Return Values}
```

stat=0
stat= -100
stat= -1000
stat= -10000

```

The routine completed the task normally.
The routine stopped for any of the following reasons:
- An error in the user's data was encountered.
- Data in ipar, dpar or spar parameters became incorrect and/or inconsistent as a result of modifications.

The routine stopped because of an FFT interface error.
The routine stopped because its commit step failed to complete or the parameter ipar[0] was altered by mistake.
> ?_backward_trig_transform
> Computes the backward Trigonometric Transform of type specified by the parameter.

\section*{Syntax}
```

void d_backward_trig_transform(double f[], DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT
ipar[], double dpar[], MKL_INT *stat);
void s_backward_trig_transform(float f[], DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT
ipar[], float spar[], MKL_INT *stat);

```

\section*{Include Files}
- mkl_trig_transforms.f90

\section*{Input Parameters}
```

f

```
double for d_backward_trig_transform,
float for s_backward_trig_transform,
array of size \(n\) for staggered 2 transforms and of size \(n+1\) for all other
transforms, where \(n\) is the size of the problem. On input, contains
data vector to be transformed. Note that the following values should
be 0.0 up to rounding errors:
- \(f[0]\) and \(f[n]\) for sine transforms
- \(\quad f[n]\) for staggered cosine transforms
- \(\quad f[0]\) for staggered sine transforms.

Otherwise, the routine will produce a warning, and the result of the computations for sine transforms may be wrong. The above restrictions meet the requirements of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver, which the TT interface is primarily designed for (for details, seeFast Poisson Solver Routines).
```

handle
ipar
dpar
spar

```

\section*{Output Parameters}

DFTI_DESCRIPTOR_HANDLE*. The data structure used by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface (for details, seeFFT Functions).

MKL_INT array of size 128. Contains integer data needed for Trigonometric Transform computations.
double array of size \(5 n / 2+2\). Contains double-precision data needed for Trigonometric Transform computations.
float array of size \(5 n / 2+2\). Contains single-precision data needed for Trigonometric Transform computations.

\section*{f}
ipar
stat
Contains the transformed vector on output.
Contains integer data needed for Trigonometric Transform computations. On output, ipar [6] is updated with the stat value.

MKL_INT*. Contains the routine completion status, which is also written to ipar[6].

\section*{Description}

The routine computes the backward Trigonometric Transform of type defined in the ? _init_trig_transform routine and passed to ?_backward_trig_transform with the ipar array. The size of the problem \(n\), which determines sizes of the array parameters, is also passed to the routine with the ipar array and defined in the previously called ?_init_trig_transform routine. The other data that facilitates the computation is created by ?_commit_trig_transform and supplied in dpar or spar. For a detailed description of arrays ipar, dpar and spar, refer to Common Parameters. The routine has a commit step, which calls the ?_commit_trig_transform routine. The transform is computed according to formulas given in Transforms Implemented. The routine replaces the input vector \(f\) with the transformed vector.

\section*{NOTE}

If you need a copy of the data vector \(f\) to be transformed, make the copy before calling the ?_backward_trig_transform routine.

\section*{Return Values}
```

stat=0
stat= -100
stat= -1000
stat= -10000

```

The routine completed the task normally.
The routine stopped for any of the following reasons:
- An error in the user's data was encountered.
- Data in ipar, dpar or spar parameters became incorrect and/or inconsistent as a result of modifications.

The routine stopped because of an FFT interface error.
The routine stopped because its commit step failed to complete or the parameter ipar [0] was altered by mistake.
```

free_trig_transform
Cleans the memory allocated for the data structure
used by the FFT interface.

```
Syntax
void free_trig_transform(DFTI_DESCRIPTOR_HANDLE *handle, MKL_INT ipar[], MKL_INT
*stat);

Include Files
- mkl_trig_transforms.f90

\section*{Input Parameters}
```

ipar

```
handle

MKL_INT array of size 128. Contains integer data needed for Trigonometric Transform computations.

DFTI_DESCRIPTOR_HANDLE*. The data structure used by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface (for details, refer toFFT Functions).

\section*{Output Parameters}
```

handle The data structure used by Intel® oneAPI Math Kernel Library
(oneMKL) FFT interface. Memory allocated for the structure is released
on output.
Contains integer data needed for Trigonometric Transform
computations. On output, ipar [6] is updated with the stat value.
MKL_INT*. Contains the routine completion status, which is also
written to ipar[6].

```

\section*{Description}

The free_trig_transform routine cleans the memory used by the handlestructure, needed for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT functions. To release the memory allocated for other parameters, include cleaning of the memory in your code.

\section*{Return Values}
```

stat=0 The routine completed the task normally.
stat=-1000 The routine stopped because of an FFT interface error.
stat= -99999
The routine failed to complete the task.

```

\section*{Common Parameters of the Trigonometric Transforms}

This section provides description of array parameters that hold TT routine options: ipar, dpar and spar.

\section*{NOTE}

Initial values are assigned to the array parameters by the appropriate? init_trig_transform and ?_commit_trig_transform routines.

MKL_INT array of size 128, holds integer data needed for Trigonometric Transform computations. Its elements are described in Table "Elements of the ipar Array":

\section*{Elements of the ipar Array}

\section*{Index \\ Description}

0

1

8

2

5

6

7

Contains the size of the problem to solve. The ?_init_trig_transform routine sets ipar [0]=n, and all subsequently called TT routines use ipar[0] as the size of the transform.

Contains error messaging options:
- ipar[1]=-1 indicates that all error messages will be printed to the file MKL_Trig_Transforms_log.txt in the folder from which the routine is called. If the file does not exist, the routine tries to create it. If the attempt fails, the routine prints information that the file cannot be created to the standard output device.
- ipar[1]=0 indicates that no error messages will be printed.
- ipar[1]=1 (default) indicates that all error messages will be printed to the preconnected default output device (usually, screen).
In case of errors, each \(\Pi\) routine assigns a non-zero value to stat regardless of the ipar[1] setting.

Contains warning messaging options:
- ipar[2]=-1 indicates that all warning messages will be printed to the file MKL_Trig_Transforms_log.txt in the directory from which the routine is called. If the file does not exist, the routine tries to create it. If the attempt fails, the routine prints information that the file cannot be created to the standard output device.
- ipar[2]=0 indicates that no warning messages will be printed.
- ipar[2]=1 (default) indicates that all warning messages will be printed to the preconnected default output device (usually, screen).
In case of warnings, the stat parameter will acquire a non-zero value regardless of the ipar[2] setting.

Rrough \(4 \quad\) Reserved for future use.
Contains the type of the transform. The ?_init_trig_transform routine sets ipar[5] =tt_type, and all subsequently \(\overline{\text { called }} \bar{T} T\) routines use ipar [5] as the type of the transform.
Contains the stat value returned by the last completed \(T\) routine. Used to check that the previous call to a \(\Pi\) routine completed with stat \(=0\).

Informs the ?_commit_trig_transform routines whether to initialize data structures dpar (spar) and handle. ipar[7]=0 indicates that the routine should skip the initialization and only check correctness and consistency of the parameters. Otherwise, the routine initializes the data structures. The default value is 1 .
The possibility to check correctness and consistency of input data without initializing data structures dpar, spar and handle enables avoiding performance losses in a repeated use of the same transform for different data vectors. Note that you can benefit from the opportunity that ipar [7] gives only if you are sure to have supplied proper tolerance value in the dpar or spar array. Otherwise, avoid tuning this parameter.
Contains message style options for \(T\) routines. If ipar [8]=0 then \(T T\) routines print all error and warning messages in Fortran-style notations. The default value is 1 .
\begin{tabular}{ll}
\hline Index & Description \\
\hline 9 & \begin{tabular}{l} 
When specifying message style options, be aware that by default, numbering of \\
elements in Fortran arrays starts at 1 . The use of \(i p a r[8]\) enables you to view \\
messages in a more convenient style.
\end{tabular} \\
\begin{tabular}{l} 
Specifies the number of OpenMP threads to run TT routines in the OpenMP \\
environment of the Intel® oneAPI Math Kernel Library (oneMKL) Poisson Solver. The \\
default value is 1. You are highly recommended not to alter this value. See \\
alsoCaveat on Parameter Modifications.
\end{tabular} \\
\begin{tabular}{l} 
Specifies the mode of compatibility with FFTW. The default value is 0. Set the value to \\
1 to invoke compatibility with FFTW. In the latter case, results will not be normalized, \\
because FFTW does not do this. It is highly recommended not to alter this value, but \\
rather use real-to-real FFTW to MKL wrappers, described in FFTW to Intel® MKL \\
Wrappers for FFTW 3.x. See also Caveat on Parameter Modifications.
\end{tabular} \\
\hline 11 through 127 & \begin{tabular}{l} 
Reserved for future use.
\end{tabular} \\
\hline
\end{tabular}

\section*{NOTE}

While you can declare the ipar array as MKL_INT ipar [11], for future compatibility you should declare ipar as MKL_INT ipar[128].

Arrays dpar and spar are the same except in the data precision:
\(\left.\begin{array}{ll}\text { dpar } & \begin{array}{l}\text { double array of size } 5 n / 2+2 \text {, holds data needed for double-precision routines to } \\
\text { perform } T T \text { computations. This array is initialized in the }\end{array} \\
\text { d__nit_trig_transform and d_commit_trig_transform routines. }\end{array}\right\}\)\begin{tabular}{l} 
float array of size \(5 n / 2+2\), holds data needed for single-precision routines to \\
perform \(T r\) computations. This array is initialized in the \\
s_init_trig_transform and s_commit_trig_transform routines.
\end{tabular}

As dpar and spar have similar elements in respective positions, the elements are described together in Table "Elements of the dpar and spar Arrays":
Elements of the dpar and spar Arrays
\begin{tabular}{|c|c|}
\hline Index & Description \\
\hline 0 & Contains the first absolute tolerance used by the appropriate ? commit_trig_transform routine. For a staggered cosine or a sine transform, \(f[n]\) should be equal to 0.0 and for a staggered sine or a sine transform, \(f[0]\) should be equal to 0.0 . The ? commit_trig_transform routine checks whether absolute values of these parameters are below \(\operatorname{dpar}[0] \star_{n}\) or \(\operatorname{spar}[0] \star_{n}\), depending on the routine precision. To suppress warnings resulting from tolerance checks, set dpar [0] or spar [0] to a sufficiently large number. \\
\hline 1 & Reserved for future use. \\
\hline 2 through 5n/2+1 & \begin{tabular}{l}
Contain tabulated values of trigonometric functions. Contents of the elements depend upon the type of transform tt_type, set up in the ?_commit_trig_transform routine: \\
- If \(t t\) _type=MKL_SINE_TRANSFORM, the transform uses only the first \(n / 2\) array elements, which contain tabulated sine values. \\
 \(3 n / 2\) array elements, which contain tabulated sine and cosine values. \\
- If \(t t\) type=MKL_STAGGERED2_SINE_TRANSFORM, the transform uses all the \(5 \mathrm{n} / 2\) array elements, which contain tabulated sine and cosine values.
\end{tabular} \\
\hline
\end{tabular}

\section*{Index Description}
- If \(t t\) _ \(t y p==M K L \_C O S I N E \_T R A N S F O R M\), the transform uses only the first \(n\) array elements, which contain tabulated cosine values.
- If \(t t\) _type=MKL_STAGGERED_COSINE_TRANSFORM, the transform uses only the first \(\overline{3} n / 2\) elements, which contain tabulated sine and cosine values.
- If \(t t\) type=MKL_STAGGERED2_COSINE_TRANSFORM, the transform uses all the \(5 n / 2\) elements, which contain tabulated sine and cosine values.

\section*{NOTE}

To save memory, you can define the array size depending upon the type of transform.

\section*{Caveat on Parameter Modifications}

Flexibility of the TT interface enables you to skip a call to the ?_init_trig_transform routine and to initialize the basic data structures explicitly in your code. You may also need to modify the contents of ipar, dpar and spar arrays after initialization. When doing so, provide correct and consistent data in the arrays. Mistakenly altered arrays cause errors or wrong computation. You can perform a basic check for correctness and consistency of parameters by calling the ?_commit_trig_transform routine; however, this does not ensure the correct result of a transform but only reduces the chance of errors or wrong results.

\section*{NOTE}

To supply correct and consistent parameters to \(\Pi\) routines, you should have considerable experience in using the TT interface and good understanding of elements that the ipar, spar and dpar arrays contain and dependencies between values of these elements.

However, in rare occurrences, even advanced users might fail to compute a transform using \(T\) routines after the parameter modifications. In cases like these, refer for technical support at http://www.intel.com/ software/products/support/ .

\section*{WARNING}

The only way that ensures proper computation of the Trigonometric Transforms is to follow a typical sequence of invoking the routines and not change the default set of parameters. So, avoid modifications of ipar, dpar and spar arrays unless a strong need arises.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Trigonometric Transform Implementation Details}

Several aspects of the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) TT interface are platform-specific and language-specific. To promote portability across platforms and ease of use across different languages, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides you with the \(\Pi\) I language-specific header file to include in your code:
- mkl_trig_transforms.f90, to be used together with mkl_dfti.f90.

\section*{NOTE}
- Intel® oneAPI Math Kernel Library (oneMKL) TT interface supports Fortran versions starting with Fortran 90.
- Use of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) TT software without including the above language-specific header files is not supported.

\section*{Header File}

The header file below defines the following function prototypes:
```

SUBROUTINE D_INIT_TRIG_TRANSFORM(n, tt_type, ipar, dpar, stat)
INTEGER, INTENT (IN)
INTEGER, INTENT(INOUT) :: ipar(*)
REAL(8), INTENT(INOUT) :: dpar(*)
INTEGER, INTENT(OUT) :: stat
END SUBROUTINE D_INIT_TRIG_TRANSFORM
SUBROUTINE D_COMMIT_TRIG_TRANSFORM(f, handle, ipar, dpar, stat)
REAL(8), INTENT(INOUT) :: f(*)
TYPE (DFTI_DESCRIPTOR), POINTER :: handle
INTEGER, INTENT(INOUT) :: ipar(*)
REAL(8), INTENT(INOUT) :: dpar(*)
INTEGER, INTENT(OUT) :: stat
END SUBROUTINE D_COMMIT_TRIG_TRANSFORM
SUBROUTINE D FORWARD TRIG TRANSFORM(f, handle, ipar, dpar, stat)
REAL (8), INTENT(INOUT) :: f(*)
TYPE (DFTI_DESCRIPTOR), POINTER : : handle
INTEGER, INTENT(INOUT) :: ipar(*)
REAL(8), INTENT(INOUT) :: dpar(*)
INTEGER, INTENT(OUT) :: stat
END SUBROUTINE D_FORWARD_TRIG_TRANSFORM
SUBROUTINE D_BACKWARD_TRIG_TRANSFORM(f, handle, ipar, dpar, stat)
REAL (8), INTENT(INOUT) :: f(*)
TYPE (DFTI_DESCRIPTOR), POINTER : : handle
INTEGER, INTENT(INOUT) :: ipar(*)
REAL(8), INTENT(INOUT) :: dpar(*)
INTEGER, INTENT(OUT) :: stat
END SUBROUTINE D_BACKWARD_TRIG_TRANSFORM
SUBROUTINE S_INIT_TRIG_TRANSFORM(n, tt_type, ipar, spar, stat)
INTEGER, INTENT(IN) :: n, tt_type
INTEGER, INTENT(INOUT) :: ipar(*)
REAL(4), INTENT(INOUT) :: spar(*)
INTEGER, INTENT(OUT) :: stat
END SUBROUTINE S_INIT_TRIG_TRANSFORM
SUBROUTINE S_COMMIT_TRIG_TRANSFORM(f, handle, ipar, spar, stat)
REAL(4), INTENT(INOUT) :: f(*)
TYPE (DFTI DESCRIPTOR), POINTER :: handle
INTEGER, INTENT(INOUT) :: ipar(*)
REAL(4), INTENT(INOUT) :: spar(*)
INTEGER, INTENT(OUT) :: stat
END SUBROUTINE S_COMMIT_TRIG_TRANSFORM
SUBROUTINE S_FORWARD_TRIG_TRANSFORM(f, handle, ipar, spar, stat)

```
```

 REAL(4), INTENT(INOUT) :: f(*)
 TYPE(DFTI_DESCRIPTOR), POINTER :: handle
 INTEGER, INTENT(INOUT) :: ipar(*)
 REAL(4), INTENT(INOUT) :: spar(*)
 INTEGER, INTENT(OUT) :: stat
 END SUBROUTINE S_FORWARD_TRIG_TRANSFORM
SUBROUTINE S_BACKWARD_TRIG_TRANSFORM(f, handle, ipar, spar, stat)
REAL (4), INTENT(INOUT) :: f(*)
TYPE (DFTI_DESCRIPTOR), POINTER : : handle
INTEGER, INTENT(INOUT) :: ipar(*)
REAL(4), INTENT(INOUT) :: spar(*)
INTEGER, INTENT (OUT) :: stat
END SUBROUTINE S_BACKWARD_TRIG_TRANSFORM
SUBROUTINE FREE_TRIG_TRANSFORM(handle, ipar, stat)
INTEGER, INTENT(INOUT) :: ipar(*)
TYPE (DFTI_DESCRIPTOR), POINTER : : handle
INTEGER, INTENT (OUT) :: stat
END SUBROUTINE FREE_TRIG_TRANSFORM

```

Fortran specifics of the TT routines usage are similar for all Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PDE support tools and described inCalling PDE Support Routines from Fortran.

\section*{Fast Poisson Solver Routines}

In addition to the Real Discrete Trigonometric Transforms (TT) interface (refer to Trigonometric Transform Routines), Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) supports thethe Poisson Solver interface. This interface implements a group of routines (Poisson Solver routines) used to compute a solution of Laplace, Poisson, and Helmholtz problems of a special kind using discrete Fourier transforms. Laplace and Poisson problems are special cases of a more general Helmholtz problem. The problems that are solved by the Poisson Solver interface are defined more exactly in Poisson Solver Implementation. The Poisson Solver interface provides much flexibility of use: you can call routines with the default parameter values or adjust routines to your particular needs by manually tuning routine parameters. You can adjust the style of error and warning messages to a Fortrannotation by setting up a dedicated parameter. This adds convenience to debugging, because you can read information in the way that is natural for your code. The Intel® oneAPI Math Kernel Library (oneMKL) Poisson Solver interface currently contains only routines that implement the following solvers:
- Fast Laplace, Poisson and Helmholtz solvers in a Cartesian coordinate system
- Fast Poisson and Helmholtz solvers in a spherical coordinate system.

To describe the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver interface, the C convention is used. Fortran usage specifics can be found inCalling PDE Support Routines from Fortran.

\section*{NOTE}

Fortran users should keep in mind that array indices in Fortran start at 1 instead of 0 , as they do in C.

\section*{Poisson Solver Implementation}

Poisson Solver routines enable approximate solving of certain two-dimensional and three-dimensional problems. Figure "Structure of the Poisson Solver" shows the general structure of the Poisson Solver.

\section*{__border__top}

\section*{Structure of the Poisson Solver}


\section*{NOTE}

Although in the Cartesian case, both periodic and non-periodic solvers are also supported, they use the same interfaces.

Sections below provide details of the problems that can be solved using Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver.

\section*{Two-Dimensional Problems}

\section*{Notational Conventions}

The Poisson Solver interface description uses the following notation for boundaries of a rectangular domain \(a_{x}\) \(<x<b_{x}, a_{y}<y<b_{y}\) on a Cartesian plane:
\(b d_{-} a_{x}=\left\{x=a_{x}, a_{y} \leq y \leq b_{y}\right\}, b d_{-} b_{x}=\left\{x=b_{x}, a_{y} \leq y \leq b_{y}\right\}\)
\(b d_{-} a_{y}=\left\{a_{x} \leq x \leq b_{x}, y=a_{y}\right\}, b d_{-} b_{y}=\left\{a_{x} \leq x \leq b_{x}, y=b_{y}\right\}\).
The following figure shows these boundaries:


The wildcard "+" may stand for any of the symbols \(a_{x}, b_{x}, a_{y}, b_{y}\), so \(b d_{-}+\)denotes any of the above boundaries.

The Poisson Solver interface description uses the following notation for boundaries of a rectangular domain \(a_{\varphi}<\varphi<b_{\varphi}, a_{\theta}<\theta<b_{\theta}\) on a sphere \(0 \leq \varphi \leq 2 п, 0 \leq \theta \leq \pi\) :
\(b d_{-} a_{\varphi}=\left\{\varphi=a_{\varphi}, a_{\theta} \leq \theta \leq b_{\theta}\right\}, b d_{-} b_{\varphi}=\left\{\varphi=b_{\varphi}, a_{\theta} \leq \theta \leq b_{\theta}\right\}\),
\(b d_{-} a_{\theta}=\left\{a_{\varphi} \leq \varphi \leq b_{\varphi}, \theta=a_{\theta}\right\}, b d_{-} b_{\theta}=\left\{a_{\varphi} \leq \varphi \leq b_{\varphi}, \theta=b_{\theta}\right\}\).
The wildcard " \(\sim\) " may stand for any of the symbols \(a_{\varphi}, b_{\varphi}, a_{\theta}, b_{\theta}\), so \(b d_{-} \sim\) denotes any of the above boundaries.

\section*{Two-dimensional Helmholtz problem on a Cartesian plane}

The two-dimensional (2D) Helmholtz problem is to find an approximate solution of the Helmholtz equation
\(-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}+q u=f(x, y), q=\) const \(\geq 0\)
in a rectangle, that is, a rectangular domain \(a_{x}<x<b_{x}, a_{y}<y<b_{y}\), with one of the following boundary conditions on each boundary bd_+:
- The Dirichlet boundary condition
\(u(x, y)=G(x, y)\)
- The Neumann boundary condition
\(\frac{\partial u}{\partial n}(x, y)=g(x, y)\)
where
\(n=-x\) on \(b d_{-} a_{x}, n=x\) on \(b d_{-} b_{x,}\)
\(n=-y\) on \(b d_{-} a_{y}, n=y\) on \(b d_{-} b_{y}\).
- Periodic boundary conditions
\[
u\left(a_{x}, y\right)=u\left(b_{x}, y\right), \frac{\partial}{\partial x} u\left(a_{x}, y\right)=\frac{\partial}{\partial x} u\left(b_{x}, y\right)
\]
\[
u\left(x, a_{y}\right)=u\left(x, b_{y}\right), \frac{\partial}{\partial y} u\left(x, a_{y}\right)=\frac{\partial}{\partial y} u\left(x, b_{y}\right) .
\]

\section*{Two-dimensional Poisson problem on a Cartesian plane}

The Poisson problem is a special case of the Helmholtz problem, when \(q=0\). The 2D Poisson problem is to find an approximate solution of the Poisson equation
\(-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=f(x, y)\)
in a rectangle \(a_{x}<x<b_{x}, a_{y}<y<b_{y}\) with the Dirichlet, Neumann, or periodic boundary conditions on each boundary bd_+. In case of a problem with the Neumann boundary condition on the entire boundary, you can find the solution of the problem only up to a constant. In this case, the Poisson Solver will compute the solution that provides the minimal Euclidean norm of a residual.

\section*{Two-dimensional (2D) Laplace problem on a Cartesian plane}

The Laplace problem is a special case of the Helmholtz problem, when \(q=0\) and \(f(x, y)=0\). The 2D Laplace problem is to find an approximate solution of the Laplace equation
\(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0\)
in a rectangle \(a_{x}<x<b_{x}, a_{y}<y<b_{y}\) with the Dirichlet, Neumann, or periodic boundary conditions on each boundary bd_+.

\section*{Helmholtz problem on a sphere}

The Helmholtz problem on a sphere is to find an approximate solution of the Helmholtz equation
\(-\Delta_{s} u+q u=f, q=\) const \(\geq 0\),
\(\Delta_{s}=\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)\)
in a domain bounded by angles \(a_{\varphi} \leq \varphi \leq b_{\varphi}, a_{\theta} \leq \theta \leq b_{\theta}\) (spherical rectangle), with boundary conditions for particular domains listed in Table "Details of Helmholtz Problem on a Sphere".

Details of Helmholtz Problem on a Sphere
\begin{tabular}{|c|c|c|}
\hline Domain on a sphere & Boundary condition & Periodic/nonperiodic case \\
\hline Rectangular, that is, \(b_{\varphi}-a_{\varphi}<2 \pi\) and \(b_{\theta}\)
\[
-a_{\theta}<\pi
\] & Homogeneous Dirichlet boundary conditions on each boundary bd_~ & non-periodic \\
\hline Where \(a_{\varphi}=0, b_{\varphi}=2 \Pi\), and \(b_{\theta}-a_{\theta}<\pi\) & Homogeneous Dirichlet boundary conditions on the boundaries bd_a \(a_{\theta}\) and \(b d_{-} b_{\theta}\) & periodic \\
\hline Entire sphere, that is, \(a_{\varphi}=0, b_{\varphi}=2 \pi\), \(a_{\theta}=0\), and \(b_{\theta}=\pi\) & Boundary condition \(\left(\sin \theta \frac{\partial u}{\partial \theta}\right)=\begin{aligned} \theta & \rightarrow 0 \\ \theta & \rightarrow \pi\end{aligned}\) at the poles & periodic \\
\hline
\end{tabular}

\section*{Poisson problem on a sphere}

The Poisson problem is a special case of the Helmholtz problem, when \(q=0\). The Poisson problem on a sphere is to find an approximate solution of the Poisson equation
\(-\Delta_{s} u=f, \Delta_{s}=\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)\)
in a spherical rectangle \(a_{\varphi} \leq \varphi \leq b_{\varphi}, a_{\theta} \leq \theta \leq b_{\theta}\) in cases listed in Table "Details of Helmholtz Problem on a Sphere". The solution to the Poisson problem on the entire sphere can be found up to a constant only. In this case, Poisson Solver will compute the solution that provides the minimal Euclidean norm of a residual.

\section*{Approximation of 2D problems}

To find an approximate solution for any of the 2D problems, in the rectangular domain a uniform mesh can be defined for the Cartesian case as:
\(\left\{x_{i}=a_{x}+i h_{x}, y_{j}=a_{y}+j h_{y}\right\}\),
\(i=0, \ldots, n_{x}, j=0, \ldots, n_{y}, h_{x}=\frac{b_{x}-a_{x}}{n_{x}}, h_{y}=\frac{b_{y}-a_{y}}{n_{y}}\)
and for the spherical case as:
\(\left\{\phi_{i}=a_{\phi}+i h_{\phi}, \theta_{j}=a_{\theta}+j h_{\theta}\right\}\),
\(i=0, \ldots, n_{\phi}, j=0, \ldots, n_{\theta}, h_{\phi}=\frac{b_{\phi}-a_{\phi}}{n_{\phi}}, h_{\theta}=\frac{b_{\theta}-a_{\theta}}{n_{\theta}}\).
The Poisson Solver uses the standard five-point finite difference approximation on this mesh to compute the approximation to the solution:
- In the Cartesian case, the values of the approximate solution will be computed in the mesh points \(\left(x_{i}, y_{j}\right)\) provided that you can supply the values of the right-hand side \(f(x, y)\) in these points and the values of the appropriate boundary functions \(G(x, y)\) and/or \(g(x, y)\) in the mesh points laying on the boundary of the rectangular domain.
- In the spherical case, the values of the approximate solution will be computed in the mesh points \(\left(\varphi_{i}, \theta_{j}\right)\) provided that you can supply the values of the right-hand side \(f(\varphi, \theta)\) in these points.

\section*{NOTE}

The number of mesh intervals \(n_{\varphi}\) in the \(\varphi\) direction of a spherical mesh must be even in the periodic case. The Poisson Solver does not support spherical meshes that do not meet this condition.

\section*{Three-Dimensional Problems}

\section*{Notational Conventions}

The Poisson Solver interface description uses the following notation for boundaries of a parallelepiped domain \(a_{x}<x<b_{x}, a_{y}<y<b_{y}, a_{z}<z<b_{z}:\)
\(b d_{-} a_{x}=\left\{x=a_{x}, a_{y} \leq y \leq b_{y}, a_{z} \leq z \leq b_{z}\right\}, b d_{-} b_{x}=\left\{x=b_{x}, a_{y} \leq y \leq b_{y}, a_{z} \leq z \leq b_{z}\right\}\),
\(b d_{-} a_{y}=\left\{a_{x} \leq x \leq b_{x}, y=a_{y}, a_{z} \leq z \leq b_{z}\right\}, b d_{-} b_{y}=\left\{a_{x} \leq x \leq b_{x}, y=b_{y}, a_{z} \leq z \leq b_{z}\right\}\),
\(b d_{-} a_{z}=\left\{a_{x} \leq x \leq b_{x}, a_{y} \leq y \leq b_{y}, z=a_{z}\right\}, b d_{-} b_{x}=\left\{a_{x} \leq x \leq b_{x}, a_{y} \leq y \leq b_{y}, z=b_{z}\right\}\).
The following figure shows these boundaries:


The wildcard "+" may stand for any of the symbols \(a_{x}, b_{x}, a_{y}, b_{y}, a_{z}, b_{z}\), so \(b d_{-}+\)denotes any of the above boundaries.

\section*{Three-dimensional (3D) Helmholtz problem}

The 3D Helmholtz problem is to find an approximate solution of the Helmholtz equation
\(-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial^{2} u}{\partial z^{2}}+q u=f(x, y, z), q=\) const \(\geq 0\)
in a parallelepiped, that is, a parallelepiped domain \(a_{x}<x<b_{x}\), \(a_{y}<y<b_{y}, a_{z}<z<b_{z}\), with one of the following boundary conditions on each boundary bd_+:
- The Dirichlet boundary condition
\(u(x, y, z)=G(x, y, z)\)
- The Neumann boundary condition
\(\frac{\partial u}{\partial n}(x, y, z)=g(x, y, z)\)
where
\(n=-x\) on \(b d_{-} a_{x}, n=x\) on \(b d_{-} b_{x}\),
\(n=-y\) on \(b d \_a_{y}, n=y\) on \(b d_{-} b_{y}\),
\(n=-z\) on \(b d_{-} a_{z}, n=z\) on \(b d_{-} b_{z}\).
- Periodic boundary conditions
\(u\left(a_{x}, y, z\right)=u\left(b_{x}, y, z\right), \frac{\partial}{\partial x} u\left(a_{x}, y, z\right)=\frac{\partial}{\partial x} u\left(b_{x}, y, z\right)\),
\(u\left(x, a_{y}, z\right)=u\left(x, b_{y}, z\right), \frac{\partial}{\partial y} u\left(x, a_{y}, z\right)=\frac{\partial}{\partial y} u\left(x, b_{y}, z\right)\),
\[
u\left(x, y, a_{z}\right)=u\left(x, y, b_{z}\right), \frac{\partial}{\partial z} u\left(x, y, a_{z}\right)=\frac{\partial}{\partial z} u\left(x, y, b_{z}\right)
\]

\section*{Three-dimensional (3D) Poisson problem}

The Poisson problem is a special case of the Helmholtz problem, when \(q=0\). The 3D Poisson problem is to find an approximate solution of the Poisson equation
\(-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial^{2} u}{\partial z^{2}}=f(x, y, z)\)
in a parallelepiped \(a_{x}<x<b_{x}, a_{y}<y<b_{y}, a_{z}<z<b_{z}\) with the Dirichlet, Neumann, or periodic boundary conditions on each boundary bd_+.

\section*{Three-dimensional (3D) Laplace problem}

The Laplace problem is a special case of the Helmholtz problem, when \(q=0\) and \(f(x, y, z)=0\). The 3D Laplace problem is to find an approximate solution of the Laplace equation
\(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0\)
in a parallelepiped \(a_{x}<x<b_{x}, a_{y}<y<b_{y}, a_{z}<z<b_{z}\) with the Dirichlet, Neumann, or periodic boundary conditions on each boundary bd_+.

\section*{Approximation of 3D problems}

To find an approximate solution for each of the 3D problems, a uniform mesh can be defined in the parallelepiped domain as:
\(\left\{x_{i}=a_{x}+i h_{x}, y_{j}=a_{y}+j h_{y}, z_{k}=a_{z}+j h_{z}\right\}\),
where
\(i=0, \ldots, n_{x}, j=0, \ldots, n_{y}, k=0, \ldots, n_{z}\),
\(h_{x}=\frac{b_{x}-a_{x}}{n_{x}}, h_{y}=\frac{b_{y}-a_{y}}{n_{y}}, h_{z}=\frac{b_{z}-a_{z}}{n_{z}}\).
The Poisson Solver uses the standard seven-point finite difference approximation on this mesh to compute the approximation to the solution. The values of the approximate solution will be computed in the mesh points \(\left(x_{i}, y_{j}, z_{k}\right)\), provided that you can supply the values of the right-hand side \(f(x, y, z)\) in these points and the values of the appropriate boundary functions \(G(x, y, z)\) and/or \(g(x, y, z)\) in the mesh points laying on the boundary of the parallelepiped domain.

\section*{Sequence of Invoking Poisson Solver Routines}

\section*{NOTE}

This description always shows the solution process for the Helmholtz problem, because Fast Poisson Solvers and Fast Laplace Solvers are special cases of Fast Helmholtz Solvers (see Poisson Solver Implementation).

The Poisson Solver interface enables you to compute a solution of the Helmholtz problem in four steps. Each step is performed by a dedicated routine. Table "Poisson Solver Interface Routines" lists the routines and briefly describes their purpose.
Most Poisson Solver routines have versions operating with single-precision and double-precision data. Names of such routines begin respectively with "s" and "d". The wildcard "?" stands for either of these symbols in routine names. The routines for the Cartesian coordinate system have 2D and 3D versions. Their names end respectively in "2D" and "3D". The routines for spherical coordinate system have periodic and non-periodic versions. Their names end respectively in "p" and "np".

Poisson Solver Interface Routines
\begin{tabular}{|c|c|}
\hline Routine & Description \\
\hline ```
?_init_Helmholtz_2D/?_init_Helmholtz_3D/
?_init_sph_p/?_init_sph_np
``` & Initializes basic data structures for Fast Helmholtz Solver in the 2D/3D/periodic/ non-periodic case, respectively. \\
\hline \begin{tabular}{l}
?_commit_Helmholtz_2D/?_commit_Helmholtz_3D/ \\
?_commit_sph_p/?_commit_sph_np
\end{tabular} & Checks consistency and correctness of input data and initializes data structures for the solver, including those used by the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface \({ }^{1}\). \\
\hline ?_Helmholtz_2D/?_Helmholtz_3D/?_sph_p/?_sph_np & Computes an approximate solution of the 2D/3D/periodic/non-periodic Helmholtz problem (see Poisson Solver Implementation) specified by the parameters. \\
\hline free_Helmholtz_2D/free_Helmholtz_3D/ free_sph_p/free_sph_np & Releases the memory used by the data structures needed for calling the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface \({ }^{1}\). \\
\hline
\end{tabular}
\({ }^{1}\) Poisson Solver routines call the Intel® oneAPI Math Kernel Library (oneMKL) FFT interface for better performance.
To find an approximate solution of Helmholtz problem only once, the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver interface routines are normally invoked in the order in which they are listed inTable "Poisson Solver Interface Routines".

\section*{NOTE}

Though the order of invoking Poisson Solver routines may be changed, it is highly recommended to follow the above order of routine calls.

The diagram in Figure "Typical Order of Invoking Poisson Solver Routines" indicates the typical order in which Poisson Solver routines can be invoked in a general case.
__border__top

\section*{Typical Order of Invoking Poisson Solver Routines}

A general scheme of using Poisson Solver routines for double-precision computations in a 3D Cartesian case is shown below. You can change this scheme to a scheme for single-precision computations by changing the initial letter of the Poisson Solver routine names from "d" to "s". You can also change the scheme below from the 3D to 2D case by changing the ending of the Poisson Solver routine names.
```

d_init_Helmholtz_3D(\&ax, \&bx, \&ay, \&by, \&az, \&bz, \&nx, \&ny, \&nz, BCtype, ipar, dpar, \&stat);
/* change parameters in ipar and/or dpar if necessary. */
/* note that the result of the Fast Helmholtz Solver will be in f. If you want to keep the data
that is stored in f, save it to another location before the function call below */
d_commit_Helmholtz_3D(f, bd_ax, bd_bx, bd_ay, bd_by, bd_az, bd_bz, \&xhandle, \&yhandle, ipar,
dpar, \&stat);
d_Helmholtz_3D(f, bd_ax, bd_bx, bd_ay, bd_by, bd_az, bd_bz, \&xhandle, \&yhandle, ipar, dpar,
\&stat);
free_Helmholtz_3D (\&xhandle, \&yhandle, ipar, \&stat);
/* here you may clean the memory used by f, dpar, ipar */

```

A general scheme of using Poisson Solver routines for double-precision computations in a spherical periodic case is shown below. You can change this scheme to a scheme for single-precision computations by changing the initial letter of the Poisson Solver routine names from "d" to "s". You can also change the scheme below to a scheme for a non-periodic case by changing the ending of the Poisson Solver routine names from " p " to "np".
```

d_init_sph_p(\&ap,\&bp,\&at,\&bt,\&np,\&nt,\&q,ipar,dpar, \&stat);
/* change parameters in ipar and/or dpar if necessary. */
/* note that the result of the Fast Helmholtz Solver will be in f. If you want to keep the data
that is stored in f, save it to another location before the function call below */
d_commit_sph_p(f,\&handle_s,\&handle_c,ipar,dpar,\&stat);
d_sph_p(f,\&handle_s,\&handle_c,ipar,dpar,\&stat);
free_sph_p(\&handle_s,\&handle_c,ipar,\&stat);
/* hère you may clean the memory used by f, dpar, ipar */

```

You can find examples of code that uses Poisson Solver routines to solve Helmholtz problem (in both Cartesian and spherical cases) in the examples \(\backslash\) pdepoissonf \(\backslash\) source folderin your Intel® oneAPI Math Kernel Library (oneMKL) directory.

\section*{Fast Poisson Solver Interface Description}

All numerical types in this section are either standard C types float and double or MKL_INT integer type. Fortran users can call the routines with REAL and DOUBLE PRECISION types of floating-point values and either INTEGER or INTEGER*8 integer type depending on the programming interface (LP64 or ILP64). To better understand usage of the types, see examples in the examples \pdepoissonf \(\backslash\) source folderin your Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory.

\section*{Routine Options}

All Poisson Solver routines use parameters for passing various options to the routines. These parameters are arrays ipar, dpar, and spar. Values for these parameters should be specified very carefully (see Common Parameters). You can change these values during computations to meet your needs. For more details, see the descriptions of specific routines.

\section*{WARNING}

To avoid failure or incorrect results, you must provide correct and consistent parameters to the routines.

\section*{User Data Arrays}

Poisson Solver routines take arrays of user data as input. For example, the d_Helmholtz_3Droutine takes user arrays to compute an approximate solution to the 3D Helmholtz problem. To minimize storage requirements and improve the overall run-time efficiency, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver routines do not make copies of user input arrays.

\section*{NOTE}

If you need a copy of your input data arrays, you must save them yourself.

For better performance, align your data arrays as recommended in the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide (search the document for coding techniques to improve performance).

\section*{Routines for the Cartesian Solver}

The section describes Poisson Solver routines for the Cartesian case, their syntax, parameters, and return values. All flavors of the same routine are described together: single- and double-precision and 2D and 3D.

\section*{NOTE}

Some of the routine parameters are used only in the 3D Fast Helmholtz Solver.

Poisson Solver routines call Intel® oneAPI Math Kernel Library (oneMKL) FFT routines (described inFFT Functions), which enhance performance of the Poisson Solver routines.
?_init_Helmholtz_2D/?_init_Helmholtz_3D
Initializes basic data structures of the Fast 2D/3D
Helmholtz Solver.

\section*{Syntax}
```

void d_init_Helmholtz_2D (const double * ax, const double * bx, const double * ay,
const double * by, const MKL_INT * nx, const MKL_INT * ny, const char * BCtype, const
double * q, MKL_INT * ipar, double * dpar, MKL_INT * stat);
void s_init_Helmholtz_2D (const float * ax, const float * bx, const float * ay, const
float * by, const MKL_INT * nx, const MKL_INT * ny, const char * BCtype, const float *
q, MKL_INT * ipar, float * spar, MKL_INT * stat);
void d_init_Helmholtz_3D (const double * ax, const double * bx, const double * ay,
const double * by, const double * az, const double * bz, const MKL_INT * nx, const
MKL_INT * ny, const MKL_INT * nz, const char * BCtype, const double * q, MKL_INT *ipar,
double * dpar, MKL_INT * stat);
void s_init_Helmholtz_3D (const float * ax, const float * bx, const float * ay, const
float * by, const float * az, const float * bz, const MKL_INT * nx, const MKL_INT * ny,
const MKL_INT * nz, const char * BCtype, const float * q, MKL_INT * ipar, float * spar,
MKL_INT * stat);

```

\section*{Include Files}
- mkl_poisson.f90

Input Parameters
\(a x\)
double* ford_init_Helmholtz_2D/d_init_Helmholtz_3D,
float* for s_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the leftmost boundary of the domain along the \(x\) axis.
double* ford_init_Helmholtz_2D/d_init_Helmholtz_3D,
float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D.

The coordinate of the rightmost boundary of the domain along the \(x\) axis.
double* for d_init_Helmholtz_2D/d_init_Helmholtz_3D,
float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the leftmost boundary of the domain along the \(y\) axis.
double* for d_init_Helmholtz_2D/d_init_Helmholtz_3D,
float* for s_init_Helmholtz_2D/s_init_Helmholtz_3D.
The coordinate of the rightmost boundary of the domain along the \(y\) axis.
double* for d_init_Helmholtz_3D,
float* fors_init_Helmholtz_3D.
The coordinate of the leftmost boundary of the domain along the zaxis. This parameter is needed only for the ?_init_Helmholtz_3D routine.
double* for d_init_Helmholtz_3D,
float* for s_init_Helmholtz_3D.
The coordinate of the rightmost boundary of the domain along the zaxis. This parameter is needed only for the ?_init_Helmholtz_3D routine.

MKL_INT*. The number of mesh intervals along the x-axis.
MKL_INT*. The number of mesh intervals along the \(y\)-axis.
MKL_INT*. The number of mesh intervals along the z-axis. This parameter is needed only for the ?_init_Helmholtz_3D routine.
char*. Contains the type of boundary conditions on each boundary. Must contain four characters for ? init_Helmholtz_2D and six characters for ?_init_Helmholtz_3D. Each of the characters can be ' N ' (Neumann boundary condition), 'D' (Dirichlet boundary condition), or ' P ' (periodic boundary conditions). Specify the types of boundary conditions for the boundaries in the following order: \(b d_{-} a_{x}, b d_{-} b_{x}\), \(b d_{-} a_{y}, b d_{-} b_{y}, b d_{-} a_{z}\), and \(b d_{-} b_{z}\). Specify periodic boundary conditions on the respective boundaries in pairs (for example, 'PPDD' or 'NNPP' in the 2D case). The types of boundary conditions for the last two boundaries are needed only in the 3D case.
```

double* ford_init_Helmholtz_2D/d_init_Helmholtz_3D,
float* fors_init_Helmholtz_2D/s_init_Helmholtz_3D.

```

The constant Helmholtz coefficient. Note that to solve Poisson or Laplace problem, you should set the value of \(q\) to 0 .

\section*{Output Parameters}
spar
stat

MKL_INT array of size 128. Contains integer data to be used by Fast Helmholtz Solver (for details, refer to ipar).
double array of size \(5^{*} n x / 2+7\) in the 2D case or \(5^{*}(n x+n y) / 2+9\) in the 3D case. Contains double-precision data to be used by Fast Helmholtz Solver (for details, refer to dpar and spar).
float array of size \(5^{*} n x / 2+7\) in the 2 D case or \(5^{*}(n x+n y) / 2+9\) in the 3D case. Contains single-precision data to be used by Fast Helmholtz Solver (for details, refer to dpar and spar).

MKL_INT*. Routine completion status, which is also written to ipar[0]. Continue to call other Poisson Solver routines only if the status is 0 .

\section*{Description}

The ?_init_Helmholtz_2D/?_init_Helmholtz_3D routines initialize basic data structures for Poisson Solver computations of the appropriate precision. All routines invoked after a call to
a ?_init_Helmholtz_2D/?_init_Helmholtz_3D routine use values of the ipar, dpar and spar array parameters returned by the routine. Detailed description of the array parameters can be found in Common Parameters.

\section*{Caution}

Data structures initialized and created by 2D flavors of the routine cannot be used by 3D flavors of any Poisson Solver routines, and vice versa.

You can skip calls to these routines in your code. However, see Caveat on Parameter Modifications for information on initializing the data structures.

\section*{Return Values}
```

stat=0
stat= -99999
The routine successfully completed the task. In general, to proceed with computations, the routine should complete with this stat value.
The routine failed to complete the task because of a fatal error.

```
> _commit_Helmholtz_2D/?_commit_Helmholtz_3D
> Checks consistency and correctness of input data and initializes certain data structures required to solve 2D/3D Helmholtz problem.

\section*{Syntax}
```

void d_commit_Helmholtz_2D (double * f, const double * bd_ax, const double * bd_bx,
const double * bd_ay, const double * bd_by, DFTI_DESCRIPTOR_HANDLE * xhandle, MKL_INT *
ipar, double * dpar, MKL_INT * stat );

```
```

void s_commit_Helmholtz_2D (float * f, const float * bd_ax, const float * bd_bx, const
float * bd_ay, const float * bd_by, DFTI_DESCRIPTOR_HANDLE * xhandle, MKL_INT * ipar,
float * spar, MKL_INT * stat );
void d_commit_Helmholtz_3D (double * f, const double * bd_ax, const double * bd_bx,
const double * bd_ay, const double * bd_by, const double * bd_az, const double * bd_bz,
DFTI_DESCRIPTOR_HANDLE * xhandle, DFTI_DESCRIPTOR_HANDLE * yhandle, MKL_INT * ipar,
double * dpar, MKL_INT * stat );
void s_commit_Helmholtz_3D (float * f, const float * bd_ax, const float * bd_bx, const
float * bd_ay, const float * bd_by, const float * bd_az, const float * bd_bz,
DFTI_DESCRIPTOR_HANDLE * xhandle, DFTI_DESCRIPTOR_HANDLE * yhandle, MKL_INT * ipar,
float * spar, MKL_INT * stat );

```

Include Files
- mkl_poisson.f90

\section*{Input Parameters}
f
```

double* ford_commit_Helmholtz_2D/d_commit_Helmholtz_3D,
float* fors_commit_Helmholtz_2D/s_commit_Helmholtz_3D.

```

Contains the right-hand side of the problem packed in a single vector:
- 2D problem: The size of the vector for the is \((n x+1)^{*}(n y+1)\). The value of the right-hand side in the mesh point \((i, j)\) is stored in \(f[i\) \(\left.+j^{*}(n x+1)\right]\).
- 3D problem: The size of the vector for the is \((n x+1) *(n y+1) *(n z\) \(+1)\). The value of the right-hand side in the mesh point \((i, j, k)\) is stored in \(f\left[i+j^{*}(n x+1)+k^{*}(n x+1)^{*}(n y+1)\right]\).

Note that to solve the Laplace problem, you should set all the elements of the array \(f\) to 0 .

Note also that the array \(f\) may be altered by the routine. To preserve the \(f\) vector, save it to another memory location.

MKL_INT array of size 128. Contains integer data to be used by the Fast Helmholtz Solver (for details, refer to ipar).
double array of size depending on the dimension of the problem:
- 2D problem: \(5^{*} n x / 2+7\)
- 3D problem: \(5^{*}(n x+n y) / 2+9\)

Contains double-precision data to be used by the Fast Helmholtz Solver (for details, refer to dpar and spar).
float array of size depending on the dimension of the problem:
- 2D problem: \(5^{*} n x / 2+7\)
- 3D problem: \(5^{*}(n x+n y) / 2+9\)

Contains single-precision data to be used by the Fast Helmholtz Solver (for details, refer to dpar and spar).
bd_ax
```

double* ford_commit_Helmholtz_2D/d_commit_Helmholtz_3D,
float* fors_commit_Helmholtz_2D/s_commit_Helmholtz_3D.

```
bd_bx
bd_ay
bd_by
bd_az
bd_bz

Contains values of the boundary condition on the leftmost boundary of the domain along the \(x\)-axis (for more information, refer to a detailed description of bd_ax).
double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D, float* fors_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
Contains values of the boundary condition on the rightmost boundary of the domain along the \(x\)-axis (for more information, refer to a detailed description of bd_bx).
double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D, float* for s_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
Contains values of the boundary condition on the leftmost boundary of the domain along the \(y\)-axis (for more information, refer to a detailed description of bd_ay).
double* for d_commit_Helmholtz_2D/d_commit_Helmholtz_3D, float* for s_commit_Helmholtz_2D/s_commit_Helmholtz_3D.
Contains values of the boundary condition on the rightmost boundary of the domain along the \(y\)-axis (for more information, refer to a detailed description of bd_by).
double* for d_commit_Helmholtz_3D,
float* for s_commit_Helmholtz_3D.
Used only by ?_commit_Helmholtz_3D. Contains values of the boundary condition on the leftmost boundary of the domain along the \(z\)-axis (for more information, refer to a detailed description of bd_az).
double* for d_commit_Helmholtz_3D,
float* for s_commit_Helmholtz_3D.
Used only by ?_commit_Helmholtz_3D. Contains values of the boundary condition on the rightmost boundary of the domain along the \(z\)-axis (for more information, refer to a detailed description of bd_bz).

\section*{Output Parameters}
\(f\)
ipar
dpar
spar
xhandle, yhandle
Contains right-hand side of the problem, possibly altered on output.
Contains integer data to be used by Fast Helmholtz Solver. Modified on output as explained in ipar.

Contains double-precision data to be used by Fast Helmholtz Solver. Modified on output as explained in dpar and spar.

Contains single-precision data to be used by Fast Helmholtz Solver. Modified on output as explained in dpar and spar.

DFTI_DESCRIPTOR_HANDLE*. Data structures used by the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface (for details, refer toFFT Functions). yhandle is used only by ?_commit_Helmholtz_3D.

MKL_INT*. Routine completion status, which is also written to ipar [0]. Continue to call other Poisson Solver routines only if the status is 0 .

\section*{Description}

The ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routines check the consistency and correctness of the parameters to be passed to the solver routines ? Helmholtz_2D/?_Helmholtz_3D. They also initialize the xhandle and yhandle data structures, ipar array, and dpar or spar array, depending upon the routine precision. Refer to Common Parameters to find out which particular array elements
the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routines initialize and to what values these elements are initialized.
The routines perform only a basic check for correctness and consistency. If you are going to modify parameters of Poisson Solver routines, see Caveat on Parameter Modifications.
Unlike ?_init_Helmholtz_2D/?_init_Helmholtz_3D, you must call
the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routines in your code. Values of ax, bx, ay, by, \(a z\), and \(b z\) are passed to the routines with the spar/dpar array, and values of \(n x, n y, n z\), and BCtype are passed with the ipar array.

\section*{Return Values}
```

stat=1 The routine completed without errors but with warnings.
stat=0 The routine successfully completed the task.
stat=-100
stat= -1000
stat= -10000
stat= -99999

```
?_Helmholtz_2D/?_Helmholtz_3D
Computes the solution of the 2D/3D Helmholtz problem specified by the parameters.

\section*{Syntax}
```

void d_Helmholtz_2D (double * f, const double * bd_ax, const double * bd_bx, const
double * bd_ay, const double *bd_by, DFTI_DESCRIPTOR_HANDLE * xhandle, MKL_INT * ipar,
const double * dpar, MKL_INT * stat );
void s_Helmholtz_2D (float * f, const float * bd_ax, const float * bd_bx, const float *
bd_ay, const float * bd_by, DFTI_DESCRIPTOR_HANDLE * xhandle, MKL_INT * ipar, const
float * spar, MKL_INT * stat );
void d_Helmholtz_3D (double * f, const double * bd_ax, const double * bd_bx, const
double * bd_ay, const double *bd_by, const double * bd_az, const double * bd_bz,
DFTI_DESCRIPTOR_HANDLE * xhandle, DFTI_DESCRIPTOR_HANDLE * yhandle, MKL_INT * ipar,
const double * dpar, MKL_INT * stat );

```
```

void s_Helmholtz_3D (float * f, const float * bd_ax, const float * bd_bx, const float *
bd_ay, const float * bd_by, const float * bd_az, const float * bd_bz,
DFTI_DESCRIPTOR_HANDLE * xhandle, DFTI_DESCRIPTOR_HANDLE * yhandle, MKL_INT * ipar,
const float * spar, MKL_INT * stat );

```

Include Files
- mkl_poisson.f90

\section*{Input Parameters}
f
```

double* ford_Helmholtz_2D/d_Helmholtz_3D,
float* fors_Helmholtz_2D/s_Helmholtz_3D.

```

Contains the right-hand side of the problem packed in a single vector and modified by the appropriate ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine. Note that an attempt to substitute the original right-hand side vector, which was passed to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine, at this point results in an incorrect solution.
- 2D problem: the size of the vector is \((n x+1) *(n y+1)\). The value of the modified right-hand side in the mesh point \((i, j)\) is stored in \(f[i\) \(\left.+j^{*}(n x+1)\right]\).
- 3D problem: the size of the vector is \((n x+1)^{*}(n y+1) *(n z+1)\). The value of the modified right-hand side in the mesh point \((i, j, k)\) is stored in \(f\left[i+j^{*}(n x+1)+k^{*}(n x+1)^{*}(n y+1)\right]\).
xhandle, yhandle
ipar
dpar
spar
bd_ax

DFTI_DESCRIPTOR_HANDLE*. Data structures used by the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface (for details, refer toFFT Functions). yhandle is used only by ?_Helmholtz_3D.

MKL_INT array of size 128. Contains integer data to be used by Fast Helmholtz Solver (for details, refer to ipar).
double array of size depending on the dimension of the problem:
- 2D problem: \(5^{*} n x / 2+7\)
- 3D problem: \(5 *(n x+n y) / 2+9\)

Contains double-precision data to be used by Fast Helmholtz Solver (for details, refer to dpar and spar).
float array of size depending on the dimension of the problem:
- 2D problem: \(5^{*} n x / 2+7\)
- 3D problem: \(5^{*}(n x+n y) / 2+9\)

Contains single-precision data to be used by Fast Helmholtz Solver (for details, refer to dpar and spar).
```

double* ford_Helmholtz_2D/d_Helmholtz_3D,
float* fors_Helmholtz_2D/s_Helmholtz_3D.

```

Contains values of the boundary condition on the leftmost boundary of the domain along the \(x\)-axis (for more information, refer to a detailed description of bd_ax).
```

bd_bx

```
bd_ay
bd_by
bd_az
bd_bz

\section*{NOTE}

To avoid incorrect computation results, do not change arrays bd_ax, bd_bx, bd_ay, bd_by, bd_az, bd_bz between a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine and a subsequent call to the appropriate ?_Helmholtz_2D/?_Helmholtz_3D routine.

\section*{Output Parameters}
\begin{tabular}{ll}
\(f\) \\
xhandle, yhandle & \begin{tabular}{l}
On output, contains the approximate solution to the problem packed \\
the same way as the right-hand side of the problem was packed on \\
input.
\end{tabular} \\
ipar & \begin{tabular}{l}
Data structures used by the Intel® oneAPI Math Kernel Library \\
(oneMKL) FFT interface. Although the addresses do not change, the \\
structures are modified on output.
\end{tabular} \\
Contains integer data to be used by Fast Helmholtz Solver. Modified on \\
output as explained in ipar.
\end{tabular}
```

stat

```

MKL_INT*. Routine completion status, which is also written to ipar[0]. Continue to call other Poisson Solver routines only if the status is 0 .

\section*{Description}

The ?_Helmholtz_2D/?_Helmholtz_3D routines compute the approximate solution of the Helmholtz problem defined in the previous calls to the corresponding initialization and commit routines. The solution is computed according to formulas given in Poisson Solver Implementation. The \(f\) parameter, which initially holds the packed vector of the right-hand side of the problem, is replaced by the computed solution packed in the same way. Values of \(a x, b x, a y, b y, a z\), and \(b z\) are passed to the routines with the spar/dpar array, and values of \(n x, n y, n z\), and BCtype are passed with the ipar array.

\section*{Return Values}
```

stat=1 The routine completed without errors but with some warnings.
The routine successfully completed the task.
The routine stopped because division by zero occurred. It usually happens if the data in the dpar or spar array was altered by mistake.
The routine stopped because the sufficient memory was unavailable for the computations.
The routine stopped because an error in the input data was found or the data in the dpar, spar, or ipar array was altered by mistake.
The routine stopped because of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT or TT interface error.
The routine stopped because the initialization failed to complete or the parameter ipar[0] was altered by mistake.
The routine failed to complete the task because of a fatal error.

```
free_Helmholtz_2D/free_Helmholtz_3D
Releases the memory allocated for the data structures used by the FFT interface.

\section*{Syntax}
```

void free_Helmholtz_2D(DFTI_DESCRIPTOR_HANDLE* xhandle, MKL_INT* ipar, MKL_INT* stat);
void free_Helmholtz_3D(DFTI_DESCRIPTOR_HANDLE* xhandle, DFTI_DESCRIPTOR_HANDLE*
yhandle, MKL_INT* ipar, MKL_INT* stat);

```

\section*{Include Files}
- mkl_poisson.f90

\section*{Input Parameters}
xhandle, yhandle
ipar

\section*{Output Parameters}
```

xhandle, yhandle
ipar
stat

```

\section*{Description}

The free_Helmholtz_2D-free_Helmholtz_3D routine releases the memory used by the xhandle and yhandlestructures, which are needed for calling the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT functions. To release memory allocated for other parameters, include memory release statements in your code.

\section*{Return Values}
```

stat=0 The routine successfully completed the task.
stat=-1000 The routine stopped because of an Intel}\mp@subsup{}{}{\circledR}\mathrm{ oneAPI Math
Kernel Library (oneMKL) FFT or TT interface error.
The routine failed to complete the task because of a fatal
error.

```

\section*{Routines for the Spherical Solver}

The section describes Poisson Solver routines for the spherical case, their syntax, parameters, and return values. All flavors of the same routine are described together: single- and double-precision and periodic (having names ending in " p ") and non-periodic (having names ending in "np").
These Poisson Solver routines also call the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT routines (described inFFT Functions), which enhance the performance of the Poisson Solver routines.
```

?_init_sph_p/?_init_sph_np
Initializes basic data structures of the periodic and
non-periodic Fast Helmholtz Solver on a sphere.
Syntax
void d_init_sph_p (const double * ap, const double * at, const double * bp, const
double * bt, const MKL_INT * np, const MKL_INT *nt, const double * q, MKL_INT * ipar,
double * dpar, MKL_INT * stat );

```
```

void s_init_sph_p (const float * ap, const float * at, const float * bp, const float *
bt, const MKL_INT * np, const MKL_INT * nt, const float * q, MKL_INT * ipar, float *
spar, MKL_INT * stat );
void d_init_sph_np (const double * ap, const double * at, const double * bp, const
double * bt, const MKL_INT * np, const MKL_INT *nt, const double * q, MKL_INT * ipar,
double * dpar, MKL_INT * stat );
void s_init_sph_np (const float * ap, const float * at, const float * bp, const float *
bt, const MKL_INT * np, const MKL_INT * nt, const float * q, MKL_INT * ipar, float *
spar, MKL_INT * stat );

```

\section*{Include Files}
- mkl_poisson.f90

\section*{Input Parameters}
\(a p\)
bp
at
bt
\(n p\)
\(n t\)
\(q\)

\section*{Output Parameters}
ipar
double* for d_init_sph_p/d_init_sph_np, float* for s_init_sph_p/s_init_sph_np.

The coordinate (angle) of the leftmost boundary of the domain along the \(\varphi\)-axis.
double* for d_init_sph_p/d_init_sph_np,
float* fors_init_sph_p/s_init_sph_np.
The coordinate (angle) of the rightmost boundary of the domain along the \(\varphi\)-axis.
double* for d_init_sph_p/d_init_sph_np,
float* fors_init_sph_p/s_init_sph_np.
The coordinate (angle) of the leftmost boundary of the domain along the \(\theta\)-axis.
double* for d_init_sph_p/d_init_sph_np,
float* fors_init_sph_p/s_init_sph_np.
The coordinate (angle) of the rightmost boundary of the domain along the \(\theta\)-axis.

MKL_INT*. The number of mesh intervals along the \(\varphi\)-axis. Must be even in the periodic case.

MKL_INT*. The number of mesh intervals along the \(\theta\)-axis.
double* for d_init_sph_p/d_init_sph_np,
float* for s_init_sph_p/s_init_sph_np.
The constant Helmholtz coefficient. To solve the Poisson problem, set the value of \(q\) to 0 .

MKL_INT array of size 128. Contains integer data to be used by Fast Helmholtz Solver on a sphere (for details, refer to ipar).
\begin{tabular}{ll}
dpar & \begin{tabular}{l}
double array of size \(5^{*} n p / 2+n t+10\). Contains double-precision data \\
to be used by Fast Helmholtz Solver on a sphere (for details, refer to \\
dpar and spar).
\end{tabular} \\
spar & \begin{tabular}{l}
float array of size \(5^{*} n p / 2+n t+10\). Contains single-precision data to \\
be used by Fast Helmholtz Solver on a sphere (for details, refer to \\
dpar and spar).
\end{tabular} \\
stat & \begin{tabular}{l}
MKL_INT*. Routine completion status, which is also written to \\
ipar[0]. Continue to call other Poisson Solver routines only if the \\
status is 0.
\end{tabular}
\end{tabular}

\section*{Description}

The ?_init_sph_p/?_init_sph_np routines initialize basic data structures for Poisson Solver computations. All routines invoked after a call to a ?_init_Helmholtz_2D/?_init_Helmholtz_3D routine use values of the ipar, dpar, and spar array parameters returned by the routine. A detailed description of the array parameters can be found in Common Parameters.

\section*{Caution}

Data structures initialized and created by periodic flavors of the routine cannot be used by non-periodic flavors of any Poisson Solver routines for Helmholtz Solver on a sphere, and vice versa.

You can skip calls to these routines in your code. However, see Caveat on Parameter Modifications for information on initializing the data structures.

\section*{Return Values}
```

stat= 0 The routine successfully completed the task. In general, to
proceed with computations, the routine should complete
with this stat value.
The routine failed to complete the task because of fatal error.

```

\section*{?_commit_sph_p/?_commit_sph_np \\ Checks consistency and correctness of input data and initializes certain data structures required to solve the periodic/non-periodic Helmholtz problem on a sphere.}

\section*{Syntax}
```

void d_commit_sph_p(double* f, DFTI_DESCRIPTOR_HANDLE* handle_s,
DFTI_DESCRIPTOR_HANDLE* handle_c, MKL_INT* ipar, double* dpar, MKL_INT* stat);
void s_commit_sph_p(float* f, DFTI_DESCRIPTOR_HANDLE* handle_s, DFTI_DESCRIPTOR_HANDLE*
handle_c, MKL_INT* ipar, float* spar, MKL_INT* stat);
void d_commit_sph_np(double* f, DFTI_DESCRIPTOR_HANDLE* handle, MKL_INT* ipar, double*
dpar, MKL_INT* stat);
void s_commit_sph_np(float* f, DFTI_DESCRIPTOR_HANDLE* handle, MKL_INT* ipar, float*
spar, MKL_INT* stat);

```

\section*{Include Files}
- mkl_poisson.f90

\section*{Input Parameters}
\(f\)
ipar
dpar
spar

\section*{Output Parameters}

stat
double* for d_commit_sph_p/d_commit_sph_np,
float* for s_commit_sph_p/s_commit_sph_np.
Contains the right-hand side of the problem packed in a single vector. The size of the vector is \((n p+1)^{*}(n t+1)\) and value of the right-hand side in the mesh point \((i, j)\) is stored in \(f\left[i+j^{*}(n p+1)\right]\).

Note that the array \(f\) may be altered by the routine. Save this vector to another memory location if you want to preserve it.

MKL_INT array of size 128. Contains integer data to be used by the Fast Helmholtz Solver on a sphere (for details, refer to ipar).
double array of size \(5^{*} n p / 2+n t+10\). Contains double-precision data to be used by the Fast Helmholtz Solver on a sphere (for details, refer to dpar and spar).
float array of size \(5^{*} n p / 2+n t+10\). Contains single-precision data to be used by the Fast Helmholtz Solver on a sphere (for details, refer to dpar and spar).

Contains the right-hand side of the problem, possibly altered on output.

Contains integer data to be used by the Fast Helmholtz Solver on a sphere. Modified on output as explained in ipar.

Contains double-precision data to be used by the Fast Helmholtz Solver on a sphere. Modified on output as explained in dpar and spar.

Contains single-precision data to be used by the Fast Helmholtz Solver on a sphere. Modified on output as explained in dpar and spar.

DFTI_DESCRIPTOR_HANDLE*. Data structures used by the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface (for details, refer toFFT Functions). handle_s and handle_c are used only in ?_commit_sph_p and handle is used only in ?_commit_sph_np.

MKL_INT*. Routine completion status, which is also written to ipar[0]. Continue to call other Poisson Solver routines only if the status is 0 .

\section*{Description}

The ?_commit_sph_p/?_commit_sph_np routines check consistency and correctness of the parameters to be passed to the solver routines ? sph_p/?_sph_np, respectively. They also initialize certain data structures. The routine ?_commit_sph_p initializes structures handle_s and handle_c, and ? _commit_sph_np initializes handle. The routines also initialize the ipar array and dpar or spar array,
depending upon the routine precision. Refer to Common Parameters to find out which particular array elements the ?_commit_sph_p/?_commit_sph_np routines initialize and to what values these elements are initialized.
The routines perform only a basic check for correctness and consistency. If you are going to modify parameters of Poisson Solver routines, see Caveat on Parameter Modifications.
Unlike ?_init_sph_p/?_init_sph_np, you must call the ?_commit_sph_p/?_commit_sph_np routines. Values of \(n p\) and \(n t\) are passed to each of the routines with the ipar array.

\section*{Return Values}
```

stat=1 The routine completed without errors but with warnings.
stat=0
stat= -100
stat= -1000
stat= -10000
stat= -99999

```
?_sph_p/?_sph_np
Computes the solution of the spherical Helmholtz
problem specified by the parameters.

\section*{Syntax}
```

void d_sph_p(double* f, DFTI_DESCRIPTOR_HANDLE* handle_s, DFTI_DESCRIPTOR_HANDLE*
handle_c, MKL_INT* ipar, double* dpar, MKL_INT* stat);
void s_sph_p(float* f, DFTI_DESCRIPTOR_HANDLE* handle_s, DFTI_DESCRIPTOR_HANDLE*
handle_c, MKL_INT* ipar, float* spar, MKL_INT* stat);
void d_sph_np(double* f, DFTI_DESCRIPTOR_HANDLE* handle, MKL_INT* ipar, double* dpar,
MKL_INT* stat);
void s_sph_np(float* f, DFTI_DESCRIPTOR_HANDLE* handle, MKL_INT* ipar, float* spar,
MKL_INT* stat);

```

\section*{Include Files}
- mkl_poisson.f90

Input Parameters
f
```

double* for d_sph_p/d_sph_np,
float* for s_sph_p/s_sph_np.

```
```

handle_s, handle_c, handle

```
ipar
dpar
spar

\section*{Output Parameters}

\section*{f}

ipar
dpar
spar
stat

Contains the right-hand side of the problem packed in a single vector and modified by the appropriate ?_commit_sph_p/?_commit_sph_np routine. Note that an attempt to substitute the original right-hand side vector, which was passed to the ?_commit_sph_p/?_commit_sph_np routine, at this point results in an incorrect solution.

The size of the vector is \((n p+1) *(n t+1)\) and the value of the modified right-hand side in the mesh point (\(i, j\)) is stored in \(f\left[i+j^{*}(n p+1)\right]\).

DFTI_DESCRIPTOR_HANDLE*. Data structures used by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface (for details, refer toFFT Functions). handle_s and handle_c are used only in ?_sph_p and handle is used only in ?_sph_np.

MKL_INT array of size 128. Contains integer data to be used by the Fast Helmholtz Solver on a sphere (for details, refer to ipar).
double array of size \(5^{*} n p / 2+n t+10\). Contains double-precision data to be used by the Fast Helmholtz Solver on a sphere (for details, refer to dpar and spar).
float array of size \(5^{*} n p / 2+n t+10\). Contains single-precision data to be used by the Fast Helmholtz Solver on a sphere (for details, refer to dpar and spar).

On output, contains the approximate solution to the problem packed the same way as the right-hand side of the problem was packed on input.

Data structures used by the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface.

Contains integer data to be used by the Fast Helmholtz Solver on a sphere. Modified on output as explained in ipar.

Contains double-precision data to be used by the Fast Helmholtz Solver on a sphere. Modified on output as explained in dpar and spar.

Contains single-precision data to be used by the Fast Helmholtz Solver on a sphere. Modified on output as explained in dpar and spar.

MKL_INT*. Routine completion status, which is also written to ipar[0]. Continue to call other Poisson Solver routines only if the status is 0 .

\section*{Description}

The sph_p/sph_np routines compute the approximate solution on a sphere of the Helmholtz problem defined in the previous calls to the corresponding initialization and commit routines. The solution is computed according to the formulas given in Poisson Solver Implementation. The \(f\) parameter, which initially holds the packed vector of the right-hand side of the problem, is replaced by the computed solution packed in the same way. Values of \(n p\) and \(n t\) are passed to each of the routines with the ipar array.

\section*{Return Values}
```

stat=1
stat=0
stat= -2
stat= -3
stat= -100
stat= -1000
stat= -10000
stat= -99999

```
free_sph_p/free_sph_np
Releases the memory allocated for the data structures
used by the FFT interface.

\section*{Syntax}
```

void free_sph_p(DFTI_DESCRIPTOR_HANDLE* handle_s, DFTI_DESCRIPTOR_HANDLE* handle_c,
MKL_INT* ipar, MKL_INT* stat);
void free_sph_np(DFTI_DESCRIPTOR_HANDLE* handle, MKL_INT* ipar, MKL_INT* stat);

```

Include Files
- mkl_poisson.f90

Input Parameters
```

handle_s, handle_c, handle
ipar

```

\section*{Output Parameters}
```

handle_s, handle_c, handle

```

DFTI_DESCRIPTOR_HANDLE*. Data structures used by the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface (for details, refer toFFT Functions). The structures handle_s and handle_c are used only in free_sph_p, and handle is used only in free_sph_np.

MKL_INT array of size 128. Contains integer data to be used by Fast Helmholtz Solver on a sphere (for details, refer to ipar).

Data structures used by the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface. Memory allocated for the structures is released on output.
```

ipar Contains integer data to be used by Fast Helmholtz Solver on a
sphere. On output, the status of the routine call is written to ipar[0].
MKL_INT*. Routine completion status, which is also written to
ipar[0].

```

\section*{Description}

The free_sph_p/free_sph_np routine releases the memory used by the handle_s, handle_c or handlestructures, needed for calling the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT functions. To release memory allocated for other parameters, include memory release statements in your code.

\section*{Return Values}
```

stat=0
stat= -1000
stat= -99999
The routine successfully completed the task.
The routine stopped because of an Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT or TT interface error.
The routine failed to complete the task because of a fatal error.

```

\section*{Common Parameters for the Poisson Solver}

\section*{ipar}
ipar MKL_INT array of size 128, holds integer data needed for Fast Helmholtz Solver (both for Cartesian and spherical coordinate systems). Its elements are described in Table "Elements of the ipar Array":

\section*{NOTE}

Initial values can be assigned to the array parameters by the
```

appropriate ?_init_Helmholtz_2D/?_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np

```
and ? commit_Helmholtz_2D/?_commit_Helmholtz_3D/?_commit_sph_p/?_commit_sph_np
routines.

\section*{Elements of the ipar Array}

\section*{Index Description}

1 Contains status value of the last Poisson Solver routine called. In general, it should be 0 on exit from a routine to proceed with the Fast Helmholtz Solver. The element has no predefined values. This element can also be used to inform
the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D/ ? commit_sph_p/?_commit_sph_np routines of how the Commit step of the computation should be carried out (see Figure "Typical Order of Invoking Poisson Solver Routines"). A nonzero value of ipar(1) with decimal representation
\[
\overline{a b c}=100 a+10 b+c
\]
\(=100 a+10 b+c\), where each of \(a, b\), and \(c\) is equal to 0 or 9 , indicates that some parts of the Commit step should be omitted.
- If \(c=9\), the routine omits checking of parameters and initialization of the data structures.
- If \(b=9\),

\section*{Index Description}
- In the Cartesian case, the routine omits the adjustment of the right-hand side vector \(f\) to the Neumann boundary condition (multiplication of boundary values by 0.5 as well as incorporation of the boundary function \(g\)) and/or the Dirichlet boundary condition (setting boundary values to 0 as well as incorporation of the boundary function \(G\)).
- For the Helmholtz solver on a sphere, the routine omits computation of the spherical weights for the dpar/spar array.
- If \(a=9\), the routine omits the normalization of the right-hand side vector \(f\). Depending on the solver, the normalization means:
- 2D Cartesian case: multiplication by \(h_{y}{ }^{2}\), where \(h_{y}\) is the mesh size in the \(y\) direction (for details, see Poisson Solver Implementation).
- 3D (Cartesian) case: multiplication by \(h_{z}{ }^{2}\), where \(h_{z}\) is the mesh size in the \(z\) direction.
- Helmholtz solver on a sphere: multiplication by \(h_{\theta}{ }^{2}\), where \(h_{\theta}\) is the mesh size in the \(\theta\) direction (for details, see Poisson Solver Implementation).
Using ipar (1) you can adjust the routine to your needs and improve efficiency in solving multiple Helmholtz problems that differ only in the right-hand side. You must be cautious when using this method, because any misunderstanding of the commit process may cause incorrect results or program failure (see also Caveat on Parameter Modifications).

Contains error messaging options:
- ipar (2) \(=-1\) indicates that all error messages are printed to the MKL_Poisson_Library_log.txt file in the folder from which the routine is called. If the file \(\overline{\text { does not }}\) exist, the routine tries to create it. If the attempt fails, the routine prints information that the file cannot be created to the standard output device (usually, screen).
- ipar (2) =0 indicates that no error messages will be printed.
- \(\operatorname{ipar}(2)=1\) is the default value. It indicates that all error messages are printed to the standard output device.
In case of errors, the stat parameter contains a non-zero value on exit from a routine regardless of the ipar (2) setting.

Contains warning messaging options:
- ipar (3) \(=-1\) indicates that all warning messages are printed to the MKL_Poisson_Library_log.txt file in the directory from which the routine is called. If the file does not exist, the routine tries to create it. If the attempt fails, the routine prints information that the file cannot be created to the standard output device.
- ipar (3) \(=0\) indicates that no warning messages will be printed.
- \(\operatorname{ipar}(3)=1\) is the default value. It indicates that all warning messages are printed to the standard output device.
In case of warnings, the stat parameter contains a non-zero value on exit from a routine regardless of the ipar (3) setting.

4 through Internal parameters.

Parameters 7 through 12 are used only in the Cartesian case.
7 Takes this value:
- 2, if BCtype [0]='P'
- 1, if BCtype [0]='N'
- 0, if BCtype [0] ='D'
- -1 , otherwise

Takes this value:
- 2, if BCtype [1] = 'P'

\section*{Index Description}
- 1, if BCtype [1] =' N '
- 0, if BCtype [1] ='D'
- -1 , otherwise

Takes this value:
- 2, if BCtype [2] ='P'
- 1, if BCtype [2] ='N'
- 0, if BCtype [2] ='D'
- -1 , otherwise

Takes this value:
- 2, if BCtype [3]='P'
- 1, if BCtype [3]='N'
- 0, if BCtype [3] =' \(\mathrm{D}^{\prime}\)
- -1 , otherwise

11 Takes this value:
- 2, if BCtype [4] ='P'
- 1, if BCtype [4] ='N'
- 0 , if BCtype [4] =' \(\mathrm{D}^{\prime}\)
- -1 , otherwise

12 Takes this value:
- 2, if BCtype [5] ='P'
- 1, if BCtype [5] ='N'
- 0, if BCtype [5] ='D'
- -1, otherwise

13 Takes the value of
- \(n x\), that is, the number of intervals along the \(x\)-axis, in the Cartesian case.
- \(n p\), that is, the number of intervals along the \(\varphi\)-axis, in the spherical case.

14 Takes the value of
- ny, that is, the number of intervals along the \(y\)-axis, in the Cartesian case
- \(n t\), that is, the number of intervals along the \(\theta\)-axis, in the spherical case.

15 Takes the value of \(n z\), the number of intervals along the \(z\)-axis. This parameter is used only in the 3D case (Cartesian).

16 Internal parameters which define the internal partitioning of the dpar/spar array. through 23

The values of ipar (22) - ipar (120) are assigned regardless of the dimension of the problem for the Cartesian solver or of whether the solver on a sphere is periodic.
24 Contains message style options:
- ipar (22) \(=0\) indicates that Poisson Solver routines prints all error and warning messages in Fortran-style notations.

Contains the number of OpenMP threads to be used for computations in a multithreaded environment. The default value is 1 in the serial mode, and the result returned by the mkl_get_max_threads function otherwise.
\begin{tabular}{|c|c|}
\hline Index & Description \\
\hline \[
\begin{aligned}
& 26 \\
& \text { through } \\
& 29
\end{aligned}
\] & Internal parameters which define the internal partitioning of the dpar/spar array. \\
\hline 26 & Takes the value of ipar(19)+1, which specifies the internal partitioning of the dpar/spar array in the periodic Cartesian case. \\
\hline 27 & Takes the value of ipar(24)+3*ipar(13)/4, which specifies the internal partitioning of the dpar/spar array in the periodic Cartesian case. \\
\hline 28 & Takes the value of ipar (21)+1, which specifies the internal partitioning of the dpar/spar array in the periodic 3D Cartesian case. \\
\hline 29 & Takes the value of ipar(26)+3*ipar(14)/4, which specifies the internal partitioning of the dpar/spar array in the periodic 3D Cartesian case. \\
\hline \[
\begin{aligned}
& 30 \\
& \text { through } \\
& 40
\end{aligned}
\] & Unused. \\
\hline \begin{tabular}{l}
41 \\
through
\[
60
\]
\end{tabular} & Contain the first twenty elements of the ipar array of the first Trigonometric Transform that the solver uses. (For details, see Common Parameters in the "Trigonometric Transform Routines" section.) \\
\hline \[
\begin{aligned}
& 61 \\
& \text { through } \\
& 80
\end{aligned}
\] & Contain the first twenty elements of the ipar array of the second Trigonometric Transform that the 3D Cartesian and periodic spherical solvers use. (For details, see Common Parameters in the "Trigonometric Transform Routines" section.) \\
\hline \begin{tabular}{l}
\[
81
\] \\
through
\[
100
\]
\end{tabular} & Contain the first twenty elements of the ipar array of the third Trigonometric Transform that the solver uses in case of periodic boundary conditions along the \(x\)-axis. (For details, see Common Parameters in the "Trigonometric Transform Routines" section.) \\
\hline \begin{tabular}{l}
\[
101
\] \\
through
\[
120
\]
\end{tabular} & Contain the first twenty elements of the ipar array of the fourth Trigonometric Transform used by periodic spherical solvers and 3D Cartesian solvers with periodic boundary conditions along the \(y\)-axis. (For details, see Common Parameters in the "Trigonometric Transform Routines" section.) \\
\hline \begin{tabular}{l}
121 \\
through
\[
129
\]
\end{tabular} & Internal parameters used by nonuniform 3D solvers. \\
\hline
\end{tabular}

\section*{NOTE}

While you can declare the ipar array as MKL_INT ipar (121), for future compatibility you should declare ipar as MKL_INT ipar(129).

\section*{dpar and spar}

Arrays dpar and spar are the same except in the data precision:
dpar Holds data needed for double-precision Fast Helmholtz Solver computations.
- For the Cartesian solver, double array of size \(5^{*} n x / 2+7\) in the 2D case or \(5 *(n x+n y) / 2+9\) in the 3D case; initialized in the d_init_Helmholtz_2D/d_init_Helmholtz_3D and d_commit_Helmholtz_2D/d_commit_Helmholtz_3D routines.
- For the spherical solver, double array of size \(5 * n p / 2+n t+10\); initialized in the d_init_sph_p/d_init_sph_np and d_commit_sph_p/d_commit_sph_np routines.

Holds data needed for single-precision Fast Helmholtz Solver computations.
- For the Cartesian solver, float array of size \(5^{*}{ }_{n x} / 2+7\) in the 2D case or \(5^{*}(n x+n y) / 2+9\) in the 3D case; initialized in the s_init_Helmholtz_2D/s_init_Helmholtz_3D and s_commit_Helmholtz_2D/s_commit_Helmholtz_3D routines.
- Fōr the spherical solver, float array of size \(5^{*} n p / \overline{2}+n t+10\); initialized in the s_init_sph_p/s_init_sph_np and s_commit_sph_p/s_commit_sph_np routines.

Because dpar and spar have similar elements in each position, the elements are described together in Table "Elements of the dpar and spar Arrays":
Elements of the dpar and spar Arrays

\section*{Index}

1

2

3

4

5

\section*{Description}

In the Cartesian case, contains the length of the interval along the \(x\)-axis right after a call to the ? init_Helmholtz_2D/? init_Helmholtz_3D routine or the mesh size \(h_{x}\) in the \(x\) direction (for details, see Poisson Solver Implementation) after a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine.
In the spherical case, contains the length of the interval along the \(\varphi\)-axis right after a call to the ?_init_sph_p/?_init_sph_np routine or the mesh size \(h_{\varphi}\) in the \(\varphi\) direction (for details, see Poisson Solver Implementation) after a call to the ?_commit_sph_p/?_commit_sph_np routine.

In the Cartesian case, contains the length of the interval along the \(y\)-axis right after a call to the ? init_Helmholtz_2D/?_init_Helmholtz_3D routine or the mesh size \(h_{y}\) in the \(y\) direction (for details, see Poisson Solver Implementation) after a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine.
In the spherical case, contains the length of the interval along the \(\theta\)-axis right after a call to the ?_init_sph_p/?_init_sph_np routine or the mesh size \(h_{\theta}\) in the \(\theta\) direction (for details, see Poisson Solver Implementation) after a call to the ?_commit_sph_p/?_commit_sph_np routine.

In the Cartesian case, contains the length of the interval along the \(z\)-axis right after a call to the ? init_Helmholtz_2D/?_init_Helmholtz_3D routine or the mesh size \(h_{z}\) in the \(z\) direction (for details, see Poisson Solver Implementation) after a call to the ? commit_Helmholtz_2D/?_commit_Helmholtz_3D routine. In the Cartesian solver, this parameter is used only in the \(\overline{3 D}\) case.
In the spherical solver, contains the coordinate of the leftmost boundary along the \(\theta\) axis after a call to the ?_init_sph_p/?_init_sph_np routine.

Contains the value of the coefficient \(q\) after a call to the
?_init_Helmholtz_2D/?_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np routine.

Contains the tolerance parameter after a call to the
?_init_Helmholtz_2D/?_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np routine.
Index Description
ipar(16)
through ipar(17)
ipar(18)
through
ipar(19)
ipar(20)
through
ipar(21)
ipar(22)
through
ipar(23)
ipar(26)
through
ipar(27)
ipar(28)
through
ipar(29)-1
- In the Cartesian case, this value is used only for the pure Neumann boundary conditions (BCtype="NNNN" in the 2D case; BCtype="NNNNNN" in the 3D case). This is a special case, because the right-hand side of the problem cannot be arbitrary if the coefficient \(q\) is zero. The Poisson Solver verifies that the classical solution exists (up to rounding errors) using this tolerance. In any case, the Poisson Solver computes the normal solution, that is, the solution that has the minimal Euclidean norm of residual. Nevertheless, the ? _Helmholtz_2D/?_Helmholtz_3D routine informs you that the solution may not exist in a classical sense (up to rounding errors).
- In the spherical case, the value is used for the special case of a periodic problem on the entire sphere. This special case is similar to the Cartesian case with pure Neumann boundary conditions. Here the Poisson Solver computes the normal solution as well. The parameter is also used to detect whether the problem is periodic up to rounding errors.
The default value for this parameter is \(1.0 \mathrm{E}-10\) in case of double-precision computations or \(1.0 \mathrm{E}-4\) in case of single-precision computations. You can increase the value of the tolerance, for instance, to avoid the warnings that may appear.

In the Cartesian case, contain the spectrum of the one-dimensional (1D) problem along the \(x\)-axis after a call to
the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine.
In the spherical case, contains the spectrum of the 1D problem along the \(\varphi\)-axis after a call to the ?_commit_sph_p/?_commit_sph_np routine.

In the Cartesian case, contain the spectrum of the 1D problem along the \(y\)-axis after a call to the ? commit_Helmholtz_3D routine. These elements are used only in the 3D case.
In the spherical case, contains the spherical weights after a call to the ?_commit_sph_p/?_commit_sph_np routine.

Take the values of the (staggered) sine/cosine in the mesh points:
- along the \(x\)-axis after a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine for a Cartesian solver
- along the \(\varphi\)-axis after a call to the ?_commit_sph_p/?_commit_sph_np routine for a spherical solver.

Take the values of the (staggered) sine/cosine in the mesh points:
- along the \(y\)-axis after a call to the ?_commit_Helmholtz_3D routine for a Cartesian 3D solver
- along the \(\varphi\)-axis after a call to the ?_commit_sph_p routine for a spherical periodic solver.
These elements are not used in the 2D Cartesian case and in the non-periodic spherical case.

Take the values of the (staggered) sine/cosine in the mesh points along the \(x\)-axis after a call to the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine. These elements are used only in the periodic Cartesian case.

Take the values of the (staggered) sine/cosine in the mesh points along the \(x\)-axis after a call to the ?_commit_Helmholtz_3D routine. These elements are used only in the periodic 3D Cartesian case.

\section*{NOTE}

You may define the array size depending upon the type of the problem to solve.

\section*{Caveat on Parameter Modifications}

Flexibility of the Poisson Solver interface enables you to skip calls to
the ?_init_Helmholtz_2D/?_init_Helmholtz_3D/?_init_sph_p/?_init_sph_np routine and to initialize the basic data structures explicitly in your code. You may also need to modify contents of the ipar, dpar, and spar arrays after initialization. When doing so, provide correct and consistent data in the arrays. Mistakenly altered arrays cause errors or incorrect results. You can perform a basic check for correctness and consistency of parameters by calling the ?_commit_Helmholtz_2D/?_commit_Helmholtz_3D routine; however, this does not ensure the correct solution but only reduces the chance of errors or wrong results.

\section*{NOTE}

To supply correct and consistent parameters to Poisson Solver routines, you should have considerable experience in using the Poisson Solver interface and good understanding of the solution process, as well as elements contained in the ipar, spar, and dpar arrays and dependencies between values of these elements.

In rare occurrences when you fail in tuning parameters for the Fast Helmholtz Solver, refer for technical support at http://www.intel.com/software/products/support/ .

\section*{WARNING}

The only way that ensures a proper solution of a Helmholtz problem is to follow a typical sequence of invoking the routines and not change the default set of parameters. So, avoid modifications of ipar, dpar, and spar arrays unless it is necessary.

\section*{Parameters That Define Boundary Conditions}

Poisson Solver routines for the Cartesian solver use the following common parameters to define the boundary conditions.

Parameters to Define Boundary Conditions for the Cartesian Solver
\(\left.\begin{array}{ll}\hline \text { Parameter } & \text { Description } \\ \hline b d_{-} a x & \text { double* ford_commit_Helmholtz_2D/d_commit_Helmholtz_3D and } \\ & d_{-} H e l m h o l t z_{-} 2 D / d_{-} H e l m h o l t z _3 D,\end{array}\right]\)

Contains values of the boundary condition on the leftmost boundary of the domain along the \(x\)-axis.
- 2D problem: the size of the array is \(n y+1\). Its contents depend on the boundary conditions as follows:
- Dirichlet boundary condition (value of BCtype[0] is ' \(D\) '): values of the function \(G(a x\), \(\left.y_{j}\right), j=0, \ldots\), ny.
- Neumann boundary condition (value of BCtype[0] is ' N '): values of the function \(g\left(a x, y_{j}\right), j=0, \ldots, n y\).
The value corresponding to the index \(j\) is placed in bd_ax[j].
- 3D problem: the size of the array is \((n y+1)^{*}(n z+1)\). Its contents depend on the boundary conditions as follows:

\section*{Parameter Description}
- Dirichlet boundary condition (value of BCtype[0] is ' \(D\) '): values of the function \(G(a x\), \(\left.y_{j}, z_{k}\right), j=0, \ldots, n y, k=0, \ldots, n z\).
- Neumann boundary condition (value of BCtype[0] is ' N '): the values of the function \(g\left(a x, y_{j}, z_{k}\right), j=0, \ldots, n y, k=0, \ldots, n z\).
The values are packed in the array so that the value corresponding to indices \((j, k)\) is placed in bd_ax[j+k*(ny+1)].
For periodic boundary conditions (the value of BCtype[0] is ' P '), this parameter is not used, so it can accept a dummy pointer.
bd_bx
bd_ay double* ford_commit_Helmholtz_2D/d_commit_Helmholtz_3D and d_Helmholtz_2D/d_Helmholtz_3D,
float* for s_commit_Helmholtz_2D/s_commit_Helmholtz_3D and s_Helmholtz_2D/s_Helmholtz_3D.
Contains values of the boundary condition on the leftmost boundary of the domain along the \(y\)-axis.
- 2D problem: the size of the array is \(n x+1\). Its contents depend on the boundary conditions as follows:
- Dirichlet boundary condition (value of BCtype[2] is 'D'): values of the function \(G\left(x_{i}\right.\), \(a y), i=0, \ldots, n x\).
- Neumann boundary condition (value of BCtype[2] is ' N '): values of the function \(g\left(x_{i}\right.\), \(a y), i=0, \ldots, n x\).
The value corresponding to the index \(i\) is placed in bd_ay \([i]\).
- 3D problem: the size of the array is \((n x+1)^{*}(n z+1)\). Its contents depend on the boundary conditions as follows:

\section*{Parameter Description}
- Dirichlet boundary condition (value of BCtype[2] is ' D '): values of the function \(G\left(x_{i}, a y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z\).
- Neumann boundary condition (value of BCtype[2] is ' N '): values of the function \(g\left(x_{i}, a y, z_{k}\right), i=0, \ldots, n x, k=0, \ldots, n z\).
The values are packed in the array so that the value corresponding to indices (i,k) is placed in bd_ay \(\left[i+k^{*}(n x+1)\right]\).
For periodic boundary conditions (the value of BCtype[2] is ' P '), this parameter is not used, so it can accept a dummy pointer.
bd_by
bd_az double* for d_commit_Helmholtz_3D and d_Helmholtz_3D,
float* for s_commit_Helmholtz_3D and s_Helmholtz_3D.
Used only by ?_commit_Helmholtz_3D and ?_Helmholtz_3D. Contains values of the boundary condition on the leftmost boundary of the domain along the \(z\)-axis.
The size of the array is \((n x+1) *(n y+1)\). Its contents depend on the boundary conditions as follows:
- Dirichlet boundary condition (value of BCtype[4] is 'D'): values of the function \(G\left(x_{i}\right.\), \(\left.y_{j}, a z\right), i=0, \ldots, n x, j=0, \ldots, n y\).
- Neumann boundary condition (value of BCtype[4] is ' N '), values of the function \(g\left(x_{i}\right.\), \(\left.y_{j}, a z\right), i=0, \ldots, n x, j=0, \ldots, n y\).
The values are packed in the array so that the value corresponding to indices \((i, j)\) is placed in bd_az[i+j*(nx+1)].
For periodic boundary conditions (the value of BCtype[4] is ' P '), this parameter is not used, so it can accept a dummy pointer.
\begin{tabular}{|c|c|}
\hline Parameter & Description \\
\hline \multirow[t]{7}{*}{bd_bz} & double* ford_commit_Helmholtz_3D and d_Helmholtz_3D, \\
\hline & float* for s_commit_Helmholtz_3D and s_Helmholtz_3D. \\
\hline & Used only by ?_commit_Helmholtz_3D and ?_Helmholtz_3D. Contains values of the boundary condition on the rightmost boundary of the domain along the \(z\)-axis. \\
\hline & The size of the array is \((n x+1)^{*}(n y+1)\). Its contents depend on the boundary conditions as follows: \\
\hline & \begin{tabular}{l}
- Dirichlet boundary condition (value of BCtype[5] is 'D'): values of the function \(G\left(x_{i}\right.\), \(y_{j, b z}, i=0, \ldots, n x, j=0, \ldots, n y\). \\
- Neumann boundary condition (value of BCtype[5] is ' N '): values of the function \(g\left(x_{i}\right.\), \(\left.y_{j}, b z\right), i=0, \ldots, n x, j=0, \ldots, n y\).
\end{tabular} \\
\hline & The values are packed in the array so that the value corresponding to indices \((i, j)\) is placed in bd_bz[i+j*(nx+1)]. \\
\hline & For periodic boundary conditions (the value of BCtype[5] is ' P '), this parameter is not used, so it can accept a dummy pointer. \\
\hline
\end{tabular}

\section*{See Also}
```

?_commit_Helmholtz_2D/?_commit_Helmholtz_3D
?_Helmholtz_2D/?_Helmholtz_3D

```

\section*{Poisson Solver Implementation Details}

Several aspects of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver interface are platformspecific and language-specific. To promote portability of the Intel® oneAPI Math Kernel Library (oneMKL) Poisson Solver interface across platforms and ease of use across different languages, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides you with the Poisson Solver language-specific header file to include in your code:
- mkl_poisson.f90, to be used together with mkl_dfti.f90.

\section*{NOTE}
- Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Poisson Solver interface supports Fortran versions starting with Fortran 90.
- Use of the Intel® oneAPI Math Kernel Library (oneMKL) Poisson Solver software without including the above language-specific header files is not supported.

\section*{Header File}

The header file defines the following function prototypes for the Cartesian solver:
```

SUBROUTINE D_INIT_HELMHOLTZ_2D (AX, BX, AY, BY, NX, NY, BCTYPE, Q, IPAR, DPAR, STAT)
USE MKL_DFTI
INTEGER NX, NY, STAT
INTEGER IPAR(*)
DOUBLE PRECISION AX, BX, AY, BY, Q
DOUBLE PRECISION DPAR(*)
CHARACTER(4) BCTYPE
END SUBROUTINE
SUBROUTINE D_COMMIT_HELMHOLTZ_2D (F, BD_AX, BD_BX, BD_AY, BD_BY, XHANDLE, IPAR, DPAR, STAT)
USE MKL_DFTI

```
```

    INTEGER STAT
    INTEGER IPAR(*)
    DOUBLE PRECISION F(IPAR(11)+1,*)
    DOUBLE PRECISION DPAR(*)
    DOUBLE PRECISION BD_AX(*), BD_BX(*), BD_AY(*), BD_BY(*)
    TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE
    END SUBROUTINE
SUBROUTINE D_HELMHOLTZ_2D (F, BD_AX, BD_BX, BD_AY, BD_BY, XHANDLE, IPAR, DPAR, STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
DOUBLE PRECISION F(IPAR(11)+1,*)
DOUBLE PRECISION DPAR(*)
DOUBLE PRECISION BD_AX(*), BD_BX(*), BD_AY(*), BD_BY(*)
TYPE(DFTI_DESCRIPTO\overline{R}), POINTE\overline{R}}:: XHAND\overline{LE
END SUBROUTINE
SUBROUTINE S_INIT_HELMHOLTZ_2D (AX, BX, AY, BY, NX, NY, BCTYPE, Q, IPAR, SPAR, STAT)
USE MKL_DFTI
INTEGER NX, NY, STAT
INTEGER IPAR(*)
REAL AX, BX, AY, BY, Q
REAL SPAR(*)
CHARACTER(4) BCTYPE
END SUBROUTINE
SUBROUTINE S_COMMIT_HELMHOLTZ_2D (F, BD_AX, BD_BX, BD_AY, BD_BY, XHANDLE, IPAR, SPAR, STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
REAL F(IPAR(11)+1,*)
REAL SPAR(*)
REAL BD_AX(*), BD_BX(*), BD_AY(*), BD_BY(*)
TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE
END SUBROUTINE
SUBROUTINE S_HELMHOLTZ_2D (F, BD_AX, BD_BX, BD_AY, BD_BY, XHANDLE, IPAR, SPAR, STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
REAL F(IPAR(11)+1,*)
REAL SPAR(*)
REAL BD_AX(*), BD_BX(*), BD_AY(*), BD_BY(*)
TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE
END SUBROUTINE
SUBROUTINE FREE_HELMHOLTZ_2D (XHANDLE, IPAR, STAT)

```
```

    USE MKL_DFTI
    INTEGER STAT
    INTEGER IPAR(*)
    TYPE (DFTI_DESCRIPTOR), POINTER : : XHANDLE
    END SUBROUTINE
SUBROUTINE D_INIT_HELMHOLTZ_3D (AX, BX, AY, BY, AZ, BZ, NX, NY, NZ, BCTYPE, Q, IPAR, DPAR, STAT)
USE MKL_DFTI
INTEGER NX, NY, NZ, STAT
INTEGER IPAR(*)
DOUBLE PRECISION AX, BX, AY, BY, AZ, BZ, Q
DOUBLE PRECISION DPAR(*)
CHARACTER(6) BCTYPE
END SUBROUTINE
SUBROUTINE D_COMMIT_HELMHOLTZ_3D (F, BD_AX, BD_BX, BD_AY, BD_BY, BD_AZ, BD_BZ, XHANDLE, YHANDLE,
IPAR, DPAR, STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
DOUBLE PRECISION F(IPAR(11)+1,IPAR(12)+1,*)
DOUBLE PRECISION DPAR(*)
DOUBLE PRECISION BD_AX(IPAR (12) +1,*), BD_BX(IPAR(12) +1,*), BD_AY(IPAR(11)+1,**)
DOUBLE PRECISION BD_BY(IPAR (11) +1,*), BD_AZ(IPAR(11)+1,*), BD_BZ (IPAR(11)+1,*)
TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE, YHANDLE
END SUBROUTINE
SUBROUTINE D_HELMHOLTZ_3D (F, BD_AX, BD_BX, BD_AY, BD_BY, BD_AZ, BD_BZ, XHANDLE, YHANDLE, IPAR,
DPAR, STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
DOUBLE PRECISION F(IPAR(11)+1,IPAR(12)+1,*)
DOUBLE PRECISION DPAR(*)
DOUBLE PRECISION BD_AX(IPAR (12) +1,*), BD_BX(IPAR(12) +1,*), BD_AY(IPAR(11)+1,*)
DOUBLE PRECISION BD_BY(IPAR (11) +1,*), BD_AZ (IPAR(11) +1,*), BD_BZ(IPAR(11)+1,*)
TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE, YHANDLE
END SUBROUTINE
SUBROUTINE S_INIT_HELMHOLTZ_3D (AX, BX, AY, BY, AZ, BZ, NX, NY, NZ, BCTYPE, Q, IPAR, SPAR, STAT)
USE MKL_DFTI
INTEGER NX, NY, NZ, STAT
INTEGER IPAR(*)
REAL AX, BX, AY, BY, AZ, BZ, Q
REAL SPAR(*)
CHARACTER(6) BCTYPE
END SUBROUTINE

```
```

SUBROUTINE S_COMMIT_HELMHOLTZ_3D (F, BD_AX, BD_BX, BD_AY, BD_BY, BD_AZ, BD_BZ, XHANDLE, YHANDLE,
IPAR, SPAR, STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
REAL F(IPAR (11) +1, IPAR(12) +1,**)
REAL SPAR(*)
REAL BD_AX(IPAR(12)+1,*), BD_BX(IPAR(12)+1,*), BD_AY(IPAR(11) +1,*)
REAL BD_BY(IPAR (11) +1,*), BD_AZ(IPAR (11) +1,*), BD_BZ (IPAR (11) +1,*)
TYPE(DFTI_DESCRIPTOR), POINTER :: XHANDLE, YHANDLE
END SUBROUTINE
SUBROUTINE S_HELMHOLTZ_3D (F, BD_AX, BD_BX, BD_AY, BD_BY, BD_AZ, BD_BZ, XHANDLE, YHANDLE, IPAR,
SPAR, STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
REAL F(IPAR (11) +1,IPAR(12) +1,*)
REAL SPAR(*)
REAL BD_AX(IPAR(12)+1,*), BD_BX(IPAR(12)+1,*), BD_AY(IPAR(11)+1,*)
REAL BD_BY(IPAR(11)+1,*), BD_AZ(IPAR(11)+1,*), BD_BZ(IPAR(11) +1,*)
TYPE(DFTI_DESCRIPTOR), POINTER : : XHANDLE, YHANDLE
END SUBROUTINE
SUBROUTINE FREE_HELMHOLTZ_3D (XHANDLE, YHANDLE, IPAR, STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
TYPE(DFTI_DESCRIPTOR), POINTER : : XHANDLE, YHANDLE
END SUBROUTINE

```

The header file defines the following function prototypes for the spherical solver:
```

SUBROUTINE D_INIT_SPH_P(AP,BP,AT,BT,NP,NT,Q,IPAR,DPAR,STAT)
USE MKL_DFTI
INTEGER NP, NT, STAT
INTEGER IPAR(*)
DOUBLE PRECISION AP,BP,AT,BT,Q
DOUBLE PRECISION DPAR(*)
END SUBROUTINE
SUBROUTINE D_COMMIT_SPH_P(F,HANDLE_S,HANDLE_C,IPAR,DPAR,STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
DOUBLE PRECISION DPAR(*)
DOUBLE PRECISION F(IPAR(11)+1,*)
TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE_C, HANDLE_S
END SUBROUTINE

```
```

SUBROUTINE D_SPH_P(F,HANDLE_S,HANDLE_C,IPAR,DPAR,STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
DOUBLE PRECISION DPAR(*)
DOUBLE PRECISION F(IPAR(11)+1,*)
TYPE (DFTI_DESCRIPTOR), POINTER :: HANDLE_C, HANDLE_S
END SUBROUTINE
SUBROUTINE S_INIT_SPH_P(AP,BP,AT,BT,NP,NT,Q,IPAR,SPAR,STAT)
USE MKL_DFTI
INTEGER NP, NT, STAT
INTEGER IPAR(*)
REAL AP,BP,AT,BT,Q
REAL SPAR(*)
END SUBROUTINE
SUBROUTINE S_COMMIT_SPH_P(F,HANDLE_S,HANDLE_C,IPAR,SPAR,STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
REAL SPAR(*)
REAL F(IPAR(11)+1,*)
TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE_C, HANDLE_S
END SUBROUTINE
SUBROUTINE S_SPH_P(F,HANDLE_S,HANDLE_C,IPAR,SPAR,STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
REAL SPAR(*)
REAL F(IPAR(11)+1,*)
TYPE(DFTI_DESCRIPTOR), POINTER : : HANDLE_C, HANDLE_S
END SUBROUTIN
SUBROUTINE FREE_SPH_P(HANDLE_S,HANDLE_C,IPAR,STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE_S, HANDLE_C
END SUBROUTINE

```
SUBROUTINE D_INIT_SPH_NP (AP, BP,AT,BT,NP,NT, Q,IPAR,DPAR,STAT)
 USE MKL_DFTI
```

    INTEGER NP, NT, STAT
    INTEGER IPAR(*)
    DOUBLE PRECISION AP,BP,AT,BT,Q
    DOUBLE PRECISION DPAR(*)
    END SUBROUTINE
SUBROUTINE D_COMMIT_SPH_NP(F,HANDLE,IPAR,DPAR,STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
DOUBLE PRECISION DPAR(*)
DOUBLE PRECISION F(IPAR(11)+1,*)
TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE
END SUBROUTINE
SUBROUTINE D_SPH_NP(F,HANDLE,IPAR,DPAR,STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
DOUBLE PRECISION DPAR(*)
DOUBLE PRECISION F(IPAR(11)+1,*)
TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE
END SUBROUTINE
SUBROUTINE S_INIT_SPH_NP(AP,BP,AT,BT,NP,NT,Q,IPAR,SPAR,STAT)
USE MKL_DFTI
INTEGER NP, NT, STAT
INTEGER IPAR(*)
REAL AP,BP,AT,BT,Q
REAL SPAR(*)
END SUBROUTINE
SUBROUTINE S_COMMIT_SPH_NP(F,HANDLE,IPAR,SPAR,STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
REAL SPAR(*)
REAL F(IPAR(11)+1,*)
TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE
END SUBROUTINE
SUBROUTINE S_SPH_NP(F,HANDLE,IPAR,SPAR,STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
REAL SPAR(*)
REAL F(IPAR(11)+1,*)
TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE

```
```

END SUBROUTINE
SUBROUTINE FREE_SPH_NP(HANDLE,IPAR,STAT)
USE MKL_DFTI
INTEGER STAT
INTEGER IPAR(*)
TYPE(DFTI_DESCRIPTOR), POINTER :: HANDLE
END SUBROUTINE

```

Fortran specifics of the Poisson Solver routines usage are similar for all Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PDE support tools and described inCalling PDE Support Routines from Fortran.

\section*{Calling PDE Support Routines from Fortran}

The calling interface for all the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) TT and Poisson Solver routines is designed to be easily used in C. However, you can invoke each TT or Poisson Solver routine directly from Fortran 90 or higher if you are familiar with the inter-language calling conventions of your platform.

The \(T T\) or Poisson Solver interface cannot be invoked from FORTRAN 77 due to restrictions imposed by the use of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) FFT interface.

The inter-language calling conventions include, but are not limited to, the argument passing mechanisms for the language, the data type mappings from C to Fortran, and how C external names are decorated on the platform.
To promote portability and relieve you of dealing with the calling conventions specifics, the Fortran header file mkl_trig_transforms.f90 for \(T\) routines and mkl_poisson.f90 for Poisson Solver routines, used together with mkl_dfti.f90, declare a set of macros and introduce type definitions intended to hide the inter-language calling conventions and provide an interface to the routines that looks natural in Fortran.
For example, consider a hypothetical library routine, foo, which takes a double-precision vector of length \(n\). C users access such a function as follows:
```

MKL_INT n;
double *x;
...
foo(x, \&n);

```

As noted above, to invoke foo, Fortran users would need to know what Fortran data types correspond to C types MKL_INT and double (or float for single-precision), what argument-passing mechanism the C compiler uses and what, if any, name decoration is performed by the \(C\) compiler when generating the external symbol foo. However, with the Fortran header files mkl_trig_transforms.f90/ mkl _poisson. f 90 and mkl_dfti.f90 included, the invocation of foo within a Fortran program will look as follows for the LP64 interface (for the ILP64 interface, INTEGER*8 type will be used instead of INTEGER*4):
- For TT interface,
```

use mkl_dfti
use mkl_trig_transforms
INTEGER*4 n
DOUBLE PRECISION, ALLOCATABLE :: x
CALL FOO (x,n)

```
- For Poisson Solver interface,
```

use mkl_dfti
use mkl_poisson
INTEGER*4 n
DOUBLE PRECISION, ALLOCATABLE :: x

```
```

CALL FOO (x,n)

```

Note that in the above example, the header files mkl_trig_transforms.f90/mkl_poisson.f90 and mkl _dfti.f90 provide a definition for the subroutine FOO. To ease the use of Poisson Solver or TT routines in Fortran, the general approach of providing Fortran definitions of names is used throughout the libraries. Specifically, if a name from a Poisson Solver or TT interface is documented as having the C-specific name foo, then the Fortran header files provide an appropriate Fortran language type definition FOO.

One of the key differences between Fortran and C is the language argument-passing mechanism: C programs use pass-by-value semantics and Fortran programs use pass-by-reference semantics. The Fortran headers ensure proper treatment of this difference. In particular, in the above example, the header files mkl_trig_transforms.f90 / mkl_poisson.f90 and mkl_dfti.f90 hide the difference by defining a macro FOO that takes the address of the appropriate arguments.

\section*{Nonlinear Optimization Problem Solvers}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides tools for solving nonlinear least squares problems using the Trust-Region (TR) algorithms. The general nonlinear solver workflow and naming conventions are described here:
- Nonlinear Solver Organization and Implementation
- Nonlinear Solver Routine Naming Conventions

The solver routines are grouped according to their purpose as follows:
- Nonlinear Least Squares Problem without Constraints
- Nonlinear Least Squares Problem with Linear (Boundary) Constraints
- Jacobian Matrix Calculation Routines

For more information on the key concepts required to understand the use of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) nonlinear least squares problem solver routines, see [Conn00].

\section*{Nonlinear Solver Organization and Implementation}

The Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) solver routines for nonlinear least squares problems use reverse communication interfaces (RCI). That means you need to provide the solver with information required for the iteration process, for example, the corresponding Jacobian matrix, or values of the objective function. RCI removes the dependency of the solver on specific implementation of the operations. However, it does require that you organize a computational loop.
```

border _top

```

\section*{Typical order for invoking RCI solver routines}

The nonlinear least squares problem solver routines, or Trust-Region (TR) solvers, are implemented with threading support. You can manage the threads using Threading Control Functions. The TR solvers use BLAS and LAPACK routines, and offer the same parallelism as those domains. The ?jacobi and ?jacobix routines of Jacobi matrix calculations are parallel. These routines (?jacobi and ?jacobix) make calls to the usersupplied functions with different \(x\) parameters for multiple threads.

\section*{Memory Allocation and Handles}

To make the TR solver routines easy to use, you are not required to allocate temporary working storage. The solver allocates all temporary memory internally. To allow multiple users to access the solver simultaneously, the solver keeps track of the storage allocated for a particular application by using a data object called a handle. Each TR solver routine creates, uses, or deletes a handle. The handle datatype definition can be found in mkl_rci.fi (ormkl_rci.f90).

Use one of the mentioned headers (either include it or as a module) and declare the handle as:
```

type(HANDLE_TR) :: handle

```

For a program using compilers that support eight byte integers, declare a handle as:
```

INCLUDE "mkl_rci.fi"
INTEGER*8 handle

```

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Nonlinear Solver Routine Naming Conventions}

The TR routine names have the following structure:
```

<character><name>_<action>( )

```
where
- <character> indicates the data type:
```

s real, single precision
d real, double precision

```
- <name> indicates the task type:
trnlsp nonlinear least squares problem without constraints
trnlspbc nonlinear least squares problem with boundary constraints
jacobi computation of the Jacobian matrix using central differences
- <action> indicates an action on the task:
\begin{tabular}{ll}
init & initializes the solver \\
check & checks correctness of the input parameters \\
solve & \begin{tabular}{l}
solves the problem
\end{tabular} \\
get & \begin{tabular}{l}
retrieves the number of iterations, the stop criterion, the initial residual, \\
and the final residual
\end{tabular} \\
delete & releases the allocated data
\end{tabular}

\section*{Nonlinear Least Squares Problem without Constraints}

The nonlinear least squares problem without constraints can be described as follows:
\[
\min _{x \in R^{n}}\|F(x)\|_{2}^{2}=\min _{x \in R^{n}}\|y-f(x)\|_{2}^{2}, y \in R^{m}, x \in R^{n}, f: R^{n} \rightarrow R^{m}, m \geq n,
\]
where
\(F(x): R^{n} \rightarrow R^{m}\) is a twice differentiable function in \(R^{n}\).
Solving a nonlinear least squares problem means searching for the best approximation to the vector \(y\) with the model function \(f_{i}(x)\) and nonlinear variables \(x\). The best approximation means that the sum of squares of residuals \(y_{i}-f_{i}(x)\) is the minimum.

See usage examples in the examples \(\backslash f \backslash\) nonlinear_solvers folderof your Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory. Specifically, see ex_nlsqp_f.f.

RCI TR Routines
\begin{tabular}{ll}
\hline Routine Name & Operation \\
\hline ?trnlsp_init & Initializes the solver. \\
?trnlsp_check & Checks correctness of the input parameters. \\
?trnlsp_solve & \begin{tabular}{l}
Solves a nonlinear least squares problem using the Trust-Region \\
algorithm.
\end{tabular} \\
?trnlsp_get & \begin{tabular}{l}
Retrieves the number of iterations, stop criterion, initial residual, and \\
final residual.
\end{tabular} \\
?trnlsp_delete & Releases allocated data. \\
\hline
\end{tabular}

\section*{?trnlsp_init}

Initializes the solver of a nonlinear least squares problem.

\section*{Syntax}
```

res = strnlsp_init(handle, n, m, x, eps, iter1, iter2, rs)
res = dtrnlsp_init(handle, n, m, x, eps, iter1, iter2, rs)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The ?trnlsp_init routine initializes the solver.
After initialization, all subsequent invocations of the ?trnlsp_solve routine should use the values of the handle returned by ?trnlsp_init. This handle stores internal data, including pointers to the arrays \(x\) and \(e p s\). It is important to not move or deallocate these arrays until after calling the ? trnlsp_delete routine.
The eps array contains a number indicating the stopping criteria:
\begin{tabular}{ll}
\hline\(e p s\) Value & Description \\
\hline \(\mathbf{1}\) & \(\Delta<e p s(1)\) \\
2 & \(||F(x)||_{2}<\operatorname{eps}(2)\) \\
3 & The Jacobian matrix is singular. \\
& \(||J(x)(1: m, j)||_{2}<\operatorname{eps}(3), j=1, \ldots, n\) \\
4 & \(\left||s|_{2}<e p s(4)\right.\) \\
5 & \(||F(x)||_{2}-||F(x)-J(x) s||_{2}<e p s(5)\) \\
6 & The trial step precision. If eps \((6)=0\), then the trial step meets the required \\
& precision \(\left(\leq 1.0^{\left.* 10^{-10}\right) .}\right.\)
\end{tabular}

\section*{Note:}
- \(J(x)\) is the Jacobian matrix.
- \(\Delta\) is the trust-region area.
- \(F(x)\) is the value of the functional.
- \(s\) is the trial step.

\section*{Input Parameters}
\(n\)
m
x
eps
iterl
iter2
\(r s\)

INTEGER. Length of \(x\).
INTEGER. Length of \(F(x)\).
REAL for strnlsp_init
DOUBLE PRECISION for dtrnlsp_init
Array of size \(n\). Initial guess. A reference to this array is stored in handle for later use and modification by ?trnlsp_solve

REAL for strnlsp_init
DOUBLE PRECISION for dtrnlsp_init
Array of size 6; contains stopping criteria. See the values in the Description section.

A reference to this array is stored in handle for later use by ?trnlsp_solve

INTEGER. Specifies the maximum number of iterations.
INTEGER. Specifies the maximum number of iterations of trial step calculation.

REAL for strnlsp_init
DOUBLE PRECISION for dtrnlsp_init
Definition of initial size of the trust region (boundary of the trial step). The recommend minimum value is 0.1 , and the recommended maximum value is 100.0. Based on your knowledge of the objective function and initial guess you can increase or decrease the initial trust region. It can influence the iteration process, for example, the direction of the iteration process and the number of iterations. If you set rs to 0.0 , the solver uses the default value, which is 100.0 .

\section*{Output Parameters}
handle
res

Type INTEGER*8.
INTEGER. Indicates task completion status.
- res \(=\) TR_SUCCESS - the routine completed the task normally.
- res \(=\) TR_INVALID_OPTION - there was an error in the input parameters.
- res = TR_OUT_OF_MEMORY - there was a memory error.

TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in the mkl_rci.fi include file.

\author{
See Also \\ ?trnlsp_solve
}

\section*{?trnlsp_check}

Checks the correctness of handle and arrays
containing Jacobian matrix, objective function, and stopping criteria.

\section*{Syntax}
```

res = strnlsp_check(handle, n, m, fjac, fvec, eps, info)
res = dtrnlsp_check(handle, n, m, fjac, fvec, eps, info)

```

Include Files
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The ?trnlsp_check routine checks the arrays passed into the solver as input parameters. If an array contains any INF or NaN values, the routine sets the flag in output array info(see the description of the values returned in the Output Parameters section for the info array).

\section*{Input Parameters}
```

handle
n
m
fjac

```
fvec
eps

Type INTEGER*8.
INTEGER. Length of \(x\).
INTEGER. Length of \(F(x)\).
REAL for strnlsp_check
DOUBLE PRECISION for dtrnlsp_check
Array of size \(m\) by \(n\). Contains the Jacobian matrix of the function.
REAL for strnlsp_check
DOUBLE PRECISION for dtrnlsp_check
Array of size \(m\). Contains the function values at \(X\), where \(f \operatorname{vec}(i)=\left(y_{i}-\right.\) \(\left.f_{i}(x)\right)\).

REAL for strnlsp_check
DOUBLE PRECISION for dtrnlsp_check
Array of size 6; contains stopping criteria. See the values in the Description section of the ?trnlsp_init.

\section*{Output Parameters}
info
INTEGER
Array of size 6.
Results of input parameter checking:
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Used for & Val ue & Description \\
\hline \multirow[t]{2}{*}{info(1)} & \multirow[t]{2}{*}{Flags for handle} & 0 & The handle is valid. \\
\hline & & 1 & The handle is not allocated. \\
\hline \multirow[t]{4}{*}{info(2)} & \multirow[t]{4}{*}{Flags for fjac} & 0 & The fjac array is valid. \\
\hline & & 1 & The fjac array is not allocated \\
\hline & & 2 & The fjac array contains NaN. \\
\hline & & 3 & The fjac array contains Inf. \\
\hline \multirow[t]{4}{*}{info(3)} & \multirow[t]{4}{*}{Flags for fvec} & 0 & The fvec array is valid. \\
\hline & & 1 & The \(f_{\text {vec }}\) array is not allocated \\
\hline & & 2 & The fvec array contains NaN. \\
\hline & & 3 & The \(f\) vec array contains Inf. \\
\hline \multirow[t]{5}{*}{info(4)} & \multirow[t]{5}{*}{Flags for eps} & 0 & The eps array is valid. \\
\hline & & 1 & The eps array is not allocated \\
\hline & & 2 & The eps array contains NaN. \\
\hline & & 3 & The eps array contains Inf. \\
\hline & & 4 & The eps array contains a value less than or equal to zero. \\
\hline
\end{tabular}

INTEGER. Information about completion of the task.
res \(=\) TR_SUCCESS - the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.fi include file.

\section*{?trnlsp_solve}

Solves a nonlinear least squares problem using the \(T R\) algorithm.

\section*{Syntax}
```

res = strnlsp_solve(handle, fvec, fjac, RCI_Request)
res = dtrnlsp_solve(handle, fvec, fjac, RCI_Request)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The ?trnlsp_solve routine uses the TR algorithm to solve nonlinear least squares problems.
The problem is stated as follows:
\[
\min _{x \in Z^{n}}\|F(x)\|_{2}^{2}=\min _{x \in Z^{n}}\|y-f(x)\|_{2}^{2}, y \in R^{m}, x \in R^{n}, f: R^{n} \rightarrow R^{m}, m \geq n
\]
where
- \(F(x): R^{n} \rightarrow R^{m}\)
- \(m \geq n\)

From a current point \(x_{\text {current }}\), the algorithm uses the trust-region approach:
\[
\min _{x \in R^{n}}\left\|F\left(x_{\text {current }}\right)+J\left(x_{\text {currert }}\right)\left(x_{\text {new }}-x_{\text {current }}\right)\right\|_{2}^{2} \quad \text { subject to }\left\|x_{\text {new }}-x_{\text {current }}\right\| \leq \Delta_{\text {curvent }}
\]
to get \(x_{\text {new }}=x_{\text {Current }}+s\) that satisfies
\[
\min _{x \in R^{n}}\left\|J^{T}(x) J(x) s+J^{T} F(x)\right\|_{2}^{2}
\]
where
- \(J(x)\) is the Jacobian matrix
- \(s\) is the trial step
- \(\left|\mid s \|_{2} \leq \Delta_{\text {current }}\right.\)
- \(\Delta\) is the trust-region area.

The RCI_Request parameter provides additional information:
\begin{tabular}{|c|c|}
\hline RCI_Request Value & Description \\
\hline 2 & Request to calculate the Jacobian matrix and put the result into fjac \\
\hline 1 & Request to recalculate the function at vector X and put the result into \(\mathrm{fvec}^{\text {vec }}\) \\
\hline 0 & One successful iteration step on the current trust-region radius (that does not mean that the value of \(x\) has changed) \\
\hline -1 & The algorithm has exceeded the maximum number of iterations \\
\hline -2 & \(\Delta<\operatorname{eps}(1)\) \\
\hline -3 & \(||F(x)||_{2}<\operatorname{eps}(2)\) \\
\hline -4 & The Jacobian matrix is singular. \\
\hline & \(\left\|J(x)_{(1: m, j)}\right\|_{2}<\operatorname{eps}(3), j=1, \ldots, n\) \\
\hline -5 & \(||s||_{2}<\operatorname{eps}(4)\) \\
\hline -6 & \(||F(x)||_{2}-\left||F(x)-J(x) S|_{2}<\operatorname{eps}(5)\right.\) \\
\hline
\end{tabular}

\section*{NOTE}

If it is possible to combine computations of the function and the jacobian (RCI_Request \(=1\) and 2), you can do that and provide both updated values for fvec and fjac as fulfillment of RCI_Request \(=1\) (and do nothing for RCI_Request \(=2\)).

\section*{Input Parameters}
```

handle Type INTEGER*8.
fvec REAL for strnlsp_solve
DOUBLE PRECISION for dtrnlsp_solve
Array of size m. Contains the function values at X, where fvec(i) = (yi -
fi(x)).
REAL for strnlsp_solve
DOUBLE PRECISION for dtrnlsp_solve
Array of size m by n. Contains the Jacobian matrix of the function.

```

\section*{Output Parameters}
fvec
REAL for strnlsp_solve
DOUBLE PRECISION for dtrnlsp_solve
Array of size \(m\). Updated function evaluated at \(x\).
INTEGER. Informs about the task stage.
See the Description section for the parameter values and their meaning.
INTEGER. Indicates the task completion.
res \(=\) TR_SUCCESS - the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.fi include file.

\section*{?trnlsp_get}

Retrieves the number of iterations, stop criterion, initial residual, and final residual.

\section*{Syntax}
```

res = strnlsp_get(handle, iter, st_cr, rl, r2)
res = dtrnlsp_get(handle, iter, st_cr, rl, r2)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The routine retrieves the current number of iterations, the stop criterion, the initial residual, and final residual.
The initial residual is the value of the functional \((||y-f(x)||)\) of the initial \(x\) values provided by the user.

The final residual is the value of the functional \((||y-f(x)||)\) of the final \(x\) resulting from the algorithm operation.

The st_cr parameter contains a number indicating the stop criterion:
\begin{tabular}{ll}
\(s t_{-c r}\) Value & \multicolumn{1}{c}{ Description } \\
\hline 1 & The algorithm has exceeded the maximum number of iterations \\
2 & \(\Delta<e p s(1)\) \\
3 & \(||F(x)||_{2}<\operatorname{eps}(2)\) \\
4 & The Jacobian matrix is singular. \\
& \(||J(x)(1: m, j)||_{2}<e p s(3), j=1, \ldots, n\) \\
5 & \(||s||_{2}<e p s(4)\) \\
6 & \(||F(x)||_{2}-\left||F(x)-J(x) s|_{2}<e p s(5)\right.\) \\
\hline
\end{tabular}

Note:
- \(J(x)\) is the Jacobian matrix.
- \(\Delta\) is the trust-region area.
- \(F(x)\) is the value of the functional.
- \(s\) is the trial step.

\section*{Input Parameters}
```

handle

```

\section*{Output Parameters}
\begin{tabular}{|c|c|}
\hline iter & INTEGER. Contains the current number of iterations. \\
\hline \multirow[t]{2}{*}{st_cr} & INTEGER. Contains the stop criterion. \\
\hline & See the Description section for the parameter values and their meanings. \\
\hline \multirow[t]{3}{*}{r1} & REAL for strnlsp_get \\
\hline & DOUBLE PRECISION for dtrnlsp_get \\
\hline & Contains the residual, (||y-f(x)||) given the initial \(x\). \\
\hline \multirow[t]{3}{*}{r2} & REAL for strnlsp_get \\
\hline & DOUBLE PRECISION for dtrnlsp_get \\
\hline & Contains the final residual, that is, the value of the functional (||y-f(x)||) of the final \(x\) resulting from the algorithm operation. \\
\hline \multirow[t]{3}{*}{res} & INTEGER. Indicates the task completion. \\
\hline & res \(=\) TR_SUCCESS - the routine completed the task normally. \\
\hline & TR_SUCCESS is defined in the mkl_rci.fi include file. \\
\hline \multirow[t]{2}{*}{?trnlsp_delete Releases allocated data.} & \\
\hline & \\
\hline
\end{tabular}

\section*{Syntax}
```

res = strnlsp_delete(handle)
res = dtrnlsp_delete(handle)

```

\section*{Include Files}
- Fortran: mkl_rci.fi, mkl_rci.f90

\section*{Description}

The ? trnlsp_delete routine releases all memory allocated for the handle. Only after calling this routine is it safe for the user to move or deallocate the memory referenced by \(x\) and eps.

This routine flags memory as not used, but to actually release all memory you must call the support function mkl_free_buffers.

\section*{Input Parameters}
```

handle Type INTEGER*8.

```

\section*{Output Parameters}
res INTEGER. Indicates the task completion. res \(=\) TR_SUCCESS means the routine completed the task normally. TR_SUCCESS is defined in the mkl_rci.fi include file.

\section*{Nonlinear Least Squares Problem with Linear (Bound) Constraints}

The nonlinear least squares problem with linear bound constraints is very similar to the nonlinear least squares problem without constraints but it has the following constraints:

See usage examples in the examples \(\backslash f \backslash\) nonlinear_solvers folderof your Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory. Specifically, see ex_nlsqp_bc_f.f.

NOTE There are two options for handling the boundary constraints enabled through the parameter array, see the description of eps(5)

\section*{RCI TR Routines for Problem with Bound Constraints}

\section*{Routine Name}
?trnlspbc_init
?trnlspbc_check
?trnlspbc_solve
?trnlspbc_get

\section*{Operation}

Initializes the solver.
Checks correctness of the input parameters.
Solves a nonlinear least squares problem using RCI and the TrustRegion algorithm.

Retrieves the number of iterations, stop criterion, initial residual, and final residual.
\begin{tabular}{ll}
\hline Routine Name & Operation \\
\hline ?trnlspbc_delete & Releases allocated data. \\
\hline
\end{tabular}

\section*{?trnlspbc_init}

Initializes the solver of nonlinear least squares problem with linear (boundary) constraints.

\section*{Syntax}
```

res = strnlspbc_init(handle, n, m, x, LW, UP, eps, iterl, iter2, rs)
res = dtrnlspbc_init(handle, n, m, x, LW, UP, eps, iter1, iter2, rs)

```

\section*{Description}

The ?trnlspbc_init routine initializes the solver.
After initialization, all subsequent invocations of the ?trnlspbc_solve routine should use the values of the handle returned by ?trnlspbc_init. This handle stores internal data, including pointers to the arrays \(x\), \(L W, U P\), and eps. It is important to not move or deallocate these arrays until after calling the ?trnlspbc_delete routine.

The eps array contains a number indicating the stopping criteria:
\begin{tabular}{ll}
\hline\(e p s\) Value & Description \\
\hline 1 & \(\Delta<e p s(1)\) \\
2 & \(||F(x)||_{2}<e p s(2)\) \\
3 & The Jacobian matrix is singular. \\
& \(\left|\mid J(x)_{(1: m, j)| |_{2}<\operatorname{eps}(3), j=1, \ldots, n}\right.\) \\
4 & \(\left||s|_{2}<e p s(4)\right.\) \\
5 & \(||F(x)||_{2}-||F(x)-J(x) s||_{2}<|e p s(5)|\)
\end{tabular}

\section*{NOTE}

If eps(5) \(>0\), an extra scaling is applied to ' \(s\) ' after it has been selected, to ensure that it does not leave the specified domain, but scales it down to not cross the boundary. This preserves the solution inside the boundary, but may result in getting stuck in a local minimum on the boundary and exiting early due to this stopping criteria

If eps(5) \(<0\), extra scaling is not applied, which may result in the solution, \(x\), leaving the domain. If this occurs, try starting over with a different initial condition.

6
The trial step precision. If \(e p s(6)=0\), then the trial step meets the required precision (\(\leq 1.0^{*} 10^{-10}\)).

\section*{Note:}
- \(J(x)\) is the Jacobian matrix.
- \(\Delta\) is the trust-region area.
- \(F(x)\) is the value of the functional.
- \(s\) is the trial step.

\section*{Input Parameters}
\(n\)
\(m\)
\(X\)
\(L W\)
\(U P\)
eps
iterl
iter2
rs

INTEGER. Length of \(x\).
INTEGER. Length of \(F(x)\).
REAL for strnlspbc_init
DOUBLE PRECISION for dtrnlspbc_init
Array of size \(n\). Initial guess. A reference to this array is stored in handle for later use and modification by ?trnlspbc_solve.

REAL for strnlspbc_init
DOUBLE PRECISION for dtrnlspbc_init
Array of size \(n\).
Contains low bounds for \(x\left(/ w_{i}<x_{i}\right)\). A reference to this array is stored in handle for later use by ?trnlspbc_solve.

REAL for strnlspbc_init
DOUBLE PRECISION for dtrnlspbc_init
Array of size \(n\).
Contains upper bounds for \(x\left(u p_{i}>x_{i}\right)\). A reference to this array is stored in handle for later use by ?trnlspbc_solve.

REAL for strnlspbc_init
DOUBLE PRECISION for dtrnlspbc_init
Array of size 6; contains stopping criteria. See the values in the Description section. A reference to this array is stored in handle for later use by ?trnlspbc_solve.

INTEGER. Specifies the maximum number of iterations.
INTEGER. Specifies the maximum number of iterations of trial step calculation.

REAL for strnlspbc_init
DOUBLE PRECISION for dtrnlspbc_init
Definition of initial size of the trust region (boundary of the trial step). The recommended minimum value is 0.1 , and the recommended maximum value is 100.0. Based on your knowledge of the objective function and initial guess you can increase or decrease the initial trust region. It can influence the iteration process, for example, the direction of the iteration process and the number of iterations. If you set \(r s\) to 0.0 , the solver uses the default value, which is 100.0 .

\section*{Output Parameters}
```

handle

```
res
Type INTEGER*8.
INTEGER. Informs about the task completion.
- res \(=\) TR_SUCCESS - the routine completed the task normally.
- res = TR_INVALID_OPTION - there was an error in the input parameters.
- res = TR_OUT_OF_MEMORY - there was a memory error.

TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in the mkl_rci.fi include file.

\section*{?trnlspbc_check}

Checks the correctness of handle and arrays containing Jacobian matrix, objective function, lower and upper bounds, and stopping criteria.

\section*{Syntax}
```

res = strnlspbc_check(handle, n, m, fjac, fvec, LW, UP, eps, info)
res = dtrnlspbc_check(handle, n, m, fjac, fvec, LW, UP, eps, info)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The ?trnlspbc_check routine checks the arrays passed into the solver as input parameters. If an array contains any INF or NaN values, the routine sets the flag in output array info(see the description of the values returned in the Output Parameters section for the info array).

\section*{Input Parameters}
\begin{tabular}{|c|c|}
\hline handle & Type INTEGER*8. \\
\hline \(n\) & INTEGER. Length of \(x\). \\
\hline m & INTEGER. Length of \(F(x)\). \\
\hline fjac & REAL for strnlspbc_check \\
\hline & DOUBLE PRECISION for dtrnlspbc_check \\
\hline & Array of size \(m\) by \(n\). Contains the Jacobian matrix of the function. \\
\hline fvec & REAL for strnlspbc_check \\
\hline & DOUBLE PRECISION for dtrnlspbc_check \\
\hline & Array of size \(m\). Contains the function values at \(X\), where \(f_{\mathrm{Vec}}(i)=\left(y_{i}-\right.\) \(\left.f_{i}(x)\right)\). \\
\hline LW & REAL for strnlspbc_check \\
\hline & DOUBLE PRECISION for dtrnlspbc_check \\
\hline & Array of size \(n\). \\
\hline & Contains low bounds for \(x\left(/ w_{i}<x_{i}\right)\). \\
\hline UP & REAL for strnlspbc_check \\
\hline & DOUBLE PRECISION for dtrnlspbc_check \\
\hline & Array of size \(n\). \\
\hline
\end{tabular}

Contains upper bounds for \(x\left(u p_{i}>x_{i}\right)\).
REAL for strnlsp.bc_check
DOUBLE PRECISION for dtrnlspbc_check
Array of size 6; contains stopping criteria. See the values in the Description section of the ?trnlspbc_init.

\section*{Output Parameters}

INTEGER
Array of size 6.
Results of input parameter checking:
\begin{tabular}{|c|c|c|c|}
\hline Parameter & Used for & Val ue & Description \\
\hline \multirow[t]{2}{*}{info(1)} & \multirow[t]{2}{*}{Flags for handle} & 0 & The handle is valid. \\
\hline & & 1 & The handle is not allocated. \\
\hline \multirow[t]{4}{*}{info(2)} & \multirow[t]{4}{*}{Flags for fjac} & 0 & The fjac array is valid. \\
\hline & & 1 & The fjac array is not allocated \\
\hline & & 2 & The fjac array contains NaN. \\
\hline & & 3 & The fjac array contains Inf. \\
\hline \multirow[t]{4}{*}{info(3)} & \multirow[t]{4}{*}{Flags for fvec} & 0 & The \(f_{\text {vec }}\) array is valid. \\
\hline & & 1 & The \(f_{\text {vec }}\) array is not allocated \\
\hline & & 2 & The \(f^{\text {vec }}\) array contains NaN. \\
\hline & & 3 & The \(f^{\text {vec }}\) array contains Inf. \\
\hline \multirow[t]{5}{*}{info(4)} & \multirow[t]{5}{*}{Flags for LW} & 0 & The LW array is valid. \\
\hline & & 1 & The LW array is not allocated \\
\hline & & 2 & The LW array contains NaN. \\
\hline & & 3 & The LW array contains Inf. \\
\hline & & 4 & The lower bound is greater than the upper bound. \\
\hline \multirow[t]{4}{*}{info(5)} & \multirow[t]{4}{*}{Flags for up} & 0 & The up array is valid. \\
\hline & & 1 & The up array is not allocated \\
\hline & & 2 & The up array contains NaN. \\
\hline & & 3 & The up array contains Inf. \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Parameter & Used for & \begin{tabular}{l}
Val \\
ue
\end{tabular} & \begin{tabular}{l}
Description \\
info(6)
\end{tabular} \\
\hline & 4 & \begin{tabular}{l}
The upper bound is less than \\
the lower bound.
\end{tabular} \\
\cline { 3 - 4 } & Flags for eps & 0 & The eps array is valid. \\
\cline { 3 - 4 } & & 2 & The eps array is not allocated \\
\cline { 3 - 4 } & & 3 & The eps array contains NaN. \\
\cline { 3 - 4 } & & & \begin{tabular}{l}
The eps array contains Inf. \\
less than or equal to zero.
\end{tabular} \\
\hline
\end{tabular}

INTEGER. Information about completion of the task.
res \(=\) TR_SUCCESS - the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.fi include file.

\section*{?trnlspbc_solve}

Solves a nonlinear least squares problem with linear (bound) constraints using the Trust-Region algorithm.

\section*{Syntax}
```

res = strnlspbc_solve(handle, fvec, fjac, RCI_Request)
res = dtrnlspbc_solve(handle, fvec, fjac, RCI_Request)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The ?trnlspbc_solve routine, based on RCI, uses the Trust-Region algorithm to solve nonlinear least squares problems with linear (bound) constraints. The problem is stated as follows:
\[
\min _{x \in Z^{n}}\|F(x)\|_{2}^{2}=\min _{x \in Z^{n}}\|y-f(x)\|_{2}^{2}, y \in R^{m}, x \in R^{n}, f: R^{n} \rightarrow R^{m}, m \geq n
\]
where
```

l i}<br>mp@subsup{\}{i}{i}\leq\mp@subsup{u}{i}{
i = 1, ..., n.

```

The RCI_Request parameter provides additional information:
\begin{tabular}{ll}
\hline\(R C I_{-}\)Request Value & Description \\
\hline 2 & Request to calculate the Jacobian matrix and put the result into fjac \\
1 & Request to recalculate the function at vector X and put the result into fvec
\end{tabular}
\begin{tabular}{|c|c|}
\hline RCI_Request Value & Description \\
\hline 0 & One successful iteration step on the current trust-region radius (that does not mean that the value of \(x\) has changed) \\
\hline -1 & The algorithm has exceeded the maximum number of iterations \\
\hline -2 & \(\Delta<\operatorname{eps}(1)\) \\
\hline -3 & \(||F(x)||_{2}<\operatorname{eps}(2)\) \\
\hline -4 & The Jacobian matrix is singular. \\
\hline & \(\left|\left|J(x)_{(1: m, j)}\right|_{2}<\operatorname{eps}(3), j=1, \ldots, n\right.\) \\
\hline -5 & \(||s||_{2}<\operatorname{eps}(4)\) \\
\hline -6 & \(||F(x)||_{2}-||F(x)-J(x) s||_{2}<|e p s(5)|\) \\
\hline
\end{tabular}

Note:
- \(J(x)\) is the Jacobian matrix.
- \(\Delta\) is the trust-region area.
- \(F(x)\) is the value of the functional.
- \(s\) is the trial step.

\section*{Input Parameters}
handle
fvec
fjac
Output Parameters
fvec

RCI_Request
res

Type INTEGER*8.
REAL for strnlspbc_solve
DOUBLE PRECISION for dtrnlspbc_solve
Array of size \(m\). Contains the function values at \(X\), where \(f v e c(i)=\left(y_{i}-\right.\) \(f_{i}(x)\)).

REAL for strnlspbc_solve
DOUBLE PRECISION for dtrnlspbc_solve
Array of size \(m\) by \(n\). Contains the Jacobian matrix of the function.

REAL for strnlspbc_solve
DOUBLE PRECISION for dtrnlspbc_solve
Array of size \(m\). Updated function evaluated at \(x\).
INTEGER. Informs about the task stage.
See the Description section for the parameter values and their meaning.
INTEGER. Informs about the task completion.
res \(=\) TR_SUCCESS means the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.fi include file.

\section*{?trnlspbc_get}

Retrieves the number of iterations, stop criterion, initial residual, and final residual.

\section*{Syntax}
```

res = strnlspbc_get(handle, iter, st_cr, rl, r2)
res = dtrnlspbc_get(handle, iter, st_cr, rl, r2)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The routine retrieves the current number of iterations, the stop criterion, the initial residual, and final residual.
The st_cr parameter contains a number indicating the stop criterion:
```

st_cr Value Description
1 The algorithm has exceeded the maximum number of iterations
2
\Delta < eps(1)
||F(x)||2<eps(2)
4 The Jacobian matrix is singular.
||J(x) (1:m,j)| | | eps(3), j = 1, ..., n
5
||||2<eps(4)
6
||F(x)||2 - ||F(x) - J(x)s|| | <eps(5)

```

\section*{Note:}
- \(J(x)\) is the Jacobian matrix.
- \(\Delta\) is the trust-region area.
- \(F(x)\) is the value of the functional.
- \(s\) is the trial step.

\section*{Input Parameters}
```

handle Type INTEGER*8.

```

\section*{Output Parameters}
\begin{tabular}{ll}
iter & INTEGER. Contains the current number of iterations. \\
st_cr & INTEGER. Contains the stop criterion.
\end{tabular}

See the Description section for the parameter values and their meanings.
r1
REAL for strnlspbc_get
DOUBLE PRECISION for dtrnlspbc_get
Contains the residual, (||y-f(x)||) given the initial \(x\).

REAL for strnlspbc_get
DOUBLE PRECISION for dtrnlspbc_get
Contains the final residual, that is, the value of the function \((||y-f(x)||)\) of the final \(x\) resulting from the algorithm operation.

INTEGER. Informs about the task completion.
res \(=\) TR_SUCCESS - the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.fi include file.

\section*{?trnlspbc_delete}

Releases allocated data.

\section*{Syntax}
```

res = strnlspbc_delete(handle)
res = dtrnlspbc_delete(handle)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The ?trnlspbc_delete routine releases all memory allocated for the handle. Only after calling this routine is it safe for the user to move or deallocate the memory referenced by \(x, L W, U P\), and eps.

\section*{NOTE}

This routine flags memory as not used, but to actually release all memory you must call the support function mkl_free_buffers.

\section*{Input Parameters}
handle
Type INTEGER*8.

\section*{Output Parameters}
res
INTEGER. Informs about the task completion.
res \(=T R\) _SUCCESS means the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.fi include file.

\section*{Jacobian Matrix Calculation Routines}

This section describes routines that compute the Jacobian matrix using the central difference algorithm. Jacobian matrix calculation is required to solve a nonlinear least squares problem and systems of nonlinear equations (with or without linear bound constraints). Routines for calculation of the Jacobian matrix have the "Black-Box" interfaces, where you pass the objective function via parameters. Your objective function must have a fixed interface.

Jacobian Matrix Calculation Routines
\begin{tabular}{ll}
\hline Routine Name & Operation \\
\hline ?jacobi_init & Initializes the solver. \\
?jacobi_solve & \begin{tabular}{l}
Computes the Jacobian matrix of the function on the basis of RCI \\
using the central difference algorithm.
\end{tabular} \\
?jacobi_delete & Removes data. \\
?jacobi & \begin{tabular}{l}
Computes the Jacobian matrix of the fcn function using the central \\
difference algorithm.
\end{tabular} \\
?jacobix & \begin{tabular}{l}
Presents an alternative interface for the ?jacobi function enabling \\
you to pass additional data into the objective function.
\end{tabular} \\
\hline
\end{tabular}
?jacobi_init
Initializes the solver for Jacobian calculations.

\section*{Syntax}
```

res = sjacobi_init(handle, n, m, x, fjac, eps)
res = djacobi_init(handle, n, m, x, fjac, eps)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The routine initializes the solver.

\section*{Input Parameters}
```

n INTEGER. Length of }x\mathrm{ .
m INTEGER. Length of F.
x REAL forsjacobi_init
DOUBLE PRECISION for djacobi_init

```

Array of size \(n\). Vector, at which the function is evaluated.
A reference to this array is stored in handle for later use and modification by ?jacobi_solve.

REAL forsjacobi_init
DOUBLE PRECISION for djacobi_init
Precision of the Jacobian matrix calculation.
fjac
REAL for sjacobi_init
DOUBLE PRECISION for djacobi_init
Array of size \(m\) by \(n\). Contains the Jacobian matrix of the function.
A reference to this array is stored in handle for later use and modification by ?jacobi_solve.

\section*{Output Parameters}
```

handle
res
Data object of the INTEGER*8. Stores internal data, including pointers to the user-provided arrays $x$ and fjac. It is important that the user does not move or deallocate these arrays until after calling the ?jacobi_delete routine.
INTEGER. Indicates task completion status.

- res $=$ TR_SUCCESS - the routine completed the task normally.
- res $=$ TR_INVALID_OPTION - there was an error in the input parameters.
- res $=$ TR_OUT_OF_MEMORY - there was a memory error.
TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in the mkl_rci.fi include file.

```

\section*{?jacobi_solve}

Computes the Jacobian matrix of the function using
RCI and the central difference algorithm.

\section*{Syntax}
```

res = sjacobi_solve(handle, f1, f2, RCI_Request)
res = djacobi_solve(handle, f1, f2, RCI_Request)

```

Include Files
- Fortran: mkl_rci.fi, mkl_rci.f90

\section*{Description}

The ?jacobi_solve routine computes the Jacobian matrix of the function using RCI and the central difference algorothm.
See usage examples in the examples \(\backslash\) solverf \(\backslash\) source folderof your Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory. Specifically, see sjacobi_rci_f.f and djacobi_rci_f.f.

\section*{Input Parameters}
```

handle
RCI_Request
Type INTEGER*8.
INTEGER. Set to 0 before the first call to ?jacobi_solve.

```

\section*{Output Parameters}
f1
REAL for sjacobi_solve
DOUBLE PRECISION for djacobi_solve
Contains the updated function values at \(x+e p s\).
REAL for sjacobi_solve
DOUBLE PRECISION for djacobi_solve
Array of size \(m\). Contains the updated function values at \(x-e p s\).
Provides information about the task completion. When equal to 0 , the task has completed successfully.

RCI_Request \(=1\) indicates that you should compute the function values at the current \(x\) point and put the results into \(f 1\).

RCI_Request \(=2\) indicates that you should compute the function values at the current \(x\) point and put the results into \(f 2\).

INTEGER. Indicates the task completion status.
- res \(=\) TR_SUCCESS - the routine completed the task normally.
- res \(=\) TR_INVALID_OPTION - there was an error in the input parameters.

TR_SUCCESS and TR_INVALID_OPTION are defined in the mkl_rci.fi include file.

\section*{See Also}
?jacobi_init
?jacobi_delete
Releases allocated data.

\section*{Syntax}
```

res = sjacobi_delete(handle)
res = djacobi_delete(handle)

```

\section*{Include Files}
- Fortran: mkl_rci.fi, mkl_rci.f90

\section*{Description}

The ?jacobi_delete routine releases all memory allocated for the handle. Only after calling this routine is it safe for the user to move or deallocate the memory referenced by \(x\) and fjac.
This routine flags memory as not used, but to actually release all memory you must call the support function mkl_free_buffers.

\section*{Input Parameters}
handle Type INTEGER*8.

\section*{Output Parameters}
res
INTEGER. Informs about the task completion.
res \(=T R\) _SUCCESS means the routine completed the task normally.
TR_SUCCESS is defined in the mkl_rci.fi include file.

\section*{?jacobi}

Computes the Jacobian matrix of the objective function using the central difference algorithm.

Syntax
```

res = sjacobi(fcn, n, m, fjac, x, eps)
res = djacobi(fcn, n, m, fjac, x, eps)

```

\section*{Include Files}
- Fortran: mkl_rci.fi,mkl_rci.f90

\section*{Description}

The ?jacobi routine computes the Jacobian matrix for function \(f_{c n}\) using the central difference algorithm. This routine has a "Black-Box" interface, where you input the objective function via parameters. Your objective function must have a fixed interface.
See calling and usage examples in the examples \(\backslash\) solverf \(\backslash\) source folderof your Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory. Specifically, see ex_nlsqp_f.f and ex_nlsqp_bc_f.f.

\section*{Input Parameters}
\[
f_{C n}
\]
n
m

X
eps

User-supplied subroutine to evaluate the function that defines the least squares problem. Called as \(\operatorname{fcn}(m, n, x, f)\) with the following parameters:
\begin{tabular}{|c|c|c|}
\hline Parameter & Type & Description \\
\hline \multicolumn{3}{|l|}{Input Parameters} \\
\hline m & INTEGER & Length of \(£\). \\
\hline \(n\) & INTEGER & Length of \(x\). \\
\hline \(x\) & \begin{tabular}{l}
REAL for sjacobi \\
DOUBLE PRECISION \\
for djacobi
\end{tabular} & Array of size \(n\). Vector, at which the function is evaluated. The \(f\) fn function should not change this parameter. \\
\hline \multicolumn{3}{|l|}{Output Parameters} \\
\hline f & \begin{tabular}{l}
REAL for sjacobix \\
DOUBLE PRECISION \\
for djacobix
\end{tabular} & Array of size \(m\); contains the function values at \(x\). \\
\hline
\end{tabular}

You need to declare fon as EXTERNAL in the calling program.
INTEGER. Length of \(X\).
INTEGER. Length of \(F\).
REAL for sjacobi
DOUBLE PRECISION for djacobi
Array of size \(n\). Vector at which the function is evaluated.
REAL for sjacobi
DOUBLE PRECISION for djacobi
Precision of the Jacobian matrix calculation.

\section*{Output Parameters}

\section*{fjac}

REAL for sjacobi
DOUBLE PRECISION for djacobi

Array of size \(m\) by \(n\). Contains the Jacobian matrix of the function.
res
INTEGER. Indicates task completion status.
- res \(=\) TR_SUCCESS - the routine completed the task normally.
- res \(=\) TR_INVALID_OPTION - there was an error in the input parameters.
- res = TR_OUT_OF_MEMORY - there was a memory error.

TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in the mkl_rci.fi include file.

\section*{See Also}
?jacobix

\section*{? jacobix}

Alternative interface for?jacobi function for passing additional data into the objective function.

\section*{Syntax}
```

res = sjacobix(fcn, n, m, fjac, x, eps, user_data)
res = djacobix(fcn, n, m, fjac, x, eps, user_data)

```

\section*{Include Files}
- Fortran: mkl_rci.fi, mkl_rci.f90

\section*{Description}

The ? jacobix routine presents an alternative interface for the ?jacobi function that enables you to pass additional data into the objective function \(f_{c n}\).

See calling and usage examples in the examples \(\backslash\) solver \(f \backslash\) source folderof your Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) directory. Specifically, see ex_nlsqp_f90_x.f90 and ex_nlsqp_bc_f90_x.f90.

\section*{Input Parameters}
\(f_{C n} \quad\) User-supplied subroutine to evaluate the function that defines the least squares problem. Called as \(\operatorname{fcn}\left(m, n, x, f, u s e r _d a t a\right)\) with the following parameters:
\begin{tabular}{lll}
\hline Parameter & Type & \multicolumn{1}{c}{ Description } \\
\hline Input Parameters & Length of \(f\). \\
\(m\) & INTEGER & Length of \(x\). \\
\(n\) & INTEGER & REAL for sjacobix \\
\(x\) & DOUBLE PRECISION \\
for djacobix
\end{tabular} \begin{tabular}{l}
Array of size \(n\). Vector, at which the \\
function is evaluated. The fcn function \\
should not change this parameter.
\end{tabular}
\begin{tabular}{lll}
\hline Parameter & Type & Description \\
\hline Output Parameters & \\
\(f\) & REAL for sjacobix & Array of size \(m\); contains the function \\
& \\
& DOUBLE PRECISION \\
for djacobix
\end{tabular}\(\quad\)\begin{tabular}{l}
values at \(x\).
\end{tabular}

You need to declare fen as EXTERNAL in the calling program.
INTEGER. Length of \(X\).
INTEGER. Length of \(F\).
REAL for sjacobix
DOUBLE PRECISION for djacobix
Array of size \(n\). Vector at which the function is evaluated.
REAL for sjacobix
DOUBLE PRECISION for djacobix
Precision of the Jacobian matrix calculation.
INTEGER (C_INTPTR_T). Reference to your additional data, passed by value: user_data=\%VAL (LOC (data)). Otherwise, a dummy argument.

\section*{Output Parameters}

REAL for sjacobix
DOUBLE PRECISION for djacobix
Array of size \(m\) by \(n\)). Contains the Jacobian matrix of the function.
INTEGER. Indicates task completion status.
- res \(=\) TR_SUCCESS - the routine completed the task normally.
- res \(=\) TR_INVALID_OPTION - there was an error in the input parameters.
- res = TR_OUT_OF_MEMORY - there was a memory error.

TR_SUCCESS, TR_INVALID_OPTION, and TR_OUT_OF_MEMORY are defined in the mkl_rci.fi include file.

\section*{See Also}
?jacobi

\section*{Support Functions}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) support functions are subdivided into the following groups according to their purpose:
Version Information
Threading Control
Error Handling
Character Equality Testing

\section*{Timing}

Memory Management
Single Dynamic Library Control
Conditional Numerical Reproducibility Control
Miscellaneous
The following table lists Intel oneAPI Math Kernel Library (oneMKL) support functions.
oneMKL Support Functions
Function Name Operation

Version Information
mkl_get_version_string

Threading Control
```

mkl_set_num_threads

```
mkl_domain_set_num_threads
mkl_set_num_threads_local
mkl_set_dynamic
mkl_get_max_threads
mkl_domain_get_max_threads
mkl_get_dynamic
mkl_set_num_stripes
mkl_get_num_stripes

\section*{Error Handling}
```

xerbla

```
pxerbla
mkl_set_exit_handler

Character Equality Testing
Isame
lsamen

Returns the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) version in a character string.

Specifies the number of OpenMP* threads to use.
Specifies the number of OpenMP* threads for a particular function domain.

Specifies the number of OpenMP* threads for all Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions on the current execution thread.

Enables Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) to dynamically change the number of OpenMP* threads.

Gets the number of OpenMP* threads targeted for parallelism.

Gets the number of OpenMP* threads targeted for parallelism for a particular function domain.

Determines whether Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) is enabled to dynamically change the number of OpenMP* threads.

Specifies the number of partitions along the leading dimension of the output matrix for parallel ?GEMM functions.

Gets the number of partitions along the leading dimension of the output matrix for parallel ?GEMM functions.

Error handling function called by BLAS, LAPACK, Vector Math, and Vector Statistics functions.

Handles error conditions for the ScaLAPACK routines.
Sets the custom handler of fatal errors.

Tests two characters for equality regardless of the case.
Tests two character strings for equality regardless of the case.

\section*{Function Name}

\section*{Operation}

\section*{Timing}
```

second/dsecnd
mkl_get_cpu_clocks
mkl_get_cpu_frequency
mkl_get_max_cpu_frequency
mkl_get_clocks_frequency

```

Memory Management
mkl_free_buffers
mkl_thread_free_buffers
mkl_mem_stat
mkl_peak_mem_usage
mkl disable fast mm
mkl_malloc
mkl_calloc
mkl_realloc
mkl_free
mkl_set_memory_limit

Single Dynamic Library (SDL) Control
```

mkl_set_interface_layer
mkl_set_threading_layer
mkl_set_xerbla
mkl_set_progress

```

Returns elapsed time in seconds. Use to estimate real time between two calls to this function.

Returns elapsed CPU clocks.
Returns CPU frequency value in GHz .
Returns the maximum CPU frequency value in GHz .
Returns the frequency value in GHz based on constantrate Time Stamp Counter.

Frees unused memory allocated by the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Memory Allocator.

Frees unused memory allocated by the Intel® oneAPI Math Kernel Library (oneMKL) Memory Allocator in the current thread.

Reports the status of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Memory Allocator.

Reports the peak memory allocated by the Intel® oneAPI Math Kernel Library (oneMKL) Memory Allocator.

Turns off the Intel® oneAPI Math Kernel Library (oneMKL) Memory Allocator for Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions to directly use the systemmalloc/ free functions.

Allocates an aligned memory buffer.
Allocates and initializes an aligned memory buffer.
Changes the size of memory buffer allocated by mkl_malloc/mkl_calloc.

Frees the aligned memory buffer allocated by mkl_malloc/mkl_calloc.

On Linux, sets the limit of memory that Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) can allocate for a specified type of memory.

Sets the interface layer for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) at run time.

Sets the threading layer for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) at run time.
Replaces the error handling routine. Use with the Single Dynamic Library .

Replaces the progress information routine.
\begin{tabular}{|c|c|}
\hline Function Name & Operation \\
\hline mkl_set_pardiso_pivot & Replaces the routine handling Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) PARDISO pivots with a user-defined routine. Use with the Single Dynamic Library (SDL). \\
\hline \multicolumn{2}{|l|}{Conditional Numerical Reproducibility (CNR) Control} \\
\hline mkl_cbwr_set & Configures the CNR mode of Intel® oneAPI Math Kernel Library (oneMKL). \\
\hline mkl_cbwr_get & Returns the current CNR settings. \\
\hline mkl_cbwr_get_auto_branch & Automatically detects the CNR code branch for your platform. \\
\hline \multicolumn{2}{|l|}{Miscellaneous} \\
\hline mkl_progress & Provides progress information. \\
\hline \multicolumn{2}{|l|}{mkl_enable_instructions} \\
\hline mkl_set_env_mode & Set up the mode that ignores environment settings specific to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL). \\
\hline mkl_verbose & Enable or disable Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Verbose mode. \\
\hline mkl_verbose_output_file & Write output in Intel® \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Verbose mode to a file. \\
\hline mkl_set_mpi & Sets the implementation of the message-passing interface to be used by Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL). \\
\hline mkl_finalize & Terminates Intel® oneAPI Math Kernel Library (oneMKL) execution environment and frees resources allocated by the library. \\
\hline \multicolumn{2}{|l|}{Product and Performance Information} \\
\hline \begin{tabular}{l}
Performance varies by use, con PerformanceIndex. \\
Notice revision \#20201201
\end{tabular} & her factors. Learn more at www.Intel.com/ \\
\hline
\end{tabular}

\section*{Using a Fortran Interface Module for Support Functions}

To call a support function from your Fortran application, include one of the following statements in your code:
- INCLUDE mkl_service.fi or INCLUDE mkl.fi
- USE mkl_service

The USE statement references the mkl_service.modinterface module corresponding to your architecture and programming interface. The module provides an application programming interface to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) support entities, such as subroutines and constants. Because Fortran interface modules are compiler-dependent, Intel® oneAPI Math Kernel Library (oneMKL) offers themkl_service.f90 source file for the module, as well as architecture-specific and interface-specific mkl_servicemodules precompiled with the Intel \({ }^{\circledR}\) Fortran or Intel \({ }^{\circledR}\) Visual Fortran compiler. These modules are available in the following subdirectories of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) include directory:
\begin{tabular}{|ll|}
\hline Architecture, Interface & \begin{tabular}{l}
Subdirectory of the Intel® oneAPI Math Kernel Library \\
(oneMKL) Installation Directory
\end{tabular} \\
\hline IA-32 & include\ia32 \\
Intel® 64, LP64 & include \({ }^{\circledR}\) intel \(64 \backslash 1 p 64\) \\
Intel® 64, ILP64 & include\intel64 \({ }^{\circledR}\) ilp64 \\
\hline
\end{tabular}

To ensure that your application searches the right module, specify the appropriate subdirectory during compilation as an additional directory for the include path (through the /I option on Windows* OS or the -I option on Linux* OS or macOS*).
If you are using a non-Intel Fortran compiler, you need to build the module yourself by compiling the mkl_service.f90file, available in the Intel® oneAPI Math Kernel Library (oneMKL) include directory.
For more information on compiler-dependent functions and modules, refer to the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide.

\section*{Version Information}

Intel® oneAPI Math Kernel Library (oneMKL) providesmethods for extracting information about the library version number, such as:
- using the mkl_get_version function to obtain an MKLVersion structure that contains the version information

A makefile is also provided to automatically build the examples and output summary files containing the version information for the current library.
mkl_get_version_string
Returns the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library
(oneMKL) version in a character string.

\section*{Syntax}
```

call mkl_get_version_string( buf )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Output Parameters}

\section*{Name Type Description}
buf CHARACTER*198 Source string

\section*{Description}

The function returns a string that contains the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) version.
For usage details, see the code example below:

\section*{Example}
```

program test_mkl_get_version_string
character*198 buf

```
```

call mkl_get_version_string(buf)
write(*,''(a)'') buf
end

```

\section*{Threading Control}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides functions for OpenMP* threading control, discussed in this section.

\begin{abstract}
Important
If Intel \({ }^{\ominus}\) oneAPI Math Kernel Library (oneMKL) operates within the Intel \({ }^{\circledast}\) Threading Building Blocks (Inte \({ }^{\circledR}\) TBB) execution environment, the environment variables for OpenMP* threading control, such asomp_num_Threads, and Intel® oneAPI Math Kernel Library (oneMKL) functions discussed in this section have no effect. If the Intel TBB threading technology is used, control the number of threads through the Intel TBB application programming interface. Read the documentation for the tbb: :task_scheduler_init class at https://www.threadingbuildingblocks.org/docs/doxygen/ a00150.html to find out how to specify the number of Intel TBB threads.
\end{abstract}

If Intel® oneAPI Math Kernel Library (oneMKL) operates within an OpenMP* execution environment, you can control the number of threads for Intel \({ }^{\ominus}\) oneAPI Math Kernel Library (oneMKL) using OpenMP* runtime library routines and environment variables (see the OpenMP* specification for details). Additionally Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) providesoptiona/threading control functions and environment variables that enable you to specify the number of threads for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) and to control dynamic adjustment of the number of threadsindependentlyof the OpenMP* settings. The settings made with the Intel \({ }^{-}\)oneAPI Math Kernel Library (oneMKL) threading control functions and environment variables do not affect OpenMP* settings but take precedence over them.
If functions are used, Intel® oneAPI Math Kernel Library (oneMKL) environment variables may control Intele oneAPI Math Kernel Library (oneMKL) threading. For details of those environment variables, see the Inte/ oneAPI Math Kernel Library (oneMKL) Developer Guide.
You can specify the number of threads for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) function domains with the mkl_set_num_threads or mkl_domain_set_num_threads function. While mkl_set_num_threads specifies the number of threads for the entire Intel® oneAPI Math Kernel Library (oneMKL), mkl_domain_set_num_threads does it for a specific function domain. The following table lists the function domains that support independent threading control. The table also provides named constants to pass to threading control functions as a parameter that specifies the function domain.
oneMKL Function Domains
\begin{tabular}{|ll|}
\hline Function Domain & Named Constant \\
\hline Basic Linear Algebra Subroutines (BLAS) & MKL_DOMAIN_BLAS \\
Fast Fourier Transform (FFT) functions, except Cluster FFT functions & MKL_DOMAIN_FFT \\
Vector Math (VM) functions & MKL_DOMAIN_VML \\
Parallel Direct Solver (PARDISO) functions & MKL_DOMAIN_PARDISO \\
\begin{tabular}{l}
All Intel® oneAPI Math Kernel Library (oneMKL) functions except the \\
functions from the domains where the number of threads is set \\
explicitly.
\end{tabular} & MKL_DOMAIN_ALL \\
\hline
\end{tabular}

\begin{abstract}
Warning
Do not increase the number of OpenMP threads used for cluster_sparse_solver between the first call and the factorization or solution phase. Because the minimum amount of memory required for out-ofcore execution depends on the number of OpenMP threads, increasing it after the initial call can cause incorrect results.
\end{abstract}

Both mkl_set_num_threads and mkl_domain_set_num_threads functions set the number of threads for all subsequent calls \({ }^{-}\)to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) from all applications threads. Use themkl_set_num_threads_local function to specify different numbers of threads for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) on different execution threads of your application. The thread-local settings take precedence over the global settings. However, the thread-local settings may have undesirable side effects (see the description of themkl_set_num_threads_local function for details).

By default, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) canadjust the specified number of threads dynamically. For example, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) may use fewer threads if the size of the computation is not big enough or not create parallel regions when running within an OpenMP* parallel region. Although Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) may actually use a different number of threads from the number specified, the library does not create parallel regions with more threads than specified. If dynamic adjustment of the number of threads is disabled, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) attempts to use the specified number of threads in internal parallel regions (for more information, see the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide). Use the mkl_set_dynamic function to control dynamic adjustment of the number of threads.
mkl_set_num_threads
Specifies the number of OpenMP* threads to use.

\section*{Syntax}
```

call mkl_set_num_threads( nt )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
nt & INTEGER
\end{tabular}

\section*{Description}
\(n t>0\) - The number of threads suggested by the user.
\(n t \leq 0\) - Invalid value, which is ignored.

\section*{Description}

This function enables you to specify how many OpenMP threads Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) should use for internal parallel regions. If this number is not set (default), Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions use the default number of threads for the OpenMP run-time library. The specified number of threads applies:
- To all Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions except the functions from the domains where the number of threads is set withmkl_domain_set_num_threads
- To all execution threads except the threads where the number of threads is set with
mkl_set_num_threads_local
The number specified is a hint, and Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) may actually use a smaller number.

\section*{NOTE}

This function takes precedence over the MKL_NUM_THREADS environment variable.

\section*{Example}
```

use mkl_service
call mkl_set_num_threads(4)
call my_compute_using_mkl !Intel MKL uses up to 4 OpenMP threads

```
mkl_domain_set_num_threads
Specifies the number of OpenMP* threads for a particular function domain.

\section*{Syntax}
```

ierr = mkl_domain_set_num_threads( nt, domain )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters

\section*{Name Type}
nt INTEGER
domain INTEGER

\section*{Description}
\(n t>0\) - The number of threads suggested by the user.
\(n t=0-\) The default number of threads for the OpenMP run-time library.
\(n t<0\) - Invalid value, which is ignored.
The named constant that defines the targeted domain.

\section*{Description}

This function specifies how many OpenMP threads a particular function domain of Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) should use. If this number is not set (default) or if it is set to zero in a call to this function, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) uses the default number of threads for the OpenMP run-time library. The number of threads specified applies to the specified function domain on all execution threads except the threads where the number of threads is set withmkl_set_num_threads_local. For a list of supported values of the domain argument, see Table "Intel MKL Function Domains".
The number of threads specified is only a hint, and Intel oneAPI Math Kernel Library (oneMKL) may actually use a smaller number.

\section*{NOTE}

This function takes precedence over the MKL_DOMAIN_NUM_THREADS environment variable.

\section*{Return Values}
\begin{tabular}{ll}
Name & Type \\
ierr & INTEGER
\end{tabular}

\section*{Description}

1 - Indicates no error, execution is successful.
0 - Indicates a failure, possibly because of invalid input parameters.

\section*{Example}
```

use mkl_service
integer(4) :: status
status = mkl_domain_set_num_threads (4, MKL_DOMAIN_BLAS)
call my_compute_with_mkl_bl\overline{as() !Intel MKL BLAS functions use up to 4 threads}
call my_compute_with_mkl_dft() ! Intel MKL FFT functions use the default number of threads

```
mkl_set_num_threads_local
Specifies the number of OpenMP* threads for all Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions on the current execution thread.

\section*{Syntax}
```

save_nt = mkl_set_num_threads_local( nt )

```

\section*{Fortran Include Files/Modules}
- Include file: mkı.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n t\) & INTEGER*4
\end{tabular}

\section*{Description}
\(n t>0\) - The number of threads for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions to use on the current execution thread.
\(n t=0-A\) request to reset the thread-local number of threads and use the global number.

\section*{Description}

This function sets the number of OpenMP threads that Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions should request for parallel computation. The number of threads is thread-local, which means that it only affects the current execution thread of the application. If the thread-local number is not set or if this number is set to zero in a call to this function, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions use the global number of threads. You can set the global number of threads using themkl_set_num_threads or mkl_domain_set_num_threads function.
The thread-local number of threads takes precedence over the global number: if the thread-local number is non-zero, changes to the global number of threads have no effect on the current thread.

\section*{Caution}

If your application is threaded with OpenMP* andparallelization of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) is based on nested OpenMP parallelism,different OpenMP parallel regions reuse OpenMP threads. Therefore a thread-local setting in one OpenMP parallel region may continue to affect not only the master thread after the parallel region ends, but also subsequent parallel regions. To avoid performance implications of this side effect, reset the thread-local number of threads before leaving the OpenMP parallel region (see Examples for how to do it).

\section*{Return Values}

\section*{Name Type \\ save_nt INTEGER*4}

\section*{Description}

The value of the thread-local number of threads that was used before this function call. Zero means that the global number of threads was used.

\section*{Examples}

This example shows how to avoid the side effect of a thread-local number of threads by reverting to the global setting:
```

use omp_lib
use mkl_service
integer(4) :: dummy
...
call mkl_set_num_threads(16)
call my_\overline{compute_using_mkl() ! Intel MKL functions use up to 16 threads}
!$omp parallel num_threads(2)
    if (0 == omp_get_thread(num)) dummy = mkl_set_num_threads_local(4)
    if (1 == omp_get_thread(num)) dummy = mkl_set_num_threads_local(12)
    call my_compute_using_mkl() ! Intel MKL functions use up to 4 threads on thread 0
        ! and up to 12 threads on thread 1
!$omp end parallel
call my_compute_using_mkl() ! Intel MKL functions use up to 4 threads (!)
dummy = mkl_set_num_threads_local(0) ! make master thread use global setting
call my_compute_using_mkl() ! Now Intel MKL functions use up to 16 threads

```

This example shows how to avoid the side effect of a thread-local number of threads by saving and restoring the existing setting:
```

subroutine my_compute(nt)
use mkl_service
integer(4) :: nt, save
save = mkl_set_num_threads_local( nt ) ! save the Intel }\mp@subsup{}{}{\circledR}\mathrm{ oneAPI Math Kernel Library (oneMKL)
number of threads
call my_compute_using_mkl() ! Intel MKL functions use up to nt threads on this thread
save = mkl_set_num_threads_local( save ) ! restore the Intel }\mp@subsup{}{}{\circledR}\mathrm{ oneAPI Math Kernel Library
(oneMKL) number of threads
end subroutine my_compute

```
mkl_set_dynamic
Enables Intel® oneAPI Math Kernel Library (oneMKL) to dynamically change the number of OpenMP* threads.

\section*{Syntax}
```

call mkl_set_dynamic( flag )

```

\section*{Fortran Include Files/Modules}
- Include file: mkı.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters
\begin{tabular}{ll}
Name & Type \\
flag & INTEGER
\end{tabular}

\begin{abstract}
Description
flag \(=0\) - Requests disabling dynamic adjustment of the number of threads.
flag \(\neq 0\) - Requests enabling dynamic adjustment of the number of threads.
\end{abstract}

\section*{Description}

This function indicates whether Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) can dynamically change the number of OpenMP threads or should avoid doing this. The setting applies to all Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions on all execution threads. This function takes precedence over theMKL_DYNAMIC environment variable.

Dynamic adjustment of the number of threads is enabled by default. Specifically, Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) may use fewer threads in parallel regions than the number returned by themkl_get_max_threadsfunction. Disabling dynamic adjustment of the number of threads does not ensure that Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) actually uses the specified number of threads, although the library attempts to use that number.

\section*{Tip}

If you call Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) from within an OpenMP parallel region and want to create internal parallel regions, either disable dynamic adjustment of the number of threads or set the thread-local number of threads (seemkl_set_num_threads_local for how to do it).

\section*{Example}
```

use mkl_service
...
call mkl_set_num_threads( 8 )
!$omp parallel
    call my_compute_with_mkl ! Intel MKL uses 1 thread, being called from OpenMP parallel region
    call mkl_set_dynamic(0) ! disable adjustment of the number of threads
    call my_compute_with_mkl ! Intel MKL uses 8 threads
!$omp end parallel

```
mkl_get_max_threads
Gets the number of OpenMP* threads targeted for parallelism.

\section*{Syntax}
```

nt = mkl_get_max_threads()

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Description}

This function returns the number of OpenMP threads available for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) to use in internal parallel regions.

\section*{Return Values}
```

Name Type Description
nt INTEGER*4
The maximum number of threads for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions to use in internal parallel regions.

```

\section*{Example}
```

use mkl_service
if (1 == mkl_get_max_threads()) print *, "Intel MKL does not employ threading"

```

\section*{See Also}
```

mkl_set_dynamic

```
mkl_get_dynamic
Using a Fortran Interface Module for Support Functions
mkl_domain_get_max_threads
Gets the number of OpenMP* threads targeted for parallelism for a particular function domain.

\section*{Syntax}
```

nt = mkl_domain_get_max_threads( domain )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters

Name Type
domain INTEGER

\section*{Description}

The named constant that defines the targeted domain.

\section*{Description}

Computational functions of the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) function domain defined by thedomain parameter use the value returned by this function as a limit of the number of OpenMP threads they should request for parallel computations. The mkl_domain_get_max_threads function returns the thread-local number of threads or, if that value is zero or not set, the global number of threads. To determine this number, the function inspects the environment settings and return values of the function calls below in the order they are listed until it finds a non-zero value:
- A call to mkl_set_num_threads_local
- The last of the calls to mkl_set_num_threads or mkl_domain_set_num_threads(..., MKL_DOMAIN_ALL)
- A call to mkl_domain_set_num_threads(..., domain)
- The MKL_DOMAIN_NUM_THREADS environment variable with the MKL_DOMAIN_ALL tag
- The MKL_DOMAIN_NUM_THREADS environment variable (with the specific domain tag)
- The MKL_NUM_THREADS environment variable
- A call to omp_set_num_threads
- The OMP_NUM_THREADS environment variable

Actual number of threads used by the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) computational functions may vary depending on the problem size and on whether dynamic adjustment of the number of threads is enabled (see the description ofmkl_set_dynamic). For a list of supported values of the domain argument, see Table "Intel MKL Function Domains".

\section*{Return Values}

\section*{Name Type}
nt INTEGER*4

\section*{Description}

The maximum number of threads for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions from a given domain to use in internal parallel regions.
If an invalid value of domain is supplied, the function returns the number of threads for MKL_DOMAIN_ALL

\section*{Example}
```

use mkl_service
if (1 < mkl_domain_get_max_threads (MKL_DOMAIN_BLAS)) then
print *, "Intel MKL BLAS functions employ threading"
end if

```
mkl_get_dynamic
Determines whether Inte \({ }^{\circledR}\) oneAPI Math Kernel Library
(oneMKL) is enabled to dynamically change the
number of OpenMP* threads.

\section*{Syntax}
```

ret = mkl_get_dynamic()

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Description}

This function returns the status of dynamic adjustment of the number of OpenMP* threads. To determine this status, the function inspects the return value of the following function call and if it is undefined, inspects the environment setting below:
- A call to mkl_set_dynamic
- The MKL_DYNAMIC environment variable

\section*{NOTE}

Dynamic adjustment of the number of threads is enabled by default.

The dynamic adjustment works as follows. Suppose that the mkl_get_max_threads function returns the number of threads equal to \(N\). If dynamic adjustment is enabled, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) may request up to \(N\) threads, depending on the size of the problem. If dynamic adjustment is disabled, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) requests exactly \(N\) threads for internal parallel regions (provided it uses a threaded algorithm with at least Ncomputations that can be done in parallel). However, the OpenMP* runtime library may be configured to supply fewer threads than Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) requests, depending on the OpenMP* setting of dynamic adjustment.

\section*{Return Values}

\section*{Name Type}
ret INTEGER*4

\section*{Description}

0 - Dynamic adjustment of the number of threads is disabled.
1 - Dynamic adjustment of the number of threads is enabled.

\section*{Example}
```

use mkl_service
integer(4) :: nt
nt = mkl_get_max_threads()
if (1 == mkl_get_dynamic()) then
print '("Intel MKL may use less than "IO" threads for a large problem")', nt
else
print '("Intel MKL should use "IO" threads for a large problem")', nt
end if

```

\section*{mkl_set_num_stripes}

Specifies the number of partitions along the leading dimension of the output matrix for parallel ?GEMM
functions.

\section*{Syntax}
```

call mkl_set_num_stripes( ns )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Input Parameters}

\section*{Name}

Type
INTEGER* 4

\section*{Description}
\(n s>0\) - Specifies the number of partitions to use.
\(n s=0\) - Instructs Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) to use the default partitioning algorithm.

\section*{Name Type Description}
\[
n s<0 \text { - Invalid value; ignored. }
\]

\section*{Description}

This function enables you to specify the number of stripes, or partitions along the leading dimension of the output matrix, for parallel ?GEMMfunctions. If this number is not set (default) or if it is set to zero, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL)?GEMM functions use the default partitioning algorithm. The specified number of partitions only applies to ?GEMM functions.

The number specified is a hint, and Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) may actually use a smaller number.

\section*{NOTE}

This function takes precedence over the MKL_NUM_STRIPES environment variable.

\section*{Example}
```

use mkl_service
...
call mkl_set_num_stripes(4)
call dgemm(...) !Intel MKL uses up to 4 stripes for DGEMM

```

\section*{See Also}
mkl_get_num_stripes
```

mkl_get_num_stripes

```

Gets the number of partitions along the leading dimension of the output matrix for parallel ?GEMM
functions.

\section*{Syntax}
```

ns = mkl_get_num_stripes( )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Description}

This function returns the number of stripes, that is, partitions along the leading dimension of the output matrix, for parallel ?GEMM functions. The number of partitions only applies to ?GEMM functions.

The number returned is a hint, and Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) may actually use a smaller number.

\section*{Return Values}
\begin{tabular}{ll}
Name & Type \\
\(n s\) & INTEGER*4
\end{tabular}

\section*{Description}

The number of stripes for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL)? GEMM functions to use.

\section*{Example}
```

use mkl service
INTEGER*4 ns = mkl_get_num_stripes()
if (ns .GT. O) print *, 'Intel MKL uses', ns, 'number of stripes'

```

\section*{See Also}
```

mkl_set_num_stripes

```

\section*{Error Handling}

\section*{Error Handling for Linear Algebra Routines}

\section*{xerbla}

Error handling function called by BLAS, \(\angle A P A C K\), Vector Math, and Vector Statistics functions.

Syntax
```

call xerbla( srname, info)

```

Include Files
- mkl.fi

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
srname & CHARACTER*(*) \\
info & INTEGER
\end{tabular}

\section*{Description}

The name of the routine that called xerbla
The position of the invalid parameter in the parameter list of the calling function or an error code

\section*{Description}

The xerbla function is an error handler for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) BLAS, LAPACK, Vector Math, and Vector Statistics functions. These functions call xerbla if an issue is encountered on entry or during the function execution.
xerbla operates as follows:
1. Prints a message that depends on the value of the info parameter as explained in the following table.

\section*{NOTE}

A specific message can differ from the listed messages in numeric values and/or function names.
2. Returns to the calling application.

Error Messages Printed by xerbla
\begin{tabular}{ll}
\hline Value of info & Error Message \\
\hline 1001 & \begin{tabular}{l}
Intel MKL ERROR: Incompatible optional parameters on entry to \\
DGEMM.
\end{tabular} \\
\hline \(\mathbf{0 0 0}\) or 1089 & \begin{tabular}{l}
Intel MKL INTERNAL ERROR: Insufficient workspace available in \\
function CGELSD.
\end{tabular} \\
Other & \begin{tabular}{l}
Intel MKL INTERNAL ERROR: Condition 1 detected in function DLASD8.
\end{tabular} \\
& \begin{tabular}{l}
The position of the invalid parameter in the parameter list of the \\
calling function.
\end{tabular}
\end{tabular}

Note that xerbla is an internal function. You can change or disable printing of an error message by providing your own xerbla function. The following examples illustrate usage of xerbla.

\section*{Example}
```

subroutine xerbla (srname, info)
character*(*) srname !Name of subprogram that called xerbla
integer info !Position of the invalid parameter in the parameter list
return !Return to the calling subprogram end
end

```

\section*{See Also}
mkl_set_xerbla
pxerbla
Error handling routine called by ScaLAPACK routines.

\section*{Syntax}
```

call pxerbla (ictxt, srname, info)

```

\section*{Include Files}

\section*{Input Parameters}
\begin{tabular}{ll}
ictxt & (local) \\
& INTEGER
\end{tabular}
srname (global)
CHARACTER* (*)

The name of the routine that called pxerbla.
info (global)
INTEGER
The position of the invalid parameter in the parameter list of the calling routine.

\section*{Description}

This routine is an error handler for the ScaLAPACK routines. It is called if an input parameter has an invalid value. A message is printed and program execution continues. For ScaLAPACK driver and computational routines, a RETURN statement is issued following the call to pxerbla.

Control returns to the higher-level calling routine, and you can determine how the program should proceed. However, in the specialized low-level ScaLAPACK routines (auxiliary routines that are Level 2 equivalents of computational routines), the call to pxerbla() is immediately followed by a call to BLACS_ABORT () to terminate program execution since recovery from an error at this level in the computation is not possible.
It is always good practice to check for a non-zero value of info on return from a ScaLAPACK routine. Installers may consider modifying this routine in order to call system-specific exception-handling facilities.

\section*{Handling Fatal Errors}

A fatal error is a circumstance under which Intel® oneAPI Math Kernel Library (oneMKL) cannot continue the computation. For example, a fatal error occurs when Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) cannot load a dynamic library or confronts an unsupported CPU type. In case of a fatal error, the default Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) behavior is to print an explanatory message to the console and call an internal function that terminates the application with a call to the systemexit () function. Intel® oneAPI Math Kernel Library (oneMKL) enables you to override this behavior by setting a custom handler of fatal errors. The custom error handler can be configured to throw a \(\mathrm{C}++\) exception, set a global variable indicating the failure, or otherwise handle cannot-continue situations. It is not necessary for the custom error handler to call the systemexit () function. Once execution of the error handler completes, a call to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) returns to the calling program without performing any computations and leaves no memory allocated by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) and no thread synchronization pending on return.
To specify a custom fatal error handler, call the mkl_set_exit_handler function.
```

mkl_set_exit_handler

```

Sets the custom handler of fatal errors.

\section*{Syntax}
external :: myexit
interface = mkl_set_exit_handler(myexit)

\section*{Fortran Include Files/Modules}

None.
Input Parameters
\begin{tabular}{l|l|l}
Name & Interface & Description \\
myexit & interface & The error handler to set. \\
& subroutine myexit(iwhy) \\
integer, value : : iwhy \\
end subroutine myexit \\
end interface
\end{tabular}

\section*{Description}

This function sets the custom handler of fatal errors.
The following example shows how to use a custom handler of fatal errors in your application:
```

subroutine myexit(rsn)
integer,value :: rsn
call msgbox("Application is terminating")

```
```

end myexit
program app
external :: myexit
call mkl_set_exit_handler(myexit)
!... compute using Intel MKL...

```

\section*{Character Equality Testing}

\section*{Isame}

Tests two characters for equality regardless of the case.

Syntax
```

val = lsame( ca, cb )

```

\section*{Include Files}
- mkl.fi

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
\(c a, c b\) & \(C H A R A C T E R \star 1\) & The single characters to be compared
\end{tabular}

\section*{Description}

This logical function checks whether two characters are equal regardless of the case.

\section*{Return Values}

\section*{Name Type}

\section*{Description}

Result of the comparison:
- . TRUE. if \(c a\) is the same letter as \(c b\), maybe except for the case.
- . FALSE. if \(c a\) and \(c b\) are different letters for whatever cases.

\section*{Isamen}

Tests two character strings for equality regardless of the case.

Syntax
val \(=\operatorname{lsamen}(n, c a, c b)\)
Include Files
- mkl.fi

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
\(n\) & INTEGER \\
\(c a, c b\) & CHARACTER* (*)
\end{tabular}

\section*{Description}

The number of characters in \(c a\) and \(c b\) to be compared.
Character strings of length at least \(n\) to be compared. Only the first \(n\) characters of each string will be accessed.

\section*{Description}

This logical function tests whether the first \(n\) letters of one string are the same as the first \(n\) letters of the other string, regardless of the case.

\section*{Return Values}
\begin{tabular}{ll}
Name & Type \\
val & LOGICAL
\end{tabular}

\section*{Description}

Result of the comparison:
- . TRUE. if the first \(n\) letters in ca and \(c b\) character strings are equal, maybe except for the case, or if the length of character string \(c a\) or \(c b\) is less than \(n\).
- . FALSE. if the first \(n\) letters in \(c a\) and \(c b\) character strings are different for whatever cases.

\section*{Timing}

\section*{second/dsecnd}

Returns elapsed time in seconds. Use to estimate real time between two calls to this function.

\section*{Syntax}
```

val = second()
val = dsecnd()

```

\section*{Include Files}
- mkl.fi

\section*{Description}

The second/dsecnd function returns time in seconds to be used to estimate real time between two calls to the function. The difference between these functions is in the precision of the floating-point type of the result: while second returns the single-precision type, dsecnd returns the double-precision type.
Use these functions to measure durations. To do this, call each of these functions twice. For example, to measure performance of a routine, call the appropriate function directly before a call to the routine to be measured, and then after the call of the routine. The difference between the returned values shows real time spent in the routine.
Initializations may take some time when the second/dsecnd function runs for the first time. To eliminate the effect of this extra time on your measurements, make the first call to second/dsecnd in advance.

Do not use second to measure short time intervals because the single-precision format is not capable of holding sufficient timer precision.

\section*{Return Values}
\begin{tabular}{lll}
Name & Type & Description \\
val & REAL for second & Elapsed real time in seconds \\
& DOUBLE PRECISION for dsecnd &
\end{tabular}
mkl_get_cpu_clocks
Returns elapsed CPU clocks.
Syntax
```

call mkl_get_cpu_clocks( clocks )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Output Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
clocks & INTEGER*8 & Elapsed CPU clocks
\end{tabular}

\section*{Description}

The mkl_get_cpu_clocks function returns the elapsed CPU clocks.
This may be useful when timing short intervals with high resolution. The mkl_get_cpu_clocks function is also applied in pairs like second/dsecnd. Note that out-of-order code execution on IA-32 or Intel® 64 architecture processors may disturb the exact elapsed CPU clocks value a little bit, which may be important while measuring extremely short time intervals.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201
mkl_get_cpu_frequency
Returns the current CPU frequency value in GHz .
Syntax
```

freq = mkl_get_cpu_frequency()

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Description}

The function mkl_get_cpu_frequency returns the current CPU frequency in GHz.

\section*{NOTE}

The returned value may vary from run to run if power management or Intel \({ }^{\circledR}\) Turbo Boost Technology is enabled.

\section*{Return Values}
\begin{tabular}{lll}
Name & Type & Description \\
freq & DOUBLE PRECISION & Current CPU frequency value in GHz
\end{tabular}
mkl_get_max_cpu_frequency
Returns the maximum CPU frequency value in GHz .
Syntax
```

freq = mkl_get_max_cpu_frequency()

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Description}

The function mkl_get_max_cpu_frequency returns the maximum CPU frequency in GHz.

\section*{Return Values}
\begin{tabular}{lll}
Name & Type & Description \\
freq & DOUBLE PRECISION & Maximum CPU frequency value in GHz
\end{tabular}

\section*{mkl_get_clocks_frequency}

Returns the frequency value in GHz based on constant-rate Time Stamp Counter.

\section*{Syntax}
```

freq = mkl_get_clocks_frequency()

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Description}

The function mkl_get_clocks_frequency returns the CPU frequency value (in GHz) based on constant-rate Time Stamp Counter (TSC). Use of the constant-rate TSC ensures that each clock tick is constant even if the CPU frequency changes. Therefore, the returned frequency is constant.

\section*{NOTE}

Obtaining the frequency may take some time when mkl_get_clocks_frequency is called for the first time. The same holds for functions second/dsecnd, which call
mkl_get_clocks_frequency.

\section*{Return Values}
\begin{tabular}{lll}
Name & Type & Description \\
freq & DOUBLE PRECISION & Frequency value in GHz
\end{tabular}

\section*{See Also}
second/dsecnd
Using a Fortran Interface Module for Support Functions

\section*{Memory Management}

This section describes the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) memory functions. See theInte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide for more memory usage information.
mkl_free_buffers
Frees unused memory allocated by the Intel® oneAPI
Math Kernel Library (oneMKL) on the Host.

\section*{Syntax}
```

call mkl_free_buffers

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Description}

To improve performance of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) on CPU, the Memory Allocator uses per-thread memory pools where buffers may be collected for fast reuse. Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) also allocates temporary buffers on the host memory to improve performance of GPU kernels. The mkl_free_buffers function frees both types of memory.
See theInte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide for details.
You should call mkl_free_buffers after the last call to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions. In large applications, if you suspect that the memory may get insufficient, you may call this function earlier, but anticipate a drop in performance that may occur due to reallocation of buffers for subsequent calls to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Usage of mkl_free_buffers with FFT Functions (C Example)}
```

DFTI_DESCRIPTOR_HANDLE hand1;
DFTI_DESCRIPTOR_HANDLE hand2;
void mkl_free_büffers(void);
. . . . . .
/* Using Intel MKL FFT */
Status = DftiCreateDescriptor(\&hand1, DFTI_SINGLE, DFTI_COMPLEX, dim, m1);
Status = DftiCommitDescriptor(hand1);
Status = DftiComputeForward(hand1, s_array1);
Status = DftiCreateDescriptor(\&hand2, DFTI_SINGLE, DFTI_COMPLEX, dim, m2);
Status = DftiCommitDescriptor(hand2);
Status = DftiFreeDescriptor(\&hand1);
• . . . . .
Status = DftiComputeBackward(hand2, s_array2));
Status = DftiFreeDescriptor(\&hand2);
/* Here you finish using Intel MKL FFT */
/* Memory leak will be triggered by any memory control tool */
/* Use mkl_free_buffers() to avoid memory leaking */
mkl_free_buffers();

```
mkl_thread_free_buffers
Frees unused memory allocated by the Inte» oneAPI
Math Kernel Library (oneMKL) Memory Allocator in the current thread.

\section*{Syntax}
```

call mkl_thread_free_buffers

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Description}

To improve performance of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL), the Memory Allocator uses perthread memory pools where buffers may be collected for fast reuse. Themkl_thread_free_buffers function frees unused memory allocated by the Memory Allocator in the current thread only.
You should call mkl_thread_free_buffersafter the last call to Intel® oneAPI Math Kernel Library (oneMKL) functions in the current thread. In large applications, if you suspect that the memory may get insufficient, you may call this function earlier, but anticipate a drop in performance that may occur due to reallocation of buffers for subsequent calls to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions.

\footnotetext{
See Also
mkl_free_buffers
Using a Fortran Interface Module for Support Functions
mkl_disable_fast_mm
Turns off the Intel® oneAPI Math Kernel Library (oneMKL) Memory Allocator for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions to directly use the systemmalloc/free functions.
}

\section*{Syntax}
```

mm = mkl_disable_fast_mm

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Description}

The mkl_disable_fast_mmfunction turns the Intel® oneAPI Math Kernel Library (oneMKL) Memory Allocator off for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions to directly use the systemmalloc/
freefunctions. Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Memory Allocator uses per-thread memory pools where buffers may be collected for fast reuse. The Memory Allocator is turned on by default for better performance. To turn it off, you can use themkl_disable_fast_mm function or the MKL_DISABLE_FAST_MM environment variable (See the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide for details.) Call mkl_disable_fast_mmbefore calling any Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions that require allocation of memory buffers.

\section*{NOTE}

Turning the Memory Allocator off negatively impacts performance of some Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) routines, especially for small problem sizes.

\section*{Return Values}
\begin{tabular}{ll}
Name & Type \\
mm & INTEGER*4 \\
& 1 \\
& 0 \\
mkl_mem_stat \\
Reports the status of the Inte/® oneAPI Math Kernel \\
Library (oneMKL) Memory Allocator.
\end{tabular}

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Output Parameters}

\section*{Name}

\section*{Type}

INTEGER*4

\section*{Description}

The number of buffers allocated by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

\section*{Description}

The function returns the number of buffers allocated by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) and the amount of memory in these buffers. Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) can allocate the memory buffers internally or in a call tomkl_malloc/mkl_calloc. If no buffers are allocated at the moment, the mkl _mem_stat function returns 0 . Call mkl_mem_statto check the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) memory status.

\section*{NOTE}

If you free all the memory allocated in calls to mkl_malloc or mki_calloc and then call mkl_free_buffers, a subsequent call to mki_mem_stat normally returns 0 .

\section*{Return Values}

\section*{Name}

AllocatedBytes

\section*{Type}

INTEGER*8

\section*{Description}

The amount of allocated memory (in bytes).

\section*{See Also}

Usage Examples for the Memory Functions
Using a Fortran Interface Module for Support Functions
mkl_peak_mem_usage
Reports the peak memory allocated by the Intel® oneAPI Math Kernel Library (oneMKL) Memory Allocator.

Syntax
```

AllocatedBytes = mkl_peak_mem_usage( mode )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Input Parameters}

\section*{Name}
mode

\section*{Type}

INTEGER*4

\section*{Description}

Requested mode of the function's operation. Possible values:
- MKL_PEAK_MEM_ENABLE - start gathering the peak memory data
- MKL_PEAK_MEM_DISABLE - stop gathering the peak memory data
- MKL_PEAK_MEM - return the peak memory
- MKL_PEAK_MEM_RESET - return the peak memory and reset the counter to start gathering the peak memory data from scratch

\section*{Description}

The mkl_peak_mem_usagefunction reports the peak memory allocated by the Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Memory Allocator.

Gathering the peak memory data is turned off by default. If you need to know the peak memory, explicitly turn the data gathering mode on by calling the function with the MKL_PEAK_MEM_ENABLE value of the parameter. Use the MKL_PEAK_MEM and MKL_PEAK_MEM_RESET values only when the data gathering mode is turned on. Otherwise the function returns -1. The data gathering mode leads to performance degradation, so when the mode is turned on, you can turn it off by calling the function with the MKL_PEAK_MEM_DISABLE value of the parameter.

\section*{NOTE}
- If Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) is running in a threaded mode, themkl_peak_mem_usage function may return different amounts of memory from run to run.
- The function reports the peak memory for the entire application, not just for the calling thread.

\section*{Return Values}

\section*{Name}

AllocatedBytes

\section*{Type}

INTEGER*8

\section*{Description}

The peak memory allocated by the Memory Allocator (in bytes) or -1 in case of errors.

\section*{See Also}

Usage Examples for the Memory Functions
Using a Fortran Interface Module for Support Functions
mkl_malloc
Allocates an aligned memory buffer.

\section*{Syntax}
a_ptr = mkl_malloc(alloc_size, alignment)

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
alloc_size & INTEGER*4 for 32-bit systems \\
& INTEGER*8 for 64-bit systems & Size of the buffer to be allocated. \\
alignment & INTEGER*4 & Alignment of the buffer.
\end{tabular}

\section*{Description}

The function allocates an alloc_size-byte buffer aligned on the alignment-byte boundary.
If alignment is not a power of 2 , the 64 -byte alignment is used.

\section*{Return Values}
\begin{tabular}{ll}
Name & Type \\
a_ptr & POINTER
\end{tabular}

\section*{Description}

Pointer to the allocated buffer if alloc_size \(\geq 1\), NULL if alloc_size \(<1\).

\section*{See Also}
mkl_free
Usage Examples for the Memory Functions
Using a Fortran Interface Module for Support Functions
mkl_calloc
Allocates and initializes an aligned memory buffer.
Syntax
```

a_ptr = mkl_calloc( num, size, alignment )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters
\begin{tabular}{ll}
Name & Type \\
num & INTEGER*4 for 32-bit systems \\
size & INTEGER*8 for 64-bit systems \\
& INTEGER*4 for 32-bit systems \\
alignment & INTEGER*8 for 64-bit systems \\
INTEGER*4
\end{tabular}

\section*{Description}

The number of elements in the buffer to be allocated.

The size of the element.

Alignment of the buffer.

\section*{Description}

The function allocates a num*size-byte buffer, aligned on the alignment-byte boundary, and initializes the buffer with zeros.

If alignment is not a power of 2 , the 64-byte alignment is used.

\section*{Return Values}

\section*{Name Type}
a_ptr POINTER

\section*{See Also}
```

mkl_malloc
mkl_realloc
mkl_free
Usage Examples for the Memory Functions

```
```

Using a Fortran Interface Module for Support Functions
mkl_realloc
Changes the size of memory buffer allocated by
mkl_malloc/mkl_calloc.

```

\section*{Syntax}
```

a_ptr = mkl_realloc( ptr, size )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
ptr & POINTER & \begin{tabular}{l}
Pointer to the memory buffer allocated by the \\
mkl_malloc or mkl_calloc function or a NULL \\
pointer.
\end{tabular} \\
size & INTEGER*4 for 32-bit systems \\
INTEGER*8 for 64-bit systems & New size of the buffer.
\end{tabular}

\section*{Description}

The function changes the size of the memory buffer allocated by the mkl_malloc or mkl_calloc function to size bytes. The first bytes of the returned buffer up to the minimum of the old and new sizes keep the content of the input buffer. The returned memory buffer can have a different location than the input one. If ptr is NULL, the function works as mkl_malloc.

\section*{Return Values}
\begin{tabular}{ll}
Name & Type \\
a_ptr & POINTER
\end{tabular}

\section*{Description}
- Pointer to the re-allocated buffer if reallocation is successful.
- NULL if re-allocation is unsuccessful.
```

See Also
mkl_malloc
mkl_calloc
mkl_free
Usage Examples for the Memory Functions
Using a Fortran Interface Module for Support Functions
mkl_free
Frees the aligned memory buffer allocated by
mkl_malloc/mkl_calloc.
Syntax
call mkl_free( a_ptr )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
a_ptr & POINTER & Pointer to the buffer to be freed.
\end{tabular}

\section*{Description}

The function frees the buffer pointed by a_ptr and allocated by the mkl_malloc() or mkl_calloc() function and does nothing if a_ptr is NULL.

\section*{See Also}
mkl_malloc
mkl_calloc
Usage Examples for the Memory Functions
Using a Fortran Interface Module for Support Functions
mkl_set_memory_limit
On Linux, sets the limit of memory that Intel® oneAPI
Math Kernel Library (oneMKL) can allocate for a specified type of memory.

Syntax
```

stat = mkl_set_memory_limit( mem_type, limit )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Input Parameters}
\begin{tabular}{|c|c|c|}
\hline Name & Type & Description \\
\hline \multirow[t]{2}{*}{mem_type} & INTEGER*4 & Type of memory to limit. Possible values: \\
\hline & & MKL_MEM_MCDRAM - Multi-Channel Dynamic Random Access Memory (MCDRAM). \\
\hline \multirow[t]{5}{*}{limit} & INTEGER*4 for & Memory limit in megabytes. \\
\hline & 32-bit systems & \\
\hline & INTEGER*8 for & \\
\hline & 64-bit & \\
\hline & systems. & \\
\hline
\end{tabular}

\section*{Description}

This function sets the limit for the amount of memory that Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) can allocate for the specified memory type. The limit bounds both internal allocations (inside Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) computation routines) and external allocations (in a call tomkl_malloc, mkl_calloc, or mkl_realloc). By default no limit is set for memory allocation.

Call mkl_set_memory_limitat most once, prior to calling any other Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) function in your application except mkl_set_interface_layer and mkl_set_threading_layer.

\section*{NOTE}
- Allocation in MCDRAM requires libmemkind and libjemalloc dynamic libraries which are a part of Intel \({ }^{\circledR}\) Manycore Platform Software Package (Intel \({ }^{\circledR}\) MPSP) for Linux*.
- The mkl_set_memory_limit function takes precedence over the MKL_FAST_MEMORY_LIMIT environment variable.

\section*{Return Values}

\section*{Type}

INTEGER*4

\section*{Description}

Status of the function completion:
- 1 - the limit is set
- 0 - the limit is not set

\section*{See Also}
```

mkl_malloc
mkl_calloc
mkl_realloc
Usage Examples for the Memory Functions
Using a Fortran Interface Module for Support Functions

```

\section*{Usage Examples for the Memory Functions}

\section*{Usage Example for 1-dimensional Arrays}
```

        PROGRAM FOO
    INCLUDE 'mkl.fi'
    DOUBLE PRECISION A,B,C
    POINTER (A_PTR,A(1)), (B_PTR,B(1)), (C_PTR,C(1))
    INTEGER N, I
    REAL*8 ALPHA, BETA
    INTEGER*8 ALLOCATED_BYTES
    INTEGER*8 PEAK_MEMORY
    INTEGER*4 ALLOCATED_BUFFERS
    \#ifdef _SYSTEM_BITS32
INTEGER*4 MKL_MALLOC, MKL_CALLOC, MKL_REALLOC
INTEGER*4 ALLOC_SIZE, NUM, SIZE
\#else
INTEGER*8 MKL_MALLOC, MKL_CALLOC, MKL_REALLOC
INTEGER*8 ALLŌC_SIZE, NUM, SIZE
\#endif

```
```

EXTERNAL MKL_MALLOC, MKL_FREE, MKL_CALLOC, MKL_REALLOC
ALPHA = 1.1; BETA = -1.2
N = 1000
SIZE = 8
NUM = N*N
ALLOC_SIZE = SIZE*NUM
PEAK_MEMORY = MKL_PEAK_MEM_USAGE (MKL_PEAK_MEM_ENABLE)
A_PT\overline{R}= MKL_MALLO\overline{C}}(ALLO्OC_SİZE,64
B_PTR = MKL_MALLOC (ALLOC_SIZE,64)
C_PTR = MKL_CALLOC (NUM,SIZE,64)
DO I=1,N*N
A(I) = I
B(I) = -I
END DO
CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BETA,C,N);
ALLOCATED_BYTES = MKL_MEM_STAT (ALLOCATED_BUFFERS)
PRINT *,'DGEMM uses ',ALLO-CATED_BYTES,' bytes in ',
\$ ALLOCATED_BUFFERS,' buffers '
CALL MKL_FREE_BUFFERS
CALL MKL_FREE(A_PTR)
CALL MKL_FREE(B_PTR)
CALL MKL_FREE (C_PTR)
ALLOCATED_BYTES = MKL_MEM_STAT (ALLOCATED_BUFFERS)
IF (ALLOCATTED_BYTES > 0) THEN
PRINT *,'MKL MEMORY LEAK!'
PRINT *,'AFTER MKL_FREE_BUFFERS there are ',
\$ ALLOCATED_BYTES,' bytes in ',
\$ ALLOCATED_BUFFERS,' buffers'
END IF
PEAK_MEMORY = MKL_PEAK_MEM_USAGE (MKL_PEAK_MEM_RESET)
PRINT *,'Peak memory allocated by Intel MKL memory allocator ',
\$ PEAK_MEMORY,' bytes. ',
\$ 'Start to count new memory peak'
A_PTR = MKL_MALLOC (ALLOC_SIZE,64)
A_PTR = MKL_REALLOC(A_PTR,ALLOC_SIZE*SIZE)
CALLL MKL_FRE\overline{EE}(A_PTR)
PEAK_MEMOिRY = MK_L_PEAK_MEM_USAGE (MKL_PEAK_MEM)
PRINT *,'After reset of peak memory counter',
\$ 'Peak memory allocated by Intel MKL memory allocator ',
\$ PEAK_MEMORY,' bytes'
STOP
END

```

\section*{Usage Example for 2-dimensional Arrays}
```

PROGRAM FOO
INTEGER N
PARAMETER (N=100)
DOUBLE PRECISION A,B,C
POINTER (A_PTR,A(N,*)), (B_PTR,B(N,*)), (C_PTR,C(N,*))
INTEGER I,J

```
```

    REAL*8 ALPHA, BETA
    INTEGER*8 ALLOCATED_BYTES
    INTEGER*4 ALLOCATED_BUFFERS
    \#ifdef _SYSTEM_BITS32
INTEGER*4 MKL_MALLOC
INTEGER*4 ALLOC_SIZE
\#else
INTEGER*8 MKL_MALLOC
INTEGER*8 ALLOC_SIZE
\#endif
INTEGER MKL_MEM_STAT
EXTERNAL MKL_MALE-LOC, MKL_FREE, MKL_MEM_STAT
ALPHA = 1.1; BETA = -1.2
ALLOC_SIZE = 8*N*N
A_PTR = MKL_MALLOC (ALLOC_SIZE, 64)
B_PTR = MKL_MALLOC (ALLOC_SIZE, 64)
C_PTR = MKL_MALLOC (ALLOC_SIZE, 64)
DO I=1,N
DO J=1,N
A(I,J) = I
B(I,J) = -I
C(I,J) = 0.0
END DO
END DO
CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BETA,C,N);
ALLOCATED_BYTES = MKL_MEM_STAT (ALLOCATED_BUFFERS)
PRINT *,'DGEMM uses ',ALLOCATED_BYTES,' bytes in ',
\$ ALLOCATED_BUFFERS,' buffers '-
CALL MKL_FREE_BUFFERS
CALL MKL_FREE(A_PTR)
CALL MKL_FREE (B_PTR)
CALL MKL_FREE (C_PTR)
ALLOCATED_BYTES = MKL_MEM_STAT(ALLOCATED_BUFFERS)
IF (ALLOCATED_BYTES > 0) THEN
PRINT *,'MKL MEMORY LEAK!'
PRINT *,'AFTER MKL_FREE_BUFFERS there are ',
\$ ALLOCATED_BYTES,' bytès in ',
\$ ALLOCATED_BUFFERS,' buffers'
END IF
STOP
END

```

\section*{Single Dynamic Library Control}

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides the Single Dynamic Library (SDL), which enables setting the interface and threading layer for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) at run time. SeeInte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide for details of SDL and layered model concept. This section describes the functions supporting SDL.
mkl_set_interface_layer
Sets the interface layer for Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) at run time. Use with the Single Dynamic Library.

\section*{Syntax}
```

interface = mkl_set_interface_layer( required_interface )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Input Parameters}

\section*{Name Type Description}

Determines the interface layer. Possible values depend on the system architecture. Some of the values are only available on Linux* OS:
- Intel \({ }^{\circledR} 64\) architecture: MKL_INTERFACE_LP64 for the Intel LP64 interface. MKL_INTERFACE_ILP64 for the Intel ILP64 interface. MKL_INTERFACE_LP64+MKL_INTERFACE_GNU for the GNU* LP64 interface on Linux OS.

MKL_INTERFACE_ILP64+MKL_INTERFACE_GNU for the GNU ILP64 interface on Linux OS.
- IA-32 architecture:

MKL_INTERFACE_LP64 for the Intel interface on Linux OS.
MKL_INTERFACE_LP64+MKL_INTERFACE_GNU or
MKL_INTERFACE_GNU for the GNU interface on Linux OS.

\section*{Description}

If you are using the Single Dynamic Library (SDL), the mkl_set_interface_layerfunction sets the specified interface layer for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) at run time.
Call this function prior to calling any other Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) function in your application exceptmkl_set_threading_layer. You can call mkl_set_interface_layer and mkl_set_threading_layer in any order.
The mkl_set_interface_layer function takes precedence over the MKL_INTERFACE_LAYER environment variable.
See Intel oneAPI Math Kernel Library (oneMKL) Developer Guide for the layered model concept and usage details of the SDL.

\section*{Return Values}

\section*{Type}

INTEGER

\section*{Description}
- Current interface layer if it is set in a call to mkl_set_interface_layer or specified by environment variables or defaults.

Possible values are specified in Input Parameters.
- -1, if the layer was not specified prior to the call and the input parameter is incorrect.
mkl_set_threading_layer
Sets the threading layer for Inte oneAPI Math Kernel
Library (oneMKL) at run time. Use with the Single
Dynamic Library (SDL).

\section*{Syntax}
```

threading = mkl_set_threading_layer( required_threading )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Input Parameters}

\section*{Name}
required_threading

\section*{Type}

INTEGER

\section*{Description}

Determines the threading layer. Possible values:
MKL_THREADING_INTEL for Intel threading.
MKL_THREADING_SEQUENTIALfor the sequential mode of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

MKL_THREADING_TBB for threading with the Intel \({ }^{\circledR}\) Threading Building Blocks.

MKL_THREADING_PGI for PGI threading on Windows* or Linux* operating system only. Do not use this value with the SDL for Inte \({ }^{\circledR}\) Many Integrated Core (Intel \({ }^{\circledR}\) MIC) Architecture.

NOTE PGI* support is deprecated and will be removed in the oneMKL 2025.0 release.

MKL_THREADING_GNU for GNU threading on Linux* operating system only. Do not use this value with the SDL for Intel MIC Architecture.

\section*{Description}

If you are using the Single Dynamic Library (SDL), the mkl_set_threading_layerfunction sets the specified threading layer for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) at run time.

Call this function prior to calling any other Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) function in your application except mkl_set_interface_layer.
You can call mkl_set_threading_layer and mkl_set_interface_layer in any order.
The mkl_set_threading_layer function takes precedence over the MKL_THREADING_LAYER environment variable.

See Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide for the layered model concept and usage details of the SDL.

\section*{Return Values}

\section*{Type}

INTEGER

\section*{Description}
- Current threading layer if it is set in a call to mkl_set_threading_layer or specified by environment variables or defaults. Possible values are specified in Input Parameters.
- -1 , if the layer was not specified prior to the call and the input parameter is incorrect.

\section*{mkl_set_xerbla}

Replaces the error handling routine. Use with the Single Dynamic Library .

\section*{Syntax}
```

old_xerbla_ptr = mkl_set_xerbla( new_xerbla_ptr )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Input Parameters}

\section*{Name Type Description}
new_xerbla_ptr XerblaEntry Pointer to the error handling routine to be used.

\section*{Description}

The mkl_set_xerblafunction replaces the error handling routine that is called by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions with the routine specified by the parameter.

See Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide for details about SDL.

\section*{Return Values}

The function returns the pointer to the replaced error handling routine.

\section*{See Also}
xerbla
Using a Fortran Interface Module for Support Functions
mkl_set_progress
Replaces the progress information routine.

\section*{Syntax}
```

old_progress_ptr mkl_set_progress( new_progress_ptr )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters
\begin{tabular}{lll}
Name & Type & Description \\
new_progress_ptr & ProgressEntry & Pointer to the progress information routine to be used.
\end{tabular}

\section*{Description}

The mkl_set_progress function replaces the currently used progress information routine with the routine specified by the parameter.

Usually a user-supplied mkl_progress function redefines the default mkl_progress function automatically. However, you must call mkl_set_progress to replace the default mkl_progress on Windows* in any of the following cases:
- You are using the Single Dynamic Library (SDL) mkl_rt.lib.
- You link dynamically with ScaLAPACK.

See Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide for details of SDL.

\section*{Return Values}

The function returns the pointer to the replaced progress information routine.
```

See Also
mkl_progress

```

Using a Fortran Interface Module for Support Functions
mkl_set_pardiso_pivot
Replaces the routine handling Intel® oneAPI Math
Kernel Library (oneMKL) PARDISO pivots with a user-
defined routine. Use with the Single Dynamic Library (SDL).

Syntax
old_pardiso_pivot_ptr = mkl_set_pardiso_pivot(new_pardiso_pivot_ptr)

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Input Parameters}
\begin{tabular}{lll}
Name & Type & Description \\
new_pardiso_pivot_pt & \begin{tabular}{l}
Pardisopivo \\
\(r\)
\end{tabular} & tEntry
\end{tabular}\(\quad\) Pointer to the pivot setting routine to be used.

\section*{Description}

If you are using the Single Dynamic Library (SDL), the mkl_set_pardiso_pivotfunction replaces the pivot setting routine that is called by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions with the routine specified by the parameter.

See Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide for usage details of the SDL.

\section*{Return Values}

\section*{Type}

PardisopivotEntry
```

See Also
mkl_pardiso_pivot

```

\section*{Conditional Numerical Reproducibility Control}

The CNR mode of Intel® oneAPI Math Kernel Library (oneMKL) ensures bitwise reproducible results from run to run of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions on a fixed number of threads for a specific Intel instruction set architecture (ISA) under the following conditions:
- Calls to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) occur in a single executable
- The number of computational threads used by the library does not change in the run

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) offers both functions and environment variables to support conditional numerical reproducibility. See theInte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide for more information on bitwise reproducible results of computations and for details about the environment variables.
The support functions enable you to configure the CNR mode and also provide information on the current and optimal CNR branch on your system. Usage Examples for CNR Support Functions illustrate usage of these functions.

\section*{Important}

Call the functions that define the behavior of CNR before any of the math library functions that they control.

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) provides named constants for use as input and output parameters of the functions instead of integer values. SeeNamed Constants for CNR Control for a list of the named constants.
Although you can configure the CNR mode using either the support functions or the environment variables, the functions offer more flexible configuration and control than the environment variables. Settings specified by the functions take precedence over the settings specified by the environment variables.
Use Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) in the CNR mode only in case a need for bitwise reproducible results is critical. Otherwise, run Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) as usual to avoid performance degradation.

While you can supply unaligned input and output data to Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions running in the CNR mode, use of aligned data is recommended. Refer toReproducibility Conditions for more details.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201
mkl_cbwr_set
Configures the CNR mode of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL).

\section*{Syntax}
```

status = mkl_cbwr_set( setting )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters

Name Type
setting INTEGER*4

\section*{Description}

CNR branch to set. See Named Constants for CNR Control for a list of named constants that specify the settings.

\section*{Description}

The mkl_cbwr_set function configures the CNR mode. In this release, it sets the CNR branch and turns on the CNR mode.

\section*{NOTE}

Settings specified by the mkl_cbwr_set function take precedence over the settings specified by the MKL_CBWR environment variable.

\section*{Return Values}

\section*{Name Type \\ status INTEGER*4}

\section*{Description}

The status of the function completion:
- MKL_CBWR_SUCCESS - the function completed successfully.
- MKL_CBWR_ERR_INVALID_INPUT - an invalid setting is requested.
- MKL_CBWR_ERR_UNSUPPORTED_BRANCH - the input value of the branch does not match the instruction set architecture (ISA) of your system. See Named Constants for CNR Control for more details.

\section*{Name Type Description}
- MKL_CBWR_ERR_MODE_CHANGE_FAILURE - the mkl_cbwr_setfunction requested to change the current CNR branch after a call to some Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) function other than a CNR function.

\section*{See Also}

Usage Examples for CNR Support Functions
Using a Fortran Interface Module for Support Functions
mkl_cbwr_get
Returns the current CNR settings.

\section*{Syntax}
```

setting = mkl_cbwr_get( option )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters
\begin{tabular}{ll}
Name & Type \\
option & INTEGER*4
\end{tabular}

\section*{Description}

Specifies the CNR settings requested. Named constants define possible values of option:
- MKL_CBWR_BRANCH - returns the current CNR branch only.
- MKL_CBWR_ALL - returns all CNR settings including strict CNR setting.

\section*{Description}

The mkl_cbwr_get function returns the requested CNR settings. The function returns MKL_CBWR_ERR_INVALID_INPUT if an invalid option is specified.

\section*{NOTE}

To enable CNR mode, use the mkl_cbwr_set function or environment variables. For more details, see the Inte® oneAPI Math Kernel Library (oneMKL) Developer Guide.

\section*{Return Values}

\section*{Name Type}
setting INTEGER*4

\section*{Description}

Requested CNR settings. See Named Constants for CNR Control for a list of named constants that specify the settings.

\section*{Name Type Description}

If the value of the option parameter is not permitted, contains the MKL_CBWR_ERR_INVALID_INPUT error code.
```

See Also
Usage Examples for CNR Support Functions
mkl_cbwr_set
mkl_cbwr_get_auto_branch
Automatically detects the CNR code branch for your
platform.
Syntax
setting = mkl_cbwr_get_auto_branch( )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Description}

The mkl_cbwr_get_auto_branch function uses a run-time CPU check to return a CNR branch that is optimized for the processor where the program is currently running.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.
Notice revision \#20201201

\section*{Return Values}
\begin{tabular}{ll}
Name & Type \\
setting & INTEGER*4
\end{tabular}

\section*{Description}

Automatically detected CNR branch. May be any specific branch listed in Named Constants for CNR Control.

\section*{See Also}

Usage Examples for CNR Support Functions
Using a Fortran Interface Module for Support Functions

\section*{Named Constants for CNR Control}

Use the conditional numerical reproducibility (CNR) functionality in Intel® oneAPI Math Kernel Library (oneMKL) to obtain reproducible results from MKL routines. When enabling CNR, you choose a specific code branch of Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) that corresponds to the instruction set architecture (ISA) that you target. Use these named constants to specify the code branch and other CNR options.
\begin{tabular}{lll}
\hline Named Constant & Value & Description \\
\hline CNR Branches & & Disable CNR mode \\
MKL_CBWR_OFF & 0 &
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Named Constant & Value & Description \\
\hline MKL_CBWR_BRANCH_OFF & 1 & CNR mode is disabled \\
\hline MKL_CBWR_AUTO & 2 & Choose branch automatically. CNR mode uses the standard ISA-based dispatching model while ensuring fixed cache sizes, deterministic reductions, and static scheduling \\
\hline MKL_CBWR_COMPATIBLE & 3 & Inte \({ }^{\circledR}\) Streaming SIMD Extensions 2 (Intel \({ }^{\circledR}\) SSE2) without rcpps/rsqrtps instructions \\
\hline MKL_CBWR_SSE2 & 4 & Intel SSE2 \\
\hline MKL_CBWR_SSE3 & 5 & DEPRECATED. Intel® Streaming SIMD Extensions 3 (Intel \({ }^{\circledR}\) SSE3). This setting is kept for backward compatibility and is equivalent to MKL_CBWR_SSE2. \\
\hline MKL_CBWR_SSSE3 & 6 & Supplemental Streaming SIMD Extensions 3 (SSSE3) \\
\hline MKL_CBWR_SSE4_1 & 7 & Intel \({ }^{\circledR}\) Streaming SIMD Extensions 4-1 (SSE4-1) \\
\hline MKL_CBWR_SSE4_2 & 8 & Inte \({ }^{\circledR}\) Streaming SIMD Extensions 4-2 (SSE4-2) \\
\hline MKL_CBWR_AVX & 9 & Intel® \({ }^{(10}\) Advanced Vector Extensions (Intel® \({ }^{\circledR} \mathrm{AVX}\)) \\
\hline MKL_CBWR_AVX2 & 10 & Inte \({ }^{\circledR}\) Advanced Vector Extensions 2 (Intel® \({ }^{(1)}\) AV2) \\
\hline MKL_CBWR_AVX512_MIC & 11 & DEPRECATED. Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Inte \({ }^{\circledR}\) AVX-512) on Intel \({ }^{\circledR}\) Xeon \(\mathrm{Phi}^{\mathrm{ma}}\) processors. This setting is kept for backward compatibility and is equivalent to MKL_CBWR_AVX2. \\
\hline MKL_CBWR_AVX512 & 12 & Intel AVX-512 on Intel® \({ }^{\text {(}}\) (eon \({ }^{\circledR}\) processors \\
\hline MKL_CBWR_AVX512_MIC_E1 & 13 & DEPRECATED. Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel® AVX-512) for Intel® Many Integrated Core Architecture (Intel \({ }^{\circledR}\) MIC Architecture) with support of AVX512_4FMAPS and AVX512_4VNNIW instruction groups enabled processors. This setting is kept for backward compatibility and is equivalent to MKL_CBWR_AVX2. \\
\hline MKL_CBWR_AVX512_E1 & 14 & Inte \({ }^{\circledR}\) Advanced Vector Extensions 512 (Inte \({ }^{\circledR}\) AVX-512) with support of Vector Neural Network Instructions enabled processors \\
\hline \multicolumn{3}{|l|}{CNR Flags} \\
\hline MKL_CBWR_STRICT & \[
\begin{aligned}
& 65536 \text { or } \\
& 0 \times 10000
\end{aligned}
\] & Strict CNR mode enabled. See Reproducibility Conditions for more information. \\
\hline
\end{tabular}

When specifying the CNR branch with the named constants, be aware of the following:
- Reproducible results are provided under Reproducibility Conditions.
- Settings other than MKL_CBWR_AUTO or MKL_CBWR_COMPATIBLE are available only for Intel processors.
- Intel and Intel compatible CPUs have a few instructions, such as approximation instructions rcpps/rsqrtps, that may return different results. Setting the branch to MKL_CBWR_COMPATIBLEensures that Intel® oneAPI Math Kernel Library (oneMKL) does not use these instructions and forces a single Intel SSE2-only code path to be executed.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

\section*{See Also}

Usage Examples for CNR Support Functions

\section*{Reproducibility Conditions}

To get reproducible results from run to run, ensure that the number of threads is fixed and constant. Specifically:
- If you are running your program with OpenMP* parallelization on different processors, explicitly specify the number of threads.
- To ensure that your application has deterministic behavior with OpenMP* parallelization and does not adjust the number of threads dynamically at run time, set MKL_DYNAMIC and OMP_DYNAMIC to FALSE. This is especially needed if you are running your program on different systems.
- If you are running your program with the Intel® Threading Building Blocks parallelization, numerical reproducibility is not guaranteed.

\section*{Strict CNR Mode}

In strict CNR mode, oneAPI Math Kernel Library provides bitwise reproducible results for a limited set of functions and code branches even when the number of threads changes. These routines and branches support strict CNR mode (64-bit libraries only):
- ?gemm, ?symm, ?hemm, ?trsm, and their CBLAS equivalents (cblas_?gemm, cblas_?symm, cblas_?hemm, and cblas_?trsm.
- Inte \({ }^{\circledR}\) Advanced Vector Extensions 2 (Inte \({ }^{\circledR}\) AVX2) or Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512).

When using other routines or CNR branches,oneAPI Math Kernel Library operates in standard (non-strict) CNR mode, subject to the restrictions described above. Enabling strict CNR mode can reduce performance.

\section*{NOTE}
- As usual, you should align your data, even in CNR mode, to obtain the best possible performance. While CNR mode also fully supports unaligned input and output data, the use of it might reduce the performance of some oneAPI Math Kernel Library functions on earlier Intel processors. To ensure proper alignment of arrays, allocate memory for them using mkl_malloc/mkl_calloc.
- Conditional Numerical Reproducibility does not ensure that bitwise-identical NaN values are generated when the input data contains NaN values.
- If dynamic memory allocation fails on one run but succeeds on another run, you may fail to get reproducible results between these two runs.

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{See Also}
mkl_malloc
mkl_calloc

\section*{Usage Examples for CNR Support Functions}

The following examples illustrate usage of support functions for conditional numerical reproducibility.

\section*{Setting Automatically Detected CNR Branch}
```

    PROGRAM MAIN
    INCLUDE 'mkl.fi'
    INTEGER*4 MY_CBWR_BRANCH
    C Find the available MKL_CBWR_BRANCH automatically
MY_CBWR_BRANCH = MKL_CBWR_GET_AUTO_BRANCH()
C User code without Intel MKL calls
C Piece of the code where CNR of Intel MKL is needed
C The performance of Intel MKL functions might be reduced for CNR mode
IF (MKL_CBWR_SET (MY_CBWR_BRANCH) .NE. MKL_CBWR_SUCCESS) THEN
PRINT *, 'Error in setting MKL_CBWR_BRANCH! Aborting...'
RETURN
ENDIF
C CNR calls to Intel MKL + any other code
END

```

\section*{Use of the mkl_cbwr_get Function}
```

    PROGRAM MAIN
    INCLUDE 'mkl.fi'
    INTEGER*4 MY_CBWR_BRANCH
    C Piece of the code where CNR of Intel MKL is analyzed
MY_CBWR_BRANCH = MKL_CBWR_GET (MKL_CBWR_BRANCH)
IF (MY_-'BWR_BRANCH .EQ. MKL_CBWR_AUTO) THEN
C actions in case of automatic mode
ELSE IF (MY_CBWR_BRANCH .EQ. MKL_CBWR_SSSE3) THEN
C actions for SSSE3 code
ELSE
C all other cases
ENDIF
C User code
END

```

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{Miscellaneous}

\section*{mkl_progress}

Provides progress information.

\section*{Syntax}
```

stopflag = mkl progress( thread process, step, stage )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters
\begin{tabular}{ll}
Name & Type \\
\begin{tabular}{ll}
thread_pr \\
ocess
\end{tabular} & INTEGER*4 \\
& \\
step & INTEGER*4 \\
& \\
stage & CHARACTER*(*)
\end{tabular}

\section*{Description}

Indicates the number of thread or process the progress routine is called from:
- The thread number for non-cluster components linked with OpenMP threading layer
- Zero for non-cluster components linked with sequential threading layer
- The process number (MPI rank) for cluster components

The linear progress indicator that shows the amount of work done. Increases from 0 to the linear size of the problem during the computation.

Message indicating the name of the routine or the name of the computation stage the progress routine is called from.

\section*{Description}

The mkl_progress function is intended to track progress of a lengthy computation and/or interrupt the computation. By default this routine does nothing but the user application can redefine it to obtain the computation progress information. You can set it to perform certain operations during the routine computation, for instance, to print a progress indicator. A non-zero return value may be supplied by the redefined function to break the computation.

\section*{NOTE}

The user-defined mkl_progress function must be thread-safe.

Some Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions from LAPACK, ScaLAPACK, DSS/PARDISO, and Parallel Direct Sparse Solver for Clusters regularly call themkl_progress function during the computation. Refer to the description of a specific function from those domains to see whether the function supports this feature or not.

If a LAPACK function returns info=-1002, the function was interrupted by mkl_progress. Because ScaLAPACK does not support interruption of the computation, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) ignores any value returned bymkl_progress.

While a user-supplied mkl_progress function usually redefines the default mkl_progress function automatically, some configurations require calling the mkl_set_progress function to replace the default
 of the following cases:
- You are using the Single Dynamic Library (SDL) mkl_rt.lib.
- You link dynamically with ScaLAPACK.

\section*{Warning}

The mkl_progress function supports OpenMP*/TBB threading and sequential execution for specific routines.

\section*{Return Values}
\begin{tabular}{ll}
Name & Type \\
stopflag & INTEGER
\end{tabular}

\section*{Description}

The stopping flag. A non-zero flag forces the routine to be interrupted. The zero flag is the default return value.

\section*{Example}

The following example prints the progress information to the standard output device:
```

integer function mkl_progress( thread_process, step, stage )
integer*4 thread_process, step
character*(*) stage
print*,'Thread:',thread_process,',stage:',stage,',step:',step
mkl_progress = 0
return
end

```
mkl_enable_instructions
Enables dispatching for new Intel® architectures or restricts the set of Intel \({ }^{\circledR}\) instruction sets available for dispatching. The mkl_enable_instructions function must be called only once, before any other Intel oneAPI Math Kernel Library (oneMKL) functions.

\section*{Syntax}
```

irc = mkl_enable_instructions(isa)

```

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
isa & INTEGER*4
\end{tabular}

\section*{Description}

The latest Inte \({ }^{\circledR}\) instruction-set architecture (ISA) for Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) to dispatch.
\begin{tabular}{|c|c|}
\hline MKL_ENABLE_AVX512 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) \\
\hline MKL_ENABLE_AVX512_E1 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) with support for Intel Deep Learning Boost (Intel \({ }^{\circledR}\) DL Boost). \\
\hline MKL_ENABLE_AVX512_E2 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) with support for Intel \({ }^{\circledR}\) Deep Learning Boost (Intel \({ }^{\circledR}\) DL \\
\hline
\end{tabular}

\section*{Name Type Description}
\begin{tabular}{|c|c|}
\hline & Boost), EVEX-encoded AES, and Carry-Less Multiplication Quadword instructions \\
\hline MKL_ENABLE_AVX512_E3 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) with support for Intel Deep Learning Boost (Intel \({ }^{\circledR}\) DL Boost) and bfloat16 \\
\hline MKL_ENABLE_AVX512_E4 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) with support for INT8, BF16, FP16 (limited) instructions, and Intel \({ }^{\circledR}\) Advanced Matrix Extensions (Intel \({ }^{\circledR}\) AMX) with INT8 and BF16 \\
\hline MKL_ENABLE_AVX512_E5 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 512 (Intel \({ }^{\circledR}\) AVX-512) with support for INT8, BF16, FP16 (limited) instructions, and Intel \({ }^{\circledR}\) Advanced Matrix Extensions (Intel \({ }^{\circledR}\) AMX) with INT8, BF16, and FP16 \\
\hline
\end{tabular}

NOTE Not dispatched by default.
\begin{tabular}{|c|c|}
\hline MKL_ENABLE_AVX2 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 2 (Intel \({ }^{\circledR}\) AVX2) \\
\hline MKL_ENABLE_AVX2_E1 & Intel \({ }^{\circledR}\) Advanced Vector Extensions 2 (Intel \({ }^{\circledR}\) AVX2) with support for Intel \({ }^{\otimes}\) Deep Learning Boost (Intel \({ }^{\circledR}\) DL Boost) \\
\hline MKL_ENABLE_SSE4_2 & \begin{tabular}{l}
Intel \({ }^{\circledR}\) Streaming SIMD \\
Extensions 4.2 (Intel \({ }^{\circledR}\) SSE4.2)
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) does run-time processor dispatching to identify appropriate internal code paths to traverse for Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) functions called by the application. The mkl_enable_instructions function controls the behavior of the dispatcher to do either of the following:
- Enable dispatching for new Intel architectures.

Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) does not dispatch instruction sets that do not have silicon available at time of the product launch. Callmkl_enable_instructions to enable dispatching the code path for such an ISA in a simulator environment or on hardware that supports this ISA.
- Restrict the set of Intel instruction sets available for dispatching.

Call mkl_enable_instructions to restrict dispatching to code paths for earlier ISA. For example, if the hardware supports Intel AVX, a call to mkl_enable_instructions with the MKL_ENABLE_SSE4_2 parameter forces the dispatcher to use the Intel SSE4-2 code path.
If the system does not support the instruction set specified by the isa parameter or if the system is based on a non-Intel architecture, mkl_enable_instructions does nothing and returns zero.
Settings specified by the mkl_enable_instructions function set an upper limit to settings specified by the mkl_cbwr_set function.

You can use the MKL_ENABLE_INSTRUCTIONS environment variable instead of calling mkl_enable_instructions (for more details, see the Inte \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) Developer Guide); however, the settings specified by the function take precedence over the settings specified by the environment variable.

\section*{Return Values}

\section*{Name Type}
irc INTEGER*4

\section*{Description}

Function completion status:
1 - Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) dispatches the code path for the specified ISA by default.
0 - The request is rejected. Usually this occurs if mkl_enable_instructions was called:
- After another Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) function
- On a non-Intel architecture
- With an incompatible ISA specified

\section*{Product and Performance Information}

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

\section*{mkl_set_env_mode}

Sets up the mode that ignores environment settings specific to Inte/® oneAPI Math Kernel Library (oneMKL).

\section*{Syntax}
```

current_mode = mkl_set_env_mode( mode )

```

\section*{Fortran Include Files/Modules}
- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

\section*{Input Parameters}
\begin{tabular}{ll}
Name & Type \\
mode & INTEGER*4
\end{tabular}

\section*{Description}

Specifies what mode to set. For details, see Description. Possible values:
- 0 - Do nothing.

Use this value to query the current environment mode.
- 1 - Make Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) ignore environment settings specific to the library.

\section*{Description}

In the default environment mode, Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) can control its behavior using environment variables for threading, memory management, Conditional Numerical Reproducibility, automatic offload, and so on. Themkl_set_env_mode function sets up the environment mode that ignores all settings specified by Intel \({ }^{\circledR}\) oneAPI Math Kernel Library (oneMKL) environment variables exceptmic_LD_LIBRARY_PATH and MKLROOT.

\section*{Return Values}

\section*{Name Type}
```

current m INTEGER*4

```
current m INTEGER*4
ode
```


## Description

Environment mode that was used before the function call:

- 0 - Default
- 1 - Ignore environment settings specific to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).
mkl_verbose
Enables or disables Intel® oneAPI Math Kernel Library
(oneMKL) Verbose mode.


## Syntax

```
status = mkl_verbose(enable)
```


## Fortran Include Files/Modules

- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters

Name	Type
enable	INTEGER*4

## Description

Desired state of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Verbose mode. Indicates whether printing Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) function call information should be turned on or off. Possible values:

- 0 - disable the Verbose mode
- 1 - enable the Verbose mode (GPU application: enable the Verbose mode without timing)


## Name Type Description

- 2 - enable the Verbose mode (GPU application: enable the Verbose mode with synchronous timing)


## Description

This function enables or disables the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Verbose mode, in which computational functions print call description information. For details of the Verbose mode, see theIntel® oneAPI Math Kernel Library (oneMKL) Developer Guide, available in the Intel ${ }^{\circledR}$ Software Documentation Library.

## NOTE

The setting for the Verbose mode specified by the mkl_verbose function takes precedence over the setting specified by the mK__Verbose environment variable.

## Return Values

## Name Type

status INTEGER*4

## Description

- If the requested operation completed successfully, contains previous state of the verbose mode:
- 0 - Verbose mode was disabled
- 1 - Verbose mode was enabled (GPU application: Verbose mode was enabled without timing)
- 2 - Verbose mode was enabled (GPU application: Verbose mode was enabled with synchronous timing)
- If the function failed to complete the operation because of an incorrect input parameter, equals -1 .

```
See Also
Intel Software Documentation Library
mkl_verbose_output_file
Write output in Intel oneAPI Math Kernel Library (oneMKL) Verbose mode to a file.
Syntax
```

```
mkl_verbose_output_file (filename) character *(*)
```

```
mkl_verbose_output_file (filename) character *(*)
```


## Fortran Include Files/Modules

- Include file: mkı.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters

## Name Type

filename CHARACTER

## Description

Name of file. Specify the complete path of the output file.

## Description

This function writes the output in Verbose mode to the file specified in the path.
If the write operation is successful, the function returns 0 .
If the file does not exist or cannot be opened, the write operation is unsuccessful. The function returns 1 and defaults to mkl_verbose behavior by printing to stdout.

## NOTE

You can alternatively use MKL_VERBOSE_OUTPUT_FILE environment variable instead of calling the mkl_verbose_output_file function. If you want to use the environment variable option, you must set it to the complete path of the output file.

Important The setting for the verbose output file specified by the mkl_verbose_output_file function takes precedence over the setting specified by the MKL_VERBOSE_OUTPUT_FILE environment variable.

For more information on the Verbose mode, see the Inte® oneAPI Math Kernel Library (oneMKL) Developer Guide, available in the Intel ${ }^{\circledR}$ Software Documentation Library.

## Return Values

## Name Type <br> status INTEGER*4

## Description

- 0 indicates that the write operation was successful.
- 1 indicates that the write operation was unsuccessful.


## See Also <br> Intel Software Documentation Library

mkl_set_mpi
Sets the implementation of the message-passing interface to be used by Inte» oneAPI Math Kernel Library (oneMKL).

Syntax
status $=m k l_{\text {_set_mpi(vendor, custom_library_name) }}$

## Fortran Include Files/Modules

- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90

Input Parameters

Name	Type
vendor	INTEGER*4

## Description

Specifies the implementation of the message-passing interface (MPI) to use:

Possible values:

Name Type<br>custom_li CHARACTER*<br>brary_nam<br>evendor

## Description

- MKL_BLACS_CUSTOM - a custom MPI library. Requires a prebuilt custom MPI BLACS library.
- MKL_BLACS_MSMPI - Microsoft MPI library.
- MKL_BLACS_INTELMPI - Intel ${ }^{\circledR}$ MPI library.
- MKL_BLACS_MPICH - MPICH MPI library.

The filename (without a directory name) of the custom BLACS dynamic library to use. This library must be located in the directory with your application executable or with Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) dynamic libraries. Can beNULL or an empty string.

## Description

Call this function to set the MPI implementation to be used by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) on Windows* OS when dynamic Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) libraries are used. For all other configurations, the function returns an error indicating that you cannot set the MPI implementation. You can specify your own prebuilt dynamic BLACS library for a custom MPI by settingvendor to MKL_BLACS_CUSTOM and optionally passing the name of the custom BLACS dynamic library. If the custom_library_path parameter is NULLor an empty string, Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) uses the default platformspecific library name:mkl_blacs_custom_lp64.dll or mkl_blacs_custom_ilp64.dll, depending on whether the BLACS interface linked against your application is LP64 or ILP64.

## Return Values

```
Name
status INTEGER*4
```


## Description

The return status:

- 0 - The function completed successfully.
- -1 - The vendor parameter is invalid.
- -2 - The custom_library_name parameter is invalid.
- -3 - The MPI library cannot be set at this point.


## mkl_finalize

Terminates Intel ${ }^{\circledR}$ oneAPI Math Kernel Library
(oneMKL) execution environment and frees resources allocated by the library.

## Syntax

```
call mkl_finalize
```


## Fortran Include Files/Modules

- Include file: mkl.fi
- Module (compiled): mkl_service.mod
- Module (source): mkl_service.f90


## Description

This function frees resources allocated by Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). Once this function is called, the application can no longer call Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functions other thanmkl_finalize.

In particular, the mkl_finalizefunction enables you to free resources when a third-party shared library is statically linked to Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). To avoid resource leaks that may happen when a shared library is loaded and unloaded multiple times, callmkl_finalize each time the library is unloaded. The recommended method to do this depends on the operating system:

- On Linux* or macOS*, place the call into a shared library destructor.
- On Windows*, call mkl_finalize from the DLL_PROCESS_DETACH handler of DllMain.


## NOTE

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) shared libraries automatically perform finalization when they are unloaded. If an application is statically linked to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL), the operating system frees all resources allocated by Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) during termination of the process associated with the application.

## BLACS Routines

Intel ${ }^{\circledR}$ oneAPI Math Kernel Libraryimplements FORTRAN 77 routines from the BLACS (Basic Linear Algebra Communication Subprograms) package. These routines are used to support a linear algebra oriented message passing interface that may be implemented efficiently and uniformly across a large range of distributed memory platforms.
The BLACS routines make linear algebra applications both easier to program and more portable. For this purpose, they are used in Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) intended for the Linux* and Windows* OSs as the communication layer of ScaLAPACK and Cluster FFT.

On computers, a linear algebra matrix is represented by a two dimensional array (2D array), and therefore the BLACS operate on 2D arrays. See description of the basic matrix shapes in a special topic.

The BLACS routines implemented in Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) are of four categories:

- Combines
- Point to Point Communication
- Broadcast
- Support.

The Combines take data distributed over processes and combine the data to produce a result. The Point to Point routines are intended for point-to-point communication and Broadcast routines send data possessed by one process to all processes within a scope.
The Support routines perform distinct tasks that can be used for initialization, destruction, information, and miscellaneous tasks.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.
Notice revision \#20201201

## Matrix Shapes

The BLACS routines recognize the two most common classes of matrices for dense linear algebra. The first of these classes consists of general rectangular matrices, which in machine storage are 2D arrays consisting of $m$ rows and $n$ columns, with a leading dimension, Ida, that determines the distance between successive columns in memory.
The general rectangular matrices take the following parameters as input when determining what array to operate on:

$m$	(input) INTEGER. The number of matrix rows to be operated on.
$n$	(input) INTEGER. The number of matrix columns to be operated on.
$a$	(input/output) TYPE (depends on routine), array of dimension ( $1 d a, n$ ).
A pointer to the beginning of the (sub)array to be sent.	
$l d a$	(input) INTEGER. The distance between two elements in matrix row.

The second class of matrices recognized by the BLACS are trapezoidal matrices (triangular matrices are a sub-class of trapezoidal). Trapezoidal arrays are defined by $m, n$, and $l d a$, as above, but they have two additional parameters as well. These parameters are:

uplo	(input) CHARACTER*1. Indicates whether the matrix is upper or lower   trapezoidal, as discussed below.
diag	(input) CHARACTER*1 . Indicates whether the diagonal of the matrix is unit   diagonal (will not be operated on) or otherwise (will be operated on).

The shape of the trapezoidal arrays is determined by these parameters as follows:

## Trapezoidal Arrays Shapes



The packing of arrays, if required, so that they may be sent efficiently is hidden, allowing the user to concentrate on the logical matrix, rather than on how the data is organized in the system memory.

## Repeatability and Coherence

Floating point computations are not exact on almost all modern architectures. This lack of precision is particularly problematic in parallel operations. Since floating point computations are inexact, algorithms are classified according to whether they are repeatable and to what degree they guarantee coherence.

- Repeatable: a routine is repeatable if it is guaranteed to give the same answer if called multiple times with the same parallel configuration and input.
- Coherent: a routine is coherent if all processes selected to receive the answer get identical results.


## NOTE

Repeatability and coherence do not effect correctness. A routine may be both incoherent and nonrepeatable, and still give correct output. But inaccuracies in floating point calculations may cause the routine to return differing values, all of which are equally valid.

## Repeatability

Because the precision of floating point arithmetic is limited, it is not truly associative: $(a+b)+c$ might not be the same as $a+(b+c)$. The lack of exact arithmetic can cause problems whenever the possibility for reordering of floating point calculations exists. This problem becomes prevalent in parallel computing due to race conditions in message passing. For example, consider a routine which sums numbers stored on different processes. Assume this routine runs on four processes, with the numbers to be added being the process numbers themselves. Therefore, process 0 has the value $0: 0$, process 1 has the value 1:0, and son on.

One algorithm for the computation of this result is to have all processes send their process numbers to process 0; process 0 adds them up, and sends the result back to all processes. So, process 0 would add a number to 0:0 in the first step. If receiving the process numbers is ordered so that process 0 always receives the message from process 1 first, then 2 , and finally 3 , this results in a repeatable algorithm, which evaluates the expression $((0: 0+1: 0)+2: 0)+3: 0$.

However, to get the best parallel performance, it is better not to require a particular ordering, and just have process 0 add the first available number to its value and continue to do so until all numbers have been added in. Using this method, a race condition occurs, because the order of the operation is determined by the order in which process 0 receives the messages, which can be effected by any number of things. This implementation is not repeatable, because the answer can vary between invocations, even if the input is the same. For instance, one run might produce the sequence $((0: 0+1: 0)+2: 0)+3: 0$, while a subsequent run could produce $((0: 0+2: 0)+1: 0)+3: 0$. Both of these results are correct summations of the given numbers, but because of floating point roundoff, they might be different.

## Coherence

A routine produces coherent output if all processes are guaranteed to produce the exact same results. Obviously, almost no algorithm involving communication is coherent if communication can change the values being communicated. Therefore, if the parallel system being studied cannot guarantee that communication between processes preserves values, no routine is guaranteed to produce coherent results.

If communication is assumed to be coherent, there are still various levels of coherent algorithms. Some algorithms guarantee coherence only if floating point operations are done in the exact same order on every node. This is homogeneous coherence: the result will be coherent if the parallel machine is homogeneous in its handling of floating point operations.
A stronger assertion of coherence is heterogeneous coherence, which does not require all processes to have the same handling of floating point operations.

In general, a routine that is homogeneous coherent performs computations redundantly on all nodes, so that all processes get the same answer only if all processes perform arithmetic in the exact same way, whereas a routine which is heterogeneous coherent is usually constrained to having one process calculate the final result, and broadcast it to all other processes.

## Example of Incoherence

An incoherent algorithm is one which does not guarantee that all processes get the same result even on a homogeneous system with coherent communication. The previous example of summing the process numbers demonstrates this kind of behavior. One way to perform such a sum is to have every process broadcast its number to all other processes. Each process then adds these numbers, starting with its own. The calculations performed by each process receives would then be:

- Process $0:((0: 0+1: 0)+2: 0)+3: 0$
- Process 1: ( $1: 0+2: 0)+3: 0)+0: 0$
- Process 2: ( $2: 0+3: 0)+0: 0)+1: 0$
- Process $3:((3: 0+0: 0)+1: 0)+0: 0$

All of these results are equally valid, and since all the results might be different from each other, this algorithm is incoherent. Notice, however, that this algorithm is repeatable: each process will get the same result if the algorithm is called again on the same data.

## Example of Homogeneous Coherence

Another way to perform this summation is for all processes to send their data to all other processes, and to ensure the result is not incoherent, enforce the ordering so that the calculation each node performs is $((0: 0+1: 0)+2: 0)+3: 0$. This answer is the same for all processes only if all processes do the floating point arithmetic in the same way. Otherwise, each process may make different floating point errors during the addition, leading to incoherence of the output. Notice that since there is a specific ordering to the addition, this algorithm is repeatable.

## Example of Heterogeneous Coherence

In the final example, all processes send the result to process 0 , which adds the numbers and broadcasts the result to the rest of the processes. Since one process does all the computation, it can perform the operations in any order and it will give coherent results as long as communication is itself coherent. If a particular order is not forced on the the addition, the algorithm will not be repeatable. If a particular order is forced, it will be repeatable.

## Summary

Repeatability and coherence are separate issues which may occur in parallel computations. These concepts may be summarized as:

- Repeatability: The routine will yield the exact same result if it run multiple times on an identical problem. Each process may get a different result than the others (i.e., repeatability does not imply coherence), but that value will not change if the routine is invoked multiple times.
- Homogeneous coherence: All processes selected to possess the result will receive the exact same answer if:
- Communication does not change the value of the communicated data.
- All processes perform floating point arithmetic exactly the same.
- Heterogeneous coherence: All processes will receive the exact same answer if communication does not change the value of the communicated data.

In general, lack of the associative property for floating point calculations may cause both incoherence and non-repeatability. Algorithms that rely on redundant computations are at best homogeneous coherent, and algorithms in which one process broadcasts the result are heterogeneous coherent. Repeatability does not imply coherence, nor does coherence imply repeatability.
Since these issues do not effect the correctness of the answer, they can usually be ignored. However, in very specific situations, these issues may become very important. A stopping criteria should not be based on incoherent results, for instance. Also, a user creating and debugging a parallel program may wish to enforce repeatability so the exact same program sequence occurs on every run.
In the BLACS, coherence and repeatability apply only in the context of the combine operations. As mentioned above, it is possible to have communication which is incoherent (for instance, two machines which store floating point numbers differently may easily produce incoherent communication, since a number stored on machine A may not have a representation on machine B). However, the BLACS cannot control this issue. Communication is assumed to be coherent, which for communication implies that it is also repeatable.
For combine operations, the BLACS allow you to set flags indicating that you would like combines to be repeatable and/or heterogeneous coherent (see blacs_get and blacs_set for details on setting these flags).

If the BLACS are instructed to guarantee heterogeneous coherency, the BLACS restrict the topologies which can be used so that one process calculates the final result of the combine, and if necessary, broadcasts the answer to all other processes.
If the BLACS are instructed to guarantee repeatability, orderings will be enforced in the topologies which are selected. This may result in loss of performance which can range from negligible to serious depending on the application.

A couple of additional notes are in order. Incoherence and nonrepeatability can arise as a result of floating point errors, as discussed previously. This might lead you to suspect that integer calculations are always repeatable and coherent, since they involve exact arithmetic. This is true if overflow is ignored. With overflow taken into consideration, even integer calculations can display incoherence and non-repeatability. Therefore, if the repeatability or coherence flags are set, the BLACS treats integer combines the same as floating point combines in enforcing repeatability and coherence guards.
By their nature, maximization and minimization should always be repeatable. In the complex precisions, however, the real and imaginary parts must be combined in order to obtain a magnitude value used to do the comparison (this is typically $|r|+|i|$ or $\operatorname{sqr}\left(r^{2}+i^{2}\right)$ ). This allows for the possibility of heterogeneous incoherence. The BLACS therefore restrict which topologies are used for maximization and minimization in the complex routines when the heterogeneous coherence flag is set.

## BLACS Combine Operations

This topic describes BLACS routines that combine the data to produce a result.
In a combine operation, each participating process contributes data that is combined with other processes' data to produce a result. This result can be given to a particular process (called the destination process), or to all participating processes. If the result is given to only one process, the operation is referred to as a leave-on-one combine, and if the result is given to all participating processes the operation is referenced as a leave-on-all combine.

At present, three kinds of combines are supported. They are:

- element-wise summation
- element-wise absolute value maximization
- element-wise absolute value minimization
of general rectangular arrays.
Note that a combine operation combines data between processes. By definition, a combine performed across a scope of only one process does not change the input data. This is why the operations (max/min/sum) are specified as element-wise. Element-wise indicates that each element of the input array will be combined with the corresponding element from all other processes' arrays to produce the result. Thus, a $4 \times 2$ array of inputs produces a $4 \times 2$ answer array.
When the max/min comparison is being performed, absolute value is used. For example, -5 and 5 are equivalent. However, the returned value is unchanged; that is, it is not the absolute value, but is a signed value instead. Therefore, if you performed a BLACS absolute value maximum combine on the numbers $-5,3$, 1,8 the result would be -8 .

The initial symbol ? in the routine names below masks the data type:

i	integer
s	single precision real
d	double precision real
c	single precision complex
z	double precision complex.

BLACS Combines

Routine name	Results of operation
gamx2d	Entries of result matrix will have the value of the greatest absolute   value found in that position.
gamn2d	Entries of result matrix will have the value of the smallest absolute   value found in that position.
gsum2d	Entries of result matrix will have the summation of that position.

## ?gamx2d <br> Performs element-wise absolute value maximization.

## Syntax

```
call igamx2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call sgamx2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call dgamx2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call cgamx2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call zgamx2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
```


## Input Parameters

icontxt	INTEGER. Integer handle that indicates the context.
scope	CHARACTER*1. Indicates what scope the combine should proceed on. Limited to ROW, COLUMN, or ALL.
top	CHARACTER*1. Communication pattern to use during the combine operation.
m	INTEGER. The number of matrix rows to be combined.
$n$	INTEGER. The number of matrix columns to be combined.
a	TYPE array (Ida, n). Matrix to be compared with to produce the maximum.
Ida	INTEGER. The leading dimension of the matrix $A$, that is, the distance between two successive elements in a matrix row.
rcflag	INTEGER.
	If rcflag $=-1$, the arrays ra and ca are not referenced and need not exist. Otherwise, rcflag indicates the leading dimension of these arrays, and so must be $\geq m$.
rdest	INTEGER.
	The process row coordinate of the process that should receive the result. If rdest or cdest $=-1$, all processes within the indicated scope receive the answer.
cdest	INTEGER.

The process column coordinate of the process that should receive the result. If rdest or cdest $=-1$, all processes within the indicated scope receive the answer.

## Output Parameters

$a$
TYPE array (lda, n). Contains the result if this process is selected to receive the answer, or intermediate results if the process is not selected to receive the result.

INTEGER array (rcflag, n).
If rcflag $=-1$, this array will not be referenced, and need not exist. Otherwise, it is an integer array (of size at least rcflag x n) indicating the row index of the process that provided the maximum. If the calling process is not selected to receive the result, this array will contain intermediate (useless) results.

INTEGER array (rcflag, n).
If rcflag $=-1$, this array will not be referenced, and need not exist. Otherwise, it is an integer array (of size at least rcflag x $n$ ) indicating the row index of the process that provided the maximum. If the calling process is not selected to receive the result, this array will contain intermediate (useless) results.

## Description

This routine performs element-wise absolute value maximization, that is, each element of matrix $A$ is compared with the corresponding element of the other process's matrices. Note that the value of $A$ is returned, but the absolute value is used to determine the maximum (the 1 -norm is used for complex numbers). Combines may be globally-blocking, so they must be programmed as if no process returns until all have called the routine.

## See Also

Examples of BLACS Routines Usage

## ?gamn2d

Performs element-wise absolute value minimization.

## Syntax

```
call igamn2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call sgamn2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call dgamn2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call cgamn2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
call zgamn2d(icontxt, scope, top, m, n, a, lda, ra, ca, rcflag, rdest, cdest)
```


## Input Parameters

icontxt INTEGER. Integer handle that indicates the context.
scope CHARACTER*1. Indicates what scope the combine should proceed on. Limited to ROW, COLUMN, or ALL.

top	CHARACTER*1. Communication pattern to use during the combine operation.
m	INTEGER. The number of matrix rows to be combined.
$n$	INTEGER. The number of matrix columns to be combined.
a	TYPE array (lda, $n$ ). Matrix to be compared with to produce the minimum.
Ida	INTEGER. The leading dimension of the matrix $A$, that is, the distance between two successive elements in a matrix row.
rcflag	INTEGER.
	If rcflag $=-1$, the arrays ra and ca are not referenced and need not exist. Otherwise, rcflag indicates the leading dimension of these arrays, and so must be $\geq m$.
rdest	INTEGER.
	The process row coordinate of the process that should receive the result. If rdest or cdest $=-1$, all processes within the indicated scope receive the answer.
cdest	INTEGER.

The process column coordinate of the process that should receive the result. If rdest or cdest $=-1$, all processes within the indicated scope receive the answer.

## Output Parameters

a

TYPE array (lda, $n$ ). Contains the result if this process is selected to receive the answer, or intermediate results if the process is not selected to receive the result.

INTEGER array (rcflag, n).
If rcflag $=-1$, this array will not be referenced, and need not exist. Otherwise, it is an integer array (of size at least rcflag x $n$ ) indicating the row index of the process that provided the minimum. If the calling process is not selected to receive the result, this array will contain intermediate (useless) results.

INTEGER array (rcflag, n).
If rcflag $=-1$, this array will not be referenced, and need not exist. Otherwise, it is an integer array (of size at least rcflag x $n$ )
indicating the row index of the process that provided the minimum. If the calling process is not selected to receive the result, this array will contain intermediate (useless) results.

## Description

This routine performs element-wise absolute value minimization, that is, each element of matrix $A$ is compared with the corresponding element of the other process's matrices. Note that the value of $A$ is returned, but the absolute value is used to determine the minimum (the 1-norm is used for complex numbers). Combines may be globally-blocking, so they must be programmed as if no process returns until all have called the routine.

```
See Also
Examples of BLACS Routines Usage
?gsum2d
Performs element-wise summation.
Syntax
call igsum2d(icontxt, scope, top, m, n, a, lda, rdest, cdest)
call sgsum2d(icontxt, scope, top, m, n, a, lda, rdest, cdest)
call dgsum2d(icontxt, scope, top, m, n, a, lda, rdest, cdest)
call cgsum2d(icontxt, scope, top, m, n, a, lda, rdest, cdest)
call zgsum2d(icontxt, scope, top, m, n, a, lda, rdest, cdest)
```


## Input Parameters

icontxt	INTEGER. Integer handle that indicates the context.
scope	CHARACTER*1. Indicates what scope the combine should proceed on. Limited to ROW, COLUMN, or ALL.
top	CHARACTER*1. Communication pattern to use during the combine operation.
m	INTEGER. The number of matrix rows to be combined.
$n$	INTEGER. The number of matrix columns to be combined.
a	TYPE array ( 1 da , $n$ ). Matrix to be added to produce the sum.
Ida	INTEGER. The leading dimension of the matrix $A$, that is, the distance between two successive elements in a matrix row.
rdest	INTEGER.
	The process row coordinate of the process that should receive the result. If rdest or cdest $=-1$, all processes within the indicated scope receive the answer.
cdest	INTEGER.

The process column coordinate of the process that should receive the result. If rdest or cdest $=-1$, all processes within the indicated scope receive the answer.

## Output Parameters

a
TYPE array (lda, n). Contains the result if this process is selected to receive the answer, or intermediate results if the process is not selected to receive the result.

## Description

This routine performs element-wise summation, that is, each element of matrix $A$ is summed with the corresponding element of the other process's matrices. Combines may be globally-blocking, so they must be programmed as if no process returns until all have called the routine.

## See Also <br> Examples of BLACS Routines Usage

## BLACS Point To Point Communication

This topic describes BLACS routines for point to point communication.
Point to point communication requires two complementary operations. The send operation produces a message that is then consumed by the receive operation. These operations have various resources associated with them. The main such resource is the buffer that holds the data to be sent or serves as the area where the incoming data is to be received. The level of blocking indicates what correlation the return from a send/receive operation has with the availability of these resources and with the status of message.

## Non-blocking

The return from the send or receive operations does not imply that the resources may be reused, that the message has been sent/received or that the complementary operation has been called. Return means only that the send/receive has been started, and will be completed at some later date. Polling is required to determine when the operation has finished.

In non-blocking message passing, the concept of communication/computation overlap (abbreviated C/C overlap) is important. If a system possesses C/C overlap, independent computation can occur at the same time as communication. That means a nonblocking operation can be posted, and unrelated work can be done while the message is sent/received in parallel. If C/C overlap is not present, after returning from the routine call, computation will be interrupted at some later date when the message is actually sent or received.

## Locally-blocking

Return from the send or receive operations indicates that the resources may be reused. However, since this only depends on local information, it is unknown whether the complementary operation has been called. There are no locally-blocking receives: the send must be completed before the receive buffer is available for re-use.
If a receive has not been posted at the time a locally-blocking send is issued, buffering will be required to avoid losing the message. Buffering can be done on the sending process, the receiving process, or not done at all, losing the message.

## Globally-blocking

Return from a globally-blocking procedure indicates that the operation resources may be reused, and that complement of the operation has at least been posted. Since the receive has been posted, there is no buffering required for globally-blocking sends: the message is always sent directly into the user's receive buffer.

Almost all processors support non-blocking communication, as well as some other level of blocking sends. What level of blocking the send possesses varies between platforms. For instance, the Intel ${ }^{\circledR}$ processors support locally-blocking sends, with buffering done on the receiving process. This is a very important distinction, because codes written assuming locally-blocking sends will hang on platforms with globallyblocking sends. Below is a simple example of how this can occur:

```
IAM = MY_PROCESS_ID()
 IF (IAM .EQ. O) THEN
 SEND TO PROCESS 1
 RECV FROM PROCESS 1
ELSE IF (IAM .EQ. 1) THEN
 SEND TO PROCESS O
 RECV FROM PROCESS 0
END IF
```

If the send is globally-blocking, process 0 enters the send, and waits for process 1 to start its receive before continuing. In the meantime, process 1 starts to send to 0 , and waits for 0 to receive before continuing. Both processes are now waiting on each other, and the program will never continue.

The solution for this case is obvious. One of the processes simply reverses the order of its communication calls and the hang is avoided. However, when the communication is not just between two processes, but rather involves a hierarchy of processes, determining how to avoid this kind of difficulty can become problematic.

For this reason, it was decided the BLACS would support locally-blocking sends. On systems natively supporting globally-blocking sends, non-blocking sends coupled with buffering is used to simulate locallyblocking sends. The BLACS support globally-blocking receives.

In addition, the BLACS specify that point to point messages between two given processes will be strictly ordered. If process 0 sends three messages (label them $A, B$, and $C$ ) to process 1, process 1 must receive $A$ before it can receive $B$, and message $C$ can be received only after both $A$ and $B$. The main reason for this restriction is that it allows for the computation of message identifiers.
Note, however, that messages from different processes are not ordered. If processes $0, \ldots, 3$ send messages $A, \ldots, D$ to process 4 , process 4 may receive these messages in any order that is convenient.

## Convention

The convention used in the communication routine names follows the template ?xxyy $2 d$, where the letter in the ? position indicates the data type being sent, $x x$ is replaced to indicate the shape of the matrix, and the yy positions are used to indicate the type of communication to perform:

```
i integer
s single precision real
d double precision real
c single precision complex
z double precision complex
ge
tr
sd
rV
```

BLACS Point To Point Communication

Routine name	Operation performed
gesd2d	Take the indicated matrix and send it to the destination process.
trsd2d	
gerv2d	Receive a message from the process into the matrix.
trrv2d	

As a simple example, the pseudo code given above is rewritten below in terms of the BLACS. It is further specifed that the data being exchanged is the double precision vector $X$, which is 5 elements long.

```
CALL GRIDINFO(NPROW, NPCOL, MYPROW, MYPCOL)
IF (MYPROW.EQ.O .AND. MYPCOL.EQ.O) THEN
 CALL DGESD2D(5, 1, X, 5, 1, 0)
 CALL DGERV2D(5, 1, X, 5, 1, 0)
ELSE IF (MYPROW.EQ.1 .AND. MYPCOL.EQ.0) THEN
 CALL DGESD2D(5, 1, X, 5, 0, 0)
 CALL DGERV2D(5, 1, X, 5, 0, 0)
END IF
```


## ?gesd2d

Takes a general rectangular matrix and sends it to the destination process.

## Syntax

```
call igesd2d(icontxt, m, n, a, lda, rdest, cdest)
call sgesd2d(icontxt, m, n, a, lda, rdest, cdest)
call dgesd2d(icontxt, m, n, a, lda, rdest, cdest)
call cgesd2d(icontxt, m, n, a, lda, rdest, cdest)
call zgesd2d(icontxt, m, n, a, lda, rdest, cdest)
```


## Input Parameters

icontxt
$m, n, a, I d a$
rdest
cdest

INTEGER. Integer handle that indicates the context.
Describe the matrix to be sent. See Matrix Shapes for details.
INTEGER.
The process row coordinate of the process to send the message to.
INTEGER.
The process column coordinate of the process to send the message to.

## Description

This routine takes the indicated general rectangular matrix and sends it to the destination process located at $\{$ RDEST, CDEST\} in the process grid. Return from the routine indicates that the buffer (the matrix $A$ ) may be reused. The routine is locally-blocking, that is, it will return even if the corresponding receive is not posted.

## See Also <br> Examples of BLACS Routines Usage

## ?trsd2d <br> Takes a trapezoidal matrix and sends it to the destination process.

## Syntax

```
call itrsd2d(icontxt, uplo, diag, m, n, a, lda, rdest, cdest)
call strsd2d(icontxt, uplo, diag, m, n, a, lda, rdest, cdest)
call dtrsd2d(icontxt, uplo, diag, m, n, a, lda, rdest, cdest)
call ctrsd2d(icontxt, uplo, diag, m, n, a, lda, rdest, cdest)
call ztrsd2d(icontxt, uplo, diag, m, n, a, lda, rdest, cdest)
```


## Input Parameters

```
icontxt INTEGER. Integer handle that indicates the context.
uplo, diag,m, Describe the matrix to be sent. See Matrix Shapes for details.
n, a, lda
rdest INTEGER.
```

    The process row coordinate of the process to send the message to.
    INTEGER.
    The process column coordinate of the process to send the message to.
    
## Description

This routine takes the indicated trapezoidal matrix and sends it to the destination process located at \{RDEST, CDEST\} in the process grid. Return from the routine indicates that the buffer (the matrix $A$ ) may be reused. The routine is locally-blocking, that is, it will return even if the corresponding receive is not posted.

## ?gerv2d

Receives a message from the process into the general rectangular matrix.

## Syntax

```
call igerv2d(icontxt, m, n, a, lda, rsrc, csrc)
call sgerv2d(icontxt, m, n, a, lda, rsrc, csrc)
call dgerv2d(icontxt, m, n, a, lda, rsrc, csrc)
call cgerv2d(icontxt, m, n, a, lda, rsrc, csrc)
call zgerv2d(icontxt, m, n, a, lda, rsrc, csrc)
```


## Input Parameters

icontxt	INTEGER. Integer handle that indicates the context.
$m, n, l d a$	Describe the matrix to be sent. See Matrix Shapes for details.

    INTEGER.
    The process row coordinate of the source of the message.

INTEGER.
The process column coordinate of the source of the message.

## Output Parameters

a
An array of dimension (lda, $n$ ) to receive the incoming message into.

## Description

This routine receives a message from process $\{R S R C, C S R C\}$ into the general rectangular matrix $A$. This routine is globally-blocking, that is, return from the routine indicates that the message has been received into $A$.

## See Also

Examples of BLACS Routines Usage

## ?trrv2d

Receives a message from the process into the trapezoidal matrix.

## Syntax

```
call itrrv2d(icontxt, uplo, diag, m, n, a, lda, rsrc, csrc)
call strrv2d(icontxt, uplo, diag, m, n, a, lda, rsrc, csrc)
call dtrrv2d(icontxt, uplo, diag, m, n, a, lda, rsrc, csrc)
call ctrrv2d(icontxt, uplo, diag, m, n, a, lda, rsrc, csrc)
call ztrrv2d(icontxt, uplo, diag, m, n, a, lda, rsrc, csrc)
```


## Input Parameters

```
icontxt INTEGER. Integer handle that indicates the context.
```

uplo, diag, $m, n$, da $\quad$ Describe the matrix to be sent. See Matrix Shapes for details.
rsrc
csrc
INTEGER.

The process row coordinate of the source of the message.
INTEGER.
The process column coordinate of the source of the message.

## Output Parameters

$a$
An array of dimension (lda, $n$ ) to receive the incoming message into.

## Description

This routine receives a message from process \{RSRC, CSRC\} into the trapezoidal matrix $A$. This routine is globally-blocking, that is, return from the routine indicates that the message has been received into $A$.

## BLACS Broadcast Routines

This topic describes BLACS broadcast routines.

A broadcast sends data possessed by one process to all processes within a scope. Broadcast, much like point to point communication, has two complementary operations. The process that owns the data to be broadcast issues a broadcast/send. All processes within the same scope must then issue the complementary broadcast/receive.

The BLACS define that both broadcast/send and broadcast/receive are globally-blocking. Broadcasts/ receives cannot be locally-blocking since they must post a receive. Note that receives cannot be locallyblocking. When a given process can leave, a broadcast/receive operation is topology dependent, so, to avoid a hang as topology is varied, the broadcast/receive must be treated as if no process can leave until all processes have called the operation.
Broadcast/sends could be defined to be locally-blocking. Since no information is being received, as long as locally-blocking point to point sends are used, the broadcast/send will be locally blocking. However, defining one process within a scope to be locally-blocking while all other processes are globally-blocking adds little to the programmability of the code. On the other hand, leaving the option open to have globally-blocking broadcast/sends may allow for optimization on some platforms.

The fact that broadcasts are defined as globally-blocking has several important implications. The first is that scoped operations (broadcasts or combines) must be strictly ordered, that is, all processes within a scope must agree on the order of calls to separate scoped operations. This constraint falls in line with that already in place for the computation of message IDs, and is present in point to point communication as well.
A less obvious result is that scoped operations with SCOPE = 'ALL' must be ordered with respect to any other scoped operation. This means that if there are two broadcasts to be done, one along a column, and one involving the entire process grid, all processes within the process column issuing the column broadcast must agree on which broadcast will be performed first.
The convention used in the communication routine names follows the template ?xxyy2d, where the letter in the ? position indicates the data type being sent, $x x$ is replaced to indicate the shape of the matrix, and the yy positions are used to indicate the type of communication to perform:

```
i integer
s single precision real
d double precision real
c single precision complex
z double precision complex
ge The data to be communicated is stored in a general rectangular matrix.
tr The data to be communicated is stored in a trapezoidal matrix.
Broadcast/send. A process begins the broadcast of data within a scope.
Broadcast/receive A process receives and participates in the broadcast of data
within a scope.
```


## BLACS Broadcast Routines

Routine name	Operation performed
gebs2d   trbs2d   gebr2d   trbr2d	Start a broadcast along a scope.

## Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

## Product and Performance Information

Notice revision \#20201201

```
?gebs2d
Starts a broadcast along a scope for a general
rectangular matrix.
Syntax
```

```
call igebs2d(icontxt, scope, top, m, n, a, lda)
```

call igebs2d( icontxt, scope, top, m, n, a, lda )
call sgebs2d( icontxt, scope, top, m, n, a, lda )
call sgebs2d( icontxt, scope, top, m, n, a, lda )
call dgebs2d( icontxt, scope, top, m, n, a, lda )
call dgebs2d( icontxt, scope, top, m, n, a, lda )
call cgebs2d( icontxt, scope, top, m, n, a, lda )
call cgebs2d( icontxt, scope, top, m, n, a, lda )
call zgebs2d( icontxt, scope, top, m, n, a, lda )

```
call zgebs2d(icontxt, scope, top, m, n, a, lda)
```


## Input Parameters

```
icontxt
```

scope
top
$m, n, a, I d a$

INTEGER. Integer handle that indicates the context.
CHARACTER*1. Indicates what scope the broadcast should proceed on. Limited to 'Row', 'Column', or 'All'.

CHARACTER*1. Indicates the communication pattern to use for the broadcast.

Describe the matrix to be sent. See Matrix Shapes for details.

## Description

This routine starts a broadcast along a scope. All other processes within the scope must call broadcast/ receive for the broadcast to proceed. At the end of a broadcast, all processes within the scope will possess the data in the general rectangular matrix $A$.

Broadcasts may be globally-blocking. This means no process is guaranteed to return from a broadcast until all processes in the scope have called the appropriate routine (broadcast/send or broadcast/receive).

## See Also

Examples of BLACS Routines Usage

## ?trbs2d

Starts a broadcast along a scope for a trapezoidal matrix.

## Syntax

```
call itrbs2d(icontxt, scope, top, uplo, diag, m, n, a, lda)
call strbs2d(icontxt, scope, top, uplo, diag, m, n, a, lda)
call dtrbs2d(icontxt, scope, top, uplo, diag, m, n, a, lda)
call ctrbs2d(icontxt, scope, top, uplo, diag, m, n, a, lda)
call ztrbs2d(icontxt, scope, top, uplo, diag, m, n, a, lda)
```


## Input Parameters

```
icontxt
scope
top
uplo, diag,m,
n, a, lda
INTEGER. Integer handle that indicates the context.
CHARACTER*1. Indicates what scope the broadcast should proceed on. Limited to 'Row', 'Column', or 'All'.
CHARACTER*1. Indicates the communication pattern to use for the broadcast.
Describe the matrix to be sent. See Matrix Shapes for details.
```


## Description

This routine starts a broadcast along a scope. All other processes within the scope must call broadcast/ receive for the broadcast to proceed. At the end of a broadcast, all processes within the scope will possess the data in the trapezoidal matrix $A$.
Broadcasts may be globally-blocking. This means no process is guaranteed to return from a broadcast until all processes in the scope have called the appropriate routine (broadcast/send or broadcast/receive).

## ?gebr2d

Receives and participates in a broadcast along a scope for a general rectangular matrix.

Syntax

```
call igebr2d(icontxt, scope, top, m, n, a, lda, rsrc, csrc)
call sgebr2d(icontxt, scope, top, m, n, a, lda, rsrc, csrc)
call dgebr2d(icontxt, scope, top, m, n, a, lda, rsrc, csrc)
call cgebr2d(icontxt, scope, top, m, n, a, lda, rsrc, csrc)
call zgebr2d(icontxt, scope, top, m, n, a, lda, rsrc, csrc)
```

Input Parameters

icontxt	INTEGER. Integer handle that indicates the context.
scope	CHARACTER*1. Indicates what scope the broadcast should proceed on. Limited to 'Row', 'Column', or 'All'.
top	CHARACTER*1. Indicates the communication pattern to use for the broadcast.
m, n, Ida	Describe the matrix to be sent. See Matrix Shapes for details.
rsrc	INTEGER.
	The process row coordinate of the process that called broadcast/send.
csrc	INTEGER.
	The process column coordinate of the process that called broadcast/ send.

## Output Parameters

a
An array of dimension (lda, $n$ ) to receive the incoming message into.

## Description

This routine receives and participates in a broadcast along a scope. At the end of a broadcast, all processes within the scope will possess the data in the general rectangular matrix $A$. Broadcasts may be globallyblocking. This means no process is guaranteed to return from a broadcast until all processes in the scope have called the appropriate routine (broadcast/send or broadcast/receive).

## See Also <br> Examples of BLACS Routines Usage

## ?trbr2d <br> Receives and participates in a broadcast along a scope for a trapezoidal matrix.

Syntax

```
call itrbr2d(icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc)
call strbr2d(icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc)
call dtrbr2d(icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc)
call ctrbr2d(icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc)
call ztrbr2d(icontxt, scope, top, uplo, diag, m, n, a, lda, rsrc, csrc)
```

Input Parameters

```
icontxt
INTEGER. Integer handle that indicates the context.
```

scope
top
uplo, diag, m, n, Ida
rsrc
CSrC

CHARACTER*1. Indicates what scope the broadcast should proceed on. Limited to 'Row', 'Column', or 'All'.

CHARACTER*1. Indicates the communication pattern to use for the broadcast.

Describe the matrix to be sent. See Matrix Shapes for details.
INTEGER.
The process row coordinate of the process that called broadcast/send.
INTEGER.
The process column coordinate of the process that called broadcast/ send.

## Output Parameters

An array of dimension (lda, $n$ ) to receive the incoming message into.

## Description

This routine receives and participates in a broadcast along a scope. At the end of a broadcast, all processes within the scope will possess the data in the trapezoidal matrix $A$. Broadcasts may be globally-blocking. This means no process is guaranteed to return from a broadcast until all processes in the scope have called the appropriate routine (broadcast/send or broadcast/receive).

## BLACS Support Routines

The support routines perform distinct tasks that can be used for:
Initialization
Destruction
Information Purposes
Miscellaneous Tasks.

## Initialization Routines

This topic describes BLACS routines that deal with grid/context creation, and processing before the grid/ context has been defined.
BLACS Initialization Routines

Routine name	Operation performed
blacs_pinfo	Returns the number of processes available for use.
blacs_setup	Allocates virtual machine and spawns processes.
blacs_get	Gets values that BLACS use for internal defaults.
blacs_set	Sets values that BLACS use for internal defaults.
blacs_gridinit	Assigns available processes into BLACS process grid.
blacs_gridmap	Maps available processes into BLACS process grid.

```
blacs_pinfo
Returns the number of processes available for use.
```

Syntax

```
call blacs_pinfo(mypnum, nprocs)
```


## Output Parameters

mypnum
nprocs

INTEGER. An integer between 0 and (nprocs - 1) that uniquely identifies each process.

INTEGER. The number of processes available for BLACS use.

## Description

This routine is used when some initial system information is required before the BLACS are set up. On all platforms except PVM, nprocs is the actual number of processes available for use, that is, nprows * npcols <= nprocs. In PVM, the virtual machine may not have been set up before this call, and therefore no parallel machine exists. In this case, nprocs is returned as less than one. If a process has been spawned via the keyboard, it receives mypnum of 0 , and all other processes get mypnum of -1 . As a result, the user can distinguish between processes. Only after the virtual machine has been set up via a call to BLACS_SETUP, this routine returns the correct values for mypnum and nprocs.

See Also<br>Examples of BLACS Routines Usage

```
blacs_setup
```

Allocates virtual machine and spawns processes.

## Syntax

```
call blacs_setup(mypnum, nprocs)
```


## Input Parameters

nprocs
INTEGER. On the process spawned from the keyboard rather than from pvmspawn, this parameter indicates the number of processes to create when building the virtual machine.

## Output Parameters

mypnum
INTEGER. An integer between 0 and (nprocs - 1) that uniquely identifies each process.

INTEGER. For all processes other than spawned from the keyboard, this parameter means the number of processes available for BLACS use.

## Description

This routine only accomplishes meaningful work in the PVM BLACS. On all other platforms, it is functionally equivalent to blacs_pinfo. The BLACS assume a static system, that is, the given number of processes does not change. PVM supplies a dynamic system, allowing processes to be added to the system on the fly.
blacs_setup is used to allocate the virtual machine and spawn off processes. It reads in a file called blacs_setup. dat, in which the first line must be the name of your executable. The second line is optional, but if it exists, it should be a PVM spawn flag. Legal values at this time are 0 (PvmTaskDefault), 4 (PvmTaskDebug), 8 (PvmTaskTrace), and 12 (PvmTaskDebug + PvmTaskTrace). The primary reason for this line is to allow the user to easily turn on and off PVM debugging. Additional lines, if any, specify what machines should be added to the current configuration before spawning nprocs-1 processes to the machines in a round robin fashion.
nprocs is input on the process which has no PVM parent (that is, mypnum=0), and both parameters are output for all processes. So, on PVM systems, the call to blacs_pinfo informs you that the virtual machine has not been set up, and a call to blacs_setup then sets up the machine and returns the real values for mypnum and nprocs.

Note that if the file blacs_setup. dat does not exist, the BLACS prompt the user for the executable name, and processes are spawned to the current PVM configuration.

```
See Also
Examples of BLACS Routines Usage
blacs_get
Gets values that BLACS use for internal defaults.
```

Syntax
call blacs_get( icontxt, what, val )

## Input Parameters

icontxt
what

INTEGER. On values of what that are tied to a particular context, this parameter is the integer handle indicating the context. Otherwise, ignored.

INTEGER. Indicates what BLACS internal(s) should be returned in val. Present options are:

- what $=0$ : Handle indicating default system context.
- what $=1$ : The BLACS message ID range.
- what $=2$ : The BLACS debug level the library was compiled with.
- what $=10$ : Handle indicating the system context used to define the BLACS context whose handle is icontxt.
- what = 11 : Number of rings multiring broadcast topology is presently using.
- what $=12$ : Number of branches general tree broadcast topology is presently using.
- what $=13$ : Number of rings multiring combine topology is presently using.
- what $=14$ : Number of branches general tree combine topology is presently using.
- what $=15$ : Whether topologies are forced to be repeatable or not. A non-zero return value indicates that topologies are being forced to be repeatable. See Repeatability and Coherence for more information about repeatability.
- what $=16$ : Whether topologies are forced to be heterogenous coherent or not. A non-zero return value indicates that topologies are being forced to be heterogenous coherent. See Repeatability and Coherence for more information about coherence.


## Output Parameters

val
INTEGER. The value of the BLACS internal.

## Description

This routine gets the values that the BLACS are using for internal defaults. Some values are tied to a BLACS context, and some are more general. The most common use is in retrieving a default system context for input into blacs_gridinit or blacs_gridmap.

Some systems, such as MPI*, supply their own version of context. For those users who mix system code with BLACS code, a BLACS context should be formed in reference to a system context. Thus, the grid creation routines take a system context as input. If you wish to have strictly portable code, you may use blacs_get to retrieve a default system context that will include all available processes. This value is not tied to a BLACS context, so the parameter icontxt is unused.
blacs_get returns information on three quantities that are tied to an individual BLACS context, which is passed in as icontxt. The information that may be retrieved is:

- The handle of the system context upon which this BLACS context was defined
- The number of rings for $T O P=$ 'M' (multiring broadcast/combine)
- The number of branches for $T O P=$ 'T' (general tree broadcast/general tree gather).
- Whether topologies are being forced to be repeatable or heterogenous coherent.

See Also<br>Examples of BLACS Routines Usage<br>blacs_set<br>Sets values that BLACS use for internal defaults.

Syntax

```
call blacs_set(icontxt, what, val)
```


## Input Parameters

icontst	INTEGER. For values of what that are tied to a particular context, this
parameter is the integer handle indicating the context. Otherwise,	
ignored.	
what	INTEGER. Indicates what BLACS internal(s) should be set. Present
	values are:
	- $1=$ Set the BLACS message ID range
	- $11=$ Number of rings for multiring broadcast topology to use
	- $12=$ Number of branches for general tree broadcast topology to
	- use
	- $13=$ Number of rings for multiring combine topology to use
val	- $14=$ Number of branches for general tree combine topology to use
	- $16=$ Force topologies to be repeatable or not
	INTEGER. Array of dimension (*). Indicates the value(s) the internals
	should be set to. The specific meanings depend on what values, as
discussed in Description below.	

## Description

This routine sets the BLACS internal defaults depending on what values:

```
what = 1
what = 11
Setting the BLACS message ID range.
If you wish to mix the BLACS with other message-passing packages, restrict the BLACS to a certain message ID range not to be used by the non-BLACS routines. The message ID range must be set before the first call to blacs_gridinit or blacs_gridmap. Subsequent calls will have no effect. Because the message ID range is not tied to a particular context, the parameter icontxt is ignored, and val is defined as:
VAL (input) INTEGER array of dimension (2)
VAL (1) : The smallest message ID (also called message type or message tag) the BLACS should use.
VAL (2) : The largest message ID (also called message type or message tag) the BLACS should use.
Set number of rings for \(T O P=\) ' M ' (multiring broadcast). This quantity is tied to a context, so icontxt is used, and val is defined as:
VAL (input) INTEGER array of dimension (1)
```

VAL (1) : The number of rings for multiring topology to use.

what $=12$	Set number of branches for TOP $=$ ' T ' (general tree broadcast). This quantity is tied to a context, so icontxt is used, and val is defined as:
	VAL (input) INTEGER array of dimension (1)
	VAL (1) : The number of branches for general tree topology to use.
what $=13$	Set number of rings for TOP = ' M ' (multiring combine). This quantity is tied to a context, so icontxt is used, and val is defined as:
	VAL (input) INTEGER array of dimension (1)
	VAL (1) : The number of rings for multiring topology to use.
what $=14$	Set number of branches for $T O P=$ ' T ' (general tree gather). This quantity is tied to a context, so icontyt is used, and val is defined as:
	VAL (input) INTEGER array of dimension (1)
	VAL (1) : The number of branches for general tree topology to use.
what $=15$	Force topologies to be repeatable or not (see Repeatability and Coherence for more information about repeatability).
	VAL (input) INTEGER array of dimension (1)
	VAL (1) $=0$ (default) Topologies are not required to be repeatable.
	$\operatorname{VAL}(1) \neq 0 \quad \begin{aligned} & \text { All used topologies are required to be repeatable, } \\ & \text { which might degrade performance. }\end{aligned}$
what $=16$	Force topologies to be heterogenous coherent or not (see Repeatability and Coherence for more information about coherence).
	VAL (input) INTEGER array of dimension (1)
	$\operatorname{VAL}(1)=0$ (default) Topologies are not required to be heterogenous coherent.
	$\operatorname{VAL}(1) \neq 0 \quad \begin{aligned} & \text { All used topologies are required to be heterogenous } \\ & \text { coherent, which might degrade performance. }\end{aligned}$

blacs_gridinit
Assigns available processes into BLACS process grid.

## Syntax

```
call blacs_gridinit(icontxt, layout, nprow, npcol)
```

Input Parameters
icontxt
layout

INTEGER. Integer handle indicating the system context to be used in creating the BLACS context. Call blacs_get to obtain a default system context.

CHARACTER*1. Indicates how to map processes to BLACS grid. Options are:

- 'R' : Use row-major natural ordering
- 'C' : Use column-major natural ordering

INTEGER. Indicates how many process rows the process grid should contain.

INTEGER. Indicates how many process columns the process grid should contain.

## Output Parameters

icontxt
INTEGER. Integer handle to the created BLACS context.

## Description

All BLACS codes must call this routine, or its sister routine blacs_gridmap. These routines take the available processes, and assign, or map, them into a BLACS process grid. In other words, they establish how the BLACS coordinate system maps into the native machine process numbering system. Each BLACS grid is contained in a context, so that it does not interfere with distributed operations that occur within other grids/ contexts. These grid creation routines may be called repeatedly to define additional contexts/grids.

The creation of a grid requires input from all processes that are defined to be in this grid. Processes belonging to more than one grid have to agree on which grid formation will be serviced first, much like the globally blocking sum or broadcast.

These grid creation routines set up various internals for the BLACS, and one of them must be called before any calls are made to the non-initialization BLACS.
Note that these routines map already existing processes to a grid: the processes are not created dynamically. On most parallel machines, the processes are "created" when you run your executable. When using the PVM BLACS, if the virtual machine has not been set up yet, the routine blacs_setup should be used to create the virtual machine.
This routine creates a simple nprow x npcol process grid. This process grid uses the first nprow * npcol processes, and assigns them to the grid in a row- or column-major natural ordering. If these process-to-grid mappings are unacceptable, call blacs_gridmap.

```
See Also
Examples of BLACS Routines Usage
blacs_get
blacs_gridmap
blacs_setup
blacs_gridmap
Maps available processes into BLACS process grid.
Syntax
call blacs_gridmap(icontxt, usermap, ldumap, nprow, npcol)
```

Input Parameters
icontxt
usermap

INTEGER. Integer handle indicating the system context to be used in creating the BLACS context. Call blacs_get to obtain a default system context.

INTEGER. Array, dimension (ldumap, npcol), indicating the process-to-grid mapping.
ldumap
nprow
npcol

INTEGER. Leading dimension of the 2D array usermap. Idumap $\geq$ nprow.

INTEGER. Indicates how many process rows the process grid should contain.

INTEGER. Indicates how many process columns the process grid should contain.

## Output Parameters

icontxt
INTEGER. Integer handle to the created BLACS context.

## Description

All BLACS codes must call this routine, or its sister routine blacs_gridinit. These routines take the available processes, and assign, or map, them into a BLACS process grid. In other words, they establish how the BLACS coordinate system maps into the native machine process numbering system. Each BLACS grid is contained in a context, so that it does not interfere with distributed operations that occur within other grids/ contexts. These grid creation routines may be called repeatedly to define additional contexts/grids.
The creation of a grid requires input from all processes that are defined to be in this grid. Processes belonging to more than one grid have to agree on which grid formation will be serviced first, much like the globally blocking sum or broadcast.

These grid creation routines set up various internals for the BLACS, and one of them must be called before any calls are made to the non-initialization BLACS.

Note that these routines map already existing processes to a grid: the processes are not created dynamically. On most parallel machines, the processes are actual processors (hardware), and they are "created" when you run your executable. When using the PVM BLACS, if the virtual machine has not been set up yet, the routine blacs_setup should be used to create the virtual machine.

This routine allows the user to map processes to the process grid in an arbitrary manner. usermap ( $i, j$ ) holds the process number of the process to be placed in \{i, j\} of the process grid. On most distributed systems, this process number is a machine defined number between $0 \ldots n p r o w-1$. For PVM, these node numbers are the PVM TIDS (Task IDs). The blacs_gridmap routine is intended for an experienced user. The blacs_gridinit routine is much simpler. blacs_gridinit simply performs a gridmap where the first nprow * npcol processes are mapped into the current grid in a row-major natural ordering. If you are an experienced user, blacs_gridmap allows you to take advantage of your system's actual layout. That is, you can map nodes that are physically connected to be neighbors in the BLACS grid, etc. The blacs_gridmap routine also opens the way for multigridding: you can separate your nodes into arbitrary grids, join them together at some later date, and then re-split them into new grids. blacs_gridmap also provides the ability to make arbitrary grids or subgrids (for example, a "nearest neighbor" grid), which can greatly facilitate operations among processes that do not fall on a row or column of the main process grid.

## See Also

Examples of BLACS Routines Usage
blacs_get
blacs_gridinit
blacs_setup

## Destruction Routines

This topic describes BLACS routines that destroy grids, abort processes, and free resources.

BLACS Destruction Routines

Routine name	Operation performed
blacs_freebuff	Frees BLACS buffer.
blacs_gridexit	Frees a BLACS context.
blacs_abort	Aborts all processes.
blacs_exit	Frees all BLACS contexts and releases all allocated memory.

blacs_freebuff
Frees BLACS buffer.

## Syntax

```
call blacs_freebuff(icontxt, wait)
```

Input Parameters
icontxt INTEGER. Integer handle that indicates the BLACS context.
wait INTEGER. Parameter indicating whether to wait for non-blocking operations or not. If equals 0 , the operations should not be waited for; free only unused buffers. Otherwise, wait in order to free all buffers.

## Description

This routine releases the BLACS buffer.
The BLACS have at least one internal buffer that is used for packing messages. The number of internal buffers depends on what platform you are running the BLACS on. On systems where memory is tight, keeping this buffer or buffers may become expensive. Call freebuff to release the buffer. However, the next call of a communication routine that requires packing reallocates the buffer.

The wait parameter determines whether the BLACS should wait for any non-blocking operations to be completed or not. If wait $=0$, the BLACS free any buffers that can be freed without waiting. If wait is not 0 , the BLACS free all internal buffers, even if non-blocking operations must be completed first.
blacs_gridexit
Frees a BLACS context.

## Syntax

call blacs_gridexit( icontxt )
Input Parameters
icontxt
INTEGER. Integer handle that indicates the BLACS context to be freed.

## Description

This routine frees a BLACS context.
Release the resources when contexts are no longer needed. After freeing a context, the context no longer exists, and its handle may be re-used if new contexts are defined.
blacs_abort
Aborts all processes.

## Syntax

```
call blacs_abort(icontxt, errornum)
```

Input Parameters
icontxt
INTEGER. Integer handle that indicates the BLACS context to be aborted.
errornum INTEGER. User-defined integer error number.

## Description

This routine aborts all the BLACS processes, not only those confined to a particular context.
Use blacs_abort to abort all the processes in case of a serious error. Note that both parameters are input, but the routine uses them only in printing out the error message. The context handle passed in is not required to be a valid context handle.
blacs_exit
Frees all BLACS contexts and releases all allocated
memory.
Syntax

```
call blacs_exit(continue)
```

Input Parameters
continue INTEGER. Flag indicating whether message passing continues after the BLACS are done. If continue is non-zero, the user is assumed to continue using the machine after completing the BLACS. Otherwise, no message passing is assumed after calling this routine.

## Description

This routine frees all BLACS contexts and releases all allocated memory.
This routine should be called when a process has finished all use of the BLACS. The continue parameter indicates whether the user will be using the underlying communication platform after the BLACS are finished. This information is most important for the PVM BLACS. If continue is set to 0 , then pvm_exit is called; otherwise, it is not called. Setting continue not equal to 0 indicates that explicit PVM send/recvs will be called after the BLACS routines are used. Make sure your code calls pvm_exit. PVM users should either call blacs_exit or explicitly call pvm_exit to avoid PVM problems.

## See Also <br> Examples of BLACS Routines Usage

## Informational Routines

This topic describes BLACS routines that return information involving the process grid.

## BLACS Informational Routines

Routine name	Operation performed
blacs_gridinfo	Returns information on the current grid.
blacs_pnum	Returns the system process number of the process in the process grid.
blacs_pcoord	Returns the row and column coordinates in the process grid.

blacs_gridinfo
Returns information on the current grid.
Syntax

```
call blacs_gridinfo(icontxt, nprow, npcol, myprow, mypcol)
```

Input Parameters

```
icontxt INTEGER. Integer handle that indicates the context.
```


## Output Parameters

nprow
npcol
myprow
mypcol

INTEGER. Number of process rows in the current process grid.
INTEGER. Number of process columns in the current process grid.
INTEGER. Row coordinate of the calling process in the process grid.
INTEGER. Column coordinate of the calling process in the process grid.

## Description

This routine returns information on the current grid. If the context handle does not point at a valid context, all quantities are returned as -1 .

## See Also

Examples of BLACS Routines Usage
blacs_pnum
Returns the system process number of the process in the process grid.

Syntax

```
call blacs_pnum(icontxt, prow, pcol)
```

Input Parameters
icontxt
prow
pcol

INTEGER. Integer handle that indicates the context.
INTEGER. Row coordinate of the process the system process number of which is to be determined.

INTEGER. Column coordinate of the process the system process number of which is to be determined.

## Description

This function returns the system process number of the process at $\{P R O W, P C O L\}$ in the process grid.

```
See Also
Examples of BLACS Routines Usage
```

blacs_pcoord
Returns the row and column coordinates in the process grid.

## Syntax

```
call blacs_pcoord(icontxt, pnum, prow, pcol)
```


## Input Parameters

icontxt INTEGER. Integer handle that indicates the context.
pnum INTEGER. Process number the coordinates of which are to be determined. This parameter stand for the process number of the underlying machine, that is, it is a tid for PVM.

## Output Parameters

prow
pcol
INTEGER. Row coordinates of the pnum process in the BLACS grid.
INTEGER. Column coordinates of the pnum process in the BLACS grid.

## Description

Given the system process number, this function returns the row and column coordinates in the BLACS process grid.

## See Also

Examples of BLACS Routines Usage

## Miscellaneous Routines

This topic describes blacs_barrier routine.

## BLACS Informational Routines

Routine name	Operation performed
blacs_barrier	Holds up execution of all processes within the indicated scope until   they have all called the routine.

blacs_barrier
Holds up execution of all processes within the indicated scope.

Syntax
call blacs_barrier( icontxt, scope )
Input Parameters
icontxt
INTEGER. Integer handle that indicates the context.

```
scope CHARACTER*1. Parameter that indicates whether a process row
(scope='R'), column ('C'), or entire grid ('A') will participate in the
barrier.
```


## Description

This routine holds up execution of all processes within the indicated scope until they have all called the routine.

## Examples of BLACS Routines Usage

## Example. BLACS Usage. Hello World

The following routine takes the available processes, forms them into a process grid, and then has each process check in with the process at $\{0,0\}$ in the process grid.

```
PROGRAM HELLO
-- BLACS example code --
Written by Clint Whaley 7/26/94
Performs a simple check-in type hello world
.. External Functions ..
INTEGER BLACS_PNUM
EXTERNAL BLACS_PNUM
. Variable Declaration ..
INTEGER CONTXT, IAM, NPROCS, NPROW, NPCOL, MYPROW, MYPCOL
INTEGER ICALLER, I, J, HISROW, HISCOL
Determine my process number and the number of processes in
machine
CALL BLACS_PINFO(IAM, NPROCS)
If in PVM, create virtual machine if it doesn't exist
IF (NPROCS .LT. 1) THEN
 IF (IAM .EQ. O) THEN
 WRITE (*, 1000)
 READ(*, 2000) NPROCS
 END IF
 CALL BLACS_SETUP(IAM, NPROCS)
END IF
Set up process grid that is as close to square as possible
NPROW = INT(SQRT(REAL(NPROCS)))
NPCOL = NPROCS / NPROW
Get default system context, and define grid
CALL BLACS_GET (0, 0, CONTXT)
CALL BLACS_GRIDINIT(CONTXT, 'Row', NPROW, NPCOL)
CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
If I'm not in grid, go to end of program
```

```
IF ((MYPROW.GE.NPROW) .OR. (MYPCOL.GE.NPCOL)) GOTO 30
Get my process ID from my grid coordinates
ICALLER = BLACS_PNUM(CONTXT, MYPROW, MYPCOL)
If I am process {0,0}, receive check-in messages from
all nodes
IF ((MYPROW.EQ.0) .AND. (MYPCOL.EQ.0)) THEN
 WRITE (*,*) ' '
 DO 20 I = 0, NPROW-1
 DO 10 J = 0, NPCOL-1
 IF ((I.NE.0) .OR. (J.NE.O)) THEN
 CALL IGERV2D(CONTXT, 1, 1, ICALLER, 1, I, J)
 END IF
 Make sure ICALLER is where we think in process grid
 CALL BLACS_PCOORD(CONTXT, ICALLER, HISROW, HISCOL)
 IF ((HISROW.NE.I) .OR. (HISCOL.NE.J)) THEN
 WRITE(*,*) 'Grid error! Halting . . .'
 STOP
 END IF
 WRITE(*, 3000) I, J, ICALLER
 CONTINUE
 CONTINUE
 WRITE(*,*) ' '
 WRITE(*,*) 'All processes checked in. Run finished.'
All processes but {0,0} send process ID as a check-in
ELSE
 CALL IGESD2D(CONTXT, 1, 1, ICALLER, 1, 0, 0)
END IF
CONTINUE
CALL BLACS_EXIT(0)
FORMAT('How many processes in machine?')
FORMAT(I)
FORMAT('Process {',i2,',',i2,'} (node number =',I,
```

```
$
 ') has checked in.')
 STOP
 END
```


## Example. BLACS Usage. PROCMAP

This routine maps processes to a grid using blacs_gridmap.

```
 SUBROUTINE PROCMAP (CONTEXT, MAPPING, BEGPROC, NPROW, NPCOL, IMAP)
* -- BLACS example code --
 Written by Clint Whaley 7/26/94
* ..
 . Scalar Arquments .
 INTEGER CONTEXT, MAPPING, BEGPROC, NPROW, NPCOL
* ..
* .. Array Arguments ..
 INTEGER IMAP(NPROW, *)
..
Purpose
* =======
* PROCMAP maps NPROW*NPCOL processes starting from process BEGPROC to
* the grid in a variety of ways depending on the parameter MAPPING.
* Arguments
=========
*
* CONTEXT (output) INTEGER
* This integer is used by the BLACS to indicate a context.
A context is a universe where messages exist and do not
interact with other context's messages. The context
includes the definition of a grid, and each process's
coordinates in it.
MAPPING (input) INTEGER
Way to map processes to grid. Choices are:
1 : row-major natural ordering
2 : column-major natural ordering
BEGPROC (input) INTEGER
The process number (between 0 and NPROCS-1) to use as
{0,0}. From this process, processes will be assigned
to the grid as indicated by MAPPING.
 NPROW (input) INTEGER
 The number of process rows the created grid
 should have.
 NPCOL (input) INTEGER
 The number of process columns the created grid
```

```
* should have.
*
* IMAP (workspace) INTEGER array of dimension (NPROW, NPCOL)
Workspace, where the array which maps the
processes to the grid will be stored for the
call to GRIDMAP.
.. External Functions ..
INTEGER BLACS_PNUM
EXTERNAL BLACS_PNUM
* ..
* .. External Subroutines ..
EXTERNAL BLACS_PINFO, BLACS_GRIDINIT, BLACS_GRIDMAP
* ..
* .. Local Scalars ..
 INTEGER TMPCONTXT, NPROCS, I, J, K
 .. Executable Statements ..
 See how many processes there are in the system
 CALL BLACS_PINFO(I, NPROCS)
 IF (NPROCS-BEGPROC .LT. NPROW*NPCOL) THEN
 WRITE(*,*) 'Not enough processes for grid'
 STOP
 END IF
*
* Temporarily map all processes into 1 x NPROCS grid
CALL BLACS_GET(0, 0, TMPCONTXT)
CALL BLACS_GRIDINIT(TMPCONTXT, 'Row', 1, NPROCS)
K = BEGPRO
*
* If we want a row-major natural ordering
 IF (MAPPING .EQ. 1) THEN
 DO I = 1, NPROW
 DO J = 1, NPCOL
 IMAP(I, J) = BLACS_PNUM(TMPCONTXT, 0, K)
 K = K + 1W
 END DO
 END DO
```

```
* If we want a column-major natural ordering
 ELSE IF (MAPPING .EQ. 2) THEN
 DO J = 1, NPCOL
 DO I = 1, NPROW
 IMAP(I, J) = BLACS_PNUM(TMPCONTXT, 0, K)
 K=K + 1
 END DO
 END DO
ELSE
 WRITE(*,*) 'Unknown mapping.'
 STOP
END IF
*
* Free temporary context
CALL BLACS_GRIDEXIT(TMPCONTXT)
*
* Apply the new mapping to form desired context
*
CALL BLACS_GET(0, 0, CONTEXT)
CALL BLACS_GRIDMAP(CONTEXT, IMAP, NPROW, NPROW, NPCOL)
RETURN
END
```


## Example. BLACS Usage. PARALLEL DOT PRODUCT

This routine does a bone-headed parallel double precision dot product of two vectors. Arguments are input on process $\{0,0\}$, and output everywhere else.

```
 DOUBLE PRECISION FUNCTION PDDOT(CONTEXT, N, X, Y)
*
* -- BLACS example code --
* Written by Clint Whaley 7/26/94
* ..
* .. Scalar Arguments ..
 INTEGER CONTEXT, N
* .. Array Arguments ..
 DOUBLE PRECISION X(*), Y(*)
* ..
*
* Purpose
* =======
* PDDOT is a restricted parallel version of the BLAS routine
* DDOT. It assumes that the increment on both vectors is one,
```

```
* and that process {0,0} starts out owning the vectors and
has N. It returns the dot product of the two N-length vectors
X and Y, that is, PDDOT = X' Y.
*
Arguments
=========
CONTEXT (input) INTEGER
 This integer is used by the BLACS to indicate a context.
 A context is a universe where messages exist and do not
 interact with other context's messages. The context
 includes the definition of a grid, and each process's
 coordinates in it.
 (input/output) INTEGER
 The length of the vectors X and Y. Input
 for {0,0}, output for everyone else.
 (input/output) DOUBLE PRECISION array of dimension (N)
 The vector X of PDDOT = X' Y. Input for {0,0},
 output for everyone else.
 (input/output) DOUBLE PRECISION array of dimension (N)
 The vector Y of PDDOT = X' Y. Input for {0,0},
 output for everyone else.
 ==
 .. External Functions ..
 DOUBLE PRECISION DDOT
 EXTERNAL DDOT
* .. External Subroutines ..
 EXTERNAL BLACS_GRIDINFO, DGEBS2D, DGEBR2D, DGSUM2D
* ..
* .. Local Scalars ..
 INTEGER IAM, NPROCS, NPROW, NPCOL, MYPROW, MYPCOL, I, LN
 DOUBLE PRECISION LDDOT
 .. Executable Statements ..
 Find out what grid has been set up, and pretend it is 1-D
 CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
 IAM = MYPROW*NPCOL + MYPCOL
 NPROCS = NPROW * NPCOL
* Temporarily map all processes into 1 x NPROCS grid
```

```
CALL BLACS_GET(0, 0, TMPCONTXT)
CALL BLACS_GRIDINIT(TMPCONTXT, 'Row', 1, NPROCS)
K = BEGPROC
Do bone-headed thing, and just send entire X and Y to
everyone
IF ((MYPROW.EQ.0) .AND. (MYPCOL.EQ.0)) THEN
 CALL IGEBS2D(CONTXT, 'All', 'i-ring', 1, 1, N, 1)
 CALL DGEBS2D(CONTXT, 'All', 'i-ring', N, 1, X, N)
 CALL DGEBS2D(CONTXT, 'All', 'i-ring', N, 1, Y, N)
ELSE
 CALL IGEBR2D(CONTXT, 'All', 'i-ring', 1, 1, N, 1, 0, 0)
 CALL DGEBR2D(CONTXT, 'All', 'i-ring', N, 1, X, N, 0, 0)
 CALL DGEBR2D(CONTXT, 'All', 'i-ring', N, 1, Y, N, 0, 0)
ENDIF
Find out the number of local rows to multiply (LN), and
where in vectors to start (I)
LN = N / NPROCS
I = 1 + IAM * LN
Last process does any extra rows
 IF (IAM .EQ. NPROCS-1) LN = LN + MOD(N, NPROCS)
* Figure dot product of my piece of X and Y
 LDDOT = DDOT(LN, X(I), 1, Y(I), 1)
 Add local dot products to get global dot product;
 give all procs the answer
 CALL DGSUM2D(CONTXT, 'All', '1-tree', 1, 1, LDDOT, 1, -1, 0)
```

```
PDDOT = LDDOT
RETURN
END
```


## Example. BLACS Usage. PARALLEL MATRIX INFINITY NORM

This routine does a parallel infinity norm on a distributed double precision matrix. Unlike the PDDOT example, this routine assumes the matrix has already been distributed.

```
 DOUBLE PRECISION FUNCTION PDINFNRM(CONTXT, LM, LN, A, LDA, WORK)
 -- BLACS example code --
 Written by Clint Whaley.
 .. Scalar Arguments ..
 INTEGER CONTEXT, LM, LN, LDA
 .. Array Arguments ..
 DOUBLE PRECISION A(LDA, *), WORK(*)
Purpose
* =======
* Compute the infinity norm of a distributed matrix, where
* the matrix is spread across a 2D process grid. The result is
* left on all processes.
* Arguments
=========
*
* CONTEXT (input) INTEGER
* This integer is used by the BLACS to indicate a context.
A context is a universe where messages exist and do not
* interact with other context's messages. The context
* includes the definition of a grid, and each process's
* coordinates in it.
*
LM (input) INTEGER
Number of rows of the global matrix owned by this
process.
LN (input) INTEGER
Number of columns of the global matrix owned by this
process.
(input) DOUBLE PRECISION, dimension (LDA,N)
The matrix whose norm you wish to compute.
* LDA (input) INTEGER
* Leading Dimension of A.
```

```
*
* WORK (temporary) DOUBLE PRECISION array, dimension (LM)
* Temporary work space used for summing rows.
* .. External Subroutines ..
 EXTERNAL BLACS_GRIDINFO, DGEBS2D, DGEBR2D, DGSUM2D, DGAMX2D
* ..
* .. External Functions ..
 INTEGER IDAMAX
 DOUBLE PRECISION DASUM
*
* .. Local Scalars ..
 INTEGER NPROW, NPCOL, MYROW, MYCOL, I, J
 DOUBLE PRECISION MAX
*
* .. Executable Statements ..
*
* Get process grid information
*
 CALL BLACS_GRIDINFO(CONTXT, NPROW, NPCOL, MYPROW, MYPCOL)
*
* Add all local rows together
*
 DO 20 I = 1, LM
 WORK(I) = DASUM(LN, A(I,1), LDA)
20 CONTINUE
* Find sum of global matrix rows and store on column 0 of
* process grid
*
 CALL DGSUM2D(CONTXT, 'Row', '1-tree', LM, 1, WORK, LM, MYROW, 0)
*
* Find maximum sum of rows for supnorm
 IF (MYCOL .EQ. 0) THEN
```

```
 MAX = WORK(IDAMAX (LM,WORK,1))
 IF (LM .LT. 1) MAX = 0.0DO
 CALL DGAMX2D(CONTXT, 'Col', 'h', 1, 1, MAX, 1, I, I, -1, -1, 0)
END IF
Process column 0 has answer; send answer to all nodes
IF (MYCOL .EQ. 0) THEN
 CALL DGEBS2D(CONTXT, 'Row', ' ', 1, 1, MAX, 1)
ELSE
 CALL DGEBR2D(CONTXT, 'Row', ' ', 1, 1, MAX, 1, 0, 0)
END IF
PDINFNRM = MAX
RETURN
* End of PDINFNRM
```

* 


## Data Fitting Functions

Data Fitting functions in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provide spline-based interpolation capabilities that you can use to approximate functions, function derivatives or integrals, and perform cell search operations.
The Data Fitting component is task based. The task is a data structure or descriptor that holds the parameters related to a specific Data Fitting operation. You can modify the task parameters using the task editing functionality of the library.
For definition of the implemented operations, see Mathematical Conventions.
Data Fitting routines use the following workflow to process a task:

1. Create a task or multiple tasks.
2. Modify the task parameters.
3. Perform a Data Fitting computation.
4. Destroy the task or tasks.

All Data Fitting functions fall into the following categories:

Task Creation and Initialization Routines - routines that create a new Data Fitting task descriptor and initialize the most common parameters, such as partition of the interpolation interval, values of the vector-valued function, and the parameters describing their structure.

Task Configuration Routines - routines that set, modify, or query parameters in an existing Data Fitting task.
Computational Routines - routines that perform Data Fitting computations, such as construction of a spline, interpolation, computation of derivatives and integrals, and search.

Task Destructors - routines that delete Data Fitting task descriptors and deallocate resources.
You can access the Data Fitting routines through the Fortran and C89/C99 language interfaces. You can also use the C89 interface with more recent versions of C/C++, or the Fortran 90 interface with programs written in Fortran 95.
 Fitting header files:

- mkl_df.f90

You can find examples that demonstrate usage of Data Fitting routines in the \$ \{MKL\}/examples/ datafittingf directory.

## Data Fitting Function Naming Conventions

The interfaces of the Data Fitting functions are in lowercase, while the names of the types and constants are in uppercase.
The names of all routines have the following structure:
df[datatype]<base_name>
where

- dfis a prefix indicating that the routine belongs to the Data Fitting component of Intel® oneAPI Math Kernel Library (oneMKL).
- [datatype] field specifies the type of the input and/or output data and can be s (for the single precision real type), d (for the double precision real type), or $i$ (for the integer type). This field is omitted in the names of the routines that are not data type dependent.
- <base_name> field specifies the functionality the routine performs. For example, this field can be newtaskld, interpolateld, or deletetask


## Data Fitting Function Data Types

The Data Fitting component provides routines for processing single and double precision real data types. The results of cell search operations are returned as a generic integer data type.
All Data Fitting routines use the following data type:

## Type

TYPE (DF_TASK)

## Data Object

Pointer to a task

## NOTE

The actual size of the generic integer type is platform-dependent. Before compiling your application, you need to set an appropriate byte size for integers. For details, see section Using the ILP64 Interface vs. LP64 Interface of the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide.

## Mathematical Conventions for Data Fitting Functions

This section explains the notation used for Data Fitting function descriptions. Spline notations are based on the terminology and definitions of [deBoor2001]. The Subbotin quadratic spline definition follows the conventions of [StechSub76]. The quasi-uniform partition definition is based on [Schumaker2007].
Mathematical Notation in the Data Fitting Component

Concept
Partition of interpolation interval $[a, b]$, where

- $x_{i}$ denotes breakpoints.
- $\left[x_{i}, x_{i+1}\right.$ ) denotes a sub-interval (cell) of size $\Delta_{i}=x_{i+1}-x_{i}$.

Quasi-uniform partition of interpolation interval [a, b]

Vector-valued function of dimension $p$ being fit
Piecewise polynomial (PP) function $f$ of order $k+1$

Function $p$ agrees with function $f$ at the points $\left\{x_{i}\right\}_{i=1, \ldots, n}$.

The $k$-th divided difference of function $f$ at points $x_{i}, \ldots, x_{i+k}$. This difference is the leading coefficient of the polynomial of order $k+1$ that agrees with $f$ at $x_{i}, \ldots, x_{i}+k$.

A $k$-order derivative of interpolant $f(x)$ at interpolation site
$\left\{x_{i}\right\}_{i=1, \ldots, n,}$ where $a=x_{1}<x_{2}<\ldots<x_{n}=b$

Partition $\left\{x_{i}\right\}_{i=1, \ldots, n}$ which meets the constraint with a constant $C$ defined as
$1 \leq M / m \leq C$,
where

- $M=\max _{i=1, \ldots, n-1}\left(\Delta_{i}\right)$
- $m=\min _{i=1, \ldots, n-1}\left(\Delta_{i}\right)$
- $\Delta_{i}=x_{i+1}-x_{i}$
$f(x)=\left(f_{1}(x), \ldots, f_{p}(x)\right)$
$f(x):=P_{i}(x)$, if $x \in\left[x_{i}, x_{i+1}\right), i=1, \ldots, n-1$
where
- $\left\{x_{i}\right\}_{i=1, \ldots, n}$ is a strictly increasing sequence of breakpoints.
- $P_{i}(x)=c_{i, 0}+c_{i, 1}\left(x-x_{i}\right)+\ldots+c_{i, k}\left(x-x_{i}\right)^{k}$ is a polynomial of degree $k$ (order $k+1$ ) over the interval $x \in\left[x_{i}, x_{i+1}\right)$.

For every point $\zeta$ in sequence $\left\{x_{i}\right\}_{i=1, \ldots, n}$ that occurs $m$ times, the equality $p^{(i-1)}(\zeta)=f^{(i-1)}(\zeta)$ holds for all $i=1, \ldots, m$, where $p^{(i)}(t)$ is the derivative of the $i$-th order.
$\left[x_{i}, \ldots, x_{i+k}\right] f$
In particular,

- $\quad\left[x_{1}\right] f=f\left(x_{1}\right)$
- $\left[x_{1}, x_{2}\right] f=\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right) /\left(x_{1}-x_{2}\right)$
$f^{(k)}(\tau)$

Interpolants to the Function $f$ at $x_{1, \ldots,} x_{n}$ and Boundary Conditions

## Mathematical Notation

Linear interpolant
$P_{i}(x)=c_{1, i}+c_{2, i}\left(x-x_{i}\right)$,
where

- $x \in\left[x_{i}, x_{i+1}\right)$
- $c_{1, i}=f\left(x_{i}\right)$


Concept	$\bullet c_{1, i}=f\left(x_{i}\right)$	

## Data Fitting Usage Model

Consider an algorithm that uses the Data Fitting functions. Typically, such algorithms consist of four steps or stages:

1. Create a task. You can call the Data Fitting function several times to create multiple tasks.
```
status = dfdnewtaskld(task, nx, x, xhint, ny, y, yhint);
```

2. Modify the task parameters.
```
status = dfdeditppsplineld(task, s_order, c_type, bc_type, bc, ic_type, ic,
scoeff, scoeffhint);
```

3. Perform Data Fitting spline-based computations. You may reiterate steps 2-3 as needed.
```
status = dfdinterpolateld(task, estimate, method, nsite, site, sitehint, ndorder,
dorder, datahint, r, rhint, cell);
```

4. Destroy the task or tasks.
```
status = dfdeletetask(task);
```


## See Also <br> Data Fitting Usage Examples

## Data Fitting Usage Examples

You can get Fortran source code in the . \examples $\backslash$ datafittingfsubdirectory of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) installation directory.

## Data Fitting Function Task Status and Error Reporting

The Data Fitting routines report a task status through integer values. Negative status values indicate errors, while positive values indicate warnings. An error can be caused by invalid parameter values or a memory allocation failure.
The status codes have symbolic names predefined in the header file as integer constants via the PARAMETER operators.
If no error occurred, the function returns the DF_STATUS_OK code defined as zero:
INTEGER, PARAMETER::DF_STATUS_OK = 0

In case of an error, the function returns a non-zero error code that specifies the origin of the failure. Header files define the following status codes:
Status Codes in the Data Fitting Component
Status Code Description

## Common Status Codes

```
DF_STATUS_OK
DF_ERROR_NULL_TASK
DF_ERROR_MEM_FAILURE
DF_ERROR_METHOD_NOT_SUPPORTED
DF_ERROR_COMP_TYPE_NOT_SUPPORTED
DF_ERROR_NULL_PTR
```

Operation completed successfully.
Data Fitting task is a NULL pointer.
Memory allocation failure.
Requested method is not supported.
Requested computation type is not supported.
Pointer to parameter is null.

## Status Code

## Description

## Data Fitting Task Creation and Initialization, and Generic Editing Operations

```
DF_ERROR_BAD_NX
DF_ERROR_BAD_X
DF_ERROR_BAD_X_HINT
DF_ERROR_BAD_NY
DF_ERROR_BAD_Y
DF_ERROR_BAD_Y_HINT
```


## Data Fitting Task-Specific Editing Operations

```
DF_ERROR_BAD_SPLINE_ORDER
DF_ERROR_BAD_SPLINE_TYPE
DF_ERROR_BAD_IC_TYPE
DF_ERROR_BAD_IC
DF_ERROR_BAD_BC_TYPE
DF_ERROR_BAD_BC
DF_ERROR_BAD_PP_COEFF
DF_ERROR_BAD_PP_COEFF_HINT
DF_ERROR_BAD_PERIODIC_VAL
DF_ERROR_BAD_DATA_ATTR
DF_ERROR_BAD_DATA_IDX
```


## Data Fitting Computation Operations

```
DF_ERROR_BAD_NSITE
DF_ERROR_BAD_SITE
DF_ERROR_BAD_SITE_HINT
DF_ERROR_BAD_NDORDER
```

Invalid number of breakpoints.
Array of breakpoints is invalid.
Invalid hint describing the structure of the partition.
Invalid dimension of vector-valued function $y$.
Array of function values is invalid.
Invalid flag describing the structure of function $y$

Invalid spline order.
Invalid spline type.
Type of internal conditions used for spline construction is invalid.

Array of internal conditions for spline construction is not defined.

Type of boundary conditions used in spline construction is invalid.

Array of boundary conditions for spline construction is not defined.

Array of piecewise polynomial spline coefficients is not defined.

Invalid flag describing the structure of the piecewise polynomial spline coefficients.

Function values at the endpoints of the interpolation interval are not equal as required in periodic boundary conditions.

Invalid attribute of the pointer to be set or modified in Data Fitting task descriptor with the $d f$ ? editidxptr task editor.

Index of the pointer to be set or modified in the Data Fitting task descriptor with the $d f$ ? editidxptr task editor is out of the pre-defined range.

Invalid number of interpolation sites.
Array of interpolation sites is not defined.
Invalid flag describing the structure of interpolation sites.

Invalid size of the array defining derivative orders to be computed at interpolation sites.

Status Code	Description
DF_ERROR_BAD_DORDER	Array defining derivative orders to be computed at   interpolation sites is not defined.
DF_ERROR_BAD_DATA_HINT	Invalid flag providing additional information about   partition or interpolation sites.
DF_ERROR_BAD_INTERP	Array of spline-based interpolation results is not   defined.
DF_ERROR_BAD_INTERP_HINT	Invalid flag defining the structure of spline-based   interpolation results.
DF_ERROR_BAD_CELL_IDX	Array of indices of partition cells containing   interpolation sites is not defined.
DF_ERROR_BAD_NLIM	Invalid size of arrays containing integration limits.
DF_ERROR_BAD_LLIM	Array of the left-side integration limits is not   defined.
DF_ERROR_BAD_RLIM	Array of the right-side integration limits is not   defined.
DF_ERROR_BAD_INTEGR	Array of spline-based integration results is not   defined.
DF_ERROR_BAD_INTEGR_HINT	Invalid flag providing the structure of the array of   spline-based integration results.

## NOTE

The routine that estimates piecewise polynomial cubic spline coefficients can return internal error codes related to the specifics of the implementation. Such error codes indicate invalid input data or other issues unrelated to Data Fitting routines.

## Data Fitting Task Creation and Initialization Routines

Task creation and initialization routines are functions used to create a new task descriptor and initialize its parameters. The Data Fitting component provides the df?newtask1d routine that creates and initializes a new task descriptor for a one-dimensional Data Fitting task.

```
df?newtask1d
Creates and initializes a new task descriptor for a one-
dimensional Data Fitting task.
Syntax
status = dfsnewtask1d(task, nx, x, xhint, ny, y, yhint)
status = dfdnewtaskld(task, nx, x, xhint, ny, y, yhint)
```

Include Files

- mkl_df.f90


## Input Parameters

Name	Type
$n \mathrm{n}$	INTEGER
$x$	```REAL(KIND=4) DIMENSION(*) for dfsnewtaskld```
	```REAL(KIND=8) DIMENSION(*) for dfdnewtask1d```

xhint INTEGER

ny
 INTEGER

Y

REAL (KIND=4) DIMENSION(*) for dfsnewtaskld

REAL (KIND=8) DIMENSION(*)
for dfdnewtaskld
INTEGER

Description

Number of breakpoints representing partition of interpolation interval $[\mathrm{a}, \mathrm{b}$].

One-dimensional array containing the strictly sorted breakpoints from interpolation interval [a,b]. The structure of the array is defined by parameter xhint:

- If partition is non-uniform or quasi-uniform, the array should contain $n x$ strictly ordered values.
- If partition is uniform, the array should contain two entries that represent endpoints of interpolation interval [a, b].

Caution

The array must be strictly sorted. If it is unordered, the results of data fitting routines are not correct.

A flag describing the structure of partition x. For the list of possible values of xhint, see table "Hint Values for Partition x". If you set the flag to the DF_NO_HINT value, the library interprets the partition as non-uniform.

Dimension of vector-valued function y.
Vector-valued function y, array of size $n x^{*} n y$.
The storage format of function values in the array is defined by the value of flag yhint.

A flag describing the structure of array y. Valid hint values are listed in table "Hint Values for Vector-Valued Function $y^{\prime \prime}$. If you set the flag to the DF_NO_HINT value, the library assumes that all ny coordinates of the vector-valued function y are provided and stored in row-major format.

Output Parameters

Name	Type
task	TYPE (DF_TASK)
status	INTEGER

Description

Descriptor of the task.
Status of the routine:

- DF_STATUS_OK if the task is created successfully.
- Non-zero error code if the task creation failed. See "Task Status and Error Reporting" for error code definitions.

Description

The df?newtaskid routine creates and initializes a new Data Fitting task descriptor with user-specified parameters for a one-dimensional Data Fitting task. The x and $n x$ parameters representing the partition of interpolation interval $[a, b]$ are mandatory. If you provide invalid values for these parameters, such as a NULL pointer x or the number of breakpoints smaller than two, the routine does not create the Data Fitting task and returns an error code.

If you provide a vector-valued function y, make sure that the function dimension $n y$ and the array of function values y are both valid. If any of these parameters are invalid, the routine does not create the Data Fitting task and returns an error code.

If you store coordinates of the vector-valued function y in non-contiguous memory locations, you can set the yhint flag to DF_1ST_COORDINATE, and pass only the first coordinate of the function into the task creation routine. After successful creation of the Data Fitting task, you can pass the remaining coordinates using the df?editidxptr task editor.

If the routine fails to create the task descriptor, it returns a NULL task pointer.
The routine supports the following hint values for partition x :

Hint Values for Partition x

Value	Description
DF_NON_UNIFORM_PARTITION	Partition is non-uniform.
DF_QUASI_UNIFORM_PARTITION	Partition is quasi-uniform.
DF_UNIFORM_PARTITION	Partition is uniform.
DF_NO_HINT	No hint is provided. By default, partition is interpreted as non- uniform.

The routine supports the following hint values for the vector-valued function:
Hint Values for Vector-Valued Function y

Value	Description
DF_MATRIX_STORAGE_ROWS	Data is stored in row-major format according to C conventions.
DF_MATRIX_STORAGE_COLS	Data is stored in column-major format according to Fortran conventions.
DF_1ST_COORDINATE	The first coordinate of vector-valued data is provided.
DF_NO_HINT	No hint is provided. By default, the coordinates of vector-valued function y are provided and stored in row-major format.

NOTE

You must preserve the arrays x (breakpoints) and y (vector-valued functions) through the entire workflow of the Data Fitting computations for a task, as the task stores the addresses of the arrays for spline-based computations.

Task Configuration Routines

In order to configure tasks, you can use task editors and task query routines.

Task editors initialize or change the predefined Data Fitting task parameters. You can use task editors to initialize or modify pointers to arrays or parameter values.

Task editors can be task-specific or generic. Task-specific editors can modify more than one parameter related to a specific task. Generic editors modify a single parameter at a time.
The Data Fitting component of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides the following task editors:
Data Fitting Task Editors

Editor	Description	Type
df?	Changes parameters of the piecewise polynomial	Task-specific
editppspline1d	spline.	Generic
df?editptr	Changes a pointer in the task descriptor.	Generic
dfieditval	Changes a value in the task descriptor.	Generic
df?editidxptr	Changes a coordinate of data represented in matrix format, such as a vector-valued function or spline coefficients.	

Task query routines are used to read the predefined Data Fitting task parameters. You can use task query routines to read the values of pointers or parameters.

Task query routines are generic (not task-specific), allowing you to read a single parameter at a time.
The Data Fitting component of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides the following task query routines:
Data Fitting Task Query Routines

Editor	Description	Type
df?queryptr	Queries a pointer in the task descriptor.	Generic
dfiqueryval	Queries a value in the task descriptor.	Generic
df?queryidxptr	Queries a coordinate of data represented in matrix format, such as a vector-valued function or spline coefficients.	Generic

```
df?editppspline1d
```

Modifies parameters representing a spline in a Data
Fitting task descriptor.
Syntax

```
status = dfseditppsplineld(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
scoeffhint)
status = dfdeditppsplineld(task, s_order, s_type, bc_type, bc, ic_type, ic, scoeff,
scoeffhint)
```

Include Files

- mkl_df.f90

Input Parameters

Name	Type	Description
task	TYPE (DF_TASK)	Descriptor of the task.
s_order	INTEGER	Spline order. The parameter takes one of the values described in table "Spline Orders Supported by Data Fitting Functions".
s_type	INTEGER	Spline type. The parameter takes one of the values described in table "Spline Types Supported by Data Fitting Functions".
bc_type	INTEGER	Type of boundary conditions. The parameter takes one of the values described in table "Boundary Conditions Supported by Data Fitting Functions".
bc	REAL (KIND=4) DIMENSION(*) for dfseditppspline1d REAL (KIND=8) DIMENSION(*) for dfdeditppspline1d	Pointer to boundary conditions. The size of the array is defined by the value of parameter bc_type: - If you set free-end or not-a-knot boundary conditions, pass the NULL pointer to this parameter. - If you combine boundary conditions at the endpoints of the interpolation interval, pass an array of two elements. - If you set a boundary condition for the default quadratic spline or a periodic condition for Hermite or the default cubic spline, pass an array of one element.
ic_type	INTEGER	Type of internal conditions. The parameter takes one of the values described in table "Internal Conditions Supported by Data Fitting Functions".
ic	REAL (KIND=4) DIMENSION(*) for dfseditppsplineld REAL (KIND=8) DIMENSION(*) for dfdeditppspline1d	A non-NULL pointer to the array of internal conditions. The size of the array is defined by the value of parameter ic_type: - If you set first derivatives or second derivatives internal conditions (ic_type=DF_IC_1ST_DER or ic_type=DF_IC_2ND_DER), pass an array of n-1 derivative values at the internal points of the interpolation interval. - If you set the knot values internal condition for Subbotin spline (ic_type=DF_IC_Q_KNOT) and the knot partition is non-uniform, pass an array of $n+1$ elements. - If you set the knot values internal condition for Subbotin spline (ic_type=DF_IC_Q_KNOT) and the knot partition is uniform, pass an array of four elements.
scoeff	```REAL(KIND=4) DIMENSION(*) for dfseditppspline1d REAL(KIND=8) DIMENSION(*) for dfdeditppsplineld```	Spline coefficients. An array of size $n y^{*} s_{\text {_ }}$ order* ($n x-1$). The storage format of the coefficients in the array is defined by the value of flag scoeffhint.

Name
 scoeffhint INTEGER

Description

A flag describing the structure of the array of spline coefficients. For valid hint values, see table "Hint Values for Spline Coefficients". The library stores the coefficients in row-major format. The default value is DF_NO_HINT.

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

Description

The editor modifies parameters that describe the order, type, boundary conditions, internal conditions, and coefficients of a spline. The spline order definition is provided in the "Mathematical Conventions" section. You can set the spline order to any value supported by Data Fitting functions. The table below lists the available values:

Spline Orders Supported by the Data Fitting Functions

Order	Description
DF_PP_STD	Artificial value. Use this value for look-up and stepwise constant interpolants only.
DF_PP_LINEAR	Piecewise polynomial spline of the second order (linear spline).
DF_PP_QUADRATIC	Piecewise polynomial spline of the third order (quadratic spline).
DF_PP_CUBIC	Piecewise polynomial spline of the fourth order (cubic spline).

To perform computations with a spline not supported by Data Fitting routines, set the parameter defining the spline order and pass the spline coefficients to the library in the supported format. For format description, see figure "Row-major Coefficient Storage Format".
The table below lists the supported spline types:
Spline Types Supported by Data Fitting Functions

Type	Description
$D F \_P P_{-}$DEFAULT	The default spline type. You can use this type with linear, quadratic, or user-defined splines.
DF_PP_SUBBOTIN	Quadratic splines based on Subbotin algorithm, [StechSub76].
DF_PP_NATURAL	Natural cubic spline.

Type	Description
DF_PP_HERMITE	Hermite cubic spline.
DF_PP_BESSEL	Bessel cubic spline.
DF_PP_AKIMA	Akima cubic spline.
DF_LOOKUP_INTERPOLANT	Look-up interpolant.
DF_CR_STEPWISE_CONST_INTERPOLANT	Continuous right step-wise constant interpolant.
DF_CL_STEPWISE_CONST_INTERPOLANT	Continuous left step-wise constant interpolant.

If you perform computations with look-up or step-wise constant interpolants, set the spline order to the DF_PP_STD value.
Construction of specific splines may require boundary or internal conditions. To compute coefficients of such splines, you should pass boundary or internal conditions to the library by specifying the type of the conditions and providing the necessary values. For splines that do not require additional conditions, such as linear splines, set condition types to $D F_{-} N O \quad B C$ and $D F \_N O$ IC, and pass NULL pointers to the conditions. The table below defines the supported boundary conditions:

Boundary Conditions Supported by Data Fitting Functions

Boundary Condition	Description	Spline
DF_NO_BC	No boundary conditions provided.	All
DF_BC_NOT_A_KNOT	Not-a-knot boundary conditions.	Akima, Bessel, Hermite, natural cubic
DF_BC_FREE_END	Free-end boundary conditions.	Akima, Bessel, Hermite, natural cubic, quadratic Subbotin
DF_BC_1ST_LEFT_DER	The first derivative at the left endpoint.	Akima, Bessel, Hermite, natural cubic, quadratic Subbotin
DF_BC_1ST_RIGHT_DER	The first derivative at the right endpoint.	Akima, Bessel, Hermite, natural cubic, quadratic Subbotin
DF_BC_2ST_LEFT_DER	The second derivative at the left endpoint.	Akima, Bessel, Hermite, natural cubic, quadratic Subbotin
DF_BC_2ND_RIGHT_DER	The second derivative at the right	Akima, Bessel, Hermite, natural
endpic, quadratic Subbotin		

NOTE

To construct a natural cubic spline, pass these settings to the editor:

- DF_PP_CUBIC as the spline order,
- DF_PP_NATURAL as the spline type, and
- DF_BC_FREE_END as the boundary condition.

To construct a cubic spline with other boundary conditions, pass these settings to the editor:

- DF_PP_CUBIC as the spline order,
- DF_PP_NATURAL as the spline type, and
- the required type of boundary condition.

For Akima, Hermite, Bessel, and default cubic splines use the corresponding type defined in Table Spline Types Supported by Data Fitting Functions.

You can combine the values of boundary conditions with a bitwise or operation. This permits you to pass combinations of first and second derivatives at the endpoints of the interpolation interval into the library. To pass a first derivative at the left endpoint and a second derivative at the right endpoint, set the boundary conditions to DF_BC_1ST_LEFT_DER OR DF_BC_2ND_RIGHT_DER.
You should pass the combined boundary conditions as an array of two elements. The first entry of the array contains the value of the boundary condition for the left endpoint of the interpolation interval, and the second entry - for the right endpoint. Pass other boundary conditions as arrays of one element.

For the conditions defined as a combination of valid values, the library applies the following rules to identify the boundary condition type:

- If not required for spline construction, the value of boundary conditions is ignored.
- Not-a-knot condition has the highest priority. If set, other boundary conditions are ignored.
- Free-end condition has the second priority after the not-a-knot condition. If set, other boundary conditions are ignored.
- Periodic boundary condition has the next priority after the free-end condition.
- The first derivative has higher priority than the second derivative at the right and left endpoints.

If you set the periodic boundary condition, make sure that function values at the endpoints of the interpolation interval are identical. Otherwise, the library returns an error code. The table below specifies the values to be provided for each type of spline if the periodic boundary condition is set.
Boundary Requirements for Periodic Conditions

Spline Type	Periodic Boundary Condition Support	Boundary Value
Linear	Yes	Not required
Default quadratic	No	
Subbotin quadratic	No	Not required
Natural cubic	Yes	Not required
Bessel	Yes	Not required
Akima	Yes	First derivative
Hermite cubic	Yes	Second derivative
Default cubic	Yes	

Internal conditions supported in the Data Fitting domain that you can use for the ic_type parameter are the following:
Internal Conditions Supported by Data Fitting Functions

Internal Condition	Description	Spline
DF_NO_IC	No internal conditions provided.	
DF_IC_1ST_DER	Array of first derivatives of size $n-2$, where n is the number of breakpoints. Derivatives are applicable to each coordinate of the vector-valued function.	Hermite cubic
	Array of second derivatives of size n-2, where n is the number of breakpoints. Derivatives are applicable to each coordinate of	Default cubic
the vector-valued function.		

To construct a Subbotin quadratic spline, you have three options to get the array of knots in the library:

- If you do not provide the knots, the library uses the default values of knots $t=\left\{t_{i}\right\}, i=0, \ldots, n$ according to the rule: $t_{0}=x_{0}, t_{n}=x_{n-1}, t_{i}=\left(x_{i}+x_{i-1}\right) / 2, i=1, \ldots, n-1$.
- If you provide the knots in an array of size $n+1$, the knots form a non-uniform partition. Make sure that the knot values you provide meet the following conditions:
$t_{0}=x_{0}, t_{n}=x_{n-1}, t_{i} \in\left(x_{i-1}, x_{i}\right), i=1, \ldots, n-1$.
- If you provide the knots in an array of size 4, the knots form a uniform partition
$t_{0}=x_{0}, t_{1}=I, t_{2}=r, t_{3}=x_{n-1}$, where $I \in\left(x_{0}, x_{1}\right)$ and $r \in\left(x_{n-2}, x_{n-1}\right)$.
In this case, you need to set the value of the ic_type parameter holding the type of internal conditions to DF_IC_Q_KNOT OR DF_UNIFORM_PARTITION.

NOTE

Since the partition is uniform, perform an OR operation with the DF_UNIFORM_PARTITION partition hint value described in Table Hint Values for Partition x.

For computations based on look-up and step-wise constant interpolants, you can avoid calling the df? editppspline1d editor and directly call one of the routines for spline-based computation of spline values, derivatives, or integrals. For example, you can call the df?construct1d routine to construct the required spline with the given attributes, such as order or type.
The memory location of the spline coefficients is defined by the scoeff parameter. Make sure that the size of the array is sufficient to hold $n y^{*} s_{\text {_order }}{ }^{*}(n x-1)$ values.

The df?editppspline1d routine supports the following hint values for spline coefficients:

Hint Values for Spline Coefficients

Order	Description
DF_1ST_COORDINATE	The first coordinate of vector-valued data is provided.
DF_NO_HINT	No hint is provided. By default, all sets of spline coefficients are stored in row-major format.

The coefficients for all coordinates of the vector-valued function are packed in memory one by one in successive order, from function $y 1$ to function $y n y$.
Within each coordinate, the library stores the coefficients as an array, in row-major format:
$c_{1,0}, c_{1,1}, \ldots, c_{1, k}, c_{2,0}, c_{2,1}, \ldots, c_{2, k}, \ldots, c_{n-1,0}, c_{n-1,1}, \ldots, c_{n-1, k}$
Mapping of the coefficients to storage in the scoeff array is described below, where $c_{i, j}$ is the j th coefficient of the function

$$
P_{i}(x)=c_{i, 0}+c_{i, 1}\left(x-x_{i}\right)+\ldots+c_{i, k}\left(x-x_{i}\right)^{k}
$$

See Mathematical Conventions for more details on nomenclature and interpolants.

Row-major Coefficient Storage Format

If you store splines corresponding to different coordinates of the vector-valued function at non-contiguous memory locations, do the following:

1. Set the scoeffhint flag to DF_1ST_COORDINATE and provide the spline for the first coordinate.
2. Pass the spline coefficients for the remaining coordinates into the Data Fitting task using the df?
editidxptr task editor.
Using the df?editppspline1d task editor, you can provide to the Data Fitting task an already constructed spline that you want to use in computations. To ensure correct interpretation of the memory content, you should set the following parameters:

- Spline order and type, if appropriate. If the spline is not supported by the library, set the s_type parameter to DF_PP_DEFAULT.
- Pointer to the array of spline coefficients in row-major format.
- The scoeffhint parameter describing the structure of the array:
- Set the scoeffhint flag to the DF_1ST_COORDINATE value to pass spline coefficients stored at different memory locations. In this case, you can set the parameters that describe boundary and internal conditions to zero.
- Use the default value DF_NO_HINT for all other cases.

Before passing an already constructed spline into the library, you should call the dfieditval task editor to provide the dimension of the spline DF_NY. See table "Parameters Supported by the dfieditval Task Editor" for details.
After you provide the spline to the Data Fitting task, you can run computations that use this spline.

NOTE

You must preserve the arrays bc (boundary conditions), ic (internal conditions), and scoeff (spline coefficients) through the entire workflow of the Data Fitting computations for a task, as the task stores the addresses of the arrays for spline-based computations.

df?editptr

Modifies a pointer to an array held in a Data Fitting task descriptor.

Syntax

```
status = dfseditptr(task, ptr_attr, ptr)
status = dfdeditptr(task, ptr_attr, ptr)
```


Include Files

- mkl_df.f90

Input Parameters

Name	Type	Description
task	TYPE (DF_TASK)	
ptr_attr	INTEGER	Descriptor of the task.
ptr	The parameter to change. For details, see the Pointer Attribute column in table "Pointers Supported by the df? editptr Task Editor".	
	REAL (KIND=4) DIMENSION (*) for dfseditptr	New pointer. For details, see the Purpose column in table REAL (KIND=8) DIMENSION (*)
	for dfdeditptr	

Output Parameters

Name Type

status INTEGER

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

Description

The df?editptr editor replaces the pointer of type ptr_attr stored in a Data Fitting task descriptor with a new pointer ptr. The table below describes types of pointers supported by the editor:

Pointers Supported by the df?editptr Task Editor

Pointer Attribute	Purpose
DF_X	Partition x of the interpolation interval, an array of strictly sorted breakpoints.
Caution The array must be strictly sorted. If it is unordered, the results of data fitting routines are not correct.	
	Vector-valued function y
DF_IC	Internal conditions for spline construction. For details, see table "Internal Conditions Supported by Data Fitting Functions".
DF_BC	Boundary conditions for spline construction. For details, see table "Boundary Conditions Supported by Data Fitting Functions".

You can use df?editptr to modify different types of pointers including pointers to the vector-valued function and spline coefficients stored in contiguous memory. Use the df?editidxptr editor if you need to modify pointers to coordinates of the vector-valued function or spline coefficients stored at non-contiguous memory locations.
If you modify a partition of the interpolation interval, then you should call the dfieditval task editor with the corresponding value of DF_XHINT, even if the structure of the partition remains the same.
If you pass a NULL pointer to the df?editptr task editor, the task remains unchanged and the routine returns an error code. For the predefined error codes, please see "Task Status and Error Reporting".

NOTE

You must preserve the arrays x (breakpoints), y (vector-valued functions), bc (boundary conditions), ic (internal conditions), and scoeff (spline coefficients) through the entire workflow of the Data Fitting computations which use those arrays, as the task stores the addresses of the arrays for spline-based computations.

```
dfieditval
Modifies a parameter value in a Data Fitting task
descriptor.
Syntax
status = dfieditval(task, val_attr, val)
```


Include Files

- mkl_df.f90

Input Parameters

Name	Type	Description
task	TYPE (DF_TASK)	Descriptor of the task.

Name	Type
val_attr	INTEGER
val	INTEGER

Output Parameters

Name	Type
status	INTEGER

Description

The parameter to change. See table "Parameters Supported by the dfieditval Task Editor".

A new parameter value. See table "Parameters Supported by the dfieditval Task Editor".

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

Description

The dfieditval task editor replaces the parameter of type val_attr stored in a Data Fitting task descriptor with a new value val. The table below describes valid types of parameter val_attr supported by the editor:

Parameters Supported by the dfieditval Task Editor

Parameter Attribute	Purpose
DF_NX	Number of breakpoints
DF_XHINT	A flag describing the structure of partition. See table "Hint Values for Partition $x^{\prime \prime}$ for the list of available values.
DF_NY	Dimension of the vector-valued function
DF_YHINT	A flag describing the structure of the vector-valued function. See table "Hint Values for Vector Function y " for the list of available values.
DF_SPLINE_ORDER	Spline order. See table "Spline Orders Supported by Data Fitting Functions" for the list of available values.
DF_SPLINE_TYPE	Spline type. See table "Spline Types Supported by Data Fitting Functions" for the list of available values.
DF_BC_TYPE	Type of boundary conditions used in spline construction. See table "Boundary Conditions Supported by Data Fitting Functions" for the list of available values.
DF_IC_TYPE	Type of internal conditions used in spline construction. See table "Internal Conditions Supported by Data Fitting Functions" for the list of available values.
DF_PP_COEFF_HINT	A flag describing the structure of spline coefficients. See table "Hint Values for Spline Coefficients" for the list of available values.
DF_CHECK_FLAG	A flag which controls checking of Data Fitting parameters. See table "Possible Values for the DF_CHECK_FLAG Parameter" for the list of available values.

If you pass a zero value for the parameter describing the size of the arrays that hold coefficients for a partition, a vector-valued function, or a spline, the parameter held in the Data fitting task remains unchanged and the routine returns an error code. For the predefined error codes, see "Task Status and Error Reporting".

Possible Values for the DF_CHECK_FLAG Parameter

Value	Description
DF_ENABLE_CHECK_FLAG	Checks the correctness of parameters of Data Fitting computational routines (default mode).
DF_DISABLE_CHECK_FLAG	Disables checking of the correctness of parameters of Data Fitting computational routines.

Use DF_CHECK_FLAG for val_attr in order to control validation of parameters of Data Fitting computational routines such as df?construct1d, df?interpolateld/df?interpolateex1d, and df?
searchcells1d/df?searchcellsex1d, which can perform better with a small number of interpolation sites or integration limits (fewer than one dozen). The default mode, with checking of parameters enabled, should be used as you develop a Data Fitting-based application. After you complete development you can disable parameter checking in order to improve the performance of your application.
If you modify the parameter describing dimensions of the arrays that hold the vector-valued function or spline coefficients in contiguous memory, you should call the df?editptr task editor with the corresponding pointers to the vector-valued function or spline coefficients even when this pointer remains unchanged. Call the df?editidxptr editor if those arrays are stored in non-contiguous memory locations.

You must call the dfieditval task editor to edit the structure of the partition DF_XHINT every time you modify a partition using df?editptr, even if the structure of the partition remains the same.

```
df?editidxptr
Modifies a pointer to the memory representing a
coordinate of the data stored in matrix format.
Syntax
status = dfseditidxptr(task, ptr_attr, idx, ptr)
status = dfdeditidxptr(task, ptr_attr, idx, ptr)
```

Include Files

- mkl_df.f90

Input Parameters

Name	Type	Description
task	TYPE (DF_TASK)	Descriptor of the task.
ptr_attr	INTEGER	Type of the data to be modified. The parameter takes one of the values described in "Data Attributes Supported by the df?editidxptr Task Editor".
idx	INTEGER	Index of the coordinate whose pointer is to be modified. for $\operatorname{dfseditidxptr~}$
		Pointer to the data that holds values of coordinate idx. For details, see table "Data Attributes Supported by the df? editidxptr Task Editor".

Name Type Description
 REAL (KIND=8) DIMENSION(*) for dfdeditidxptr

Output Parameters

Name	Type
status	INTEGER

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

Description

The routine modifies a pointer to the array that holds the idx coordinate of vector-valued function y or the pointer to the array of spline coefficients corresponding to the given coordinate.

You can use the editor if you need to pass into a Data Fitting task or modify the pointer to coordinates of the vector-valued function or spline coefficients held at non-contiguous memory locations. Do not use the editor for coordinates at contiguous memory locations in row-major format.
Before calling this editor, make sure that you have created and initialized the task using a task creation function or a relevant editor such as the generic or specific df?editppspline1d editor.

Data Attributes Supported by the df?editidxptr Task Editor

Data Attribute	Description
$D F \_Y$	Vector-valued function y
$D F \_P P_{-} S C O E F F$	Piecewise polynomial spline coefficients

When using df?editidxptr, you might receive an error code in the following cases:

- You passed an unsupported parameter value into the editor.
- The value of the index exceeds the predefined value that equals the dimension ny of the vector-valued function.
- You pass a NULL pointer to the editor. In this case, the task remains unchanged.
- You pass a pointer to the idx coordinate of the vector-valued function you provided to contiguous memory in column-major format.
The code example below demonstrates how to use the editor for providing values of a vector-valued function stored in two non-contiguous arrays:

df?queryptr

Reads a pointer to an array held in a Data Fitting task descriptor.

Syntax

```
status = dfsqueryptr(task, ptr_attr, ptr)
status = dfdqueryptr(task, ptr_attr, ptr)
```


Include Files

- mkl_df.f90

Input Parameters

Name	Type
task	TYPE (DF_TASK)
ptr_attr	INTEGER

Description

Descriptor of the task.
The parameter to query. The query routine supports pointer attributes described in the table "Pointers Supported by the df?editptr Task Editor". For details, see the Pointer Attribute column in the table.

Output Parameters

Name	Type
ptr	INTEGER $(\mathrm{KIND}=8)$

status INTEGER

Description

Pointer to array returned by the query routine. For details, see the Purpose column in table "Pointers Supported by the df?editptr Task Editor".

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

Description

The df?queryptr routine returns the pointer of type ptr_attr stored in a Data Fitting task descriptor as parameter ptr. Attributes of the pointers supported by the query function are identical to those supported by the editor df?editptr editor in the table "Pointers Supported by the df?editptr Task Editor".

You can use df?queryptr to read different types of pointers including pointers to the vector-valued function and spline coefficients stored in contiguous memory.
dfiqueryval
Reads a parameter value in a Data Fitting task descriptor.

Syntax

```
status = dfiqueryval(task, val_attr, val)
```

Include Files

- mkl_df.f90

Input Parameters

Name	Type	Description
task	TYPE (DF_TASK)	Descriptor of the task.

Name	Type
val_attr	INTEGER

Output Parameters

Name	Type
val	INTEGER
status	INTEGER

Description

The parameter to query. The query function supports the parameter attributes described in "Parameters Supported by the dfieditval Task Editor".

Description

The parameter value returned by the query function. See table "Parameters Supported by the dfieditval Task Editor".

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

Description

The dfiqueryval routine returns a parameter of type val_attr stored in a Data Fitting task descriptor as parameter val. The query function supports the parameter attributes described in "Parameters Supported by the dfieditval Task Editor".
df?queryidxptr
Reads a pointer to the memory representing a coordinate of the data stored in matrix format.

Syntax

```
status = dfsqueryidxptr(task, ptr_attr, idx, ptr)
status = dfdqueryidxptr(task, ptr_attr, idx, ptr)
```

Include Files

- mkl_df.f90

Input Parameters

Name	Type
task	TYPE (DF_TASK)
ptr_attr	INTEGER
idx	INTEGER

Description

Descriptor of the task.
Pointer attribute to query. The parameter takes one of the attributes described in "Data Attributes Supported by the df?editidxptr Task Editor".

Index of the coordinate of the pointer to query.

Output Parameters

Name
ptr
status
Type
INTEGER (KIND=8)
INTEGER

Description

Pointer to the data that holds values of coordinate idx returned. For details, see table "Data Attributes Supported by the df?editidxptr Task Editor".

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code otherwise. See "Task Status and Error Reporting" for error code definitions.

Description

The routine returns a pointer to the array that holds the $i d x$ coordinate of vector-valued function y or the pointer to the array of spline coefficients corresponding to the given coordinate.
You can use the query routine if you need the pointer to coordinates of the vector-valued function or spline coefficients held at non-contiguous memory locations or at a contiguous memory location in row-major format (the default storage format for spline coefficients).

Before calling this query routine, make sure that you have created and initialized the task using a task creation function or a relevant editor such as the generic or specific df?editppspline1d editor.

When using df?queryidxptr, you might receive an error code in the following cases:

- You passed an unsupported parameter value into the editor.
- The value of the index exceeds the predefined value that equals the dimension ny of the vector-valued function.
- You request the pointer to the idx coordinate of the vector-valued function you provided to contiguous memory in column-major format.

Data Fitting Computational Routines

Data Fitting computational routines are functions used to perform spline-based computations, such as:

- spline construction
- computation of values, derivatives, and integrals of the predefined order
- cell search

Once you create a Data Fitting task and initialize the required parameters, you can call computational routines as many times as necessary.
The table below lists the available computational routines:

Data Fitting Computational Routines

Routine	Description
$d f ? c o n s t r u c t 1 d$	Constructs a spline for a one-dimensional Data
Fitting task.	
$d f ?$ interpolateex1d	Computes spline values and derivatives.
	Computes spline values and derivatives by calling user-provided interpolants.
$d f ?$ integrateld	Computes spline-based integrals.

Routine	Description
df?integrateex1d	Computes spline-based integrals by calling user- provided integrators.
df?searchcells1d	Finds indices of cells containing interpolation sites.
df?searchcellsex1d	Finds indices of cells containing interpolation sites by calling user-provided cell searchers.

If a Data Fitting computation completes successfully, the computational routines return the DF_STATUS_OK code. If an error occurs, the routines return an error code specifying the origin of the failure. Some possible errors are the following:

- The task pointer is NULL.
- Memory allocation failed.
- The computation failed for another reason.

For the list of available status codes, see "Task Status and Error Reporting".

NOTE

Data Fitting computational routines do not control errors for floating-point conditions, such as overflow, gradual underflow, or operations with Not a Number (NaN) values.

df?construct1d

Syntax

Constructs a spline of the given type.

```
status = dfsconstructld(task, s_format, method)
status = dfdconstruct1d(task, s_format, method)
```


Include Files

- mkl_df.f90

Input Parameters

Name	Type
task	TYPE (DF_TASK)
S_format	INTEGER
method	INTEGER

Description

Descriptor of the task.
Spline format. The supported value is $\mathrm{DF}_{-} \mathrm{PP}$ _ SPLINE. $^{\text {S }}$
Construction method. The supported value is DF_METHOD_STD.

Output Parameters

Name	Type
status	INTEGER

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

Description

Before calling df?construct1d, you need to create and initialize the task, and set the parameters representing the spline. Then you can call the df?construct1d routine to construct the spline. The format of the spline is defined by parameter s_format. The method for spline construction is defined by parameter method. Upon successful construction, the spline coefficients are available in the user-provided memory location in the format you set through the Data Fitting editor. For the available storage formats, see table "Hint Values for Spline Coefficients".
df?interpolate1d/df?interpolateex1d
Runs data fitting computations.

Syntax

```
status = dfsinterpolateld(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell)
status = dfdinterpolateld(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell)
status = dfsinterpolateexld(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell, le_cb, le_params, re_cb, re_params, i_cb, i_params, search_cb,
search_params)
status = dfdinterpolateexld(task, type, method, nsite, site, sitehint, ndorder, dorder,
datahint, r, rhint, cell, le_cb, le_params, re_cb, re_params, i_cb, i_params, search_cb,
search_params)
```

Include Files

- mkl_df.f90

Input Parameters

Name	Type
task	TYPE (DF_TASK)
type	
method	INTEGER
nsite	INTEGER
site	REAL(KIND=4)
	DIMENSION (*) for dfsinterpolateld
	dfsinterpolateex1d

Description

Descriptor of the task.
Type of spline-based computations. The parameter takes one or more values combined with an OR operation. For the list of possible values, see table "Computation Types Supported by the df?interpolate1d/ df?interpolate1d Routines".

Computation method. The supported value is DF_METHOD_PP.

Number of interpolation sites.
Array of interpolation sites of size nsite. The structure of the array is defined by the sitehint parameter:

- If sites form a non-uniform partition, the array should contain nsite values.

Name	Type
	REAL (KIND=8) DIMENSION (*) for dfdinterpolate1d/ dfdinterpolateex1d
sitehint	INTEGER
ndorder	INTEGER
dorder	INTEGER DIMENSION(*)
datahint	REAL (KIND=4)
	DIMENSION(*) for dfsinterpolateld/ dfsinterpolateex1d
	REAL (KIND=8)
	DIMENSION(*) for dfdinterpolateld/ dfdinterpolateex1d
r	REAL (KIND=4)
	DIMENSION(*) for dfsinterpolate1d/ dfsinterpolateex1d
	REAL (KIND=8) DIMENSION(*) for dfdinterpolate1d/ dfdinterpolateex1d
rhint	INTEGER
cell	INTEGER DIMENSION(*)

Description

- If sites form a uniform partition, the array should contain two entries that represent the left and the right interpolation sites. The first entry of the array contains the left-most interpolation point. The second entry of the array contains the right-most interpolation point.

A flag describing the structure of the interpolation sites. For the list of possible values of sitehint, see table "Hint Values for Interpolation Sites". If you set the flag to DF_NO_HINT, the library interprets the site-defined partition as non-uniform.

Maximal derivative order increased by one to be computed at interpolation sites.

Array of size ndorder that defines the order of the derivatives to be computed at the interpolation sites. If all the elements in dorder are zero, the library computes the spline values only. If you do not need interpolation computations, set ndorder to zero and pass a NULL pointer to dorder.

Array that contains additional information about the structure of partition x and interpolation sites. This data helps to speed up the computation. If you provide a NULL pointer, the routine uses the default settings for computations. For details on the datahint array, see table "Structure of the datahint Array".

Array for results. If you do not need spline-based interpolation, set this pointer to NULL.

A flag describing the structure of the results. For the list of possible values of rhint, see table "Hint Values for the rhint Parameter". If you set the flag to DF_NO_HINT, the library stores the result in row-major format.

Array of cell indices in partition x that contain the interpolation sites. Provide this parameter as input if type is DF_INTERP_USER_CELL. If you do not need cell indices, set this parameter to NULL.

User-defined callback function for extrapolation at the sites to the left of the interpolation interval.

Name	Type	Description
le_params	INTEGER DIMENSION(*)	Pointer to additional user-defined parameters passed by the library to the le_cb function.
$r e \_c b$	INTEGER	User-defined callback function for extrapolation at the sites to the right of the interpolation interval.
re_params	INTEGER DIMENSION(*)	Pointer to additional user-defined parameters passed by the library to the re_cb function.
i_cb	INTEGER	User-defined callback function for interpolation within the interpolation interval.
i_params	INTEGER DIMENSION(*)	Pointer to additional user-defined parameters passed by the library to the i_cb function.
search_cb	INTEGER	User-defined callback function for computing indices of cells that can contain interpolation sites.
search_params	INTEGER DIMENSION(*)	Pointer to additional user-defined parameters passed by the library to the search_cb function.

Output Parameters

Name	Type
status	INTEGER
r	
cell	

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

Contains results of computations at the interpolation sites.
Array of cell indices in partition x that contain the interpolation sites, which is computed if type is DF_CELL.

Description

The df?interpolateld/df?interpolateexld routine performs spline-based computations with userdefined settings. The routine supports two types of computations for interpolation sites provided in array site:

Computation Types Supported by the df?interpolate1d/df?interpolateex1d Routines

Type	Description
DF_INTERP	Compute derivatives of predefined order. The derivative of the zero order is the spline value.
DF_INTERP_USER_CELL	Compute derivatives of predefined order given user-provided cell indices. The derivative of the zero order is the spline value.

Type	Description
	For this type of the computations you should provide a valid cell array, which holds the indices of cells in the site array containing relevant interpolation sites.
DF_CELL	Compute indices of cells in partition x that contain the sites.

If the indices of cells which contain interpolation types are available before the call to df?interpolateld/ df?interpolateex1d, you can improve performance by using the DF_INTERP_USER_CELL computation type.

NOTE

If you pass any combination of DF _INTERP, DF_INTERP_USER_CELL, and DF_CELL computation types to the routine, the library uses the DF_INTERP_USER_CELL computation mode.
If you specify DF_INTERP_USER_CELL computation mode and a user-defined callback function for computing cell indices to df?interpolateex1d, the library uses the DF_INTERP_USER_CELL computation mode, and the call-back function is not called.

If the sites do not belong to interpolation interval $[a, b]$, the library uses:

- polynomial P_{0} of the spline constructed on interval $\left[x_{0}, x_{1}\right]$ for computations at the sites to the left of a.
- polynomial P_{n-2} of the spline constructed on interval $\left[x_{n-2}, x_{n-1}\right]$ for computations at the sites to the right of b.
Interpolation sites support the following hints:
Hint Values for Interpolation Sites

Value	Description
DF_NON_UNIFORM_PARTITION	Partition is non-uniform.
DF_UNIFORM_PARTITION	Partition is uniform.
DF_SORTED_DATA	Interpolation sites are sorted in the ascending order and define a non-uniform partition.
DF_NO_HINT	No hint is provided. By default, the partition defined by interpolation sites is interpreted as non-uniform.

NOTE

If you pass a sorted array of interpolation sites to the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL), set the sitehint parameter to the DF_SORTED_DATA value. The library uses this information when choosing the search algorithm and ignores any other data hints about the structure of the interpolation sites.

Data Fitting computation routines can use the following hints to speed up the computation:

- DF_UNIFORM_PARTITION describes the structure of breakpoints and the interpolation sites.
- DF_QUASI_UNIFORM_PARTITION describes the structure of breakpoints.

Pass the above hints to the library when appropriate.

For spline-based interpolation, you should set the derivatives whose values are required for the computation. You can provide the derivatives by setting the dorder array of size ndorder as follows:
$\operatorname{dorder}(i)=\left\{\begin{array}{l}1, \text { if derivative of the order } \quad i-1 \text { is required } \quad i=1, \ldots, \text { ndorder } \\ 0, \text { otherwise }\end{array}\right.$
Orders of derivatives $i_{d}(d=1,2, . ., n d e r)$, corresponding to non-zero derivatives to be calculated, form the array $\left\{i_{d}\right\}$ of length $n d e r \leq n d o r d e r$.

The storage format for the interpolation results is specified using the rhint parameter values. For each storage format, Table Hint Values for the rhint Parameter describes how to get the result $R\left(j, s, i_{d}\right)$ from array r, for function index $j(1 \leq j \leq y n)$, site number $s(1 \leq s \leq n s i t e)$, and derivative index $i_{d}(1 \leq d \leq n d e r)$, where yn is the number of functions, nsite is the number of sites, and nder is the total number of non-zero derivatives for interpolation. The array r can be either a one-dimensional array of size $n y^{*} n d e r * n s i t e$ or a threedimensional array with the dimensions described in the table.
Hint Values for the rhint Parameter

Value	Location of $\boldsymbol{R}\left(\boldsymbol{j}, \mathrm{s}, \boldsymbol{i}_{d}\right)$, Onedimensional Array Storage	Location of $\boldsymbol{R}\left(\boldsymbol{j}, \mathrm{s}, \boldsymbol{i}_{d}\right)$, Threedimensional Array Storage
```DF_MATRIX_STORAGE_FU NCS_SITES_DERS (DF_MATRIX_STORAGE_R OWS)```	$\begin{aligned} & r\left(d-1+n d^{*}\left(s-1+n s i t e^{*}(j\right.\right. \\ & -1))+1) \end{aligned}$	```r(d, s, j) rdeclared as r(nder, nsite, ny).```
```DF_MATRIX_STORAGE_FU NCS_DERS_SITES (DF_MATRIX_STORAGE_C OLS)```	$\begin{aligned} & r(s-1+n s i t e *(d-1+n d e r *(j \\ & -1))+1) \end{aligned}$	$\begin{aligned} & r(s, d, j) \\ & r \text { declared as r(nsite, nder, } \\ & n y) . \end{aligned}$
DF_MATRIX_STORAGE_SI TES_FUNCS_DERS	$\begin{aligned} & r\left(d-1+n d e r^{\star}\left(j-1+n y^{\star}(s-\right.\right. \\ & 1))+1) \end{aligned}$	$\begin{aligned} & r(d, j, s) \\ & r \text { declared as } r(n d e r, ~ n y, \\ & \text { nsite). } \end{aligned}$
DF_MATRIX_STORAGE_SI TES_DERS_FUNCS	$\begin{aligned} & r\left(j-1+n y^{*}\left(d-1+n d^{*}(s-\right.\right. \\ & 1))+1) \end{aligned}$	$\begin{aligned} & r(j, d, s) \\ & r \text { declared as } r(n y, \text { nder, } \\ & \text { nsite). } \end{aligned}$
DF_NO_HINT	No hint is provided. By default, the results DF_MATRIX_STORAGE_FUNCS_SITES_DERS.	re stored as in rhint $=$

The following figures show the structure of the storage formats. Each shows sequential memory layout line by line, left to right.

- Storage in r for rhint = DF_MATRIX_STORAGE_FUNCS_SITES_DERS (DF_MATRIX_STORAGE_ROWS):

$\begin{array}{cccc} R\left(1,1, i_{1}\right) & R\left(1,2, i_{1}\right) & \ldots & R\left(1, n s i t e, i_{1}\right) \\ R\left(1,1, i_{2}\right) & R\left(1,2, i_{2}\right) & \ldots & R\left(1, n s i t e, i_{2}\right) \\ \ldots & \ldots & \ldots & \ldots \\ R\left(1,1, i_{n d e r}\right) & R\left(1,2, i_{n d e r}\right) & \ldots & R\left(1, n s i t e, i_{n d e r}\right) \end{array}$	$\begin{array}{cccc} R\left(2,1, i_{1}\right) & R\left(2,2, i_{1}\right) & \ldots & R\left(2, n s i t e, i_{1}\right) \\ R\left(2,1, i_{2}\right) & R\left(2,2, i_{2}\right) & \ldots & R\left(2, n s i t e, i_{2}\right) \\ \ldots & \ldots & \ldots & \ldots \\ R\left(2,1, i_{n d e r}\right) & R\left(2,2, i_{n d e r}\right) & \ldots & R\left(2, n s i t e, i_{n d e r}\right) \end{array}$

- Storage in rfor rhint = DF_MATRIX_STORAGE_FUNCS_DERS_SITES (DF_MATRIX_STORAGE_COLS):

- Storage in rfor rhint = DF_MATRIX_STORAGE_SITES_FUNCS_DERS:

$R\left(1,1, i_{1}\right)$	$R\left(2,1, i_{1}\right)$	\ldots	$R\left(n y, 1, i_{1}\right)$	$R\left(1,2, i_{1}\right)$	$R\left(2,2, i_{1}\right)$	\ldots	$R\left(n y, 2, i_{1}\right)$	
$R\left(1,1, i_{2}\right)$	$R\left(2,1, i_{2}\right)$	\ldots	$R\left(n y, 1, i_{2}\right)$	\ldots				
\ldots	\ldots	\ldots	\ldots		$\ldots\left(1,2, i_{2}\right)$	$R\left(2,2, i_{2}\right)$	\ldots	$R\left(n y, 2, i_{2}\right)$
$R\left(1,1, i_{\text {nder }}\right)$	$R\left(2,1, i_{n d e r}\right)$	\ldots	$R\left(n y, 1, i_{n d e r}\right)$	\ldots	\ldots	\ldots	\ldots	
			$\ldots\left(1,2, i_{n d e r}\right)$	$R\left(2,2, i_{n d e r}\right)$	\ldots	$R\left(n y, 2, i_{n d e r}\right)$	\ldots	

- Storage in rfor rhint = DF_MATRIX_STORAGE_SITES_DERS_FUNCS:

To speed up Data Fitting computations, use the datahint parameter that provides additional information about the structure of the partition and interpolation sites. This data represents a floating-point or a double array with the following structure:

Structure of the datahint Array

Element Number	Description
1	Task dimension
2	Type of additional information
3	Reserved field
4	The total number q of elements containing additional information.
5	Element (1)
\ldots	\ldots
$q+4$	

Data Fitting computation functions support the following types of additional information for datahint (2):
Types of Additional Information

Type	Element Number	Parameter
DF_NO_APRIORI_INFO	0	No parameters are provided. Information about the data structure is absent.

Type	Element Number	Parameter
DF_APRIORI_MOST_LIKELY_CELL	1	Index of the cell that is likely to contain interpolation sites.

To compute indices of the cells that contain interpolation sites, provide the pointer to the array of size nsite for the results. The library supports the following scheme of cell indexing for the given partition $\left\{x_{i}\right\}$, $i=1, \ldots, n x$:
$\operatorname{cell}(j)=i$, if site $(j) \in\left[x_{i}, x_{i+1}\right), i=0, \ldots, n x-2$,
$\operatorname{cell}(j)=n x-1$, if site $(j) \in\left[x_{n x-1}, x_{n x}\right]$,
$\operatorname{cell}(j)=n x$, if $\operatorname{site}(j) \in\left(x_{n x}, x_{n x+1}\right]$,
where

- $x_{0}=-\infty$
- $x_{n x+1}=+\infty$
- $j=1, \ldots$, nsite

To perform interpolation computations with spline types unsupported in the Data Fitting component, use the extended version of the routine df?interpolateexld. With this routine, you can provide user-defined callback functions for computations within, to the left of, or to the right of interpolaton interval $[a, b]$. The callback functions compute indices of the cells that contain the specified interpolation sites or can serve as an approximation for computing the exact indices of such cells.
If you do not pass any function for computations at the sites outside the interval $[a, b]$, the routine uses the default settings.

See Also

Mathematical Conventions for Data Fitting Functions
df?interpcallback
df?searchcellscallback
df?integrate1d/df?integrateex1d
Computes a spline-based integral.

Syntax

```
status = dfsintegrateld(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint)
status = dfdintegrateld(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint)
status = dfsintegrateexld(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint, le_cb, le_params, re_cb, re_params, i_cb, i_params, search_cb,
search_params)
status = dfdintegrateexld(task, method, nlim, llim, llimhint, rlim, rlimhint, ldatahint,
rdatahint, r, rhint, le_cb, le_params, re_cb, re_params, i_cb, i_params, search_cb,
search_params)
```

Include Files

- mkl_df.f90

Input Parameters

Name	Type
task	TYPE (DF_TASK)
method	INTEGER
nlim	INTEGER
llim	REAL (KIND=4) DIMENSION(*) for dfsintegrate1d/ dfsintegrateex1d REAL (KIND=8) DIMENSION (*) for dfdintegrate1d/ dfdintegrateex1d
llimhint	INTEGER
rlim	REAL (KIND=4) DIMENSION(*) for dfsintegrate1d/ dfsintegrateex1d REAL (KIND=8) DIMENSION (*) for dfdintegrate1d/ dfdintegrateex1d
rlimhint	INTEGER
Idatahint	REAL (KIND=4) DIMENSION (*) for dfsintegrate1d/ dfsintegrateex1d REAL (KIND=8) DIMENSION (*) for dfdintegrate1d/ dfdintegrateex1d

Description

Descriptor of the task.
Integration method. The supported value is $\mathrm{DF}_{-} \mathrm{METHOD}{ }^{\mathrm{PP}}$.
Number of pairs of integration limits.
Array of size nlim that defines the left-side integration limits.

A flag describing the structure of the left-side integration limits llim. For the list of possible values of llimhint, see table "Hint Values for Integration Limits". If you set the flag to the DF_NO_HINT value, the library assumes that the leftside integration limits define a non-uniform partition.

Array of size nlim that defines the right-side integration limits.

A flag describing the structure of the right-side integration limits rlim. For the list of possible values of rlimhint, see table "Hint Values for Integration Limits". If you set the flag to the DF_NO_HINT value, the library assumes that the right-side integration limits define a non-uniform partition.

Array that contains additional information about the structure of partition x and left-side integration limits. For details on the Idatahint array, see table "Structure of the datahint Array" in the description of the $d f$? intepolate1d function.

Description

Array that contains additional information about the structure of partition x and right-side integration limits. For details on the rdatahint array, see table "Structure of the datahint Array" in the description of the df?
intepolateld function.

A flag describing the structure of the results. For the list of possible values of rhint, see table "Hint Values for Integration Results". If you set the flag to the DF_NO_HINT value, the library stores the results in row-major format.

User-defined callback function for integration on interval [llim(i), min(rlim(i), a)) for llim(i) <a.

Pointer to additional user-defined parameters passed by the library to the le_cb function.

User-defined callback function for integration on interval $[\max (\operatorname{llim}(i), b), \operatorname{rlim}(i))$ for $\operatorname{rlim}(i) \geq b$.

Pointer to additional user-defined parameters passed by the library to the re_cb function.

User-defined callback function for integration on interval [max(a, llim(i),), min(rlim(i), b)).

Pointer to additional user-defined parameters passed by the library to the i_cb function.

User-defined callback function for computing indices of cells that can contain interpolation sites.

Pointer to additional user-defined parameters passed by the library to the search_cb function.

Output Parameters

Name Type
 status INTEGER

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

Name	Type	Description
r	```REAL(KIND=4) DIMENSION(*) for dfsintegrate1d/ dfsintegrateex1d REAL(KIND=8) DIMENSION(*) for dfdintegrateld/ dfdintegrateex1d```	Array of integration results. The size of the array should be sufficient to hold nlim*ny values, where ny is the dimension of the vector-valued function. The integration results are packed according to the settings in rhint.

Description

The df?integrate1d/df?integrateex1d routine computes spline-based integral on user-defined intervals

$$
I(i, j)=\int_{M_{1}}^{n_{1}} f_{j}(x) d x
$$

,
where $r I_{i}=r \lim (i), I_{i}=\operatorname{llim}(i)$, and $i=1, \ldots, n y$.
If $\operatorname{rlim}(i)<\operatorname{llim}(i)$, the routine returns

$$
I(i, j)=-\int_{x_{4}}^{\pi_{1}} f_{j}(x) d x
$$

The routine supports the following hint values for integration results:
Hint Values for Integration Results

Value	Description
DF_MATRIX_STORAGE_ROWS	Data is stored in row-major format according to C conventions.
DF_MATRIX_STORAGE_COLS	Data is stored in column-major format according to Fortran conventions.
DF_NO_HINT	No hint is provided. By default, the coordinates of vector-valued function y are provided and stored in row-major format.

A common structure of the storage formats for the integration results is as follows:

- Row-major format

$I(1,1)$	\ldots	$I(1, n l i m)$
\ldots	\ldots	\ldots
$I(n y, 1)$	\ldots	$I(n y, n l i m)$
Column-major format		
$I(1,1)$	\ldots	$I(n y, 1)$
\ldots	\ldots	\ldots
$I(1, n l i m)$	\ldots	$I(n y, n l i m)$

Using the llimhint and rlimhint parameters, you can provide the following hint values for integration limits:

Hint Values for Integration Limits

Value	Description
DF_SORTED_DATA	Integration limits are sorted in the ascending order and define a non-uniform partition.
DF_NON_UNIFORM_PARTITION	Partition defined by integration limits is non-uniform.
DF_UNIFORM_PARTITION	Partition defined by integration limits is uniform.
DF_NO_HINT	No hint is provided. By default, partition defined by integration limits is interpreted as non-uniform.

To compute integration with splines unsupported in the Data Fitting component, use the extended version of the routine df?integrateex1d. With this routine, you can provide user-defined callback functions that compute:

- integrals within, to the left of, or to the right of the interpolation interval $[a, b]$
- indices of cells that contain the provided integration limits or can serve as an approximation for computing the exact indices of such cells

If you do not pass callback functions, the routine uses the default settings.

```
See Also
Mathematical Conventions for Data Fitting Functions
df?interpolateld/df?interpolateexld
df?integrcallback
df?searchcellscallback
df?searchcells1d/df?searchcellsex1d
Searches sub-intervals containing interpolation sites.
Syntax
```

```
status = dfssearchcellsld(task, method, nsite, site, sitehint, datahint, cell)
```

status = dfssearchcellsld(task, method, nsite, site, sitehint, datahint, cell)
status = dfdsearchcellsld(task, method, nsite, site, sitehint, datahint, cell)
status = dfdsearchcellsld(task, method, nsite, site, sitehint, datahint, cell)
status = dfssearchcellsexld(task, method, nsite, site, sitehint, datahint, cell,
status = dfssearchcellsexld(task, method, nsite, site, sitehint, datahint, cell,
search_cb, search_params)
search_cb, search_params)
status = dfdsearchcellsexld(task, method, nsite, site, sitehint, datahint, cell,
status = dfdsearchcellsexld(task, method, nsite, site, sitehint, datahint, cell,
search_cb, search_params)

```
search_cb, search_params)
```


Include Files

- mkl_df.f90

Input Parameters

Name	Type	Description
task	TYPE (DF_TASK)	Descriptor of the task.
method	INTEGER	Search method. The supported value is DF_METHOD_STD.

```
Name Type
nsite
site REAL(KIND=4) DIMENSION(*)
for dfssearchcells1d/
dfssearchcellsexld
REAL(KIND=8) DIMENSION(*)
for dfdsearchcells1d/
dfdsearchcellsex1d
sitehint INTEGER
datahint REAL(KIND=4) DIMENSION(*)
    for dfssearchcells1d/
    dfssearchcellsex1d
    REAL(KIND=8) DIMENSION(*)
    for dfdsearchcells1d/
    dfdsearchcellsex1d
search_cb INTEGER
```


Type

INTEGER

```
REAL (KIND=4) DIMENSION(*) for dfssearchcells1d/ dfssearchcellsex1d REAL (KIND=8) DIMENSION(*) for dfdsearchcells1d/ dfdsearchcellsex1d
sitehint INTEGER
datahint
REAL (KIND=4) DIMENSION(*) for dfssearchcells1d/ dfssearchcellsex1d
REAL (KIND=8) DIMENSION(*) for dfdsearchcells1d/ dfdsearchcellsex1d
search_cb INTEGER
```

search_pa INTEGER DIMENSION(*)
rams
search_pa INTEGER DIMENSION(*)
rams

Description

Number of interpolation sites.
Array of interpolation sites of size nsite. The structure of the array is defined by the sitehint parameter:

- If the sites form a non-uniform partition, the array should contain nsite values.
- If the sites form a uniform partition, the array should contain two entries that represent the left-most and the right-most interpolation sites. The first entry of the array contains the left-most interpolation point. The second entry of the array contains the right-most interpolation point.

A flag describing the structure of the interpolation sites. For the list of possible values of sitehint, see table "Hint Values for Interpolation Sites". If you set the flag to DF_NO_HINT, the library interprets the site-defined partition as non-uniform.

Array that contains additional information about the structure of the partition and interpolation sites. This data helps to speed up the computation. If you provide a NULL pointer, the routine uses the default settings for computations. For details on the datahint array, see table "Structure of the datahint Array".

User-defined callback function for computing indices of cells that can contain interpolation sites.

Set to NULL if you are not supplying a callback function.
Pointer to additional user-defined parameters passed by the library to the search_cb function.

Set to NULL if there are no additional parameters or if you are not supplying a callback function.

Output Parameters

Name	Type
status	INTEGER
cell	

Description

Status of the routine:

- DF_STATUS_OK if the routine execution completed successfully.
- Non-zero error code if the routine execution failed. See "Task Status and Error Reporting" for error code definitions.

Array of cell indices in the partition that contain the interpolation sites.

Description

The df?searchcellsld/df?searchcellsex1d routines return array cell of indices of sub-intervals (cells) in the partition that contain interpolation sites available in array site. For details on the cell indexing scheme, see the description of the df?interpolateld/df?interpolateexld computation routines.

Use the datahint parameter to provide additional information about the structure of the partition and/or interpolation sites. The definition of the datahint parameter is availalbe in the description of the df? interpolate1d/df?interpolateexld computation routines.

For description of the user-defined callback for computation of cell indices, see df?searchcellscallback.

```
See Also
Mathematical Conventions for Data Fitting Functions
df?interpolate1d/df?interpolateexld
df?searchcellscallback
df?interpcallback
A callback function for user-defined interpolation to be
passed into df?interpolateex1d.
Syntax
status = dfsinterpcallback(n, cell, site, r, user_params, library_params)
status = dfdinterpcallback(n, cell, site, r, user_params, library_params)
```


Include Files

- mkl_df.f90

Input Parameters

Name	Type	Description
n	INTEGER (KIND=8)	Number of interpolation sites.
cell	INTEGER (KIND=8) DIMENSION (*)	Array of size n containing indices of the cells to which the interpolation sites in array site belong.
site	REAL (KIND=4) DIMENSION (*) for dfsinterpcallback	Array of interpolation sites of size n.

Output Parameters

Name	Type	Description
status	INTEGER	The status returned by the callback function:
		- Zero indicates successful completion of the callback operation. - A negative value indicates an error. - A positive value indicates a warning.
		See "Task Status and Error Reporting" for error code definitions.
r	REAL (KIND=4) DIMENSION(*) for dfsinterpcallback	Array of the computed interpolation results packed in rowmajor format.
	REAL (KIND=8) DIMENSION(*) for dfdinterpcallback	

Description

When passed into the df?interpolateex1d routine, this function performs user-defined interpolation operation.

The library_params parameter allows the library to provide extra parameters, which the callback function can use to organize computations effectively. Currently no parameters are provided.

```
See Also
df?interpolate1d/df?interpolateex1d
df?searchcellscallback
df?integrcallback
A callback function that you can pass into df?
integrateex1d to define integration computations.
Syntax
status = dfsintegrcallback(n, lcell, llim, rcell, rlim, r, user_params, library_params)
status = dfdintegrcallback(n, lcell, llim, rcell, rlim, r, user_params, library_params)
```

Include Files

- mkl_df.f90

Input Parameters

Name	Type	Description
n	INTEGER (KIND=8)	Number of pairs of integration limits.
Icell	INTEGER $($ KIND=8) DIMENSION (*)	Array of size n with indices of the cells that contain the left- side integration limits in array llim.
llim	REAL (KIND=4) DIMENSION (*) for dfsintegrcallback	Array of size n that holds the left-side integration limits.

Name	Type	Description
	REAL (KIND=8) DIMENSION(*) for dfdintegrcallback	
rcell	INTEGER (KIND=8)	Array of size n with indices of the cells that contain the
	DIMENSION (*)	right-side integration limits in array rlim.
rlim	$\begin{aligned} & \text { REAL (KIND=4) DIMENSION(*) } \\ & \text { for dfsintegrcallback } \end{aligned}$	Array of size n that holds the right-side integration limits.
	REAL (KIND=8) DIMENSION(*) for dfdintegrcallback	
$\begin{aligned} & \text { user_para } \\ & \mathrm{ms} \end{aligned}$	INTEGER DIMENSION(*), optional	Pointer to user-defined parameters of the callback function.
library_p arams	TYPE (DF_INTEGR_CALLBACK_LI BRARY_PARAMS), optional	Pointer to library-defined parameters of the callback function.

Output Parameters

Name	Type
status	INTEGER
r	
	REAL (KIND=4) DIMENSION (*) Ror dfsintegrcallback for dfdintegrcallback

Description

The status returned by the callback function:

- Zero indicates successful completion of the callback operation.
- A negative value indicates an error.
- A positive value indicates a warning.

See "Task Status and Error Reporting" for error code definitions.

Array of integration results. For packing the results in rowmajor format, follow the instructions described in df? interpolateld/df?interpolateexld.

Description

When passed into the df?integrateexld routine, this function defines integration computations. If at least one of the integration limits is outside the interpolation interval $[a, b]$, the library decomposes the integration into sub-intervals that belong to the extrapolation range to the left of a, the extrapolation range to the right of b, and the interpolation interval $[a, b]$, as follows:

- If the left integration limit is to the left of the interpolation interval (llim<a), the df?integrateexld routine passes llim as the left integration limit and min(rlim, a) as the right integration limit to the user-defined callback function.
- If the right integration limit is to the right of the interpolation interval (rlim>b), the df?integrateexid routine passes $\max (\operatorname{llim}, b)$ as the left integration limit and rlim as the right integration limit to the user-defined callback function.
- If the left and the right integration limits belong to the interpolation interval, the df?integrateexid routine passes them to the user-defined callback function unchanged.

The value of the integral is the sum of integral values obtained on the sub-intervals.
The library_params parameter allows the library to provide extra parameters, which the callback function can use to organize computations effectively. Currently no parameters are provided.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

See Also

df?integrate1d/df?integrateex1d
df?integrcallback
df?searchcellscallback
df?searchcellscallback
A callback function for user-defined search to be
passed into df?interpolateex1d,
df?integrateex1d, or df?searchcellsex1d.

Syntax

```
status = dfssearchcellscallback(n, site, cell, flag, user_params, library_params)
status = dfdsearchcellscallback(n, site, cell, flag, user_params, library_params)
```


Include Files

- mkl_df.f90

Input Parameters

Name	Type
n	INTEGER (KIND=8)
site	REAL (KIND=4) DIMENSION(*) for dfssearchcellscallback
	REAL (KIND=8) DIMENSION(*) for dfdsearchcellscalliback
flag	INTEGER (KIND=4)
	DIMENSION (*)
user_para	INTEGER DIMENSION(*),
ms	optional

Description

Number of interpolation sites or integration limits.
Array, size n, of interpolation sites or integration limits.

Array of size n, with values set as follows:

- If the cell with index cell(i) contains site(i), set flag[i] to 1.
- Otherwise, set flag(i) to zero. In this case, the library interprets the index as an approximation and computes the index of the cell containing site(i) by using the provided index as a starting point for the search.

Pointer to user-defined parameters of the callback function.
Name Type Description

```
library_p TYPE(DF_SEARCH_CALLBACK_LI
arams
```

TYPE (DF_SEARCH_CALLBACK_LI BRARY_PARAMS), optional

Pointer to library-defined parameters of the callback function.

Output Parameters

Name	Type
status	INTEGER

```
INTEGER(KIND=8)
```

 DIMENSION(*)

Description

The status returned by the callback function:

- Zero indicates successful completion of the callback operation.
- A negative value indicates an error.
- The DF_STATUS_EXACT_RESULT status indicates that cell indices returned by the callback function are exact. In this case, you do not need to initialize entries of the flag array.
- A positive value indicates a warning.

See "Task Status and Error Reporting" for error code definitions.

Array of size n that returns indices of the cells computed by the callback function.

Description

When passed into the df?interpolateex1d, df?integrateex1d, or df?searchcellsex1d routine, this function performs a user-defined search.
The library_params parameter allows the library to provide extra parameters, which the callback function can use to organize computations effectively. The df?interpolateex1d, and df?searchcellsex1d routines do not provide extra parameters. The df?integrateex1d routines use this parameter to specify which type of integration limits, left or right, are provided for the callback. To do this the library declares the DF_SEARCH_CALLBACK_LIBRARY_PARAMS derived type. It currently contains one component, limit_type_flag, of type INTEGER (KIND=4). The field is set by the library to one of two possible values: DF_INTEGR_SEARCH_CB_LLIM_FLAG if the left integration limits are provided, or DF_INTEGR_SEARCH_CB_RLIM_FLAG if the right integration limits are provided.

See Also

df?interpolateld/df?interpolateexld
df?interpcallback

Data Fitting Task Destructors

Task destructors are routines used to delete task descriptors and deallocate the corresponding memory resources. The Data Fitting task destructor dfdeletetask destroys a Data Fitting task and frees the memory.

```
dfdeletetask
Destroys a Data Fitting task object and frees the
```

memory.

Syntax

```
status = dfdeletetask(task)
```

Include Files

- mkl_df.f90

Input Parameters

Name	Type	Description
task	TYPE (DF_TASK)	Descriptor of the task to destroy.

Output Parameters

Name	Type
status	INTEGER

Description

Status of the routine:

- DF_STATUS_OK if the task is deleted successfully.
- Non-zero error code if the operation failed. See "Task Status and Error Reporting" for error code definitions.

Description

Given a pointer to a task descriptor, this routine deletes the Data Fitting task descriptor and frees the memory allocated for the structure. If the task is deleted successfully, the routine sets the task pointer to NULL. Otherwise, the routine returns an error code.

Appendix A: Linear Solvers Basics

Many applications in science and engineering require the solution of a system of linear equations. This problem is usually expressed mathematically by the matrix-vector equation, $A x=b$, where A is an m-by-n matrix, x is the n element column vector and b is the m element column vector. The matrix A is usually referred to as the coefficient matrix, and the vectors x and b are referred to as the solution vector and the right-hand side, respectively.
Basic concepts related to solving linear systems with sparse matrices are described in Sparse Linear Systems and various storage schemes for sparse matrices are described in Sparse Matrix Storage Formats.

Sparse Linear Systems

In many real-life applications, most of the elements in A are zero. Such a matrix is referred to as sparse. Conversely, matrices with very few zero elements are called dense. For sparse matrices, computing the solution to the equation $A x=b$ can be made much more efficient with respect to both storage and computation time, if the sparsity of the matrix can be exploited. The more an algorithm can exploit the sparsity without sacrificing the correctness, the better the algorithm.
Generally speaking, computer software that finds solutions to systems of linear equations is called a solver. A solver designed to work specifically on sparse systems of equations is called a sparse solver. Solvers are usually classified into two groups - direct and iterative.

Iterative Solvers start with an initial approximation to a solution and attempt to estimate the difference between the approximation and the true result. Based on the difference, an iterative solver calculates a new approximation that is closer to the true result than the initial approximation. This process is repeated until the difference between the approximation and the true result is sufficiently small. The main drawback to iterative solvers is that the rate of convergence depends greatly on the values in the matrix A. Consequently, it is not possible to predict how long it will take for an iterative solver to produce a solution. In fact, for illconditioned matrices, the iterative process will not converge to a solution at all. However, for well-conditioned matrices it is possible for iterative solvers to converge to a solution very quickly. Consequently, if an application involves well-conditioned matrices iterative solvers can be very efficient.
Direct Solvers, on the other hand, factor the matrix A into the product of two triangular matrices and then perform a forward and backward triangular solve.
This approach makes the time required to solve a systems of linear equations relatively predictable, based on the size of the matrix. In fact, for sparse matrices, the solution time can be predicted based on the number of non-zero elements in the array A.

Matrix Fundamentals

A matrix is a rectangular array of either real or complex numbers. A matrix is denoted by a capital letter; its elements are denoted by the same lower case letter with row/column subscripts. Thus, the value of the element in row i and column j in matrix A is denoted by $a(i, j)$. For example, a 3 by 4 matrix A, is written as follows:

$$
A=\left[\begin{array}{l}
a(1,1) a(1,2) a(1,3) a(1,4) \\
a(2,1) a(2,2) a(2,3) a(2,4) \\
a(3,1) a(3,2) a(3,3) a(3,4)
\end{array}\right]
$$

Note that with the above notation, we assume the standard Fortran programming language convention of starting array indices at 1 rather than the C programming language convention of starting them at 0 .
A matrix in which all of the elements are real numbers is called a real matrix. A matrix that contains at least one complex number is called a complex matrix. A real or complex matrix A with the property that $a(i, j)=$ $a(j, i)$, is called a symmetric matrix. A complex matrix A with the property that $a(i, j)=\operatorname{conj}(a(j, i))$, is called a Hermitian matrix. Note that programs that manipulate symmetric and Hermitian matrices need only store half of the matrix values, since the values of the non-stored elements can be quickly reconstructed from the stored values.
A matrix that has the same number of rows as it has columns is referred to as a square matrix. The elements in a square matrix that have same row index and column index are called the diagonal elements of the matrix, or simply the diagonal of the matrix.

The transpose of a matrix A is the matrix obtained by "flipping" the elements of the array about its diagonal. That is, we exchange the elements $a(i, j)$ and $a(j, i)$. For a complex matrix, if we both flip the elements about the diagonal and then take the complex conjugate of the element, the resulting matrix is called the Hermitian transpose or conjugate transpose of the original matrix. The transpose and Hermitian transpose of a matrix A are denoted by A^{T} and A^{H} respectively.

A column vector, or simply a vector, is a $n \times 1$ matrix, and a row vector is a $1 \times n$ matrix. A real or complex matrix A is said to be positive definite if the vector-matrix product $x^{T} A x$ is greater than zero for all non-zero vectors x. A matrix that is not positive definite is referred to as indefinite.
An upper (or lower) triangular matrix, is a square matrix in which all elements below (or above) the diagonal are zero. A unit triangular matrix is an upper or lower triangular matrix with all 1 's along the diagonal.

A matrix P is called a permutation matrix if, for any matrix A, the result of the matrix product $P A$ is identical to A except for interchanging the rows of A. For a square matrix, it can be shown that if $P A$ is a permutation of the rows of A, then $A P^{T}$ is the same permutation of the columns of A. Additionally, it can be shown that the inverse of P is P^{T}.
In order to save space, a permutation matrix is usually stored as a linear array, called a permutation vector, rather than as an array. Specifically, if the permutation matrix maps the i-th row of a matrix to the j-th row, then the i-th element of the permutation vector is j.
A matrix with non-zero elements only on the diagonal is called a diagonal matrix. As is the case with a permutation matrix, it is usually stored as a vector of values, rather than as a matrix.

Direct Method

For solvers that use the direct method, the basic technique employed in finding the solution of the system $A x$ $=b$ is to first factor A into triangular matrices. That is, find a lower triangular matrix L and an upper triangular matrix U, such that $A=L U$. Having obtained such a factorization (usually referred to as an $L U$ decomposition or $L U$ factorization), the solution to the original problem can be rewritten as follows.

$$
\begin{array}{ll}
& A x=b \\
\Rightarrow & L U x=b \\
\Rightarrow & L(U x)=b
\end{array}
$$

This leads to the following two-step process for finding the solution to the original system of equations:

1. Solve the systems of equations $L y=b$.
2. Solve the system $U x=y$.

Solving the systems $L y=b$ and $U x=y$ is referred to as a forward solve and a backward solve, respectively.
If a symmetric matrix A is also positive definite, it can be shown that A can be factored as $L L^{T}$ where L is a lower triangular matrix. Similarly, a Hermitian matrix, A, that is positive definite can be factored as $A=L L^{H}$. For both symmetric and Hermitian matrices, a factorization of this form is called a Cholesky factorization.
In a Cholesky factorization, the matrix U in an $L U$ decomposition is either L^{T} or L^{H}. Consequently, a solver can increase its efficiency by only storing L, and one-half of A, and not computing U. Therefore, users who can express their application as the solution of a system of positive definite equations will gain a significant performance improvement over using a general representation.
For matrices that are symmetric (or Hermitian) but not positive definite, there are still some significant efficiencies to be had. It can be shown that if A is symmetric but not positive definite, then A can be factored as $A=L D L^{T}$, where D is a diagonal matrix and L is a lower unit triangular matrix. Similarly, if A is Hermitian, it can be factored as $A=L D L^{H}$. In either case, we again only need to store L, D, and half of A and we need not compute U. However, the backward solve phases must be amended to solving $L^{T} X=D^{-1} y$ rather than $L^{T} X=y$.

Fill-In and Reordering of Sparse Matrices

Two important concepts associated with the solution of sparse systems of equations are fill-in and reordering. The following example illustrates these concepts.
Consider the system of linear equation $A x=b$, where A is a symmetric positive definite sparse matrix, and A and b are defined by the following:

$$
A=\left[\begin{array}{ccccc}
9 & \frac{3}{2} & 6 & \frac{3}{4} & 3 \\
\frac{3}{2} & \frac{1}{2} & \star & \star & \star \\
6 & \star & 12 & \star & \star \\
\frac{3}{4} & \star & \star & \frac{5}{8} & \star \\
3 & \star & \star & \star & 16
\end{array}\right], B=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right]
$$

A star (*) is used to represent zeros and to emphasize the sparsity of A. The Cholesky factorization of A is: A $=L L^{T}$, where L is the following:

$$
L=\left[\begin{array}{ccccc}
3 & \star & t & t & t \\
\frac{1}{2} & \frac{1}{2} & t & t & t \\
2 & -2 & 2 & t & t \\
\frac{1}{4} & \frac{1}{-4} & \frac{1}{-2} & \frac{1}{2} & t \\
-1 & -1 & -2 & -3 & 1
\end{array}\right]
$$

Notice that even though the matrix A is relatively sparse, the lower triangular matrix L has no zeros below the diagonal. If we computed L and then used it for the forward and backward solve phase, we would do as much computation as if A had been dense.

The situation of L having non-zeros in places where A has zeros is referred to as fill-in. Computationally, it would be more efficient if a solver could exploit the non-zero structure of A in such a way as to reduce the fill-in when computing L. By doing this, the solver would only need to compute the non-zero entries in L. Toward this end, consider permuting the rows and columns of A. As described in Matrix Fundamentals, the permutations of the rows of A can be represented as a permutation matrix, P. The result of permuting the rows is the product of P and A. Suppose, in the above example, we swap the first and fifth row of A, then swap the first and fifth columns of A, and call the resulting matrix B. Mathematically, we can express the process of permuting the rows and columns of A to get B as $B=P A P^{T}$. After permuting the rows and columns of A, we see that B is given by the following:

Since B is obtained from A by simply switching rows and columns, the numbers of non-zero entries in A and B are the same. However, when we find the Cholesky factorization, $B=L L^{\top}$, we see the following:

The fill-in associated with B is much smaller than the fill-in associated with A. Consequently, the storage and computation time needed to factor B is much smaller than to factor A. Based on this, we see that an efficient sparse solver needs to find permutation P of the matrix A, which minimizes the fill-in for factoring $B=P A P^{T}$, and then use the factorization of B to solve the original system of equations.

Although the above example is based on a symmetric positive definite matrix and a Cholesky decomposition, the same approach works for a general $L U$ decomposition. Specifically, let P be a permutation matrix, $B=$ $P A P^{T}$ and suppose that B can be factored as $B=L U$. Then

$$
\begin{array}{ll}
A x=b & \Rightarrow \\
P A\left(P^{-1} P\right) x=P b & \Rightarrow \\
P A\left(P^{T} P\right) x=P b & \Rightarrow \\
\left(P A P^{T}\right)(P X)=P b & \Rightarrow \\
B(P X)=P b & \Rightarrow \\
L U(P X)=P b &
\end{array}
$$

It follows that if we obtain an $L U$ factorization for B, we can solve the original system of equations by a three step process:

1. Solve $L y=P b$.
2. Solve $U z=y$.
3. Set $x=P^{T} z$.

If we apply this three-step process to the current example, we first need to perform the forward solve of the systems of equation $L y=P b$:

$$
L Y=\left[\begin{array}{ccccc}
4 & \star & \star & \star & \star \\
\star & \frac{1}{\sqrt{2}} & \star & \star & \star \\
\star & \star & 2(\sqrt{3}) & \star & \star \\
\star & \star & \star & \frac{\sqrt{10}}{4} & \star \\
& & & & \sqrt{\frac{3}{5}} \\
\frac{3}{4} & \frac{3}{\sqrt{2}} & \sqrt{3} & \frac{3}{\sqrt{10}} & \frac{\sqrt{4}}{4}
\end{array}\right]+\left[\begin{array}{c}
y^{1} \\
y^{2} \\
y^{3} \\
y^{4} \\
y^{5}
\end{array}\right]=\left[\begin{array}{l}
5 \\
2 \\
3 \\
4 \\
1
\end{array}\right]
$$

This gives:

$$
Y^{T}=\frac{5}{4}, 2 \sqrt{2}, \frac{\sqrt{3}}{2}, \frac{16}{\sqrt{10}}, \frac{-979 \sqrt{\frac{3}{5}}}{12}
$$

The second step is to perform the backward solve, $U z=y$. Or, in this case, since a Cholesky factorization is used, $L^{T} z=y$.

$$
\left[\begin{array}{ccccc}
4 & \star & \star & \star & * \\
\star & \frac{1}{\sqrt{2}} & \star & \star & \star \\
\star & \star & 2(\sqrt{3}) & \star & \star \\
\star & \star & \star & \frac{\sqrt{10}}{4} & \star \\
\frac{3}{4} & \frac{3}{\sqrt{2}} & \sqrt{3} & \frac{3}{\sqrt{10}} & \frac{\sqrt{\frac{3}{5}}}{4}
\end{array}\right]^{T} *\left[\begin{array}{c}
z 1 \\
z 2 \\
z 3 \\
z 4 \\
z 5
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{4} \\
2(\sqrt{2}) \\
\frac{\sqrt{3}}{2} \\
\frac{16}{\sqrt{10}} \\
-979 \sqrt{\frac{3}{5}} \\
\frac{12}{}
\end{array}\right]
$$

This gives

$$
z^{T}=\frac{123}{2}, 983, \frac{1961}{12}, 398, \frac{-979}{3} .
$$

The third and final step is to set $x=P^{T} z$. This gives

$$
X^{T}=\frac{-979}{3}, 983, \frac{1961}{12}, 398, \frac{123}{2} .
$$

Sparse Matrix Storage Formats

It is more efficient to store only the non-zero elements of a sparse matrix. There are a number of common storage formats used for sparse matrices, but most of them employ the same basic technique. That is, store all non-zero elements of the matrix into a linear array and provide auxiliary arrays to describe the locations of the non-zero elements in the original matrix.

Storage Formats for the Direct Sparse Solvers

Storing the non-zero elements of a sparse matrix into a linear array is done by walking down each column (column-major format) or across each row (row-major format) in order, and writing the non-zero elements to a linear array in the order they appear in the walk.

- DSS Symmetric Matrix Storage
- DSS Nonsymmetric Matrix Storage
- DSS Structurally Symmetric Matrix Storage
- DSS Distributed Symmetric Matrix Storage

Sparse Matrix Storage Formats for Sparse BLAS Levels 2 and Level 3

These sections describe in detail the sparse matrix storage formats supported in the current version of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 and Level 3.

- Sparse BLAS CSR Matrix Storage
- Sparse BLAS CSC Matrix Storage
- Sparse BLAS Coordinate Matrix Storage
- Sparse BLAS Diagonal Matrix Storage
- Sparse BLAS Skyline Matrix Storage
- Sparse BLAS BSR Matrix Storage

DSS Symmetric Matrix Storage

For symmetric matrices, it is necessary to store only the upper triangular half of the matrix (upper triangular format) or the lower triangular half of the matrix (lower triangular format).
The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) direct sparse solvers use a row-major upper triangular storage format: the matrix is compressed row-by-row and for symmetric matrices only non-zero elements in the upper triangular half of the matrix are stored.

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) sparse matrix storage format for direct sparse solvers is specified by three arrays:values, columns, and rowIndex. The following table describes the arrays in terms of the values, row, and column positions of the non-zero elements in a sparse matrix.
values \quad A real or complex array that contains the non-zero elements of a sparse matrix. The non-zero elements are mapped into the values array using the row-major upper triangular storage mapping described above.
columns Element i of the integer array columns is the number of the column that contains the i-th element in the values array.

Element j of the integer array rowIndex gives the index of the element in the values array that is first non-zero element in a row j.

The length of the values and columns arrays is equal to the number of non-zero elements in the matrix.
As the rowIndex array gives the location of the first non-zero element within a row, and the non-zero elements are stored consecutively, the number of non-zero elements in the i-th row is equal to the difference of rowIndex(i) and rowIndex(i+1).

To have this relationship hold for the last row of the matrix, an additional entry (dummy entry) is added to the end of rowIndex. Its value is equal to the number of non-zero elements plus one. This makes the total length of the rowIndex array one larger than the number of rows in the matrix.

NOTE

The Intel® ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) sparse storage scheme for the direct sparse solvers supports both one-based indexing and zero-based indexing.

Consider the symmetric matrix A :
$A=\left(\begin{array}{ccccc}1 & -1 & * & -3 & * \\ -1 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -3 & * & 6 & 7 & * \\ * & * & 4 & * & -5\end{array}\right)$
Only elements from the upper triangle are stored. The actual arrays for the matrix A are as follows:

Storage Arrays for a Symmetric Matrix

one-based indexing										
values	$=$	$(1$	-1	-3	5	4	6	4	7	$-5)$
columns	$(1$	2	4	2	3	4	5	4	$5)$	
rowIndex	$=$	$(1$	4	5	8	9	$10)$			

zero-based indexing

values	$=$	$(1$	-1	-3	5	4	6	4	7	$-5)$
columns	$=$	$(0$	1	3	1	2	3	4	3	$4)$
rowIndex	$=$	$(0$	3	4	7	8	$9)$			

Storage Format Restrictions

The storage format for the sparse solver must conform to two important restrictions:

- the non-zero values in a given row must be placed into the values array in the order in which they occur in the row (from left to right);
- no diagonal element can be omitted from the values array for any symmetric or structurally symmetric matrix.

The second restriction implies that if symmetric or structurally symmetric matrices have zero diagonal elements, then they must be explicitly represented in the values array.

DSS Nonsymmetric Matrix Storage

For a non-symmetric or non-Hermitian matrix, all non-zero elements need to be stored. Consider the nonsymmetric matrix B :
$\left(\begin{array}{ccccc}1 & -1 & * & -3 & * \\ -2 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & * & * & -5\end{array}\right)$
The matrix B has 13 non-zero elements, and all of them are stored as follows:

Storage Arrays for a Non-Symmetric Matrix

one-based indexing														
values	$=$	(1)	-1	-3	-2	5	4	6	4	-4	2	7	8	-5)
columns	=	(1	2	4	1	2	3	4	5	1	3	4	2	5)
rowIndex	=	(1	4	6	9	12	14)							
zero-based indexing														
values	=	(1)	-1	-3	-2	5	4	6	4	-4	2	7	8	-5)
columns	=	(0)	1	3	0	1	2	3	4	0	2	3	1	4)
rowIndex	=	(0	3	5	8	11	13)							

Storage Format Restrictions

The storage format for the sparse solver must conform to two important restrictions:

- the non-zero values in a given row must be placed into the values array in the order in which they occur in the row (from left to right);
- no diagonal element can be omitted from the values array for any symmetric or structurally symmetric matrix.

The second restriction implies that if symmetric or structurally symmetric matrices have zero diagonal elements, then they must be explicitly represented in the values array.

DSS Structurally Symmetric Matrix Storage

Direct sparse solvers can also solve symmetrically structured systems of equations. A symmetrically structured system of equations is one where the pattern of non-zero elements is symmetric. That is, a matrix has a symmetric structure if $a_{j, i}$ is not zero if and only if $a_{i, j}$ is not zero. From the point of view of the solver software, a "non-zero" element of a matrix is any element stored in the values array, even if its value is
equal to 0 . In that sense, any non-symmetric matrix can be turned into a symmetrically structured matrix by carefully adding zeros to the values array. For example, the above matrix B can be turned into a symmetrically structured matrix by adding two non-zero entries:
$B=\left(\begin{array}{ccccc}1 & -1 & * & 3 & * \\ -2 & 5 & * & * & 0 \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & 0 & * & -5\end{array}\right)$
The matrix B can be considered to be symmetrically structured with 15 non-zero elements and represented as:
Storage Arrays for a Symmetrically Structured Matrix

one-based indexing																
values	=	(1)	-1	-3	-2	5	0	4	6	4	-4	2	7	8	0	-5)
columns	=	(1	2	4	1	2	5	3	4	5	1	3	4	2	3	5)
rowIndex	=	(1	4	7	10	13	16)									
zero-based indexing																
values	=	(1	-1	-3	-2	5	0	4	6	4	-4	2	7	8	0	-5)
columns	=	(0)	1	3	0	1	4	2	3	4	0	2	3	1	2	4)
rowIndex	$=$	(0	3	6	9	12	15)									

Storage Format Restrictions

The storage format for the sparse solver must conform to two important restrictions:

- the non-zero values in a given row must be placed into the values array in the order in which they occur in the row (from left to right);
- no diagonal element can be omitted from the values array for any symmetric or structurally symmetric matrix.

The second restriction implies that if symmetric or structurally symmetric matrices have zero diagonal elements, then they must be explicitly represented in the values array.

DSS Distributed Symmetric Matrix Storage

The distributed assembled matrix input format can be used by the Parallel Direct Sparse Solver for Clusters Interface.

In this format, the symmetric input matrix A is divided into sequential row subsets, or domains. Each domain belongs to an MPI process. Neighboring domains can overlap. For such intersection between two domains, the element values of the full matrix can be obtained by summing the respective elements of both domains.
As in the centralized format, the distributed format uses three arrays to describe the input data, but the values, columns, and rowIndex arrays on each processor only describe the domain belonging to that particular processor and not the entire matrix.
For example, consider a symmetric matrix A :
$A=\left(\begin{array}{ccccc}\mathbf{6} & \mathbf{- 1} & * & -\mathbf{3} & * \\ -\mathbf{1} & \mathbf{5} & * & * & * \\ * & * & \mathbf{1 1} & \mathbf{5} & \mathbf{4} \\ -3 & * & 5 & \mathbf{1 0} & * \\ * & * & 4 & * & \mathbf{5}\end{array}\right)$
This array could be distributed between two domains corresponding to two MPI processes, with the first containing rows 1 through 3 , and the second containing rows 3 through 5 .

NOTE

For the symmetric input matrix, it is not necessary to store the values from the lower triangle.
$A_{\text {Domain } 1}=\left(\begin{array}{cccccc}\mathbf{6} & -\mathbf{1} & * & -\mathbf{3} & * \\ -1 & \mathbf{5} & * & * & * \\ * & * & \mathbf{3} & * & \mathbf{2}\end{array}\right)$
Distributed Storage Arrays for a Symmetric Matrix, Domain 1
$\left.\left.\begin{array}{llllllll}\hline \text { one-based indexing } & & & & & & \\ \text { values } & = & (6 & -1 & -3 & 5 & 3 & 2) \\ \text { columns } & = & (1 & 2 & 4 & 2 & 3 & 5) \\ \text { rowIndex } & = & (1 & 4 & 5 & 7) & & \\ \text { zero-based indexing } & & & (6 & -1 & -3 & 5 & 3\end{array}\right] 2\right)$
$A_{\text {Domain } 2}=\left(\begin{array}{ccccc}* & * & \mathbf{8} & \mathbf{5} & \mathbf{2} \\ -3 & * & 5 & \mathbf{1 0} & * \\ * & * & 4 & * & \mathbf{5}\end{array}\right)$
Distributed Storage Arrays for a Symmetric Matrix, Domain 2

one-based indexing						
values	=	(8)	5	2	10	5)
columns	=	(3)	4	5	4	5)
rowIndex	=	(1	4	5	6)	
zero-based indexing						
values	=	(8)	5	2	10	5)
columns	=	(2	3	4	3	4)
rowIndex	=	(0	3	4	5)	

The third row of matrix A is common between domain 1 and domain 2 . The values of row 3 of matrix A are the sums of the respective elements of row 3 of matrix $A_{\text {Domain1 }}$ and row 1 of matrix $A_{\text {Domain2 }}$.

Storage Format Restrictions

The storage format for the sparse solver must conform to two important restrictions:

- the non-zero values in a given row must be placed into the values array in the order in which they occur in the row (from left to right);
- no diagonal element can be omitted from the values array for any symmetric or structurally symmetric matrix.

The second restriction implies that if symmetric or structurally symmetric matrices have zero diagonal elements, then they must be explicitly represented in the values array.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

Sparse BLAS CSR Matrix Storage Format

The Intel® oneAPI Math Kernel Library (oneMKL) Sparse BLAS compressed sparse row (CSR) format is specified by four arrays:

- values
- columns
- pointerB
- pointerE

In addition, each sparse matrix has an associated variable, indexing, which specifies if the matrix indices are 0 -based (indexing $=0$) or 1-based (indexing=1). These are descriptions of the arrays in terms of the values, row, and column positions of the non-zero elements in a sparse matrix A.
values
columns
pointerB
pointerE

A real or complex array that contains the non-zero elements of A. Values of the non-zero elements of A are mapped into the values array using the row-major storage mapping described above.

Element i of the integer array columns is the number of the column in A that contains the i-th value in the values array.

Element j of this integer array gives the index of the element in the values array that is first non-zero element in a row j of A. Note that this index is equal to pointerB(j) - indexing.

An integer array that contains row indices, such that pointere (j)-indexing is the index of the element in the values array that is last non-zero element in a row j of A.

The length of the values and columns arrays is equal to the number of non-zero elements in A.The length of the pointerB and pointerE arrays is equal to the number of rows in A.

NOTE

Note that the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines support the CSR format both with one-based indexing and zero-based indexing.

You can represent the matrix B
$B=\left(\begin{array}{ccccc}1 & -1 & * & -3 & * \\ -2 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & * & * & -5\end{array}\right)$
in the CSR format as:

Storage Arrays for a Matrix in CSR Format

one-based indexing														
values	$=$	(1	-1	-3	-2	5	4	6	4	-4	2	7	8	-5)
columns	$=$	(1	2	4	1	2	3	4	5	1	3	4	2	5)
pointerB	=	(1	4	6	9	12)								
pointerE	=	(4	6	9	12	14)								
zero-based indexing														
values	$=$	(1)	-1	-3	-2	5	4	6	4	-4	2	7	8	-5)
columns	=	(0)	1	3	0	1	2	3	4	0	2	3	1	4)
pointerB	$=$	(0)	3	5	8	11)								
pointerE	=	(3	5	8	11	13)								

[^7]| subpointerB | $=$ | $(5$ | 9 | $12)$ |
| :--- | :--- | :--- | :--- | :--- |
| subpointerE | $=$ | $(8$ | 11 | $13)$ |

NOTE The CSR matrix must have a monotonically increasing row index. That is, pointerB[i] \leq pointerB[j] and pointerE[i] \leq pointerE[j] for all indices $i<j$.

This storage format is used in the NIST Sparse BLAS library [Rem05].

Three Array Variation of CSR Format

The storage format accepted for the direct sparse solvers is a variation of the CSR format. It also is used in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS Level 2 both with one-based indexing and zerobased indexing. The above matrix B can be represented in this format (referred to as the 3-array variation of the CSR format or CSR3) as:

Storage Arrays for a Matrix in CSR Format (3-Array Variation)

one-based indexing														
values	=	(1	-1	-3	-2	5	4	6	4	-4	2	7	8	-5)
columns	=	(1	2	4	1	2	3	4	5	1	3	4	2	5)
rowIndex	=	(1	4	6	9	12	14)							
zero-based indexing														
values	=	(1	-1	-3	-2	5	4	6	4	-4	2	7	8	-5)
columns	=	(0)	1	3	0	1	2	3	4	0	2	3	1	4)
rowIndex	$=$	(0	3	5	8	11	13)							

The 3-array variation of the CSR format has a restriction: all non-zero elements are stored continuously, that is the set of non-zero elements in the row J goes just after the set of non-zero elements in the row $J-1$.

There are no such restrictions in the general (NIST) CSR format. This may be useful, for example, if there is a need to operate with different submatrices of the matrix at the same time. In this case, it is enough to define the arrays pointerB and pointerE for each needed submatrix so that all these arrays are pointers to the same array values.

By definition, the array rowIndex from the Table "Storage Arrays for a Non-Symmetric Example Matrix" is related to the arrays pointerB and pointerE from the Table "Storage Arrays for an Example Matrix in CSR Format", and you can see that

```
pointerB(i) = rowIndex(i) for i=1, ..5;
    pointerE(i) = rowIndex(i+1) for i=1, ..5.
```

This enables calling a routine that has values, columns, pointerB and pointerE as input parameters for a sparse matrix stored in the format accepted for the direct sparse solvers. For example, a routine with the interface:

```
Subroutine name_routine(.... , values, columns, pointerB, pointerE, ...)
```

can be called with parameters values, columns, rowIndex as follows:

```
call name_routine(.... , values, columns, rowIndex, rowIndex(2), ...).
```


Sparse BLAS CSC Matrix Storage Format

The compressed sparse column format (CSC) is similar to the CSR format, but the columns are used instead the rows. In other words, the CSC format is identical to the CSR format for the transposed matrix. The CSR format is specified by four arrays: values, columns, pointer B, and pointerE. The following table describes the arrays in terms of the values, row, and column positions of the non-zero elements in a sparse matrix A.
values A real or complex array that contains the non-zero elements of A. Values of the non-zero elements of A are mapped into the values array using the columnmajor storage mapping.
rows
Element i of the integer array rows is the number of the row in A that contains the i-th value in the values array.

Element j of this integer array gives the index of the element in the values array that is first non-zero element in a column j of A. Note that this index is equal to pointerB(j)-indexing for Inspector-executor Sparse BLAS CSC arrays.

An integer array that contains column indices, such that pointere(j) indexing is the index of the element in the values array that is last non-zero element in a column j of A.

The length of the values and columns arrays is equal to the number of non-zero elements in A. The length of the pointerB and pointerE arrays is equal to the number of columns in A.

NOTE

Note that the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines support the CSC format both with one-based indexing and zero-based indexing.

For example, consider matrix B :
$B=\left(\begin{array}{ccccc}1 & -1 & * & -3 & * \\ -2 & 5 & * & * & * \\ * & * & 4 & 6 & 4 \\ -4 & * & 2 & 7 & * \\ * & 8 & * & * & -5\end{array}\right)$
It can be represented in the CSC format as:
Storage Arrays for a Matrix in CSC Format

one-based indexing														
values	$=$	(1	-2	-4	-1	5	8	4	2	-3	6	7	4	-5)
rows	=	(1	2	4	1	2	5	3	4	1	3	4	3	5)
pointerB	=	(1	4	7	9	12)								
pointerE	=	(4	7	9	12	14)								
zero-based indexing														
values	$=$	(1)	-2	-4	-1	5	8	4	2	-3	6	7	4	-5)
rows	=	(0)	1	3	0	1	4	2	3	0	2	3	2	4)
pointerB	=	(0)	3	6	8	11)								
pointerE	$=$	(3	6	8	11	13)								

Sparse BLAS Coordinate Matrix Storage Format

The coordinate format is the most flexible and simplest format for the sparse matrix representation. Only non-zero elements are stored, and the coordinates of each non-zero element are given explicitly. Many commercial libraries support the matrix-vector multiplication for the sparse matrices in the coordinate format.
The Intel® ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) coordinate format is specified by three arrays:values, rows, and column, and a parameter nnz which is number of non-zero elements in A. All three arrays have dimension nnz. The following table describes the arrays in terms of the values, row, and column positions of the non-zero elements in a sparse matrix A.
values A real or complex array that contains the non-zero elements of A in any order.

Element i of the integer array rows is the number of the row in A that contains the i-th value in the values array.
columns
Element i of the integer array columns is the number of the column in A that contains the i-th value in the values array.

NOTE

Note that the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines support the coordinate format both with one-based indexing and zero-based indexing.

For example, the sparse matrix C
$C=\left(\begin{array}{ccccc}1 & -1 & -3 & 0 & 0 \\ -2 & 5 & 0 & 0 & 0 \\ 0 & 0 & 4 & 6 & 4 \\ -4 & 0 & 2 & 7 & 0 \\ 0 & 8 & 0 & 0 & -5\end{array}\right)$
can be represented in the coordinate format as follows:
Storage Arrays for an Example Matrix in case of the coordinate format

one-based indexing														
values	$=$	(1	-1	-3	-2	5	4	6	4	-4	2	7	8	-5)
rows	=	(1	1	1	2	2	3	3	3	4	4	4	5	5)
columns	=	(1	2	3	1	2	3	4	5	1	3	4	2	5)
zero-based indexing														
values	=	(1)	-1	-3	-2	5	4	6	4	-4	2	7	8	-5)
rows	=	(0)	0	0	1	1	2	2	2	3	3	3	4	4)
columns	=	(0)	1	2	0	1	2	3	4	0	2	3	1	4)

Sparse BLAS Diagonal Matrix Storage Format

If the sparse matrix has diagonals containing only zero elements, then the diagonal storage format can be used to reduce the amount of information needed to locate the non-zero elements. This storage format is particularly useful in many applications where the matrix arises from a finite element or finite difference discretization. The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) diagonal storage format is specified by two arrays:values and distance, and two parameters: ndiag, which is the number of non-empty diagonals, and Ival, which is the declared leading dimension in the calling (sub)programs. The following table describes the arrays values and distance:

values	A real or complex two-dimensional array is dimensioned as $/ v a l$ column of it contains the non-zero elements of certain diagonal of A. The key point of the storage is that each element in values retains the row number of the original matrix. To achieve this diagonals in the lower triangular part of the matrix are padded from the top, and those in the upper triangular part are padded from the bottom. Note that the value of distance (i) is the number of elements to be padded for diagonal i.
distance	An integer array with dimension ndiag. Element i of the array distance is the distance between i-diagonal and the main diagonal. The distance is positive if the diagonal is above the main diagonal, and negative if the diagonal is below the main diagonal. The main diagonal has a distance equal to zero.

The above matrix C can be represented in the diagonal storage format as follows:
distance $=\left(\begin{array}{lllll}-3 & -1 & 0 & 1 & 2\end{array}\right)$
values $=\left(\begin{array}{ccccc}* & * & 1 & -1 & -3 \\ * & -2 & 5 & 0 & 0 \\ * & 0 & 4 & 6 & 4 \\ -4 & 2 & 7 & 0 & * \\ 8 & 0 & -5 & * & *\end{array}\right)$
where the asterisks denote padded elements.
When storing symmetric, Hermitian, or skew-symmetric matrices, it is necessary to store only the upper or the lower triangular part of the matrix.
For the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) triangular solver routines elements of the arraydistance must be sorted in increasing order. In all other cases the diagonals and distances can be stored in arbitrary order.

Sparse BLAS Skyline Matrix Storage Format

The skyline storage format is important for the direct sparse solvers, and it is well suited for Cholesky or LU decomposition when no pivoting is required.
The skyline storage format accepted in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) can store only triangular matrix or triangular part of a matrix. This format is specified by two arrays:values and pointers. The following table describes these arrays:
values
pointers

A scalar array. For a lower triangular matrix it contains the set of elements from each row of the matrix starting from the first non-zero element to and including the diagonal element. For an upper triangular matrix it contains the set of elements from each column of the matrix starting with the first non-zero element down to and including the diagonal element. Encountered zero elements are included in the sets.

An integer array with dimension ($m+1$), where m is the number of rows for lower triangle (columns for the upper triangle). pointers(i) - pointers(1)+1 gives the index of element in values that is first non-zero element in row (column) i. The value of pointers ($m+1$) is set to $n n z+$ pointers (1), where $n n z$ is the number of elements in the array values.

For example, consider the matrix C :
$C=\left(\begin{array}{ccccc}1 & -1 & -3 & 0 & 0 \\ -2 & 5 & 0 & 0 & 0 \\ 0 & 0 & 4 & 6 & 4 \\ -4 & 0 & 2 & 7 & 0 \\ 0 & 8 & 0 & 0 & -5\end{array}\right)$
The low triangle of the matrix C given above can be stored as follows:

and the upper triangle of this matrix C can be stored as follows:

$$
\left.\begin{array}{c}
\text { values }=\left(\begin{array}{lllllllllll}
1 & -1 & 5 & -3 & 0 & 4 & 6 & 7 & 4 & 0 & -5
\end{array}\right) \\
\\
\\
\text { pointers }=\left(\begin{array}{lllll}
1 & 2 & 4 & 7 & 9
\end{array}\right. \\
12
\end{array}\right)
$$

This storage format is supported by the NIST Sparse BLAS library [Rem05].
Note that the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines operating with the skyline storage format do not support general matrices.

Sparse BLAS BSR Matrix Storage Format

The Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) block compressed sparse row (BSR) format for sparse matrices is specified by four arrays:values, columns, pointerB, and pointerE. The following table describes these arrays.

$$
\begin{array}{ll}
\text { values } & \begin{array}{l}
\text { A real array that contains the elements of the non-zero blocks of a sparse matrix. } \\
\text { The elements are stored block-by-block in row-major order. A non-zero block is } \\
\text { the block that contains at least one non-zero element. All elements of non-zero } \\
\text { blocks are stored, even if some of them are equal to zero. Within each non-zero } \\
\text { block elements are stored in column-major order in the case of one-based } \\
\text { indexing, and in row-major order in the case of the zero-based indexing. }
\end{array} \\
\text { columns } & \begin{array}{l}
\text { Element } i \text { of the integer array columns is the number of the column in the block } \\
\text { matrix that contains the } i \text {-th non-zero block. }
\end{array} \\
\text { pointerB } & \begin{array}{l}
\text { Element } j \text { of this integer array gives the index of the element in the columns } \\
\text { array that is first non-zero block in a row } j \text { of the block matrix. }
\end{array} \\
\text { pointerE } & \begin{array}{l}
\text { Element } j \text { of this integer array gives the index of the element in the columns } \\
\text { array that contains the last non-zero block in a row } j \text { of the block matrix plus } 1 .
\end{array}
\end{array}
$$

The length of the values array is equal to the number of all elements in the non-zero blocks, the length of the columns array is equal to the number of non-zero blocks. The length of the pointerB and pointerE arrays is equal to the number of block rows in the block matrix.

NOTE

Note that the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Sparse BLAS routines support BSR format both with one-based indexing and zero-based indexing.

For example, consider the sparse matrix D
$D=\left(\begin{array}{cccccc}1 & 0 & 6 & 7 & * & * \\ 2 & 1 & 8 & 2 & * & * \\ * & * & 1 & 4 & * & * \\ * & * & 5 & 1 & * & * \\ * & * & 4 & 3 & 7 & 2 \\ * & * & 0 & 0 & 0 & 0\end{array}\right)$
If the size of the block equals 2 , then the sparse matrix D can be represented as a 3×3 block matrix E with the following structure:

$$
E=\left(\begin{array}{ccc}
L & M & * \\
* & N & * \\
* & P & Q
\end{array}\right)
$$

where

$$
L=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right), M=\left(\begin{array}{ll}
6 & 7 \\
8 & 2
\end{array}\right), N=\left(\begin{array}{ll}
1 & 4 \\
5 & 1
\end{array}\right), P=\left(\begin{array}{ll}
4 & 3 \\
0 & 0
\end{array}\right), \quad Q=\left(\begin{array}{ll}
7 & 2 \\
0 & 0
\end{array}\right)
$$

The matrix D can be represented in the BSR format as follows: one-based indexing

```
values =( (1 2 2 0 1 6 6 8 7 2 1 5 4 4 1 4 0 0 3 0 7 0
    columns =( (1 2 2 2 2 3)
    pointerB = ( (1 3 4)
    pointerE = (3 4 6)
```

zero-based indexing

```
values = [1 0 2 1 6 7 8 2 1 4 5 1 4 3 0 0 7 2 0 0]
    columns = [lllllll
    pointerB = [l0}3023][
    pointerE = [\begin{array}{lll}{2}&{3}&{5}\end{array}]
```

This storage format is supported by the NIST Sparse BLAS library [Rem05].

Three Array Variation of BSR Format

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) supports the variation of the BSR format that is specified by three arrays:values, columns, and rowIndex. The following table describes these arrays.

```
values A real array that contains the elements of the non-zero blocks of a sparse matrix.
    The elements are stored block by block in row-major order. A non-zero block is
    the block that contains at least one non-zero element. All elements of non-zero
    blocks are stored, even if some of them is equal to zero. Within each non-zero
    block the elements are stored in column major order in the case of the one-
    based indexing, and in row major order in the case of the zero-based indexing.
columns Element i of the integer array columns is the number of the column in the block
    matrix that contains the i-th non-zero block.
    Element j of this integer array gives the index of the element in the columns
    array that is first non-zero block in a row j of the block matrix.
```

The length of the values array is equal to the number of all elements in the non-zero blocks, the length of the columns array is equal to the number of non-zero blocks.

As the rowIndex array gives the location of the first non-zero block within a row, and the non-zero blocks are stored consecutively, the number of non-zero blocks in the i-th row is equal to the difference of rowIndex(i) and rowIndex (i+1).

To retain this relationship for the last row of the block matrix, an additional entry (dummy entry) is added to the end of rowIndex with value equal to the number of non-zero blocks plus one. This makes the total length of the rowIndex array one larger than the number of rows of the block matrix.
The above matrix D can be represented in this 3-array variation of the BSR format as follows: one-based indexing

```
values =( (1 2 0 1 6 8 7 2 1 5 4 2 4 0 3 0 7 0 2 0)
    columns = (1 1
    rowIndex = (\begin{array}{llll}{1}&{3}&{4}&{6}\end{array})
```

zero-based indexing

```
values =(1 0 2 1 6 7 8 2 1 4 5 1 4 3 0 0 7 2 0 0)
    columns =( (0)
    rowIndex = (\begin{array}{lll}{0}&{2}&{3}\end{array})
```

When storing symmetric matrices, it is necessary to store only the upper or the lower triangular part of the matrix.

For example, consider the symmetric sparse matrix F :
$F=\left(\begin{array}{cccccc}1 & 0 & 6 & 7 & * & * \\ 2 & 1 & 8 & 2 & * & * \\ 6 & 8 & 1 & 4 & * & * \\ 7 & 2 & 5 & 2 & * & * \\ * & * & * & * & 7 & 2 \\ * & * & * & * & 0 & 0\end{array}\right)$
If the size of the block equals 2 , then the sparse matrix F can be represented as a 3×3 block matrix G with the following structure:
$G=\left(\begin{array}{ccc}L & M & * \\ M^{\prime} & N & * \\ * & * & Q\end{array}\right)$
where
$L=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right), M=\left(\begin{array}{ll}6 & 7 \\ 8 & 2\end{array}\right), M^{\prime}=\left(\begin{array}{ll}6 & 8 \\ 7 & 2\end{array}\right), N=\left(\begin{array}{ll}1 & 4 \\ 5 & 2\end{array}\right)$, and $Q=\left(\begin{array}{ll}7 & 2 \\ 0 & 0\end{array}\right)$
The symmetric matrix F can be represented in this 3-array variation of the BSR format (storing only the upper triangular part) as follows:
one-based indexing

```
values =}(\begin{array}{llllllllllllllllll}{1}&{2}&{0}&{1}&{6}&{8}&{7}&{2}&{1}&{5}&{4}&{2}&{7}&{0}&{2}&{0}\end{array}
    columns = (\begin{array}{llll}{1}&{2}&{2}&{3}\end{array})
    rowIndex = (\begin{array}{lll}{1}&{3}&{4}\end{array})
```

zero-based indexing

```
values =}(\begin{array}{llllllllllllllll}{1}&{0}&{2}&{1}&{6}&{7}&{8}&{2}&{1}&{4}&{5}&{2}&{7}&{2}&{0}&{0}\end{array}
    columns =( (\begin{array}{llll}{0}&{1}&{1}&{2}\end{array})
    rowIndex = (\begin{array}{lll}{0}&{2}&{3}\end{array})
```


Variable BSR Format

A variation of BSR3 is variable block compressed sparse row format. For a trust level $t, 0 \leq t \leq 100$, rows similar up to t percent are placed in one supernode.

Appendix B: Routine and Function Arguments

The major arguments in the BLAS routines are vector and matrix, whereas VM functions work on vector arguments only. The sections that follow discuss each of these arguments and provide examples.

Vector Arguments in BLAS

Vector arguments are passed in one-dimensional arrays. The array dimension (length) and vector increment are passed as integer variables. The length determines the number of elements in the vector. The increment (also called stride) determines the spacing between vector elements and the order of the elements in the array in which the vector is passed.
A vector of length n and increment incx is passed in a one-dimensional array x whose values are defined as

$$
x(1), x(1+\mid \text { incx } \mid), \ldots, x(1+(n-1) *|i n c x|)
$$

If incx is positive, then the elements in array x are stored in increasing order. If incx is negative, the elements in array x are stored in decreasing order with the first element defined as $x(1+(n-1)$ * |incx|). If incx is zero, then all elements of the vector have the same value, $x(1)$. The size of the one-dimensional array that stores the vector must always be at least

```
idimx = 1 + (n-1)* | incx |
```


Example. One-dimensional Real Array

Let $x(1: 7)$ be the one-dimensional real array

$$
x=(1.0,3.0,5.0,7.0,9.0,11.0,13.0) .
$$

If $\operatorname{incx}=2$ and $n=3$, then the vector argument with elements in order from first to last is (1.0, 5.0, 9.0).

If incx $=-2$ and $n=4$, then the vector elements in order from first to last is (13.0, 9.0, $5.0,1.0)$.
If incx $=0$ and $n=4$, then the vector elements in order from first to last is (1.0, 1.0, 1.0, 1.0).
One-dimensional substructures of a matrix, such as the rows, columns, and diagonals, can be passed as vector arguments with the starting address and increment specified.

In Fortran, storing the $m-b y-n$ matrix is based on column-major ordering where the increment between elements in the same column is 1 , the increment between elements in the same row is m, and the increment between elements on the same diagonal is $m+1$.

Example. Two-dimensional Real Matrix

Let a be a real 5×4 matrix declared as REAL A $(5,4)$ float $a[5 * 4]$;
To scale the third column of a by 2.0 , use the BLAS routine sscal with the following calling sequence:

```
call sscal (5, 2.0, a(1,3), 1)
```

To scale the second row, use the statement:

```
call sscal (4, 2.0, a(2,1), 5)
```

To scale the main diagonal of a by 2.0 , use the statement:

```
call sscal (5, 2.0, a(1,1), 6)
```


NOTE

The default vector argument is assumed to be 1 .

Vector Arguments in Vector Math

Vector arguments of classic VM mathematical functions are passed in one-dimensional arrays with unit vector increment. It means that a vector of length n is passed contiguously in an array a whose values are defined as
$a(1), a(2), \ldots, a(n)$

Strided VM mathematical functions allow using positive increments for all input and output vector arguments.
To accommodate for arrays with other increments, or more complicated indexing, VM contains auxiliary Pack/ Unpack functions that gather the array elements into a contiguous vector and then scatter them after the computation is complete.

Generally, if the vector elements are stored in a one-dimensional array as
$a(m 1), a(m 2), \ldots, a(m n)$
and need to be regrouped into an array y as
$y(k 1), y(k 2), \ldots, y(k n)$,

VM Pack/Unpack functions can use one of the following indexing methods:

Positive Increment Indexing

$\mathrm{kj}=1+\operatorname{incy} \star(j-1), m j=1+\operatorname{inca} *(j-1), j=1, \ldots, n$.

Constraint: incy > 0 and inca > 0 .
For example, setting incy $=1$ specifies gathering array elements into a contiguous vector.
This method is similar to that used in BLAS, with the exception that negative and zero increments are not permitted.

Index Vector Indexing

```
kj = iy(j), mj = ia(j), j = 1 ,..., n .
```

where ia and iy are arrays of length n that contain index vectors for the input and output arrays a and y, respectively.

Mask Vector Indexing

Indices $k j, m j$ are such that:
$m y(k j) \neq 0, \operatorname{ma}(m j) \neq 0, j=1, \ldots, n$.
where ma and my are arrays that contain mask vectors for the input and output arrays a and y, respectively.

Vector Mathematical Functions

Matrix Arguments

Matrix arguments of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library routines can be stored ineither one- or twodimensional arrays, using the following storage schemes:

- conventional full storage(in a two-dimensional array)
- packed storage for Hermitian, symmetric, or triangular matrices (in a one-dimensional array)
- band storage for band matrices (in a two-dimensional array)
- rectangular full packed storage for symmetric, Hermitian, or triangular matrices as compact as the Packed storage while maintaining efficiency by using Level 3 BLAS/LAPACK kernels.

Full storage is the simplest scheme. A matrix A is stored in a two-dimensional array a, with the matrix element $a_{i j}$ stored in the array element $a(i, j)$. , where $l d a$ is the leading dimension of array a.
If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the relevant triangle are stored; the remaining elements of the array need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower triangle of the matrix to be stored in the corresponding elements of the array:
if uplo ='U', $\quad a_{\mathrm{ij}}$ is stored as described for $i \leq j$, other elements of a need not be set.
if uplo ='L', $\quad a_{\mathrm{ij}}$ is stored as described for $j \leq i$, other elements of a need not be set.
Packed storage allows you to store symmetric, Hermitian, or triangular matrices more compactly: the relevant triangle (again, as specified by the argument uplo) is packed by columns in a one-dimensional array $a p:$
if uplo $=$ ' U ', a_{ij} is stored in $\mathrm{ap}(i+j(j-1) / 2)$ for $i \leq j$
if uplo ='L', $a_{i j}$ is stored in $a p(i+(2 * n-j) *(j-1) / 2)$ for $j \leq i$.
In descriptions of LAPACK routines, arrays with packed matrices have names ending in p.
Band storage is as follows: an m-by- n band matrix with $k l$ non-zero sub-diagonals and $k u$ non-zero superdiagonals is stored compactly in a two-dimensional array $a b$ with $k l+k u+1$ rows and n columns. Columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array. Thus,
$a_{i j}$ is stored in $a b(k u+1+i-j, j)$ for $\max (1, j-k u) \leq i \leq \min (n, j+k l)$.
Use the band storage scheme only when $k l$ and $k u$ are much less than the matrix size n. Although the routines work correctly for all values of $k l$ and $k u$, using the band storage is inefficient if your matrices are not really banded.

The band storage scheme is illustrated by the following example, when

$$
m=n=6, k l=2, k u=1
$$

Array elements marked * are not used by the routines:

> Banded matrix A

Band storage of A

\(\left[\begin{array}{cccccc}a_{11} \& a_{12} \& 0 \& 0 \& 0 \& 0

a_{21} \& a_{22} \& a_{23} \& 0 \& 0 \& 0

a_{31} \& a_{32} \& a_{33} \& a_{34} \& 0 \& 0

0 \& a_{42} \& a_{43} \& a_{44} \& a_{45} \& 0

0 \& 0 \& a_{53} \& a_{54} \& a_{55} \& a_{56}

0 \& 0 \& 0 \& a_{64} \& a_{65} \& a_{66}\end{array}\right] \quad\)| | $*$ | a_{12} | a_{23} | a_{34} | a_{45} | a_{56} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a_{11} | a_{22} | a_{33} | a_{44} | a_{55} | a_{66} | |
| a_{21} | a_{32} | a_{43} | a_{54} | a_{65} | $*$ | |
| a_{31} | a_{42} | a_{53} | a_{64} | $*$ | $*$ | |
| | | | | | | |

When a general band matrix is supplied for $L U$ factorization, space must be allowed to store $k l$ additional super-diagonals generated by fill-in as a result of row interchanges. This means that the matrix is stored according to the above scheme, but with $k l+k u$ super-diagonals. Thus,
$a_{i j}$ is stored in $a b(k l+k u+1+i-j, j)$ for $\max (1, j-k u) \leq i \leq \min (n, j+k l)$.
The band storage scheme for LU factorization is illustrated by the following example, whenm $=n=6, \mathrm{kl}=$ 2, ku = 1:

\[

\]

Array elements marked＊are not used by the routines；elements marked＋need not be set on entry，but are required by the LU factorization routines to store the results．The input array will be overwritten on exit by the details of the LU factorization as follows：

$\stackrel{\text {－}}{-1}$	－	－	퐃	＊	＊
感	盙	\％	－	＊	뭋
${ }_{5}^{6}$	－	岁	¢	－	꿏
$\frac{\mathrm{F}}{5}$	$\begin{aligned} & \text { F } \\ & \end{aligned}$	号	今1	5	－
＊	8_{0}^{8}	每	H1	－5	5
퐃	$\stackrel{\text {＊}}{ \pm}$	$\underbrace{1-1}_{1}$			S

where $u_{i j}$ are the elements of the upper triangular matrix U ，and $m_{i j}$ are the multipliers used during factorization．

Triangular band matrices are stored in the same format，with either $k l=0$ if upper triangular，or $k u=0$ if lower triangular．For symmetric or Hermitian band matrices with k sub－diagonals or super－diagonals，you need to store only the upper or lower triangle，as specified by the argument uplo：
if uplo $=$＇U＇，$a_{i j}$ is stored in $a b(k+1+i-j, j)$ for $\max (1, j-k) \leq i \leq j$
if uplo $=$＇L＇，$a_{i j}$ is stored in $a b(1+i-j, j)$ for $j \leq i \leq \min \left(n_{1} j+k\right)$ ．
In descriptions of LAPACK routines，arrays that hold matrices in band storage have names ending in b ．
In Fortran，column－major ordering of storage is assumed．This means that elements of the same column occupy successive storage locations．

Three quantities are usually associated with a two-dimensional array argument: its leading dimension, which specifies the number of storage locations between elements in the same row, its number of rows, and its number of columns. For a matrix in full storage, the leading dimension of the array must be at least as large as the number of rows in the matrix.
A character transposition parameter is often passed to indicate whether the matrix argument is to be used in normal or transposed form or, for a complex matrix, if the conjugate transpose of the matrix is to be used.

The values of the transposition parameter for these three cases are the following:

$$
\begin{array}{ll}
' N \text { ' or ' } n \text { ' } & \text { normal (no conjugation, no transposition) } \\
' T \text { ' or ' } t \text { ' } & \text { transpose } \\
{ }^{\prime} C^{\prime} \text { or ' } C \text { ' } & \text { conjugate transpose. }
\end{array}
$$

Example. Two-Dimensional Complex Array

Suppose $A(1: 5,1: 4)$ is the complex two-dimensional array presented by matrix
$\left[\begin{array}{llll}(1.1,0.11) & (1.2,0.12) & (1.3,0.13) & (1.4,0.14) \\ (2.1,0.21) & (2.2,0.22) & (2.3,0.23) & (1.4,0.24) \\ (3.1,0.31) & (3.2,0.32) & (3.3,0.33) & (1.4,0.34) \\ (4.1,0.41) & (4.2,0.42) & (4.3,0.43) & (1.4,0.44) \\ (5.1,0.51) & (5.2,0.52) & (5.3,0.53) & (1.4,0.54)\end{array}\right]$

Let transa be the transposition parameter, m be the number of rows, n be the number of columns, and $/ d a$ be the leading dimension. Then if
transa $=' N$ ', $m=4, n=2$, and lda $=5$, the matrix argument would be

$$
\left[\begin{array}{ll}
(1.1,0.11) & (1.2,0.12) \\
(2.1,0.21) & (2.2,0.22) \\
(3.1,0.31) & (3.2,0.32) \\
(4.1,0.41) & (4.2,0.42)
\end{array}\right]
$$

If transa $=' T ', m=4, n=2$, and $l d a=5$, the matrix argument would be

$$
\left[\begin{array}{llll}
(1.1,0.11) & (2.1,0.21) & (3.1,0.31) & (4.1,0.41) \\
(1.2,0.12) & (2.2,0.22) & (3.2,0.32) & (4.2,0.42)
\end{array}\right]
$$

If transa $=' C$ ', $m=4, n=2$, and $l d a=5$, the matrix argument would be

$$
\left[\begin{array}{llll}
(1.1,-0.11) & (2.1,-0.21) & (3.1,-0.31) & (4.1,-0.41) \\
(1.2,-0.12) & (2.2,-0.22) & (3.2,-0.32) & (4.2,-0.42)
\end{array}\right]
$$

Note that care should be taken when using a leading dimension value which is different from the number of rows specified in the declaration of the two-dimensional array. For example, suppose the array A above is declared as COMPLEX A $(5,4)$.
Then if transa $=' N$ ', $m=3, n=4$, and $l d a=4$, the matrix argument will be

$$
\left[\begin{array}{llll}
(1.1,0.11) & (5.1,0.51) & (4.2,0.42) & (3.3,0.33) \\
(2.1,0.21) & (1.2,0.12) & (5.2,0.52) & (4.3,0.43) \\
(3.1,0.31) & (2.2,0.22) & (1.3,0.13) & (5.3,0.53)
\end{array}\right]
$$

Rectangular Full Packed storage allows you to store symmetric, Hermitian, or triangular matrices as compact as the Packed storage while maintaining efficiency by using Level 3 BLAS/LAPACK kernels. To store an n-by- n triangle (and suppose for simplicity that n is even), you partition the triangle into three parts: two $n / 2$-by- $n / 2$ triangles and an $n / 2-$ by- $n / 2$ square, then pack this as an n-by- $n / 2$ rectangle (or $n / 2-b y-n$ rectangle), by transposing (or transpose-conjugating) one of the triangles and packing it next to the other triangle. Since the two triangles are stored in full storage, you can use existing efficient routines on them.
There are eight cases of RFP storage representation: when n is even or odd, the packed matrix is transposed or not, the triangular matrix is lower or upper. See below for all the eight storage schemes illustrated:
n is odd, A is lower triangular

Full format						
a_{11}	x	x	x	x	x	x
a_{21}	a_{22}	x	x	x	x	x
a_{31}	a_{32}	a_{33}	x	x	x	x
a_{41}	a_{42}	a_{43}	a_{44}	x	x	x
$\mathbf{a}_{\mathbf{5 1}}$	$\mathbf{a}_{\mathbf{5 2}}$	$\mathbf{a}_{\mathbf{5 3}}$	$\mathbf{a}_{\mathbf{5 4}}$	a_{55}	x	x
$\mathbf{a}_{\mathbf{6 1}}$	$\mathbf{a}_{\mathbf{6 2}}$	$\mathbf{a}_{\mathbf{6 3}}$	$\mathbf{a}_{\mathbf{6 4}}$	a_{65}	a_{66}	X
$\mathbf{a}_{\mathbf{7 1}}$	$\mathbf{a}_{\mathbf{7 2}}$	$\mathbf{a}_{\mathbf{7 3}}$	$\mathbf{a}_{\mathbf{7 4}}$	a_{75}	a_{76}	a_{77}

$$
\begin{aligned}
& \text { RFP (not transposed) RFP (transposed) } \\
& \begin{array}{llll}
a_{11} & a_{55} & a_{65} & a_{75}
\end{array} \\
& a_{21} a_{22} a_{66} a_{76} \\
& a_{31} \quad a_{32} \quad a_{33} \quad a_{77} \\
& a_{41} \quad a_{42} \quad a_{43} \quad a_{44} \\
& a_{51} a_{52} a_{53} a_{54} \\
& a_{61} a_{62} a_{63} a_{64} \\
& a_{11} a_{21} a_{31} a_{41} \mathbf{a}_{\mathbf{5 1}} \mathbf{a}_{\mathbf{6 1}} \mathbf{a}_{\mathbf{7 1}} \\
& a_{55} \quad a_{22} \quad a_{32} \quad a_{42} \quad \mathbf{a}_{\mathbf{5 2}} \quad \mathbf{a}_{\mathbf{6 2}} \quad \mathbf{a}_{\mathbf{7 2}} \\
& a_{65} \quad a_{66} \quad a_{33} \quad a_{43} \quad \mathbf{a}_{\mathbf{5 3}} \quad \mathbf{a}_{\mathbf{6 3}} \quad \mathbf{a}_{\mathbf{7 3}} \\
& \begin{array}{lllll}
a_{75} & a_{76} & a_{77} & a_{44} & \mathbf{a}_{\mathbf{5 4}}
\end{array} \mathbf{a}_{\mathbf{6 4}} \mathbf{a}_{\mathbf{7 4}} \\
& a_{71} a_{72} a_{73} a_{74}
\end{aligned}
$$

n is even, A is lower triangular

Full format					
a_{11}	X	X	X	X	X
a_{21}	a_{22}	X	X	X	X
a_{31}	a_{32}		X	X	X
a_{41}	a_{42}	a_{43}	a_{44}	X	X
a_{51}	a_{52}	a_{53}	a_{54}	a_{55}	X
a_{61}	a_{62}	a_{63}	a_{64}	a_{65}	a_{66}

RFP (not transposed) RFP (transposed)

$$
\begin{array}{lll}
a_{44} & a_{54} & a_{64} \\
a_{11} & a_{55} & a_{65} \\
a_{21} & a_{22} & a_{66} \\
a_{31} & a_{32} & a_{33} \\
\mathbf{a}_{\mathbf{4 1}} & \mathbf{a}_{\mathbf{4 2}} & \mathbf{a}_{\mathbf{4 3}} \\
\mathbf{a}_{\mathbf{5 1}} & \mathbf{a}_{\mathbf{5 2}} & \mathbf{a}_{\mathbf{5 3}} \\
\mathbf{a}_{\mathbf{6 1}} & \mathbf{a}_{\mathbf{6 2}} & \mathbf{a}_{\mathbf{6 3}}
\end{array}
$$

$$
a_{44} a_{11} a_{21} a_{31} \mathbf{a}_{\mathbf{4 1}} \mathbf{a}_{\mathbf{5 1}} \mathbf{a}_{\mathbf{6 1}}
$$

$\begin{array}{lllllll}a_{44} & a_{11} & a_{21} & a_{31} & \mathbf{a}_{\mathbf{4 1}} & \mathbf{a}_{\mathbf{5 1}} & \mathbf{a}_{\mathbf{6 1}} \\ a_{54} & a_{55} & a_{22} & a_{32} & \mathbf{a}_{\mathbf{4 2}} & \mathbf{a}_{\mathbf{5 2}} & \mathbf{a}_{\mathbf{6 2}}\end{array}$

$$
\mathbf{a}_{\mathbf{4 1}} \mathbf{a}_{\mathbf{4 2}} \mathbf{a}_{\mathbf{4 3}} \quad a_{64} \quad a_{65} \quad a_{66} \quad a_{33} \quad \mathbf{a}_{\mathbf{4 3}} \mathbf{a}_{\mathbf{5 3}} \boldsymbol{a}_{\mathbf{6 3}}
$$

n is odd, A is upper triangular

n is even, A is upper triangular

Full format

a_{11}	a_{12}	a_{13}	$\mathbf{a}_{\mathbf{1 4}}$	$\mathbf{a}_{\mathbf{1 5}}$	$\mathbf{a}_{\mathbf{1 6}}$
x	a_{22}	a_{23}	$\mathbf{a}_{\mathbf{2 4}}$	$\mathbf{a}_{\mathbf{2 5}}$	$\mathbf{a}_{\mathbf{2 6}}$
X	X	a_{33}	$\mathbf{a}_{\mathbf{3 4}}$	$\mathbf{a}_{\mathbf{3 5}}$	$\mathbf{a}_{\mathbf{3 6}}$
x	X	X	a_{44}	a_{45}	a_{46}
X	X	X	X	a_{55}	a_{56}
X	X	X	X	X	a_{66}

RFP (not transposed)

\mathbf{a}_{14}	$\mathbf{a}_{\mathbf{1 5}}$	$\mathbf{a}_{\mathbf{1 6}}$
$\mathbf{a}_{\mathbf{2 4}}$	$\mathbf{a}_{\mathbf{2 5}}$	$\mathbf{a}_{\mathbf{2 6}}$
$\mathbf{a}_{\mathbf{3 4}}$	$\mathbf{a}_{\mathbf{3 5}}$	$\mathbf{a}_{\mathbf{3 6}}$
a_{44}	a_{45}	a_{46}
a_{11}	a_{55}	a_{56}
a_{12}	a_{22}	a_{66}
a_{13}	a_{23}	a_{33}

RFP (transposed)
$\mathbf{a}_{\mathbf{1 4}} \quad \boldsymbol{a}_{\mathbf{2 4}} \quad \mathbf{a}_{\mathbf{3 4}} \quad a_{44} \quad a_{11} \quad a_{12} \quad a_{13}$ $\mathbf{a}_{\mathbf{1 5}} \quad \mathbf{a}_{\mathbf{2 5}} \quad \mathbf{a}_{\mathbf{3 5}} \quad a_{45} \quad a_{55} \quad a_{22} \quad a_{23}$ $\mathbf{a}_{\mathbf{1 6}} \quad \mathbf{a}_{\mathbf{2 6}} \quad \mathbf{a}_{\mathbf{3 6}} \quad a_{46} \quad a_{56} \quad a_{66} \quad a_{33}$

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides a number of routines such as?hfrk, ?sfrk performing BLAS operations working directly on RFP matrices, as well as some conversion routines, for instance, ?tpttf goes from the standard packed format to RFP and ?trttf goes from the full format to RFP.
Please refer to the Netlib site for more information.
Note that in the descriptions of LAPACK routines, arrays with RFP matrices have names ending in fp .

Appendix C: Specific Features of Fortran 95 Interfaces for LAPACK Routines

Intel ${ }^{\circledR}$ MKL implements Fortran 95 interface for LAPACK package, further referred to as MKL LAPACK95, to provide full capacity of MKL FORTRAN 77 LAPACK routines. This is the principal difference of Intel MKL from the Netlib Fortran 95 implementation for LAPACK.
A new feature of MKL LAPACK95 by comparison with Intel MKL LAPACK77 implementation is presenting a package of source interfaces along with wrappers that make the implementation compiler-independent. As a result, the MKL LAPACK package can be used in all programming environments intended for Fortran 95.
Depending on the degree and type of difference from Netlib implementation, the MKL LAPACK95 interfaces fall into several groups that require different transformations (see "MKL Fortran 95 Interfaces for LAPACK Routines vs. Netlib Implementation"). The groups are given in full with the calling sequences of the routines and appropriate differences from Netlib analogs.
The following conventions are used:

```
<interface> ::= <name of interface> '(' <arguments list>')'
<arguments list> ::= <first argument> {<argument>}*
<first argument> ::= < identifier >
<argument> ::= <required argument>|<optional argument>
<required argument> ::= ',' <identifier>
<optional argument> ::= '[,' <identifier> ']'
<name of interface> ::= <identifier>
```

where defined notions are separated from definitions by : :=, notion names are marked by angle brackets, terminals are given in quotes, and $\{\ldots\}^{*}$ denotes repetition zero, one, or more times.
<first argument> and each <required argument> should be present in all calls of denoted interface, <optional argument> may be omitted. Comments to interface definitions are provided where necessary. Comment lines begin with character!.
Two interfaces with one name are presented when two variants of subroutine calls (separated by types of arguments) exist.

Appendix D: FFTW Interface to Intel ${ }^{\circledR}$ Math Kernel Library

Intel® oneAPI Math Kernel Library (oneMKL) offers FFTW2 and FFTW3 interfaces to Intel® oneAPI Math Kernel Library (oneMKL) Fast Fourier Transform and Trigonometric Transform functionality. The purpose of these interfaces is to enable applications using FFTW (www.fftw.org) to gain performance with Intel® oneAPI Math Kernel Library (oneMKL) without changing the program source code.
Both FFTW2 and FFTW3 interfaces are provided in open source as FFTW wrappers to Intel® oneAPI Math Kernel Library (oneMKL). For ease of use, FFTW3 interface is also integrated in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).

FFTW Notational Conventions

This appendix typically employs path notations for Windows* OS.

FFTW2 Interface to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library

This section describes a collection of C and Fortran wrappers providing FFTW $2 . x$ interface to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). The wrappers translate calls to FFTW 2.x functions into the calls of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Fast Fourier Transform interface (FFT interface).
Note that Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface operates on both single- and doubleprecision floating-point data types.

Because of differences between FFTW and Intel® oneAPI Math Kernel Library (oneMKL) FFT functionalities, there are restrictions on using wrappers instead of the FFTW functions. Some FFTW functions have empty wrappers. However, many typical FFTs can be computed using these wrappers.
Refer to Fourier Transform Functions, for better understanding the effects from the use of the wrappers.

Wrappers Reference

The section provides a brief reference for the FFTW 2.x C interface. For details please refer to the original FFTW 2.x documentation available at www.fftw.org.
Each FFTW function has its own wrapper. Some of them, which are not expressly listed in this section, are empty and do nothing, but they are provided to avoid link errors and satisfy the function calls.

See Also
 Limitations of the FFTW2 Interface to Intel® oneAPI Math Kernel Library (oneMKL)

One-dimensional Complex-to-complex FFTs

The following functions compute a one-dimensional complex-to-complex Fast Fourier transform.

```
fftw_plan fftw_create_plan(int n, fftw_direction dir, int flags);
fftw_plan fftw_create_plan_specific(int n, fftw_direction dir, int flags, fftw_complex
*in, int istride, fftw_complex *out, int ostride);
void fftw(fftw_plan plan, int howmany, fftw_complex *in, int istride, int idist,
fftw_complex *out, int ostride, int odist);
```

```
void fftw_one(fftw_plan plan, fftw_complex *in, fftw_complex *out);
void fftw_destroy_plan(fftw_plan plan);
```


Multi-dimensional Complex-to-complex FFTs

The following functions compute a multi-dimensional complex-to-complex Fast Fourier transform.

```
fftwnd_plan fftwnd_create_plan(int rank, const int *n, fftw_direction dir, int flags);
fftwnd_plan fftw2d_create_plan(int nx, int ny, fftw_direction dir, int flags);
fftwnd_plan fftw3d_create_plan(int nx, int ny, int nz, fftw_direction dir, int flags);
fftwnd_plan fftwnd_create_plan_specific(int rank, const int *n, fftw_direction dir, int
flags, fftw_complex *in, int istride, fftw_complex *out, int ostride);
fftwnd_plan fftw2d_create_plan_specific(int nx, int ny, fftw_direction dir, int flags,
fftw_complex *in, int istride, fftw_complex *out, int ostride);
fftwnd_plan fftw3d_create_plan_specific(int nx, int ny, int nz, fftw_direction dir, int
flags, fftw_complex *in, int istride, fftw_complex *out, int ostride);
void fftwnd(fftwnd_plan plan, int howmany, fftw_complex *in, int istride, int idist,
fftw_complex *out, int ostride, int odist);
void fftwnd one(fftwnd plan plan, fftw complex *in, fftw complex *out);
void fftwnd_destroy_plan(fftwnd_plan plan);
```


One-dimensional Real-to-half-complex/Half-complex-to-real FFTs

Half-complex representation of a conjugate-even symmetric vector of size N in a real array of the same size N consists of $N / 2+1$ real parts of the elements of the vector followed by non-zero imaginary parts in the reverse order. Because the Intel® ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface does not currently support this representation, all wrappers of this kind are empty and do nothing.
Nevertheless, you can perform one-dimensional real-to-complex and complex-to-real transforms using rfftwnd functions with rank=1.

See Also

Multi-dimensional Real-to-complex/complex-to-real FFTs

Multi-dimensional Real-to-complex/Complex-to-real FFTs

The following functions compute multi-dimensional real-to-complex and complex-to-real Fast Fourier transforms.

```
rfftwnd_plan rfftwnd_create_plan(int rank, const int *n, fftw_direction dir, int
flags);
rfftwnd_plan rfftw2d_create_plan(int nx, int ny, fftw_direction dir, int flags);
rfftwnd_plan rfftw3d_create_plan(int nx, int ny, int nz, fftw_direction dir, int
flags);
rfftwnd_plan rfftwnd_create_plan_specific(int rank, const int *n, fftw_direction dir,
int flags, fftw_real *in, int istride, fftw_real *out, int ostride);
rfftwnd_plan rfftw2d_create_plan_specific(int nx, int ny, fftw_direction dir, int
flags, fftw_real *in, int istride, fftw_real *out, int ostride);
rfftwnd_plan rfftw3d_create_plan_specific(int nx, int ny, int nz, fftw_direction dir,
int flags, fftw_real *in, int istride, fftw_real *out, int ostride);
```

```
void rfftwnd_real_to_complex(rfftwnd_plan plan, int howmany, fftw_real *in, int
istride, int idist, fftw_complex *out, int ostride, int odist);
void rfftwnd_complex_to_real(rfftwnd_plan plan, int howmany, fftw_complex *in, int
istride, int idist, fftw_real *out, int ostride, int odist);
void rfftwnd_one_real_to_complex(rfftwnd_plan plan, fftw_real *in, fftw_complex *out);
void rfftwnd_one_complex_to_real(rfftwnd_plan plan, fftw_complex *in, fftw_real *out);
void rfftwnd_destroy_plan(rfftwnd_plan plan);
```


Multi-threaded FFTW

Unlike the original FFTW interface, every computational function in the FFTW2 interface to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides multithreaded computation by default, with the maximum number of threads permitted in FFT functions (see "Techniques to Set the Number of Threads" in Intel® oneAPI Math Kernel Library (oneMKL) Developer Guide). To limit the number of threads, call the threaded FFTW computational functions:

```
void fftw_threads(int nthreads, fftw_plan plan, int howmany, fftw_complex *in, int
istride, int idist, fftw_complex *out, int ostride, int odist);
void fftw_threads_one(int nthreads, rfftwnd_plan plan, fftw_complex *in, fftw_complex
*out);
...
void rfftwnd_threads_real_to_complex( int nthreads, rfftwnd_plan plan, int howmany,
fftw_real *in
```

Compared to its non-threaded counterpart, every threaded computational function has threads_ as the second part of its name and additional first parameter nthreads. Set the nthreads parameter to the thread limit to ensure that the computation requires at most that number of threads.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Notice revision \#20201201

FFTW Support Functions

The FFTW wrappers provide memory allocation functions to be used with FFTW:

```
void* fftw_malloc(size_t n);
void fftw_free(void* x);
```

The fftw_malloc wrapper aligns the memory on a 16-byte boundary.
If fftw_malloc fails to allocate memory, it aborts the application. To override this behavior, set a global variable fftw_malloc_hook and optionally the complementary variable fftw_free_hook:
void *(*fftw_malloc_hook) (size_t n);
void (*fftw_free_hook) (void *p);
The wrappers use the function $f f t w$ _die to abort the application in cases when a caller cannot be informed of an error otherwise (for example, in computational functions that return void). To override this behavior, set a global variable fftw_die_hook:

```
void (*fftw_die_hook) (const char *error_string);
void fftw_die(const char *s);
```


Calling FFTW2 Interface Wrappers from Fortran

The FFTW2 wrappers to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provide the following subroutines for calling from Fortran:

```
call fftw_f77_create_plan(plan, n, dir, flags)
call fftw_f77(plan, howmany, in, istride, idist, out, ostride, odist)
call fftw_f77_one(plan, in, out)
call fftw_f77_threads(nthreads, plan, howmany, in, istride, idist, out, ostride, odist)
call fftw_f77_threads_one(nthreads, plan, in, out)
call fftw_f77_destroy_plan(plan)
call fftwnd_f77_create_plan(plan, rank, n, dir, flags)
call fftw2d_f77_create_plan(plan, nx, ny, dir, flags)
call fftw3d_f77_create_plan(plan, nx, ny, nz, dir, flags)
call fftwnd_f77(plan, howmany, in, istride, idist, out, ostride, odist)
call fftwnd_f77_one(plan, in, out)
call fftwnd_f77_threads(nthreads, plan, howmany, in, istride, idist, out, ostride,
odist)
call fftwnd_f77_threads_one(nthreads, plan, in, out)
call fftwnd_f77_destroy_plan(plan)
call rfftw_f77_create_plan(plan, n, dir, flags)
call rfftw_f77(plan, howmany, in, istride, idist, out, ostride, odist)
call rfftw_f77_one(plan, in, out)
call rfftw_f77_threads(nthreads, plan, howmany, in, istride, idist, out, ostride, odist)
call rfftw_f77_threads_one(nthreads, plan, in, out)
call rfftw_f77_destroy_plan(plan)
call rfftwnd_f77_create_plan(plan, rank, n, dir, flags)
call rfftw2d_f77_create_plan(plan, nx, ny, dir, flags)
call rfftw3d_f77_create_plan(plan, nx, ny, nz, dir, flags)
call rfftwnd_f77_complex_to_real(plan, howmany, in, istride, idist, out, ostride, odist)
call rfftwnd_f77_one_complex_to_real (plan, in, out)
call rfftwnd_f77_real_to_complex(plan, howmany, in, istride, idist, out, ostride, odist)
call rfftwnd_f77_one_real_to_complex (plan, in, out)
call rfftwnd_f77_threads_complex_to_real(nthreads, plan, howmany, in, istride, idist,
out, ostride, odist)
call rfftwnd_f77_threads_one_complex_to_real(nthreads, plan, in, out)
call rfftwnd_f77_threads_real_to_complex(nthreads, plan, howmany, in, istride, idist,
out, ostride, odist)
call rfftwnd_f77_threads_one_real_to_complex(nthreads, plan, in, out)
call rfftwnd f77 destroy plan(plan)
call fftw_f77_threads_init(info)
```

The FFTW Fortran functions are wrappers to FFTW C functions.
See also these resources:
www.fftw.org
for the original FFTW 2.x documentation.
Limitations of the FFTW2 Interface to for limitations of the wrappers.
Intel MKL

Limitations of the FFTW2 Interface to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL)

The FFTW2 wrappers implement the functionality of only those FFTW functions that Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) can reasonably support. Other functions are provided as no-operation functions, whose only purpose is to satisfy link-time symbol resolution. Specifically, no-operation functions include:

- Real-to-half-complex and respective backward transforms
- Print plan functions
- Functions for importing/exporting/forgetting wisdom
- Most of the FFTW functions not covered by the original FFTW2 documentation

Because the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) implementation of FFTW2 wrappers does not use plan and plan node structures declared in fftw.h, the behavior of an application that relies on the internals of the plan structures defined in that header file is undefined.

FFTW2 wrappers define plan as a set of attributes, such as strides, used to commit the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT descriptor structure. If an FFTW2 computational function is called with attributes different from those recorded in the plan, the function attempts to adjust the attributes of the plan and recommit the descriptor. So, repeated calls of a computational function with the same plan but different strides, distances, and other parameters may be performance inefficient.
Plan creation functions disregard most planner flags passed through the flags parameter. These functions take into account only the following values of flags:

- FFTW_IN_PLACE

If this value of flags is supplied, the plan is marked so that computational functions using that plan ignore the parameters related to output (out, ostride, and odist). Unlike the original FFTW interface, the wrappers never use the out parameter as a scratch space for in-place transforms.

- FFTW_THREADSAFE

If this value of flags is supplied, the plan is marked read-only. An attempt to change attributes of a read-only plan aborts the application.
FFTW wrappers are generally not thread safe. Therefore, do not use the same plan in parallel user threads simultaneously.

Installing FFTW2 Interface Wrappers

Wrappers are delivered as source code, which you must compile to build the wrapper library. Then you can substitute the wrapper and Intel® oneAPI Math Kernel Library (oneMKL) libraries for the FFTW library. The source code for the wrappers, makefiles, and files with lists of wrappers are located in the . \interfaces $\backslash f f t w 2 x f s u b d i r e c t o r y$ in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory.

Creating the Wrapper Library

Three header files are used to compile the Fortran wrapper library: fftw2_mkl.h, fftw2_f77_mkl.h, and fftw.h. The fftw2_mkl.h and fftw2_f77_mkl.h files are located in the. \interfaces $\backslash f f t w 2 x f$ \wrapperssubdirectory in the Intel® oneAPI Math Kernel Library (oneMKL) directory.
 oneAPI Math Kernel Library (oneMKL) directory, slightly differs from the original FFTW (www.fftw.org) header filefftw.h.

The source code for the wrappers, makefiles, and files with lists of functions are located in the . \interfaces $\backslash f f t w 2 x f$ subdirectory in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory.

A wrapper library contains wrappers for complex and real transforms in a serial and multi-threaded mode for double- or single-precision floating-point data types. A makefile parameter manages the data type.
Parameters of a makefile also specify the platform (required), compiler, and data precision. The makefile comment heading provides the exact description of these parameters.
Because a C compiler builds the Fortran wrapper library, function names in the wrapper library and Fortran object module may be different. The file fftw2_f77_mkl.h in the . \interfaces \fftw 2 xf \sourcesubdirectory in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory defines function names according to the names in the Fortran module. If a required name is missing in the file, you can modify the file to add the name before building the library.
To build the library, run the make command on Linux* OS and macOS* or the nmake command on Windows* OS with appropriate parameters.
For example, on Linux OS the command
make libintel64
builds a double-precision wrapper library for Intel ${ }^{\circledR} 64$ architecture based applications using the Intel ${ }^{\circledR}$ oneAPI DPC $++/ \mathrm{C}++$ Compiler or the Intel ${ }^{\circledR}$ Fortran Compiler (Compilers and data precision are chosen by default.)
Each makefile creates the library in the directory with Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) libraries corresponding to the platform used. For example,./lib/ia32 (on Linux OS and macOS) or . \lib\ia32 (on Windows* OS).
In the names of a wrapper library, the suffix corresponds to the compiler used and the letter preceding the underscore is " f " for the Fortran programming language.

For example,
fftw2xf_intel.lib (on Windows OS); libfftw2xf_intel.a (on Linux OS and macOS);

Application Assembling

Use the necessary original FFTW (www.fftw.org) header files without any modifications. Use the created wrapper library and the Intel® oneAPI Math Kernel Library (oneMKL) library instead of the FFTW library.

Running FFTW2 Interface Wrapper Examples

Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) provides examples to demonstrate how to use the MPI FFTW wrapper library. The source code for the examples, makefiles used to run them, and files with lists of examples are located in the . \examples $\backslash f f t w 2 x f$ subdirectory in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory . To build examples, several additional files are needed: fftw.h, fftw_threads.h, rfftw.h, rfftw_threads.h, and fftw_f77.i. These files are distributed with permission from FFTW and are available in . \include $\backslash f f t w$. The original files can also be found in FFTW 2.1 .5 at http://www.fftw.org/ download.html.

An example makefile uses the function parameter in addition to the parameters of the corresponding wrapper library makefile (see Creating a Wrapper Library). The makefile comment heading provides the exact description of these parameters.

An example makefile normally invokes examples. However, if the appropriate wrapper library is not yet created, the makefile first builds the library the same way as the wrapper library makefile does and then proceeds to examples.

If the parameter function=<example_name> is defined, only the specified example runs. Otherwise, all examples from the appropriate subdirectory run. The subdirectory . $\_{\text {_results }}$ is created, and the results are stored there in the <example_name>. res files.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/ PerformanceIndex.

Product and Performance Information

Notice revision \#20201201

FFTW3 Interface to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library

This section describes a collection of FFTW3 wrappers to Intel® oneAPI Math Kernel Library (oneMKL). The wrappers translate calls of FFTW3 functions to the calls of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Fourier transform (FFT) or Trigonometric Transform (TT) functions. The purpose of FFTW3 wrappers is to enable developers whose programs currently use the FFTW3 library to gain performance with the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Fourier transforms without changing the program source code.
The FFTW3 wrappers provide a limited functionality compared to the original FFTW 3.x library, because of differences between FFTW and Intel® oneAPI Math Kernel Library (oneMKL) FFT and Π T functionality. This section describes limitations of the FFTW3 wrappers and hints for their usage. Nevertheless, many typical FFT tasks can be performed using the FFTW3 wrappers to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).
The FFTW3 wrappers are integrated in Intel® ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). The only change required to use Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) through the FFTW3 wrappers is to link your application using FFTW3 against Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).
A reference implementation of the FFTW3 wrappers is also provided in open source. You can find it in the interfaces directory of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) distribution. You can use the reference implementation to create your own wrapper library (see Building Your Own Wrapper Library)
See also these resources:
Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Release Notes
www.fftw.org
Fourier Transform Functions

Trigonometric Transform Routines
for the version of the FFTW3 library supported by the wrappers.
for a description of the FFTW interface.
for a description of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT interface.
for a description of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) TT interface.

Using FFTW3 Wrappers

The FFTW3 wrappers are a set of functions and data structures depending on one another. The wrappers are not designed to provide the interface on a function-per-function basis. Some FFTW3 wrapper functions are empty and do nothing, but they are present to avoid link errors and satisfy function calls.

This document does not list the declarations of the functions that the FFTW3 wrappers provide (you can find the declarations in the fftw3. h header file). Instead, this section comments on particular limitations of the wrappers and provides usage hints:. These are some known limitations of FFTW3 wrappers and their usage in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).

- The FFTW3 wrappers do not support long double precision because Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) FFT functions operate only on single- and double-precision floating-point data types. Therefore the functions with prefix fftwl_, supporting the long double data type, are not provided.
- The wrappers provide equivalent implementation for double- and single-precision functions (those with prefixes $f f t w$ _ and fftwf_, respectively). So, all these comments equally apply to the double- and single-precision functions and will refer to functions with prefix $f f t w$, , that is, double-precision functions, for brevity.
- The FFTW3 interface that the wrappers provide is defined in the fftw $3 . h$ and fftw3.f header files. These files are borrowed from the FFTW3.x package and distributed within Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) with permission. Additionally, the fftw3_mkl.h, fftw3_mkl.f, and fftw3_mkl_f77.h header files define supporting structures and supplementary constants and macros as well as exporan interface in C .
- Actual functionality of the plan creation wrappers is implemented in guru64 set of functions. Basic interface, advanced interface, and guru interface plan creation functions call the guru64 interface functions. So, all types of the FFTW3 plan creation interface in the wrappers are functional.
- Plan creation functions may return a NULL plan, indicating that the functionality is not supported. So, please carefully check the result returned by plan creation functions in your application. In particular, the following problems return a NULL plan:
- c2r and r2c problems with a split storage of complex data.
- r2r problems with kind values FFTW_R2HC, FFTW_HC2R, and FFTW_DHT. The only supported r2r kinds are even/odd DFTs (sine/cosine transforms).
- Multidimensional r2r transforms.
- Transforms of multidimensional vectors. That is, the only supported values for parameter howmany_rank in guru and guru64 plan creation functions are 0 and 1.
- Multidimensional transforms with rank > MKL_MAXRANK.
- The MKL_RODFTOO value of the kind parameter is introduced by the FFTW3 wrappers. For better performance, you are strongly encouraged to use this value rather than FFTW_RODFTOO. To use this kind value, provide an extra first element equal to 0.0 for the input/output vectors. Consider the following example:

```
plan1 = fftw_plan_r2r_1d(n, in1, out1, FFTW_RODFT00, FFTW_ESTIMATE);
plan2 = fftw_plan_r2r_1d(n, in2, out2, MKL__RODFT00, FFTW_ESTIMATE);
```

Both plans perform the same transform, except that the in2/out2 arrays have one extra zero element at location 0 . For example, if $n=3$, in $1=\{x, y, z\}$ and out $1=\{u, v, w\}$, then in $2=\{0, x, y, z\}$ and out $2=\{0, u, v, w\}$.

- The flags parameter in plan creation functions is always ignored. The same algorithm is used regardless of the value of this parameter. In particular, flags values FFTW_ESTIMATE, FFTW_MEASURE, etc. have no effect.
- For multithreaded plans, use normal sequence of calls to the fftw_init_threads() and fftw_plan_with_nthreads () functions (refer to FFTW documentation).
- Memóry allocation function fftw_malloc returns memory aligned at a 16 -byte boundary. You must free the memory with fftw_free.
- Fortran wrappers (see C̄alling Wrappers from Fortran) use the INTEGER type, which is 32-bit in LP64 interfaces and 64-bit in ILP64 interfaces.
- The wrappers typically indicate a problem by returning a NuLL plan. In a few cases, the wrappers may report a descriptive message of the problem detected. By default the reporting is turned off. To turn it on, set variable fftw3_mkl.verbose to a non-zero value, for example:

```
#include "fftw3.h"
#include "fftw3_mkl.h"
fftw3_mkl.verbose = 0;
plan = fftw_plan_r2r(...);
```

- The following functions are empty:
- For saving, loading, and printing plans
- For saving and loading wisdom
- For estimating arithmetic cost of the transforms.
- Do not use macro FFTW_DLL with the FFTW3 wrappers to Inte® oneAPI Math Kernel Library (oneMKL).
- Do not use negative stride values. Though FFTW3 wrappers support negative strides in the part of advanced and guru FFTW interface, the underlying implementation does not.
- Do not set a FFTW2 wrapper library before a FFTW3 wrapper library or Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) in your link line application. All libraries define "fftw_destroy_plan" symbol and linkage in incorrect order results into expected errors.

Calling FFTW3 Interface Wrappers from Fortran

Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) also provides Fortran 77 interfaces of the FFTW3 wrappers. The Fortran wrappers are available for all FFTW3 interface functions and are based on C interface of the FFTW3 wrappers. Therefore they have the same functionality and restrictions as the corresponding C interface wrappers.
The Fortran wrappers use the default INTEGER type for integer arguments. The default INTEGERis 32-bit in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) LP64 interfaces and 64-bit in ILP64 interfaces. Argumentplan in a Fortran application must have type INTEGER*8.

The wrappers that are double-precision subroutines have prefix dfftw_, single-precision subroutines have prefix sfftw_ and provide an equivalent functionality. Long double subroutines (with prefix lfftw_) are not provided.

The Fortran FFTW3 wrappers use the default Intel ${ }^{\circledR}$ Fortran compiler convention for name decoration. If your compiler uses a different convention, or if you are using compiler options affecting the name decoration (such as /Qlowercase), you may need to compile the wrappers from sources, as described in section Building Your Own Wrapper Library.

For interoperability with C, the declaration of the Fortran FFTW3 interface is provided in header file include/ fftw/fftw3_mkl_f77.h.
You can call Fortran wrappers from a FORTRAN 77 or Fortran 90 application, although Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) does not provide a Fortran 90 module for the wrappers. For a detailed description of the FFTW Fortran interface, refer to FFTW3 documentation (www.fftw.org).
The following example illustrates calling the FFTW3 wrappers from Fortran:

```
INTEGER*8 plan
INTEGER N
INCLUDE 'fftw3.f'
COMPLEX*16 IN(*), OUT(*)
!...initialize array IN
CALL DFFTW_PLAN_DFT_1D(PLAN, N, IN, OUT, -1, FFTW_ESTIMATE)
IF (PLAN .EQ. O) STOP
CALL DFFTW_EXECUTE
!...result is in array OUT
```


Building Your Own FFTW3 Interface Wrapper Library

The FFTW3 wrappers to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) are delivered both integrated in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) and as source code, which can be compiled to build a standalone wrapper library with exactly the same functionality. Normally you do not need to build the wrappers yourself.However, if your Fortran application is compiled with a compiler that uses a different name decoration than the Intel ${ }^{\circledR}$ Fortran compiler or if you are using compiler options altering the Fortran name decoration, you may need to build the wrappers that use the appropriate name changing convention.
The source code for the wrappers, makefiles, and files with lists of functions are located in the . \interfaces $\backslash f f t w 3 x f$ subdirectory in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory.
To build the wrappers,

1. Change the current directory to the wrapper directory
2. Run the make command on Linux* OS and macOS* or the nmake command on Windows* OS with a required target and optionally several parameters.
The target libia32 or libintel 64 defines the platform architecture, and the other parameters specify the compiler, size of the default integer type, and placement of the resulting wrapper library. You can find a detailed and up-to-date description of the parameters in the makefile.

In the following example, the make command is used to build the FFTW3 Fortran wrappers to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) for use from the GNU g77* Fortran compiler on Linux OS based on Intel ${ }^{\circledR} 64$ architecture:

```
cd interfaces/fftw3xf
make libintel64 compiler=gnu fname=a_name__ INSTALL_DIR=/my/path
```

This command builds the wrapper library using the GNU gcc compiler, decorates the name with the second underscore, and places the result, named libfftw3xf_gnu. a, into the /my/path directory. The name of the resulting library is composed of the name of the compiler used and may be changed by an optional parameter INSTALL_LIBNAME.

Building an Application With FFTW3 Interface Wrappers

Normally, the only change needed to build your application with FFTW3 wrappers replacing original FFTW library is to add Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) at the link stage (see section"Linking Your Application with Inte ${ }^{\circledR}$ oneAPI Math Kernel Library" in the Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Developer Guide).
If you recompile your application, add subdirectory include $\backslash f f t w$ to the search path for header files to avoid FFTW3 version conflicts.
Sometimes, you may have to modify your application according to the following recommendations:

- The application requires
\#include "fftw3.h",
which it probably already includes.
- The application does not require
\#include "mkl_dfti.h" .
- The application does not require
\#include "fftw3_mkl.h".
It is required only in case you want to use the MKL_RODFTOO constant.
- If the application does not check whether a NULL plan is returned by plan creation functions, this check must be added, because the FFTW3 to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) wrappers do not provide 100% of FFTW3 functionality.

Running FFTW3 Interface Wrapper Examples

There are some examples that demonstrate how to use the wrapper library. The source code for the examples, makefiles used to run them, and files with lists of examples are located in the . \examples $\backslash f f t w 3 x f$ subdirectory in the Intel® oneAPI Math Kernel Library (oneMKL) directory. To build Fortran examples, one additional file $f f t w 3 . f$ is needed. This file is distributed with permission from FFTW and is available in the . include $\backslash f f t w s u b d i r e c t o r y ~ o f ~ t h e ~ I n t e l ~^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory. The original file can also be found in FFTW 3.3.4 at http://www.fftw.org/download.html.

Parameters of the example makefiles are similar to the parameters of the wrapper library makefiles. Example makefiles normally build and invoke the examples. If the parameter function=<example_name> is defined, then only the specified example will run. Otherwise, all examples will be executed. Results of running the examples are saved in subdirectory . \_results in files with extension .res.

For detailed information about options for the example makefile, refer to the makefile.

MPI FFTW3 Wrappers

This section describes a collection of MPI FFTW wrappers to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL).
MPI FFTW wrappers are available only with Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) for the Linux* and Windows* operating systems.

These wrappers translate calls of MPI FFTW functions to the calls of the Intel® oneAPI Math Kernel Library (oneMKL) cluster Fourier transform (CFFT) functions. The purpose of the wrappers is to enable users of MPI FFTW functions improve performance of the applications without changing the program source code.

Although the MPI FFTW wrappers provide less functionality than the original FFTW3 because of differences between MPI FFTW and Intel® oneAPI Math Kernel Library (oneMKL) CFFT, the wrappers cover many typical CFFT use cases.

The MPI FFTW wrappers are provided as source code. To use the wrappers, you need to build your own wrapper library (see Building Your Own Wrapper Library).
See also these resources:
Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) Release Notes
www.fftw.org
for the version of the FFTW3 library supported by the wrappers.
for a description of the MPI FFTW interface.
for a description of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) CFFT interface.

Building Your Own Wrapper Library

The MPI FFTW wrappers for FFTW3 are delivered as source code, which can be compiled to build a wrapper library.
The source code for the wrappers, makefiles, and files with lists of functions are located in subdirectory . \interfaces $\backslash f f t w 3 x \_c d f t$ in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory.
To build the wrappers,

1. Change the current directory to the wrapper directory
2. Run the make command on Linux* OS or the nmake command on Windows* OS with a required target and optionally several parameters.
The target libia32 or libintel 64 defines the platform architecture, and the other parameters specify the compiler, size of the default INTEGER type, as well as the name and placement of the resulting wrapper library. You can find a detailed and up-to-date description of the parameters in the makefile.
In the following example, the make command is used to build the MPI FFTW wrappers to Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) for use from the GNU C compiler on Linux OS based on Intel ${ }^{\circledR} 64$ architecture:
```
cd interfaces/fftw3x_cdft
make libintel64 compiler=gnu mpi=openmpi INSTALL_DIR=/my/path
```

This command builds the wrapper library using the GNU gcc compiler so that the final executable can use Open MPI, and places the result, named libfftw3x_cdft_DOUBLE.a, into directory /my/path.

Building an Application

Normally, the only change needed to build your application with MPI FFTW wrappers replacing original FFTW3 library is to add Intel® oneAPI Math Kernel Library (oneMKL) and the wrapper library at the link stage (see section "Linking Your Application with Inte ${ }^{\circledR}$ oneAPI Math Kernel Library" in the Intel® oneAPI Math Kernel Library (oneMKL) Developer Guide).
When you are recompiling your application, add subdirectory include $\backslash f f t w$ to the search path for header files to avoid FFTW3 version conflicts.

Running Examples

There are some examples that demonstrate how to use the MPI FFTW wrapper library for FFTW3. The source code for the examples, makefiles used to run them, and files with lists of examples are located in the . \examples $\backslash f f t w 3 x f$ cdft subdirectory in the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) directory.

Parameters of the example makefiles are similar to the parameters of the wrapper library makefiles. Example makefiles normally build and invoke the examples. Results of running the examples are saved in subdirectory . \_results in files with extension .res.

For detailed information about options for the example makefile, refer to the makefile.

See Also

Building Your Own Wrapper Library

Appendix E: Code Examples

This appendix presents code examples of using some Intel® oneAPI Math Kernel Library (oneMKL) routines and functions.
Please refer to respective sections in the document for detailed descriptions of function parameters and operation.

BLAS Code Examples

Example. Using BLAS Level 1 Function

The following example illustrates a call to the BLAS Level 1 function sdot. This function performs a vectorvector operation of computing a scalar product of two single-precision real vectors x and y.

Parameters

```
n
incx
incy
```

```
program dot_main
```

program dot_main
real x(10), y(10), sdot, res
real x(10), y(10), sdot, res
integer n, incx, incy, i
integer n, incx, incy, i
external sdot
external sdot
n = 5
n = 5
incx = 2
incx = 2
incy = 1
incy = 1
do i = 1, 10
do i = 1, 10
x(i) = 2.0e0
x(i) = 2.0e0
y(i) = 1.0e0
y(i) = 1.0e0
end do
end do
res = sdot (n, x, incx, y, incy)
res = sdot (n, x, incx, y, incy)
print*, `SDOT = `, res
print*, `SDOT = `, res
end

```
end
```

As a result of this program execution, the following line is printed:
SDOT $=10.000$

Example. Using BLAS Level 1 Routine

The following example illustrates a call to the BLAS Level 1 routine scopy. This routine performs a vectorvector operation of copying a single-precision real vector x to a vector y.

Parameters

```
n
inCx
incy
```

Specifies the number of elements in vectors x and y.
Specifies the increment for the elements of x.
Specifies the increment for the elements of y.

```
program copy_main
real x(10), y(10)
integer n, incx, incy, i
n = 3
incx = 3
incy = 1
do i = 1, 10
    x(i) = i
end do
call scopy (n, x, incx, y, incy)
print*, `Y = `, (y(i), i = 1, n)
end
```

As a result of this program execution, the following line is printed:
$Y=1.000004 .000007 .00000$

Example. Using BLAS Level 2 Routine

The following example illustrates a call to the BLAS Level 2 routine sger. This routine performs a matrixvector operation

$$
a:=a l p h a^{\star} x^{\star} y^{\prime}+a .
$$

Parameters

alpha	Specifies a scalar alpha.
x	m-element vector.
y	n-element vector.
a	m-by-n matrix.

```
program ger_main
real a (5,3), x(10), y(10), alpha
integer m, n, incx, incy, i, j, lda
m=2
n = 3
lda = 5
incx = 2
incy = 1
alpha = 0.5
do i = 1, 10
    x(i) = 1.0
    y(i) = 1.0
end do
do i = 1, m
    do j = 1, n
            a(i,j) = j
        end do
end do
```

```
call sger (m, n, alpha, x, incx, y, incy, a, lda)
print*, `Matrix A:
do i = 1, m
    print*, (a(i,j), j = 1, n)
end do
end
```

As a result of this program execution, matrix a is printed as follows:
Matrix A:
1.500002 .500003 .50000
1.500002 .500003 .50000

Example. Using BLAS Level 3 Routine

The following example illustrates a call to the BLAS Level 3 routine ssymm. This routine performs a matrixmatrix operation

```
c := alpha*a* b' + beta*c.
```


Parameters

```
alpha
beta Specifies a scalar beta.
a Symmetric matrix
b m-by-n matrix
c
```

```
program symm_main
real a(3,3), b(3,2), c(3,3), alpha, beta
integer m, n, lda, ldb, ldc, i, j
character uplo, side
uplo = 'u'
side = 'l'
m = 3
n = 2
lda = 3
ldb = 3
ldc = 3
alpha = 0.5
beta = 2.0
do i = 1, m
        do j = 1, m
            a(i,j) = 1.0
        end do
end do
do i = 1, m
        do j = 1, n
            c(i,j) = 1.0
            b(i,j) = 2.0
        end do
end do
call ssymm (side, uplo, m, n, alpha,
a, lda, b, ldb, beta, c, ldc)
print*, `Matrix C:
```

```
do i = 1, m
    print*, (c(i,j), j = 1, n)
end do
end
```

As a result of this program execution, matrix c is printed as follows:
Matrix C:
5.000005 .00000
5.000005 .00000
5.000005 .00000

The following example illustrates a call from a C program to the Fortran version of the complex BLAS Level 1 function $\operatorname{zdotc}()$. This function computes the dot product of two double-precision complex vectors.

Fourier Transform Functions Code Examples

This section presents code examples for functions described in the "FFT Functions" and "Cluster FFT Functions" subsections in the "Fourier Transform Functions" section. The examples are grouped in subsections

- Examples for FFT Functions, including Examples of Using Multi-Threading for FFT Computation
- Examples for Cluster FFT Functions
- Auxiliary data transformations.

FFT Code Examples

This section presents examples of using the FFT interface functions described in "Fourier Transform Functions".
Here are the examples of two one-dimensional computations. These examples use the default settings for all of the configuration parameters, which are specified in "Configuration Settings".
In the Fortran examples, the use mkl_dfti statement assumes that:

- The mkl_dfti.f90 module definition file is already compiled.
- The mkl_dfti.mod module file is available.

One-dimensional In-place FFT

```
! Fortran example.
! 1D complex to complex, and real to conjugate-even
Use MKL_DFTI
Complex :: X(32)
Real :: Y(34)
type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle
Integer :: Status
!...put input data into X(1),...,X(32); Y(1),...,Y(32)
! Perform a complex to complex transform
Status = DftiCreateDescriptor( My_Desc1_Handle, DFTI_SINGLE,&
    DFTI_COMPLEX, 1, 32 )
Status = DftiCommitDescriptor( My_Desc1_Handle )
Status = DftiComputeForward( My_Desc1_Handle, X )
Status = DftiFreeDescriptor (My_Desc1_\overline{Handle)}
! result is given by {X(1),X(2),\ldots,㢺(32)}
! Perform a real to complex conjugate-even transform
Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,&
    DFTI_REAL, 1, 32)
```

```
Status = DftiCommitDescriptor(My_Desc2_Handle)
Status = DftiComputeForward(My_Desc2_Handle, Y)
Status = DftiFreeDescriptor (My_Desc2_Handle)
! result is given in CCS format.
```


One-dimensional Out-of-place FFT

```
! Fortran example.
! 1D complex to complex, and real to conjugate-even
Use MKL_DFTI
Complex :: X_in(32)
Complex :: X_out(32)
Real :: Y in(32)
Real :: Y_out(34)
type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle
Integer :: Status
...put input data into X_in(1),...,X_in(32); Y_in(1),...,Y_in(32)
! Perform a complex to complex transform
Status = DftiCreateDescriptor( My_Desc1_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32 )
Status = DftiSetValue( My_Desc1_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)
Status = DftiCommitDescriptor( My_Desc1_Handle )
Status = DftiComputeForward( My_Desc1_Handle, X_in, X_out )
Status = DftiFreeDescriptor(My_Desc1_Handle)
! result is given by {X_out(1),X_out(2),...,X_out(32)}
! Perform a real to complex conjugate-even transform
Status = DftiCreateDescriptor(My Desc2 Handle, DFTI SINGLE,
DFTI_REAL, 1, 32)
Status = DftiSetValue( My_Desc2_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)
Status = DftiCommitDescriptor(My_Desc2_Handle)
Status = DftiComputeForward(My_Desc2_Handle, Y_in, Y_out)
Status = DftiFreeDescriptor(My_Desc2_Handle)
! result is given by Y_out in CCS format.
```


Two-dimensional FFT

The following is an example of two simple two-dimensional transforms. Notice that the data and result parameters in computation functions are all declared as assumed-size rank-1 array DIMENSION ($0: *$). Therefore two-dimensional array must be transformed to one-dimensional array by EQUIVALENCE statement or other facilities of Fortran.

```
! Fortran example.
! 2D complex to complex, and real to conjugate-even
Use MKL DFTI
Complex :: X_2D(32,100)
Real :: Y_2D(34, 102)
Complex :: X(3200)
Real :: Y(3468)
Equivalence (X_2D, X)
Equivalence (Y_2D, Y)
type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle
Integer :: Status, L(2)
!...put input data into X_2D(j,k), Y_2D(j,k), 1<=j=32,1<=k<=100
!...set L(1) = 32, L(2) = 100
```

```
!...the transform is a 32-by-100
! Perform a complex to complex transform
Status = DftiCreateDescriptor( My_Descl_Handle, DFTI_SINGLE,&
    DFTI_COMPLEX, 2, L)
Status = DftiCommitDescriptor( My_Desc1_Handle)
Status = DftiComputeForward( My_Desc1_Handle, X)
Status = DftiFreeDescriptor (My_Desc1__Handle)
! result is given by X_2D(j,k), 1<=j<<=32, 1<=k<=100
! Perform a real to complex conjugate-even transform
Status = DftiCreateDescriptor( My_Desc2_Handle, DFTI_SINGLE,&
    DFTI_REAL, 2, L)
Status = DftiCommitDescriptor( My_Desc2_Handle)
Status = DftiComputeForward( My_Desc2_Handle, Y)
Status = DftiFreeDescriptor(My_Desc2_Handle)
! result is given by the complex value z(j,k) 1<=j<=32; 1<=k<=100
! and is stored in CCS format
```

The following example demonstrates how you can change the default configuration settings by using the DftiSetValue function.

For instance, to preserve the input data after the FFT computation, the configuration of DFTI_PLACEMENT should be changed to "not in place" from the default choice of "in place."
The code below illustrates how this can be done:

Changing Default Settings

```
! Fortran example
! 1D complex to complex, not in place
Use MKL_DFTI
Complex : : X_in(32), X_out(32)
type(DFTI_DESCRIPTOR), POINTER :: My_Desc_Handle
Integer :: Status
!...put input data into X_in(j), 1<=j<=32
Status = DftiCreateDescriptor( My_Desc_Handle,& DFTI_SINGLE, DFTI_COMPLEX, 1, 32)
Status = DftiSetValue( My_Desc_Handle, DDFTI_PLACEMENT, DFTI_NOT_INNPLACE)
Status = DftiCommitDescriptor( My_Desc_Handle)
Status = DftiComputeForward( My_Desc_Handle, X_in, X_out)
Status = DftiFreeDescriptor (My_Desc_Handle)
! result is X_out(1),X_out(2),...,X_out(32)
```


Using Status Checking Functions

This example illustrates the use of status checking functions described in "Fourier Transform Functions".

```
! Fortran
type(DFTI_DESCRIPTOR), POINTER :: desc
integer status
! ...descriptor creation and other code
status = DftiCommitDescriptor(desc)
if (status .ne. O) then
    if (.not. DftiErrorClass(status,DFTI_NO_ERROR) then
            print *, 'Error: ', DftiErrorMessage(status)
    endif
```

```
endif
```


Computing 2D FFT by One-Dimensional Transforms

Below is an example where a 20-by-40 two-dimensional FFT is computed explicitly using one-dimensional transforms. Notice that the data and result parameters in computation functions are all declared as assumedsize rank-1 array DIMENSION ($0: *$). Therefore two-dimensional array must be transformed to onedimensional array by EQUIVALENCE statement or other facilities of Fortran.

```
! Fortran
use mkl_dfti
Complex :: X_2D(20,40)
Complex :: X(800)
Equivalence (X_2D, X)
INTEGER :: STRIDE(2)
type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim1
type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Dim2
! ...
Status = DftiCreateDescriptor(Desc_Handle_Dim1, DFTI_SINGLE,&
    DFTI COMPLEX, 1, 20-
Status = DftiCreateDescriptor(Desc_Handle_Dim2, DFTI_SINGLE,&
    DFTI_COMPLEX, 1, 40 )
! perform 40 one-dimensional transforms along 1st dimension
Status = DftiSetValue( Desc_Handle_Dim1, DFTI_NUMBER_OF_TRANSFORMS, 40 )
Status = DftiSetValue( Desc_Handle_Dim1, DFTI_INPUT_DISTANCE, 20 )
Status = DftiSetValue( Desc_Handle_Dim1, DFTI_OUTPUT_DISTANCE, 20 )
Status = DftiCommitDescriptor( Desc_Handle_Dim1 )
Status = DftiComputeForward( Desc_Handle_Dim1, X )
! perform 20 one-dimensional transforms along 2nd dimension
Stride(1) = 0; Stride(2) = 20
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_NUMBER_OF_TRANSFORMS, 20 )
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_INPUT_DISTANCE, 1 )
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_OUTPUT_DISTANCE, 1 )
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_INPUT_STRIDES, Stride )
Status = DftiSetValue( Desc_Handle_Dim2, DFTI_OUTPUT_STRIDES, Stride )
Status = DftiCommitDescriptor( Desc_Handle Dim2 )
Status = DftiComputeForward( Desc_Handle_Dim2, X )
Status = DftiFreeDescriptor( Desc_Handle_Dim1 )
Status = DftiFreeDescriptor( Desc_Handle_Dim2 )
```

The following code illustrates real multi-dimensional transforms with CCE format storage of conjugate-even complex matrix. Example "Two-Dimensional REAL In-place FFT (Fortran Interface)" is two-dimensional inplace transform and Example "Two-Dimensional REAL Out-of-place FFT (Fortran Interface)" is twodimensional out-of-place transform in Fortran interface. Note that the data and result parameters in computation functions are all declared as assumed-size rank-1 array DIMENSION ($0: *$). Therefore twodimensional array must be transformed to one-dimensional array by EQUIVALENCE statement or other facilities of Fortran.

Two-Dimensional REAL In-place FFT

```
! Fortran example.
! 2D and real to conjugate-even
Use MKL_DFTI
```

```
Real :: X_2D(34,100) ! 34=(32/2 + 1)*2
Real :: X(3400)
Equivalence (X_2D, X)
type(DFTI_DESC\overline{RIPTOR), POINTER :: My_Desc_Handle}
Integer :: Status, L(2)
Integer :: strides_in(3)
Integer :: strides_out(3)
! ...put input datā into X_2D(j,k), 1<=j=32,1<=k<=100
! ...set L(1) = 32, L(2) = 
! ...set strides_in(1) = 0, strides_in(2) = 1, strides_in(3) = 34
! ...set strides_out(1) = 0, strides_out(2) = 1, strides_out(3) = 17
! ...the transform is a 32-by-100
! Perform a real to complex conjugate-even transform
Status = DftiCreateDescriptor( My_Desc_Handle, DFTI_SINGLE,&
DFTI_REAL, 2, L )
Status = DftiSetValue(My_Desc_Handle, DFTI_CONJUGATE_EVEN_STORAGE,&
DFTI_COMPLEX_COMPLEX)
Statū = DftíSetValue(My_Desc_Handle, DFTI_INPUT_STRIDES, strides_in)
Status = DftiSetValue(My_Desc_Handle, DFTI_OUTPUT__STRIDES, strides_out)
Status = DftiCommitDescriptor( My_Desc_Handle)
Status = DftiComputeForward( My_Desc_Handle, X )
Status = DftiFreeDescriptor(My_Desc_Handle)
! result is given by the complex value z(j,k) 1<=j<=17; 1<=k<=100 and
! is stored in real matrix X_2D in CCE format.
```


Two-Dimensional REAL Out-of-place FFT

```
! Fortran example.
! 2D and real to conjugate-even
Use MKL_DFTI
Real :: X_2D(32,100)
Complex :: Y_2D(17, 100) ! 17 = 32/2 + 1
Real :: X(3200)
Complex :: Y(1700)
Equivalence (X_2D, X)
Equivalence (Y_2D, Y)
type(DFTI_DESCRIPTOR), POINTER :: My_Desc_Handle
Integer :: Status, L(2)
Integer :: strides_out(3)
! ...put input data into X_2D(j,k), 1<=j=32,1<=k<=100
! ...set L(1) = 32, L(2) = 100
! ....set strides_out(1) = 0, strides_out(2) = 1, strides_out(3) = 17
! ...the transform is a 32-by-100
! Perform a real to complex conjugate-even transform
Status = DftiCreateDescriptor( My_Desc_Handle, DFTI_SINGLE,&
DFTI_REAL, 2, L )
Status = DftiSetValue(My_Desc_Handle,&
DFTI_CONJUGATE_EVEN_STORÄGE, DFTI_COMPLEX_COMPLEX)
Status = DftiSetValue( My_Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE )
Status = DftiSetValue(My_Desc_Handle,&
DFTI_OUTPUT_STRIDES, strides_out)
Status = DftiCommitDescriptor(My_Desc_Handle)
Status = DftiComputeForward(My_Desc_Handle, X, Y)
Status = DftiFreeDescriptor(My_Desc_Handle)
```

```
! result is given by the complex value z(j,k) 1<=j<=17; 1<=k<=100 and
! is stored in complex matrix Y_2D in CCE format.
```


Examples of Using OpenMP* Threading for FFT Computation

The following sample program shows how to employ internal OpenMP* threading in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) for FFT computation.

To specify the number of threads inside Intel® oneAPI Math Kernel Library (oneMKL), use the following settings:
set MKL_NUM_THREADS = 1 for one-threaded mode;
set MKL_NUM_THREADS = 4 for multi-threaded mode.

Using oneMKL Internal Threading Mode (C Example)

```
/* C99 example */
#include "mkl_dfti.h"
float data[200][100];
DFTI_DESCRIPTOR_HANDLE fft = NULL;
MKL_L_ONG dim_sizes[2] = {200, 100};
/* ...put values into data[i][j] 0<=i<=199, 0<=j<=99 */
DftiCreateDescriptor(&fft, DFTI_SINGLE, DFTI_REAL, 2, dim_sizes);
DftiCommitDescriptor(fft);
DftiComputeForward(fft, data);
DftiFreeDescriptor(&fft);
```

The following Example "Using Parallel Mode with Multiple Descriptors Initialized in a Parallel Region" and Example "Using Parallel Mode with Multiple Descriptors Initialized in One Thread" illustrate a parallel customer program with each descriptor instance used only in a single thread.
Specify the number of OpenMP threads for Example "Using Parallel Mode with Multiple Descriptors Initialized in a Parallel Region" like this:
set MKL_NUM_THREADS $=1$ for Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) to work in the single-threaded mode (recommended);
set OMP_NUM_THREADS = 4 for the customer program to work in the multi-threaded mode.

Using Parallel Mode with Multiple Descriptors Initialized in a Parallel Region

Note that in this example, the program can be transformed to become single-threaded at the customer level but using parallel mode within Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL). To achieve this, you must set the parameter DFTI_NUMBER_OF_TRANSFORMS = 4 and to set the corresponding parameter DFTI_INPUT_DISTANCE = 5000 .

```
program fft2d_private_descr_main
    use mkl_dfti
    integer nth, len(2)
! 4 OMP threads, each does 2D FFT 50x100 points
    parameter (nth = 4, len = (/50, 100/))
    complex x(len(2)*len(1), nth)
    type(dfti_descriptor), pointer :: myFFT
```

```
    integer th, myStatus
! assume x is initialized and do 2D FFTs
!$OMP PARALLEL DO SHARED(len, x) PRIVATE (myFFT, myStatus)
    do th = 1, nth
        myStatus = DftiCreateDescriptor (myFFT, DFTI_SINGLE, DFTI_COMPLEX, 2, len)
        myStatus = DftiCommitDescriptor (myFFT)
        myStatus = DftiComputeForward (myFFT, x(:, th))
        myStatus = DftiFreeDescriptor (myFFT)
    end do
! $OMP END PARALLEL DO
end
```

Specify the number of OpenMP threads for Example "Using Parallel Mode with Multiple Descriptors Initialized in One Thread" like this:
set MKL_NUM_THREADS $=1$ for Inte ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) to work in the single-threaded mode (obligatory);
set OMP_NUM_THREADS $=4$ for the customer program to work in the multi-threaded mode.
Using Parallel Mode with Multiple Descriptors Initialized in One Thread

```
program fft2d_array_descr_main
    use mkl_dft\overline{i}
    integer nth, len(2)
! 4 OMP threads, each does 2D FFT 50x100 points
    parameter (nth = 4, len = (/50, 100/))
    complex x(len(2)*len(1), nth)
    type thread_data
        type(dfti_descriptor), pointer :: FFT
    end type thread_data
    type(thread_data) :: workload(nth)
    integer th, status, myStatus
    do th = 1, nth
            status = DftiCreateDescriptor (workload(th)%FFT, DFTI_SINGLE, DFTI_COMPLEX, 2, len)
            status = DftiCommitDescriptor (workload(th) %FFT)
    end do
! assume x is initialized and do 2D FFTs
!$OMP PARALLEL DO SHARED(len, x, workload) PRIVATE(myStatus)
    do th = 1, nth
            myStatus = DftiComputeForward (workload(th) %FFT, x(:, th))
    end do
!$OMP END PARALLEL DO
    do th = 1, nth
            status = DftiFreeDescriptor (workload(th) %FFT)
    end do
end
```

The following Example "Using Parallel Mode with a Common Descriptor" illustrates a parallel customer program with a common descriptor used in several threads.

Using Parallel Mode with a Common Descriptor

```
program fft2d_shared_descr_main
    use mkl_dfti
```

```
    integer nth, len(2)
! 4 OMP threads, each does 2D FFT 50x100 points
    parameter (nth = 4, len = (/50, 100/))
    complex x(len(2)*len(1), nth)
    type(dfti_descriptor), pointer :: FFT
    integer th, status, myStatus
    status = DftiCreateDescriptor (FFT, DFTI_SINGLE, DFTI_COMPLEX, 2, len)
    status = DftiCommitDescriptor (FFT)
! assume x is initialized and do 2D FFTs
! $OMP PARALLEL DO SHARED(len, x, FFT) PRIVATE(myStatus)
    do th = 1, nth
    myStatus = DftiComputeForward (FFT, x(:, th))
    end do
! $OMP END PARALLEL DO
    status = DftiFreeDescriptor (FFT)
end
```


Examples for Cluster FFT Functions

The following C example computes a 2-dimensional out-of-place FFT using the cluster FFT interface:

2D Out-of-place Cluster FFT Computation

```
/* C99 example */
#include "mpi.h"
#include "mkl_cdft.h"
DFTI_DESCRIPTOR_DM_HANDLE desc = NULL;
MKL_LONG v, i, j, n, s;
Complex *in, *out;
MKL_LONG dim_sizes[2] = {nx, ny};
MPI_Init(...);
/* Create descriptor for 2D FFT */
DftiCreateDescriptorDM(MPI_COMM_WORLD,
                            &desc, DFTI_DOUBLE, DFTI_COMPLEX, 2, dim_sizes);
/* Ask necessary length of in and out arrays and allocate memory */
DftiGetValueDM(desc,CDFT_LOCAL_SIZE,&v);
in = (Complex*) malloc(v*
out = (Complex*) malloc(v*sizeof(Complex));
/* Fill local array with initial data. Current process performs n rows,
    O row of in corresponds to s row of virtual global array */
DftiGetValueDM(desc, CDFT_LOCAL_NX, &n);
DftiGetValueDM(desc, CDFT_LOCAL_X_START, &S);
/* Virtual global array globalIN is defined by function f as
    globalIN[i*ny+j]=f(i,j) */
for(i = 0; i < n; ++i)
    for(j = 0; j < ny; ++j) in[i*ny+j] = f(i+s,j);
/* Set that we want out-of-place transform (default is DFTI_INPLACE) */
DftiSetValueDM(desc, DFTI_PLACEMENT, DFTI_NOT_INPLACE);
/* Commit descriptor, calculate FFT, free descriptor */
DftiCommitDescriptorDM(desc);
DftiComputeForwardDM(desc, in, out);
/* Virtual global array globalOUT is defined by function g as
    globalOUT[i*ny+j]=g(i,j) Now out contains result of FFT. out[i*ny+j]=g(i+s,j) */
DftiFreeDescriptorDM(&desc);
```

```
free(in);
free(out);
MPI_Finalize();
```


1D In-place Cluster FFT Computations

The C example below illustrates one-dimensional in-place cluster FFT computations effected with a userdefined workspace:

```
/* C99 example */
#include "mpi.h"
#include "mkl_cdft.h"
DFTI_DESCRIPTOR_DM_HANDLE desc = NULL;
MKL_LONG N, v, i, n_out, s_out;
Complex *in, *work;
MPI_Init(...);
/* Create descriptor for 1D FFT */
DftiCreateDescriptorDM(MPI_COMM_WORLD, &desc, DFTI_DOUBLE, DFTI_COMPLEX, 1, N);
/* Ask necessary length of array and workspace and allocate memory */
DftiGetValueDM(desc,CDFT_LOCAL_SIZE,&v);
in = (Complex*) malloc(v*sizeof(Complex));
work = (Complex*) malloc(v*sizeof(Complex));
/* Fill local array with initial data. Local array has n elements,
    O element of in corresponds to s element of virtual global array */
DftiGetValueDM(desc, CDFT_LOCAL_NX, &n);
DftiGetValueDM(desc, CDFT_LOCAL_X_START, &s);
/* Set work array as a workspace */
DftiSetValueDM(desc, CDFT_WORKSPACE, work);
/* Virtual global array globalIN is defined by function f as globalIN[i]=f(i) */
for(i = 0; i < n; ++i) in[i] = f(i+s);
/* Commit descriptor, calculate FFT, free descriptor */
DftiCommitDescriptorDM(desc);
DftiComputeForwardDM(desc,in);
DftiGetValueDM(desc, CDFT_LOCAL_OUT_NX, &n_out);
DftiGetValueDM(desc, CDFT_LOCAL_OUT_X_START, &S_out);
/* Virtual global array globalOUT is defined by function g as globalOUT[i]=g(i)
    Now in contains result of FFT. Local array has n_out elements,
    O element of in corresponds to s_out element of virtual global array.
    in[i]==g(i+s_out) */
DftiFreeDescriptorDM(&desc);
free(in);
free(work);
MPI_Finalize();
```


Auxiliary Data Transformations

This section presents C examples for conversion from the Cartesian to polar representation of complex data and vice versa.

Conversion from Cartesian to polar representation of complex data

```
// Cartesian->polar conversion of complex data
// Cartesian representation: z = re + I*im
// Polar representation: z = r * exp( I*phi )
```

```
#include <mkl_vml.h>
void
variant1_Cartesian2Polar(int n,const double *re,const double *im,
    double *r,double *phi)
{
    vdHypot(n,re,im,r); // compute radii r[]
    vdAtan2(n,im,re,phi); // compute phases phi[]
}
void
variant2_Cartesian2Polar(int n,const MKL_Complex16 *z,double *r,double *phi,
    double *temp_re,double *temp_im)
{
    vzAbs(n,z,r); // compute radii r[]
    vdPackI(n, (double*)z + 0, 2, temp_re);
    vdPackI(n, (double*)z + 1, 2, temp_im);
    vdAtan2(n,temp_im,temp_re,phi); // compute phases phi[]
}
```


Conversion from polar to Cartesian representation of complex data

```
// Polar->Cartesian conversion of complex data.
// Polar representation: z = r * exp( I*phi )
// Cartesian representation: z = re + I*im
#include <mkl_vml.h>
void
variant1_Polar2Cartesian(int n,const double *r,const double *phi,
    double *re,double *im)
{
        vdSinCos(n,phi,im,re); // compute direction, i.e. z[]/abs(z[])
        vdMul(n,r,re,re); // scale real part
        vdMul(n,r,im,im); // scale imaginary part
}
void
variant2_Polar2Cartesian(int n,const double *r,const double *phi,
                        MKL_Complex16 *z,
        double *temp_re,double *temp_im)
{
        vdSinCos(n,phi,temp_im,temp_re); // compute direction, i.e. z[]/abs(z[])
        vdMul(n,r,temp_im,temp_im); // scale imaginary part
        vdMul(n,r,temp_re,temp_re); // scale real part
        vdUnpackI(n,temp_re,(double*)z + 0, 2); // fill in result.re
        vdUnpackI(n,temp_im,(double*)z + 1, 2); // fill in result.im
}
```


Appendix F: oneMKL Functionality

This appendix provides an overview of the Intel ${ }^{\circledR}$ oneAPI Math Kernel Library (oneMKL) functionality on the different devices.

BLAS Functionality

Fortran

Functionality	CPU	OpenMP Offload Intel GPU
Level 1 BLAS (standard)	All	All
Level 2 BLAS (standard)	All	All
Level 3 BLAS (standard)	All	All
BLAS Extensions and Specializations	\{AXPY,GEMM,TRSM\}_BATCH (group and strided)	\{AXPY,GEMM,TRSM\}_BATCH (strided)
	GEMMT, AXPBY, GEMM3M	GEMMT
	Integer GEMM (s8u8)	N/A
	JIT GEMM API	N/A
	PACK GEMM API	N/A
	COMPACT GEMM API	N/A

Transposition Functionality

Functionality	CPU	OpenMP Offload Intel GPU
In-place dense matrix transpose	Yes	No
Out-of-place dense matrix transpose	Yes	No
In-place dense matrix add	Yes	No
Out-of-place dense matrix copy	Yes	No

LAPACK Functionality

NOTE All of the DPC++ LAPACK computational routines have a corresponding *_scratchpad_size function for calculating the required amount of scratchpad space.

LU Factorization Routines

Functionality	CPU	OpenMP Offload Intel GPU
getrf	Yes	Yes
getrs	Yes	Yes
getri	Yes	Yes

Cholesky Factorization Routines

Functionality	CPU	OpenMP Offload Intel GPU
potrf	Yes	Yes
potrs	Yes	Yes
potri	Yes	Yes

Orthogonal Factorization Routines

Functionality	CPU	OpenMP Offload Intel GPU
geqrf	Yes	Yes
$\{$ or,un\}gqr	Yes	Yes
$\{$ or,un\}mqr	Yes	Yes
gerqf	Yes	No
$\{$ or,un\}mrq	Yes	No

Other Linear Equation Routines

Functionality	CPU	OpenMP Offload Intel GPU
trtrs	Yes	Yes
$\{$ sy,he $\}$ trf	Yes	No

Symmetric Eigenvalue Routines

Functionality	CPU	OpenMP Offload Intel GPU
$\{$ sy,he\}ev	Yes	Yes
$\{$ sy,he\}evd	Yes	Yes
$\{$ sy,he\}evx	Yes	Yes
$\{$ sy,he\}trd	Yes	Yes
$\{$ or,un\}gtr	Yes	No
$\{$ or,un\}mtr	Yes	No
steqr	Yes	Yes

Generalized Symmetric Eigenvalue Routines

Functionality	CPU	OpenMP Offload Intel GPU
$\{$ sy,he $\}$ gvd	Yes	Yes
$\{s y$, he $\} g v x$	Yes	Yes

Singular Value Routines

Functionality	CPU	OpenMP Offload Intel GPU
gesvd	Yes	Yes
gebrd	Yes	Yes
\{or,un\}gbr	Yes	No

Batched LAPACK Routines

Functionality	CPU	OpenMP Offload Intel GPU (ILP64 Interface)
getrf_batch	Strided	Strided
getrfnp_batch	Strided	Strided
getrs_batch	Strided	Strided
getrsnp_batch	Strided	Strided
getri_batch	No	No

Functionality	CPU	OpenMP Offload Intel GPU (ILP64 Interface)
potrf_batch	No	No
potrs_batch	No	No
geqrf_batch	No	No
\{or,un\}gqr_batch	No	No

Other LAPACK Routines

CPU	OpenMP Offload Intel GPU
Yes	No

DFT Functionality

DFTI Interfaces

Functionality	CPU	OpenMP Offload Intel GPU
Complex-to-Complex FFT transformations	Yes, 1D through 7D	Yes, 1D through 3D
Real-to-Complex FFT transformations	Yes, 1D through 7D	Yes, 1D through 3D

FFTW3 Interfaces

Functionality	CPU	OpenMP Offload Intel GPU
Complex-to-Complex FFT transformations	Yes, 1D through	Yes, 1D through 3D
	7D	
Real-to-Complex FFT transformations	Yes, 1D through 	7D

FFTW2 Interfaces

Functionality	CPU	OpenMP Offload Intel GPU
Complex-to-Complex FFT transformations	Yes, 1D through	No
	7D	
Real-to-Complex FFT transformations	Yes,1D through	No
	7D	

Sparse BLAS Functionality

In the following table for functionality, sm = sparse matrix, $\mathrm{dm}=$ dense matrix, $\mathrm{sv}=$ sparse vector, $\mathrm{dv}=$ dense vector, sc = scalar.
In the following table for operations, dense vectors $=x, y$, sparse vectors $=w, v$, dense matrices $=X, Y$, sparse matrices = A, B, C, and scalars = alpha, beta, d.

Level 1

Functionality	Operations	CPU	OpenMP Offload Intel GPU
Sparse Vector - Dense Vector addition (AXPY)	$\mathrm{y}<-\operatorname{alpha} * \mathrm{w}+\mathrm{y}$	Yes	No
Sparse Vector - Sparse Vector Dot product (SPDOT) (Sv.sv $->$ sc)	$\mathrm{d}<-\operatorname{dot}(\mathrm{w}, \mathrm{v})$	$\operatorname{dot}(\mathrm{w}, \mathrm{v})=\operatorname{sum}\left(\mathrm{w}_{\mathrm{i}} * \mathrm{v}_{\mathrm{i}}\right)$	No

Functionality	Operations	CPU	OpenMP Offload Intel GPU
	$\operatorname{dot}(w, v)=\operatorname{sum}\left(\operatorname{conj}\left(w_{i}\right)\right.$ $*$ $\left.v_{i}\right)$	No	No
Sparse Vector - Dense Vector Dot product (SPDOT) (sv.dv $->$ sc)	$d<-\operatorname{dot}(w, x)$	N/A	N/A
	$\operatorname{dot}(w, v)=\operatorname{sum}\left(w_{i} * v_{i}\right)$	Yes	No
	$\operatorname{dot}(w, v)=\operatorname{sum}\left(\operatorname{conj}\left(w_{i}\right)\right.$	Yes	No
Dense Vector - Sparse Vector	-	N/A	N/A
Conversion (sv <-> dv)	$x=\operatorname{scatter(w)}$	Yes	No
	$w=$ gather $(x$, windx)	Yes	No

In the following table for functionality, sm = sparse matrix, $\mathrm{dm}=$ dense matrix, $\mathrm{sv}=$ sparse vector, $\mathrm{dv}=$ dense vector, sc = scalar.
In the following table for operations, dense vectors $=x, y$, sparse vectors $=w, v$, dense matrices $=X, Y$, sparse matrices $=A, B, C$, and scalars = alpha, beta, d.

Level 2

Functionality	Operations	CPU	OpenMP Offload Intel GPU
General Matrix-Vector multiplication (GEMV) (sm*dv->dv)	$y<-$ beta* $^{\prime} y+$ alpha $* o p(A)^{*} x$	N/A	N/A
	$o p(A)=A$	Yes	No
	$o p(A)=A^{\top}$	Yes	No
	$o p(A)=A^{H}$	Yes	No
Symmetric Matrix-Vector multiplication (SYMV) ($s m^{*} d v->d v$)	$y<-\operatorname{beta}^{*} y+$ alpha $* o p(A) * x$	N/A	N/A
	$o p(A)=A$	Yes	No
	$o p(A)=A^{\top}$	No	No
	$o p(A)=A^{H}$	Yes	No
Triangular Matrix-Vector multiplication (TRMV) (sm*dv->dv)	$y<-$ beta* $\mathrm{y}+\mathrm{alpha} * o p(\mathrm{~A})^{*} \mathrm{x}$	N/A	N/A
	$o p(A)=A$	Yes	No
	$o p(A)=A^{\top}$	Yes	No
	$o p(A)=A^{H}$	Yes	No
General Matrix-Vector mult with dot product (GEMVDOT) ($s m^{*} d v->d v, d v . d v->s c$)	$\begin{aligned} & y<-\operatorname{beta}^{*} y+\operatorname{alpha} * \\ & o p(A)^{*} x, d=\operatorname{dot}(x, y) \end{aligned}$	N/A	N/A
	$o p(A)=A$	Yes	No
	$o p(A)=A^{\top}$	Yes	No
	$o p(A)=A^{H}$	Yes	No
Triangular Solve (TRSV) (inv(sm)*dv -> dv)	solve for y, op(A)* $y=$ alpha* x	N/A	N/A
	$o p(A)=A$	Yes	No
	$o p(A)=A^{\top}$	Yes	No
	$o p(A)=A^{H}$	Yes	No

In the following table for functionality, $s m=$ sparse matrix, $d m=$ dense matrix, $s v=$ sparse vector, $d v=$ dense vector, sc = scalar.

In the following table for operations, dense vectors $=x, y$, sparse vectors $=w, v$, dense matrices $=X, Y$, sparse matrices = A, B, C, and scalars = alpha, beta, d.
Level 3

Functionality	Operations	CPU	OpenMP Offload Intel GPU
```General Sparse Matrix - Dense Matrix Multiplication (GEMM) (sm*dm->dm)```	$\begin{aligned} & Y<- \text { alpha*op }(A) * o p(X)+ \\ & \text { beta*Y } \end{aligned}$	N/A	N/A
	$o p(A)=A, o p(X)=X$	Yes	No
	$o p(A)=A^{\top}, o p(X)=X$	Yes	No
	$o p(A)=A^{H}, o p(X)=X$	Yes	No
	$o p(A)=A, o p(X)=X^{\top}$	No	No
	$o p(A)=A^{\top}, o p(X)=X^{\top}$	No	No
	$o p(A)=A, o p(X)=X^{H}$	No	No
	$o p(A)=A^{H}$	No	No
	$o p(A)=A^{\top}, o p(X)=X^{H}$	No	No
	$o p(A)=A^{H}, o p(X)=X^{H}$	No	No
```General Dense Matrix - Sparse Matrix Multiplication (GEMM) (dm*sm->dm)```	$\begin{aligned} & Y<- \text { alpha*op }(X) * o p(A)+ \\ & \text { beta*Y } \end{aligned}$	N/A	N/A
	op $(X)=X, o p(A)=A$	No	No
	$o p(X)=X^{H}, o p(A)=A$	No	No
	$o p(X)=X^{H}, o p(A)=A$	No	No
	$o p(X)=X, o p(A)=A^{H}$	No	No
	$o p(X)=X^{H}, o p(A)=A^{H}$	No	No
	$o p(X)=X^{H}, o p(A)=A^{H}$	No	No
	$o p(X)=X, o p(A)=A^{H}$	No	No
	$o p(X)=X^{H}, o p(A)=A^{H}$	No	No
	$o p(X)=X^{H}, o p(A)=A^{H}$	No	No
General Sparse Matrix - Sparse Matrix Multiplication (GEMM) (sm*sm->sm)	$\begin{aligned} & C<- \text { alpha*op }(A) * o p(B)+ \\ & \text { beta*C } \end{aligned}$	N/A	N/A
	$o p(A)=A, o p(B)=B$	Yes	No
	$o p(A)=A^{\top}, o p(B)=B$	Yes	No
	$o p(A)=A^{H}, o p(B)=B$	Yes	No
	$o p(A)=A, o p(B)=B^{\top}$	Yes	No
	$o p(A)=A^{\top}, o p(B)=B^{\top}$	Yes	No
	$o p(A)=A^{H}, o p(B)=B^{\top}$	Yes	No
	$o p(A)=A, o p(B)=B^{H}$	Yes	No

Functionality	Operations	CPU	OpenMP Offload Intel GPU
```General Sparse Matrix - Sparse Matrix Multiplication (GEMM) (sm*sm->dm)```	$o p(A)=A^{\top}, o p(B)=B^{H}$	Yes	No
	$o p(A)=A^{H}, o p(B)=B^{H}$	Yes	No
	$\begin{aligned} & Y<- \text { alpha*op }(A) * o p(B)+ \\ & \text { beta*Y } \end{aligned}$	N/A	N/A
	$o p(A)=A, o p(B)=B$	Yes	No
	$o p(A)=A^{\top}, o p(B)=B$	Yes	No
	$o p(A)=A^{H}, o p(B)=B$	Yes	No
	$o p(A)=A, o p(B)=B^{\top}$	No	No
	$o p(A)=A^{\top}, o p(B)=B^{\top}$	No	No
	$o p(A)=A^{H}, o p(B)=B^{\top}$	No	No
	$o p(A)=A, o p(B)=B^{H}$	No	No
	$o p(A)=A^{\top}, o p(B)=B^{H}$	No	No
	$o p(A)=A^{H}, o p(B)=B^{H}$	No	No
Symmetric Rank-K update (SYRK) (sm*sm->sm)	$\mathrm{C}<-\mathrm{op}(\mathrm{A}) *$ op $(A)^{H}$	N/A	N/A
	$o p(A)=A$	Yes	No
	$o p(A)=A^{\top}$	Yes	No
	$o p(A)=A^{H}$	Yes	No
Symmetric Rank-K update (SYRK) (sm*sm->dm)	$Y<-$ op( $A)^{*}$ op( $\left.A\right)^{H}$	N/A	N/A
	$o p(A)=A$	Yes	No
	$o p(A)=A^{\top}$	Yes	No
	$o p(A)=A^{H}$	Yes	No
Symmetric Triple Product (SYPR) (op(sm)*sm*sm -> sm)	$\mathrm{C}<-\mathrm{op}(\mathrm{A}) *{ }^{*} * o p(A)^{H}$	N/A	N/A
	$o p(A)=A$	Yes	No
	$o p(A)=A^{\top}$	Yes	No
	$o p(A)=A^{H}$	Yes	No
Triangular Solve (TRSM) (inv(sm)*dm -> dm)	solve for $\mathrm{Y}, \mathrm{op}(\mathrm{A})^{*} \mathrm{Y}=$ alpha*X	N/A	N/A
	$o p(A)=A$	Yes	No
	$o p(A)=A^{\top}$	Yes	No
	$o p(A)=A^{H}$	Yes	No

In the following table for functionality, $\mathrm{sm}=$ sparse matrix, $\mathrm{dm}=$ dense matrix, $\mathrm{sv}=$ sparse vector, $\mathrm{dv}=$ dense vector, sc = scalar.
In the following table for operations, dense vectors $=x, y$, sparse vectors $=w, v$, dense matrices $=X, Y$, sparse matrices $=A, B, C$, and scalars = alpha, beta, d.

Other

Functionality	Operations	CPU	OpenMP Offload Intel GPU
Symmetric Gauss-Seidel Preconditioner (SYMGS) (update $A^{*} x=b, A=L+D+U$ )	$\begin{aligned} & x 0<-x^{*} \text { alpha; (L } \\ & +\mathrm{D})^{*} \mathrm{x} 1=\mathrm{b}-\mathrm{U}^{*} \mathrm{x} 0 ;(\mathrm{U} \\ & +\mathrm{D})^{*} \mathrm{x}=\mathrm{b}-\mathrm{L}^{*} \mathrm{x} 1 \end{aligned}$	Yes	No
Symmetric Gauss-Seidel Preconditioner with MatrixVector product (SYMGS_MV) (update $A * x=b, A=L+D+U$ )	$\begin{aligned} & x 0<-x^{*} \text { alpha; (L } \\ & +D)^{*} x 1=b-U^{*} x 0 ;(U \\ & +D)^{*} x=b-L^{*} x 1 ; y=A^{*} x \end{aligned}$	Yes	No
LU Smoother (LU_SMOOTHER) (update $A^{*} x=b, A=L+D+U$, E~inv(D))	$\begin{aligned} & \mathrm{r}=\mathrm{b}-\mathrm{A}^{*} \mathrm{x} ;(\mathrm{L}+\mathrm{D}) * \mathrm{E}^{*}(\mathrm{U} \\ & +\mathrm{D}) * \mathrm{dx}=\mathrm{r} ; \mathrm{y}=\mathrm{x}+\mathrm{dr} \end{aligned}$	Yes	No
Sparse Matrix Add (ADD)	C <- alpha*op(A) + B	Yes	No
	$o p(A)=A^{\top}$	Yes	No
	$o p(A)=A^{H}$	Yes	No

In the following table for operations, dense vectors $=x, y$, sparse vectors $=w, v$, dense matrices $=X, Y$, sparse matrices $=A, B, C$, and scalars = alpha, beta, $d$.

Helper Functions

Functionality	Operations	CPU	OpenMP Offload Intel GPU
Sort Indices of Matrix (ORDER)	N/A	Yes	No
Transpose of Sparse Matrix (TRANSPOSE)	A <- op(A) with op=trans or conjtrans	N/A	N/A
	transpose CSR/CSC matrix	Yes	No
	transpose BSR matrix	Yes	No
Sparse Matrix Format Converter (CONVERT)	N/A	Yes	No
Dense to Sparse Matrix Format Converter (CONVERT)	N/A	Yes	No
Copy Matrix Handle (COPY)	N/A	Yes	No
Create CSR Matrix Handle	N/A	Yes	No
Create CSC Matrix Handle	N/A	Yes	No
Create COO Matrix Handle	N/A	Yes	No
Create BSR Matrix Handle	N/A	Yes	No
Export CSR Matrix	Allows access to internal data in the CSR Matrix handle	Yes	No
Export CSC Matrix	Allows access to internal data in the CSC Matrix handle	Yes	No
Export COO Matrix	Allows access to internal data in the COO Matrix handle	Yes	No


Functionality	Operations	CPU	OpenMP Offload Intel GPU
Export BSR Matrix	Allows access to internal   data in the BSR Matrix   handle	Yes	No
Set Value in Matrix	N/A	Yes	No

In the following table for functionality, $s m=$ sparse matrix, $d m=$ dense matrix, $s v=$ sparse vector, $d v=$ dense vector, sc = scalar.

In the following table for operations, dense vectors $=x, y$, sparse vectors $=w, v$, dense matrices $=X, Y$, sparse matrices = A, B, C, and scalars = alpha, beta, d.
Optimize Stages

Functionality	Operations	CPU	OpenMP Offload Intel GPU
add MEMORY hint and optimize	Chooses to allow   larger memory   requiring optimizations   or not.	Yes	No
Add GEMV hint and optimize	N/A	Yes	No
Add SYMV hint and optimize	N/A	Yes	No
Add TRMV hint and optimize	N/A	Yes	No
add TRSV hint and optimize	N/A	Yes	No
add GEMM hint and optimize	N/A	Yes	No
add TRSM hint and optimize	N/A	Yes	No
add DOTMV hint and optimize	N/A	Yes	No
add SYMGS hint and optimize	N/A	Yes	No
add SYMGS_MV hint and optimize	N/A	Yes	No
add LU_SMOOTHER hint and optimize	N/A		

## Sparse Solvers Functionality

Functionality	CPU	OpenMP Offload Intel GPU
Sparse Cholesky Factorization	Yes	No
Sparse LU Factorization	Yes	No
Sparse QR factorization	Yes	No
Hermitian/Symmetric Eigensolver on intervals for Sparse	Yes	No
Matrices	Yes	No
Extremal Eigensolvers for Sparse Matrix	Yes	No
Poisson Solver	Yes	No
Trust Region Solver		


Random Number Generators Functionality		
Engines		
Functionality	CPU	OpenMP Offload Intel GPU
MRG32K3A	Yes	Yes
MT2203	Yes	Yes
MT19937	Yes	Yes
PHILOX4X32X10	Yes	Yes
SOBOL	Yes	Yes
ARS5	Yes	No
MCG59	Yes	Yes
NIEDERR	Yes	No
MCG31	Yes	Yes
WH	Yes	No
SFMT19937	Yes	No
R250	Yes	No
NONDETERM	Yes	No
DABSTRACT	No	No
SABSTRACT	No	No
IABSTRACT	No	No
Distributions		
Functionality	CPU	OpenMP Offload Intel GPU
Uniform (single/double/integer)	Yes	Yes
UniformBits32	Yes	Yes
UniformBits64		
Lognormal (single/double)	Yes	Yes
Gaussian (single/double)	Yes	Yes
Poisson	Yes	Yes
UniformBits	Yes	Yes
Bernoulli	Yes	Yes
Beta (single/double)	Yes	No
Binomial	Yes	No
ChiSquare (single/double)	Yes	No
Exponential (single/double)	Yes	Yes
Gamma (single/double)	Yes	No


Functionality	CPU	OpenMP Offload Intel   GPU
Geometric	Yes	Yes
Gumbel (single/double)	Yes	No
Hyper Geometric	Yes	No
Laplace (single/double)	Yes	Yes
Multinomial	Yes	No
Negative Binomial	Yes	No
PoissonV	Yes	No
Rayleigh (single/double)	Yes	Yes
Weibull (single/double)	Yes	Yes
Cauchy (single/double)	Yes	Yes
GaussianMV (single/double)	Yes	Yes

## Vector Math Functionality

Functionality	CPU	OpenMP Offload Intel   GPU
Vector Math Functions, Single Precision	Yes	Yes*
Vector Math Functions, Double Precision	Yes	Yes*
Vector Math Functions, Single Precision Complex	Yes	No
Vector Math Functions, Double Precision Complex	Yes	No

*OpenMP offload to the GPU is implemented in the Linux* OS, but not in the Windows* OS. The Windows OS implementation will be available in a future release.

## Data Fitting Functionality

Splines, Spline Type

Functionality	CPU	OpenMP Offload Intel GPU
default (linear/quadratic/cubic)	Yes	No
subbotin	Yes	No
natural	Yes	No
hermite	Yes	No
akima	Yes	No
bessel	Yes	No
hyman	Yes	No
lookup interpolant	Yes	No
cr stepwise const interpolant	Yes	No


Functionality	CPU	OpenMP Offload Intel GPU
cl stepwise const interpolant	Yes	No

## Computation Routines

Functionality	CPU	OpenMP Offload Intel GPU
Construct1D	Yes	No
Interpolate1D/Interpolate1DEx	Yes	No
Integrate1D/Integrate1DEx	Yes	No
SearchCells1D/SearchCells1DEx	Yes	No
InterpolationCallBack	Yes	No
IntegrateCallBack	Yes	No
SearchCellsCallBack	Yes	No

## Summary Statistics Functionality

Functionality	CPU	OpenMP Offload Intel GPU
min	Yes	No
max	Yes	No
raw sum	Yes	No
2nd order raw sum		
3 rd order raw sum		
4th order raw sum		
2nd order central sum	Yes	No
3 rd order central sum		
4th order central sum		
mean	Yes	No
2nd order raw moment		
3rd order raw moment		
4th order raw moment		
2nd order central moment	Yes	No
3 rd order central moment		
4th order central moment		
kurtosis	Yes	No
skewness	Yes	No
variation coefficient	Yes	No
covariance matrix	Yes	No
correlation matrix	Yes	No
cross-product matrix	Yes	No


Functionality	CPU	OpenMP Offload Intel GPU
pooled covariance matrix	Yes	No
pooled mean	Yes	No
group covariance matrix	Yes	No
group mean	Yes	No
quantiles	Yes	No
order statistics	Yes	No
robust covariance matrix	Yes	No
ouliers detection	Yes	No
partial covariance matrix	Yes	No
partial covariance matrix	Yes	No
missing values	Yes	No
parameterized correlation matrix	Yes	No
stream quantiles	Yes	No
mean absolute deviation	Yes	No
median absolute deviation	Yes	No
sorted observations	Yes	No

## Bibliography

For more information about the BLAS, Sparse BLAS, LAPACK, ScaLAPACK, Sparse Solver, Extended Eigensolver, VM, VS, FFT, and Non-Linear Optimization Solvers functionality, refer to the following publications:

- BLAS Level 1
C. Lawson, R. Hanson, D. Kincaid, and F. Krough. Basic Linear Algebra Subprograms for Fortran Usage, ACM Transactions on Mathematical Software, Vol.5, No. 3 (September 1979) 308-325.
- BLAS Level 2
J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended Set of Fortran Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.14, No. 1 (March 1988) 1-32.
- BLAS Level 3
J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling. A Set of Level 3 Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software (December 1989).
- Sparse BLAS
D. Dodson, R. Grimes, and J. Lewis. Sparse Extensions to the FORTRAN Basic Linear Algebra Subprograms, ACM Transactions on Math Software, Vol.17, No. 2 (June 1991).
D. Dodson, R. Grimes, and J. Lewis. Algorithm 692: Model Implementation and Test Package for the Sparse Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, Vol.17, No. 2 (June 1991).
[Duff86]
I.S.Duff, A.M.Erisman, and J.K.Reid. Direct Methods for Sparse Matrices. Clarendon Press, Oxford, UK, 1986.
[CXML01] Compaq Extended Math Library. Reference Guide, Oct.2001.
[Rem05] K.Remington. A NIST FORTRAN Sparse Blas User's Guide. (available on http:// math.nist.gov/~KRemington/fspblas/)
[Saad94] Y.Saad. SPARSKIT: A Basic Tool-kit for Sparse Matrix Computation. Version 2, 1994.(http://www.cs.umn.edu/~saad)
Y.Saad. Iterative Methods for Linear Systems. PWS Publishing, Boston, 1996.


## - LAPACK

[AndaPark94]
[Baudin12]
[Bischof00]
[Demmel92]
[Demmel12]
[deRijk98]
[Dhillon04]
[Dhillon04-02]
[Dhillon97]
[Drmac08-1]
[Drmac08-2]
[Drmac08-3]
[Drmac08-4]
[Elmroth00]
[Golub96]
A. A. Anda and H. Park. Fast plane rotations with dynamic scaling, SIAM J. matrix Anal. Appl., Vol. 15 (1994), pp. 162-174.
M. Baudin, R. Smith. A Robust Complex Division in Scilab, available from http://www.arxiv.org, arXiv:1210.4539v2 (2012).
C. H. Bischof, B. Lang, and X. Sun. Algorithm 807: The SBR toolbox-software for successive band reduction, ACM Transactions on Mathematical Software, Vol. 26, No. 4, pages 602-616, December 2000.
J. Demmel and K. Veselic. Jacobi's method is more accurate than QR, SIAM J. Matrix Anal. Appl. 13(1992):1204-1246.
J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou. Communication-optimal parallel and sequential QR and LU factorizations, SIAM Journal on Scientific Computing, Vol. 34, No 1, 2012.
P. P. M. De Rijk. A one-sided Jacobi algorithm for computing the singular value decomposition on a vector computer, SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371.
I. Dhillon, B. Parlett. Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices, Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
I. Dhillon, B. Parlett. Orthogonal Eigenvectors and * Relative Gaps, SIAM Journal on Matrix Analysis and Applications, Vol. 25, 2004. (Also LAPACK Working Note 154.)
I. Dhillon. A new $O\left(n^{\wedge} 2\right)$ algorithm for the symmetric tridiagonal eigenvalue/ eigenvector problem, Computer Science Division Technical Report No. UCB/ CSD-97-971, UC Berkeley, May 1997.
Z. Drmac and K. Veselic. New fast and accurate Jacobi SVD algorithm I, SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. LAPACK Working note 169.
Z. Drmac and K. Veselic. New fast and accurate Jacobi SVD algorithm II, SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. LAPACK Working note 170.
Z. Drmac and K. Bujanovic. On the failure of rank-revealing $Q R$ factorization software - a case study, ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28. LAPACK Working note 176.
Z. Drmac. Implementation of Jacobi rotations for accurate singular value computation in floating point arithmetic, SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222.
E. Elmroth and F. Gustavson. Applying Recursion to Serial and Parallel QR Factorization Leads to Better Performance, IBM J. Research \& Development, Vol. 44, No. 4, 2000, pp 605-624.
G. Golub and C. Van Loan. Matrix Computations, Johns Hopkins University Press, Baltimore, third edition,1996.
[LUG] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide, Third Edition, Society for Industrial and Applied Mathematics (SIAM), 1999.
[Kahan66] W. Kahan. Accurate Eigenvalues of a Symmetric Tridiagonal Matrix, Report CS41, Computer Science Dept., Stanford University, July 21, 1966.
O.Marques, E.J.Riedy, and Ch.Voemel. Benefits of IEEE-754 Features in Modern Symmetric Tridiagonal Eigensolvers, SIAM Journal on Scientific Computing, Vol.28, No.5, 2006. (Tech report version in LAPACK Working Note 172 with the same title.)
[Sutton09] Brian D. Sutton. Computing the complete CS decomposition, Numer. Algorithms, 50(1):33-65, 2009.

- ScaLAPACK
[SLUG]
L. Blackford, J. Choi, A.Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K.Stanley, D. Walker, and R. Whaley. ScaLAPACK Users' Guide, Society for Industrial and Applied Mathematics (SIAM), 1997.


## - Sparse Solver

[Duff99]
[Dong95]
[Li99]
[Liu85]
[Menon98]
[Saad03] Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd edition, SIAM, Philadelphia, PA, 2003.
[Schenk00] O. Schenk. Scalable Parallel Sparse LU Factorization Methods on Shared Memory Multiprocessors. PhD thesis, ETH Zurich, 2000.
[Schenk00-2] O. Schenk, K. Gartner, and W. Fichtner. Efficient Sparse LU Factorization with Left-right Looking Strategy on Shared Memory Multiprocessors. BIT, 40(1):158-176, 2000.
[Schenk01] O. Schenk and K. Gartner. Sparse Factorization with Two-Level Scheduling in PARDISO. In Proceeding of the 10th SIAM conference on Parallel Processing for Scientific Computing, Portsmouth, Virginia, March 12-14, 2001.
[Schenk02] O. Schenk and K. Gartner. Two-level scheduling in PARDISO: Improved Scalability on Shared Memory Multiprocessing Systems. Parallel Computing, 28:187-197, 2002.
[Schenk03] O. Schenk and K. Gartner. Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO. Journal of Future Generation Computer Systems, 20(3):475-487, 2004.
[Schenk04] O. Schenk and K. Gartner. On Fast Factorization Pivoting Methods for Sparse Symmetric Indefinite Systems. Technical Report, Department of Computer Science, University of Basel, 2004, submitted.
[Sonn89]
[Young71]

## - Extended Eigensolver

[Polizzi09]
[Polizzi12]
[Bai00]
[Sleijpen96]

- VS
[AVX]
[Billor00]
[Bratley87]
[Bratley88]
[Bratley92]
[BMT]
[Coddington94]
[Fritsch80] Fritsch, F. N and Carlson, R. E. Monotone Piecewise Cubic Interpolation. SIAM Journal on Numerical Analysis (SIAM) 17 (2): 238-246, 1980.
[Gentle98] Gentle, James E. Random Number Generation and Monte Carlo Methods, Springer-Verlag New York, Inc., 1998.

Hyman, J. M. Accurate monotonicity preserving cubic interpolation, SIAM J. Sci. Stat. Comput. 4, 645-654, 1983.

Intel. Intel® 64 and IA-32 Architectures Software Developer's Manual. 3 vols.
[L'Ecuyer94] L'Ecuyer, Pierre. Uniform Random Number Generation. Annals of Operations Research, 53, 77-120, 1994.
[L'Ecuyer99]
[L'Ecuyer99a]
[L'Ecuyer01]
[Kirkpatrick81]
[Knuth81]
[Maronna02]
[Matsumoto98]
[Matsumoto00]
[NAG]
[Rocke96]
[Saito08]
[Salmon11]
[Schafer97]
[Sobol76]
[SSL Notes]

L'Ecuyer, Pierre. Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure. Mathematics of Computation, 68, 225, 249-260, 1999.

L'Ecuyer, Pierre. Good Parameter Sets for Combined Multiple Recursive Random Number Generators. Operations Research, 47, 1, 159-164, 1999.

L'Ecuyer, Pierre. Software for Uniform Random Number Generation: Distinguishing the Good and the Bad. Proceedings of the 2001 Winter Simulation Conference, IEEE Press, 95-105, Dec. 2001.

Kirkpatrick, S., and Stoll, E. A Very Fast Shift-Register Sequence Random Number Generator. Journal of Computational Physics, V. 40. 517-526, 1981.

Knuth, Donald E. The Art of Computer Programming, Volume 2, Seminumerical Algorithms. 2nd edition, Addison-Wesley Publishing Company, Reading, Massachusetts, 1981.

Maronna, R.A., and Zamar, R.H., Robust Multivariate Estimates for HighDimensional Datasets, Technometrics, 44, 307-317, 2002.

Matsumoto, M., and Nishimura, T. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, Pages 3-30, January 1998.

Matsumoto, M., and Nishimura, T. Dynamic Creation of Pseudorandom Number Generators, 56-69, in: Monte Carlo and Quasi-Monte Carlo Methods 1998, Ed. Niederreiter, H. and Spanier, J., Springer 2000, http:// www.math.sci.hiroshima-u.ac.jp/\~m-mat/MT/DC/dc.html.

NAG Numerical Libraries. http://www.nag.co.uk/numeric/ numerical_libraries.asp

David M. Rocke, Robustness properties of S-estimators of multivariate location and shape in high dimension. The Annals of Statistics, 24(3), 1327-1345, 1996.

Saito, M., and Matsumoto, M. SIMD-oriented Fast Mersenne Twister: a 128-bit Pseudorandom Number Generator. Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer, Pages 607-622, 2008.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html
Salmon, John K., Morales, Mark A., Dror, Ron O., and Shaw, David E., Parallel Random Numbers: As Easy as 1, 2, 3. SC '11 Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, 2011.

Schafer, J.L., Analysis of Incomplete Multivariate Data. Chapman \& Hall, 1997.
Sobol, I.M., and Levitan, Yu.L. The production of points uniformly distributed in a multidimensional cube. Preprint 40, Institute of Applied Mathematics, USSR Academy of Sciences, 1976 (In Russian).

Inte ${ }^{\circledR}$ oneMKL Summary Statistics Application Notes, a document present on the Intel ${ }^{\circledR}$ oneMKL product at https://www.intel.com/content/www/us/en/ developer/tools/oneapi/onemkl-documentation.html
[VS Notes] Inte ${ }^{\circledR}$ oneMKL Vector Statistics Notes, a document present on the Intel ${ }^{\circledR}$ oneMKL product at https://www.intel.com/content/www/us/en/developer/ tools/oneapi/onemkl-documentation.html
[VS Data]

- VM
[C99]
[Muller97]
[IEEE754]
[VM Data]
Inte ${ }^{\circledR}$ oneMKL Vector Statistics Performance, a document present on the Intel® oneMKL product at https://www.intel.com/content/www/us/en/developer/ tools/oneapi/onemkl-documentation.html

ISO/IEC 9899:1999/Cor 3:2007. Programming languages -- C.
J.M.Muller. Elementary functions: algorithms and implementation, Birkhauser Boston, 1997.

IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-2008.
Inte/® oneMKL Vector Mathematics Performance and Accuracy, a document present on the Intel ${ }^{\circledR}$ oneMKL product at https://www.intel.com/ content/www/us/en/developer/tools/oneapi/onemkl-documentation.html

- FFT
E. Oran Brigham, The Fast Fourier Transform and Its Applications, Prentice Hall, New Jersey, 1988.

Athanasios Papoulis, The Fourier Integral and its Applications, 2nd edition, McGraw-Hill, New York, 1984.

Ping Tak Peter Tang, DFTI - a new interface for Fast Fourier Transform libraries, ACM Transactions on Mathematical Software, Vol. 31, Issue 4, Pages 475-507, 2005.

Charles Van Loan, Computational Frameworks for the Fast Fourier Transform, SIAM, Philadelphia, 1992.

- Optimization Solvers
[Conn00]
A. R. Conn, N. I.M. Gould, P. L. Toint.Trust-region Methods. SIAM Society for Industrial \& Applied Mathematics, Englewood Cliffs, New Jersey, MPS-SIAM Series on Optimization edition, 2000.


## - Data Fitting Functions

[deBoor2001]
Carl deBoor. A Practical Guide to Splines. Revised Edition. Springer-Verlag New York Berlin Heidelberg, 2001.
[Schumaker2007] Larry L Schumaker. Spline Functions: Basic Theory. 3 ${ }^{\text {rd }}$ Edition. Cambridge University Press, Cambridge, 2007.
S.B. Stechhkin, and Yu Subbotin. Splines in Numerical Mathematics. Izd. Nauka, Moscow, 1976.

band matrix	A general $m$-by- $n$ matrix $A$ such that $a_{i j}=0$ for $\|i-j\|>I$, where $1<1<\min (m, n)$. For example, any tridiagonal matrix is a band matrix.	
band storage	A special storage scheme for band matrices. A matrix is stored in a two-dimensional array: columns of the matrix are stored in the corresponding columns of the array, and diagonals of the matrix are stored in rows of the array.	
BLAS	Abbreviation for Basic Linear Algebra Subprograms. These subprograms implement vector, matrix-vector, and matrix-matrix operations.	
BRNG	Abbreviation for Basic Random Number Generator. Basic random number generators are pseudorandom number generators imitating i.i.d. random number sequences of uniform distribution. Distributions other than uniform are generated by applying different transformation techniques to the sequences of random numbers of uniform distribution.	
BRNG registration	Standardized mechanism that allows a user to include a user-designed BRNG into the VSL and use it along with the predefined VSL basic generators.	
Bunch-Kaufman factorization	Representation of a real symmetric or complex Hermitian matrix $A$ in the form $A=P U D U^{H} P^{\mathrm{T}}$ (or $A=P L D L^{\mathrm{H}} P^{\mathrm{T}}$ ) where $P$ is a permutation matrix, $U$ and $L$ are upper and lower triangular matrices with unit diagonal, and $D$ is a Hermitian block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks. $U$ and $L$ have 2-by-2 unit diagonal blocks corresponding to the 2-by- 2 blocks of $D$.	
C	When found as the first letter of routine names, c indicates the use of the single-precision complex data type.	
CBLAS	C interface to the BLAS. See BLAS.	
CDF	Cumulative Distribution Function. The function that determines probability distribution for univariate or multivariate random variable $X$. For univariate distribution the cumulative distribution function is the function of real argument $x$, which for every $x$ takes a value equal to probability of the event $A: \quad x \leq x$. For multivariate distribution the cumulative distribution function is the function of a real vector $x=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, which, for every $x$, takes a value equal to probability of the event $A=\left(X_{1} \leq x_{1} \& X_{2} \leq x_{2}, \& \ldots, \& X_{n} \leq x_{n}\right)$.	
Cholesky factorization	Representation of a symmetric positive-definite or, for complex data, Hermitian positive-definite matrix $A$ in the form $A=U^{H} U$ or $A=L L^{\mathrm{H}}$, where $L$ is a lower triangular matrix and $U$ is an upper triangular matrix.	
condition number	The number $\kappa(A)$ defined for a given square matrix $A$ as follows: $\kappa(A)$ $=\\| A\| \|\| \| A^{-1}\| \|$.	
conjugate matrix	The matrix $A^{\mathrm{H}}$ defined for a given general matrix $A$ as follows: $\left(A^{\mathrm{H}}\right)_{\mathrm{ij}}$ $=\left(a_{j i}\right)^{*}$.	
conjugate number	The conjugate of a complex number $z=a+b i$ is $z^{\star}=a-b i$.	
d	When found as the first letter of routine names, $d$ indicates the use of the double-precision real data type.	

$\left.\begin{array}{ll}\text { dot product } & \begin{array}{l}\text { The number denoted } x . y \text { and defined for given vectors } x \text { and } y \text { as } \\ \text { follows: } x \cdot y=\Sigma_{i} x_{i} y_{i} .\end{array} \\ & \text { Here } x_{i} \text { and } y_{i} \text { stand for the } i \text {-th elements of } x \text { and } y, \text { respectively. }\end{array}\right\}$

where $L_{1}$ is an $n$-by- $n$ lower triangular matrix, and $L_{2}$ is a rectangular matrix.

LU factorization
machine precision

MPI

MPICH
orthogonal matrix
packed storage

PDF

Representation of a general $m$-by- $n$ matrix $A$ as $A=P L U$, where $P$ is a permutation matrix, $L$ is lower triangular with unit diagonal elements (lower trapezoidal if $m>n$ ) and $U$ is upper triangular (upper trapezoidal if $m<n$ ).

The number $\varepsilon$ determining the precision of the machine representation of real numbers. For Inte ${ }^{\circledR}$ architecture, the machine precision is approximately $10^{-7}$ for single-precision data, and approximately $10^{-15}$ for double-precision data. The precision also determines the number of significant decimal digits in the machine representation of real numbers. See also double precision and single precision.

Message Passing Interface. This standard defines the user interface and functionality for a wide range of message-passing capabilities in parallel computing.

A freely available, portable implementation of MPI standard for message-passing libraries.

A real square matrix $A$ whose transpose and inverse are equal, that is, $A^{T}=A^{-1}$, and therefore $A A^{T}=A^{\mathrm{T}} A=I$. All eigenvalues of an orthogonal matrix have the absolute value 1.

A storage scheme allowing you to store symmetric, Hermitian, or triangular matrices more compactly. The upper or lower triangle of a matrix is packed by columns in a one-dimensional array.

Probability Density Function. The function that determines probability distribution for univariate or multivariate continuous random variable $X$. The probability density function $f(x)$ is closely related with the cumulative distribution function $F(x)$.

For univariate distribution the relation is
positive-definite matrix
pseudorandom number generator
$Q R$ factorization
random stream

RNG

Rectangular Full Packed (RFP)
storage

S

ScaLAPACK
Schur factorization
single precision

## LTCH

For multivariate distribution the relation is

$$
F\left(x_{1}, x_{2}, \ldots, x_{n 2}\right)=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} \ldots \int_{-\infty}^{x_{n}} f\left(t_{1}, t_{2}, \ldots, t_{n 2}\right) d t_{1} d t_{2} \ldots d t_{n 2}
$$

A square matrix $A$ such that $A x \cdot x>0$ for any non-zero vector $x$. Here • denotes the dot product.

A completely deterministic algorithm that imitates truly random sequences.

Representation of an m-by-n matrix $A$ as $A=Q R$, where $Q$ is an m-by-m orthogonal (unitary) matrix, and $R$ is $n$-by- $n$ upper triangular with real diagonal elements (if $m \geq n$ ) or trapezoidal (if $m<n$ ) matrix.

An abstract source of independent identically distributed random numbers of uniform distribution. In this manual a random stream points to a structure that uniquely defines a random number sequence generated by a basic generator associated with a given random stream.

Abbreviation for Random Number Generator. In this manual the term "random number generators" stands for pseudorandom number generators, that is, generators based on completely deterministic algorithms imitating truly random sequences.

A storage scheme combining the full and packed storage schemes for the upper or lower triangle of the matrix. This combination enables using half of the full storage as packed storage while maintaining efficiency by using Level 3 BLAS/LAPACK kernels as the full storage.

When found as the first letter of routine names, $s$ indicates the use of the single-precision real data type.

## Stands for Scalable Linear Algebra PACKage.

Representation of a square matrix $A$ in the form $A=Z T Z^{H}$. Here $T$ is an upper quasi-triangular matrix (for complex $A$, triangular matrix) called the Schur form of $A$; the matrix $Z$ is orthogonal (for complex $A$, unitary). Columns of $Z$ are called Schur vectors.

A floating-point data type. On Intel ${ }^{\circledR}$ processors, this data type allows you to store real numbers $x$ such that $1.18 * 10^{-38}<|x|<$ $3.40 * 10^{38}$. For this data type, the machine precision $(\varepsilon)$ is approximately $10^{-7}$, which means that single-precision numbers usually contain no more than 7 significant decimal digits. For more information, refer to Inte ${ }^{\circledR} 64$ and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture.

singular matrix	A matrix whose determinant is zero. If $A$ is a singular matrix, the   inverse $A^{-1}$ does not exist, and the system of equations $A x=b$ does   not have a unique solution (that is, there exist no solutions or an   infinite number of solutions).
singular value	The numbers defined for a given general matrix $A$ as the eigenvalues   of the matrix $A A^{H}$. See also SVD.
SMP	Abbreviation for Symmetric MultiProcessing. Intel® oneAPI Math Kernel   Library (oneMKL) offers performance gains through parallelism
provided by the SMP feature.	

## Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

## Third Party Content

Inte ${ }^{\circledR}$ oneAPI Math Kernel Library includes content from several 3rd party sources that was originally governed by the licenses referenced below:

- Portions ${ }^{\oplus}$ Copyright 2001 Hewlett-Packard Development Company, L.P.
- Sections on the Linear Algebra PACKage (LAPACK) routines include derivative work portions that have been copyrighted:
© 1991, 1992, and 1998 by The Numerical Algorithms Group, Ltd.
- Intel ${ }^{\circledR}$ oneAPI Math Kernel Library supports LAPACK 3.5 set of computational, driver, auxiliary and utility routines under the following license:
Copyright ${ }^{\ominus}$ 1992-2011 The University of Tennessee and The University of Tennessee Research Foundation. All rights reserved.

Copyright ${ }^{\circ}$ 2000-2011 The University of California Berkeley. All rights reserved.
Copyright ${ }^{\circ}$ 2006-2012 The University of Colorado Denver. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution.
- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

The copyright holders provide no reassurances that the source code provided does not infringe any patent, copyright, or any other intellectual property rights of third parties. The copyright holders disclaim any liability to any recipient for claims brought against recipient by any third party for infringement of that parties intellectual property rights.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The original versions of LAPACK from which that part of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library was derived can be obtained from http://www.netlib.org/lapack/index.html. The authors of LAPACK are E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.

- The original versions of the Basic Linear Algebra Subprograms (BLAS) from which the respective part of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library was derived can be obtained from http://www.netlib.org/blas/ index.html.
- XBLAS is distributed under the following copyright:

Copyright © 2008-2009 The University of California Berkeley. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution.
- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- The original versions of the Basic Linear Algebra Communication Subprograms (BLACS) from which the respective part of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library was derived can be obtained from http:// www.netlib.org/blacs/index.html. The authors of BLACS are Jack Dongarra and R. Clint Whaley.
- The original versions of Scalable LAPACK (ScaLAPACK) from which the respective part of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library was derived can be obtained from http://www.netlib.org/scalapack/index.html. The authors of ScaLAPACK are L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.
- The original versions of the Parallel Basic Linear Algebra Subprograms (PBLAS) routines from which the respective part of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library was derived can be obtained from http:// www.netlib.org/scalapack/html/pblas_qref.html.
- PARDISO (PARallel DIrect SOlver)* in Intel ${ }^{\circledR}$ oneAPI Math Kernel Library was originally developed by the Department of Computer Science at the University of Basel (http://www.unibas.ch). It can be obtained at http://www.pardiso-project.org.
- The Extended Eigensolver functionality is based on the Feast solver package and is distributed under the following license:

Copyright ${ }^{\bullet}$ 2009, The Regents of the University of Massachusetts, Amherst.
Developed by E. Polizzi
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

- Some Fast Fourier Transform (FFT) functions in this release of Intel ${ }^{\circledR}$ oneAPI Math Kernel Library have been generated by the SPIRAL software generation system (http://www.spiral.net/) under license from Carnegie Mellon University. The authors of SPIRAL are Markus Puschel, Jose Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo.
- Open MPI is distributed under the New BSD license, listed below.

Most files in this release are marked with the copyrights of the organizations who have edited them. The copyrights below are in no particular order and generally reflect members of the Open MPI core team who have contributed code to this release. The copyrights for code used under license from other parties are included in the corresponding files.
Copyright © 2004-2010 The Trustees of Indiana University and Indiana University Research and Technology Corporation. All rights reserved.

Copyright © 2004-2010 The University of Tennessee and The University of Tennessee Research Foundation. All rights reserved.

Copyright ${ }^{\odot}$ 2004-2010 High Performance Computing Center Stuttgart, University of Stuttgart. All rights reserved.
Copyright © 2004-2008 The Regents of the University of California. All rights reserved.
Copyright © 2006-2010 Los Alamos National Security, LLC. All rights reserved.
Copyright ${ }^{\circ}$ 2006-2010 Cisco Systems, Inc. All rights reserved.
Copyright ${ }^{\odot}$ 2006-2010 Voltaire, Inc. All rights reserved.
Copyright ${ }^{\odot}$ 2006-2011 Sandia National Laboratories. All rights reserved.
Copyright ${ }^{\odot}$ 2006-2010 Sun Microsystems, Inc. All rights reserved. Use is subject to license terms.
Copyright © 2006-2010 The University of Houston. All rights reserved.
Copyright © 2006-2009 Myricom, Inc. All rights reserved.
Copyright © 2007-2008 UT-Battelle, LLC. All rights reserved.
Copyright © 2007-2010 IBM Corporation. All rights reserved.
Copyright ${ }^{\odot}$ 1998-2005 Forschungszentrum Juelich, Juelich Supercomputing Centre, Federal Republic of Germany

Copyright ${ }^{\odot}$ 2005-2008 ZIH, TU Dresden, Federal Republic of Germany

Copyright © 2007 Evergrid, Inc. All rights reserved.
Copyright ${ }^{\odot} 2008$ Chelsio, Inc. All rights reserved.
Copyright ${ }^{\circ}$ 2008-2009 Institut National de Recherche en Informatique. All rights reserved.
Copyright © 2007 Lawrence Livermore National Security, LLC. All rights reserved.
Copyright ${ }^{\odot}$ 2007-2009 Mellanox Technologies. All rights reserved.
Copyright © 2006-2010 QLogic Corporation. All rights reserved.
Copyright © 2008-2010 Oak Ridge National Labs. All rights reserved.
Copyright ${ }^{\odot}$ 2006-2010 Oracle and/or its affiliates. All rights reserved.
Copyright ${ }^{\circ} 2009$ Bull SAS. All rights reserved.
Copyright © 2010 ARM Itd. All rights reserved.
Copyright © 2010-2011 Alex Brick. All rights reserved.
Copyright © 2012 The University of Wisconsin-La Crosse. All rights reserved.
Copyright ${ }^{\odot}$ 2013-2014 Intel, Inc. All rights reserved.
Copyright © 2011-2014 NVIDIA Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution.
- Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

The copyright holders provide no reassurances that the source code provided does not infringe any patent, copyright, or any other intellectual property rights of third parties. The copyright holders disclaim any liability to any recipient for claims brought against recipient by any third party for infringement of that parties intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

- The Safe C Library is distributed under the following copyright:

Copyright (c)
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

- HPL Copyright Notice and Licensing Terms

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgement: This product includes software developed at the University of Tennessee, Knoxville, Innovative Computing Laboratories.
4. The name of the University, the name of the Laboratory, or the names of its contributors may not be used to endorse or promote products derived from this software without specific written permission.

[^0]:    ?asum
    Computes the sum of magnitudes of the vector elements.

[^1]:    a
    Holds the matrix $A$ of size $(k, k)$ where

    $$
    k=m \text { if side }=\text { 'L', }
    $$

[^2]:    SPARSE_STATUS_SUCCESS The operation was successful.

[^3]:    ?pocon
    Estimates the reciprocal of the condition number of a symmetric (Hermitian) positive-definite matrix.

[^4]:    ilaenv

[^5]:    a

[^6]:    $d$
    $q$

[^7]:    Additionally, you can define submatrices with different pointerB and pointerE arrays that share the same values and columns arrays of a CSR matrix. For example, you can represent the lower right $3 \times 3$ submatrix of $B$ as:

    ## Storage Arrays for a Matrix in CSR Format

    one-based indexing

    | subpointerB | $=$ | $(6$ | 10 | $13)$ |
    | :--- | :--- | :--- | :--- | :--- |
    | subpointerE | $=$ | $(9$ | 12 | $14)$ |

    zero-based indexing

